
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER’S THESIS
in

Machine Learning for Computer Vision

Alignment of Implicit Neural
Representations of 3D Shapes via

Permutation Symmetries

Supervisor:
Samuele Salti

Co-supervisors:
Luca De Luigi
Adriano Cardace
Pierluigi Zama Ramirez
Luigi Di Stefano

Candidate:
Francesco Ballerini

ACADEMIC YEAR 2021–2022
Third Session

Research is what I’m doing when I
don’t know what I’m doing.

Wernher von Braun

Abstract

Multi-Layer Perceptrons (MLPs) have long been known to enjoy permutation
symmetries, namely the fact that activations of intermediate layers can be swapped
without changing the underlying function. Research works inspired by this prop-
erty have been recently building up to a conjecture stating that any two Stochastic
Gradient Descent (SGD) solutions, up to a permutation, lie in the same low-loss
region of the parameter space, i.e. they enjoy Linear Mode Connectivity (LMC).
Concurrently, Implicit Neural Representations (INRs) have been emerging as a
new unifying paradigm to store and represent various signals of interest (such as
images, audio, and 3D surfaces), which has sparked a novel interest in machine
learning architectures designed to work on neural networks themselves by process-
ing their weights only. The recently proposed inr2vec framework is one such
architecture, and has been shown to be able to embed input INRs of 3D shapes
into latent codes that can be effectively fed into standard deep learning pipelines.
A key requirement for the convergence of inr2vec is that input INRs share the
same random initialization, which has been pointed out as a potential limitation
to its applicability. Hence, the motivation behind our work is to eventually allow
inr2vec to work with arbitrary in-the-wild INRs, regardless of their initialization.
As a first attempt to tackle this complex task, we apply and thoroughly analyze
recent combinatorial methods which lay their foundations on the aforementioned
conjecture by computing a weight permutation that aims at aligning two INRs
of the same 3D surface. This approach, although promising in some of its re-
sults, is ultimately shown to be unable to move INRs into the same basin of the
loss landscape. Finally, we present preliminary results of a novel deep learning
methodology devised to achieve LMC by directly learning new weights for one of
the two models.

ii

Contents

1 Introduction 1

2 Theoretical foundations 6
2.1 Permutation invariance of MLPs 6
2.2 Linear mode connectivity . 9
2.3 Alignment methods . 10

2.3.1 Activation matching . 10
2.3.2 Weight matching . 13

3 Experimental results 15
3.1 Behavior along the linear path 16

3.1.1 Loss . 16
3.1.2 Predictions . 18

3.2 Additional experiments . 19
3.3 Variations of weight matching 19

3.3.1 Min-max . 20
3.3.2 Pruning . 23

3.4 Learning linear mode connectivity 24

4 Conclusions and future work 30

A Implementation and hardware 36

iii

Chapter 1

Introduction

Since the early days of computer vision, researchers have been processing im-
ages as two-dimensional grids of pixels carrying intensity or color measurements.
Unfortunately, digital 3D surfaces do not enjoy the same uniformity, leading
to a variety of discrete representations—such as voxel grids, point clouds, and
meshes—coexisting today, each with its strengths and weaknesses. Voxel grid
can be appealing due to their regular structure, while having cubic space com-
plexity; on the opposite side, the unorganized nature of point clouds make them
less memory-intensive while also needing more careful processing. Meshes, on
the other hand, are also far from straightforward to handle, due to the interplay
between their vertex, edge, and face information. Nonetheless, no standard way to
store and process 3D surfaces has yet emerged.

INRs For these reasons, a new kind or representation has recently been pro-
posed, called Implicit Neural Representations (INRs). INRs leverage Multi-Layer
Perceptrons (MLPs) to fit a continuous function that represents implicitly a signal
of interest (Xie et al., 2022), and have been shown to be able to effectively encode
3D shapes by fitting Signed Distance Functions (SDFs) (Park et al., 2019; Gropp
et al., 2020; Takikawa et al., 2021) (Figure 1.1), Unsigned Distance Functions
(UDFs) (Chibane et al., 2020), and occupancy fields (Mescheder et al., 2019; Peng
et al., 2020), whose discrete counterparts are meshes, point clouds, and voxel
grids, respectively. The biggest advantage of such an approach is that it decouples
the memory cost of the representation from its spatial resolution, as a surface

1

CHAPTER 1. INTRODUCTION 2

Source: Park et al., 2019

Figure 1.1: SDF representation of the Stanford Bunny. (a): Depiction of the
underlying implicit surface SDF = 0 trained on sampled points inside (SDF < 0)
and outside (SDF > 0) the surface. (b): 2D cross-section of the signed distance
field. (c): Rendered 3D surface recovered from SDF = 0.

with arbitrarily fine resolution can be reconstructed from a fixed number of pa-
rameters. Besides, since the same neural network architecture can be used to fit
different implicit functions, INRs hold the potential to provide a unified framework
to represent 3D shapes, by replacing the complex and/or memory-intensive ad-hoc
machinery needed to process 3D discrete representations (Maturana and Scherer,
2015; Qi et al., 2017; Wang et al., 2019; Hu et al., 2022).

inr2vec Besides applying INRs to 3D data representation, current research
efforts explore whether it is possible to process such INRs directly, in order to
solve deep learning downstream tasks like those routinely performed with discrete
representations (e.g. doing shape classification on an INR of a 3D surface without
reconstructing a discrete representation of the surface itself). Since INRs are neural
networks, there is no straightforward way to process them; moreover, a single INR
can easily count hundreds of thousands of parameters, most of which are known
to be redundant (Section 3.3.2). One possible solution consists in training an
individual INR for each shape and then compressing it into a more compact latent
vector. This is the approach followed by inr2vec (De Luigi et al., 2023), a

CHAPTER 1. INTRODUCTION 3

Source: De Luigi et al., 2023

Figure 1.2: The inr2vec framework. Left: INRs hold the potential to provide
a unified representation of 3D shapes. Center: inr2vec produces a compact
representation of an input INR by only looking at its weights. Right: inr2vec
embeddings can be used in combination with standard deep learning machinery to
solve a variety of downstream tasks.

representation learning framework based on an encoder designed to produce a
task-agnostic embedding representing the input INR by processing its weights
only. These embeddings are shown to work in a variety of downstream tasks, such
as classification, retrieval, part segmentation, unconditioned generation, surface
reconstruction and completion (Figure 1.2).

Shared initialization Since MLPs are permutation invariant (Hecht-Nielsen,
1990), i.e. weights and biases can be permuted without changing the network
output, there is no guarantee of one-to-one correspondence between the parameters
of two INRs trained with different sources of randomness (initialization and data
shuffling). Thus, the inr2vec encoderwould have to deal with input vectorswhose
elements capture different information across different data samples, making it
impossible to train the framework—unless the encoder itself was invariant to
weight permutations of input INRs, which, in De Luigi et al.’s formulation, is not
the case. Therefore, inr2vec requires a shared precomputed random initialization
for all input INRs, as this is empirically found to enable the framework convergence.
Although this constraint is not unusual (Gropp et al., 2020; Sitzmann et al., 2020a;
Dupont et al., 2022), it might conflict with the long-term goal of De Luigi et al.’s
work—a future in which INRs have emerged as a standard representation to store

CHAPTER 1. INTRODUCTION 4

Source: Ainsworth et al., 2022

Figure 1.3: Entezari et al.’s conjecture. Given two trained neural networks �
and �, the weights and biases of � can be permuted is such a way that � is moved
into the same basin of the loss landscape as �.

and communicate 3D shapes, and repositories hosting digital twins of 3D objects
encoded by MLPs have become commonly available. Indeed, in such a scenario,
it would not be possible to download an arbitrary in-the-wild INR and process it
through inr2vec, as that INR would need to have been trained starting from the
same initialization shared by all the MLPs inr2vec was trained on.

Model alignment As a way to address this concern, the goal of our work is
to answer the following question: given two MLPs � and � trained starting
from different initializations—where 8=8C� is the initialization shared by the INRs
inr2vec was trained on and 8=8C� ≠ 8=8C�—what would the weights of � look
like if instead 8=8C� = 8=8C�? If we knew it, we could align �’s weights to �’s as
a processing step and then give � as input to inr2vec. Ideally, this procedure
should work across shapes, however in this work we will focus on aligning INRs
representing the same shape.

Several recent works on model alignment (Tatro et al., 2020; Ainsworth et al.,
2022) and fusion (Singh and Jaggi, 2020; Liu et al., 2022) leverage the aforemen-
tioned permutation invariance, and empirical observations have led to a conjecture
stating that, for a given neural network, any two solutions found by Stochastic Gra-
dient Descent (SGD) lie in the same low-loss region (called basin) of the parameter

CHAPTER 1. INTRODUCTION 5

space, up to a weight permutation (Entezari et al., 2022) (Figure 1.3). Motivated
by this line of research as a path towards a solution to the inr2vec initialization
problem, our work mainly focuses on applying Ainsworth et al.’s methods for
model alignment to INRs of 3D shapes like those expected as input by inr2vec.

Chapter 2

Theoretical foundations

In this chapter, we delve into the theoretical concepts that justify the notion of
model alignment, namely permutation invariance of MLPs (Hecht-Nielsen, 1990)
and linear mode connectivity (Draxler et al., 2018; Garipov et al., 2018; Frankle
et al., 2020). Then, we formally derive the two alignment methods proposed by
Ainsworth et al. (2022), which will be the focus of our experiments in the next
chapter.

2.1 Permutation invariance of MLPs
Consider a 3-layer MLP with parameters θ

x1 = f(W1x + b1)
x2 = f(W2x1 + b2)
x3 = W3x2 + b3 = 5θ (x)

or equivalently

5θ (x) = W3f(W2f(W1x + b1) + b2) + b3

wheref is any element-wise nonlinearity, x8 ∈ R38×1 for 8 = 0, 1, 2, 3 (with x0 = x),
and W8 ∈ R38×38−1 , b8 ∈ R38×1 for 8 = 1, 2, 3. Let P1 ∈ R31×31 ,P2 ∈ R32×32 be
permutation matrices, i.e. orthogonal matrices that act on rows when applied on
the left and on columns when applied on the right (Example 2.1).

6

CHAPTER 2. THEORETICAL FOUNDATIONS 7

Example 2.1 (Permutation matrices). Given matrix

X =


G11 G12 G13

G21 G22 G23

G31 G32 G33


assume we want to move row 1 to row 2, row 2 to row 3, and row 3 to row 1, i.e.

c(1) = 2, c(2) = 3, c(3) = 1

We can do so by building matrix

P =


ec−1 (1)
ec−1 (2)
ec−1 (3)

 =


e3

e1

e2

 =


0 0 1
1 0 0
0 1 0


and computing the product

PX =


0 0 1
1 0 0
0 1 0



G11 G12 G13

G21 G22 G23

G31 G32 G33

 =


G31 G32 G33

G11 G12 G13

G21 G22 G23


If instead we multiply X by P>, we will get the same permutation, but this time
applied to the columns of X, i.e.

XP> =


G11 G12 G13

G21 G22 G23

G31 G32 G33



0 1 0
0 0 1
1 0 0

 =


G13 G11 G12

G23 G21 G22

G33 G31 G32


�

CHAPTER 2. THEORETICAL FOUNDATIONS 8

We can then write

x1 = P>1 P1x1 (P>1 = P−1
1)

= P>1 P1f(W1x + b1)
= P>1 f(P1W1x + P1b1) (f and P commute)

x2 = P>2 P2x2

= P>2 P2f(W2x1 + b2)
= P>2 f(P2W2x1 + P2b2)
= P>2 f(P2W2P>1 f(P1W1x + P1b1) + P2b2)

x3 = W3x2 + b3

= W3P>2︸ ︷︷ ︸
W′3

f(P2W2P>1︸ ︷︷ ︸
W′2

f(P1W1︸︷︷︸
W′1

x + P1b1︸︷︷︸
b′1

) + P2b2︸︷︷︸
b′2

) + b3︸︷︷︸
b′3

= 5θ (x)

Therefore, if we take a second MLP with parameters θ′ such that

W′1 = P1W1

b′1 = P1b1

W′2 = P2W2P>1
b′2 = P2b2

W′3 = W3P>2
b′3 = b3

we have 5θ′ (x) = 5θ (x) for all x ∈ R30×1. The result we derived for a 3-layer MLP
can be extended to a generic !-layer MLP:

Theorem 2.1 (Permutation invariance of MLPs). Let θ, θ′ be the parameters of
two !-layer MLPs such that

W′ℓ = PℓWℓP>ℓ−1

b′ℓ = Pℓbℓ

CHAPTER 2. THEORETICAL FOUNDATIONS 9

\�

L(\�)

\�

L(\�)

(1 − _) \� + _\�

L((1 − _) \� + _\�)
(1 − _)L(\�) + _L(\�)

Figure 2.1: Loss barrier. The barrier along the linear path between θ� and θ� is
the highest difference between the loss occurred when linearly connecting θ�, θ�
and the linear interpolation of the loss values at each of them. For visualization
purposes, a 1D weight space is depicted.

for ℓ = 1, . . . , ! with P0 = P! = I. Then,

5θ (x) = 5θ′ (x)

for all x.

2.2 Linear mode connectivity
Definition 2.1 (Loss barrier). Let θ�, θ� be two solutions found when training an
MLP by running SGD with different random initializations and data orders, and
let L be the loss on either the training or test set. The loss barrier between θ� and
θ� is defined as (Figure 2.1)

B(θ�, θ�) = max
_∈[0,1]

{L((1 − _)θ� + _θ�) − ((1 − _)L(θ�) + _L(θ�))}

CHAPTER 2. THEORETICAL FOUNDATIONS 10

Remark. Notice that

B(θ�, θ�)


> 0 if L is concave between θ� and θ�
= 0 if L is linear between θ� and θ�
< 0 if L is convex between θ� and θ�

Definition 2.2 (Linear mode connectivity (LMC)). θ�, θ� are said to be linear
mode connected if

B(θ�, θ�) ≈ 0

Conjecture 2.1 (Entezari et al., 2022). There exists a permutation c = {P1, . . . ,P!−1}
such that θ� and c(θ�) are linear mode connected.

2.3 Alignment methods
In this section, we introduce two methods that build upon Conjecture 2.1 and aim
at computing the aligning permutation by minimizing some measure of distance
between model layers, one based on activations and the other on weight values.

2.3.1 Activation matching
The method we are going to describe aims at matching activations between MLPs,
which captures the intuitive notion that two models should learn similar features
in order to accomplish the same task.

Let X�
ℓ ,X�

ℓ ∈ R3ℓ×= be the features produced in output by the ℓth layer of
MLPs θ� and θ�, respectively (where = is the batch size), and let X�

:,8,X�
:,8 be the

8th column (i.e. feature) of X�
ℓ and X�

ℓ , respectively. The goal is to optimize

P∗ℓ = arg min
Pℓ

=∑
8=1
‖X�

:,8 − PℓX�
:,8‖22

CHAPTER 2. THEORETICAL FOUNDATIONS 11

Algorithm 2.1: Activation-Matching (Ainsworth et al., 2022)
Input: θ�, θ�
Output: c = {P1, . . . P!−1} minimizing ‖X�

ℓ − PℓX�
ℓ ‖2�

P1 ← I, . . . ,P!−1 ← I
for ℓ ← 1 to ! − 1 do

Pℓ ← SolveLAP(X�
ℓ (X�

ℓ)>)
end

for ℓ = 1, . . . , ! − 1. Notice that∑=
8=1‖X�

:,8 − PℓX�
:,8‖22 = ‖X�

ℓ − PℓX�
ℓ ‖2�

= ‖X�
ℓ ‖2� − 2〈X�

ℓ ,PℓX�
ℓ 〉� + ‖PℓX�

ℓ ‖2�︸ ︷︷ ︸
=‖X�

ℓ
‖2�

where 〈A,B〉� =
∑
8

∑
9 08 918 9 is the Frobenius inner product. It follows that

P∗ℓ = arg max
Pℓ
〈X�

ℓ ,PℓX�
ℓ 〉�

which can be further rewritten by observing that

〈X�
ℓ ,PℓX�

ℓ 〉� = tr((X�
ℓ)>PℓX�

ℓ) (〈A,B〉� = tr(A>B))
= tr((PℓX�

ℓ)>X�
ℓ) (tr(A) = tr(A>))

= tr((X�
ℓ)>P>ℓ X�

ℓ)
= tr(P>ℓ X�

ℓ (X�
ℓ)>) (tr(ABC) = tr(BCA))

= 〈Pℓ,X�
ℓ (X�

ℓ)>〉� (2.1)

Therefore, what we want to compute is ultimately

P∗ℓ = arg max
Pℓ
〈Pℓ,X�

ℓ (X�
ℓ)>〉�

which is an instance of the linear assignment problem (Problem 2.1). Algorithm
2.1 shows a pseudocode for the procedure.

CHAPTER 2. THEORETICAL FOUNDATIONS 12

Problem 2.1 (Linear assignment problem (LAP)). Given

� = set of agents

) = set of tasks

F8 9 = weight of assigning agent 8 to task 9

G8 9 =


1 if agent 8 is assigned to task 9

0 otherwise

the corresponding assignment problem can be formulated as an integer linear
program, i.e.

maximize
∑
8∈�

∑
9∈)F8 9G8 9

with constraints:∑
9∈)G8 9 = 1 ∀8 ∈ � (each agent is assigned to one task)∑
8∈�G8 9 = 1 ∀ 9 ∈) (each task is assigned to one agent)

G8 9 ∈ Z ∩ [0, 1] ∀8 ∈ �, 9 ∈)

�

Once we have P∗ℓ for ℓ = 1, . . . , ! − 1, all we are left to do is to permute θ� as in
Theorem 2.1, i.e.

W�′
ℓ = P∗ℓW�

ℓ P∗>ℓ−1

b�′ℓ = P∗ℓb�ℓ

with P∗0 = P∗! = I.
Computationally, this entire process is relatively lightweight: the X�

ℓ and X�
ℓ

matrices can be computed in a single pass over a training batch, and the LAP can
be solved in polynomial time (Kuhn, 2010). Also, conveniently, the aligning at
each layer is independent of that at every other layer, resulting in a separable and
straightforward optimization problem; this advantage will not be enjoyed by the
following method.

CHAPTER 2. THEORETICAL FOUNDATIONS 13

Algorithm 2.2: Weight-Matching (Ainsworth et al., 2022)
Input: θ�, θ�
Output: c = {P1, . . . P!−1} minimizing (approximately) ‖θ� − c(θ�)‖22
P1 ← I, . . . ,P!−1 ← I
repeat

for ℓ ∈ RandomPermutation(1, . . . , ! − 1) do
Pℓ ← SolveLAP(W�

ℓ Pℓ−1(W�
ℓ)> + (W�

ℓ+1)>Pℓ+1W�
ℓ+1)

end
until convergence

2.3.2 Weight matching
Following the intuition that similar rows ofweightmatrices should compute similar
features, this method focuses on aligning weights instead of activations.

Ideally, we would like to solve the optimization problem

c∗ = arg min
c
‖θ� − c(θ�)‖22

= arg max
c
〈θ�, c(θ�)〉2

= arg max
P1,...,P!−1

∑!
ℓ=1〈W�

ℓ ,PℓW�
ℓ P>ℓ−1〉�

where, for the sake of simplicity, we did not consider bias terms. Since the above
expression is NP-hard, we approximate the desired solution by focusing on a single
Pℓ while holding the other fixed, i.e.

P̃ℓ = arg max
Pℓ
〈W�

ℓ ,PℓW�
ℓ P̃>ℓ−1〉� + 〈W�

ℓ+1, P̃ℓ+1W�
ℓ+1P>ℓ 〉�

= arg max
Pℓ
〈Pℓ,W�

ℓ P̃ℓ−1(W�
ℓ)>〉� + 〈Pℓ, (W�

ℓ+1)>P̃ℓ+1W�
ℓ+1〉� (as in 2.1)

= arg max
Pℓ
〈Pℓ,W�

ℓ P̃ℓ−1(W�
ℓ)> + (W�

ℓ+1)>P̃ℓ+1W�
ℓ+1〉�

which, again, is an LAP (Algorithm 2.2), and the resulting permutation matrices
need to be applied to θ� as in Theorem 2.1.

Notice that, unlike Algorithm 2.1, this procedure ignores the data distribution
entirely, as it does not compute a forward pass—which makes it even faster and

CHAPTER 2. THEORETICAL FOUNDATIONS 14

well suited to run exclusively on CPU.

Chapter 3

Experimental results

Experimental settings (De Luigi et al., 2023) In all the experiments reported in
this chapter, INRs are MLPs with 3 hidden layers with 512 nodes each and SIREN
activation function (Sitzmann et al., 2020b), which are trained on ModelNet40
shapes (Wu et al., 2015), as we choose to focus on point clouds. UDF values
H8 ∈ R of points x8 ∈ R3 are converted into values Hbce8 continuously spanned in
the [0, 1] range, with 0 and 1 representing the predefined maximum distance from
the surface and the surface level set (i.e. distance equal to zero), respectively. The
MLP is trained to minimize the Binary Cross Entropy (BCE) between those labels
and the predicted values, namely

Lbce = − 1
#

#∑
8=1

Hbce8 ln(Ĥ8) + (1 − Hbce8) ln(1 − Ĥ8)

where Ĥ8 = f(5θ (x8)), with f being the sigmoid function. Specifically, 500K
(x8, Hbce8) pairs are sampled by taking 250K points close to the surface, 200K at a
medium-far distance for the surface, 25K far from the surface, and 25K scattered
uniformly in the volume. Then, the MLP is trained with Adam optimizer (Kingma
and Ba, 2015) and learning rate 1e−4 for 500 steps, where at each step the loss is
computed on 10K pairs randomly sampled from the 500K precomputed ones.

Initialization To test the effect of initialization on LMC (Definition 2.2), we
consider two MLPs � and �, trained on the same shape but with a different

15

CHAPTER 3. EXPERIMENTAL RESULTS 16

sampling of the corresponding point cloud, and divide our experiments into the
following categories:

• same: both 8=8C� and 8=8C� are equal to 8=8Cinr2vec, i.e. the initialization
shared by all the MLPs inr2vec was trained on.

• diff: 8=8C� = 8=8Cinr2vec, whereas 8=8C� ≠ 8=8C� is different for each shape.

• diff-weightm: same as diff, but B’s weights have been rearranged ac-
cording to the permutation computed by Weight-Matching (Algorithm
2.2).

• diff-actm: same as diff-weightm, but Activation-Matching has been
applied instead (Algorithm 2.1).

3.1 Behavior along the linear path
We study the performance of models encountered when linearly connecting � and
�, i.e. MLPs with parameters (1−_)θ� +_θ�, where _ ∈ [0, 1]. In particular, we
divide the [0, 1] interval into 25 evenly spaced values of _ and focus on the MLPs
found at those locations.

3.1.1 Loss
When plotting the loss between θ� (_ = 0) and θ� (_ = 1), we observe the
following phenomena (Figure 3.1):

• same: the loss is mostly flat, i.e. θ� and θ� are linear mode connected. This
means that training INRs starting from the same initialization causes the
corresponding SGD solutions to lie in the same basin of the loss landscape,
which in turn might be a determining factor for the convergence of inr2vec.

• diff: we consistently observe two peaks (at the 4th and 4th to last values of_)
with a depression in the middle, sometimes even lower than the extremities.
This would seem to suggest that θ� is “two basins away” from θ�, and that
models midway across the linear path perform on par with (or even better

CHAPTER 3. EXPERIMENTAL RESULTS 17

0 1

0.5

1.0

1.5

2.0

2.5

((1
)

A
+

B
)

Plane
same
diff
diff-weightm

0 1

0.5

1.0

1.5

2.0

2.5

((1
)

A
+

B
)

Chair

0 1

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

((1
)

A
+

B
)

Sofa

0 1

0.5

1.0

1.5

2.0

2.5

3.0

((1
)

A
+

B
)

Table

0 1

0.75

1.00

1.25

1.50

1.75

2.00

2.25

((1
)

A
+

B
)

Vase

Figure 3.1: Loss along the linear path between θ� and θ� (Weight-Matching).
Blue (same): 8=8C� = 8=8C�. Orange (diff): 8=8C� ≠ 8=8C�, where 8=8C� is
different for each shape. Green (diff-weightm): same as diff, but θ� has been
rearranged according to the permutation computed by Weight-Matching. The
loss at each _ is computed as the average of 10K points: 5K close to the surface,
4K at a medium-far distance from the surface, 500 far from the surface, and 500
scattered uniformly in the volume.

than) both θ� and θ�. It is especially remarkable how, although 8=8C� is
different for each shape, the loss curves always exhibit the same behavior.

• diff-weightm: the loss has a bell-like shape, with a single peak around
_ = 0.5. We are still far from LMC—in fact, the loss barrier is sometimes
larger (i.e. the peak is higher) than in the diff case. On the flip side,
the single peak should mean that Weight-Matching has moved θ� just
one basin away from θ� instead of two, which in some sense can be seen
as getting closer to θ�. It is worth noting that Activation-Matching,
on the other hand, produces loss curves that are analogous to those of
the diff experiment, suggesting that the permutation did not move θ�

significantly (Figure 3.2). Therefore, we will focus on Weight-Matching
for the remainder of this chapter.

CHAPTER 3. EXPERIMENTAL RESULTS 18

0 1

0.5

1.0

1.5

2.0

2.5

((1
)

A
+

B
)

Plane
same
diff
diff-actm

0 1

0.5

1.0

1.5

2.0

2.5

((1
)

A
+

B
)

Chair

0 1

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

((1
)

A
+

B
)

Sofa

0 1

0.5

1.0

1.5

2.0

2.5

((1
)

A
+

B
)

Table

0 1

0.6

0.8

1.0

1.2

1.4

1.6

1.8

((1
)

A
+

B
)

Vase

Figure 3.2: Loss along the linear path between θ� and θ� (Activation-
Matching). Blue (same): 8=8C� = 8=8C�. Orange (diff): 8=8C� ≠ 8=8C�,
where 8=8C� is different for each shape. Green (diff-actm): same as diff, but
θ� has been rearranged according to the permutation computed by Activation-
Matching. The loss at each _ is computed as the average over 10K points: 5K
close to the surface, 4K at a medium-far distance from the surface, 500 far from
the surface, and 500 scattered uniformly in the volume.

3.1.2 Predictions
The most perplexing result of Figure 3.1 is that, in the diff experiment, loss
values around _ = 0.5 are similar to (or lower than) those at _ = 0 and _ = 1,
which should mean that models midway across the linear path produce predictions
of comparable (or superior) quality to those of � and �. However, the point clouds
reconstructed from UDF values predicted by such MLPs show no correlation
between low central diff loss and the quality of the predictions, as point clouds
quickly degrade as we move away from _ = 0 and do not improve when the loss
starts decreasing after the first peak; the only acceptable reconstructions are those
corresponding to models �, �, and their immediate neighbors (Figure 3.10). On
the other hand, the diff-weightm point cloud progression is much smoother,
and shows a clear correlation between loss increase and decrease in reconstruction
quality (Figure 3.11): although Weight-Matching does not lead to LMC as in
the same experiment (Figure 3.9), it moves θ� into a much more interpretable and
well-behaved region of the parameter space.

CHAPTER 3. EXPERIMENTAL RESULTS 19

An explanation for the diff loss behavior can instead be found in the distribu-
tion of UDF values predicted by MLPs along the linear path: peaks in loss values
correspond to a majority of predictions of maximum distance (which is also true
for diff-weightm), whereas the central depression coincide with a majority of
predictions halfway between the maximum distance and the surface itself.

3.2 Additional experiments
Similarity to the identity The empirical evidence of LMC observed when INRs
share the same initialization (Figure 3.9) suggests that initialization is indeed
the determining factor that leads SGD solutions to lie in the same basin of the
loss landscape. By the same token, if Weight-Matching truly computes the
permutation that moves � into the same low-loss region as �, it should also be
able to detect that, when 8=8C� = 8=8C�, there is no need to permute �’s parameters.
This can be verified by counting the number of 1s on the diagonal of permutation
matrices, as a measure of similarity to the identity matrix I—and in fact, when
the initialization is the same, Weight-Matching returns matrices that are either
exactly I or very close to it, whereas when 8=8C� ≠ 8=8C� they largely differ from I
(Figure 3.3).

Embeddingdistance We investigate the effect of Weight-Matchingoninr2vec
embeddings by computing ‖emb�−emb�‖2 in thesame, diff, anddiff-weightm
settings, where emb� and emb� are the outputs of the inr2vec encoder when
given as inputs θ� and θ�, respectively. Our results are consistent with previous
observations: Weight-Matching is able to reduce the distance between embed-
dings when 8=8C� ≠ 8=8C�, although it does not make them as close as they are
when 8=8C� = 8=8C� (Figure 3.4).

3.3 Variations of weight matching
In this section, we go through some preprocessing steps we tested in conjunction
with Weight-Matching, in an attempt to improve on the results of the previous

CHAPTER 3. EXPERIMENTAL RESULTS 20

Plane Chair Sofa Table Vase

1s
 o

n
di

ag
on

al

512 512 512 512 512

1 4 1 1 1

P1

same-weightm
diff-weightm

Plane Chair Sofa Table Vase

1s
 o

n
di

ag
on

al

512 512 512 512 512

0 2 3 1 3

P2

Plane Chair Sofa Table Vase

1s
 o

n
di

ag
on

al

512 512 512 512 512

15 7 1 0 1

P3

Plane Chair Sofa Table Vase

1s
 o

n
di

ag
on

al

512 510 509 512 509

0 0 2 1 1

P4

Figure 3.3: Number of 1s on the diagonal of permutation matrices com-
puted by Weight-Matching. Permutation matrices are 512 × 512. Purple
(same-weightm): 8=8C� = 8=8C� and θ� has been rearranged according to the
permutation computed by Weight-Matching. Green (diff-weightm): same
as same-weightm, but 8=8C� ≠ 8=8C�, where 8=8C� is different for each shape.

section while keeping the core method unchanged.

3.3.1 Min-max
Up to this point, we have applied Weight-Matching on unnormalized data, i.e.
the parameters of the input MLPs in their original values. However, since the
initialization scheme of SIREN leads to bigger weights and biases in the first layer
(Sitzmann et al., 2020b), this raises the question of whether Weight-Matching
is incentivized to focus on those bigger values in order to minimize the Euclidean
distance at the core of the LAP, while neglectingweights and biases that are smaller
but potentially more relevant for the alignment task. To address this concern, we

CHAPTER 3. EXPERIMENTAL RESULTS 21

Figure 3.4: Euclidean distances between inr2vec embeddings. INRs of the
same shape are given as input to the inr2vec encoder and the Euclidean distances
of the output embeddings are compared to show the effect of different initializations
with and without weight permutations.

test two versions of min-max normalization:

• minmax1: the maximum andminimum are computed for each weight matrix
and bias vector individually, i.e.

Wℓ ← Wℓ −min(Wℓ)
max(Wℓ) −min(Wℓ)

bℓ ← bℓ −min(bℓ)
max(bℓ) −min(bℓ)

where min(Wℓ) is the smallest entry of Wℓ and max(Wℓ) the largest.

• minmax2: the maximum and minimum are computed for each pair of weight

CHAPTER 3. EXPERIMENTAL RESULTS 22

(a) unnormalized (b) minmax1 (c) minmax2

Figure 3.5: Effect of min-max normalization on reconstructions along the
linear path. Point clouds are reconstructed from INR predictions (top left is
θ�, bottom right is θ�). (a): diff-weightm results with no prior normalization
applied to θ�, θ�. (b): diff-weightm results, where, before applying Weight-
Matching, θ�, θ� have been normalized by applying min-max independently on
each weight matrix and bias vector. (c): diff-weightm results, where, before
applying Weight-Matching, θ�, θ� have been normalized by applying min-max
to each pair of weight matrices and bias vectors from the same layer of MLPs �, �.

matrices and bias vectors from the same layer of models � and �, i.e.

W�
ℓ ←

W�
ℓ −min(W�

ℓ ,W�
ℓ)

max(W�
ℓ ,W�

ℓ) −min(W�
ℓ ,W�

ℓ)

W�
ℓ ←

W�
ℓ −min(W�

ℓ ,W�
ℓ)

max(W�
ℓ ,W�

ℓ) −min(W�
ℓ ,W�

ℓ)

b�ℓ ←
b�ℓ −min(b�ℓ , b�ℓ)

max(b�ℓ , b�ℓ) −min(b�ℓ , b�ℓ)

b�ℓ ←
b�ℓ −min(b�ℓ , b�ℓ)

max(b�ℓ , b�ℓ) −min(b�ℓ , b�ℓ)

where min(W�
ℓ ,W�

ℓ) is the smallest entry of W�
ℓ and W�

ℓ combined, while
max(W�

ℓ ,W�
ℓ) is the largest.

Once θ� and θ� have been normalized, they are given as input to Weight-
Matching and the resulting permutation is applied to the original (i.e. unnormal-
ized) θ�, which is then compared to the original θ�. Unfortunately, both flavors
of min-max show a behavior along the linear path that is further from LMC than
their unnormalized counterpart, suggesting that this kind of normalization acts as
an additional obstacle in the search for the aligning permutation (Figure 3.5).

CHAPTER 3. EXPERIMENTAL RESULTS 23

(a) same (b) diff (c) diff-weightm

Figure 3.6: Effect of pruning on reconstructions along the linear path. Point
clouds are reconstructed from INRs pruned by 80%, i.e. parameters whose absolute
value is ≤ than the 80th percentile of all weights and biases across all layers are
zeroed out. Top left is θ�, bottom right is θ�.

3.3.2 Pruning
Deep neural networks are known to provide a vastly redundant parametrization
of the underlying function, and methods for removing unnecessary weights from
trained models (called pruning techniques) can reduce parameter counts by more
than 90% without harming accuracy, while decreasing storage requirements and
making inference more efficient (LeCun et al., 1989; Hassibi and Stork, 1992; Han
et al., 2015; Li et al., 2017). The reason why this over-parametrization is desirable,
however, is that most pruned networks are harder to train than the original model,
unless they are winning tickets, i.e. subnetworks whose initial weights allow them
to match the test accuracy of the original network after training for at most the
same number of iterations (Frankle and Carbin, 2019).

Following the intuition that the alignment problem should be easier in a pruned
(and therefore smaller) parameter space, we apply Weight-Matching to pruned
MLPs and check whether we are able to achieve LMC in the pruned space. In
our setting, pruning #% of parameters means computing the # th percentile of
all weights and biases across all layers and then setting to zero those parameters
whose absolute value is less or equal than that percentile. We find # = 80 to be the
most we can prune while still preserving an acceptable prediction quality (Figure
3.12). Our results, however, show that the linear path from θ� to θ� in the pruned
space behaves analogously to its counterpart in the original space, i.e. we observe
LMC in the same experiment, whereas diff-weightm, although not linear mode

CHAPTER 3. EXPERIMENTAL RESULTS 24

connected, exhibits a smoother degradation of reconstruction quality than diff
(Figure 3.6).

3.4 Learning linear mode connectivity

W1 0 b1

Wℓ bℓ

W! b!

Figure 3.7: Encoder input

Having thoroughly dissected Weight-Matching
without, however, being able to achieve LMC, we
finally step aside from combinatorial methods and
turn our attention to an entirely deep-learning based
approach: given the usual INRs � and � with
8=8C� ≠ 8=8C�, θ� is fed into an encoder with the
same architecture as the one of inr2vec and the
resulting embedding becomes the input of a hyper-
network decoder (Ha et al., 2017), which in turn
outputs a new set of weights θ̂�, optimized to be
linear mode connected to θ�. We call this proce-
dure Hyper-Matching.

Encoder input Similarly to De Luigi et al.
(2023), the actual encoder input is a matrix con-
structed by stackingweights and biases of � on top of each other: W1 ∈ R�×3, b1 ∈
R�×1,Wℓ ∈ R�×� , bℓ ∈ R�×1,W! ∈ R1×� , b! ∈ R for ℓ = 2, . . . ! − 1 are com-
bined into a ((! − 1)� + 1) × (� + 1) matrix (Figure 3.7). In our setting, as we
already mentioned, ! = 5 and � = 512.

Training At the beginning of the training procedure, 500K points are sampled
from the point cloud with the usual close–medium–far–uniform split, together with
their UDF labels. Then, at each step:

• θ� goes into the encoder and the encoder output goes into the decoder, which
in turn outputs θ̂�.

• 4 other sets of weights are computed, i.e. θ̂8 = (1 − _8)θ� + _8θ̂�, where
_1, _2, _3, _4 are randomly sampled from intervals [0, 0.25), [0.25, 0.5),

CHAPTER 3. EXPERIMENTAL RESULTS 25

0 1

0.5

1.0

1.5

2.0

2.5

((1
)

A
+

B
)

Chair
same
diff
diff-hyperm

Figure 3.8: Hyper-Matching results. Left: loss along the linear path (red).
same and diff results are shown for reference. Right: Point cloud reconstructions
from INR predictions along the linear path. Top left is θ�, bottom right is θ̂�.

[0.5, 0.75), [0.75, 1), respectively.

• 10K points are randomly selected out of the 500K previously sampled and
the BCE between the MLP predictions at those points and their ground truth
labels is computed for each θ̂8 and for θ̂�.

Finally, the total loss is the average of those 5 BCE terms, and the whole encoder–
decoder architecture is optimized end-to-end for 1K epochswithAdamWoptimizer
(Loshchilov and Hutter, 2019), weight decay 1e−2, and 1cycle learning rate policy
(Smith and Topin, 2017) with initial value 1e−4.

Results As shown by the loss and reconstructions along the linear path between
θ� and θ̂� (Figure 3.8), Hyper-Matching results are comparable to those of the
same experiment and far superior to Weight-Matching (Figure 3.11), both in
terms of LMC and in the quality of the reconstructions themselves, which do not
degrade when going from � to �̂. However, this method still produces some
undesired outcomes, concerning both inr2vec embeddings—which are further
away from same embeddings than their Weight-Matching counterparts (Figure
3.4) for all the shapes we tested—and point clouds reconstructed from the inr2vec
decoder, as we will further discuss in Chapter 4.

CHAPTER 3. EXPERIMENTAL RESULTS 26

0 1

0.5

1.0

1.5

2.0

2.5

((1
)

A
+

B
)

Chair (same)

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0

100

200

300

400

0.0 0.5 1.0
0

100

200

300

400

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure 3.9: Predictions along the linear path between θ� and θ� (same). Top:
loss (average of 10K points). Bottom left: point clouds reconstructed from INR
predictions (top left is θ�, bottom right is θ�). Bottom right: histograms of UDF
values predicted by the corresponding INR (10K values, where 0 is maximum
distance and 1 is surface).

CHAPTER 3. EXPERIMENTAL RESULTS 27

0 1

0.5

1.0

1.5

2.0

2.5

((1
)

A
+

B
)

Chair (diff)

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0.0 0.5 1.0
0

500

1000

1500

2000

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure 3.10: Predictions along the linear path between θ� and θ� (diff). Top:
loss (average of 10K points). Bottom left: point clouds reconstructed from INR
predictions (top left is θ�, bottom right is θ�). Bottom right: histograms of UDF
values predicted by the corresponding INR (10K values, where 0 is maximum
distance and 1 is surface). Whenever the reconstruction algorithm (Chibane et al.,
2020; De Luigi et al., 2023) was not able to produce an output in less than 1minute,
an “X” symbol is shown in place of the corresponding point cloud.

CHAPTER 3. EXPERIMENTAL RESULTS 28

0 1

0.5

1.0

1.5

2.0

2.5

((1
)

A
+

B
)

Chair (diff-weightm)

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

0.0 0.5 1.0
0

1000

2000

3000

4000

5000

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure 3.11: Predictions along the linear path between θ� and θ�
(diff-weightm). Top: loss (average of 10K points). Bottom left: point clouds
reconstructed from INR predictions (top left is θ�, bottom right is θ�). Bottom
right: histograms of UDF values predicted by the corresponding INR (10K val-
ues, where 0 is maximum distance and 1 is surface). Whenever the reconstruction
algorithm (Chibane et al., 2020; De Luigi et al., 2023) was not able to produce an
output in less than 1 minute, an “X” symbol is shown in place of the corresponding
point cloud.

CHAPTER 3. EXPERIMENTAL RESULTS 29

90% 80%

70% 60% 50%

40% 30% 20%

90% 80%

70% 60% 50%

40% 30% 20%

90% 80%

70% 60% 50%

40% 30% 20%

90% 80%

70% 60% 50%

40% 30% 20%

Figure 3.12: Effect of pruning on reconstruction quality. Point clouds are
reconstructed from INRs pruned by #%, i.e. parameters whose absolute value is
≤ than the # th percentile of all weights and biases across all layers are zeroed out.
Top left of each shape corresponds to the original (i.e. unpruned) INR.

Chapter 4

Conclusions and future work

We tackled the task of aligning MLPs trained starting from different initializations
in the context of INRs of 3D shapes. Althoughwemainly focused on combinatorial
methods computing permutations via LAPs, a purely deep-learning based approach
has proved to be much more effective in achieving LMC between INRs, while also
holding the potential to work with multiple shapes by extending its training set—
which is ultimately what would be needed in order for inr2vec to handle arbitrary
INRs. However, there is a catch: all the methods described in this work produce
an INR � such that, when given as input to inr2vec, the point cloud reconstructed
from the decoder output is extremely noisy, to the point of being unrecognizable
(and the quality of decoder reconstructions progressively degrades along the linear
path from � to �). This observation suggests one of two possibilities: either
Hyper-Matching needs further refinement—so that, in addition to achieving
LMC, also produces sensible point cloud reconstructions out of the inr2vec
decoder—or, on a more fundamental level, LMC is a necessary condition for
the convergence of inr2vec—as convergence occurs when INRs share the same
initialization, in which case LMC is observed—but is not sufficient, as other
unknown factors are at play. Both questions constitute a natural continuation of
our work and are left for future investigation.

30

Bibliography

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In Advances
in Neural Information Processing Systems, volume 2, 1989. 23

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight
spaces. In Advanced Neural Computers, pages 129–135, 1990. 3, 6

Babak Hassibi and David Stork. Second order derivatives for network pruning:
Optimal brain surgeon. In Advances in Neural Information Processing Systems,
volume 5, 1992. 23

Harold W. Kuhn. The Hungarian Method for the Assignment Problem, pages
29–47. Springer, Berlin, Heidelberg, 2010. 12

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and
connections for efficient neural networks. In Proceedings of the 28th Interna-
tional Conference onNeural Information Processing Systems, pages 1135–1143,
2015. 23

Diederick P. Kingma and Jimmy Ba. Adam: Amethod for stochastic optimization.
In International Conference on Learning Representations (ICLR), 2015. 15

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural
network for real-time object recognition. In Ieee/rsj International Conference
on Intelligent Robots and Systems, pages 922–928, 2015. 2

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric

31

BIBLIOGRAPHY 32

shapes. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1912–1920, 2015. 15

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International
Conference on Learning Representations, 2017. 24

HaoLi, AsimKadav, IgorDurdanovic, Hanan Samet, andHans PeterGraf. Pruning
filters for efficient convnets. In International Conference on Learning Repre-
sentations, 2017. 23

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. In Proceedings of
the 31st International Conference on Neural Information Processing Systems,
pages 5105–5114, 2017. 2

Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of
neural networks using large learning rates, 2017, arXiv:1708.07120. 25

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Es-
sentially no barriers in neural network energy landscape. In Proceedings of
the 35th International Conference on Machine Learning, volume 80, pages
1309–1318, 10–15 Jul 2018. 6

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and An-
drew Gordon Wilson. Loss surfaces, mode connectivity, and fast ensembling of
dnns. In Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems, pages 8803–8812, 2018. 6

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for
3D data processing. arXiv:1801.09847, 2018. 36

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In ICLR, 2019. 23

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In
International Conference on Learning Representations, 2019. 25

BIBLIOGRAPHY 33

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function
space. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019. 1

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 1, 2

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. Dynamic graph cnn for learning on point clouds. ACM
Transactions on Graphics (TOG), 2019. 2

Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural unsigned distance
fields for implicit function learning. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), December 2020. 1, 27, 28

Jonathan Frankle, Gintare KarolinaDziugaite, DanielM. Roy, andMichael Carbin.
Linear mode connectivity and the lottery ticket hypothesis. In Proceedings of
the 37th International Conference on Machine Learning, 2020. 6

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Im-
plicit geometric regularization for learning shapes. In Proceedings of Machine
Learning and Systems 2020, pages 3569–3579, 2020. 1, 3

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas
Geiger. Convolutional occupancy networks. In European Conference on Com-
puter Vision (ECCV), 2020. 1

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances
in Neural Information Processing Systems, 33, 2020. 4

Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah Snavely, and Gordon
Wetzstein. Metasdf: Meta-learning signed distance functions. InProc. NeurIPS,
2020a. 3

BIBLIOGRAPHY 34

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell,
and Gordon Wetzstein. Implicit neural representations with periodic activation
functions. In Proc. NeurIPS, 2020b. 15, 20

Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and
Rongjie Lai. Optimizing mode connectivity via neuron alignment. Advances in
Neural Information Processing Systems, 33, 2020. 4

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop,
Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler.
Neural geometric level of detail: Real-time rendering with implicit 3D shapes.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 1

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin:
Merging models modulo permutation symmetries, 2022, arXiv:2209.04836. 4,
5, 6, 11, 13

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and
Dan Rosenbaum. From data to functa: Your data point is a function and you
can treat it like one. In 39th International Conference on Machine Learning
(ICML), 2022. 3

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role
of permutation invariance in linear mode connectivity of neural networks. In
International Conference on Learning Representations, 2022. 4, 5, 10

Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Junxiong Cai, Jiahui Huang, Tai-
Jiang Mu, and Ralph R. Martin. Subdivision-based mesh convolution networks.
ACM Trans. Graph., 41(3):25:1–25:16, 2022. 2

Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi
Yan. Deep neural network fusion via graph matching with applications to model
ensemble and federated learning. In Proceedings of the 39th International
Conference on Machine Learning, volume 162, pages 13857–13869, 17–23 Jul
2022. 4

BIBLIOGRAPHY 35

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair
Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Srid-
har. Neural fields in visual computing and beyond. Computer Graphics Forum,
2022. 1

Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez,
Samuele Salti, and Luigi Di Stefano. Deep learning on implicit neural repre-
sentations of shapes. In International Conference on Learning Representations
(ICLR), 2023. 2, 3, 15, 24, 27, 28

Appendix A

Implementation and hardware

General settings Our experiments were mainly implemented with the PyTorch
library and performed on a machine with Intel Core i7-7700K CPU and a single
NVIDIAGeForce RTX 2080 Ti GPU. The linear assignment problemswere solved
via the SciPy library, and the point cloud visualizations were made with Open3D
(Zhou et al., 2018).

Activationmatching The forward pass required byActivation-Matchingwas
computed on a batch of 125K points (i.e. the most we could fit in our GPU): 62500
close to the surface, 50K at a medium-far distance from the surface, 6250 far from
the surface, and 6250 scattered uniformly in the volume.

Timings Both Activation-Matching and Weight-Matching run in a few
seconds (on our GPU and CPU, respectively). Hyper-Matching runs on our
GPU in ∼2 minutes.

36

	Introduction
	Theoretical foundations
	Permutation invariance of MLPs
	Linear mode connectivity
	Alignment methods
	Activation matching
	Weight matching

	Experimental results
	Behavior along the linear path
	Loss
	Predictions

	Additional experiments
	Variations of weight matching
	Min-max
	Pruning

	Learning linear mode connectivity

	Conclusions and future work
	Implementation and hardware

