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Abstract
Cloud identification from satellites is considerably challenging in polar envir-
onments due to the similar radiative properties of surface and ice clouds.
CIC (Cloud Identification and Classification) is a machine learning algorithm
adopted as the official software in the ESA Far-infrared Outgoing Radiation
Understanding and Monitoring (FORUM) (Palchetti et al. (2020)) End2End
simulator (FE2ES). CIC is based on Principal Component Analysis and per-
forms cloud detection and multi-scene classification. It is adaptable to every
type of sensor and is particularly suitable when a small number of elements
are available for the Training Set. Assessment studies have already been con-
ducted to evaluate the performances of the algorithm in multiple conditions.
In Maestri et al. (2019b), CIC was applied to simulated radiance all over the
globe, while Magurno et al. (2020) used measured airborne interferometric
spectra and in Cossich et al. (2021) the algorithm was tested on downwelling
radiance collected at Dome-C in Antarctica.
CIC is applied to high spectrally resolved data taken from the ground and,
for the first time, from satellites. Ground-based data are collected by the
REFIR-PAD sensor (Di Natale et al. (2020)), covering the far and mid-
infrared part of the spectrum. Collocated satellite data are measured by IASI
(Infrared Atmospheric Sounding Interferometer) which collects upwelling ra-
diance between 3.4 and 15.5 µm. The period under study spans from 2012
to 2020. CIC results applied to ground-measured spectra are compared to
IASI and MODIS L2 cloud products.
Large discrepancies between the classifications are observed, indicating an
overestimation of the cloud occurrence in the case of IASI and an opposite
result in MODIS. A verification is obtained using collocated ground-based
LIDAR measurements, which are available for subsets of the REFIR-PAD ra-
diances. Finally, the CIC algorithm is trained with a subset of IASI data col-
located with REFIR-PAD measurements. The training sets are defined also
with the help of the Advanced Very High-Resolution Radiometer (AVHRR)
on board of MetOp satellites. The AVHRR has 1 km resolution (at nadir)
and its collocated measurements are used to evaluate the scene homogeneity
in the satellite field of view. Statistical analyses are then performed on IASI
spectra using the CIC classification. Results indicate a much better agree-
ment with ground-based data, improving the cloud occurrence provided in
IASI L2 products.





Sommario
Identificare le nubi da satellite è estremamente complicato in ambienti polari
a causa delle simili proprietà radiative della superficie e delle nubi di ghiaccio.
CIC (Cloud Identification and Classification) è un algoritmo machine learn-
ing adottato come software ufficiale del Simulatore End2End (FE2ES) della
missione ESA FORUM (Far-infrared Outgoing Radiation Understanding and
Monitoring). CIC si basa sull’Analisi delle Componenti Principali per rilevare
le nubi e classificare le scene osservate. L’algoritmo è adattabile ad ogni tipo
di sensore ed è particolarmente adeguato in situazioni in cui sono disponibili
pochi elementi per costruire i Training Set. Diversi studi sono stati svolti
per valutare le performance dell’algoritmo in diverse condizioni. In Maestri
et al. (2019a), il CIC è stato applicato a radianze simulate in tutto il globo,
mentre in Magurno et al. (2020) sono stati utilizzati spettri raccolti da aerei
e in Cossich et al. (2021) l’algoritmo è stato testato su radianze misurate dal
basso a Dome-C in Antartide.
In questo lavoro, il CIC viene applicato a dati ad alta risoluzione spettrale
misurati da terra e, per la prima volta, da satellite. I primi sono raccolti dal
sensore REFIR-PAD (Di Natale et al. (2020)) e coprono il lontano e vicino
infrarosso. I dati satellitari collocati sono invece misurati da IASI (Infrared
Atmospheric Sounding Interferometer) e contengono la radianza in uscita tra
3.4 e 15.5 µm. Il periodo in esame va dal 2012 al 2020. I risultati del CIC
sugli spettri misurati da terra sono comparati con i prodotti di nube L2 di
IASI e MODIS.
Si osservano grandi discrepanze tra le classificazioni, che indicano una sov-
rastima di eventi nuvolosi nel caso di IASI e risultati opposti per MODIS.
Una prima verifica è ottenuta utilizzando misure LIDAR collocate, disponib-
ili per un sottoinsieme di radianze del REFIR-PAD. Infine, l’algoritmo CIC
viene allenato con una parte di dati IASI collocati con misure REFIR-PAD.
I Training Set sono definiti anche con l’aiuto del AVHRR (Advanced Very
High-Resolution Radiometer) a bordo dei satelliti MetOp. L’AVHRR ha una
risoluzione spaziale di 1 km (a nadir) e le misure collocate sono utilizzate per
valutare l’omogeneità della scena osservata nel campo di vista del satellite.
Varie analisi statistiche sono poi eseguite sugli spettri IASI, usando la classi-
ficazione del CIC. I risultati sono in accordo con i dati da terra e migliorano
le percentuali di eventi nuvolosi indicate nei prodotti L2 di IASI.
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Chapter 1

Introduction

Clouds are a key component of the Earth System and are the most important
regulator of the Earth’s climate. It is estimated that on average clouds cover
between 70% and 80% of the Earth’s surface (Whitburn et al. (2022)). Their
presence controls the weather, the water cycle and the Earth’s radiation
budget (ERB). In fact, clouds can cool the system, reflecting part of the
solar radiation back to space and reducing the amount of energy available to
the earth-atmosphere system. This mechanism is also called "cloud-albedo
feedback". Clouds also absorb the infrared (IR) radiation emitted from the
surface and the atmosphere below. The cloud top temperature is generally
colder than the surface, thus the radiation emitted by clouds is lower that
the amount absorbed. This "IR greenhouse effect" warms the atmosphere.
The net result is extremely variable and depends on cloud micro-physical
properties, the cloud top height and the cloud albedo. For instance, low
clouds have temperatures very close to the surface so their contribution to
the IR budget is negligible, while their high albedo results in a cooling effect.
High clouds, such as thin cirrus clouds, have a larger impact on the IR
radiation, causing a consequent warming of the surface and the underlying
atmosphere. The great spatial and temporal variability makes cloud studies
very challenging and, despite their high importance in the Earth system,
they remain the biggest uncertainty in climate models nowadays.

As for polar regions, clouds influence on radiative balance becomes even
more crucial since the energy balance changes in the region resonate all over
the globe and influence global climate (Adhikari et al. (2012)). The two ex-
isting polar regions, the Arctic and Antarctica exhibit different behaviours
due to their latitudes, topographic features and thus their role in the atmo-
spheric and oceanic circulation (Fyke et al. (2018)). Antarctica is the coolest
region on the planet and acts as an energy sink in the global balance. Mod-
elling studies have proven how changes in cloud properties over Antarctica
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impact regions all over the globe. However, the role of polar clouds in global
atmospheric circulation is still not fully understood and well-modelled. For
instance, clouds contribution to feedback mechanisms such as surface melt-
ing is unknown. During the summer the net positive surface energy balance
causes surface melting which in turn changes the albedo properties of the
surface, leading to a further increase in temperature and melting. Clouds
can enhance this effect or reduce its consequences. Clouds affect also other
components of the Earth system, such as the cryosphere. In fact, the two
major regulators of cryosphere dynamics, atmospheric moisture content and
temperature, respond to cloud changes. Moreover, clouds provide precipita-
tion which is the major source of mass gain, together with blowing snow, in
Antarctica (Adhikari et al. (2012)). Other studies have been conducted over
the years, Bromwich et al. (2012) identified clouds’ influence on the South-
ern Ocean’s heat and freshwater budget and their impact on global ocean
circulation and the global carbon cycle.
Cloud properties retrievals for climate studies are mainly constrained by the
lack of observations in polar regions. This issue might be addressed with an
increase in satellite observations, although frequent temperature inversions
at the surface complicate remote sensing algorithms performance.

1.1 Antarctic Clouds

Studies in polar regions are very challenging due to extreme environmental
conditions, in particular in Antarctica where temperatures reach also -60°C in
the austral winter. As said before, any changes in the region’s climate cause
variations in the atmospheric and oceanic circulations, which act as compens-
ating mechanisms to maintain the global energy balance. In turn, surface
heat and radiative budget in Antarctica are highly modulated by the cloud
cover. Another factor that influences the Antarctic weather, and thus cloud
occurrence, is the topography and sea ice extent. Ice sheets elevation determ-
ines the surface temperature and thus the snow cover (Fyke et al. (2018)). A
topographic map of the region is presented in Fig.1.1. The majority of land is
covered by snow and ice. The eastern and western parts have different char-
acteristics and the bulk of the Antarctic continent is located in the eastern
part, which has also a higher surface elevation. The climate in East Antarc-
tica is characterised by a perennial anticyclone, surrounded by a circumpolar
trough of low pressure in the Southern Ocean. The sea-ice transition zone
provides a suitable condition for cyclogenesis in the circumpolar trough, due
to the baroclinic instability caused by the confluence of cold air from the
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Figure 1.1: Antarctica’s elevation map derived
from CryoSat-2 measurements collected between
2011 and 2014 (Helm et al. (2014)).

continent and warmer mari-
time air. Also, cyclone activ-
ity is enhanced by midlat-
itude disturbances respons-
ible for the latitudinal trans-
port of heat and moisture to-
ward the poles. This results
in higher cyclonic activity in
winter than in summer, be-
cause of the strongest tem-
perature gradient between
the midlatitudes and the
poles. Numerous studies on
Antarctic clouds have been
performed over the years.
Adhikari et al. (2012) ana-
lysed satellite data from
2006 to 2010 for the en-
tire region, using Cloud-
Sat and CALIPSO measure-
ments. They found a contrast
between the cloud distribu-
tion in the Southern Ocean

and the Antarctic continent. The first was characterized by persistent cloud
cover, while the continent had a more moderate cloud occurrence. In par-
ticular, the eastern part of the continent had the lowest occurrence, between
20-30%. The vast Antarctic Plateau in East Antarctica experienced values
of 25-30% between 1-3 km, and less than 10% above 5 km. Its high elev-
ation and the low amount of water vapour are all factors contributing to
the minor cloud occurrence. While the higher cloud presence in West Ant-
arctica is mainly due to cyclone activity. Among the cloud types observed,
low-level clouds (Hbase ≤ 2km) were the most common in all of Antarctica
(especially around the circumpolar trough). Instead, deep and high-level
clouds (Hbase ≥ 6km) were found to be associated with synoptical systems
and have a higher frequency in the austral winter months in west Antarctica.
In East Antarctica, midlevel clouds (6 ≤ Hbase ≥ 2km) prevailed, especially
in winter. Clouds observed in the East part of the continent were generally
at lower heights with respect to those in the West. Moreover, thin clouds
were the dominant type in the region, with a vertical extent of less than 1 km
in 60% of the cases in West Antarctica and 45% in the Antarctic Plateau.
Another study was performed by Cossich et al. (2021), using ground-based
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interferometric spectra collected at Dome-C, on the Antarctic Plateau, dur-
ing the years 2012-2015. The spectra were used to identify cloud signatures
and classify the cloud thermodynamic phase. The authors found a cloud oc-
currence spanning from 23 and 31% over the four years, in accordance with
results obtained in the study previously cited. A positive correlation was also
found between the mean atmospheric temperature and the cloud presence,
revealing a positive cloud forcing.

1.2 Cloud Observation and Detection Meth-
odologies

The importance of clouds in weather and climate application implies the need
for accurate and coherent time series of cloud properties (e.g. cloud type,
cloud phase, cloud amount, cloud top height, optical thickness). Ground-
based remote sensing measurements provide the most reliable way to observe
clouds. Both passive and active sensors could be used to recognise the cloud
signal. Lidar or radar systems are examples of active instruments capable
of identifying clouds. They have different sensitivities to cloud droplet size
and concentration, lidar signal is attenuated by thick clouds, while radars
have less attenuation. However, ground measurements are difficult in re-
mote places such as the poles and sometimes are not available throughout
the entire year. Satellite measurements constitute a fundamental tool since
they provide global coverage, daily cloud monitoring and rather high spa-
tial resolution. Lidar and radar technology are currently carried on board
of CALIPSO and CloudSat respectively. Although, the majority of weather
satellite sensors are based on passive technology and measure the radiation
emitted or reflected by the Earth. Clouds are often characterised as lay-
ers of higher reflectance and lower temperature with respect to the ground
(Ahmad, Quegan (2012)). Different clouds imply different spectral signa-
tures, i.e. thick clouds absorb almost all the radiation coming from the
surface, while thin clouds might have some features similar to other atmo-
spheric constituents. Remote sensing algorithms often use the visible part
of the spectrum to exploit cloud reflectance properties. However, at the
poles those techniques are unusable for half a year due to the absence of
solar radiation. To overcome this problem, Amato et al. (2014) explains that
meteorological satellites nowadays carry onboard infrared sensors that allow
monitoring the Earth’s emission at very high spectral resolution. Avoiding
the misinterpretation of clouds signal is still a challenge and regional charac-
teristics have to be taken into account for accurate cloud detection.
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Cloud detection is also a preliminary step in many others remote sensing
applications. Cloud-free scenes are often used as input for the retrieval of
trace gas and surface properties. Even a small cloud amount in the satel-
lite field of view alters the radiance at the top of the atmosphere measured
by the sensor. Different techniques have been developed over the years to
detect and isolate cloud spectral features. Classical algorithms are based
on a series of tests involving few spectral channels and exploit reflectance
or brightness temperature spectral variations (Mahajan, Fataniya (2019)).
Simple comparisons in the infrared classify a scene as cloudy if the measured
radiance differs from the clear-sky radiance by a certain value. For instance,
the brightness temperature difference between bands at 11 and 12 µm can
be used as an indicator for cirrus clouds (Clarisse et al. (2013)). These al-
gorithms usually rely on predefined thresholds, which are dependent on the
specific wavebands and the type of sensor used, the surface type, seasonal
condition, latitude, sun elevation and atmospheric parameters (temperature,
humidity, viewing angle). In short, they are time and space-dependent and
it is impossible to find global thresholds.

Most visible and infrared sensors on board satellites have their own al-
gorithm for detecting the presence of clouds in the field of view. The MOD-
erate resolution Imaging Spectroradiometer (MODIS) is provided with the
cloud product MOD35 (Ackerman et al. (1998)) and its algorithm relies on
various statistics and tests based on different wavelengths. MODIS has 36
bands from 0.4 to 14.5 µm, covering the visible and middle infrared part
of the spectrum. It uses 14 bands and follows several steps to consider all
the possible variability for a globally efficient cloud mask. Thresholds ap-
plied depend on the surface type and the solar illumination and they are
never global. In particular, five cloud-type groups exist: thick high clouds,
thin clouds, low clouds, upper tropospheric thin clouds and cirrus. Since
tests within a group may be used to detect also other cloud types, Ackerman
et al. (2010) describes four groups of tests: IR threshold test, brightness
temperature difference, solar reflectance threshold, NIR thin cirrus, IR thin
cirrus. The final cloud mask is then determined from the results of each
group. The product is also associated with a confidence value which falls
in between one of these categories: confident clear, probably clear, probably
cloud or confident cloud (Ackerman et al. (1998)). Among the other imagers
which use threshold tests, SEVIRI (Spinning Enhanced Visible and Infrared
Imager) cloud detection utilises ten tests based on the surface type.

The increasing number of channels available from the current instrument-
ation has led research towards new methodologies to face the massive amount
of data and extract as much information hidden inside as possible. Among
these there are innovative cloud detection methods based on statistical or
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pattern recognition approaches. They learn the features of the cloudy and
clear-sky conditions from elements whose sky conditions are known, and then
sky conditions of other new data are inferred from these by relying on some
of the learned properties. Statistical or pattern recognition approaches are
suitable for high-dimensional data and naturally handle multispectral meas-
urements (Murino et al. (2014)). Statistics-based algorithms can also answer
the problem of the large variability of clouds and the underlying surface.
Amato et al. (2014) proposed a classification method based on cumulative
discriminant analysis. They retrieved the proper threshold based on training
data. In this way, statistical conditions for clear and cloudy sky are estimated
based on elements features.

These techniques played a key role in the development of machine learning
algorithms. Machine learning is an area of artificial intelligence in which the
system learns automatically based on given existing data. AI algorithms may
be supervised or unsupervised, the firsts need labelled training sets as input to
train the algorithm, while the seconds are able to find relationships between
the elements by themselves. A list of the machine learning approaches for
cloud detection is given in Mahajan, Fataniya (2019). The most common
AI algorithms in literature used for cloud detection are Neural Networks,
Support Vector Machine, Deep Learning, decision tree, logistic regression
(Zhang et al. (2019)) and more complex ones (Kurihana et al. (2022)). In
Whitburn et al. (2022), authors developed a cloud detection algorithm based
on a supervised neural network (NN) which takes as input parameter IASI
spectra. To build the training set they used the Level 2 IASI product as
a reference and removed different channel corresponding to gas absorption
from the data. Machine learning algorithms are more flexible than classical
ones and easier to implement. However, their result depends on input data
and it may be not consistent.

These techniques have been employed on satellite sensors, such as the
IASI AVHRR (Advanced Very High-Resolution Radiometer), a built-in im-
ager provided for IASI satellite to help the classification of clouds in the
sounder’s field of view. As explained in EUMETSAT (2011), a clustering
procedure divides each pixel observation into six classes (clusters). For each
class, it is given the fraction of the IASI FOV covered. Together with this
analysis, it is also provided the mean and standard deviation for each AVHRR
channel. These quantities are intended to help in the assessment of the homo-
geneity in the IASI FOV. Lavanant, Lee (2005) used those data to retrieve a
cloud mask, in particular, they applied different threshold values for clusters
of channels 1 and 4.

IASI Level 2 product is provided with a cloud mask which is based on
three different methods (EUMETSAT (2017b)). The first uses the AVHRR
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collocated cloud mask and the cloud fraction embedded in IASI L1C data.
When this fraction exceeds a certain threshold the scene is flagged cloudy.
The percentage of AVHRR cloudy pixels in the IASI field of view is well
reproduced in the tropical and mid-latitude regions. While its sensitivity
decreases at high latitudes, especially during the winter period, likely due
to the absence of visible light and the very cold surface temperatures, as
well as in conditions of high albedo (e.g. snow and ice). The second test is
based on a windows channels test, radiance simulated with NWP forecasts
and RTTOV radiative transfer code is compared to IASI observations and
differences are interpreted as cloud signals. The last one applies a neural
network algorithm on IASI data and AVHRR clusters. IASI pixel is flagged
as cloudy if at least one of the three tests detects a cloud. While a scene is
clear if all the tests concluded the absence of clouds.

Other algorithms reduce the elevated amount of data by means of data
mining techniques. Principal component analysis (PCA) is the one mostly
used dimension reduction method. PCA transforms the original set of cor-
related variables into a set of uncorrelated variables called principal com-
ponents (PCs). It reduces the dimension of the initial data, retaining only
the components with higher variance and disregarding those that carry no
information. In fact, PCs are ordered by the amount of variance explained
by each associated eigenvalue, thus the first PC explains the highest vari-
ation in the data. However, it is difficult to relate PCs to physical features
because each PC is a linear combination of the original variables. Ahmad,
Quegan (2012) compared the MODIS cloud mask with a spectral analysis
and a PC analysis. They found that PCA underestimates the number of
cloudy pixels with respect to the spectral analysis, although it was in good
agreement with the MODIS cloud mask and concluded that cloud and clear-
sky pixels have different spectral signatures that could emerge through the
statistical approach of PCA. Different authors applied PCA also to sounding
measurements and further investigate the meaning of the first set of PCs. For
instance, Huang, Antonelli (2001) found that the first eigenvector, associated
with the largest variance, was correlated with the window spectral channels.
In general, instruments measuring infrared spectra with a high-spectral resol-
ution are great candidates for PCA, as IASI (Clarisse et al. (2013)), because
many of the spectral channels are highly correlated and PCA can compress
the data and remove the PCs associated with the uncorrelated random error.
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1.3 FIR contribution
Satellites currently flying measure up to the middle infrared part of the spec-
trum. Although, the far-infrared (FIR) has a critical role in the Earth Radi-
ation Budget. Between 40 and 65% of the total outgoing longwave radiation
(OLR) is dominated by the FIR contribution (ESA (2019)). FIR is extremely
useful in the detection of clouds, especially ice clouds. Scattering processes
become the most important in this part of the spectrum and their relation
with the crystal shape can be exploited to improve the detection of ice crys-
tals. Also, at FIR wavenumbers, there is a higher BT sensitivity to the cloud
particle phase. The FIR spectral band is particularly useful in those regions
where the atmosphere is very dry, such as the poles. In fact, the rotational
absorption band of the water vapour is the greatest contributor to the mod-
ulation of the outgoing radiation at these wavelengths. Up to now, studies
on simulations have proven that cloud classification algorithms performances
in polar regions are highly improved with the addition of FIR channels. The
European Space Agency (ESA) promoted FORUM (Far-infrared Outgoing
Radiation Understanding and Monitoring) as the 9th Earth Explorer mis-
sion, which will fill the observational gap in the far infrared and is expected
to enhance cloud detection performances.

1.4 Thesis objectives and overview
Satellite measurements constitute a fundamental tool to collect continuous
measurements in remote regions, such as the poles. They are capable of
covering large areas while producing high spectral resolution observations.
Numerous efforts have been made to generate reliable and flexible cloud de-
tection algorithms. Although satellite sensors are not lacking in problems
when used for cloud detection in polar regions and the assessment of cloud
products can be particularly challenging, due to the scarcity of ground-based
stations available for validation campaigns. For instance, active instruments,
such as radar, often miss optical thin clouds, which are very common on the
Antarctic Plateau (Maestri et al. (2019a)). Moreover, the coarse vertical res-
olution of the CPR onboard of CloudSat (500 m) and its limited sensitivity
near the surface does not allow accurate detection of low clouds. MODIS tests
and thresholds rely mainly on measurements at shortwaves to perform cloud
detection. When solar radiation is not available, the cloud mask switches in
the infrared channels, becoming less efficient and increasing the number of
missed clouds. The similar radiative properties of the surface and ice clouds
and the frequent temperature inversions in Antarctica, make IASI algorithms
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based on brightness temperature differences unreliable, and many clear-sky
scenes are erroneously flagged as cloudy.
In this thesis, an innovative machine learning algorithm CIC (Cloud Iden-
tification and Classification) is tested against downwelling spectra collected
from the ground and IASI spectral radiances and results are compared to
cloud detection products provided by IASI and MODIS satellites. The area
of study is Dome-C, a base situated on the Antarctic Plateau, where is loc-
ated the REFIR-PAD, a spectroradiometer that measures spectral radiance
in the FIR and MIR channels.
The work is structured as follow:

• chapter 2 provides an overview of the Radiative Transfer theory, with
a focus on the case of a cloudy atmosphere

• in chapter 3 the CIC algorithm setup and PCA theoretical framework
are presented.

• chapter 4 illustrates the classification results obtained on downwelling
spectra, collected by the REFIR-PAD instrument, over the years 2012-
2020

• chapter 5 describes the collocation procedure of IASI data with ground-
based measurements and the application of CIC to IASI L1 products.
Statistics provided by MODIS and IASI L2 cloud products are also
discussed.
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Chapter 2

Radiative Transfer in Cloudy
Atmosphere

The transmission of solar and Earth’s radiation through the atmosphere fol-
lows the laws of radiative transfer, where the atmosphere acts as the transmit-
ting medium. In this chapter, the basis of radiative transfer in a scattering
and non-scattering atmosphere will be presented. Furthermore, it will be
discussed the case of a cloudy atmosphere and the cloud influence on the IR
Earth’s radiation.

The radiative transfer is based on a very simple equation describing the in-
teraction of radiation with matter. A beam of radiation Iλ passing a medium
of thickness ds, will be reduced by a quantity dIλ, given by:

dIλ = −kλρIλds (2.1)

The loss of radiation depends on the initial intensity and the properties of the
medium, characterised by its density ρ and the mass extinction cross-section
kλ, measured as [m2/kg]. This quantity represents the area taking part in
the extinction process at the specific wavelength λ, normalized over the mass
or quantity of the absorbing/scattering material. Here extinction refers to
the decrease in the incident radiation by both absorption and scattering pro-
cesses.
On the other hand, the radiation intensity may also be increased by the emis-
sion of the medium itself and by scattering phenomena. A source function
coefficient jλ can be defined with the same physical meaning as the extinction
cross-section, though in this case the initial radiation variation is:

dIλ = jλρds (2.2)
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Figure 2.1: Scheme of radiation passing through a medium of thickness ds.

The source function can be written as the source function coefficient divided
by the extinction cross-section

Jλ = jλ/kλ (2.3)

and thus the full radiative transfer equation (RTE) obtained is given by:

dIλ

kλρds
= −Iλ + Jλ (2.4)

2.1 Schwarchild Equation
The solution of the RTE for a non-scattering medium, in local thermody-
namic equilibrium, is described by Schwarzschild’s equation. These condi-
tions occur when only the infrared radiation emitted by the surface and the
atmosphere is considered. The source function can be treated as a blackbody
emission and thus be quantified by the Planck function, which depends only
on temperature:

Jλ = Bλ(T ) (2.5)

The radiative transfer equation becomes:

dIλ

kλρds
= −Iλ + Bλ(T ) (2.6)

The first and second terms describe respectively the absorption and emission
process. Following that, kλ accounts only for absorption processes and is
called absorption cross-section, while kλρ is the absorption coefficient. To
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Figure 2.2: Representation of the optical thickness (Liou (2002)).

find a solution for this differential equation, it can be defined the monochro-
matic optical thickness of the medium between two points, namely s and s1
illustrated in Fig.2.2

τλ(s1, s) =
∫ s1

s
kλρds′ (2.7)

or in differential form
dτλ(s1, s) = −kλρds (2.8)

In this way, the RTE can be rewritten as:

− dIλ(s)
dτλ(s1, s) = −Iλ(s) + Bλ[T (s)] (2.9)

Integrating both sides of the equation, the solution obtained is:

Iλ(s1) = Iλ(0)e−τλ(s1,0) +
∫ s1

0
Bλ[T (s)]e−τλ(s1,s)kλρds (2.10)

where Iλ(s1) represents the radiance reaching the observer at s1. If the TOA
is defined at s1, the first term represents the emission of a black surface
(ϵλ = 1) at s = 0, attenuated by the atmosphere above with optical thick-
ness τλ(s1, 0). The second term is the sum of the grey-body emission from all
the layers between 0 and s1, attenuated by the layers above. This equation
is also known as Schwarzschild’s equation.

In many situations, the atmosphere can be approximated as plane-parallel
in localised portions. This assumption implies that the variations of the at-
mospheric parameters and radiation intensity are allowed only in the vertical
direction. The normal optical thickness, also called optical depth (OD), can
be defined as:

τλ =
∫ ∞

z
kλρdz′ (2.11)
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Figure 2.3: Geometry of a plane-parallel atmosphere, with the zenith and azi-
muthal angles represented by θ and ϕ respectively (Liou (2002)).

where z = ∞ is the top of the atmosphere and corresponds to τλ = 0. So
the variable z represents the vertical distance and two angular variables, θ
and ϕ, are introduced to describe the zenith and azimuth angle respectively.
Thus the general differential RTE equation is:

µ
dI(τ ; µ, ϕ)

dτ
= I(τ ; µ, ϕ) − J(τ ; µ, ϕ) (2.12)

with µ = cosθ.

2.2 IR Radiative Transfer and Clouds contri-
bution

From now on, the wavenumber domain will be used instead of wavelengths,
since this part of the discussion will involve only the infrared part of the spec-
trum. In a plane-parallel atmosphere, absorption and emission processes in
the IR are symmetrical with respect to the azimuthal angle and the radiance
is a function of the vertical position and the zenith angle only. Schwar-
zschild’s equation can be interpreted both as the radiance measured by a
sensor at the TOA and as the downwelling radiance reaching the ground. In
the first case, the zenith angle is 0 ≤ θ ≤ π/2 and 0 ≤ µ ≤ 1, while in the
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second, π/2 ≤ θ ≤ π and µ = −µ. The total atmospheric optical depth,
from the ground to the TOA, is τ∗ and the solution of the RTE for upward
and downward intensities are respectively:

Iν(τ, µ) = Bν(τ∗)e−(τ∗−τ)/µ +
∫ τ∗

τ
Bν(τ ′)e−(τ ′−τ)/µ dτ ′

µ
(2.13)

Iν(τ, −µ) =
∫ τ

0
Bν(τ ′)e−(τ−τ ′)/µ dτ ′

µ
(2.14)

Two boundary conditions are here introduced. First, the surface has been
treated as a black body in the infrared, with ϵν = 1 (see Eq.2.13). Second, the
downward emission at TOA is considered negligible (B(τ = 0) = 0), so the
first term in Eq.2.10 vanishes and Eq.2.14 depends only on the atmospheric
contribution. Another way to express these solutions is by introducing the
monochromatic transmittance or transmission function defined as the atten-
uation caused by the medium:

Tν(τ/µ) = e−τ/µ (2.15)
Its derivative acts as a weighting function in the RTE and can be written as:

W = dTν(τ/µ)
dτ

= − 1
µ

e−τ/µ (2.16)

The final solutions are

Iν(τ, µ) = Bν(τ∗)Tν [(τ∗ − τ)/µ] +
∫ τ∗

τ
Bν(τ ′) d

dτ ′ Tν [(τ ′ − τ)/µ)]dτ ′ (2.17)

Iν(τ, −µ) =
∫ τ

0
Bν(τ ′) d

dτ ′ Tν [(τ − τ ′)/µ)]dτ ′ (2.18)

The atmospheric contribution can be interpreted as the weighted sum of the
Planck radiances from each layer. The weighting function peaks at the level
from which the spectral signal is stronger, thus it is an indicator of which
layer is responsible for the majority of the emission.

Up to now, the Schwarzschild equation has been considered for a clear atmo-
sphere. If a cloud is present the atmospheric contribution should be split up
into the radiation emitted by the layers below the cloud, the emission of the
cloud itself and the contribution of the layers above the cloud. Considering
τc the optical depth up to the cloud, the radiance measured at the TOA
(τ = 0, µ = 1) is:

Iν(0, µ = 1) = (1 − ϵc)Bν(τ∗)Tν(τ∗) + (1 − ϵc)Tν(τc)
∫ τ∗

τc

Bν(τ ′)dTν

+ ϵcBν(τc)Tν(τc) +
∫ τc

0
Bν(τ ′)dTν (2.19)
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where the cloud scattering has been neglected and (1− ϵc) is the cloud trans-
missivity. If the surface reflection is also accounted for, the first term of
the equation should consider a surface emissivity different from 1 and an
ulterior term should be accounted for, which is the radiance emitted after
being reflected by the surface, which can be written as

(1 − ϵν,surf )
∫ τ∗

τc

Bν(τ ′)
[

Tν(τ∗)
Tν(τ ′)

]2

dTν (2.20)

On the contrary, the downwelling radiation (µ = −1) in presence of a cloud
becomes:

Iν(τ∗, µ = −1) = (1 − ϵc)
[

Tν(τc)
Tν(τ∗)

] ∫ τc

0
Bν(τ ′)dTν(τ ′)

+ ϵcBν(τc)
Tν [(τc)]
Tν [(τ∗)]

+
∫ τ∗

τ
Bν(τ ′)dTν (2.21)

where the first and last terms describe the emission of the atmosphere, while
the second term accounts for the cloud contribution. Different spectral chan-
nels can be used to observe different types of clouds. For instance, low-level
clouds are visible only in transparent channels, in the so-called "atmospheric
windows", since the weighting function peaks close to the surface and the
cloud signature can still be recognised. High-level clouds, instead, can be
observed also in absorbing channels because the cloud is generally above the
maximum of the weighting function.

2.3 Multiple Scattering
In the general radiative transfer equation obtained in Eq.2.12, the change of
intensity is the sum of four processes depicted in Fig.2.4:

• a reduction of the incident radiation due to extinction phenomena;

• an increase due to the single scattering of the direct solar flux from the
direction (−µ0, −ϕ0) to (µ, ϕ);

• an increase due to the multiple scattering of the already diffuse radi-
ation, from a general direction (−µ′, ϕ′) to the final direction (µ, ϕ);

• an increase due to the emission of the layer in the direction (µ, ϕ).
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Figure 2.4: Scheme of upward radiation in a plane-parallel atmosphere. 1) at-
tenuation by extinction; 2) single scattering of direct solar radiation; 3) multiple
scattering; 4) emission from the layer (Liou (2002)).

The scattered intensity in the direction defined by the scattering angle Θ is
given by:

I(Θ) = I0Ωeff
P (Θ)

4π
(2.22)

where Ωeff is the effective solid angle, computed as σscatt/r2 and represents
the fraction taking part in the scattering. While P (Θ) is the scattering phase
function, which describes the probability of scattering in an angle Θ over the
solid angle 4π. Now this expression can be included in the RTE to give a
source function equal to:

J(τ ; µ, ϕ) = ω̃

4π

∫ 2π

0

∫ 1

−1
I(τ ; µ′, ϕ′)P (µ, ϕ; µ′, ϕ′)dµ′dϕ′

+ ω̃

4π
F0P (µ, ϕ; −µ0, −ϕ0)e−τ/µ0 + (1 − ω̃)B[T (τ)] (2.23)

where ω̃ is the single scattering albedo, defined as the ratio of the scattering
coefficient to the extinction coefficient and quantifies the amount of energy
diffused in all directions. The first term of the equation represents the mul-
tiple scattering, where the diffuse intensity is integrated over the 4π solid
angle; the second accounts for the scattering of the solar irradiance F0 com-
ing from the angle (−µ0, −ϕ0); while the last term is the emission of the
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layer. For radiative transfer at IR wavelengths (100-2500 cm−1), the solar
flux F0 is negligible and the multiple-scattering term becomes significant
only in presence of clouds, otherwise the equation is reduced to the original
Schwarzschild’s equation.



Chapter 3

CIC: Cloud Identification and
Classification algorithm

This chapter will provide an overview of the CIC (Cloud Identification and
Classification) machine learning algorithm. Algorithms for cloud identifica-
tion from hyperspectral infrared sounders measurements usually consist of
brightness temperature thresholds or the evaluation of brightness temperat-
ure differences, as discussed in chapter 1. These techniques require many cal-
ibrations and are location and time-dependent. Machine learning algorithms,
such as artificial neural networks, support-vector-machine and others, have
been developed to overcome these limitations.
Principal component analysis (PCA) is an unsupervised statistical technique
primarily used for dimensionality reduction in machine learning. Models be-
come more efficient as the number of features is reduced. In theory, PCA
produces the same number of PCs as there are features in the training set.
However, not all PCs are equally important. The optimal number of PCs re-
tained is dependent on the tradeoff between dimensionality reduction and in-
formation loss. The first principal component expresses the greatest amount
of variance. Each additional component accounts for less variance and more
noise and it is not correlated with the other ones, since PCs are orthogonal
projections of data onto lower-dimensional space. Taking only a subset of
PCs preserves the signal and discards the noise, reducing a large number of
features to just a couple of principal components. A standard procedure to
compute PCs is made of the following steps:

• feature standardization: each feature is set with a mean of 0 and a
variance of 1;

• covariance matrix computation;
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• eigendecomposition of the covariance matrix: computation of the ei-
genvectors and correspondent eigenvalues;

• sort the eigenvectors from the highest eigenvalue to the lowest;
• select the number of PCs.

There are also some disadvantages in PCA. The physical meaning of each fea-
ture is lost since each PC is a linear combination of the original features. In
addition, PCA assumes a correlation between features and results are biased
in datasets with strong outliers.

An innovative machine-learning algorithm CIC (Cloud Identification and
Classification) was recently developed and described in Maestri et al. (2019b).
CIC is based on Principal Component Analysis and performs cloud detec-
tion and multi-scene classification. CIC allows the identification of the at-
mospheric scene observed (clear or cloudy) based only on the input spectra
data, without the need for ancillary information or forecast model outputs.
The algorithm uses a single threshold applied to a univariate distribution
of the newly defined Similarity Index. This parameter defines the level of
closeness or similarity of each spectrum analysed and a specific class. CIC
is primarily used to distinguish cloudy scenes from clear-sky ones, but it is
also able to characterise the cloud phase.
The first step is the definition of the training sets (TRs), consisting of a
number T of spectra for each class. Then, the principal components (PCs)
are computed for each TR and stored in a matrix. Each spectrum of the test
set (TS) is then added to the different TRs, forming extended training sets
(ETRs). Finally, the PCs of those ETRs are computed. The variations in the
PCs of the extended training sets with respect to the original ones are evalu-
ated by means of the Similarity Index. Small changes are interpreted as the
spectrum belonging to that class, while large changes represent a spectrum
containing different information and thus belonging to another class. CIC
then associates the input TS spectrum with the class providing the smallest
change.
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3.1 Algorithm Description
CIC is based on the Principal Component Analysis (PCA) and is able to
determine the atmospheric scene observed, separating the clear and cloudy
sky conditions, and classify the type of cloud according to its thermodynamic
phase. Three classes (clear sky, ice cloud and mixed-phase cloud) will be
defined for the application of CIC to REFIR-PAD ground measurements.
While only two classes (clear and cloudy) will be used for IASI spectra, due
to the low number of observations available. In the following mathematical
description of the algorithm, only two classes will be considered for clarity
purposes. First, a training set is defined for each scene, using reference
spectra of known class. A number Tclear and Tcloud of spectra are stored in
columns in the training set matrices TRclear and TRcloud, respectively:

TRi(ν, t) (3.1)

i ∈ [clear, cloud], ν ∈ [1, .., νmax], t ∈ [1, .., Ti]

where each row corresponds to a specific wavenumber ν. After that, the
principal components of each training set matrix are computed from the
eigenvectors of the covariance matrix:

ϵTRi(ν, p) = eig(cov(TRi(ν, t))) (3.2)

i ∈ [clear, cloud], ν ∈ [1, .., νmax], t ∈ [1, .., Ti], p ∈ [1, .., P ]

with P = max(Ti, νmax) defined as the total number of principal components,
which is equal to the number of spectral channels. Each row of the square
matrix in Eq.3.2 contains a normalised eigenvector:

νmax∑
ν=1

ϵTRi(ν, p)2 = 1 (3.3)

In the same way, all the spectra of the test set (TS) are written in a matrix:

TS(ν, j) (3.4)

ν ∈ [1, .., νmax], j ∈ [1, .., J ]

with J equal to the number of TS spectra considered. Then, J Extended
Training Set matrices are defined, containing the TR spectra concatenated
with a single TS spectrum
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ETRi,j(ν, t′) = [TRi(ν, t)||rowj(TS(ν, j))] (3.5)
t′ ∈ [1, .., Ti + 1]

In this expression, rowj(TS(ν, j)) indicates the jth TS spectrum written as
a one-dimensional array, and the matrix concatenation is expressed by the
notation ||. The PCs of the extended training sets are then computed as:

ϵETRi(ν, p) = eig(cov(ETRi(ν, t))) (3.6)

The eigenvectors represent the directions in the multidimensional space with
a dimension equal to the number of spectra in the TR. When a new spectrum
is included in the TR, the new directions will be rotated with respect to the
initial ones. The variation depends on the amount of information added
by the TS spectrum to the TR. Thus, a small change in the PCs after the
addition of the test set spectrum denotes that the spectrum belongs to the
class and it has the same features as the TR spectra. While a large difference
indicates that the spectrum belongs to another class. The PCs variations are
estimated through a newly defined parameter, called the Similarity Index
(SI), computed for each class using the two eigenvectors matrices:

SI(i, j) = 1 − 1
2P0

P0∑
p=1

νmax∑
ν=1

|ϵETRi,j(ν, p)2 − ϵTRi,j(ν, p)2| (3.7)

with P0 equal to the number of PCs associated with the signal that constitute
the information-bearing principal components (IBECs). This number of PCs
is computed minimising the indicator function (IND), defined in the work of
Turner et al. (2006) as:

IND(p) = RE(p)
(P − p)2 (3.8)

where RE(p) is defined as the real error

RE(p) =

√√√√ ∑P
i=p+1 λi

Ti(P − p) (3.9)

λi is the ith eigenvalue of the covariance matrix and Ti is the number of
spectra in the ith TR. In the work of Turner et al. (2006), it is explained that
the PCs retained following this procedure are the eigenvectors associated with
the physical signal. CIC computes the number P0 separately for the different
TRs matrices, then a unique value P0 is chosen to compute the SI in Eq.3.7.
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Selecting the maximum value means taking all the information included in
one TR and adding some noise in the other, as the opposite, choosing the
minimum value leads to selecting all the information from the corresponding
TR but excluding some in the other. The SI estimates of how much the PCs
of a TR rotate after a new spectrum is added, thus it does not depend on
eigenvalues but on eigenvectors only. All the principal components associated
with the physical signal are accounted for with the same weight since all of
them might carry crucial features for the classification. The Similarity Index
defined in Eq.3.7 is normalised. Its absolute value is at most equal to 2 and
has to be summed over all the P0 differences, reaching a maximum value of
2P0:

0 ≤
P0∑

p=1

νtot∑
ν=1

|ϵETRi,j(ν, p)2 − ϵTRi,j(ν, p)2| ≤ 2P0 (3.10)

therefore the SI value is
0 ≤ SI(i, j) ≤ 1 (3.11)

where a SI = 1 means that the eigenvectors matrices of the TR and ETS
are identical and the analysed spectrum adds no further information. While
SI = 0 represents two very different sets of PCs, denoting that the test
set spectrum describes new physical properties. The similarity index is the
metric used by CIC to measure how much each spectrum of the test set
resembles the characteristics of each TR.

3.2 Classification

3.2.1 Elementary Approach
The Similarity Index quantifies the change in the PCs every time a new
spectrum of the TS is added to a TR. The classification result is obtained
comparing the value of the SIs obtained for the two classes, associating the
spectrum with the most similar class.
Considering the same two classes as before, clear and cloudy sky, if

SI(clear, j) > SI(cloud, j) (3.12)

the jth spectrum is classified as clear, while if

SI(cloud, j) > SI(clear, j) (3.13)

the spectrum is labelled as cloudy. These two conditions can be simplified
introducing a new parameter called Similarity Index Difference (SID) which
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acts as a binary classifier:

SID(j) = SI(cloud, j) − SI(clear, j) (3.14)

where SID(j) > 0 j ∈ {cloudy spectra}
SID(j) < 0 j ∈ {clear spectra}

(3.15)

A third class can be introduced to decouple ice clouds from mixed-phase
ones, because they have often very distinct spectral characteristics. Three
TRs have to be defined, each representative of the variability within that
class. For each TS spectrum three SIs are obtained (SIclear, SIice cloud and
SImixed−phase cloud). From these, a vector of similarity index differences (SIDs)
is defined from the mutual comparison of the three classes:

SID(1) = SIclear − SIice cloud

SID(2) = SIclear − SImixed−phase cloud

SID(3) = SIice cloud − SImixed−phase cloud

(3.16)

The classification output is then obtained following the logical scheme in
Fig.3.1. The white boxes represent the partial results and the green ones are
the final classification outcome. A result is derived only if a class prevails
over the other two, otherwise, the spectrum is considered unclassified.

Figure 3.1: Logic diagram of the classification process performed by the CIC
algorithm.
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This classification approach is called elementary since it is based only on
the SID sign. The process is repeated independently for each spectrum of the
test set. Results are depended on the training sets composition, especially
when the number of spectra composing the TRs is very small. If the TR does
not represent the entire class variability, spectra might be misclassified, since
not all the spectral features are well reproduced in the PCs. For instance,
if the features are not clearly distinct, the SID distributions may overlap,
resulting in clear spectra with positive SID or vice versa. Thus, the TR
definition is a crucial step to improve the accuracy of the algorithm.

3.2.2 Distributional Approach
A perfect classifier would ideally generate a bimodal distribution of the SID
parameter, denoting two homogeneous groups among the classified spectra.
However, this class separation is difficult to obtain and the distributions ex-
hibit an amount of overlap which depends also on the spectra that constitute
the training sets. A distributional method has been developed to address
this issue and optimise the algorithm performance. CIC is initially applied
to the training set spectra which have known classes and their SIDs are calcu-
lated. The resulting distribution is used to define the most suitable delimiter
between the classes, selecting a shift of the original zero that maximises the
CIC performance on the training sets. A new parameter called Corrected
Similarity Index Difference (CSID) is defined for each spectrum, which is
computed applying the shift to the original SIDs:

CSID(j) = SID(j) − shift (3.17)

The CSID becomes the new binary classifier and, as previously defined for
SID parameter CSID(j) > 0 j ∈ {cloudy spectra}

CSID(j) < 0 j ∈ {clear spectra}
(3.18)

The shift optimal value can be obtained using different functions that poten-
tially forecast the performance of the algorithm. In Maestri et al. (2019b)
the Consistency Index (CoI) is suggested, which is defined as:

CoI(shift) = 1 − max
(

FPclear

Tclear

,
FPcloud

Tcloud

)
(3.19)

where FP is the number of false positives for each class. FPclear is equal to
the number of cloudy spectra misclassified as clear, while FPcloud indicate the
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clear spectra misclassified as cloudy. The CoI is an indicator of the training
set representativeness and shows how many TR elements would be classified
correctly if they were part of the test set. The CoI value is close to 1 only if
both clear and cloudy FP are rare and the TRs represent the full variability.
Previous studies of Maestri et al. (2019b) and Magurno et al. (2020) have
proven that the distributional approach increases the performance of the
classification algorithm.



Chapter 4

REFIR-PAD ground-based
measurements

In this chapter, the CIC is applied to high spectral resolution downwelling
radiances at far infrared (FIR) and middle infrared (MIR) wavenumbers, col-
lected at Dome-C on the Antarctic Plateau, between 2012 and 2020. Meas-
urements are performed by the REFIR-PAD Fourier transform spectrora-
diometer, in the context of the projects PRANA (Radiative Properties of
Water Vapor and Clouds in Antarctica) and CoMPASs (Concordia Multi-
Process Atmospheric Studies), within the Italian National Program for Re-
search in Antarctica (PNRA) (Palchetti et al. (2020)).

4.1 Instrumentation and Measurements
The REIFR-PAD instrument is installed in the Physical Shelter and provides
spectral measurements in the zenith direction of downwelling radiance in the
range 100-1500 cm−1, with a spectral resolution of 0.4 cm−1. It is able to
detect atmospheric emission in the FIR and MIR regions of the spectrum.
To obtain a complete spectrum, four calibration acquisitions and four sky
observations are made. Each of them takes about 80 seconds, thereby the
entire sequence lasts 14 minutes (5.5 minutes of calibrations, 5.5 minutes of
sky observations and further delays due to the detector settling) (Palchetti
et al. (2020)). The instrument operates full-time, alternating cycles of 5-6
hours of measurements, with 1-3 hours of analysis. In the same Physical
Shelter, there is also a LiDAR (Light Detection and Ranging), an active
remote sensing instrument that emits a beam of radiation in the visible band,
at 532 nm. The LiDAR measures the backscattering and depolarization
vertical profiles up to 7 km above the surface. The interpretation of its signals
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provides information on the cloud layers. In clear sky conditions, the LiDAR
backscatter signal decreases with altitude. When a cloud is present, the
radiation detected by the instrument increases due to the backscatter of the
layer. On the other hand, the light polarization indicates the cloud particle
phase. Liquid water droplets retain the polarization state of the incident
beam, whereas the light backscattered from non-spherical ice particles is
partially depolarized as a result of internal reflections. Theoretical studies
show that liquid water droplets change the polarization of 2-4%, while non-
spherical ice particles can have a strong depolarization, between 30-40%.
The threshold to determine the cloud’s thermodynamic phase depends on the
atmospheric state and cloud microphysical parameters. Moreover, clouds can
be composed of different layers, each having a different depolarization value.
In particular, mixed-phase clouds are generally observed to be composed of
a layer of ice particles at the cloud top and a layer of water particles at the
cloud bottom, where the temperature is higher. In this work, a depolarization
of 15% is used as a threshold to discriminate ice clouds (signal > 0.15) from
mixed-phase clouds (signal < 0.15).

A dataset of 233508 spectra collected by REFIR-PAD at Dome-C, during
the years 2012-2020, is analysed using the CIC algorithm. Tab.4.1 shows
the number of elements available for each year. The algorithm setup follows
the results obtained by Cossich et al. (2021). The same Training Set and
Test Tet elements, which were labelled with the help of LiDAR images, have
been employed and the classification is performed on the spectral interval
380-1000 cm−1, which maximises the classification scores.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020
Num. spectra 10280 11118 25288 24506 30904 29983 32715 34070 34003

Table 4.1: Number of DataSet elements collected over the years 2012-2020 by the
REFIR-PAD instrument.
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4.2 CIC Algorithm Set-Up
This section will describe the procedure used to select proper spectra to
compose the Training Set and Test Set. This work aims to continue the clas-
sification performed by Cossich et al. (2021) for the period 2012-2015, with
a larger dataset spanning from 2012 to 2022. The entire dataset has been
recalibrated and new methods have been introduced to check the quality of
the spectra. As a result, only some of the Training set and Test set elements
are still available. However, to remain consistent with the previous results,
no spectrum has been substituted to missing ones. The CIC classification
considers three classes: clear-sky, ice cloud and mixed-phase cloud, and res-
ults are obtained following the scheme in Fig.3.1. The classification has been
performed over the spectral interval 380-1000 cm−1, which was found by Cos-
sich et al. (2021) to be the most performing for all the three classes. The
channels selected depend on a variety of factors, such as the sensor charac-
teristics, (noise and spectral resolution), the chosen training sets, the classes
considered, the observation specifics and the atmospheric condition. In the
case of Antarctica, the atmosphere is very dry over the entire year. As a
consequence, FIR channels (up to 667 cm−1) become less opaque and can be
exploited to improve cloud detection.

4.2.1 Training Set
Spectra composing the Training Sets are selected from a subset of manually
classified observations. This pre-classification is performed using the LiDAR
instrument. REFIR-PAD spectra are co-located with LiDAR measurements,
associating each REFIR-PAD observation with the closest LiDAR vertical
profile. The time considered for the REFIR-PAD measurement is the begin-
ning of the acquisition. Backscatter and depolarization LiDAR profiles were
visually inspected to detect the presence of a cloud and determine its ther-
modynamic phase. In clear sky conditions the LiDAR signal decreases with
height, while a sharp increase indicates the presence of a scattering layer such
as a cloud. The depolarization profiles are then inspected to discriminate the
cloud phase, values above 0.15 are representative of ice clouds, while mixed-
phase clouds are identified in layers with depolarization below this threshold.
Training Set spectra should describe all the observed variability in the area
and, at the same time, be sensitive to the addition of a new Test Set spec-
trum. The optimum number of elements depends upon the trade-off between
these two factors. Due to the intense change in environmental conditions,
the Training Sets are defined independently for two macro seasons, a warm
one from November to March and a cold one from April to October. Mixed-
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(a)

(b)

Figure 4.1: Mean Brightness Temperature spectra (solid lines) forming the Train-
ing Set, measured by the REFIR-PAD and respective standard deviations (shaded
areas), grouped in accordance with the associated class during the cold (a), and
the warm season (b).
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phase clouds are observed only in the warm season, with a higher frequency
in December and January. In cold months, extremely low temperatures pre-
vent their formation. For this reason, three classes constitute the Training
Set in the warm season (clear-sky, ice cloud, mixed-phase cloud), while only
two classes (clear-sky and ice cloud) are used in the cold months. 119 spectra
are selected to form the Training Set (59 in the warm season and 60 in the
cold one). In the warm season, there are 23 clear-sky elements, 22 ice clouds
and 14 mixed-phase clouds. While in the cold season, the training set is split
into 40 clear-sky spectra and 20 ice clouds. Fig.4.1 shows the mean Bright-
ness Temperature (BT) spectra and their standard deviations for the classes
used in each season. The two atmospheric windows, one in the far infrared,
between 400 and 600 cm−1, and the other in the middle infrared, between
800 and 1000 cm−1, present the major discrepancies. Wavenumbers after the
O3 band are highly affected by instrumental noise. The standard deviation
in the MIR window channels is larger for the cloudy spectra, in both seasons,
which suggests a larger variability of the signal. Spectra are classified using
the distributional approach, thus a first run of the algorithm on the Training
Set elements has to be performed in order to find the best delimiter between
each couple of classes. An example of results obtained on the clear-sky and
ice cloud classes of the warm season is provided in Fig.4.2a. The classifica-

(a) (b)

Figure 4.2: Example of SID distributions obtained for the Training Set elements
of clear-sky and ice cloud classes in the warm season.
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tion was performed using the spectral interval 380-1000 cm−1 (Cossich et al.
(2021)). Positive SID values indicate spectra classified as ice clouds, while
negative ones denote clear-sky elements. The colour of each bar represents
the belonging class. There is a net separation between the two classes, which
implies that the algorithm is able to correctly identify the spectral features
separating the two scenes. The distributional approach allows to determine
an ideal shift, other than zero, that maximises the classification results (in
Fig.4.2).

4.2.2 Test Set
Once the Training Sets have been defined, CIC performances are optimised
and assessed on an independent set of spectra composing the Verification and
Test Set. The Verification Set was used by Cossich et al. (2021) to evaluate
the best spectral interval, therefore, in this study, all the spectra have been
merged to form the Test Set. Overall, 992 spectra were selected, collocated
with the LiDAR measurements and visually classified using the backscatter
and depolarization profiles. The Test Set for the warm season is composed
of 52 clear-sky spectra, 125 ice clouds and 79 mixed-phase clouds. While the
Test Set used for the cold season is made up of 271 clear-sky spectra and
465 ice clouds. The mean BT spectra are illustrated in Fig.4.3. Considering
three general classes A, B and C, each spectrum belonging to class A can be
classified correctly by the CIC as a member of class A, or incorrectly as a
member of class B or C. Thus, the results can be interpreted as

• True Positive (TP): the spectrum belongs to class A and it is properly
classified in class A.

• True negative (TN): the spectrum does not belong to class A and it is
properly classified in its class of pertinence (B or C).

• False positive (FP): the spectrum belongs to class B or C but it is
misclassified in class A.

• False negative (FN): the spectrum belongs to class A but it is misclas-
sified in class B or C.



47 4.2. CIC Algorithm Set-Up

(a)

(b)

Figure 4.3: Mean Brightness Temperature spectra (solid lines) forming the Test
Set, measured by the REFIR-PAD and respective standard deviation (shaded
areas), grouped in accordance with the associated class during the cold (a), and
the warm season (b).
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Two main parameters are here defined to evaluate the algorithm perform-
ance: the Threat Score (ThS) and the Hit Rate (HR). For class A, the Threat
Score is defined as:

ThSA = TP

TP + FN + FP
(4.1)

where the true positive (TP) accounts for the total number of correctly clas-
sified spectra, while the false negative (FN) and false positive (FN) indicate
the misclassified ones.
As for the Hit Rate, it is given by:

HRA = NCIC
A

N true
A

= TP

TP + FN
(4.2)

with NCIC
A equal to the number of occurrences of class A that are correctly

classified by the CIC, corresponding to the TP (true positive). While N true
A

is the total number of spectra belonging to class A, corresponding to TP +
FN (false negative) of that class.
An additional indicator that can be used to evaluate the consistency of the
spectra identified by the CIC as members of class A, is the Positive Predictive
Value (PPV), also called precision, defined as:

PPVA = TP

TP + FP
(4.3)

where the terms represent the True Positives (TP) and False Negative (FN).
The PPV quantify the prevalence of correctly classified spectra within that
class and represents the probability that an element classified as a member
of class A actually belongs to class A.
Results obtained on the 992 Test Set spectra, using the spectral interval
380-1000 cm−1, are presented in Tab.4.2 for each class individually.

Field Num. spectra ThS HR Num. misclass Misclassification PPV
spectra

Clear sky 323 0.91 0.92 25 7.8% - ice cloud 0.99
0% mixed-phase cloud

Ice cloud 590 0.93 0.98 10 0.68% clear sky 0.94
1.02% mixed-phase cloud

Mixed-phase cloud 79 0.80 0.86 11 0% clear-sky 0.92
13.92% ice cloud

Total 992 0.91 0.95 46 4.6% 0.95

Table 4.2: Results of the CIC classification obtained for the Test Set spectra.
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Overall, 95% of spectra are correctly classified. Only a small percentage
of cloudy spectra (ice clouds plus mixed-phase clouds) are misclassified as
clear-sky (4 over 669 elements), and about 8% of the clear-sky spectra are
erroneously identified as ice clouds. A very positive result is obtained in the
case of mixed-phase clouds, where the CIC is able to identify the presence
of the cloud in 100% of the cases, while 14% of the time the cloud phase
is classified as ice instead of mixed-phase. Looking at the single classes,
the clear-sky has a Hit Rate of 92%, 298 spectra over 323 are correctly
classified. The 25 misclassified elements are labelled as ice clouds. The
ice cloud class has the highest scores, with 98% (580) of spectra correctly
classified. Of the remaining 10 spectra (2%), 4 are labelled as clear-sky and
6 as mixed-phase clouds. Mixed-phase clouds have a Hit Rate of 86%, which
accounts for 68 spectra correctly classified and 11 elements misclassified as
ice clouds. The Positive Predictive Value indicates that the clear class is
composed of 99% clear-sky spectra, which is a great result considering that
retrieval algorithms require a reliable flag of clear observations. The ice
cloud and mixed-phase cloud are also very well defined, with 94% and 92%
of correct elements respectively.

4.3 Results over the entire DataSet
The CIC is finally run over the full dataset, using the previously defined 380-
1000 cm−1 spectral interval. Results are provided in terms of percentages,
defining the occurrence of each class with respect to the total number of
analysed spectra. An error can be associated with the percentage occurrence,
exploiting the HRs derived in the Test Set analysis.
From Eq.4.2, the number of elements classified as members of class A as a
function of the HR can be derived:

NCIC
A = N true

A × HRA (4.4)

Hence, the number of misclassified spectra (N err
A ) can be defined as

N err
A = N true

A × (1 − HRA) (4.5)

Now, since the number N true
A is unknown for the dataset, Eq.4.4 can be

substituted in Eq.4.5, giving:

N err
A = NCIC

A × (1 − HRA)
HRA

= NCIC
A ×

( 1
HRA

− 1
)

(4.6)
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The relative error (ϵ) for class A can be obtained by dividing the number
of misclassified spectra of class A by the total number of spectra in the
dataset (Ntot):

ϵA = N err
A

Ntot

= NCIC
A

Ntot

×
( 1

HRA

− 1
)

(4.7)

The HR values associated with each class for the entire dataset are unknown.
However, it is assumed that the CIC scores over the test set spectra represent
the performances obtained over the full dataset. Thus, the values obtained
in the Test Set for each class are used in the equation. The percentage
classification error for class A is written as:

ϵA% = ϵA × 100 = NCIC
A

Ntot

×
( 1

HRA

− 1
)

× 100 (4.8)

where NCIC
A is the number of spectra identified by CIC as a member of class

A, and Ntot is the total number of spectra in the entire dataset.
The percentages of the classification results over the entire dataset and

the associated uncertainties are given in Tab.4.3.

Clear-sky
(%)

Ice cloud
(%)

Mixed-phase
cloud (%)

Observation
Time (%)

Total 70.09 ±5.88 27.69 ±0.48 2.21 ±0.36 69.11

2012 56.07 ±4.70 38.25 ±0.66 5.68 ±0.92 27.38

2013 71.01 ±5.96 27.51 ±0.47 1.48 ±0.24 29.61

2014 69.97 ±5.87 27.97 ±0.48 2.06 ±0.33 67.36

2015 67.46 ±5.66 30.70 ±0.53 1.84 ±0.30 65.27

2016 67.50 ±5.66 30.55 ±0.53 1.96 ±0.32 82.32

2017 70.42 ±5.90 27.83 ±0.48 1.74 ±0.28 79.86

2018 72.48 ±6.08 24.35 ±0.42 3.17 ±0.51 87.14

2019 69.52 ±5.83 28.24 ±0.49 2.25 ±0.36 90.75

2020 76.39 ±6.41 22.13 ±0.38 1.48 ±0.24 90.57

Table 4.3: CIC classification results for the whole REFIR-PAD dataset
(2012–2020) and for single years. Values and associated uncertainties are reported
in percentages.
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Almost 70% of the full dataset is composed of clear-sky elements, the
rest 30% is divided between ice clouds (almost 28%) and mixed-phase clouds
(2%). Uncertainty values associated with the clear-sky classification are
higher due to the smaller Hit Rate of the class. The most cloudy year is
2012, with a cloud occurrence that exceeds 40%. On the opposite, 2020
has the lowest cloud percentage of less than 25%. The last column in
the table indicates how long the REFIR-PAD was actively measuring each
year. Values are calculated considering the instrument time resolution of
14 minutes. In 2012, the time in which the instrument was actually ob-
serving the sky is less than 30%, and the data is mostly distributed in the
summer months. This result can explain the bias introduced in the per-
centages, which are significantly different from the rest of the years, and the
larger number of mixed-phase clouds (more than 5%). Fig.4.4 illustrates
the distribution of data available over the entire time period 2012-2020.

Figure 4.4: Representation of the dataset distribu-
tion over the years 2012-2020. Colours indicate the
number of data available.

The number of observa-
tions is represented by
the associated colour scale.
There is an evident in-
crease in measurements
over the years, and the
monthly distribution be-
comes more uniform. The
first two years have less
than 1800 measurements
each month, which cor-
respond to the overall
30% shown in the last
column of Tab.4.3.
Some differences are found
between 2012 and 2013.
The first year has a larger
number of observations,
with respect to 2013, only in November, December and January, and these
are also the only months for which data are more than 1000. A rapid indic-
ation of the uniformity of the data distribution is given from the difference
between the minimum and maximum number of measurements in one year.
This value is equal to 1622 in the first year, with a maximum of 1785 ob-
servations in November and a minimum of just 163 in April. In 2013, this
discrepancy reduces to 1148 and data appear more well-distributed. The
maximum is obtained in May, with 1431 REFIR-PAD measurements, and
the minimum of 283 in November. Even though the time in which the in-
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strument was actively measuring is almost the same in these two years and
the number of observations available is equivalent (see Tab.4.1), only the
cloud occurrence obtained in 2013 is in line with values of the other years.
A possible explanation is given by the highest consistency of data counts
in 2013 between the various months. As a matter of fact, 2012 is the most
heterogeneous of all the years. After 2013, there are between 1500 and 3000
data per month. A t-Student test was then conducted to confirm that the
largest cloud occurrence in 2012 was due to the different number of obser-
vations rather than a physical signal. The t value was calculated from the
mean cloud occurrence in 2012 and the one observed from 2014 to 2020 (2013
was excluded to avoid any bias), together with the standard deviations of the
two distributions. The test confirmed that the percentage obtained in 2012 is
included in a confidence level between 95 and 95.5% and that the two distri-
butions are statistically consistent. Hence, the higher mean cloud occurrence
in 2012 is likely due to the low number of observations and their particular
distribution over the months, which results in favour of cloud scenes.

4.3.1 Statistical Analysis
In this paragraph, results obtained for the entire dataset will be presented
in terms of cloud occurrence and in correlation with the surface temper-
ature. The cloud occurrence is calculated by summing the ice cloud and
mixed-phase cloud values. Fig.4.5a shows the same annual percentages re-
ported before. An indication of the annual variability is given by computing
the minimum and maximum values observed within the year (shaded area).
As previously said, 2012 and 2020 are the most and least cloudy years re-
spectively. The number of observations increased after 2013 and the cloud
variability remained quite stable, with a maximum around 60% in 2014 and
a minimum just above 5% in 2013. Over the 9 years, the mean value is
31.02%. As for the monthly cloud occurrence, in Fig.4.5b, the largest mean
values are in winter, with a peak in August at 38.78%. The lowest cloud
occurrence is instead found in April at 20.74%. Both values account for ice
clouds only, in fact, mixed-phase clouds are found only from November to
March, with a maximum of almost 12% in December and January. The high
values of maximum cloud occurrence in June and August are due to the res-
ults obtained in 2012. The month with the lowest variability observed in 9
years is April, followed by months between December and March. During
the winter, the variability increases and this is probably due to the fact that
very few observations in 2012 are performed within those months, increasing
the number of clouds over the total measurements and thus the percentages
reported in the graph.
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(a) (b)

Figure 4.5: Mean annual (a) and monthly (b) cloud occurrence (solid lines)
provided by the CIC over the entire dataset. Shaded areas represent the vari-
ability observed between the maximum and minimum values.

The seasonal cloud occurrence is presented in Fig.4.6. The highest value is
observed during summer (December, January and February) around 33.80%,
followed by winter (June, July and August) months. However, they remain
quite stable between 20 and 40%. The seasonal variation over the years

Figure 4.6: Mean seasonal cloud occurrence
(solid lines) provided by the CIC over the
entire dataset. Shaded areas represent the
variability observed between the maximum
and minimum values.

is illustrated in Fig.4.7. The
minimum value in Spring (SON)
is recorded in 2019 at 20.44%,
while summer (DJF) and au-
tumn (MAM) have a low in 2020
at 24.63% and 19.58% respect-
ively. As for the winter sea-
son (JJA), the least cloudy year
was 2017 with a cloud occur-
rence of 22.61%. The max-
imum cloud fraction in spring
is registered in 2017 at 38.72%,
while the other three seasons
have a peak in 2012 at 40.47%
in summer, 30.76% in autumn
and 69.06% in winter, as a con-
sequence of the issues addressed
before.
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Figure 4.7: Mean seasonal cloud occurrence provided by the CIC from 2012 to
2020.

Finally, the relationship between the different classes occurrences and the
surface temperature is investigated. Ground measurements are performed
every hour at the Concordia Station, thus each REFIR-PAD measurement
has been associated with the temperature measured in that hour. Fig.4.8
shows results divided into the four seasons, Summer (DJF), Autumn (MAM),
Winter (JJA) and Spring (SON). Over the nine years, the surface air tem-
perature (corresponding to REFIR-PAD measurements) varies between a
minimum of -81.2°C and a maximum of -14.3°C. The largest variation is
found in spring. The maximum temperature reached in winter is -25°C while
the minimum is around -80°C. During the summer, the maximum is around
-11°C, and the minimum is just above -70°C and at temperatures below
-60°C only clear-sky scenes were identified. A positive cloud forcing, due to an
increase in the downwelling longwave radiation from the cloud layers, is high-
lighted by the increase in temperature observed at the surface in presence of
clouds. This effect is a little blunt in autumn and spring in correspondence
with temperature bins containing fewer observations. Mixed-phase clouds
are found only at temperatures higher than -50°C. In addition, temperatures
higher than around -30°C both in autumn and winter are associated only
with clouds.
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Figure 4.8: Occurrence of each sky condition as a function of the surface air
temperature in the four seasons. The number of observations for each bin is
reported at the base of each histogram.

The mean temperatures for the clear and cloudy scenes in each season
are reported in Tab.4.4, together with the mean values in all-sky conditions.
The largest difference between clear-sky and cloud temperatures is found in
winter at 8.65°C, with a mean cloud forcing of almost 3°C. The clear-sky
and cloudy temperatures in this season reach the lowest values (-66.62°C
and -57.97°C respectively). The difference mitigates in summer to 2.85°C,
due to a temperature rise for both scenes. In this season, the increase in the
mean cloud temperature comes with a larger number of mixed-phase clouds
observed, which leads to a larger effect on the surface temperature.

<Tclear> <Tcloud> <Tall-sky> Difference Difference
Cloud - Clear All-sky - Clear

DJF -35.64°C -32.79°C -34.76°C 2.85°C 0.88°C
MAM -62.04°C -55.41°C -60.36°C 6.63°C 1.68°C
JJA -66.62°C -57.97°C -63.65°C 8.65°C 2.97°C
SON -53.44°C -49.41°C -52.29°C 4.03°C 1.15°C

Table 4.4: Mean seasonal surface temperature measured at Concordia Station in
correspondence of the sky scene identified by the CIC and their differences.
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Chapter 5

Cloud Detection from Satellite

In the first part of the chapter, the CIC algorithm is applied to satellite data
collected by IASI (Infrared Atmospheric Sounding Interferometer) over the
years 2012-2015. First, the specifics of the IASI instrument and products
are described. Then, the procedure followed to collocate IASI spectra with
the ground observations is delineated and finally, results obtained from the
CIC classification are compared to IASI L2 cloud products. The second part
illustrates the cloud occurrence observed by MODIS compared with ground-
based measurements, over the years 2012-2020.

5.1 MetOp satellites: the IASI instrument
IASI is an infrared sounder that measures the thermal radiation emitted by
the Earth’s surface and the atmosphere. It is composed of a Fourier trans-
form spectrometer and an associated Integrated Imaging Subsystem (IIS).
The Fourier transform spectrometer provides infrared spectra with high spec-
tral resolution between 645 and 2760 cm−1 (3.6 µm to 15.5 µm). From
those measurements, the atmospheric composition and temperature can be
retrieved, forming the Level 2 (L2) product. The IIS consists of a broad-
band radiometer with a high spatial resolution, that measures between 833
cm−1 and 1000 cm−1 (12 µm and 10 µm) and its information is used for co-
registration with the Advanced Very High-Resolution Radiometer (AVHRR),
on board the same platform. The processing of IASI data is conducted by
the EUropean organisation for the exploitation of METeorological SATel-
lites (EUMETSAT). Infrared (IR) sounders such as IASI are very useful for
studying cloud properties since they are not affected by day–night biases due
to solar contamination. The high spectral resolution makes the instrument
very reliable also for the determination of cirrus properties (Hilton et al.
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(2012)). Moreover, the long time series of data available makes IASI an
important contributor to climate studies. From the atmospheric emission
spectra, IASI products provide temperature profiles in the troposphere and
the lower stratosphere with a vertical resolution of 1 km, an accuracy of 1 K
and a horizontal sampling of 25 km; water vapour profiles in the troposphere
with the same vertical resolution of 1 km and horizontal sampling of 25 km
and an accuracy of 10% on relative humidity; the total amount of ozone (O3)
with an accuracy of 5% and information about its vertical distribution with
an accuracy of 10% (EUMETSAT (2017b)). Additionally, IASI is used for
the determination of other trace gases such as nitrous oxide (N2O), carbon
dioxide (CO) and methane (CH4), as well as land and sea surface temper-
ature and emissivity, and cloud properties (fractional cloud cover and cloud
top temperature/pressure).

5.1.1 IASI orbit and Field of View

Three IASI instruments have been operative over the years on board the
MetOp satellites: IASI-A (IASI on board MetOp-A platform) launched in
2006 and switched off in 2021, IASI-B from 2012, and IASI-C launched in
2018. IASI is a polar-orbiting satellite, flying at an altitude of 817 km with
an inclination of 98.7°. It is an across-track scanning system and each scan
line has a swath width of 2200 km on the ground and contains 30 fields of
view, 15 for each side of the nadir direction. The scan starts on the left
side with respect to the flight direction of the spacecraft. Each scan is called

(a) (b)

Figure 5.1: (a) IASI scan line geometry (EUMETSAT (2019)), (b) IASI EFOV
(about 50x50 km), each IFOV spreads 12 km of the Earth’s surface and is separated
from its neighbouring IFOVs by 12.5 km (García-Sobrino et al. (2017)).
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elementary of effective field of view (EFOV) and consists of a cell about 3.3
degrees x 3.3 degrees, or 50 km x 50 km at nadir, analysed simultaneously
by a 2 x 2 array of detectors centred in the viewing direction and forming a
matrix of four circular pixels called Instantaneous Field of View (IFOV). A
representation of a full scan line and a single EFOV is given in Fig.5.1. Each
IFOV has a diameter 14.65 mrad, corresponding to a ground footprint of 12
km at nadir, while the size at the edge of the scan line along the across-track
direction is 39 km, as reported in Tab.5.1.

Characteristics Value Unit
Scan type step and stare –
Scan rate 8 second

Stare interval 151 ms
Step interval 8/37 second

Number of Earth scans / line - EFOV 30 -
Swath ± 48.333 degrees

Swath line ± 1100 km
IFOV - shape at nadir circular –
IFOV - size at nadir 12 km

IFOV - size at edge of scan line across track 39 km
IFOV - size at edge of scan line along track 20 km

Table 5.1: IASI scanning characteristics (EUMETSAT (2019)).

5.1.2 Products and Processing Levels
IASI measures radiance spectra composed of 8461 channels between 645 and
2760 cm−1 (15.5 µm and 3.63 µm), with a spectral resolution of 0.5 cm−1

after apodisation (contained in the L1c product). The spectral sampling in-
terval is 0.25 cm−1. Each spectrum is measured in three bands (summarised
in Tab.5.2), each with a separate detector. The first band (from 645 to 1210
cm−1) spans over long-wave channels, comprising the CO2 and O3 absorp-
tion bands and the LW window; from 1210 to 2000 cm−1 there are channels
mainly sensitive to humidity; and finally the last band from 2000 to 2700

Band Wavenumbers (cm−1) Wavelengths (µm)
1 645 - 1210 8.26 - 15.50
2 1210 - 2000 5.00 - 8.26
3 2000 - 2760 3.62 - 5.00

Table 5.2: IASI’s three spectral bands (EUMETSAT (2019)).
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cm−1 contains the short-wave channels. IASI spectral radiances are included
in the Level 1 product, whose processing chain comprises three sublevels.
Level 1a contains spectra radiometrically calibrated from the raw Level 0
product using two calibration views (Black body and Cold space). The geo-
location of IASI is estimated based on the results from the coregistration of
AVHRR Level 1b data and the calibrated IIS image. Validation of the geo-
metric calibration is carried out frequently, using scenes with high-contrast
features, e.g. coastlines (Hilton et al. (2012)). IASI Level 1a spectra are then
resampled, obtaining the Level 1b product. Finally, Level 1c accounts for the
apodization and contains the AVHRR radiance analysis. The usability of an
IASI spectrum is indicated by the Boolean flag GQisFlagQual for each band.
The IASI Level 1c products are organised as successive scan lines, each form-
ing a MDR (Measurement Data Record) structure. While the IFOVs within
one scan line are referenced by the geolocation and the acquisition time.

The retrievals of geophysical parameters such as atmospheric vertical pro-
files, gases and cloud properties are included in the Level 2 product. In
particular, cloud parameters derived from IASI include cloud fraction, cloud
top temperature, cloud height and cloud phase (their detailed description
is given in EUMETSAT (2017a)). The cloud phase is estimated for cloudy
IASI IFOVs by evaluation of the infrared window regions between 8 µm to
9 µm and 11 µm to 12 µm. While cloud detection is performed using three
distinct methods, to be able to detect clouds under all conditions. The first
one is a NWP test, which uses simulated radiances in the window channels,
computed using the radiative transfer code RTTOV, compared to the actual
IASI observation. Large differences are interpreted as the presence of a cloud
in the IASI field of view. The second uses the AVHRR collocated cloud mask
within the IASI IFOV. IASI pixels with AVHRR cloud fractions (embedded in
the L1c product) exceeding a configurable threshold are flagged cloudy. The
third test applies artificial neural networks to IASI radiances and AVHRR
cluster information (mean value and variance) and classifies the scenes into
cloud-free, partly cloudy or fully cloudy. The three tests are summarized in
Tab.5.3. Each IASI IFOV is declared cloud-free with high confidence only
if all tests conclude the absence of clouds. If a cloud is detected by at least
one of the tests, a cloud characterisation is attempted and where no clouds

Test Name Type of test Measurements used
NWP Window channel test IASI spectra; NWP forecast

AVHRR Integrated fractional cloud coverage AVHRR cloud-mask
ANN non-linear classification IASI and AVHRR measurements

Table 5.3: IASI Level 2 cloud detection tests (EUMETSAT (2017b)).
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could be confirmed with confidence, the IASI IFOV is flagged as clear pixel
with potential cloud contamination.

5.2 Collocation
The application of the CIC algorithm to IASI spectral radiances requires the
availability of a set of labelled data, where the scene observed (clear-sky or
cloudy) is known a priori. For this purpose, REFIR-PAD measurements have
been used as reference data. The high scores obtained for the classification,
described in the previous chapter, and the availability of LiDAR observa-
tions to confirm some of those results, make the instrument very reliable
and suitable for the purpose. IASI data from 2012 to 2015 were downloaded
and collocated with the ground-based measurements. The IASI cloud phase
included in the L2 products was used as a first comparison with the REFIR-
PAD observations, while the IASI spectral radiances, from the L1c products,
were used as input to the CIC algorithm.

IASI orbits were downloaded programmatically from the EUMETSAT
Data Store, through the EUMETSAT Data Access Client (EUMDAC) Py-
thon library. First, all the L2 orbits available for the four years under study
were downloaded and collocated, and then L1c products were downloaded,
using the same procedure, only for those orbits containing collocated pixels.
The processing of IASI data, conducted by EUMETSAT, has changed over
time due to instrumental and software modifications. In 2019, EUMETSAT
reprocessed the 2007–2017 IASI Metop-A L1C data with the most recent
version of the algorithm. There is now a homogeneous L1C dataset avail-
able and consistent with both the L1C product generated after 2017 and
with IASI-B. Various changes have been assessed in the study performed by
Bouillon et al. (2020), thus in order to remove any bias, the new version of
L1c products for MetOp-A (forming the IASI Level 1C Climate Data Record
Release 1) was downloaded using an FTP access provided by EUMETSAT.

5.2.1 Criteria used for L2 and L1 products
A collocation of the ground-based measurements and the satellite FOV oc-
curs if they observe the same place at approximately the same time. For
each IASI orbit file, all MDRs (corresponding to the scan lines) have been
analysed. A unique acquisition time is specified in the record header for
each scan line or MDR struct, while the four pixels in the 30 IASI fields of
view are distinguished by the correspondent latitude and longitude and the
satellite zenith angle. The distance in km was calculated from each pixel



Chapter 5. Cloud Detection from Satellite 62

centre (correspondent to the given coordinates) to the REFIR-PAD location
(located at -75.1° latitude and 123.33° longitude).
Knowing that the acquisition time for the REFIR-PAD instrument is about
15 minutes (see Chapter 4) and each IASI IFOV has a diameter of 12 km
(see Fig.5.1b), a IASI pixel is flagged as collocated with a REFIR-PAD ob-
servation if:

• the IASI measurement is carried out maximum 15 minutes before the
observation time of the REFIR-PAD;

• the maximum distance of the IASI pixel centre from the REFIR-PAD
instrument is less than 6 km (the ground observation is inside the IASI
IFOV).

Finally, a filter for satellite zenith angles below 6.7° has been introduced to
avoid geometric distortions.

Year Num. Observations
2012 21
2013 30
2014 52
2015 64

Table 5.4: Number of IASI granules
collocated with REFIR-PAD observa-
tions over the four years under study.

In total, 167 IASI observations
were identified as spatial and temporal
collocated to the ground-based meas-
urements, subdivided over the four
years as described in the Tab.5.4. In
2012, the only operative satellite was
MetOp-A. From 2013 also MetOp-B
data has become available, increasing
the number of collocated observations,
which nearly tripled in 2015. Using
the information contained in the L2

products, the cloud phase retrieved by IASI (corresponding to the field
CLOUD_PHASE) and the one determined by the REFIR-PAD for each
collocated measurement were saved into a matrix, together with the IASI
filenames, the name of the MetOp platform, the acquisition time, the dis-
tance from Dome-C and the satellite zenith angle. The number of scan line,
EFOV and collocated pixel were used to download the corresponding spectral
radiances from the L1c products.

IASI L1C Radiances

The field containing the radiance spectrum in the IASI L1c product is the
GS1cSpect, although those values have to be multiplied by scale factors. EU-
METSAT has divided the IASI spectrum into five spectral regions and each
region has a scale factor that is approximately proportional to the value of the
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radiance in the region. They have to be read from GIADR-SCALEFACTORS
records. The decoded spectra are obtained using the following expression:

SpectDecoded(w) = Spect(w) × 10−SF (5.1)

where Spect is the original spectrum provided in GS1cSpect, SF is the specific
scale factor (power of 10) to be applied within the corresponding band of the
spectral sample number w. The computation of the wavenumber associated
with the spectral sample number w for the IASI L1c spectra is given by the
formula:

wavenumber(w) = IDefSpectDWn1b × (IDefNsfirst1b + w − 2) (5.2)

with IDefNsfirst1b equal to the number of the first sample of the IASI spec-
trum and IDefSpectDWn1b the sample width. More detailed information on
the entire procedure can be found in EUMETSAT (2019).
The spectra obtained were thus included in the file of collocated measure-
ments.

5.2.2 IASI collocated dataset
At first, the collocated measurements were analysed in terms of a one-to-one
comparison between the IASI cloud phase and the REFIR-PAD observed
scene. Results are summarised in Tab.5.5.

REFIR-PAD
Clear-sky Ice cloud Mixed-phase cloud

Clear-sky 33 6 4
IASI Ice cloud 83 37 1

Mixed-phase cloud 1 1 1

Table 5.5: Matrix comparing the number of clouds detected by the REFIR-PAD
and the IASI instruments for the entire collocated dataset of 167 observations.

The majority of scenes observed by the REFIR-PAD instrument are classified
as clear-sky by the CIC and account for 70.06% of the total (117 measure-
ments). On the other hand, IASI observed 43 clear-sky scenes, corresponding
to 25.75%, while ice clouds are detected in 72.45% of the cases (121 obser-
vations). Almost 71.8% of clear-sky observations collected from the ground
are classified as cloudy by IASI, 98.8 % of which as ice cloud. As for the ice
clouds seen by the REFIR-PAD instrument, 84.09% are confirmed by IASI.
While 66.67% of the mixed-phase clouds are classified as clear-sky scenes.
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When a cloud is detected, the two instruments are in accordance with its
thermodynamic phase 76% of the time. Considering the scene observed from
the REFIR-PAD as the "truth", the IASI instrument can be considered quite
reliable when no clouds are present, in fact, 76.74% of the clear-sky scenes
observed by the satellite agree with the ground observations. Although, the
ice clouds detected by the satellite are actually seen by the REFIR-PAD only
68.59% of the time. This problem can be due to the different field of view di-
mensions among the two instruments or the frequent temperature inversions
recorded at Dome-C.

The two plots in Fig.5.2 illustrate the mean spectra for each sky scene
observed, labelled according to the CIC algorithm results on the REFIR-PAD
collocated data (Fig.5.2a) and IASI cloud phase provided in the L2 products
(Fig.5.2b). According to the IASI classification, the Brightness Temperatures
(BTs) in clear-sky conditions are generally warmer than in presence of an
ice cloud, especially in the atmospheric spectral window between 800-1200
cm−1. The opposite is true according to the REFIR-PAD scene observed.
The standard deviation reveals a significant variability, in both classifications.
The values for the first two classes (clear and ice cloud) overlap and there is
no net separation between the scenes. As for the mixed-phase clouds, they
are identified as warmer both from satellite and from the ground. However,
in the latter case, their standard deviation is slightly smaller and thus the
mixed-phase cloud scenes observed are more homogeneous. In general, the
ground measurements reveal a temperature at the surface colder in clear-sky
conditions, which increases in presence of a cloud. The opposite is true from
satellite measurements, except for mixed-phase clouds which form only in
very warm conditions.
These results are obtained by averaging the BTs over the entire time period.
Distinct features are exhibited when dividing the spectra into two macro
seasons. A cold season can be defined from April to September, where clear-
sky scenes are identified in conditions of lower surface temperatures with
respect to the cloudy ones, from both ground and satellite measurements
(Fig.5.3). Due to extremely low temperatures, only ice clouds are found in
those months and their mean BTs are lower in the IASI classification and
more similar to the clear-sky scenes.
The same behaviour observed before, averaging the BTs over the full time
period, is found in the warm seasons, from October to March, shown in
Fig.5.4. In particular, also the clear-sky and ice cloud temperatures are quite
high in this season and their standard deviations reach values observed for
mixed-phase clouds. The scenes identified as clear-sky by the IASI algorithm
have surface temperatures just a few kelvins higher than the ice clouds ones.
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(a)

(b)

Figure 5.2: Mean Brightness Temperature spectra (solid lines) measured by IASI
and respective standard deviation (shaded areas), grouped in accordance with the
associated class identified by the CIC algorithm over the REFIR-PAD collocated
measurements (a), and the IASI cloud detection algorithms (b).
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(a)

(b)

Figure 5.3: Mean Brightness Temperature spectra (solid lines) for the cold season,
between April and September, measured by IASI and respective standard deviation
(shaded areas), grouped in accordance with the associated class identified by the
CIC algorithm over the REFIR-PAD collocated measurements (a), and the IASI
cloud detection algorithms (b).
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(a)

(b)

Figure 5.4: Mean Brightness Temperature spectra (solid lines) for the warm sea-
son, between October and March, measured by IASI and respective standard de-
viation (shaded areas), grouped in accordance with the associated class identified
by the CIC algorithm over the REFIR-PAD collocated measurements (a), and the
IASI cloud detection algorithms (b).
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Spectral characteristics observed in Fig.5.2a for the clear-sky and ice
cloud scenes emphasize the phenomenon of temperature inversion at the sur-
face, on the Antarctic Plateau. The atmospheric vertical profiles of temper-
ature, obtained from radiosondes launched every day at Concordia Station,
are used to further investigate this point. Radiosounding measurements are
available only at 12 UTC, thus only IASI measurements performed between
10 a.m. and 3 p.m. were used for this analysis and matched to the cor-
respondent temperature profile, atmospheric conditions are considered to be
quite stable in this time interval. The mean profiles obtained for the three
different classes (clear-sky, ice cloud and mixed-phase cloud), classified by the
CIC algorithm (applied to the ground measurements), were calculated for the
two macro seasons and reported in Fig.5.5. In the cold season, spanning from

(a) (b)

Figure 5.5: Mean Temperature profiles (solid lines) for the cold season, between
April and September (a) and the warm season, between October and March (b)
with the respective standard deviation (shaded areas), divided according to the
sky scene classified by the CIC algorithm over the REFIR-PAD collocated meas-
urements.

April to September, the temperature inversion is evident (Fig.5.5a). Con-
sidering a general cloud height around 4 km, as reported in Chapter 1, the
mean cloud top temperatures are higher than those near the surface, even
within the range of variability given by the standard deviation. For the same
period, the mean surface temperature measured at the Concordia Station is
-66.3°C for clear-sky scenes and -62.9°C in presence of an ice cloud. These
results are consistent with the mean spectra obtained for the same season
according to both the satellite and the ground classification (Fig.5.3). Dur-
ing the warm season, from October to March, the temperature inversion is
less obvious and almost negligible in presence of mixed-phase clouds. The
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mean temperatures measured at the surface are -44.7°C, -40.2°C and -28.4°C
respectively in clear, ice cloud and mixed-phase cloud conditions. These val-
ues confirm the temperatures seen in the spectra grouped in accordance with
the associated class of the REFIR-PAD observations.

5.3 AVHRR Scene Homogeneity

The differences in the scene observed by the satellite and the ground instru-
ment may also depend on the sensor’s field of view. If a cloud is detected
from the ground, it has to be seen from the satellite too. However, the
cloud phase detected might differ in case of mixed-phase clouds since liquid
droplets are generally located in the lower layers. While, if the ground in-
strument sees clear sky, a cloud may still be present in the satellite FOV.
The collocated Advanced Very High-Resolution Radiometer (AVHRR) has
been used to determine the homogeneity of the scene within the IASI pixel.
The AVHRR is a six-channel scanning radiometer with a spatial resolution
of 1.1 km (at nadir) and provided of six spectral channels between 0.63 and
12.00 µm, three solar channels in the visible and near-infrared region and
three thermal infrared channels. In this analysis only the infrared channels
4 and 5 will be employed, corresponding to 10.8 and 12 µm respectively.
The IASI L1C products contain the results of the cluster analysis applied to
the AVHRR collocated observations. The AVHRR pixels are clustered into
homogeneous classes in the radiance space, using the K-mean classification
algorithm. For each class and each AVHRR channel, the cluster product
provides the coverage percentage of the class within the IASI pixel (IDefCc-
sRadAnalWgt product), the mean (GCcsRadAnalMean) and the standard
deviation (GCcsRadAnalStd) of AVHRR brightness temperatures within the
class. The latter two are in units of W/m2×sr×m−1 for the infrared channels.
Different methods have been suggested to perform a homogeneity analysis
using this information. The following study is based on the work of Farouk
et al. (2019). An IASI FOV with several classes, each one having a small
standard deviation and a mean radiance close to the one of the other classes,
can be more homogeneous than a FOV with a single class but with a very
large value of standard deviation. For this reason, the number of AVHRR
clusters within each IASI pixel has not been used as a homogeneity criterion.
The overall AVHRR cluster statistic is instead calculated, aggregating the
information provided by all clusters in the IASI FOV.
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Intercluster homogeneity
The intercluster homogeneity describes how much the single mean values of
each class depart from the mean radiance in the pixel. It is defined inde-
pendently for each channel as:

σinter =

√√√√ 1∑
Ci

N∑
i=1

Ci(Li − Lmean)2 (5.3)

where N is the number of clusters, Li is the mean radiance for the cluster
i in the channel under consideration and Lmean is the radiance weighted
average. The weights are determined by Ci, which are the cluster fractions
of each class i covering the IASI pixel. This result is interpreted in terms of
homogeneity, i.e. a small σinter means that all the classes observe the same
scene in that channel.

Intracluster homogeneity
This quantity is used to determine the homogeneity within each class. It is
defined according to the following formula:

σintra =

√√√√ 1∑
Ci

N∑
i=1

Ciσ2
i (5.4)

where σi is the standard deviation of the cluster i, provided in the IASI
product.

Criteria
Two different thresholds have to be defined for the intercluster and intracluster
deviations normalised over the mean radiance Lmean. Values suggested by
Farouk et al. (2019) are too high for this study, probably because surface
temperatures in presence of a cloud are not so distant from the clear-sky
ones in Antarctica. An attempt to set calibrated thresholds is performed by
assessing the normalised values of σinter and σintra against the cloud frac-
tion provided by the AVHRR and included in the IASI L1c product. Fig.5.6
shows results for channel 4 (10.8 µm). The deviation values are very small for
both quantities, remaining below 0.04 for σintra and 0.06 for σinter. Moreover,
there is no explicit relation between those quantities and the cloud fraction
provided by the AVHRR.
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Possible thresholds are set as:

• σintra/Lmean = 0.010

• σinter/Lmean = 0.015

where values smaller than those should represent homogeneous scenes. Ac-
cording to these parameters, the IASI collocated pixels were divided into
homogeneous and non-homogeneous scenes. Results are shown in Fig.5.7.
As expected, the pixels identified as non-homogeneous span within all cloud
fractions and a significant part of them corresponds to cloud fraction equal
to 100%. Thus, this analysis cannot be considered reliable in this case and
those results are not utilised in the definition of scene observed by the IASI
instrument.

Figure 5.6: Scatter plot between σintra

and σinter normalised over the mean ra-
diance Lmean, calculated for the colloc-
ated IASI pixels. The colour scale repres-
ents the cloud fraction measured by the
AVHRR.

Figure 5.7: 3D scatter plot between the
AVHRR cloud fraction, σintra and σinter

normalised over the mean radiance Lmean

for the collocated IASI pixels. Orange
circles represent non-homogeneous data,
while blue the homogeneous ones.
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5.4 CIC applied to IASI Dataset
The IASI dataset is now used as input for the CIC algorithm. The 167
total collocated elements are divided into a Training set, a Validation set
and a Test set and the scenes are labelled according to the REFIR-PAD
observation. There are 114 clear-sky scenes and 50 cloudy ones, split into 44
ice clouds and 6 mixed-phase clouds.

5.4.1 Training Set
Due to the low number of collocated observations, only two classes are defined
for the whole four years period, clear-sky and cloudy. The second includes
all the cloudy scenes, without distinguishing the cloud phase. CIC results
are sensitive to the composition of the Training Set, thus its elements should
represent the entire variability within each class and characterise both the
cold and the warm season. 50 spectra were manually chosen to populate the
Training Sets, 25 clear and 25 cloud (22 ice clouds and 3 mixed-phase clouds),
visually inspecting the variability within each month. Both thick and thin
clouds were included in the cloud class. The monthly distribution of the
selected observations follows the one of the entire dataset, as illustrated in
Fig.5.8.

(a) (b)

Figure 5.8: Monthly distribution of collocated IASI spectra in clear-sky (a) and
cloudy (b) conditions. The total number is in blue, while the brown spectra are
the ones selected for the Training Sets.
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Figure 5.9: Mean clear and cloudy spectra forming
the Training Set.

The mean spectra
forming the two Train-
ing sets are depicted
in Fig.5.9. Some dif-
ferent spectral features
are evident in the figure
and characterise the two
classes, such as the O3
band and wavenumbers
around 2000-2200 cm−1.
While the standard de-
viations (shaded areas)
indicate the variability
within each class. Those
spectra were then inges-
ted by the CIC, follow-
ing the distributional ap-

proach described in Chapter 3.2.2. For each spectrum, the Similarity in-
dex (SI) clear and cloud have been calculated, together with their difference

(a) (b)

Figure 5.10: SID distributions for the Training Set elements, using the elementary
(a) and the distributional approach (b), over the spectra interval 645-2250 cm−1

and using the minimum number of principal components.
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(SID). Results obtained performing the classification over the spectral inter-
val 645-2250 cm−1 (larger wavenumbers were excluded because are affected
by the solar contribution) are shown in Fig.5.10a. A positive SID value in-
dicates that the spectrum has been classified as cloud, while a negative one
denotes a clear-sky spectrum. The colour of each bar represents the be-
longing class. This procedure is needed in order to find the best delimiter
between the SID distributions. The shift that maximises the classification
results is found at -0.0093 and is depicted in Fig.5.10b. Clear-sky elements
(blue histogram) were classified with very similar SID values, generating a
narrow distribution close to 0. On the other hand, the cloudy spectra (red
histogram) span over a larger, even if limited, interval of SID values. Dis-
tinct groups suggest that different features emerged from the classification,
producing slight variations in the SID values.

5.4.2 Validation Set
In machine learning, the validation set is used to adjust the parameters on a
set of independent data, while the test set provides an unbiased evaluation
of the final model. Once the Training sets have been analysed and the best
delimiter has been calculated, the number of principal components, as well
as the best spectral interval performing the classification, have to be defined.
36 spectra have been chosen to compose the Validation set, maintaining a
sufficient representation for each month and year. 24 of which are clear-sky
spectra and 12 cloudy (11 ice clouds and 1 mixed-phase cloud). Multiple
runs of the CIC algorithm were performed on these elements by applying it
to different spectral intervals. The end wavenumber was moved from 1400
to 2250, while the number of principal components was set equal to the
minimum value between the two classes (which generally is around 2 or 3),
the maximum (around 4-5) and fixed at 10 and 15. The maximum number
of PCs allows to retain all the information in one class and add some noise to
the other one. While a minimum number of PCs cuts part of the information
in the class with the highest number of PCs. The algorithm performance is
assessed by evaluating the Threat Score and the Hit rate, defined previously
in Eq.4.1 and Eq.4.2. Results are presented in Fig.5.11.
The Threat Score index shows that a number of principal components equal
to 15 is stable for both classes, with a slight change in the cloud class over the
spectral interval 645-2250 cm−1. Looking at the clear-sky class, the number
of PCs less stable is 10, while the minimum and maximum follow almost the
same trend, with the minimum having a constant higher score, except in the
spectral interval 645-1400 cm−1. As for the cloud class, the scores are overall
much lower, with a peak just above 0.4 when the end wavenumber exceeds
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(a) (b)

(c) (d)

Figure 5.11: Classification results obtained on the Validation Set for different
spectral intervals and number of principal components. Two indices are used: the
Threat Scores clear (a) and cloud (b), and the Hit rate clear (c) and cloud (d).

2000 cm−1. Moreover, there is no evident trend among the different PCs.
Threat Scores are affected by the number of false positives and quantify the
goodness of the classification within the class, while Hit Rate values (at the
bottom of the figure) account only for the spectra correctly classified over the
total number of spectra populating each class. Thus, HRs are directly linked
to the percentages of the classification results. Fig.5.11c shows that using
10 PCs over the spectral interval 645-2000 cm−1 yields a perfect score in the
clear-sky class, but drops to almost 40% in the cloud one, classifying correctly
less than half cloud spectra. Overall, it appears that, when the number of
PCs is fixed to 10 or 15, the score rises on the cloud class when they worsen
on the clear spectra. and there is no spectral interval that gives a satisfactory
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result in both classes for these configurations. A threshold of 0.5 on the Hit
Rate has been defined in both classes in order to rule out configurations with a
completely random classification or more chances to misclassify the elements.

Figure 5.12: Classification results obtained on the
Validation Set for different spectral intervals and
number of principal components. The mean value
of the Hit Rate is shown here.

The best spectral inter-
val and number of PCs
are chosen among the
configurations passing the
filter, looking at the
weighted averages of the
classes. The two in-
dexes (ThS and HR) fol-
low the same trend on
the mean values, thus the
Hit Rate (in Fig.5.12)
has been used to assess
the maximum classifica-
tion results, to be con-
sistent with the previous
filter. The best perform-
ing configuration is given
by the full spectral inter-
val, 645-2250 cm−1, and
the minimum number of

principal components. Further analyses have then been performed on the
selected interval. In particular, the absorption bands of different gases and
their correlation to the presence of clouds have been taken into account.
The CIC was run on the Validation set spectra removing the wavenumbers
correspondent to the CO2 absorption (645-700 cm−1), the O3 absorption
(1000-1100 cm−1) and a combination of the above. Moreover, in the two
spectral regions, 1145–1190 cm−1 and 1925–1980 cm−1, the measurement
quality decreases because the measurement noise increases at the edge of
the two spectral bands (EUMETSAT (2019)). These channels are denoted
as "noise" and removed from the full interval. Fig.5.13 illustrates the results
obtained for the two classes and their weighted mean. The usual threshold of
HR > 50% has been set in Fig.5.13b. As mentioned above, the mean trends
of the two indices are consistent. The Threat Score presents higher values
for the clear-sky class in every configuration, except when the noisy channels
are removed from the full interval or from the full interval without the 1000-
1100 cm−1 band. On the other side, the Hit Rate does not exhibit the same
behaviour. This is probably due to the fact that the clear-sky class has twice
the number of elements of the cloud class, which results in a small number of
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(a)

(b)

Figure 5.13: Classification results obtained on the Validation Set for the full
spectral interval between 645-2250 cm−1 and removing various spectral bands.
The minimum number of principal components has been used. The Threat Score
is depicted in (a) and the Hit rate in (b).
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false positives at the denominator of the ThSclear. The percentage of cloudy
spectra correctly classified drops when the CO2 band is removed, while it
remains almost the same without the O3 channels and rises to 100% elim-
inating the noisy channels. The opposite trend is observed for the clear-sky
class. Keeping all the restrictions the mean score is close to the original one,
however, the cloud class is better resolved and both classes have Hit Rates
above 60%. Thus the selected spectra interval is [645-2250]cm−1, excluding
the intervals [645-700], [1000-1100], [1145-1190] and [1925-1980] cm−1.

Figure 5.14: Mean clear and cloudy spectra forming
the Verification Set. Shaded areas correspond to the
excluded spectral intervals.

The mean spectra
composing the Valida-
tion Sets are presented
in Fig.5.14, divided in
the two classes. The
shaded areas in light
blue represent the ex-
cluded wavenumbers. It
can be noted that spec-
tra resemble quite well
the Training set in the
selected channels (see
Fig.5.9). The distinct
spectral features appear-
ing in the Training Sets
around 2000 cm−1 are
not found in the Valid-
ation spectra. This can
be due to the particular

elements chosen or to the fact that, using the minimum number of PCs, tem-
perature becomes the main feature used by the CIC to separate the clear
and cloudy spectra.

5.4.3 Test Set
The remaining 81 spectra compose the Test Set, divided into 68 clear-sky
and 13 cloudy spectra. These data were ingested by the CIC algorithm, us-
ing the minimum number of PCs and the spectral interval 645-2250 cm−1,
without the absorption and noisy bands defined in the previous paragraph.
The classification was performed by applying the shift previously found (-
0.0093) through the SID distributions of the Training Set. The final scores are
reported in Tab.5.6 for the two classes (clear and cloud) and their weighted
average. Although both classes have a Hit Rate higher than 50%, in the
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Threat Score Hit Rate
Clear 0.53 0.56
Cloud 0.21 0.69
Mean 0.48 0.58

Table 5.6: Threat Scores and Hit Rate over the Test Set for the clear and cloud
class and their weighted mean.

clear class it is unexpectedly lower that the value obtained for the Validation
Set shown in Fig.5.11c. A possible explanation can be found in the different
instruments’ field of view and thus on the scene observed by the sensors. The
homogeneity within the IASI field of view was not assessed due to the incon-
clusive results obtained from the AVHRR analysis. The satellite could have
measured non-homogeneous scenes, coincidently with the clear-sky observa-
tions of the ground instrument. The CIC is sensitive even to small variations
in the radiance due to faint cloud contamination. To address this issue, a
simple analysis was performed using the wind data collected from the nearby
Concordia station. A radiosonde is launched every day at 12 UTC, providing
measurements of wind speed and direction along the vertical. For each clear-
sky observation, the mean wind speed measured on the same day at about
4 km was derived. Considering the diameter of the IASI field of view equal
to 12 km and the wind speed measured by the radiosonde, a maximum time
interval was calculated and all the REFIR-PAD observations falling in that
interval were analysed. If a cloud was detected in at least one observation,
the IASI pixel was flagged as cloudy. Where velocities were too high, the
time interval was lower than the REFIR-PAD time resolution (14 min) and
there were no other observations to consider. Thus, a maximum wind speed
of 20 km/h was imposed to include at least one observation before and after.

Threat Score Hit Rate
Clear 0.49 0.63
Cloud 0.42 0.63
Mean 0.46 0.63

Table 5.7: Threat Scores and Hit Rate over the Test Set for the clear and cloud
class and their weighted mean. Scores refer to the REFIR-PAD observations over
a longer time interval.
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As a result, 22 clear-sky spectra were flagged as cloudy and all of them
are part of the Test Set. The Training and Validation sets do not contain any
"uncertain" observations. The Test Set is now composed of 46 clear-sky and
35 cloudy scenes, resulting in the scores defined in Tab.5.7. Results for the
clear-sky class have improved from 56% to 63%. However, the performances
on the cloud class have decreased from 69% to 63%. The opposite is true for
the Threat Score because their values reflect also the number of misclassified
spectra within the class.
A more thorough examination should consider the wind speed measured at
the actual time of the IASI observation and at the proper cloud height.
Probably there are cases in which the true time interval was shorter, therefore
not all the REFIR-PAD observations considered fall within the IASI’s field
of view. The previous analysis might have included some fictitious cloudy
scenes.
Removing those unknown cases, the results become (Tab.5.8) consistent with
those obtained for the Validation Set. The total number of spectra considered
now is 59, 46 of which are clear-sky and 13 cloudy spectra. The cloud class
has a Threat Score of 0.3, due to the fact that 9 spectra are correctly classified
by the algorithm (HR=69%). However, 37% of clear spectra are misclassified,
corresponding to 17 elements counted as false positives, more than the total
number of cloud spectra itself.

Threat Score Hit Rate
Clear 0.58 0.63
Cloud 0.30 0.69
Mean 0.52 0.64

Table 5.8: Threat Scores and Hit Rate over the Test Set for the clear and cloud
class and their weighted mean. The unknown scenes were removed from the Test
Set.

5.4.4 Results
Due to the low number of collocate measurements available, results presented
in this paragraph refer to spectra belonging to both the Validation and the
Test Set. The 22 "unknown" cases found before are analysed separately and
are not included in the final statistic.
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Figure 5.15: Mean clear and cloudy spectra forming
the Verification and Test Set. Spectra whose scene
observed is unknown are in yellow.

Fig.5.15 shows the
mean spectra labelled
according to the CIC
classification and their
standard deviation. The
algorithm clearly sep-
arates the two classes
based on the brightness
temperature and it is
also visible the spec-
tral feature around 2000
cm−1, recognised in the
Training Sets. This res-
ult points out that using
the minimum number of
principal components al-
lows to retain enough in-
formation. Cloudy spec-

tra have a larger variability and there is only a small fraction of BTs over-
lapping the other class. The standard deviation of the clear-sky spectra is
much smaller than the one obtained in the Training Set. Probably, it is be-
cause the CIC interprets the high BTs as cloud signals. Fig.5.15 illustrates
separately the "unknown" spectra. Their mean value is closer to the clear-
sky brightness temperatures, though their large variability is an indicator of
the non-homogeneity of the scenes observed, which makes their classification
difficult. Tab.5.9 provides a comparison one-to-one between the CIC classi-
fication and the REFIR-PAD observations. Matching scenes are found more
than 65% of the time. 64% (45) of ground measurements of clear-sky and
72% (18) of cloudy are correctly identified by the CIC algorithm.

REFIR-PAD

IASI

Clear Cloud
Clear 45 7
Cloud 25 18

Table 5.9: Matrix comparing the number of clouds detected by the REFIR-PAD
and the IASI instruments using the CIC algorithm over the Verification and Test
set. Unknown scenes are excluded.
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Algorithm Clear Cloud Unknown
REFIR-PAD 92 (78.63%) 25 (21.37%) -

IASI 30 (25.64%) 87 (74.36%) -
IASI-CIC 52 (44.44%) 43 (36.75%) 22 (18.80%)

Table 5.10: Comparison of the results obtained from the REFIR-PAD observa-
tions, IASI cloud detection and the CIC algorithm applied to IASI data (IASI-CIC)
in percentages.

Statistical results according to the REFIR-PAD scene, the IASI cloud de-
tection algorithm (provided in the L2 products) and the CIC applied to IASI
spectra are presented in Tab.5.10. Overall, the CIC algorithm improves the
cloud detection from satellite. The cloud occurrence decreases from 74.36%,
as measured by IASI, to 36.75% with the CIC classification, which is closer to
the 21.37% provided by the ground measurements. The percentage of clear-
sky scenes increases by almost 20%, while the unknowns represent 18.8% of
the total. A better assessment of the satellite field of view can help improve

Figure 5.16: Annual cloud occurrence obtained ap-
plying the CIC algorithm to the Verification and Test
Sets, compared to the REFIR-PAD and the IASI L2
products. Unknown cases are excluded. The shaded
area represents the max and min variability over the
entire REFIR-PAD dataset.

these results. Finally
in Fig.5.16 is illustrated
the annual cloud oc-
currence obtained from
the CIC algorithm, com-
pared to the REFIR-
PAD observations and
IASI L2 products. IASI
algorithms are not very
reliable in polar regions,
in fact, in the first two
years all the scenes were
flagged as cloudy. Res-
ults improve over 2014-
2015, though they are
still distant from the
values provided by the
ground measurements.
On the other hand, all
the percentages obtained
with the CIC algorithm
fall in the shaded area,

which represents the annual variability, derived by calculating the maximum
and minimum cloud occurrence measured by the REFIR-PAD between 2012
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and 2015. Moreover, for the first three years, results follow the same trend
provided by the ground instrument, while in 2015 the cloud occurrence drops
to 30.43%, the lowest value recorded in the period.

5.5 MODerate-resolution Imaging Spectrora-
diometer (MODIS)

The MODerate resolution Imaging Spectroradiometer (MODIS) is a key in-
strument of the Earth Observing System (EOS) aboard the Terra (launched
by NASA in 1999) and Aqua satellites (launched in 2002). MODIS provides
global observations of Earth’s land, oceans, and atmosphere every 1 to 2
days, acquiring data in 36 spectral bands in the visible and infrared regions
(from 0.4 to 14.5 µm) (MODIS Web). In particular MODIS measures radi-
ances in two visible bands at 250 m spatial resolution, five more visible bands
at 500 m resolution, and the remaining 29 visible and infrared bands at 1000
m resolution (more specifics are provided in Tab.5.11).

Characteristics Specifications
Orbit 705 km,

10:30 a.m. descending node (Terra) or 1:30 p.m. ascending node (Aqua),
sun-synchronous, near-polar, circular

Scan rate 20.3 rpm, cross track
Swath 2330 km (cross track) by 10 km (along track at nadir)

Spatial resolution (nadir) 250 m (bands 1–2) 500 m (bands 3–7) 1000 m (bands 8–36)
Temporal resolution 1–2 days

Bands 36 spectral bands (490 detectors), cover wavelength range from 0.4 to 14.5 µm

Table 5.11: MODIS characteristics (MODIS Web).

5.5.1 Cloud Products
There are two MODIS Level 2 products that can be used for cloud detection:
a Cloud Product in MOD06 and MYD06 (containing data collected from
Terra and Aqua platforms respectively) and a Cloud Mask in MOD35 and
MYD35.
The MODIS Cloud Product (M*D06) combines infrared and visible tech-
niques to determine both physical and radiative cloud properties. The visible
and near-infrared channels are used to derive cloud-particle phase, effective
cloud-particle radius, cloud optical thickness and an indication of cloud shad-
ows affecting the scene. Cloud-top temperature, height, effective emissivity,
phase, and cloud fraction are produced by the infrared retrieval methods
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both day and night at 1km resolution.
The MODIS cloud mask (M*D35) provides an estimate that a given MODIS
field of view (FOV) is cloud-free at 1 km and 250 m spatial resolutions (at
nadir). The 250-m cloud-mask flags are based on the visible channel data
only. An indication of shadows affecting the scene is also provided. The
algorithm employs a series of visible and infrared thresholds and consistency
tests to specify the confidence level of cloud contamination inside the pixel.
14 spectral bands and 11 individual spectral tests are combined to give a
cloud mask for each pixel and a level of confidence as: confident clear, prob-
ably clear, undecided, obstructed/cloudy. Each test returns a confidence
ranging from 0 to 1. Similar tests are grouped together and the minimum
confidence value is selected. More details about the type of tests and the
procedure followed are described by Ackerman et al. (2010) and summarized
in Chapter 1.

5.5.2 Statistical Analysis
Data containing the cloud mask and the cloud phase observed by MODIS
from 2012 to 2020 were provided by the University of Wisconsin-Madison.
All the MODIS fields of view, containing Dome-C, were used to produce the
annual and monthly cloud occurrence. Data were filtered according to:

• a maximum distance of 1 km of MODIS pixel centre from Dome-C

• a satellite zenith angle below 8° (only nadir observations)

There are 2052 collocated observations, divided over the years as reported
in Tab.5.12. Data are well distributed, with around 20 measurements every
month of each year.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020
Num. spectra 194 228 232 233 231 235 229 237 233

Table 5.12: Number of MODIS elements collected over Dome-C in the years 2012-
2020.
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(a) (b)

Figure 5.17: Comparison of MODIS mean annual (a) and monthly (b) cloud
occurrence (blue lines) with the values provided by the CIC (black) over the entire
dataset. Shaded areas represent the variability observed by the ground instrument
between the maximum and minimum values.

Fig.5.17 shows the mean annual and monthly cloud occurrence detec-
ted by MODIS, compared to the ground-based observations obtained by the
REFIR-PAD, described in Chapter 4. Values account for both ice clouds and
mixed-phase cloud occurrences. Moreover, MODIS cloud phase retrieved us-
ing the visible and NIR channels was substituted with the infrared retrievals
for the days with no solar radiation. The mean value for the entire data-
set is 10.92%. The annual cloud occurrence (in Fig.5.17a) is quite stable
throughout all nine years, however, does not follow the same trend as the
ground instrument. The most cloudy year observed by MODIS is 2020, with
a cloud percentage of 13.30%. The value falls in the interval of variability,
though the same year is considered the least cloudy by the REFIR-PAD.
The minimum is instead recorded in 2014 at 8.19%. Overall, the cloud oc-
currence remains below the values observed by the REFIR-PAD, with only
2013, 2017 and 2020 included in the shaded area. This is probably due to
the low minimum value recorded in 2013 and 2017. 2017 and 2020 were also
the least cloudy year in winter (JJA) and summer (DJF) respectively, ac-
cording to the ground observations. Fig.5.17b illustrates the comparison of
the monthly cloud occurrence detected by MODIS and the values obtained
by the REFIR-PAD. In September, the difference between the two cloud oc-
currences is just 10%, although this month is the most cloudy according to
MODIS with a value of 25.29%, in contrast with the result obtained from
the REFIR-PAD, which placed the maximum in August. On the other hand,
the minimum is recorded in April at 4.71% and is consistent with the results
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shown by the REFIR-PAD. A stable low cloud occurrence is measured by
MODIS in winter (JJA). This is due to the fact that the cloud phase is re-
trieved using the visible channels, however, when these are not available (no
sunlight) the infrared channels are employed and the cloud mask becomes
less efficient. As a consequence, the maximum observed from the ground in
August is not detected.

The observations were then temporally collocated with REFIR-PAD meas-
urements and analysed in terms of a one-to-one comparison. In particular,
each satellite observation has to be performed within 15 minutes of a REFIR-
PAD measurement to be considered collocated. Tab.5.13 reports results in a
confusion matrix. The total number of collocated measurements is 1118. The
majority of observations are classified as clear-sky by both sensors and ac-
count for 68.52% of the total REFIR-PAD observations (766 measurements)
and 89.62% of MODIS (1002 measurements). Moreover, almost 95% of clear-
sky observations collected from the ground are correctly classified. The satel-
lite detects a cloud in 9.92% of the cases (111 observations), much less than
the 31.04% obtained from the ground. 79.54% of clouds seen from the ground
are labelled as clear-sky scenes, 30.43% of which in winter (JJA). They both
detect a cloud 20.46% of the cases, while the two instruments are in ac-
cordance with its thermodynamic phase 18.73% of the time. This result is
reasonable considering that they are observing different layers of the cloud
and the phase can change from the bottom to the top. The MODIS instru-
ment can be considered quite reliable, in fact, there is a perfect match in
almost 70.75% of the cases.

REFIR-PAD
Clear-sky Ice cloud Mixed-phase cloud

Clear-sky 726 273 3
MODIS Ice cloud 40 63 5

Mixed-phase cloud 0 1 2

Table 5.13: Matrix comparing the number of clouds detected by the REFIR-PAD
and the MODIS instruments for the entire collocated dataset of 1118 observations
(unclassified observations are not reported here).
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MYD06

Finally, MYD06 products, collected from the Aqua satellite, have been ana-
lysed for the years 2012-2015. Tab.5.14 shows the results obtained retaining
only spatially collocated observations. A total of 40 satellite passes have been
analysed and percentages have been calculated for each class. MODIS has a
clear-sky occurrence 17.5% higher than the REFIR-PAD, while the number
of clouds is less than half. This outcome is probably due to the problems
encountered in winter. A simple comparison with IASI is obtained enlarging
the area covered by the satellite field of view to 12 km. Results are even
more in accordance with the ground statistic, which demonstrates the reli-
ability of MODIS in the study of cloud variability and confirms that IASI
misclassification is not related to its larger field of view.

Total Clear-sky Ice Cloud Mixed-phase Unclass
REFIR-PAD (CIC) 28 (70%) 9 (22.5%) 3 (7.5%) -

40 MODIS AQUA 35 (87.5%) 4 (10%) 0 1 (2.5%)
MODIS AQUA 12km 31 (77.5%) 8 (20%) 0 1 (2.5%)

Table 5.14: Comparison of the results obtained from the CIC algorithm applied to
REFIR-PAD measurements and MODIS AQUA cloud product (MYD06) at 1km
and 12km spatial resolution.
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Summary and Conclusions

Clouds play a critical role in the Earth System, especially in Antarctica
where their effect on regional climate variability has consequences all over
the world. The role of polar clouds in global climate is still not fully under-
stood and well-modelled. Cloud properties retrievals are mainly constrained
by the lack of observations in polar regions. Accurate measurements of cloud
properties (e.g. cloud type, cloud phase, cloud amount, cloud top height,
optical thickness) from ground-based sensors are difficult due to the extreme
environmental conditions and the scarcity of observation sites. Satellite meas-
urements constitute a fundamental tool since they provide global coverage
and daily cloud monitoring at high spatial resolution. Various techniques
have been developed to detect and isolate cloud spectral features. Classical
algorithms are based on a series of tests that exploit reflectance or bright-
ness temperature spectral variations. However, the high dimensionality of
data and the large cloud variability have led research toward statistical ap-
proaches and machine learning methods. These algorithms typically learn
the features of the cloudy and clear-sky conditions from elements whose sky
conditions are known and use them to infer the type of scene observed in new
data. Among the most common techniques, there are Neural Networks, Sup-
port Vector Machine, Deep Learning, decision tree and logistic regression.
Other algorithms are used to reduce the elevated amount of data. Prin-
cipal component analysis (PCA) is the most common method. It reduces
the dimension of the initial data, retaining only the components with higher
variance and disregarding those with no physical information.
Nevertheless, satellite cloud products have different issues when retrieved
from data collected in polar regions. For instance, MODIS cloud detection
algorithms are based on a series of tests and employ shortwaves and NIR
bands. When solar radiation is not available, the cloud mask is not very
efficient. On the other hand, the very similar radiative properties of the sur-
face and clouds and the frequent temperature inversions in Antarctica, make
algorithms based on brightness temperature differences unreliable, as in the
case of IASI. Active sensors also present certain challenges when used for
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cloud detection in polar regions. For instance, the coarse vertical resolution
of the CPR onboard of CloudSat (500 m) and its limited sensitivity near the
surface does not allow accurate detection of low clouds.

An innovative machine-learning algorithm CIC (Cloud Identification and
Classification) was recently developed. CIC allows the identification of the
atmospheric scene observed (clear or cloudy) based only on the input high
spectral resolution radiances, without the need for ancillary information. The
algorithm is based on PCA analysis and classifies each input spectrum based
on the changes in the amount of information contained in each training set.
The metric used is based on the Similarity Index, which defines the level of
closeness of each analysed spectrum and a specific class. CIC is primarily
used to distinguish cloudy scenes from clear-sky ones, but it is also able to
characterise the cloud phase.

In this thesis, CIC is initially tested against high spectral resolution down-
welling radiances at far infrared (FIR) and middle infrared (MIR) wavenum-
bers, collected at Dome-C on the Antarctic Plateau, between 2012 and 2020.
Training sets are defined by the inspection of backscatter and depolarization
LiDAR profiles. Results on the Test Set show that, overall, 95% of spec-
tra are correctly classified. A very positive result is obtained in the case of
mixed-phase clouds, where the CIC is able to identify the presence of the
cloud in 100% of the cases, while 14% of the time the cloud phase is classi-
fied as ice instead of mixed-phase. Values obtained for the PPVs (Positive
Predictive Value) indicate that the clear class is composed of 99% clear-sky
spectra, while the ice cloud and mixed-phase cloud are defined with 94%
and 92% of correct elements respectively. Statistical analysis over the entire
dataset reveals a mean cloud occurrence of 31.02% and a monthly maximum
value in August at 38.78%. A positive cloud forcing is found correlating each
clear-sky and cloudy scene with the surface temperature measured from the
ground station. For instance, temperatures higher than around -30°C, in
autumn and winter, are associated only with clouds. The largest difference
between the mean temperature values of clear and cloudy scenes is found in
winter at 8.65°C.

CIC algorithm is then applied to satellite data collected by IASI (Infrared
Atmospheric Sounding Interferometer) over the years 2012-2015. Data were
collocated with REFIR-PAD measurements, which have been used as refer-
ences. The homogeneity of the scene observed has been assessed both with
the help of the cluster analysis performed over the AVHRR pixels and with
data on wind speed collected at Dome-C. Multiple runs of the CIC algorithm
were performed on a subset of elements to find the most performing config-
uration. The end wavenumber was moved from 1400 to 2250 cm−1, while the
number of principal components was set equal to the minimum and maximum
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values between the two classes and fixed at 10 and 15. Further analyses have
then been performed removing the absorption bands of different gases and
IASI noisy channels. Finally, the Test Set was classified using the best con-
figuration, corresponding to the minimum number of PCs and the spectral
interval 645-2250 cm−1 with all the above restrictions. A punctual com-
parison between the results obtained and the REFIR-PAD scenes observed
shows 65% of matching scenes. In particular, 64% of ground measurements
of clear-sky and 72% of cloudy are correctly identified by the CIC algorithm.
The IASI cloud phase included in the L2 products was also compared with
these results. The IASI L2 cloud product can be considered quite reliable
when no clouds are present, in fact, 76.74% of the clear-sky scenes observed
by the satellite match with ground observations. Although, the ice clouds
detected by the satellite are actually seen by the REFIR-PAD only 68.59%
of the time. Overall, the CIC algorithm improves cloud detection from satel-
lite. The cloud occurrence decreases from 74.36%, as measured by IASI, to
36.75% with the CIC classification, which is closer to the 21.37% provided by
the ground measurements. The annual cloud occurrence confirms the reliab-
ility of the CIC algorithm, in fact, the values obtained fall within the annual
variability measured by the REFIR-PAD.

Finally, MODIS cloud products from 2012 to 2020 are analysed and com-
pared to the REFIR-PAD observations. The mean value for the entire data-
set is 10.92%. The most cloudy year observed by MODIS is 2020, with a
cloud percentage of 13.30%, while the monthly means show a maximum in
September at 25.29%. A stable low cloud occurrence is measured by MODIS
in winter (JJA). Observations were then temporally collocated with REFIR-
PAD measurements and analysed in terms of a one-to-one comparison. Al-
most 94.78% of clear-sky observations collected from the ground are correctly
classified. MODIS instrument can be considered quite reliable, in fact, there
is a perfect match in almost 70.75% of the cases. The most evident issue of
MODIS cloud detection is due to the fact that the cloud phase is retrieved
using the visible and NIR channels, however, when these are not available (no
sunlight) the infrared channels are employed and the cloud mask becomes
less efficient. As a matter of fact, the analysis showed that 79.54% of clouds
are missed by the satellite and labelled as clear-sky scenes, 30.43% of which
are in winter (JJA). MYD06 products, collected from the Aqua satellite, have
then been used to compare the occurrence of the different scenes observed at
1km and at 12km of spatial resolution. Both results are consistent with the
ground observations, which confirm that IASI misclassification is not related
to its larger field of view.
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In conclusion, these studies demonstrate the potentiality of the CIC al-
gorithm in polar regions, improving the satellite cloud detection provided by
the current L2 products.
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