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Abstract

This Thesis considers the problem of persistently monitoring a set of moving
targets using a team of aerial vehicles. Each agent of the network is assumed
equipped with a camera providing bearing measurements with a limited
FoV, and it implements an Information Consensus Filter (ICF) to estimate
the state of the target(s). It is shown that, thanks to a suitable choice of
the output equation, the filter can be proven to be globally exponentially
convergent under Persistency of Excitation (PE) conditions. This is then
leveraged for proposing a distributed control scheme that allows maintaining
a prescribed minimum PE level for ensuring filter convergence. At the same
time, the agents in the group are also allowed to perform additional tasks
of interest while maintaining a collective observability of the target(s). In
order to enforce satisfaction of the observability constraint, two main tools
are exploited: (i) the weighted Observability Gramian with a forgetting
factor as a measure of the cumulative acquired information, and (ii) the use
of High Order Control Barrier Functions (HOCBFs) as a mean to maintain
a minimum level of observability for the targets. Simulation results are
reported to prove the effectiveness of this approach.
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Introduction

Motivations

Mobile robots are ubiquitous in modern society. They can be found in many
industrial fields such as precision agriculture, inspection and surveillance
and their use is rapidly expanding. The capabilities of a single robot are
increased if the robot is part of a team, which can be seen as a distributed
network of mobile sensors that can perceive and interact with the environ-
ment. Multi-robot systems are thus a topic of great interest, particularly
if in the system there is no need to communicate with a centralized node
because each robot can sense, compute and communicate by its own. From
a scientific point of view, these systems are an example of the application
of Network Systems theory to the world of Mobile Robotics, and they have
therefore aroused great interest in the academic community since they unify
many different topics and theories.
This Thesis explores the topics of distributed estimation and control of
multi-robot systems, proposing a novel approach to the problem of Per-
sistent Monitoring of moving targets leveraging Control Theory tools such
as High Order Control Barrier Functions. It is thus part of this wide frame-
work of high importance for both academic and industrial worlds.

Literature

Target tracking is a classical topic in the multi-robot community. In the
classical formulation of the problem, a group of (possibly) mobile sensors
needs to cooperatively track the position of one or more moving targets.
Each mobile sensor can obtain a measurement of the target and fuse it
with the other sensors in order to obtain a better estimate [1]–[3]. The
sensor fusion has been tackled in many works, and some distributed filters
have been proposed, such as the Kalman-Consensus Filter (KCF) [1] or
the Information Consensus Filter [4] (ICF, used in this work in a modified
version). Mobile sensors can also optimize their positioning/moving so as
to maximize the information collected about the target state [5]–[9], thus
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INTRODUCTION 6

improving the localization accuracy. This field is often denoted as active
sensing : the optimization of the sensor motion/placement usually relies on
a suitable information metric, which is often a function of the eigenvalues
of an information matrix, e.g., the well-known Fisher Information Matrix
[10], the Observability Gramian (OG) [11], or, alternatively, the covariance
matrix [5], [6], [12]. In particular, [5] proposes a fully distributed solution
using dynamic average consensus estimators [13], [14] and a gradient-based
controller to define the motion of the sensors. On the other hand, [6] pro-
poses a centralized solution in which the problem of the self-localization of
the sensors is also faced and unified with the target tracking.
The sensors considered in the target tracking works can be range-only,
bearing-only, range-bearing or a combination of heterogeneous sensing de-
vices. Target tracking implies a target-centered approach, hence all the con-
trol effort is used to pursue the tracking goal and it is difficult to perform
other tasks.

In this Thesis, differently from many previous works on this subject, we
consider a situation in which the target localization is not the only task for
the robot group. Therefore, we only aim at maintaining a minimum level
of accuracy for localizing the moving target(s) while the group redundancy
can be exploited for realizing additional tasks of interest. A situation in
which this strategy could be desirable is the case in which an heterogeneous
group of robots composed of quadrotors and ground robots is collaborating.
The quadrotors can be assumed able to localize themselves in a common
frame (e.g. using GPS or by running a distributed localization algorithm
such as [15]). The same, however, may not hold for the ground robots
which typically have more limited sensing capabilities (or operate in a GPS-
denied environment). In this case, the quadrotors can act as a moving
localization system for the ground robots and exploit their group redundancy
for optimizing their motion and achieving any other task of interest (e.g.,
formation control, coverage, and so on). Note, however, that the proposed
algorithm is general and woks also without the assumption of ground targets.

Persistent Monitoring, differently from target tracking, requires an area-
centered approach where a team of robots have to visit an area of interest at
a certain frequency [16]. The types of vehicles considered in these works are
usually fixed-wing aircrafts, quadcopters or Micro Aerial Vehicles (MAVs).
Many works have been proposed, initially extending solutions for single ve-
hicles to multiple robots [17], [18]. Another approach to the persistent mon-
itoring problem is to cast it as a vehicle routing problem [19], [20] in which
the robots have to visit a discrete set of locations, often with time and/or
energy constraints. However, most of these methods for high-level vehicle
control consider either approaches with a formal proof of optimality but not
scalable in the number of vehicles or decentralized and scalable approaches
but heuristic and policy-based.
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The approach proposed in this work differs from all others about persistent
monitoring, since the problem is not based on policies, it is presented in the
3-dimensional case and the proposed algorithm can scale up to an arbitrary
number of robots.

In this work, we propose a distributed algorithm based on Control Barrier
Functions (CBFs). CBFs have emerged as a powerful tool to ensure con-
straints satisfaction while optimizing performance in nonlinear control prob-
lems [21]. Compared to barrier Lyapunov functions, which have a vertical
asymptote when approaching the boundary of the allowed set [22], CBFs
are well-defined also outside the safe set and can thus provide robustness
to noise and asymptotic stability of the safe set [23]. When the constraint
is imposed on an output, i.e. a function of the state whose first derivative
does not directly depend on the inputs (i.e., its relative degree is higher than
one), imposing invariance of the safe set becomes more involved. Some so-
lutions have been proposed, such as Exponential Control Barrier Functions
(ECBFs) [24] and, more recently, High Order Control Barrier Functions
(HOCBFs) [25]–[27]. In this work, in particular, we exploit the HOCBFs
presented in [27] due to their greater robustness to noise and their more
general formulation. A brief overview on CBFs and HOCBFs can be found
in Chapter 3. CBFs have also been employed for multi-agent systems, e.g.,
for collision avoidance [28], connectivity maintenance [29], and temporal
logic tasks [30]. However, some of these works do not actually propose a
fully distributed solution. Conditions to satisfy the centralized constraint
by solving local QPs have been provided, for example, in [30]. In this work,
we apply HOCBFs to a multi-agent system proposing a fully decentralized
solution in which each agent of the network only uses local data and data
from neighbors.

Contributions

The goal of in this work is to design a decentralized algorithm based on
HOCBFs for a group of quadrotor UAVs that need to localize (multiple)
moving targets. In particular, the ideas in [31] are extended to the multi-
robot target localization case and make use of the Information Consensus
Filter (ICF) [2] for estimating the target states. It is shown that, under mild
assumptions, the ICF stability proof in [3] for a linear system is still valid in
the case in analysis with a nonlinear measurement equation under suitable
Persistency of Excitation (PE) conditions. It is then designed a distributed
control for the multi-UAV system based on HOCBFs able to guarantee a
minimum level of PE (necessary for the ICF convergence) while also allowing
the execution of other tasks of interest. Indeed, thanks to the optimization
framework required by the HOCBFs, an existing controller can be minimally
modified to guarantee that some safety constraints are satisfied. Moreover,



INTRODUCTION 8

it is possible to easily add other constraints to the optimization problem,
which can be practically solved efficiently with widespread tools. The pro-
posed approach allows to use the minimum number of drones to achieve the
localization task. The application of HOCBFs to target localization is a
novelty in the distributed estimation literature and presents many advan-
tages compared to the classical solutions in which a unique control objective
can be pursued.

Organization

This Thesis is organized as follows. The modeling part is presented first, in
order to define the terminology and the variables that will be used in the
continuation of the work. The agents and targets models are explained, and
an alternative model for the targets is provided. Particular emphasis is given
to the measurement model, where the problem of a real implementation is
also discussed.
The estimation chapter is then presented. The modifications made to the
Information Consensus Filter to work with bearing measurements are dis-
cussed and its stability under some conditions is proved.
The next chapter present the main contribution of this work. It first provides
some basic information about the measure used to represent the information,
the method used to make the drones aware of their perception limits and
the Control Barrier Functions (CBFs) in their first order and higher order
case. These concepts are then used to explain how the persistent monitoring
of multiple targets is achieved.
Subsequently, the simulation results are reported and discussed to show the
effectiveness of the proposed approach.
Finally, after the conclusions, two appendices show in detail the computa-
tions introduced in the previous chapters.



Chapter 1

Modeling

This chapter provides an explanation of the distributed network consisting
of the drones and reports the model assumed for them, aside from the model
used to represent the targets and finally the measurement model through
which the quadrotors sense the targets. An alternative model for the tar-
gets and some practical considerations about the sensing model are also
reported. The concepts presented in this Chapter will be extensively used
in the continuation of the Thesis.

1.1 Distributed Network

Consider N quadrotors, which sense M target robots. The quadrotors are
assumed to be localized in a common frame, while the targets need to be
localized by the quadrotors using relative measurements. The targets are
relatively slowly moving and they could be, for example, ground robots,
which have no possibilities to autonomously localize themselves. Assume
that N and M are known by all agents of the network (anyway, if N was
not known, it could be estimated [32]).
The drones form a distributed system in which each agent can commu-
nicate only with its neighbors according to a fixed, undirected and con-
nected communication graph G = (V, E), where V is the set of nodes,
E ⊆ V × V is the edge set. The set of neighbors of the i-th robot is de-
noted as Ni ≜ {j ∈ V : (i, j) ∈ E}. Since the communication is bidirectional
(i, j) ∈ E ⇐⇒ (j, i) ∈ E . No communication delay or data loss is consid-
ered.

The quadrotors are modelled as single integrators, with the state of agent i
being its position pi ∈ R3:

ṗi = ui, i = 1, . . . , N (1.1)

9



MODELING 10

where ui ∈ R3 is its velocity input.
A representation of positions, communication and sensing of agents and
targets is depicted in Figure 1.1.
It is useful to define the aggregate drones positions

p =


p1
...

pN

 ∈ R3N

and analogously the aggregate drones inputs

u =


u1
...

uN

 ∈ R3N

that will be used in the next chapters.
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Figure 1.1: Positions of drone i and target r in the global reference frame.

1.2 Target Model

The model that the drones consider for the target for estimation purposes
is a double integrator with constant zero acceleration, namely a constant
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velocity model. In this way, both positions and velocities of the targets are
estimated. The state considered for the r-th target is

xτ
r =

[
pτ
r

vτ
r

]
∈ R6 (1.2)

where pτ
r is the position and vτ

r is the velocity. The state dynamics is

ẋτ
r =

[
ṗτ
r

v̇τ
r

]
=

[
0 I
0 0

][
pτ
r

vτ
r

]
=

[
vτ
r

0

]
r = 1, . . . ,M (1.3)

Since the assumed velocity for the targets is constant, an acceleration dif-
ferent from zero will be considered a disturbance by the quadcopters.
For control purposes, the targets are instead modeled as single integrators
with control input vτ

r

ṗτ
r = vτ

r r = 1, . . . ,M (1.4)

The reason of this distinction is that the proposed distributed control algo-
rithm will only need knowledge of the (estimated) target velocity.

1.3 Alternative Target Model

It is also possible, for estimation purposes, to model the targets as single
integrators

ṗτ
r = uτ

r , r = 1, . . . ,M (1.5)

with velocity input uτ
r and state given only by the position pτ

r . With this
model, it is assumed that the targets communicate their velocities to the
drones. As mentioned before, the targets could be, for example, collabo-
rating ground robots, which have no possibilities to autonomously localize
themselves. The drones can thus serve as a mobile localization system for
the robots. In this case, the communication is bidirectional (drones to tar-
gets and targets to drones). The reason why the velocity of each target
must be communicated to the drones is that, as mentioned before, it is
needed to prove the convergence of the filter discussed in the next chapter,
and it can be either estimated using a double integrator model or directly
communicated using this model.

1.4 Measurement Model

Each drone is embedded with an onboard camera pointing downside from
which it acquires relative bearing measurements βir ∈ S2 with respect to
the target(s):

βir =
pir

dir
(1.6)
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where pir = pτ
r − pi and dir = ∥pτ

r − pi∥. Note that, since ||βir|| = 1, the
three components of the bearing are not independent.

A bearing measurement βir with respect to the r-th target is acquired if the
target is in a certain range w.r.t. the i-th drone, i.e. Dm < dir < DM and the
target is in the FoV of the drone, i.e. −x̄M ≤ x̄ ≤ x̄M and −ȳM ≤ ȳ ≤ ȳM ,
where x̄ and ȳ are the image plane coordinates of the target and x̄M and
ȳM the corresponding FoV limits. A graphical representation of the FoV
is depicted in Figure 1.2. It is assumed that the camera frame has origin
coincident with the frame attached to drone i and opposite z axis.

Figure 1.2: Graphical representation of the FoV limitation and the relative bear-
ing measurement. The optical axis is aligned with axis −z (blue) of the reference
frame attached to drone i.

In case of noisy measurements, the noise enters as follows

βir =
p̄ir + νi

||p̄ir + νi||
(1.7)

with
p̄ir =

pir

−(pir)z
(1.8)

which is highly nonlinear. Basically we divide pir by the opposite of the
z-coordinate in order to obtain −1 as third component of the vector (to
express it in the drone coordinates) and we add the measurement noise νi,
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assumed Gaussian distributed in x and y and null in z

νi =

xνi

yνi

0

 (1.9)

This simulate the measure that we can obtain from an image, assuming that
the camera is calibrated, thus giving a measure of type [x, y,−1]T , where
the −1 is due to the downward orientation of the camera, whose z axis has
opposite direction of the corresponding axis of the frame attached to the
drone. Note that, even if the noise is Gaussian in x and y, it is subject to
nonlinear transformations and thus the error that affects the final measure
used in the filter will not be Gaussian. Indeed, the noise is Gaussian only
at image level, but from the image we derive a bearing which is then used
to build the projection matrix used for the estimator.

1.4.1 Practical implementation considerations

In a practical implementation, we would apply to the image obtained from
a calibrated camera an image detection algorithm such as [33] or simpler
computer vision algorithms, which usually give one or more bounding boxes
as output. Considering the center of the bounding box, we obtain the pixel
coordinates [u, v]T , which are then expressed in image plane coordinates
[xp, yp, 1]

T , which are finally expressed in the drone coordinates consider-
ing the relative position and orientation of the camera with respect to the
drone reference frame, namely the reference frame attached to the drone.
The passage from the pixel coordinates to the image plane coordinates re-
quires the knowledge of parameters obtained with camera calibration, hence
the assumption of the calibrated camera. The scheme of these transforma-
tions is depicted in Figure 1.3. The transformed point in drone coordinates
corresponds to the vector p̄ir, which is used to compute the bearing as

βir =
p̄ir

||p̄ir||
(1.10)

In the case under analysis in this work, it is sufficient to consider the image
plane coordinates [xp, yp,−1]T , where again the −1 is due to the downward
orientation of the camera axis, because the image plane coordinates are
expressed in the frame of the drone. As mentioned before, we are assuming
that the camera frame has same origin of the i-th drone frame and opposite
z axis, hence no other transformations are needed. In a real implementation,
one should consider the rototranslation between the camera frame and the
drone frame, in order to express the data obtained from the camera in the
reference frame used for the rest of the algorithm.
Since the bounding boxes obtained from the computer vision algorithms
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could be very discontinuous, it may be necessary to filter them in order to
obtain a smoothly varying bearing and to reject outliers. An example of this
can be found in [34], where a Kalman Filter is applied to the dimensions of
the bounding box to give it a smooth dynamics.

Note that, in this work, we do not consider the roll, pitch and yaw angles
of a real quadrotor, hence the FoV is not subject to variations due to accel-
erations. In a real case, this could be represented by a drone with a camera
mounted on a 3-axis gimbal pointing downward.
With a view to practical implementation, the usage of a camera as the only
exteroceptive sensor is reasonable due to its flexibility and (potentially) low
cost, which have made this device widely used in robotics in recent years.

Figure 1.3: Scheme of the passages to transform pixel coordinates in drone coor-
dinates.



Chapter 2

Estimation

In this chapter, the estimation scheme run by the drones to estimate the
state of the target(s) is explained. An existing distributed information filter
is modified to work with relative bearing measurements and with multiple
targets, and the algorithm steps are briefly discussed. It is shown that lin-
earizing the output equation by output injection it is possible to obtain a
globally exponentially stable observer under suitable Persistency of Excita-
tion (PE) conditions.
In the following, the subscript ir denotes a the local copy of a variable kept
by drone i ∈ {1, . . . , N} related to the target r ∈ {1, . . . ,M}.

2.1 Information Consensus Filter

The drones estimate the state of the targets using a modified version of the
Information Consensus Filter (ICF) presented in [4] and further discussed in
[2]. Using this filter, only collective observability of the target(s) is required
[3], i.e., it does not assume each robot to observe the target, as it is instead
the case, for example, of the KCF discussed in [1]. The ICF has been proven
to perform better than other distributed filters in distributed camera net-
works applications [2], especially when some nodes of the network have no
direct measure of the target(s). The problem tackled in this Thesis can be
seen as a distributed camera network in which each camera can move to
perform some tasks of interest.
In each discrete time step k, the ICF includes K iterations to reach the con-
sensus with the neighbors about the current estimation and the associated
information matrix. Thanks to this consensus, also a drone without the di-
rect measure of a target can receive the related estimate from its neighbors.

15
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The average consensus algorithm [35] used in the filter is in the form:

aki ← ak−1
i + ϵ

∑
j∈Ni

(ak−1
j − ak−1

i ) (2.1)

where ai is the state (scalar or vectorial) of the i-th agent of a network of
N agents. The update will make all the states converge to the average of
the initial states. In (2.1), Ni is the neighbor set of agent i and ϵ is the
convergence rate parameter. To have stability 0 < ϵ < 1

∆max
must hold,

where ∆max is the maximum degree of the network (i.e. the maximum
number of neighbors that an agent has in the network).

For the filter design we consider the discrete-time model of system (1.3) with
constant velocity:

xτ
r (k + 1) = Adx

τ
r (k) + γ(k) r = 1, . . . ,M (2.2)

where Ad =

[
I ∆T I
0 I

]
, with ∆T being the discretization step, while γ(k) ∈

N (0,Q) being gaussian process noise with positive definite covariance ma-
trix Q.

The observer does not directly uses the expression (1.6) as output model,
instead, as in other works [31], it is considered an output equation linearized
through output injection:

zir(k) = Πβir
(k)pτ

r (k) (2.3)

where
Πβir

= I− βirβ
T
ir ∈ R3×3

is an orthogonal projector. Note that, although (2.3) is nonlinear, it only
depends on a measured (nonlinear) function of the state (the bearing βir).
Πβir

satisfies the following properties:

• idempotence: Πβir
Πβir

= Π2
βir

= Πβir

• symmetry: Πβir
= ΠT

βir

These properties will be used in the following. The orthogonal projection
matrix Πβir

geometrically projects any vector onto the orthogonal comple-
ment of βir. As a consequence, is it easy to verify that

Πβir
(k)
(
pτ
r (k)− pi(k)

)
= 0

As in [31], the information Bir associated to each measurement is simply
taken as Bir = bI, with b > 0. This can be done as from the perspective
of the filter stability, this matrix is simply required to be a positive semi-
definite gain matrix.
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The steps of the modified ICF are reported in Algorithm 1 and briefly com-
mented. For more details, however, the reader is referred to [2], [4]. Note
that, in Algorithm 1, the notation of the original paper [4], which holds for
a single target case, is adapted to the multiple targets case. Moreover, the
symbol † has been used to indicate the pseudo-inverse of a matrix, while the
exponent ′−′ is used to indicate the prior estimate and ′+′ to indicate the
posterior estimate.
To use the linear time-varying form given by the expression (2.3) in the ICF,
a couple of algebraic passages are necessaries. First, consider that by using
the orthogonal projector properties, it follows:

Πβir
(k)
(
pτ
r (k)− pi(k)

)
= 0 =⇒

=⇒ zir(k) = Πβir
(k)pτ

r (k) = Πβir
(k)pi(k)

(2.12)

Define the observation matrix as

Hir =
[
Πβir

(k) 0
]
∈ R3×6 (2.13)

where the matrix of zeros 0 ∈ R3×3 is necessary because through a bearing
we can only directly gather information about the position of the target and
not about its velocity (which is estimated using the filter).

The update passage from the original ICF [2] is modified as:

v0
ir =

1

N
W−

ir(k)x̂
τ−
ir (k) +Hir(k)

TBirzir(k)

=
1

N
W−

ir(k)x̂
τ−
ir (k) + b

[
Πβir

(k)
0

]
zir(k)

(2.14)

We note that in (2.14) the quantity zir(k) is not actually measured but,
using (2.12), one obtains

v0
ir =

1

N
W−

ir(k)x̂
τ−
ir (k) + b

[
Πβir

(k)
0

]
Πβir

(k)pi(k) =

=
1

N
W−

ir(k)x̂
τ−
ir (k) + b

[
Πβir

(k)
0

]
pi(k) ∈ R6

(2.15)

which only depends on known quantities.
The update passage for V0

ir applied to our case reads as:

V0
ir =

1

N
W−

ir(k) +Hir(k)
TBirHir(k) =

=
1

N
W−

ir(k) + b

[
Πβir

(k) 0
0 0

]
∈ R6×6

(2.16)
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Algorithm 1 - ICF at drone i relative to target r at time step k

Input: Prior state estimate x̂τ−
ir (k), prior information matrix W−

ir(k), ob-
servation matrix Hir, consensus rate parameter ϵ, total consensus
iterations Kand process covariance Q.

1) Get measurement vector zir and matrix Bir

2) Compute initial information matrix V0
ir and vector v0

ir

V0
ir ←

1

N
W−

ir(k) + bµir(k)

[
Πβir

(k) 0
0 0

]
(2.4)

v0
ir ←

1

N
W−

ir(k)x̂
τ−
ir (k) + bµir(k)

[
Πβir

(k)
0

]
pi(k) (2.5)

3) Perform average consensus on V0
ir and v0

ir independently
for κ = 1 to K do

a) Send Vκ−1
ir and vκ−1

ir to all neighbors j ∈ Ni

b) Receive Vκ−1
ir and vκ−1

ir from all neighbors j ∈ Ni

c) Update:

Vκ
ir ← Vκ−1

ir + ϵ
∑
j∈Ni

(Vκ−1
j −Vκ−1

ir ) (2.6)

vκ
ir ← vκ−1

ir + ϵ
∑
j∈Ni

(vκ−1
j − vκ−1

ir ) (2.7)

end
4) Compute a posteriori state estimate and information matrix for time k

x̂τ+
ir (k)← (VK

ir )
†vK

ir (2.8)

W+
ir ← NVK

ir (2.9)

5) Predict for next time step (k + 1)

W−
ir(k + 1)← ((A−T

d W+
ir(k)A

−1
d )† +Q)−1 (2.10)

x̂τ−
ir (k + 1)← Adx̂

τ+
ir (k) (2.11)

Output: State estimate x̂τ+
ir (k) and information matrix W+

ir(k).

In (2.4) and (2.5), µir(k) = 1 if a measurement is available at instant k or
µir(k) = 0 otherwise.
Algorithm (1) differs from the original algorithm presented in [4] also for
steps 4 and 5. Indeed, equations (2.8) and (2.10) have been slightly mod-
ified because, due to the particular structure of Hir, the full information
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matrix can be singular at system startup, so we cannot use its inverse. This
singularity is then avoided as with step 5 the knowledge about the model
is used and the information matrix is updated also in the block relative to
the velocity of the target (which is not measured directly from the camera).
Notice that for the pseudoinverse of a product, in general, it does not hold
the usual formula similar to inverse of product of matrices.

The outputs of the ICF at each iteration are the estimate of the state of the
r-th target

x̂τ+
ir (k) =

[
p̂τ+
ir (k)

v̂τ+
ir (k)

]
composed by the estimated position and velocity, respectively, and the cor-
responding information matrix W+

ir. Recall that the target model assumed
by the drones is a constant velocity model, hence, if a target moves with
acceleration different from zero, we expect a non negligible estimation error.
Moreover, as mentioned before, the algorithm is extended to handle the mul-
titarget case by simply running the same steps of Algorithm 1 for each target,
hence obtaining M state estimations. Another possible solution could be to
run a single instance of the ICF with an enlarged state which aggregates
all the states of the targets. In the first case we would have different vari-
ables for each target, while in the latter case we will manage stack vectors
and block matrices. In both cases, the mathematical result will be the same,
hence the chosen solution will not change the final result and is only a matter
of implementation.

2.2 ICF for the Alternative Target Model

If the single integrator model is used for the targets (1.5), the discrete-time
model considered for the filter is

pτ
r (k + 1) = pτ

r (k) + ∆Tuτ
r (k) + γ(k) r = 1, . . . ,M (2.17)

where ∆T is the discretization step, while γ(k) ∈ N (0,Q) is gaussian process
noise with positive definite covariance matrix Q.
In this case, the observation matrix is simply

Hir = Πβir
(k) ∈ R3×3 (2.18)

and thus the update passages for v0
ir and V0

ir are modified as

v0
ir =

1

N
W−

ir(k)p̂
τ−
ir (k) + bΠβir

(k)pi(k) ∈ R3 (2.19)

and

V0
ir =

1

N
W−

ir(k) + bΠβir
(k) ∈ R3×3 (2.20)
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and the filter that drone i runs for the j-th target works with the state
p̂ir(k) ∈ R3. In the second step of the filter, the projection matrix is multi-
plied by µir(k), defined previously.
Moreover, step 5 of Algorithm 1 is simplified as

W−
ir(k + 1)←

((
W+

ir(k)
)†

+Q

)−1

(2.21)

p̂τ−
ir (k + 1)← p̂τ+

ir (k) + ∆Tu(k) (2.22)

In the following, the double integrator model is preferred because it requires
less communication between drones and targets, since the velocity input of
the targets is not sent, but estimated.

2.3 ICF Stability

The stability of the filter is proved for the case in which the model of the
targets is the double integrator. However, the proof can be easily modified
for the single integrator case, considering the different definition of Hir.
To show the stability of the employed filter we make the following assump-
tions:

Assumption 1. No collision drone-target occurs, so that the bearing mea-
surements are always well-defined.

Assumption 2. The target state is collectively observable, i.e. the discrete-
time Observability Gramian is full-rank

1

K

K∑
k=0

N∑
i=1

(
Ak

d

)T [Πβir
(k) 0

0 0

]
Ak

d > µ1I

for some µ1 > 0, which reduces to 1
K

∑K
k=0

∑N
i=1Πβir

(k) > µ2I for some
µ2 > 0.

Assumption 3. The information matrix is initialized such that Wir(0) >
µ3I for some µ3 > 0, i = 1, . . . , N .

Remark 1. Assumption 2 is satisfied either if there is a single persistently
exciting direction βir or at least two non-collinear directions βir and βjr,
as explained in [31].

Assumption 1 can be trivially met by adding a constraint on the UAV-target
minimum distance (as done in the case study of this work), Assumption 2 is
a Persistency of Excitation (PE) condition that will be actually enforced at
runtime by the algorithm proposed in the following Chapter, Assumption 3
is only an initialization.
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Under these assumptions, the proof provided in [3] holds, stating that the
weighted squared error vector converges to zero exponentially fast.
In more detail, to prove the stability of the filter we start by defining:

Lir(k) = eir(k)
TW−

ir(k)eir(k), (2.23)

where eir(k) = xτ
r (k)− x̂τ−

ir . Consider the stack:

Lr(k) =
[
L1r(k) . . . LNr(k)

]T
(2.24)

Under the previous Assumptions, we can use the proof of Theorem 5 in [3],
which shows that:

Lr(k + 1) ≤ βPLr(k) (2.25)

where β < 1 and P is a primitive matrix [35] used for the consensus step.
We used P = I − ϵL, with L being the laplacian matrix of the unweighted
graph [35], which is primitive for 0 < ϵ < 1

maxi∈V ∆i
, where ∆i is the degree

of vertex i. Being P primitive and β < 1, it follows that the matrix βP is
Schur stable, meaning that the components of Lr goes to zero exponentially
fast. Then, as, due to Assumptions 2 and 3, the information matrices Wir

are bounded from below, it follows that estimation errors goes to zero ex-
ponentially fast and the observer is uniformly globally exponentially stable.
Consider that, in general, the real velocity of the target will not be con-
stant, but the observer is input-to-state stable with respect to perturbations
in the velocity dynamics, hence bounded accelerations will cause bounded
estimation errors.

As mentioned before, Assumption 2 is a Persistency of Excitation (PE) con-
dition. In Chapter 3 we present an algorithm which guarantees that a pre-
scribed level of PE is always maintained, satisfying in this way Assumption
2.



Chapter 3

Target Monitoring

In this chapter, the main tools that will be used for the main results are
introduced first, then these concepts are combined in order to guarantee that
the PE condition is satisfied, thus solving the persistent target monitoring
problem. The tools that will be introduced are: the weighted Observability
Gramian (OG) with forgetting factor, the perception awareness weights and
the High Order Control Barrier Functions (HOCBFs).

3.1 Information Measure

The Observability Gramian (OG) is a tool used to study the observability
of linear time-varying systems (e.g., a nonlinear system linearized along the
nominal trajectory) as well as the local observability of nonlinear systems.
The observability property is linked to the observation (reconstruction) of
the state of a system from its output. The system is locally observable if
the OG is full rank. Its expression is

G
(
t0, tf

)
≜
∫ tf

t0

Φ (τ, t0)
T H(τ)TH(τ)Φ (τ, t0) dτ (3.1)

where H(·) is the observation matrix of the system, Φ(·) is the state tran-
sition matrix of the system, namely the matrix satisfying

Φ̇ (t, t0) = A(t)Φ (t, t0) , Φ (t0, t0) = I (3.2)

being A(·) the Jacobian ∂f(x)
∂x .

The OG also finds application in the field of active sensing, where it is used in
order to quantify the acquired information [11], [36], [37]. Usually, in active
sensing, the task is formulated as an optimization problem, thus a scalar

22
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cost function of the OG (or, more generally, of an information matrix) is
required. Common metrics for information maximisation (error covariance
minimization) are the following [38], [39]:

• A-criterion: it corresponds to the trace of the inverse of an infor-
mation matrix or the trace of a covariance. This is linked to the
minimization of the average uncertainty

• E-criterion: it corresponds to the minimum eigenvalue of an informa-
tion matrix or the maximum eigenvalue of a covariance matrix. This
is linked to the minimization of the length of the largest axis of the
uncertainty ellipsoid

• D-criterion: it corresponds to the determinant of an information
matrix or of a covariance matrix. This is linked to the minimization
of the volume of the uncertainty ellipsoid.

Notice that, however, in the problem considered in this Thesis the goal is
not the maximization of the information (minimization of the error), but
the maintenance of the information above a positive threshold. Thus, the
scalar metrics listed above will be used in a different way with respect to
usual active sensing problem.

In the case under exam, the state transition matrix, as will be clear later, is
simply the identity matrix and, considering the observation matrix defined
in (2.13), the OG representing the information acquired about the target
position until time t, indicated as Gr(t0, t) ∈ R3×3, can be expressed as:

Gr =

∫ t

t0

N∑
i=1

ΠT
βir

Πβir
dτ =

∫ t

t0

N∑
i=1

Πβir
dτ (3.3)

where the orthogonal projector properties were used to simplify the expres-
sion. The OG is a positive semi-definite matrix and it is invertible if and
only if the position of the target is observable along the trajectory. In rea-
son of this, the minimum eigenvalue λ1r (E-criterion) of this matrix can be
taken as observability metric: it quantifies how far is the position of the
target from being unobservable.

As the integrand of the OG is a positive semi-definite matrix, the OG is
monotonically increasing in time, for this reason, in order to achieve the
desired goal of always maintaining a certain level of PE, we introduce a
forgetting factor in its dynamics, which makes the information decrease if
there are no new measurement. Also, in order to take into account the
sensing limits of the drones, we introduce weights in the information acquired
at time t. The dynamics of the weighted OG with forgetting factor [40] can
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then be written as:

Ġr = −ρGr + b
N∑
i=1

wirΠβir
(3.4)

where ρ > 0 is the forgetting factor, wir ∈ [0, 1] is a weight whose expression
will be defined later and which is used to encode sensing constraints in the
information dynamics and, as before, b is the information gain associated to
the measurement. Notice that (3.4) has a closed form solution [40]:

Gr(t) = e−ρ(t−t0)Gr(t0) + b

∫ t

t0

e−ρ(t−τ)
N∑
i=1

wirΠβir
(τ) dτ (3.5)

In this way, if the target starting from a certain point is no more observed,
then the information will decay to zero exponentially fast.

3.2 Perception Awareness

As mentioned in the previous sections, the drones are made aware about
the sensing limitations by weighting the OG. In (3.4), indeed, wir is a scalar
differentiable quantity used by the i-th drone to weight the information
acquired about the r-th target and thus to make the drone aware of its
perception limits. For this reason, it is also called perception awareness
weight.
The weight wir smoothly varies from 1 inside the sensing limit region to 0
outside the sensing limit region. The information artificially decreases in
case the target approaches the maximum sensing range or angle of the FoV.
The weight is defined as

wir = wDirwβir (3.6)

with

wDir =


e
−(

d̂ir−Dth
m )

2

σ2
Dm , if d̂ir < Dth

m

1, if Dth
m ≤ d̂ir ≤ Dth

M

e
−(

d̂ir−Dth
M)

2

σ2
DM , if d̂ir > Dth

M

wβir =

e
−(

cir−cos(αth
M ))

2

σ2
β , if cir < cos

(
αth
M

)
1, if cir ≥ cos

(
αth
M

)
(3.7)

where d̂ir =
∥∥∥p̂τ+

ir − pi

∥∥∥ is the estimated distance from the i-th robot to the

position of the r-th target, Dth
m , D

th
M , α

th
M are parameters that represent re-

spectively the distance and FoV angle at which the weight start to decrease,
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σDM
, σDm , σβ are standard deviations, cir = −βire3 is the cosine of the an-

gle between the bearing and the negative z-axis of the frame attached to the
i-th drone. As it can be noticed from Fig. 3.1, the weights wDir and wβir do
not vanish to zero as the sensing limits are approaching. The idea behind
this design choice is to allow the robots losing a measurement when enough
information is available, for then going back later exploiting the non-zero
gradient of the weights. This choice also allows quadrotors which are not
currently acquiring measurements to use the group-level knowledge about
the target position, and their own weight gradient, to obtain a measurement
in the future. This feature is possible because the drones compute the esti-
mated positions of the targets, which can be used to compute the distances
and the bearings also when the latter are not directly obtained from the
camera.
How long it takes for these weights to decrease to zero is a design choice
which also depends on the application. The perception awareness weights
are indeed very important for the final result and they have to be tuned
carefully.
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Figure 3.1: Perception awareness weights for values Dm = 0.5 m, Dth
m = 1 m,

DM = 8 m, Dth
M = 6 m, σ2

DM
= 1.8m2, σ2

Dm
= 0.04m2, αM = 50 deg, αth

M = 35 deg,
σ2
β = 0.015 rad2.

3.3 High Order Control Barrier Functions

Control Barrier Functions (CBFs) are a tool to enforce safety constraints
in dynamical systems. Only the basic concepts are reported here. For a
complete explanation about CBFs the reader is referred to [41] and [21],
while some examples of applications to multi-agent systems can be found in
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[28] for collision avoidance and in [29] for connectivity maintenance.

Consider the (nonlinear) system in control affine form

ẋ = f(x) + g(x)u (3.8)

with state x ∈ Rn and input u ∈ U ⊂ Rm, f and g locally Lipschitz.
The basic idea of CBFs is to enforce the forward invariance of a safe set C,
defined as the superlevel set of a continuously differentiable scalar function
h(x) : D ⊂ Rn → R

C = {x ∈ D ⊂ Rn : h(x) ≥ 0} (3.9)

The function h is a Control Barrier Function if there exists an extended
class K function α such that for the system (3.8):

sup
u∈U

[
Lfh(x) + Lgh(x)u+ α(h(x))

]
≥ 0 (3.10)

for all x ∈ D. In (3.10) Lf and Lg represents Lie (directional) derivatives
of h(x) along the vector fields f and g respectively for the system (3.8),
while an extended class K function α : R → R is strictly increasing and
α(0) = 0. As a consequence, α(h(·)) preserves the sign of h. Note that in
this work, with the term CBFs, we mean zeroing CBFs, as defined in [41].
It has been shown [23], [27] that any locally Lipschitz continuous controller
u(x) satisfying the CBF constraint (3.10) renders the set C forward invariant
and, if C is compact, asymptotically stable. The simplest and most common
choice for the function α(·) is to take a linear function α(h(x)) := αh(x),
with a slight abuse of notation.

To design a safe controller given the system (3.8) with a potentially unsafe
input ud, namely an input which could drive the system outside the safe
set, we consider the Quadratic Program (QP) with the safe condition (3.10)
as linear inequality constraint

min
u∈U

.
1

2
∥u− ud∥22

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x))
(3.11)

which provides the smallest modification to ud for coping with the CBF con-
straint and is thus a minimally invasive controller. It is also possible to unify
safety and stability within the same QP using Control Lyapuov Functions
(CLFs) [21], [41]. In this case, the safety contraints (enforced by CBFs)
are hard constraints, while the stability constraints (enforced by CLFs) are
made soft by relaxation variables, indeed one can easily understand that, in
most cases, safety is more important than performance. In this work, the
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CLFs will not be exploited, but the concepts of relaxation variables and soft
constraints will be used to achieve the main results.

The CBFs discussed so far can be used to enforce safety constraints in sys-
tems of relative degree 1, namely systems in which the first derivative of
the CBF depends explicitly on the input. In many systems (such as the
one addressed in this work), however, this assumption does not hold and
the concept of CBF must be thus extended to systems with arbitrary high
relative degree. Possible solutions to this problem are Exponential Control
Barrier Functions (ECBFs) [24] and High Order Control Barrier Functions
(HOCBFs) [25] [26] [27]. The latter are more general than ECBFs, and thus
preferable. Following the HOCBFs approach, given a r-th order differen-
tiable function h : Rn → R and r extended class K functions α1, . . . , αr, we
define a series of functions with the corresponding superlevel sets as

ψ0(x) = h(x), C0 = {x ∈ Rn : ψ0(x) ≥ 0}
ψ1(x) = ψ̇0(x) + α1(ψ0(x)), C1 = {x ∈ Rn : ψ1(x) ≥ 0}

...

ψr(x) = ψ̇r−1(x) + αr(ψr−1(x)), Cr = {x ∈ Rn : ψr(x) ≥ 0} (3.12)

Given the functions and sets defined in (3.12), h is a High Order (zeroing)
Control Barrier Function of order r for the dynamical system (3.8) if there
exist r extended class K functions α1, . . . , αr and an open set D such that

sup
u∈U

ψr(x) = sup
u∈U

[
Lfψr−1(x) + Lgψr−1(x)u +αr

(
ψr−1(x)

)]
≥ 0 (3.13)

for all x ∈ C = C0 ∩ C1 ∩ · · · ∩ Cr−1 ⊂ D ⊂ Rn. Note that here we don’t
use the concept of least relative degree introduced in [27] and we consider
the relative degree of h to be uniform. Note also that, as explained in [27],
thanks to the use of the extended class K functions αk, this formulation is
more robust than [25] because the functions are well defined also outside
the safe set and hence the system can handle perturbations due to noise or
model uncertainties leading to ψk−1(x) < 0, 1 ≤ k ≤ r and could start from
outside the safe set D \ C.
To use HOCBFs to enforce safety in systems with high relative degree r > 1,
the QP (3.11) is modified as

min
u∈U

.
1

2
∥u− ud∥22

s.t. Lfψr−1(x) + Lgψr−1(x)u+ αr(ψr−1(x)) ≥ 0
(3.14)

where the HOCBF condition is again a linear inequality constraint.
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3.4 Persistent Target Monitoring

In this section, the concepts introduced earlier are combined and applied to
the persistent monitoring problem in order to guarantee that the PE condi-
tions are satisfied. This is achieved applying the HOCBFs to the distributed
system and using the minimum eigenvalue of the OG with forgetting factor
as information measure (E-criterion).
The centralized problem is presented first, and it is later decentralized and
solved in a distributed way.

3.4.1 Centralized Problem

The goal is to make sure that Assumption 2 remains valid. This can be seen
as a safety constraint and it can be satisfied by ensuring that the minimum
eigenvalue λ1r of the OG remains over a certain positive threshold. For this
purpose, the safe set is defined as:

Cr = {x ∈ R3N+(3+9) : hr(x) = λ1r(x)− ϵ ≥ 0} (3.15)

It is defined here the set corresponding to one target, adding another target
is done by considering the intersection of this set with the set corresponding
to the other target, as shown later. In (3.15), the minimum eigenvalue of Gr

is indicated as λ1r, ϵ is a positive threshold, while the state x is represented
by the stack of the quadrotors position, the estimated target position and
the vectorized OG, i.e.

x =

 p
pτ
r

vec (Gr)

 ∈ R3N+(3+9) (3.16)

where vec(·) is the vectorization operator and p aggregate all the quadrotors
positions.
The corresponding system dynamics is given by:

ẋ(t) = f(x, t) + g(x)u (3.17)

where:

f(x, t) =


0

vτ
r (t)

vec
(
−ρGr +

∑N
i=1 bwirΠβir

)
 ∈ R3N+(3+9) (3.18)

where, with an abuse of notation, only the direct time dependency is indi-
cated, and

g(x) =

(1N ⊗ I3)
03×3N

09×3N

 ∈ R(3N+(3+9))×3N (3.19)
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with ⊗ representing the Kronecker product.
One can verify that the function hr(x) has relative degree 2 w.r.t. the system
inputs u, because Lg(hr(x)) = 0, hence the need to resort to the HOCBFs.
In our case

ψ0r(x) = hr(x) = λ1r(x)− ϵ

ψ1r(x) = Lf (hr(x)) =
∂λ1r(x)

∂(vec(Gr))
vec(Ġr) + (λ1r − ϵ)

(3.20)

where as extended class K function α1(·) = Id(·) (the identity function) is
used, and ∂λ1r

∂(vec(Gr))
= vT

1r ⊗ vT
1r, with v1r being the eigenvector of the OG

associated to λ1r (Theorem 1 of [42]). The complete computations can be
found in Appendix B.
The centralized QP which needs to be solved is the following:

min
u∈U

. ∥u− ud∥22

s.t.

N∑
i=1

Lgiψ1r(x)ui + Lfψ1r(x) + ψ1r(x) ≥ 0
(3.21)

Where, again, as extended class K function simply the identity is chosen.
Also,

Lgiψ1r(x) = bvT
1r ⊗ vT

1r

(
vec(Πβir

)
∂wir

∂pi
+ wir

∂ vec(Πβir
)

∂pi

)
(3.22)

and

Lfψ1r(x) =

(
vec(Ġr)

T ∂2λ1r
∂ vec(Gr)2

+ (α− ρ)vT
1r ⊗ vT

1r

)
vec(Ġr)+

+ bvT
1r ⊗ vT

1r

N∑
i=1

(
vec(Πβir

)
∂wir

∂pτ
r

+ wir
∂ vec(Πβir

)

∂pτ
r

)
vτ
r =

= c(x) +
N∑
i=1

di(x)

(3.23)

where Lfψ1r(x) is split in the separable part
∑N

i=1 di(x) and the non-
separable one c(x) (the reason will be clear later). Again, the full com-
putations with explanation are in Appendix B. In (3.23), c(x) and di(x)
have the following expressions

c(x) :=

(
vec(Ġr)

T ∂2λ1r
∂ vec(Gr)2

+ (1− ρ)vT
1r ⊗ vT

1r

)
vec(Ġr) (3.24)



TARGET MONITORING 30

and

di(x) := bvT
1r ⊗ vT

1r

(
vec(Πβir

)
∂wir

∂pτ
r

+ wir
∂ vec(Πβir

)

∂pτ
r

)
vτ
r (3.25)

where ∂2λ1r
∂ vec(Gr)2

can be computed as follows:

∂2λ1
∂ vec(Gr)2

= K3

(
Y†

1r ⊗ v1rv
T
1r + v1rv

T
1r ⊗Y†

1r

)
(3.26)

with † indicating the Moore-Penrose pseudo-inverse, Y1r := λ1rI−Gr and
K3 being the commutation matrix (see Theorem 4 of [42] and Appendix B).

The QP problem in (3.21) is centralized. The objective is for each drone to
solve a local QP, using only local quantities, so that the collective solution of
the local QPs results in the satisfaction of the centralized constraint in (3.21).
In the next section, the distributed solution is shown.

3.4.2 Distributed Problem

In the previous section, the constraint which needs to be enforced in order to
ensure satisfaction of Assumption 2 have been introduced. It is now shown
how to guarantee its satisfaction in a distributed way. First, notice from
(3.23) that Lfψ1r(x) can be split in a part which is local to each robot,
di(x), and a part which is not already separate c(x). A possible strategy to
satisfy the previous criterion is for each drone to solve the following QP:

min
ui∈Ui

. ∥ui − uid∥22

s.t. Lgiψ1r(x)ui + di(x) ≥ −ki(x)
(
c(x) + ψ1r(x)

) (3.27)

where the weights ki(x) (not necessarily state dependent) satisfy the follow-
ing conditions (i.e. they form a convex combination):

• ki(x) ≥ 0

•
∑N

i=1 ki(x) = 1

Then, using the previous inequalities in the original constraints taking the
summation for each robot of the left hand side of the inequality in (3.27),
one obtains

N∑
i=1

Lgiψ1r(x)ui +
N∑
i=1

di(x) ≥ −

 N∑
i=1

ki(x)

(c(x) + ψ1r(x)
)
=

= −
(
c(x) + ψ1r(x)

) (3.28)
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which satisfies the centralized constraint in (3.21).
The most trivial choice for the weights is

ki(x) =
1

N

which divides equally the constraint among the robots, but other choices are
possible [30].
In the local constraint in (3.27), some of the variables are not immediately
locally available, but they can be estimated in a decentralized way:

•
∑N

i=1wirΠβir
: this quantity appears in vec(Ġr) and can be computed

in a distributed way by dynamic average consensus [13] [14] (3.30)
and multiplying the average by the number of quadrotors N , which is
known.

• Gr : Each drone has its own copy Gir of the information collected
about the target Gr. Starting from the same initial conditions, each
drone has the same dynamics for Gir up to the consensus error on∑N

i=1wirΠβir
. In order to have consistency across the network we add

a consensus term to the OG dynamics:

Ġir = −ρGir +

N∑
i=1

bwirΠβir
+
∑
j∈Ni

(
Gjr −Gir

)
. (3.29)

Then, also the quantities λ1r and v1r are known to all the quadrotors.

• pτ
r , v

τ
r : every drone has its own estimate p̂τ+

ir and v̂τ+
ir given by the

ICF. These quatities converge to the same value due to the consensus
iterations in the filter.
If the single integrator is used to model the targets, the position pτ

r is
estimated and the velocity input vτ

r is communicated to the drones.

Note that in ψ1r(x) and c(x), other terms involving
∑N

i=1wirΠβir
which

could be separated appears (see also (3.18)), but not the term

vec(Ġr)
T ∂2λ1
∂ vec(Gr)2

vec(Ġr), hence
∑N

i=1wirΠβir
needs to be locally known.

This is the reason for which these components were not written as separable,
since anyway all the terms are going to be computed locally.

The implemented dynamic average consensus run by drone i to estimate
quantities related to target r is in the form:

v̇c
ir(t) = −ζvc

ir(t)−Kp

∑
j∈Ni

[
vc
ir(t)− vc

jr(t)
]
+Ki

∑
j∈Ni

[
wc

ir(t)−wc
jr(t)

]
+ ζuc

ir(t)

ẇc
ir(t) = −Ki

∑
j∈Ni

[
vc
ir(t)− vc

jr(t)
]

(3.30)
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where uc
ir is the input, [vc T

ir wc T
ir ]T is the internal state of the estimator,

ζ is the global estimator parameter, Kp and Ki gains. The goal of the
average consensus is to converge to the average of the inputs, namely to
1
N

∑N
i=1 u

c
ir(t). Thus, in this case the consensus input is set to uc

ir = wirΠβir

and vc
ir will converge to 1

N

∑N
i=1wirΠβir

and is further multiplied by N to
obtain the sum of the measurements.

The minimum eigenvalue is not differentiable when it becomes not simple,
i.e. with algebraic multiplicity larger than one. For this reason, in order to
avoid non-smoothness of the control input, a smooth approximation of the
minimum function should be implemented. In particular, we use the smooth
approximation used in [43] and [37] for the r-th target

λ̄1r =

 3∑
i=1

λpir

 1
p

(3.31)

If p≪ 0, then λ̄1r ≈ λ1r(Gr).

A straightforward implementation of (3.27) could imply that, when Lgiψ1r(x)
approaches zero, the QP may result infeasible. In order to solve this issue,
a slack variable δir is added, rendering the constraint a soft constraint.

min
ui∈Ui,δir

. ∥u− ud∥22 +Kδwirδ
2
ir

s.t. Lgiψ1r(x)ui + di(x) + δir ≥ −
1

N

(
c(x) + ψ1r(x)

) (3.32)

Notice that the slack variable in the cost function is weighted by the prod-
uct of a very high gain Kδ and the weight wir. The reason of this is two-
fold: 1) to avoid numerical problems when Lgiψ1r(x) is very small, which
would cause problems in the multi-target case, 2) to relax the constraint
for quadrotors which are not very near to the target, this in practice means
that quadrotors with very small weight will ignore the constraint and track
the desired input.
For the formation to track multiple targets one can simply take the inter-
section of the safe sets corresponding to each target, i.e. add one linear
inequality constraint for each target to the QP.

min
ui∈Ui,δir

. ∥u− ud∥22 +
M∑
r=1

Kδwirδ
2
ir

s.t. Lgiψ1r(x)ui + di(x) + δir ≥ −
1

N

(
c(x) + ψ1r(x)

)
r = 1, . . . ,M

(3.33)

Note that, without the slack variables, the multitarget case could lead to
infeasibility of the QP. This is because a drone could have more (possibly)
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conflicting constraints (i.e. the localization of multiple targets which may
move in opposite directions) and the drone is not aware of the inputs of
the other drones. The use of slack variables makes some constraints soft,
avoiding this situation. In general, the higher the Kδ the harder is the
constraint. Since the effect of Kδ is weighted by wir, the constraint is pro-
gressively softened as wir decreases, thus allowing the i-th drone to violate
the corresponding constraint. In the case of multiple targets with opposite
trajectories, the drones will split in groups to observe all the targets, as will
be shown in Chapter 4.

Notice that, with the proposed formulation, the quadrotors could stop fol-
lowing a target r if the collected information becomes high enough, because
it is no more necessary to keep sensing the target and accumulate informa-
tion. In this situation, the weight of each robot with respect to target r
would become very small when the quadrotors start implementing the de-
sired input. In this case, no quadrotor would then be able to reach the target
again. For this reason it is added another CBF, which is used to ensure that∑N

i=1wir ≥ γ for r = 1, ...,M and γ > 0. Defining the safe set as

Cwr = {x ∈ R3N+(3+9) : hwr :=

N∑
i=1

wir − γ ≥ 0}, (3.34)

the additional CBF constraint can be written as:

N∑
i=1

∂wir

∂pi
ui +

N∑
i=1

∂wir

∂pτ
r

vτ
r ≥ −

 N∑
i=1

wir − γ

 (3.35)

where the expressions of the derivatives can be found in Appendix B. Also
in this case the estimated positions and velocities are used in practice.

Remark 2. Depending on the design of the weights, this constraint does not
necessarily imply that one of the quadrotors is forced to continuously observe
the target. Rather, it ensures that the quadrotors remain close enough to the
target so that they can exploit the gradient information in the weights for
approaching and measuring again the target whenever necessary.

Again, this constraint can be decentralized as before, hence each drone solves
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the following QP:

min
ui∈Ui,δir,δwir

. ∥u− ud∥22 +
M∑
r=1

Kδwirδ
2
ir +

M∑
r=1

Kδwirδ
2
wir

s.t. Lgiψ1r(x)ui + di(x) + δir ≥ −
1

N

(
c(x) + ψ1r(x)

)
∂wir

∂pi
ui +

∂wir

∂pτ
r

vτ
r + δwir ≥ −

1

N

 N∑
i=1

wir − γ


r = 1, . . . ,M

(3.36)

where 1
N

∑N
i=1wir is obtained through average consensus (3.30) with input

uc
ir = wir and is then multiplied by N to obtain the sum of the weights.

For further convenience, it is also reported the QP (3.36) without relaxation
variable and for one target

min
ui∈Ui

. ∥u− ud∥22

s.t. Lgiψ1r(x)ui + di(x) ≥ −
1

N

(
c(x) + ψ1r(x)

)
∂wir

∂pi
ui +

∂wir

∂pτ
r

vτ
r ≥ −

1

N

 N∑
i=1

wir − γ


(3.37)

Note that (3.37) can be used safely only with one target because, since each
drone does not know the input of the others, two or more hard constraints
(not relaxed by δir) could cause an unfeasible QP. This is avoided in (3.36)
thanks to the relaxation variables.



Chapter 4

Simulations

In this section, the performance of the proposed solution is analyzed through
numerical simulations implemented in Python, with a graphical 3D repre-
sentation developed using the Matplotlib library [44]. The optimization
problems are solved in the CVXPY environment [45], [46].
All the simulations were performed with N = 6 quadrotors, numbered from
1 to 6, and 1 or 2 targets, called in the following target 1 and target 2, re-
spectively. The targets are assumed to be moving on a plane with constant
or time-varying velocity trajectories. However, we stress that the algorithm
does not require the robots to move on a plane and for testing purposes
the quadrotors never use this information. The continuous-time dynamics
are discretized using the forward Euler method with discretization step of
0.02 s.
For each simulation, we report the norm of the position estimation error,

computed as
∥∥ep(t)∥∥2 =√(xτ

r − x̂τ+
ir )T (xτ

r − x̂τ+
ir ), the functions ψ0 and ψ1,

the perception awareness weights and the Euclidean norm of the velocity
control input computed by solving the QP. For the last simulation also the
bearing error is shown.
Colors associated to different drones are coherent across figures, and, for
the sake of clarity, are reported in Figure 4.1. Note that, in some cases, due
to the consensus reached, the lines may be superimposed and thus indistin-
guishable.
The sensing parameters used for all the simulations are reported in the

caption of Figure 3.1. Other parameters common to all the simulations are
in Table 4.1, while the gains used for the dynamic consensus are in Table
4.2. The drones initial positions are uniformly sampled from a box of sizes
4 × 4 × 2 m centered in [0, 0, 3.5]T m, and their velocities are limited to
u ∈ [−3, 3] m/s. The initial position of target 1 and 2 are [0.1, 0, 0]T m and
[−0.1, 0, 0]T m, respectively.

35
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Figure 4.1: Colors associated to drones for the simulations.

Parameter Symbol Value

Forgetting factor ρ 0.6

Minimum information level ϵ 0.05

Threshold on sum of weights γ 0.5

Slack variable weight Kδ 1e6

Consensus iterations per step K 1

Covariance matrix Q 0.01I

Information gain b 1

Table 4.1: Parameters common to all simulations.

Consensus on
∑N

i=1wirΠβir
Consensus on

∑N
i=1wir

Parameter Value Parameter Value

ζ 4 ζ 8

Kp 5 Kp 12

Ki 3 Ki 6

Table 4.2: Dynamic Consensus parameters.

As regards the initialisations, p̂τ−
ir is initialized to a random guess, v̂τ−

ir to
zero, W−

ir to I and Gir to 2ϵI.

Collision avoidance is also implemented using CBFs as in [28], but as the
topology of the communication graph is fixed, it is not implemented in a
distributed way. For completeness, the CBF of order 1 obtained adapting
the approach in [28] is reported

hca(pi,pj) = ||pi − pj ||2 −∆2, ∀ j ∈ Ndist,i (4.1)

where ∆ is the minimum allowed inter-agent distance (set to 0.5 m) and
Ndist,i is the set of quadcopters considered by drone i for the collision avoid-
ance, namely drones within a certain radius with respect to drone i. We
stress again the fact that Ndist,i ̸= Ni, hence the collision avoidance is not
implemented in a distributed way. As regards the constraint to add to the
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QP, since the model of the drones is a single integrator, the computations
simplify and one obtains

Lghca(pi,pj)u+ hca(pi,pj) ≥ 0 (4.2)

with Lghca(pi,pj) = 2(pi − pj). Thus, a linear inequality constraint (4.2)
is added to QP (3.36) and (3.37) ∀j ∈ Ndist,i.

In the simulations, the target(s) are initially visible by all agents, and the
control is started after the information (λ1r) has increased over the threshold
ϵ with a dynamics dictated by the forgetting factor ρ.
The initial configuration of the simulations can be seen in Figure 4.2. Note
that in the Figure only one target is present, but in case of more targets the
initial positions of the drones will be the same.

In the next paragraphs, the simulations performed are discussed, showing
different cases of interest.
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Figure 4.2: Initial configuration of the simulations at t = 0: drones (blue dots),
target (red dot), position estimates (green dots), communication edges (green dot-
ted lines), FoVs (blue thin lines).

4.1 Case 1: Single target with linear trajectory
and no additional tasks

In this simulation, a single target moves along a linear trajectory start-
ing from zero initial velocity and then reaching constant velocity vτ

1 =
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[0.2, 0.3, 0]T m/s. The dynamics of drones, target and information are sim-
ulated for Tmax = 30 s. The drones inputs are given by the solution of the
QP (3.37) with ud = [0, 0, 0]T , hence the constraints are hard.
The results related to this simulation are depicted in Figures 4.3, 4.4, 4.5,
4.6 and 4.7. Note that in both Figure 4.3 and Figure 4.4 are depicted N = 6
lines (one for each drone), but, thanks to the consensus reached, they are
superimposed.
The position errors in Figure 4.3 converges to 0, meaning that the estimated
state of the target converges to the true one. The behavior of the position
errors between t = 0 s and t = 4 s is due to the fact that the state estimate
is initially similar to the true one, but as the target starts moving with a
non-zero velocity the estimation worsen until the estimated target velocity
converges to the true one.
In Figure 4.4, ψ01 and ψ11, after the initial accumulation of information due
to the fact that target is visible by all agents at initial time, decrease and
when they approach 0 the HOCBF constraint of the QP becomes active,
forcing the quadcopters to move to maintain the global information above
the threshold ϵ, namely the CBF positive. Indeed, from the control inputs
in Figure 4.6, it is evident that the QP produces an input different from 0
only when the CBF vanishes approaching 0. The inputs present an initial
peak that depends on the relative distance of drone i to target 1, and then
all the inputs converges to the velocity of the target, meaning that they
are collectively following it. Note, indeed, that the final value of the norm
of the control inputs converges to

√
0.22 + 0.32 = 0.36 m/s, which is the

(constant) norm of the velocity of target 1.
Another interesting behavior emerging from this simulation, visible from
Figure 4.7, is the tendency of the drones to autonomously split in 2 groups
to sense the target from 2 different and approximately symmetric directions.
This is in agreement with the PE considerations about bearing made by in
[31]. From the same Figure, one can also note that the drones follow the
target moving initially upward and then stabilizing at constant height. It is
easy to understand that, to maintain a target in the FoV, a drone can go
upward, go in the same direction of the target or mix these behaviors as in
this case. A similar behavior is present also in the next two simulations.
Finally, the perception awareness weights for this simulation are reported
in Figure 4.5, from which we can appreciate that all the weights start
from 1 and then, as the target moves outside the FoV, they decrease until
the HOCBF constraint becomes active, finally stabilizing to constant val-
ues. Note, however, that each drone has a low weight relative to target
1 (wi1 < 0.2), meaning that each drone brings a poor information contri-
bution to the system, and hence all of them are necessary to respect the
constraint. This Figure suggests that not all drones should be necessary to
satisfy the localization constraints. This situation can be avoided with the
use of the slack variables, as analyzed in the next simulation, where also the
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multi-target case is tackled.
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Figure 4.3: Case 1: position errors.
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Figure 4.4: Case 1: ψ01 (solid), ψ11 (dotted).
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Figure 4.5: Case 1: weights.
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Figure 4.6: Case 1: norm of control inputs.
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Figure 4.7: Case 1: trajectories at the end of the simulation. The blue thin lines
represent the FoV of the drones. The drones split in two clearly visible groups.

4.2 Case 2: Multi-target with sinusoidal trajec-
tory and no additional tasks

In this simulation, 2 targets are present. Target 1 moves with the same
trajectory of the previous simulation, while target 2 moves with a planar si-
nusoidal trajectory with amplitude 2.2 m and pulse 0.15 rad/s, hence with
time-varying velocity. This simulation has a duration of Tmax = 50 s. Each
drone solve a QP (3.36) with ud = [0, 0, 0]T . The results are reported in
Figures 4.8, 4.9, 4.10, 4.11 and 4.12. The upper plots are relative to target
1, while the lower plots are related to target 2.
In Figure 4.8, it is shown that, in the linear trajectory case, the error con-
verges to zero, while in the time-varying velocity case the error remains
bounded, as expected from Chapter 2.
For both targets, the HOCBFs constraints are satisfied, as depicted in Fig-
ure 4.9. From Figure 4.10, looking at the weights different from 0 after the
transient, one can appreciate that only drone 3 (green lines) and drone 6
(brown lines) moves to localize target 1, and analogously drone 1 (blue) and
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5 (purple) localize target 2. This behaviour can also be noted by looking
at the inputs shapes from Figure 4.11, in which can be distinguished the
drones which are following the target with the linear trajectory from the
ones which are following the target with sinusoidal trajectory.
As in the previous simulation, the drones observe the targets from 2 sym-
metric directions, as shown in Figure 4.12, which depicts drones and targets
at the final instant of the simulation. It is important to notice that, thanks
to the use of the relaxation variables weighted by wir, the localization con-
straints of drones 2 and 4 are made soft, hence they can be violated resulting
in zero drone input. In Figure 4.12, they are depicted with an X to indi-
cate that they are not sensing either of the two targets. These drones are
not necessary for the satisfaction of the constraints and could thus perform
other tasks. Despite this, the thresholds on the minimum eigenvalues of the
OGs are satisfied. This result confirms that not all 6 drones are necessary
to maintain the localization constraints, since only 2 are sufficient for each
target.
There is the possibility that ψ01 and ψ11 go slightly negative during the
transient. There are two reasons for this: first, some minor approximations
are done in the computation of the derivatives, and hence the model is not
perfect; secondly, the slack variables are added to all the localization con-
straints and thus they are not hard, even if some are weighted by weights
similar to 1. The effect of weighting Kδ with wir is that the drones far from
the j-th target will have a very small weight and thus a constraint much
softer than the drones that are actively sensing the target.

4.3 Case 3: Single target with linear trajectory
and bearing-only formation control

In this simulation, only one target is present and moves with constant ve-
locity along a linear trajectory (starting smoothly as in the first simulation)
until t = 25 s, then it stops and moves backward with opposite constant
velocity toward the starting position. The total duration of this simulation
is Tmax = 45 s. Each drones solve the QP (3.36) with ud obtained from a
bearing-only formation control law [47]. The desired formation is a planar
circle. The bearing-only control law only fixes directions and not distances,
hence the formation is able to expand and contract maintaining the direc-
tions defined by the desired bearings g⋆

ij . The simulation results are depicted
in Figures 4.13, 4.14, 4.15, 4.16 and 4.18. Figure 4.17 shows the error on
the formation bearings, computed as ||eβ||2 = 1

|Ni|
∑

j∈Ni
||gij − g⋆

ij ||2.
The formation expands as 2 drones are following the target, then, when the
target comes back to the starting position, its motion becomes compatible
with the localization constraint and hence the QP stops altering the con-
troller velocity ud.
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Figure 4.8: Case 2: position errors.
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Figure 4.9: Case 2: ψ0 (solid), ψ1 (dotted).
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Figure 4.10: Case 2: weights.
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Figure 4.11: Case 2: norm of control inputs.
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Figure 4.12: Case 2: trajectories at the end of the simulation. The blue thin lines
represent the FoV of the drones. Each target is followed by two drones from two
approximately symmetric directions.

From Figure 4.13 one can see that the error temporarily increases when the
target start moving in the opposite direction, because the velocity of the tar-
get is non-constant for a time interval. In Figure 4.14, it can be understood
when the HOCBF constraint is active and when the information increases
due to the target going toward the start position, where it can be observed
by more drones. Looking at Figure 4.15 it is clear that only drones 1, 2 and
to a lesser extent also 3 moves to observe the target and thus have a weight
different from 0, as confirmed by Figure 4.16. In the inputs plot, one can
also see that there is an initial peak due to formation control law, when this
input is not modified by the QP because the target is visible by all agents
and thus the HOCBF constraint is satisfied. Then, the 3 above mentioned
drones follow the target as ψ01 ψ11 approaches zero and the others move to
maintain the desired directions, expanding the formation. Finally, the input
converges to zero when the target comes back to the original position. This
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behavior is clear also from Figure 4.16, since only the drones that partici-
pates to the localization have a bearing error significantly higher than zero,
because their formation control input is altered to satisfy the localization
constraints. Figure 4.18 depicts the trajectories and positions of drones and
target at the final instant of the simulation. As can be seen, the planar
formation is clearly formed and the target is visible by all the quadcopters,
which are free to implement the control ud.
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Figure 4.13: Case 3: position errors.
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Figure 4.14: Case 3: ψ01 (solid), ψ11 (dotted).
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Figure 4.15: Case 3: weights.
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Figure 4.16: Case 3: norm of control inputs.
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Figure 4.17: Case 3: bearing errors.
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Chapter 5

Conclusions and Future
Works

In this Thesis, a distributed persistent monitoring scheme for estimating
the state of one or multiple moving target(s) from bearing measurements by
employing an Information Consensus Filter is proposed and analyzed. The
filter relies on a standard Information Consensus Filter (ICF), modified to
work with relative bearing measurements, and is uniformly globally expo-
nentially stable under Persistency of Excitation (PE) conditions. The main
contribution of this work is to guarantee that the PE conditions are met also
in presence of sensing constraints. This is achieved by relying on two main
tools: the decentralized High Order Control Barrier Functions, used to en-
force the invariance of the safe set, and the weighted Observability Gramian
with forgetting factor, which is used to quantify the persistency of excita-
tion. The centralized solution is presented first, and then it is decentralized
in order to respect the centralized constraints. The proposed approach can
deal with multiple targets thanks to a proper relaxation of the constraints.
Finally, the proposed approach is validated through numerical simulations.

In future, it will be of interest to consider a time-varying graph topology
with connectivity maintenance and to extend this approach to ensure local-
izability of formations from relative measures.
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Appendix A

Matrix calculus rules

For further convenience and in order to clarify the notation used in Chapter
3 and Appendix B, some useful matrix calculus rules are reported in this
Appendix.

If f(x) : Rn → R is a function of x ∈ Rn, its derivative with respect to x is
a row vector and its gradient is a column vector

∂f

∂x
=
[

∂f
∂x1

· · · ∂f
∂xn

]
= ∇fT (A.1)

If f(x) is a vector-valued function f : Rn → Rm, its derivative with respect
to x is a matrix

∂f

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

 ∈ Rm×n (A.2)

As a rule, we can state that when we differentiate a function, the result has
as many rows as the dimension of the function (m) and as many columns
as the dimension of the variable with respect to we are differentiating (n).
Moreover, given two scalar functions u(x), v(x), the derivative of their prod-
uct with respect to x is

∂uv

∂x
= u

∂v

∂x
+ v

∂u

∂x
(A.3)

Given a scalar function v(x) and a vector function u(x) we have

∂vu

∂x
= v

∂u

∂x
+ u

∂v

∂x
(A.4)
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Finally, given two vector functions u(x) and v(x), we have

∂(u · v)
∂x

=
∂u⊤v

∂x
= u⊤∂v

∂x
+ v⊤∂u

∂x
(A.5)



Appendix B

Computations

In this Appendix are reported all the computations associated with the
HOCBFs in Chapter 3.
For convenience, define the number d = 3N +(3+9) used for the dimension
of the state. Some useful quantities, already defined in previous chapters,
are reported first. The variables involved have already been explained in
Chapter 3.
Safe set:

Cr = {x ∈ Rd : hr(x) = λ1r(x)− ϵ ≥ 0} (B.1)

State of the system:

x =

 p
pτ
r

vec (Gr)

 ∈ Rd (B.2)

Functions appearing in the state dynamics ẋ(t) = f(x, t) + g(x)u:

f(x, t) =


0

vτ
r (t)

vec
(
−ρGr +

∑N
i=1 bwirΠβir

)
 ∈ Rd (B.3)

g(x) =

(1N ⊗ I3)
0
0

 ∈ Rd×3N (B.4)

Functions ψ:

ψ0r(x) = hr(x) = λ1r(x)− ϵ

ψ1r(x) = Lf (hr(x)) =
∂λ1r(x)

∂(vec(Gr))
vec(Ġr) + (λ1r − ϵ)

(B.5)
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Recall that in the formal definition of the state the true target position is
used, but in practice it is not available to the drones and hence its estimate
p̂τ+
ir is used. The same holds for the target velocity.

B.1 Computation of Lf(hr(x))

The first Lie derivative explained is Lf (hr(x)) in (B.5).

Lfhr(x) = Lfλ1r(x) =
∂λ1r(x)

∂x︸ ︷︷ ︸
1×d

f(x)︸︷︷︸
d×1

=

=

[
∂λ1r
∂p︸ ︷︷ ︸

1×3N

∂λ1r
∂pτ

r︸ ︷︷ ︸
1×3

∂λ1r
∂ vec(Gr))

]
︸ ︷︷ ︸

1×9

 0 3N×1

vτ
r 3×1

vec(Ġr) 9×1

 =

=
∂λ1r

∂ vec(Gr)
vec(Ġr) ∈ R

(B.6)

The terms ∂λ1r
∂p and ∂λ1r

∂pτ
r
are zero as the minimum eigenvalue of the OG does

not depend instantaneously by the positions of drone and target, while the
term ∂λ1r

∂ vec(Gr)
can be computed knowing the eigenvector v1r associated to

eigenvalue λ1r, using Theorem 1 of [42], which holds for symmetric matrices
and normalized eigenvectors

∂λ1r
∂ vec(Gr)

= vT
1r ⊗ vT

1r or
∂λ1r
∂Gr

= v1rv
T
1r (B.7)

where the symbol ⊗ denotes the Kronecker product.
In practice, for control purposes, a smooth approximation of λ1r is used,
and ∂λ̄

∂ vec(Gr)
can be computed applying the chain rule and recalling that

λ̄ = λ̄(λ1, λ2, λ3)

∂λ̄

∂ vec(Gr)
=

3∑
i=1

∂λ̄

∂λir

∂λir
∂ vec(Gr)

=

 3∑
i=1

λpir

 1
p
−1 3∑

i=1

λp−1
ir

∂λir
∂ vec(Gr)


(B.8)

B.2 Computation of Lgiψ1r(x)

It is now explained the computation of Lgiψ1r(x), where

gi(x) =

 I3×3

0
0

 ∈ R15×3 i = 1, . . . , N (B.9)
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Lgiψ1r(x) = LgiLfλ1r(x) =
∂

∂xi
(Lfλ1r)gi(x) =

∂

∂xi

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)
gi(x) =

=

[
∂

∂pi

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)
︸ ︷︷ ︸

1×3

∂

∂pτ
r

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)
︸ ︷︷ ︸

1×3

∂

∂ vec(Gr)

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)]
︸ ︷︷ ︸

1×9

gi(x)︸ ︷︷ ︸
15×1

(B.10)

Due to the particular structure of gi, only the first 1 × 3 term of (B.10) is
not multiplied by zero. The first 1× 3 block of the expression above which
multiplies gi(x) can be expanded following the rules in (A.5)

∂

∂pi

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)
=

= vec(Ġr)
T ∂

∂pi

(
∂λ1r

∂ vec(Gr)

)
︸ ︷︷ ︸

=0

+
∂λ1r

∂ vec(Gr)

∂

∂pi

(
vec(Ġr)

)
(B.11)

The first term of expression (B.11) is zero, because the derivative of the
eigenvector with respect to the vectorized matrix doesn’t depend instanta-
neously on the positions. Therefore, the final expression of Lgiψ1r(x) reads
as

Lgiψ1r(x) =
∂λ1r

∂ vec(Gr)︸ ︷︷ ︸
1×9

∂ vec(Ġr)

∂pi︸ ︷︷ ︸
9×3

∈ R1×3 (B.12)

Note that the dimension is consistent because this term will be multiplied
by ui ∈ R3×1 to obtain a scalar.

In (B.12), the term ∂λ1r
∂ vec(Gr)

has already been computed in (B.7) and in

(B.8) considering the smooth approximation of the eigenvalue, while the

term ∂ vec(Ġr)
∂pi

can be computed as

∂ vec(Ġr)

∂pi
=

∂

∂pi
vec

−ρGr +

N∑
i=1

bwirΠβir

 =

= bwir
∂ vec(Πβir

)

∂pi
+ b vec(Πβir

)
∂wir

∂pi
(B.13)

where we have considered that the OG depends on all the previous positions
and thus the derivative with respect to the last position only is null, while
for the other two terms the rule (A.4) has been applied. More precisely

∂ vec(Πβir
)

∂pi
=

[
∂ vec(Πβir

)

∂xi

∂ vec(Πβir
)

∂yi

∂ vec(Πβir
)

∂zi

]
∈ R9×3 (B.14)
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where xi, yi, zi are the components of pi. The columns of this matrix have
the following structure in the non-vectorized version (the subscript of βir is
omitted for brevity)

∂Πβ

∂xi
=

∂

∂xi
(I− ββT ) = − ∂β

∂xi
βT − β

∂β

∂xi

T

=

= − 1

dir
(−e1 + βxβ)βT − 1

dir
β (−e1 + βxβ)T

(B.15)

where e1 = [1, 0, 0]T and βx represents the x-component of β. The expres-
sions of the derivatives of Πβ with respect to yi and zi are similar.
To compute ∂wir

∂pi
we use (A.3)

∂wir

∂pi
=
∂(wDirwBir)

∂pi
= wDir

∂wBir

∂pi
+ wBir

∂wDir

∂pi
(B.16)

with

∂wDir

∂pi
=
∂wDir

∂d̂ir

∂d̂ir
∂pi

= −2

(
d̂ir −D

)
σ2D

e
−(

d̂ir−D)
2

σ2
D

(
−(p̂τ+

r − pi)

d̂ir

)T

(B.17)

and

∂wBir

∂pi
=
∂wBir

∂βir

∂βir

∂pi
= 2

(
cir − cos(αth

M )
)

σ2B
e
−(

cir−cos(αth
M ))

2

σ2
B

(
−Πβir

d̂ir

)
(B.18)

where rules for the differentiation of unit vectors and norms have been ap-
plied. In (B.17), D and σ2D should be substituted with Dth

m and σ2Dm
or Dth

M

and σ2DM
, following the definition of the weights provided in Chapter 3.

The expressions above hold when the r-th target approaches the perception
limits and the weights depends on the position, otherwise they are constant
and their derivative are zero. Note that the last term in (B.17) is −βT

ir.
Substituting the expressions above in (B.12), equation (3.22) is obtained.
This concludes the computation of Lgiψ1r(x).
It is important remember that the used positions and velocities of the tar-
gets are in practice the estimated quantities p̂τ+

ir and v̂τ+
ir , since the real

ones are not available to the drones.

B.3 Computation of Lfψ1r(x)

The last derivative needed for the constraints of the QP is Lfψ1r(x).

Lfψ1r(x) = L2
fhr(x) + Lfhr(x) ∈ R (B.19)
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The term Lfhr(x) has already been computed, while for the term L2
fhr(x)

it holds

L2
fhr(x) = Lf (Lfλ1r(x)) =

∂

∂x

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)
f(x) =[

∂

∂p

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)
︸ ︷︷ ︸

1×3N

∂

∂pτ
r

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)
︸ ︷︷ ︸

1×3

∂

∂ vec(Gr)

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)]
︸ ︷︷ ︸

1×9

f(x)︸︷︷︸
d×1

(B.20)

Due to the particular structure of f(z), the first 1×3N part is multiplied by
zeros and does not contribute to the final result. The second term of (B.20)
is

∂

∂pτ
r

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)
=

= vec(Ġr)
T ∂

∂pτ
r

(
∂λ1r

∂ vec(Gr)

)
︸ ︷︷ ︸

=0

+
∂λ1r

∂ vec(Gr)

∂

∂pτ
r

(
vec(Ġr)

)
(B.21)

where

∂ vec(Ġr)

∂pτ
r

=

N∑
i=1

(
bwir

∂ vec(Πβir
)

∂pτ
r

+ b vec(Πβir
)
∂wir

∂pτ
r

)
=

N∑
i=1

(
−∂ vec(Ġr)

∂pi

)
(B.22)

The third term of (B.20) is

∂

∂ vec(Gr)

(
∂λ1r

∂ vec(Gr)
vec(Ġr)

)
=

=
∂λ1r

∂ vec(Gr)

∂ vec(Ġr)

∂ vec(Gr)
+ vec(Ġr)

T ∂

∂ vec(Gr)

(
∂λ1r

∂ vec(Gr)

)
(B.23)

where
∂ vec(Ġr)

∂ vec(Gr)
= −ρI9×9 (B.24)

and using Theorem 4 of [42]

∂2λ1r
∂ vec(Gr)∂(vec(Gr))T

= K3

(
Y†

1r ⊗ v1rv
T
1r + v1rv

T
1r ⊗Y†

1r

)
(B.25)

where K3 is the 9 × 9 commutation matrix, used to transform a vectorized
matrix in the vectorized version of its transpose, and Y†

1r is the pseudo in-
verse of Y1r = λ1rI−Gr.



58

In (B.24) we consider that the projection matrix that appears in the dynam-
ics of the information matrix does not depend on the information matrix
itself.
Again, remember that the positions and velocities of the targets used in
practice are the estimated quantities p̂τ+

ir and v̂τ+
ir .

As before, in practice a smooth approximation is used for the minimum
eigenvalue, hence

∂2λ̄

∂ vec(Gr)∂(vec(Gr))T
=

=
3∑

i=1

 ∂λ̄

∂λir

∂2λir
∂ vec(Gr)∂(vec(Gr))T

+
∂λir

∂ vec(Gr)

∂

∂ vec(Gr)

(
∂λ̄

∂λir

)
(B.26)

with

∂λ̄

∂λir
=

∂

∂λir

 3∑
i=1

λpir

 1
p

=

 3∑
i=1

λpir

 1
p
−1 3∑

i=1

λp−1
ir

 (B.27)

and
∂

∂ vec(Gr)

(
∂λ̄

∂λir

)
=
∂2λ̄

∂λ2ir

∂λir
∂ vec(Gr)

(B.28)

where

∂2λ̄

∂λ2ir
= (1−p)

 3∑
i=1

λpir


1−2p

p
 3∑

i=1

λp−1
ir

2

+(p−1)

 3∑
i=1

λpir


1−p
p
 3∑

i=1

λp−2
ir


(B.29)

Substituting the equations above in (B.19) we obtain equation (3.23).
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