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Introduction

The Semantic Web is an ambitious project aimed at creating a global, machine-readable

web of data, with the goal of enabling intelligent agents to access and reason over this data.

Ontologies are a key component of the Semantic Web, as they provide a formal description of

the concepts and relationships in a particular domain. However, ontology development is often

a time-consuming and labor-intensive process that requires significant domain expertise.

Some of the knowledge graphs publicly available are mostly fact-based, meaning that their

focus is to represent factual data without a precise definition of the knowledge graph schema

nor a precise documentation. This approach makes reasoning over data more difficult due to

the lack of ontological axioms. One of the most relevant knowledge graphs showing these

disadvantages is Wikidata.

Exploiting the expressiveness of knowledge graphs together with a more logically sound on-

tological schema can be crucial to represent consistent knowledge and to infer new relations

over the data. In other words, constraining the entities and predicates of knowledge graphs

leads to improved semantics.

The same benefits can be found for restrictions over linguistic resources, which are knowl-

edge graphs used to represent natural language. More specifically, it is possible to specify

constraints on the arguments that can be associated with a given frame, based on their se-

mantic roles (selectional restrictions). However, most of the linguistic resources define very
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ii INTRODUCTION

general restrictions because they must be able to represent different domains. Hence, the

main research question tackled by this thesis is whether the use of domain-specific selectional

restrictions are useful for ontology augmentation, ontology definition and neuro-symbolic

tasks on knowledge graphs.

To this end, we developed a tool able to empirically estimate the types of classes covering

certain roles in a frame, together with the estimated probabilities. The new restrictions have

been expressed in OWL-Star, a less verbose variant of the Ontology Web Language (OWL).

We show that the obtained selectional restrictions can be used to provide better explanations

of the ontologies, i.e. they can improve and automatize ontology documentation.

We also developed an OWL-Star to OWL mapping and proved theoretical properties about

the translation. Specifically, we show that the mapping is information preserving, meaning

that it does not lead to ambiguities if certain conditions hold. We apply the OWL-Star to OWL

mapping to obtain the OWL representation of the selectional restrictions. Subsequently, we

add the resulting OWL ontology with selectional restrictions to Framester, an open lexical-

semantic resource for the English language.

We demonstrate the benefits of augmenting the knowledge graphs with selectional restrictions

for neuro-symbolic tasks. In other words, we show that using selectional restrictions for the

class membership task leads to better ranking scores, meaning that the calculated embeddings

are qualitatively better with respect to the ones obtained without selectional restrictions. The

domain used for applying these tools is the MusicBO dataset, a knowledge graph dataset au-

tomatically created from textual descriptions. The dataset is part of the Polifonia Project at the

University of Bologna and describes the musical history of Bologna. The pipeline described

in this thesis is shown in Figure 1.

In summary, the contributions of this thesis are the following:

• creation of a domain-specific selectional extraction tool, analyzing how they can be used



INTRODUCTION iii

MusicBO

KGs

Selectional

Restrictions

Extractor

OWL-Star

to OWL

Framester

Insertion

Class Membership

evaluation

Ontology Doc-

umentation

input OWL-Star OWL

input
axioms

axioms

Figure 1: Graphical view of the pipeline describing the tools used

for ontology documentation1;

• creation of an OWL-Star to OWL mapping together with proofs on its foundational

aspects2;

• insertion of domain-specific (MusicBO) selectional restrictions inside Framester;

• application of neural models for the class membership task over MusicBO augmented

knowledge graphs.

The thesis is organized as follows. Chapter 1 introduces concepts and notions at the ba-

sis of the topics discussed. Chapter 2 shows the related works, highlighting the position of

the thesis in the literature. Chapter 3 shows the implementation and methodology used for

1https://github.com/lucacontalbo/selrestr maker
2https://github.com/lucacontalbo/OWLStar-to-OWL
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extracting the selectional restrictions out of the MusicBO knowledge graphs. Chapter 4 intro-

duces RDF* and OWL-Star, discussing about the mapping between OWL-Star to OWL and

developing proofs regarding the translation. Chapter 5 discusses about the machine learning

approaches regarding knowledge graphs, showing the implementation of the class membership

task on selectional restriction augmented ontologies. In the end, Chapter 6 shows the obtained

results.
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Chapter 1

Background

The Semantic Web is an extension of the World Wide Web where data is more intercon-

nected and machine-readable. It aims to enable computers to process and understand the

meaning of information on the web, rather than just its raw format. RDF (Resource Descrip-

tion Framework) and OWL (Ontology Web Language) are two of the key technologies used in

this topic. They provide a way to describe and model the relationships between entities and

concepts in a structured and meaningful manner.

In this chapter, we will introduce the basics of RDF and OWL and explore how they can be

used in combination with Linguistic Resources such as FrameNet, VerbNet, Propbank, and

WordNet to provide a deeper understanding of language and meaning. We will also introduce

Framester, a scientific tool that acts as a bridge between these resources and the semantic web.

In addition, we will discuss the use of Design Patterns and Ontology Design Patterns in the Se-

mantic Web. These patterns provide a reusable and standardized solution to common modeling

problems and can be used to facilitate the creation of consistent and well-designed ontologies.

Finally, we will examine Polifonia, a project that demonstrates the potential of semantic web

technologies for the music domain.

1



2 1. Background

1.1 RDF

The Resource Description Framework (RDF) is a data model used for the exchange

of graph data. RDF is based on subject-predicate-objects triples: this simple but powerful

data model allows to represent abstract relationships between entities, such as axioms, as well

as more detailed information about instances of particular domains. Moreover, it is able to

represent syntactical and semantical structure of text data by aligning entities to pre-defined

linguistic resources (Section 1.2).

RDF has a crucial role in several scientific fields and purposes, like:

• adding machine-readable information to Web pages enabling them to be displayed in

an enhanced format on search engines or to be processed automatically by third-party

applications;

• enriching a dataset by linking it to third-party datasets, hence providing to the user (or

machine) a broader knowledge base;

• provide data for ML based models;

• using the datasets currently published as Linked Data, for example building aggregations

of data around specific topics;

• providing a standards-compliant way for exchanging data between databases.

Triples are constituted by:

• Resource: entities identified by IRIs.

• Property: resource used to describe relations about resources.

• Property value: can be either a literal or a resource.
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Subjects and predicates are resources, while objects are property values. Hence, literals cannot

be used as subjects of a triple.

Example 1.1.1. The sentence Led Zeppelin have participated at the Live Aid can be formalized

as

<wd:Q2331, wd:Property:P1344, wd:Q193740>

where wd is the namespace for wikidata.org/wiki/ and the strings at the end of the IRIs are

identifiers of Led Zeppelin, participant in, Live Aid respectively.

Sets of RDF triples can be represented as directed graphs, which can be serialized in

different syntaxes (e.g. Turtle, Manchester syntax etc.).

Formally,

Definition 1.1.1. Given a set of IRIs U , a set of blank nodes B and a set of literals L, a triple t

is defined as

t = (s, p,o) ∈ (U ∪B)×U× (U ∪B∪L)

An RDF graph G is a set of triples

G⊆ (U ∪B)×U× (U ∪B∪L)

1.1.1 Semantics

RDF triples are great for defining relations between resources, but to define the meaning

of each entity involved in a graph, the standard RDF vocabulary needs to be extended. With

such extensions, RDF graphs may support more extensive entailments[48]. These extensions

define entailment regimes which are valid under a particular RDF extension.

RDF is a base notation, used by a variety of extensions. Each extension must adhere to the
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truth conditions of narrower vocabularies, meaning that they can be extended but not negated.

Specifically,

Definition 1.1.2 (Simple interpretation). Consider R and L to be the set of IRIs and literals

respectively. A simple interpretation I consists of a quintuple <IR,IP,IEXT,IS,IL>,

such that

• IR is a non-empty set of resources.

• IP is a set of properties.

• IEXT is a function IP 7→ P(IR×IR). It identifies which properties are true for set of

pairs of resources.

• IS is a function R 7→ IR∪IP.

• IL is a partial function L 7→ IR.

with P(Θ) being the power set function, i.e. the set of all subsets of set Θ.

Definition 1.1.3 (Semantic conditions for ground graphs). The semantics of a ground graph

are given by the following rules:

• x ∈ L→ I(x) = IL(x).

• x ∈ R→ I(x) = IS(x).

• if t =<s,p,o> is a ground triple, then I(p)∈IP∧<I(s),I(o)>∈IEXT(I(p))→

I(t) = true else I(t) = false

• if G is a ground RDF graph, then ∃t ∈G,I(t) = false→ I(G) = false, else I(G) =

true
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All RDF extensions must be compliant to RDF semantic conditions and extend them by

adding further semantic rules. Indeed, Definition 1.1.3 does not define any set constraints, for

example regarding set disjointness or sub classing of literal entities. In RDF it is possible to

define resources as subclasses of string labels, or it is possible to define instances of multiple

disjoint classes.

In other words, RDF has no denotation for properties relevant for axiom triples: extensions

such as OWL tackle this problem by extending the vocabulary by adding resources with fixed

semantics.

1.1.2 RDF Schema

RDF Schema (RDFS)[49] is a semantic extension of RDF. It defines new resources with a

fixed meaning, such as

• rdfs:Resource, the root class;

• rdf:type, used for meronymy (membership relations);

• rdfs:Class, used for representing sets;

• rdf:Property, used for representing relations between resources;

• rdfs:subClassOf, used for representing the subset relation;

• rdfs:domain, which indicates the subject class of a given property;

• rdfs:range, which indicates the object class of a given property;

• rdfs:label, used for adding human-readable labels to resources;

• rdfs:Literal, which is the class of literal values.
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RDFS does not impose syntactic restrictions on RDF graphs, but it defines an entailment

regime strictly dependant on the IRIs assumptions made before. Some of the entailments are

shown below.

(p rdfs:domain c)∧ (x→p y) =⇒ x rdf:type c

(p rdfs:range c)∧ (x→p y) =⇒ y rdf:type c

x→p y =⇒ x rdf:type rdfs:Resource

x→p y =⇒ y rdf:type rdfs:Resource

(p1 rdfs:subPropertyOf p2)∧ (p2 rdfs:subPropertyOf p3) =⇒

p1 rdfs:subPropertyOf p3

p rdf:type rdf:Property =⇒ p rdfs:subPropertyOf p

(p1 rdfs:subPropertyOf p2)∧ (x→p1 y) =⇒ x→p2 y

x rdf:type rdfs:Class =⇒ x rdfs:subClassOf rdfs:Resource

(x rdfs:subClassOf y)∧ (z rdf:type x) =⇒ z rdf:type y

The IRI assumptions can help parsers make inferences on the provided knowledge graphs.

The obtained triples can also help in the completion of knowledge graphs, expressing relations

between entities in a more explicit way.

The usage of more complete knowledge graphs can aid machine learning algorithms in cal-

culating graph embeddings (Section 5). Some approaches in the Semantic Web[52, 10] pro-

vide node labels to deep learning models for obtaining entity embeddings, leveraging the out-

comes for particular AI tasks. Hence, the introduction of more user-friendly properties like

rdfs:label does not only help in making the knowledge graph more explainable, but they

can be used for obtaining semantic embeddings for the resources they relate to.

Data models based on Descriptive Logic[33] like RDFS introduce the T-Box/A-Box dualism

for knowledge graph development. The two terms are used for referring to different types of
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statements in knowledge bases: T-Box describes the terminology components which constrain

the concepts of the represented knowledge (e.g. rdfs:domain, rdfs:subClassOf...)

while A-Box statements are assertions associated with the T-Box model. Thus, A-Box is

dependent from T-Box and must be compliant to its axioms. The combination of the two com-

ponents constitutes an ontology, which is a formal model representing the main concepts and

assertions of a domain of knowledge.

1.1.3 OWL

OWL[41], which stands for Web Ontology Language, is a language for expressing on-

tologies (formal models of concepts and their relationships) on the World Wide Web. OWL

is designed to be used in conjunction with other web standards such as RDF (Resource De-

scription Framework) and RDFS (RDF Schema), and it provides a way of formally defining

concepts and relationships in a domain of interest.

There are three main types of OWL: OWL Lite, OWL DL, and OWL Full.

• OWL Lite: this is the simplest and most restricted form of OWL. It provides a lim-

ited set of constructs for expressing ontologies and is intended for use in applications

where computational complexity is a concern. OWL Lite is suitable for modeling basic

taxonomies with class hierarchy and simple relationships between classes.

• OWL DL: it is a more expressive version of OWL that is based on the description logic

formalism. It provides a greater range of constructs for expressing ontologies and is

intended for use in applications where the ability to represent complex relationships is

required. OWL DL is suitable for modeling complex ontologies with rich class hierar-

chies, complex relationships between classes, and constraints on the use of individuals.
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• OWL Full: it is the most expressive version of OWL and provides the full set of con-

structs for expressing ontologies. OWL Full is intended for use in applications where

maximum expressiveness is required, but it is also the most computationally complex

form of OWL and is not recommended for most applications.

Each of these OWL types provides a different level of expressiveness and computational

complexity, and the choice of which type to use will depend on the requirements of the partic-

ular application. For example, in a domain where a simple class hierarchy is required, OWL

Lite may be the most appropriate choice, whereas in a domain where complex relationships

and constraints need to be represented, OWL DL may be a better choice. OWL Full, instead, is

defined theoretically but not used very much, due to the difficulties of implementing reasoners

that work with OWL Full. Indeed, OWL Full allows ontologies to augment the meaning of

the pre-defined (RDF or OWL) vocabulary, which is the main cause of the implementation

problems of a OWL Full reasoner.

With the introduction of OWL Punning in OWL 2, OWL 2 DL has slightly closed the gap with

OWL Full. For the remainder of this paper, the term OWL will be used referring to OWL 2

DL.

OWL includes all RDFS primitives, like class hierarchies, property hierarchies, membership

relations and restrictions on properties domain and range. At the same time, we can model

knowledge bases by augmenting classes with set operations like union and intersection, hence

being more specific when two resources are disjoint or equivalent; we can use universal and

existential quantifiers for applying property restrictions; cardinality restrictions; inverse, sym-

metric, reflexive and transitive relations; reuse and linking of different ontologies.

OWL is based on the following basic notions:

• Axioms: basic statements that an OWL ontology expresses.
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• Entities: elements used to refer to real world objects. 0-ary predicates are called indi-

viduals, e.g. the band Led Zeppelin, unary predicates are called classes, e.g. Person,

binary predicates are properties, which can be

– Object properties, relating 2 different objects, e.g. hasFriend.

– Datatype properties, relating one object and a data value, e.g. hasAge.

– Annotation properties, relating objects and ontologies to meta information, e.g.

versionInfo.

• Expressions: combination of entities to form complex descriptions of basic ones called

constructors, e.g. Son ↔ Person ∩ Male

OWL constructors can be used to refer to new entities without defining them. In the pre-

vious example, we can avoid defining a new class Son and use Person ∩ Male in every

expression in which it is needed. Constructors are created in the OWL language by using

square brackets.

OWL enriches the the assumptions made by RDF and RDFS, thus introducing a more complex

and complete entailment regime. It introduces new rules starting from Definition 1.1.3, impos-

ing special syntactic restrictions over RDF graphs. This means that OWL reasoners are more

powerful and can detect more inconsistencies inside knowledge bases. OWL also imposes

syntactical restrictions, prohibiting, for example, to define resources as subclasses of literals.

Table 1.1 shows examples of ontologies for some resources introduced by OWL.

OWL Punning

In naive set theory, sets can contain other sets as elements, leading to the possibility of self-

contradicting sets (such as the set of all sets that do not contain themselves). Russell’s type

theory[12] aims to avoid these paradoxes by assigning a type to every mathematical object,
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Case Ontology example

Class disjointness
[] rdf:type owl:AllDisjointClasses ;

owl:members ( :Woman :Man )

Property negation

[] rdf:type owl:NegativePropertyAssertion ;

owl:sourceIndividual :Bill ;

owl:assertionProperty :hasWife ;

owl:targetIndividual :Mary

Intersection

:Mother owl:equivalentClass [

rdf:type owl:Class ;

owl:intersectionOf ( :Woman :Parent ) ]

Union

:Parent owl:equivalentClass [

rdf:type owl:Class ;

owl:unionOf ( :Mother :Father )]

Existential quantification

:Parent owl:equivalentClass [

rdf:type owl:Restriction ;

owl:onProperty :hasChild ;

owl:someValuesFrom :Person]

Universal quantification

:HappyPerson rdf:type owl:Class ;

owl:equivalentClass [

rdf:type owl:Restriction ;

owl:onProperty :hasChild ;

owl:allValuesFrom :Happy ]

Table 1.1: Ontology examples
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such as a natural number, a set, or a proposition, and restricting the ways in which objects of

different types can be combined. According to Russell’s type theory, each object is assigned a

type that reflects its logical or mathematical category. For example, natural numbers have type

0, sets have type 1, and propositions have type 2. Objects of the same type can be combined

in certain ways, but objects of different types cannot be combined. For example, it is not pos-

sible to form a set that contains both natural numbers and sets. In this way, Russell’s Theory

does not suffer from the Russell Paradox, which instead has proved the naive set theory to be

inconsistent.

In OWL, the issue of entities that belong to multiple categories is addressed through the con-

cept of punning, which allows an individual to be treated as both an instance of a class and as

an individual. Often times, when representing particular domains, it might happen that certain

concepts need to be described at two different levels, i.e. from an intensional (abstract, related

to classes) or from an extensional (related to individuals) point of view.

Example 1.1.2. Consider the following sentence

Mark has a dog. Dogs are living beings

The term dog is used as an individual (Mark’s dog) and as a class (Dogs are living beings).

Hence, in this case, there is the need to describe dogs in a general way (intensional) and in a

factual manner (extensional). In OWL we could describe this knowledge in the following way:

:Dog rdf:subClassOf owl:Class .

:MarksDog rdf:type :Dog .

:Dog rdf:type a:LivingBeing .

Note that :Dog is both a class and an instance.
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Russell’s type theory and OWL punning are related in that they both address the issue

of representing entities that belong to multiple categories in a consistent and non-ambiguous

manner. While Russell’s type theory addresses this issue by assigning a type to each math-

ematical object, OWL Punning assigns a category (class, instance) to each intensional and

extensional entity. Indeed, OWL Punning simply allows to use the same URI to identify the

same entity, regardless of whether it is used as a class or an instance. However, from a log-

ical standpoint, it is important to differentiate the two categories: with punning this task is

performed automatically by the OWL reasoner. In other words, it is important to clearly dis-

tinguish different categories when dealing with mathematical and logical objects, otherwise it

is possible to obtain inconsistencies.

1.2 Language Resources

A language resource[6] is a composition of linguistic material used for documenting and

describing a language for its computational modeling, necessary for a plethora of natural lan-

guage processing (NLP) systems. Each language resource may be specific for a certain part of

linguistics, such as lexicon, but most of the resources used in NLP systems are based on large

and structured sets of machine-readable texts.

Since the main use of these datasets are for machine learning models, the design of corpora

must be carefully implemented, ensuring that they satisfy data properties for developing ef-

fective learning pipelines. Corpora must be balanced, thus equally representing each text

category in the domain of interest, and a clear sampling procedure must be defined, indicating

the number and length of each text sample. A careful data creation pipeline ensures represen-

tativeness of the full range of variability in a population.

Corpora annotating sentences at various linguistic levels, more specifically syntax and gram-



1.2 Language Resources 13

matical rules, are called treebanks. As the name suggests, the main structure used to represent

such models are trees structures. Indeed, they are useful to describe the syntactic relations be-

tween words in a sentence, but also for parsing of non-natural languages like programming

languages (through the use of particular structures called Abstract Syntax Trees[19]).

Each treebank, hence each language resource, is created by following certain linguistic as-

sumptions, defining the guidelines of annotation of the syntactical structure (annotation scheme).

Most annotation schemes provide information about part-of-speech tags (POS) and lemma-

tized or stemmed versions of the words. The choice of these implementation details is mainly

dependant on the linguistic theory adopted for the creation of the treebank.

One of the main groups of treebanks are the ones annotating phrase structure, like Penn

Treebank.

Example 1.2.1 (Penn Treebank (taken from [60])). The sentence ”Jones followed him into the

front room, closing the door behind him” can be annotated in the Penn Treebank as

( (S (NP-SBJ-1 Jones)

(VP followed

(NP him)

(PP-DIR into

(NP the front room))

,

(S-ADV (NP-SBJ *-1)

(VP closing

(NP the door)

(PP behind

(NP him)))))
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.))

using a skeletal parsing where constructs like S,NP,VP,PP annotate the syntactic tagset (strictly

correlated to POS tags), and constructs with the - character are functional tags expressing

grammatical mappings.

1.2.1 PropBank Treebank

PropBank (PB)[43] is a text corpus which builds on top of the Penn Treebank’s annota-

tion scheme by defining and assigning semantic roles in relation to each predicate. It builds

on the assumption that each verb and its associated roles define the semantics of the sentences

in which they appear, thus associating meaning to the syntactical structure given by the Penn

Treebank.

Each predicate is associated with a sense ID, disambiguating the verb to one of its correspond-

ing meanings.

Example 1.2.2. The predicate allow can be used as let in

”The reforms allow the Big Board to halt trading for one hour”

where in the following case

”Editorials in the Greenville newspaper allowed that Mrs. Yeargin was wrong”

it is used as an admission of truth.

The predicate allow in the previous example has different meanings and use cases, iden-

tified with their corresponding sense ID as allow.01 and allow.03 in PropBank. The

combination of predicate and sense ID defines framesets, which also specify the associated

roles.
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The arguments are numbered for associating them to general semantic roles: ARG0 up to ARG4

are for agent, patient, instrument or benefactive or attribute, starting point or benefactive or

attribute and ending point roles respectively. Instead, the ARGM argument stands for modifier

and it is mainly used for expressing manners, location or temporal information.

Example 1.2.3. The following sentence is parsed using the PropBank annotation schema

[John]ARG0 [ca]ARGM-MOD[n’t]ARGM-NEG [keep up]keep.05 [with the technological

developments]ARG1

with ARGM-MOD indicating modal verbs, ARGM-NEG indicating negation and keep.05 ex-

pressing to maintain one’s position, with its corresponding roles ARG0 and ARG1 representing

the mantainer of the position and to what it is relative.

Note that it is trivial to parse these annotations to tree structures, thus obtaining more

graphical representations like in all treebanks.

PropBank has been lately used for Abstract Meaning Representation (AMR)[4], which is

a semantic representation language using direct acyclic graphs (DAGs) to depict semantics of

texts.

1.2.2 VerbNet

VerbNet (VN)[54] is the largest network of english verbs that links their syntactic and

semantic patterns. It is based on Levin classes[34], but it extends its hierarchical structure by

defining additional subclasses, together with the corresponding thematic roles and selectional

restrictions. It is very similar to PropBank, but the latter is more syntax based (even though

AMR does not follow this pattern), while VerbNet is more independent from the text struc-

ture, being more amenable for tasks like machine translation which are based on semantic
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features[63, 25]. It is argued that PropBank labels generalize well across unseen verbs, spe-

cially for ARG2-ARG5 roles which tend to be less constraining. However, VerbNet is more

informative by defining selectional restrictions which are specific semantic constraints on the

roles associated to verbs.

Verb grouping is based on the same hypothesis followed for defining Levin classes: a verb’s

meaning influences its syntactic behaviour and viceversa, i.e. verbs appearing in similar con-

texts have similar meanings, allowing us to determine semantically coherent groupings of such

predicates.

Each class is composed by the members, roles and frames. The members are the predicates

belonging to a given class, the roles are the arguments shared across the verbs and the frames

indicate all the possible sentence structures and semantics in which the class can be used, to-

gether with some examples.

Table 1.2 shows all the possible thematic roles with example of classes that uses them. Each

one of them can be associated with one or more selectional restrictions, who follow a hierar-

chical structure shown in Figure 1.1.

In CUT-21.1 class, the roles and restrictions are:

• AGENT [+INT-CONTROL]

• PATIENT [+CONCRETE]

• INSTRUMENT [+CONCRETE]

• SOURCE

• RESULT
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Role Example

Actor
used for some communication classes (e.g. Meet-36.2) when both

arguments can be considered symmetrical (pseudo-agents)

Agent generally a human or an animate subject.

Cause used mostly by classes involving Psychological Verbs.

Destination end point of the motion, or direction towards which the motion is directed.

Source start point of the motion.

Location
underspecified destination, source, or place, in general

introduced by a locative or path prepositional phrase

Instrument
used for objects (or forces) that come in contact with an object

and cause some change in them.

Patient
used for participants that are undergoing a process

or that have been affected in some way.

Predicate used for classes with a predicative complement

Theme used for participants in a location or undergoing a change of location

Table 1.2: Some of the thematic roles available in VerbNet
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SelRestr

concrete

natural

animate

body-part

animal

human

plant

phys-obj

artifact

tool

garment

machine

comestible

solid rigid non-rigid

shape pointed elongated

substance

time

state

abstract

communication

sound

idea

scalar

currency

organization

location

object

place

regionPP

Figure 1.1: Selectional restrictions hierarchy

while some of its frames are shown in Table 1.3. The thematic roles are mapped on top of the

POS syntax, while the semantics are specified using a Neo-Davidsonian variable E[28].

VerbNet classes are structured in a hierarchical manner. The class CUT-21.1-1 inherits

from CUT-21.1 roles and frames but no members, since it does not have any. The following

table shows the members of class CUT-21.1-1.
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NP V NP

Example Carol cut the bread

Syntax AGENT V PATIENT

Semantics

cause(AGENT, E) manner(during(E), Motion, AGENT)

contact(during(E), ?INSTRUMENT, PATIENT)

degradation material integrity(result(E), PATIENT)

NP V NP PP.instrument

Example Carol cut the bread with a knife

Syntax AGENT V PATIENT {with} INSTRUMENT

Semantics

cause(AGENT, E) manner(during(E), Motion, AGENT)

contact(during(E), ?INSTRUMENT, PATIENT)

degradation material integrity(result(E), PATIENT)

use(during(E), AGENT, INSTRUMENT)

NP V ADVP-Middle

Example The bread cuts easily

Syntax PATIENT V ADV

Semantics property(PATIENT,PROP), adv(PROP)

Table 1.3: Some frames for CUT.21-1 class

Members of CUT-21.1-1

CHIP (FN 1,2; WN 1,2,5) HEW (WN 2)

CHOP (FN 1; WN 1) REAM (WN 2,3)

CLIP (WN 1,4) RIP (FN 1,2; WN 1)

CUT (FN 1,2,3; WN 1,24,25,30,32) SAW (WN 1)

HACK (WN 1,3) SCARIFY (WN 1,2,3)
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WN and FN next to class members indicate mappings with WordNet synsets and FrameNet

frames respectively.

The roles are extended by allowing the PATIENT thematic role to have body-part as an

additional semantic constraint and by adding a new frame.

1.2.3 FrameNet

FrameNet (FN)[3] is a treebank based on Fillmore’s linguistic theory. The main assump-

tion is that it is impossible to understand the meaning of a word without considering the context

in which it appears and the relation with other textual entities.

The main linguistic construct are frames, organized in a hierarchical structure, which are rep-

resentation of situations involving several arguments. A frame is composed of:

• frame elements (FE): same as semantic roles, but furtherly divided in core and non-

core FE. The subgrouping is based on whether the depicted roles are essential to the

meaning of the frame or not.

• lexical units (LU): lemmas with POS tags that evoke a particular frame. The relation be-

tween LUs and frames is many-to-many, meaning that multiple LUs can evoke a frame,

but multiple frames can share a LU as well (due to word senses).

• frame-to-frame relations: e.g. inheritance, subframing, temporal, causative relations etc.

• frame definition.

• example sentences.
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1.2.4 PB vs VN vs FN

PropBank, VerbNet and FrameNet are all very similar treebanks, representing situations

based on verbs (or, rarely, nouns) and their roles. The reader may know wonder similar tree-

banks have been created and what leads latest applications to choose one corpus over the

other.

The main difference is on specificity: PB is more general, while FN is the most specific

treebank. Hence, PB is more suited to be used for the training procedure of Semantic Role

Labeling systems (SRL), while FN and VN are more amenable for tasks such as Machine

Translation (MT) and Question Answering (QA) (see Section 1.2.2).

Example 1.2.4. Given the following sentence Mark ate the soup with a spoon, PB, VN and

FN would represent the text in the following ways respectively:

[Mark]ARG0 [ate]PREDICATE [the soup]ARG1 with [a spoon]ARGM-MANNER

[Mark]AGENT [ate]PREDICATE [the soup]PATIENT with [a spoon]INSTRUMENT

[Mark]INGESTOR [ate]PREDICATE [the soup]INGESTIBLE with [a spoon]INSTRUMENT

It is easy to see the differences in generality between the aforementioned linguistic resources

1.2.5 Framester

The usefulness of linguistic resources is affected by their limited coverage and non-standard

semantics. One way to reduce this problem is to apply linking strategies among lexical

and factual resources to broaden FrameNet’s coverage. This idea brought to the creation of

Framester[22], a frame-based ontological resource acting as a hub between linguistic re-

sources such as FrameNet, WordNet, VerbNet, BabelNet, DBpedia, Yago, DOLCE-Zero etc.

(Figure 1.2)
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Most Semantic Web projects are opportunistic, meaning that the formal semantics of Linguis-

tic Linked Data is delegated to the user through the use of references that may be estabilished

between linguistic resources and classes of an existing ontology. This approach is greedy and

leads to confusion on the usage of certain resources. Framester tackles this problem by apply-

ing a rigorous formal treatment of Fillmore’s frame semantics.

Figure 1.2: Framester Cloud. Red represents the main hub, blue the role-oriented lexical re-

sources, orange the fact-oriented data, green the WordNet-like lexical resources, yellow the on-

tology schema, purple the datasets for Sentiment Analysis. Orange arrows indicate Framester’s

existing links (taken from [22])

Framester uses the D&S (Descriptions and Situations)[22] knowledge pattern. D&S allows

to distinguish the reification of the intension of a predicate (a description) from the reification

of the extensional denotation of a predicate (a situation). In other words, a description d de-

fines a set of concepts c1, ...,cn that classify entities e1, ...,em involved in a situation s. Thus, a

description d deals with interpreting a set of abstract concepts (classes): their instances is what
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constitutes the situation s. This decoupling allows a more effective representation of abstract

concepts and, hence, more precise semantics.

Specifically, Framester uses OWL Punning (Section 1.1.3) to represent D&S: an entity can

be used both as a class and as an individual, where the class is the intension (description) and

the individual is the extensional denotation (situation). Each frame specifies a set of lexical

units that can evoke them and a set of roles (also called frame elements).

We have specified that Framester uses multiple linguistic resources, combining their strengths

into a singular web resource. The most tedious task to perform to link different linguistic re-

sources is to align each frame and synsets together based on their semantics. The linking has

been done by exploiting existing tools like SemLink1, which connects PropBank, VerbNet and

FrameNet by using a manually created mapping.

1.3 Design patterns

Desing patterns[20] are typical solutions to recurrent design problems. Software de-

velopment is a very complex task and the programmer has the responsibility to maximise the

reuse of objects by defining classes and their relations in a clear manner.

During the software development process, the programmer can stumble upon recurrent and

well known problems: thus it is pointless to ”re-invent the wheel”, just like it is pointless to

re-implement an already existing library without adding new features. In these cases, the soft-

ware development process can be sped up by using well known templates that have proved to

lead to high quality projects. Using design patterns can improve the software creation pipeline

in several ways:

1https://github.com/cu-clear/semlink

https://github.com/cu-clear/semlink
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• by speeding up the process, since programmers do not have to define new templates for

representing the problem.

• they are abstract, allowing them to be shared designers with different point of view.

• they are not complex, since their design is optimized for augment code readability and

reusability.

• they are not domain specific, allowing them to be used in different use case scenarios.

Given these properties, it is trivial to evince that design patterns are not based on a specific

language, but they describe general concepts for solving a task. The focus is not on the details

of how to solve a problem by stating a set of actions, but more on the general approach to be

employed.

Design patterns are often used in object-oriented paradigms, showing the relations and inter-

actions between classes and objects. One example is shown in Figure 1.3, namely the Abstract

Factory design pattern, which delegates object creation from client code to a Factory object.

This improves code adaptation: if a new object type must be created, the programmer must

only change the client code by calling another Factory class. Since these classes return a

pointer to the same abstract type regardless of which Factory has been called, the client code

does not see these changes, since it has to deal with the same object. Thus, changes to the

client’s code is reduced.

The major criticism directed at design patterns is mainly due to its applications: some prob-

lems are slightly different from the ones in theory, but programmers tend to use design patterns

as they are, without being flexible enough to adapt the approaches to specific domains. Also,

some of the templates are only used in few programming languages, since most of them already

provide the needed amount of abstraction through functional language constructs[26]. Despite
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Figure 1.3: Abstract Factory
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these drawbacks, pattern-based programming tends to have more advantages than liabilities,

proving to be a useful resource for software development.

1.4 Ontology Design Patterns

Section 1.1.3 shows why it is important to extend the RDFS vocabulary with additional

OWL axioms, allowing KGs to encode class relations in a similar way with respect to Descrip-

tion Logic. Reasoners based on OWL are able to detect more logical inconsistencies due to

the ontology richer entailment regime. Different subjects define in a different way the notion

of consistency.

Mathematical (and logical) truths are different from truths based on the experienceable world.

In physics or chemistry the notion of truth is based on whether an experiment can be replicated

or not. Logics, instead, is more abstract and it is not based on what can be experienced, but on

axioms: every mathematical model of a specific theory must interpret mathematical primitives

in such a way that each axiom of the theory is consistent, i.e. is true. Indeed, in literature we

do not have a single mathematical theory, but multiple ones. Each of them can be more suited

for a specific task than the others. For example, in the 19th century, researchers have tried

to tweak the Euclidean axioms, giving rise to multiple non-Euclidean geometries. As done

by Riemann, it is possible to challenge the parallel postulate[24] (i.e. that there exists one

and only one line r passing through a point P and parallel to line l not passing through P) by

assuming that r does not exist. By changing other axioms, it is possible to obtain a consistent

theory, different from the euclidean one, which has made a huge impact on a variety of topics,

like Representation Theory (crucial for Deep Learning).

Knowledge representation suffers from the same flexibility: since it is based on logics, it is

possible to define multiple theories with consistent ontologies which are, however, uncorre-
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lated with the domain of interest. Even though OWL provides logical language constructs to

represent various scenarios, it does not give any guidelines on their use, making arbitrary

the decision to encode RDF resources as classes, properties or instances. Considering these

premises, it is technically possible to create ontologies with a wrong use of OWL axioms like

owl:sameAs, obtaining KGs which are logically consistent, but not with regards to the do-

main of interest. Hence, logical consistency is not enough: in ontology creation it is crucial

to be compliant to the domain requirements, thus leveraging the expressibility of logic-based

formalisms to more concrete settings. The practice that is often employed to reduce this gap is

the use of Ontology Design Patterns (ODPs)[21].

Ontology design patterns can be divided in several parts, based on the problem they strive

to solve. The most important ones are Logical ODPs and Content ODPs.

1.4.1 Logical ODPs

Logical ODPs solve problems of expressivity and it is based on OWL. Instead of focusing

on the domain of the ontology, it defines general templates for solving recurring problems

regarding axioms, hence focusing on the T-Box of our KG. One of the main logical ODP are

n-ary relations [21, 15].

N-ary relations

In a triple A→p B, we might be interested in adding another entity to the relation. In a

graphical way,
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A Bp

C

Obviously, this cannot be represented in RDF, since its basic structures are triples. One of

the most applied workarounds in these cases is to treat the property as a class.

A P B

C

p1 p2

p3

It is possible to model the ontology by directly defining relations r1 and r2 such that

A→r1 B and A→r2 C. But when classes B and C are semantically closely related, it is usually

better to represent the triple as A→p1 P, meaning that class A is in relation through property

p1 with a complex relation P, which correlates semantically similar classes B and C.

Definition 1.4.1 (n-ary relation). An n-ary relation r is a relation such that

∀i,1≤ i≤ n. (r, p,oi) ∈ G with n≥ 2

with n being the cardinality of the objects. The objects can be either classes or datatypes.

Example 1.4.1 (taken from [15]). Consider the following n-ary relation.
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Purchase

ObjectCompanyPerson Purpose Quantity

has buyer

has seller has object has purpose

has amount

The diagram represent an n-ary relation with no participant (no subject connected to the

n-ary class). Its corresponding Turtle code is the following

:Purchase

a owl:Class ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:allValuesFrom :Purpose ;

owl:onProperty :has_purpose

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:cardinality 1 ;

owl:onProperty :has_buyer

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty :has_buyer ;

owl:someValuesFrom :Person

] ;

rdfs:subClassOf

[ a owl:Restriction ;
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owl:cardinality 1 ;

owl:onProperty :has_seller

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty :has_seller ;

owl:someValuesFrom :Company

] ;

rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty :has_object ;

owl:someValuesFrom :Object

] .

For each binary relations, existential, universal and cardinality constraints have been added

to correctly define the axioms needed for representing inter-class relations. Usually, also in-

verse relations are added, but this has been omitted in the example.

Note that the synsets and frames defined by PropBank, VerbNet, FrameNet and WordNet

can be all considered as ODPs, more specifically as n-ary relations, due to their multiple roles.

This is not the only ODP that is used by these linguistic resources, but it is the most important

one.

Reification

The term reification [21, 56] refers to the process of making a statement about a statement,

or in other words, representing a statement as an entity in its own right. In an ontology, reifi-

cation is achieved by representing statements as individuals and attaching properties to these

individuals to describe the statement. Graphically, it can be represented in this way:
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Subj

Pred

Obj

Statement Obj2

is part of

is part of

is part of

property

Example 1.4.2. Consider the following statement

Mark said that John is a doctor

we can reify this statement by creating a new individual, say t1 and attaching properties to it

to represent the subject, predicate, and object of John is a doctor. Using RDF vocabulary we

can represent this in the following way:

:t1 rdf:type rdf:Statement ;

rdf:subject :john ;

rdf:predicate :hasJob ;

rdf:object :Doctor .

:mark :says :t1 .

and graphically represented as
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John

hasJob

Doctor

t1 Mark

rdf:Statement

rdf:subject

rdf:predicate

rdf:object

:says

rdf:type

The term reification is also used to represent the intensional reification of classes as values.

As already stated in Section 1.1.3 and in Section 1.2.5, there might be cases in which concepts

need to be represented as classes and instances simultaneously. Graphically:

X1

X

X2

X

rdf:subClassOf

owl:disjointWith

rdf:type

Even though OWL Punning allows to use the same identifier for the two different uses,

OWL reasoners differentiate between the two behaviours, thus following the representation

illustrated above.

1.4.2 Content ODP

Logical ODPs are formal and crucial for defining ontologies, but they are not specialized

for representing domain-dependent knowledge. For this task, Content ODPs [21, 46] are used



1.4 Ontology Design Patterns 33

in conjuction with Logical ODPs, introducing a set of design patterns that can be used to model

different case scenarios.

The main difference between CODPs and LODPs is in the level of formality and the target

audience. Content ODPs are designed to be accessible and understandable even by domain

experts, while Logical ODPs are designed to be processed and utilized by automated reasoning

systems.

When modeling a domain it is crucial to define precise competency questions (CQ): a well-

defined ontology needs to be able to respond to questions about what is the topic represented,

the reason why we represent it and whether we have the resources to maintain it. Hence, the

competency questions affect the decision of which content design patterns need to be used for

a specific domain. Here we will present only one Content ODP, the reader may check [21, 46]

to have a broader overview of Content ODPs.

Time Interval ODP

The Time Interval ODP is a pattern used in modeling temporal information in an ontology.

The main purpose of the pattern is to represent time intervals and the relationships between

them. A time interval can be represented as a start time and an end time and can be used to

represent a period such as a day, week, year or an undefined amount of time. The Time Interval

Ontology Design Pattern can be used in various domains to represent temporal information.

By using this pattern, it is possible to represent the relationships between time intervals and

other entities in a structured and semantically rich way, enabling reasoning and analysis over

the temporal information. This design pattern can be represented in the following way:
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TimeInterval

endTime

max 1

startTime

max 1

hasTime

min 1

xsd:dateTime, xsd:time,

xsd:date, xsd:gYearMonth,

xsd:gYear, xsd:gMonthDay,

xsd:gMonth or xsd:gDay

rdfs:subClassOf

rdfs:subClassOf
predicate

hasTime or startTime or endTime

1.5 Polifonia

The Polifonia project [45] is a 3 million euro initiative funded by the EU Horizon 2020

Program, set to run from 2021 to 2024. Its goal is to reestablish the connections between

music, people, places, and events from the 16th century to the present day and make the find-

ings accessible to everyone via a global knowledge graph database on the web. This project

aims to provide a new perspective on European musical heritage. The consortium behind the

Polifonia project consists of a diverse group of researchers and music enthusiasts, including

computer scientists, historians, linguists and musical heritage archivists. The project’s mis-

sion is to bring about a significant change in the way musical heritage is preserved, managed,

researched, interacted with, and promoted. The target audience for Polifonia includes mem-

ory institutions and providers of musical heritage resources, music domain experts, music

cataloguers, music producers and artists, students and teachers, music lovers, cultural and cre-

ative industries. The project’s approach is decentralized, interdisciplinary, open-source, and

validation-driven. The project uses semantic web technologies and data science methods, as

well as linguistic corpora and innovative human-machine interaction techniques to study and
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experience musical heritage. The project also includes reproducible live artistic installations.

The expected outcomes of the Polifonia project include a deeper understanding of European

cultural heritage, increased reuse of music data, a more competitive environment for com-

panies, advanced research methodologies in the music field, increased cultural tourism and

public engagement, and improved preservation and protection strategies for musical heritage.

The Polifonia project utilizes a variety of cutting-edge technologies in order to facilitate access

and discovery of European Musical Heritage. These technologies include:

• Knowledge Graphs: Created through the use of semantic web technologies, these

graphs provide a comprehensive view of musical heritage data.

• Data Analytics: Advanced data science methods are utilized to extract information

about music patterns and features of musical objects, enhancing the knowledge graphs.

• Textual Corpora: The project includes linguistic corpora covering multilingual and

multidisciplinary texts from various time periods, providing information about musical

heritage.

• Structured Data Extraction: Techniques are used to extract data about cultural, social,

and historical aspects of musical heritage, including tangible and intangible assets and

their spatial and temporal connections.

• Interactive Human-Machine Experiences: The project incorporates innovative ways

for people to study and experience musical heritage.

• Artistic Installations: Reproducible live artistic installations provide a unique and en-

gaging way to experience musical heritage.

Each of these technologies plays a role in creating a comprehensive, accessible, and cre-

ative database of European Musical Heritage. The project’s interdisciplinary approach and use



36 1. Background

of data analytics and knowledge graphs allow for the extraction and representation of valuable

information about musical heritage.

The Polifonia project can be subdivided in several pilots:

• Bells: preserving historical bells cultural heritage by building a publicly available knowl-

edge graph;

• Organs: building a knowledge graph about pipe organs;

• Facets: building a search engine for large collections of music documents;

• Interlink: connect entities and concepts hidden in digital music libraries and audiovisual

archives;

• Child: music experience in childhood by building a knowledge graph of its historical

experience;

• Musicbo: make Bologna’s musical heritage available and accessible to the wide public;

• Tunes: influences between music tradition over centuries by interlinking melody collec-

tions of Dutch early popular music culture with other European collections;

• Tonalities: developing tools for the modal-tonal identification, exploration, and clas-

sification of monophonic and polyphonic notated music from the Renaissance to the

twentieth century;

• Access: develop new ways to enhance participation and engagement in music for the

general public, for those with hearing impairments and for those with physical disabili-

ties;
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• Meetups: support music historians and teachers by providing a Web tool that enables

the exploration and visualisation of encounters between people in the musical world.

As stated in the introduction, the knowledge graphs used in this thesis belong to Musicbo

(Section 3.2).
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Chapter 2

Related Work

Selectional restrictions have been widely studied to obtain typed frameworks. Early ap-

proaches like Kozlowski et al. [32] have tried to use type constraints to aid in the generation of

natural language sentences. This approach builds on top of previous developments in the use

of selectional restrictions for Word Sense Disambiguation [51, 1] and shows the importance of

type constraints to map word senses to their translation in another language, e.g. the verb eat,

in german, can be translated to essen or fressen depending on the argument of the role Agent.

Some research has been done to detect the misuse of natural language constructs in sentences.

E. Chersoni et al. [11] have developed models to do anomaly detection of semantic roles,

focusing their research to distinguish rare arguments from improbable ones. Improbable ar-

guments are also the center of the research done by T.Warren et al. [62] who highlight the

effect of selectional restrictions violations on eye movements in reading. A formal picture of

the process of meaning combination with selectional restrictions is provided by N.Asher [2],

showing how to integrate a rich system of types into semantic composition through lambda

calculus. The formalisation is also capable of taking into account metaphores or fictional enti-

ties by defining types in an intensional manner instead of estentional.

39
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To determine domain-dependent selectional restrictions means extracting emerging patterns

from ontologies. Carriero et al. [9] have described a method for obtaining emerging patterns

from Wikidata in the form of statistically frequent domain-property-range triplets. Indeed,

[44, 8] have highlighted the difficulties in reusing the Wikidata ontology. Wikidata provides

guidelines on its use but, most of the times, they are not enough to cover all the possible use

cases.

Other approaches [13, 47, 18, 37] have also tried to extract patterns from ontologies by lever-

aging machine learning techniques and the graph structure of the ontology. Some of the ap-

proaches in literature suffer from high computational demand for very large graphs, leading

the programs to crash for large amounts of triples.

Researchers have focused on improving graph embeddings by graph augmentation. D.D’Auria

et al. [14] have showed how, in the clinical domain, linking concepts to biomedical ontologies

can be beneficial for the link prediction task. B.Ding et al. [17] have shown how to leverage a

richer entailment regime to improve knowledge graph embeddings. Another approach exploit-

ing ontological reasoning is provided by N.Jain [30], which iteratively determines inconsistent

predictions for the link prediction task and uses the negative samples to retrain the model.

For what concerns the OWL-Star to OWL mapping, as far as we know, no research has been

done to provide this translation. Previous work [27] focuses on providing theoretical founda-

tions of RDF* and RDF* to RDF mapping properties.



Chapter 3

Domain-dependent selectional restrictions

Selectional restrictions are useful to ensure syntactical and semantical compatibility over

frames by limiting the possible types taken by argument roles.

Example 3.0.1. taken from [58]

Consider the following two sentences:

I break the window

The hammer breaks the window

The participants of the frame break have identical syntactical features, but they cover

different roles. Following VerbNet’s selectional restrictions, in the first sentence I is an agent,

while hammer is an instrument. The difference concerns the semantic aspect of the sentence

and, hence, it cannot be detected by syntactical trees. By constraining the roles, we give more

context to the arguments, thus adding semantic specificity to the overall sentence.

These constraints are mainly used for semantic role identification and class membership

tasks. Type estimation in RDF involves using reasoning techniques, such as rule-based infer-

ence or machine learning algorithms, to automatically determine the type of a resource based

41
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on its properties and relationships to other resources in the graph. This process can be used to

validate the consistency of an RDF graph and to make inferences about resources and relation-

ships in the graph that can be used to support various applications. In other words, selectional

restrictions can aid rule based and machine learning based algorithms. This feature will be

shown in Chapter 5.

When defining selectional restrictions, specificity is an issue: too general types tend to group

together semantically different roles, while too specific ones may limit the flexibility of the

model. This chapter addresses this issue and provides an implementation of domain-dependent

selectional restrictions. Moreover, it provides a method to create frame-based ontology docu-

mentation.

3.1 Drawbacks of VN selectional restrictions

The more selectional restrictions are general, the more flexible the semantic parsing will

be. This is the approach taken by VerbNet. This linguistic resource has been created to possibly

model every scenario and every domain: the generality of the constraints ensure robustness,

but they might also be useless in specific case scenarios.

As an example, let us say that we want to represent a domain specific ontology like the one

represented by MusicBO [45] for musical knowledge. The hierarchy shown in Figure 1.1 does

not add relevant knowledge to our representation, since it is not able to account for musical

classes and properties.

Example 3.1.1. Consider the following sentence:

The orchestra played a sonata

In VerbNet, the roles and restrictions would be
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[The orchestra]AGENT[+organization][played]PREDICATE[a sonata]THEME[+sound]

VerbNet’s restrictions have been designed to maximise the recall, i.e. to be sure that plau-

sible entities do not get discarded. In some domains, however, the restrictions can be further

specialized: if our domain focuses on classical music, we might reduce the +sound restriction

to a newly created more specific typing like classical music.

The advantages of this approach are threefold:

• better documentation of what the ontology describes;

• more specific embeddings for neuro-symbolic approaches;

• more constraining reasoning entailments.

3.2 About MUSICBO dataset

MusicBO Knowledge Graph stores information about the role of music in the city of

Bologna from a historical and social perspective. It aims to satisfy the requirements of Mu-

sicBO pilot use case, namely conveying knowledge about music performances and encounters

between musicians, composers, critics and historians in Bologna.

MusicBO knowledge graphs have been automatically extracted from the MusicBO pilot’s cor-

pus documents. Each initial textual document belongs to a different author: thus, the extracted

knowledge graphs are not from the same source. This is leveraged in Chapter 5 and 6 to provide

test results, following the intuition that validation and test set must be composed by documents

belonging to authors not appearing in the train set, in order to obtain more meaningful results.

The text-to-KG process leverages Abstract Meaning Representation (AMR [4]) as an in-

termediate semantic representation. AMR graphs obtained through the semantic parsing of

MusicBO textual corpus’ sentences are then transformed into RDF/OWL knowledge graphs
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based on FRED’s [23] logic form by leveraging the AMR2Fred [36] tool. AMR implements

neo-Davidsonian semantics; furthermore, graphs encoded following its formalism rely heav-

ily on PropBank framesets [43]. Those features make AMR particularly suited to capture

”who is doing what to whom” in a sentence. Equally, the RDF/OWL KGs obtained from the

AMR2Fred tool are based on neo-Davidsonian semantics and are event-centric. Therefore,

the knowledge graphs obtained through the AMR2Fred tool are appropriate to fulfil the Mu-

sicBO pilot’s requirements. They inherently organise knowledge pivoting on framesets and

frame arguments, making it easier to encode information about events and situations about

the role of Bologna in European music history.

3.2.1 Text-to-KG process

The text-to-KG process leverages two modules: the Polifonia Knowledge Extractor

pipeline and the AMR2Fred tool. Polifonia Knowledge Extractor pipeline uses Abstract

Meaning Representation to parse sentences into semantic graphs. The two modules are or-

chestrated by the Machine Reading suite, which queries both components through the Text-to-

AMR-to-FRED API and generates RDF named graphs from natural language text.

The Text2KG process for the automatic creation of the MusicBO KG can be broken down into

its main steps as follows:

• Input: .pdf or .docx documents to apply the text-to-KG pipeline to;

• Preprocessing: due to the input format, pre-processing techniques like corrections,

coreference resolution and sentence splitting have been applied;

• Text-to-AMR: the obtained sentences are submitted to a Text-to-AMR parser (SPRING

[5]);
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• Filtering: AMR parsers are not trained over historic musical documents, so their out-

put may be inaccurate. To filter out wrong AMR graphs, a back-translation approach is

applied to convert AMR graphs to their sentences using SPRING (the tool is invertible).

Then, sentence embeddings with an high difference are discarded. In other words, con-

sidering e as the embedding function, f as the Text-to-AMR mapping, s as the sentence

and BLEURT [55] as the similarity metric,

BLEURT(e(s),e( f−1( f (s))))< 0

indicates which AMR graphs to discard. The function e can be considered as an large

pre-trained language model (like BERT [16]);

• AMR2Fred translation: the graphs obtained in the previous steps are given to FRED

[23] to produce OWL/RDF knowledge graphs, which are augmented in post-processing

with Framester’s semantic hub. Specifically, Word Sense Disambiguation (WSD) is

applied to those nodes that do not have alignments to any linguistic resources. The

alignment is implemented via owl:equivalentClass predicate:

<https://w3id.org/stlab/mr_data/MusicBO_120_1113_amr/History>

<http://www.w3.org/2002/07/owl#equivalentClass>

<https://w3id.org/framester/wn/wn30/instances/synset-history-noun-1>

The obtained knowledge graphs are frame-based and based on Propbank. The main

difference from the standard Propbank representation (Section 1.2.1) is that the roles produced

by the AMR2Fred are localroles, i.e. roles created by replacing ARG0, ARG1 etc. with

their labels parsed in snake case. This choice is due to the fact that Propbank frames are not

informative enough and providing more meaningful role names can be beneficial for several

tasks.
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dul:Event

pb:sing.01

pb:sing pb:artistpb:cantata

pb:Artistpb:Cantata

rdfs:subClassOf

rdf:type

localrole:singer
localrole:played song

rdf:typerdf:type

Figure 3.1: Example of a sing-01 frame produced by FRED. Resources starting with an

uppercase letter are types, lowecase are instances and subclasses of dul:Event are frames.

An example of a frame produced by FRED is shown in Figure 3.1. As previously stated, each

frame produced by FRED is a subclass of dul:Event [7].

3.3 Association rule generation

The Knowledge Graphs extracted are fed to a selectional restriction extractor module which

empirically estimates the types of the classes covering specific frame roles. Selectional restric-

tions force semantic constraints on arguments: a violation of these results in sentence anoma-

lies. At the same time, restrictions can be helpful in understanding the contexts in which the

argument is used, especially for domain-specific knowledge. The pipeline can be described as

a multi-step approach:

1. Roles identification: we create a data structure in which we store each <frame type,

role, object type> triple. For instance, considering the following triple
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<https://w3id.org/framester/pb/data/style-01>

<https://w3id.org/framester/pb/localrole/thing_being_styled>

<https://w3id.org/stlab/mr_data/MusicBO_120_1113_amr/Music>

the frame type (style-01) is taken by searching for subclasses of dul:Event

[7]. The role (thing being styled) is obtained by searching through the local-

roles of the frame. The object type (Music) is extracted via rdf:type from

the frame argument instance. Indeed, it must be noted that <frame type, role,

object type> is not a real triple appearing in the knowledge graph, but the frame

and frame argument instances are the resources linked by role;

2. Type estimation: based on the triples obtained in the previous step, we can empirically

estimate the probability of having a certain class as the type of the argument of frame

roles. This is done by simple probabilistic frequency: considering frame instance

and object instance as the instances of frame type and object type respec-

tively, the probability of having object type given frame type,role is calcu-

lated with
N(frame instance,role,object instance)

N(frame instance,role)

where N is a function which outputs the absolute frequency;

3. Type generalization: most of the obtained types for each frame type,role are very

similar. For example, considering write-01 and thing written as frame type,

role respectively, the output is composed by Motet, Madrigal, Mazurka and

other classes that can be aggregated in order to obtain less specific types. Since the

MusicBO knowledge graphs do not specify the entire class hierarchy, the aggregation

must be applied by leveraging the WordNet alignments appearing inside the knowledge
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graphs. Specifically, from the WordNet mapping of object type, a SPARQL query

is launched, visiting the class hierarchy through Framester. When a common general-

ization of multiple types is found, the probability of the new inferred type is simply

estimated by adding the frequencies of the non-generalized classes.

The degree of generalization over the class hierarchies can be a fixed scalar value k

which is manually set by the user of the tool. The default behaviour of the algorithm is,

for every frame type and role, to generalize the frame arguments to a unique class;

4. Parsing to OWL-Star: the obtained restrictions are parsed into an ontology language

(Chapter 4) together with their probabilities.

The Type Estimation process can be considered as extracting association rules from the

domain. Specifically, association rules highlight co-occurrence patterns inside the dataset by

defining rules A⇒B, where A and B are called itemsets. The⇒ symbol does not imply logical

implication (boolean) but implication with some level of truth.

The level of truth is strictly dependent from the following metrics:

• Support count (σ ): frequency of an itemset;

• Support: σ(A∪B)
σ∗ where σ∗ is the total number of association rules;

• Confidence: σ(A∪B)
σ(A) .

In our case, an example of an association rule can be {style-01, thing being styled} ⇒

{Music}.

Other meaningful values that can be extracted regarding the selectional restrictions can be

exploited by the Kullback-Leibler divergence (KL divergence), i.e. the difference of two

probability distributions D(P||Q) = ∑x P(x) log P(x)
Q(x) . The KL divergence can be exploited to

perform a local analysis about how much a frame is informative regarding the semantic classes
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of their arguments. Considering f and c to be the frame and a possible type respectively, the

metrics that can provide such insights are:

• Selectional Preference: S( f ) = D(P(c| f )||P(c)), which expresses how much informa-

tion the frame expresses over its argument types;

• Selectional Association: A( f ,c) = 1
S( f )P(c| f ) logP(c| f )

P(c) , which expresses the contribu-

tion of the type c to the general preference of the frame f .

The analysis using these metrics over the MusicBO dataset can be seen in Chapter 6.

3.3.1 Ontology documentation through Selectional Restrictions

Ontology documentation provides information about the entities, relations, and properties

in an ontology. The documentation should accurately represent the intended meaning of the

knowledge represented in the ontology, and provide guidance on how the ontology should be

used. The inclusion of selectional restrictions and competency questions in the documentation

of an ontology can help to ensure that the knowledge representation is semantically consis-

tent and free from errors, and accurately captures the intended meaning of the relationships

between entities. Indeed, competency questions test the completeness of the knowledge rep-

resentation by ensuring that the ontology can answer a set of representative questions about

the domain. However, for some ontologies, documentation is very scarce and understanding

what the ontology represents can become a difficult task. For this reason, defining a method to

automatically extract competency questions can be beneficial in knowledge representation.

Theoretically, the best approach to obtain competency questions is to use generative language

models that, from a triple, produce the relative questions. For this approach, we would need

to define how to linearize the initial triple (converting the triple to a sentence) and, more im-

portantly, we would need a huge amount of computational resources due to the generation of
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Figure 3.2: Bar plots showing the different posterior distributions given some frames for

Sonatas, Song, Text and Friend types. Most informative results are achieved by more gen-

eral frames like write-01.

questions for each possible fact appearing in the knowledge graph (brute-force approach).

To reduce the complexity of the algorithm, we could use the definition given in Section 3.3

of Selectional Preference. Specifically, we could follow the intuition that, to understand the

topic covered by a frame-based ontology, we could focus on general purpose frames. Indeed,

while specific frames like sing-01 tend to be used with a small set of frame arguments, gen-

eral frames like write-01 can be used in different contexts, thus being more informative if

they occur with domain-relevant types. This intuition is shown in Figure 3.2.

Following this idea, we can devise a three stage approach:

• Selectional Preference Filtering: we filter out specific frames by keeping the frames

with high selectional preference.

• Linearization [31]: the triples are linearized into a string by only considering the last
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part of the uri, i.e. the frame name, the predicate and class name respectively.

• Question generation: the MixQG [39] model is employed to produce questions from

the linearization of the retrieved data points.

The question generation model (MixQG) is a pretrained text-to-text model based on T5

capable of generating questions from natural language statements. This model has been de-

signed to work with paragraphs, hence it would provide better results if we started from the

original text instead of its knowledge graph representation. However, with a good lineariza-

tion technique, the model is also capable of outputting reliable results starting from knowledge

graphs, hence proving its worth in case scenarios in which there is no input text associated to

the ontologies.

For the question generation, the model has been applied two times per statement based on the

part of sentence to which the question referred, i.e. subject or object. The results can be seen

in Chapter 6.
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Chapter 4

Ontology generation and Framester

augmentation

The restrictions and probabilities do not serve as mere data, but can be used to improve

existing linguistic resources with domain-specific data. In Section 1.2.5 we discussed about

Framester, which is an ontological web resource acting as a hub between multiple linguistic

resources. Framester is frame-based, meaning that it follows Fillmore’s linguistic theory: the

main constructs are frames and every situation can be represented through them.

The same assumption is followed by FRED, in which frames are represented as subclasses

of dul:Event. The selectional restriction extractor tool, applied to FRED-like KGs, hence

focuses on Framester frames, i.e. the frequency data can be added into domain-specific frames

inside Framester.

In order to do so, a crucial step is to describe the extracted selectional restrictions with their

probabilities into a language for ontologies, which can subsequently be linked to linguistic

resources.

In the last years, new languages for ontology representation have gained popularity, namely

53
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RDF* and its OWL extension OWL-Star. These new languages provide new vocabulary to

represent statements about statements and probability. Statements about statements can

also be represented by RDF reification, but the knowledge graph becomes very prolix and

difficult to interpret especially for graphical representations. Hence, in some cases it might be

useful to be able to switch from one language to the other.

This chapter shows the implementation of an OWL-Star to OWL compiler together with an

analysis of its mapping properties. Moreover, the chapter discusses about the integration of

the obtained OWL ontologies into the Framester web resource.

4.1 RDF*

RDF* [50] is an extension of RDF which provides a compact alternative to reification (dis-

cusses in Section 1.4.1). Reification in RDF is usually verbose, hard to understand and hard

to query. RDF-Star introduces quoted triples to reduce the verbosity, allowing to represent

”statement of statements” in a more compact manner.

Example 4.1.1. Consider the following sentence:

Mark said that the sun is shining

The sentence can be represented in RDF as

:Sun :action :shines .

:_triple rdf:type rdf:Statement ;

rdf:subject :Sun ;

rdf:predicate :action ;

rdf:object :shines .
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:Mark :say :_triple .

while in RDF* as

:Mark :say << :Sun :action :shines >> .

The triple between <<>> characters is a quoted triple. It is different from standard triples

used in RDF (assertion triples) since it is not factual that ”The sun is shining”, but it is a

claim made by ”Mark”.

It may happen that a triple has both types. This is the case with scenarios in which we want to

represent claims that are also factual.

The following definition extends the one given in Definition 1.1.1.

Definition 4.1.1. An RDF* triple is a 3-tuple defined recursively as:

• any RDF triple is an RDF* triple;

• if t and t ′ are RDF* triples, s ∈U ∪B, p ∈U , o ∈U ∪B∪L, then (t, p, o), (s, p, t) and

(t, p, t ′) are RDF* triples.

4.2 OWL-Star

RDF* has the same pitfalls of RDF. It is not possible to define existential and universal

restrictions with RDF*, thus it is not possible to check precisely the logical consistency of the

ontology. OWL-Star [42] is a non-standard extended vocabulary that tackles this problem like

OWL with RDF.

Since RDF* only extends RDF with additional triples to render reification in a more efficient

way, it could be possible to introduce OWL axioms with the RDF* syntax. This approach,

anyway, is verbose and can be simplified with the vocabularies introduced by OWL-Star
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Example 4.2.1 (taken from [42]). Consider the sentence

Finger is a part of hand

The sentence could be rendered in OWL in the following way

:finger rdfs:subClassOf [

a owl:Restriction ;

owl:onProperty :part-of ;

owl:someValuesFrom :hand

]

and in OWL-Star in the following way

<<:finger :part-of :hand>> owlstar:interpretation

owlstar:AllSomeInterpretation .

In other words, OWL-Star provides a simplified and extended way to deal with existential

and universal restrictions. It also provides a specific vocabulary for Temporal, Contextual

and Fuzzy Logic:

• Temporal and Contextual Logic: through the predicate owlstar:context it is

possible to correlate triples with temporal information, i.e. frame a possibly changing

situation into a particular time.

• Fuzzy Logic: through the predicate owlstar:probability it is possible to corre-

late triples with probability information. The probabilities can be associated with exis-

tential and universal restrictions for more advanced cases.

Example 4.2.2 (Contextual Logic). Consider the sentence
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John is the CEO of the company

The sentence could be rendered in OWL-Star in the following way

<<:John :hasRole :CEO>> owlstar:context :t1 .

:tf1 rdf:type bfo:TemporalRegion .

where bfo is the namespace for the Basic Formal Ontology.

Example 4.2.3 (Fuzzy logic). Considering we have previous knowledge about the probability

of a certain triple, it is possible to indicate its probability in the following way:

<<:bob foaf:friendOf :alice>> os:probability 0.9 ˆˆ xsd:float .

OWL-Star interpretations (existential, universal, cardinality restrictions) can be mapped

into OWL restrictions. Table 4.1 shows the mapping patterns.

4.3 Mapping OWL-Star to OWL

In this section, the work by [27] is extended for considering OWL-Star mappings.

Before describing the details of the mapping, a few definitions over RDF* triples are needed.

4.3.1 RDF* formal foundations

Definition 4.3.1 (Ψrd f ). Consider R∗ to denote the infinite set of RDF* triples and R to denote

the infinite set of RDF triples. Then we define as Ψrd f the set difference Ψrd f = R∗\R, namely

the resources not available inside RDF.

In standard RDF reification, triples are given a specific IRI or blank node of type rdf:Statement,

which is later used to specify the rdf:Subject, rdf:Predicate and rdf:Object of
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OWL-Star OWL

<<?s ?p ?o >> os:interpretation

os:AllSomeInterpretation

?s rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty ?p ;

owl:someValuesFrom ?o ]

<<?s ?p ?o >> os:interpretation

os:AllOnlyInterpretation

?s rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty ?p ;

owl:allValuesFrom ?o ]

<<?s ?p ?o >> os:interpretation

os:AllNumberInterpretation;

os:min 5 ; os:max 5

?s rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty ?p ;

owl:cardinality 5 ]

<<?s ?p ?o >> os:interpretation

os:SomeSomeInterpretation
[rdf:type ?s] ?p [rdf:type ?o]

Table 4.1: OWL-Star to OWL mappings

the reified triple. It is crucial to define such mappings for a precise OWL-Star to OWL trans-

lation.

Definition 4.3.2 (Triple-to-ID mapping). A triple-to-ID mapping is a injective function id:

R∗ −→U ∪B.

The id function could be defined in a incremental fashion. For instance, for an RDF* graph

G, each triple ti ∈ G. ti = (si, pi,oi) one possible implementation is the following

id(ti) = : i
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with i spanning the triples inside G.

This approach depends on graph G and on a predefined ordering between its triples. For

simplicity, we adopt this approach: the id mapped triples are constrained with RDF reification,

hence triples with the same id mapping belonging to different RDF* graphs do not share

semantics due to local restrictions.

Another approach is to define the mapping by concatenating s,p,o. In this way, the id function

would provide a one-to-one mapping between triples and output URIs independently of the

graphs they belong to, but the results would be prolix and difficult to read.

Definition 4.3.3 (ϒ function). Let id be a triple-to-ID mapping. An ϒ : R∗ −→P(U ∪B∪L)

function can be defined such that

ϒ(t) = {s, p,o}∪{x ∈ ϒ(t ′) | t ′ ∈ {s,o}∩R∗}

In other words, ϒ(t) is the set of RDF terms and RDF* triples mentioned in t.

The definition can be extended to graphs as follows:

∀G. ϒ(G) =
⋃
t∈G

ϒ(t)

Definition 4.3.4 (Ω function). The Ω : P(R∗)−→P(R∗) function can be defined as

Ω(G) = G∪ (ϒ(G)∩R∗)

Ω indicates the set of all RDF* triples inside a graph G, including those triples that appear

recursively inside other triples. The expression P(R∗) indicates the set of all possible subsets

of R∗, i.e. the set of all possible R∗ graphs.

Definition 4.3.5 (REDUCEid). The id-specific reduction of an RDF* triple t = (x1,x2,x3)

called REDUCEid(t) is a mapping R∗ −→ R such that it holds that, ∀i ∈ {1,2,3},
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REDUCEid(xi) =

id(xi) if xi ∈ R∗ ∧ i ∈ {1,3}

xi otherwise
(4.1)

Definition 4.3.5 defines a reduction operation over any possible triple, i.e. a mapping

strategy able to disambiguate R∗ triples into R. The additional condition i∈ {1,3} is due to the

fact that predicates cannot be RDF* triples (Definition 4.1.1).

The function REDUCEid is crucial for the definition of the RDF*-to-RDF translator, but it is

not sufficient to preserve the initial information. Indeed, applying REDUCEid does not deal

with reification, which is the main update introduced by RDF*. In other words, we lose the

information provided by statements about statements.

For this reason, another operator called REIFid has to be introduced.

Definition 4.3.6. The id-specific standard RDF representation of RDF* is an RDF*-to-RDF

mapping m : P(R∗)−→P(R)

m(G) = {REDUCEid(t) | t ∈Ω(G)}∪
⋃

t∈ϒ(G)∩R∗
REIFid(t)

where

∀t.t ∈ R∗, REIFid(t) = {(id(t) rdf:type rdf:Statement),

(id(t) rdf:subject s1),

(id(t) rdf:predicate p),

(id(t) rdf:object o1)}

with REDUCEid(t) = (s, p,o), s1 = id(s) if s∈ R∗ else s1 = s, o1 = id(o) if o∈ R∗ else o1 = o.
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4.3.2 OWL-Star formal foundations

With regards to the OWL-Star vocabulary, additional operators must be defined to deal

with OWL-Star interpretations, Contextual and Fuzzy logic.

As done for RDF* triples, we must first formally define the set of OWL-Star triples.

Definition 4.3.7 (Ψowl). Consider O∗ to denote the infinite set of OWL-Star triples and O to

denote the infinite set of OWL triples. Then we define as Ψowl the set difference Ψowl =O∗\O,

namely the resources not available inside OWL.

Trivially, R ⊆ O and R∗ ⊆ O∗ since both O and O∗ extend the vocabulary of R and R∗

respectively. At the same time, R⊆ R∗ and O⊆ O∗ due to Definition 4.1.1.

To ease the readability of the next definitions, we define the function Γ over existential, uni-

versal and cardinality restrictions and the function blank.

Definition 4.3.8 (Γ functions). We define the following set of functions Γ∃,Γ∀,Γcardinality : (U∪

B,U ∪B∪L)→ B:

• Γ∃(p,o) = [rdf:type owl:Restriction; owl:onProperty p;

owl:someValuesFrom o]

• Γ∀(p,o) = [rdf:type owl:Restriction; owl:onProperty p;

owl:allValuesFrom o]

• Γcardinality(p,o) = [rdf:type owl:Restriction; owl:onProperty p;

owl:cardinality o]

Definition 4.3.9 (blank function). Given a OWL class c, the function blank : U → B is

defined as

blank(c) = [rdf:type c]
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OWL-Star interpretations can be translated using Table 4.1. Hence, we define the follow-

ing INTERPRETid function to parse OWL-Star existential, universal and cardinality restric-

tions.

Definition 4.3.10 (INTERPRETid). The id-specific interpretation of a triple t ∈ O∗.

t = (s, p,o) called INTERPRETid(t) is a mapping O∗ −→ O such that, if s ∈ O∗

and p = os:interpretation with s = (x1,x2,x3),

INTERPRETid(t) =



(x1,rdfs:subClassOf,Γ∃(x2,x3)) if o = ∃

(x1,rdfs:subClassOf,Γ∀(x2,x3)) if o = ∀

(x1,rdfs:subClassOf,Γcardinality(x2,x3)) if o =C

(blank(x1),x2,blank(x3)) if o = S

t otherwise

(4.2)

where ∀, ∃, C and S stand for os:AllOnlyInterpretation, os:AllSomeInterpretation,

os:AllNumberInterpretation and os:SomeSomeInterpretation. If t ∈O∗. t =

(s, p,o) and s /∈ O∗∨ p 6= os:interpretation, then INTERPRETid(t) = t.

Thus, the INTERPRETid operator is defined over all possible O∗ triples: if the input triple

does not show any of the patterns appearing in Table 4.1, then INTERPRETid does not apply

any changes, i.e. it becomes the identity function. The same pattern is shown for all the func-

tions introduced to deal with O∗ triples (Definition 4.3.11, 4.3.12): this allows us to be more

lenient on the function definitions, avoiding to use mappings that are not defined with specific

inputs.

The temporal axioms can be translated using the OWL-Time ontology1. The ontology pro-

vides a vocabulary for expressing facts about topological (ordering) relations among instants

1https://www.w3.org/TR/owl-time/

https://www.w3.org/TR/owl-time/
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and intervals, together with information about durations, and about temporal position includ-

ing date-time information. In our case, we model contexts without using specific temporal

information (like duration, start/end of interval etc.) but just by specifying a time entity with

an undefined temporal position.

Definition 4.3.11 (TIMEid). The id-specific temporal reduction of a triple t ∈O∗. t = (s, p,o)

called TIMEid(t) is a mapping O∗ −→ O such that

TIMEid(t) =

(s,time:hasTime,o) if p = os:context

t otherwise
(4.3)

The object o is defined as (o,rdf:type,time:TemporalEntity) if p=os:context.

Note that Definition 4.3.11 may be too confident about the type of the context. Indeed, in

OWL-Star contexts are not only defined with temporal properties through bfo:TemporalRegion,

but may generalize over different situations. OWL-Star does not specify the range of os:context,

but here we map to the OWL-Time ontology on a statistical basis.

The probability predicate os:probability, instead, is simply translated by removing the

prefix and creating a new DataType property for probabilistic relations. This is formally de-

fined in Definition 4.3.12.

Definition 4.3.12 (PROBid). The id-specific probability reduction of a triple t ∈O∗. t =(s, p,o)

called PROBid(t) is a mapping O∗ −→ O such that

PROBid(t) =

(s,:probability,o) if p = os:probability

t otherwise
(4.4)

The predicate :probability is defined as

(:probability, rdf:type, owl:DatatypeProperty)
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if p = os:probability.

We can now extend Definition 4.3.6 to also consider the OWL-Star vocabulary.

Definition 4.3.13. Let h = (INTERPRETid ◦TIMEid)◦PROBid , where ◦ is the function com-

position.

The id-specific standard OWL representation of OWL-Star is an OWL-Star-to-RDF map-

ping m : P(O∗)−→P(O) that

m(G) = {h(REDUCEid(t)) | t ∈Ω(G)}∪
⋃

t∈ϒ(G)∩O∗
REIFid(h(t))

4.4 About OWL-Star-to-OWL mapping properties

The previous section introduced the formal foundations of the OWL-Star-to-OWL map-

ping. When translating an ontology from a language to another, we want to ensure that certain

properties hold, i.e. that the translation does not alter the semantics of the original knowledge.

One desiderable property for such mappings is to be information preserving, meaning that the

mapping needs to be invertible, thus allowing to retrieve the initial data from the translated

knowledge.

Definition 4.4.1 (Information preserving). An OWL-Star-to-OWL mapping m : O∗ −→ O is

information preserving for a graph G if ∃m′ : O−→ O∗. m′(m(G)) = G.

Even though the knowledge representation with OWL and OWL-Star may be structurally

different, this property ensures that m′ is capable of reproducing the original ontology, i.e.

m(G) retains the variance of the original data.

Note that the function id may map triples t ∈ Ω(G) to resources that already appear inside

graph G. In these cases, the mapping is said to be in conflict with G. This is an important
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property to avoid when implementing the translator: when in conflict the mapping may inad-

vertedly output semantically different graphs, thus not preserving the original information of

the input data.

We generalize the notion of conflict to all possible mappings.

Definition 4.4.2 (Conflict). Consider a mapping η : O∗ −→ O∗ ∪U ∪ B and a graph G∗ ∈

P(O∗). The mapping η is in conflict with G∗ if ∃t ∈ G∗. η(t) ∈ ϒ(G∗)

Hence, conflict is also defined for functions that output triples (i.e. REIFid , INTERPRETid ,

TIMEid , PROBid). This extention of the notion will be crucial for the next theorems, since it

allows us to define invertible operations over certain types of graphs.

For proving that Definition 4.3.13 is information preserving, we need to prove a series of

lemmas about the invertibility of INTERPRETid ,TIMEid and PROBid . Indeed, proving that a

mapping is information preserving follows from proving the existence of the inverse mapping.

Since the inverse of the composition of two functions f and g is the composition of the inverses

of the functions (i.e. ( f ◦g)−1 = f−1 ◦g−1), we do not focus on h but on the operators that it

applies.

Theorem 1. A function f is invertible if and only if it is injective.

Beware that a function is injective if and only if ∀x1,x2 ∈ dom( f ). x1 6= x2→ f (x1) 6= f (x2).

From this we can proceed in proving the invertibility of h.

Lemma 2. Let Σ be the set of OWL-Star graphs such that for every G∗ ∈ Σ it holds that PROBid

is not in conflict with G∗. The function PROBid is invertible for Σ.

Proof. Consider two triples t1, t2 ∈ G∗. t1 = (s1, p1,o1)∧ t2 = (s2, p2,o2) with t1 6= t2. We can

proceed by cases:
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• if (p1 = p2)∧(p1 = os:probability): considering t ′1 = (s′1, p′1,o
′
1), t ′2 = (s′2, p′2,o

′
2)

to be t ′1 =PROBid(t1) and t ′2 =PROBid(t2), we know that (p′1 = p′2)∧(p′1 =:probability).

By PROBid we know that ∀i. i ∈ {1,2}→ (si = s′i)∧ (oi = o′i): since, by hypothesis, we

know that t1 6= t2, it must be that (s1 6= s2)∨(o1 6= o2), hence (s′1 6= s′2)∨(o′1 6= o′2). Thus,

PROBid(t1) 6= PROBid(t2)

• if (p1 = p2)∧ (p1 6= os:probability): in this case PROBid is the identity function

which is injective.

• if (p1 6= p2)∧(p1 = os:probability): considering t ′1 = (s′1,:probability,o
′
1),

t ′2 =(s′2, p′2,o
′
2) to be t ′1 =PROBid(t1) and t ′2 =PROBid(t2), we know that p′2 6=:probability

since t1 and t2 belong to G∗ which is not in conflict with PROBid . Hence, p′1 6= p′2 and

PROBid(t1) 6= PROBid(t2).

• if (p1 6= p2)∧ (p2 = os:probability): analogous to before

Since ∀G∗ ∈ Σ,∀t1, t2. t1 6= t2 → PROBid(t1) 6= PROBid(t2), PROBid is injective and, for

Theorem 1, invertible.

Lemma 3. Let Σ be the set of OWL-Star graphs such that for every G∗ ∈ Σ it holds that TIMEid

is not in conflict with G∗. The function TIMEid is invertible for Σ.

Proof. Analogous to Lemma 2

Lemma 4. Let id be an invertible triple-to-ID mapping and let Σ be the set of OWL-Star graphs

such that for every G∗ ∈ Σ it holds that REIFid is not in conflict with G∗. The function REIFid

is invertible for Σ.

Proof. Analogous to Lemma 2
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Before proving that INTERPRETid is invertible, we must first state the invertibility of Γ∃,

Γ∀, Γcardinality and blank since the operator depends on them.

Lemma 5. The functions Γ∃, Γ∀, Γcardinality and blank are invertible

Proof. We will prove the invertibility of Γ∃ since the proofs on the other functions are analo-

gous.

Consider two pairs of predicate and object (p1,o1), (p2,o2) such that (p1,o1) 6= (p2,o2). By

applying the Γ∃ function, we obtain [rdf:type owl:Restriction; owl:onProperty

p1; owl:someValuesFrom o1] and [rdf:type owl:Restriction; owl:onProperty

p2; owl:someValuesFrom o2]. Trivially, Γ∃(p1,o1) 6= Γ∃(p2,o2) due to the hypothesis

that (p1 6= p2)∨ (o1 6= o2). Thus, by Theorem 1, the function is invertible.

Lemma 6. Let Σ be the set of OWL-Star graphs such that for every G∗ ∈ Σ it holds that

INTERPRETid is not in conflict with G∗. The function INTERPRETid is invertible for Σ.

Proof. We will prove the invertibility of INTERPRETid on the sub-case in which the object is

os:AllSomeInterpretation since the other proofs are analogous.

Consider two triples t1, t2 ∈G∗. t1 =(s1, p1,o1)∧t2 =(s2, p2,o2) and let t ′1 =INTERPRETid(t1)=

(s′1, p′1,o
′
1), t ′2 = INTERPRETid(t2) = (s′2, p′2,o

′
2).

We can proceed by cases:

• if
2∧

i=1
((si /∈ O∗)∨ (pi 6= os:interpretation)): trivial, we obtain the identity func-

tion which is invertible.

• if
⊕2

i=1((si /∈ O∗)∨ (pi 6= os:interpretation)): consider that t2 is the triple that

does not change, i.e. t2 = t ′2. Hence, by hypothesis that the mapping is not conflictual

and t1 6= t2, then t ′1 6= t ′2, i.e. by Theorem 1 the function is invertible. The same proof can

be done in case t1 = t ′1.



68 4. Ontology generation and Framester augmentation

• otherwise: consider s1 = (x1,y1,z1), s2 = (x2,y2,z2). Then:

– if (o1 = o2)∧ (o1 = os:AllSomeInterpretation): we know that o1 = o2∧

p1 = p2 so, by hypothesis t1 6= t2, we know that s1 6= s2. Since (x1 6= x2)∨ (y1 6=

y2)∨ (z1 6= z2), then (s′1 6= s′2)∨ (o′1 6= o′2) because x1 = s′1, x2 = s′2 and by Lemma

5. Hence, t ′1 6= t ′2 and by Theorem 1, the function is invertible.

– if (o1 6= o2)∧ (o1 = os:AllSomeInterpretation): we know that t ′2 = t2.

Hence, by hypothesis that the mapping is not conflictual and t1 6= t2, then t ′1 6= t ′2,

i.e. by Theorem 1 the function is invertible.

– if (o1 6= o2)∧ (o1 = os:AllSomeInterpretation): proof analogous to the

previous case.

– if (o1 6=os:AllSomeInterpretation)∧(o2 6=os:AllSomeInterpretation):

trivial, we obtain the identity function which is invertible.

For Theorem 7 we will assume that every OWL-Star graph G is redundancy complete,

meaning that ∀t ∈ G,∀t ′ ∈ t → t ′ ∈ G . We can now prove the existence of an information

preserving mapping for a subset of OWL-Star graphs.

Theorem 7. Let id be a triple-to-ID mapping and let Σ be the set of OWL-Star graphs such

that for every G∗ ∈ Σ it holds that

• id, REIFid , INTERPRETid , TIMEid , PROBid are not in conflict with G∗.

• G∗ is redundancy complete.

• G∗ does not use the RDF reification vocabulary.
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The id-specific standard OWL representation of OWL-Star is information preserving for G∗.

Proof. Let us define a mapping m′ as per Definition 4.4.1. For every OWL graph G, let ℜ(G)

be the set of all 5-tuples (x,s, p,o,RS) with x,s, p,o ∈ (U ∪B∪L) and RS⊆ G such that

RS = {(x rdf:type rdf:Statement),

(x rdf:subject s),

(x rdf:predicate p),

(x rdf:object o)}

Let N(G) = {t ∈G | t /∈ RS ∀(x,s, p,o,RS) ∈ℜ(G)}, i.e. N(G) is the set of triples belong-

ing to G that do not use the RDF reification vocabulary, considering that G is the id-specific

standard OWL representation of G∗. Due to the hypothesis that G∗ is redundancy complete,

N(G) preserves the triples (s, p,o) and loses information about the reification, which is how-

ever retained by the id mapping.

Note that if G∗ /∈Σ and G is the id-specific standard OWL representation of G∗ then it would be

impossible for m′ to differentiate whether a reified triple t must be translated using the RDF*

syntax or RDF: with the hypothesis that G∗ ∈ Σ we avoid this problem.

Since id is invertible (Definition 4.3.2) and not in conflict with G∗ by hypothesis, ∀(x,s, p,o,RS)∈

ℜ(G) we have that x is the image of mapping id and it is unique. Hence, we may de-

fine a mapping DEREIFℜ(G) such that dom(DEREIFℜ(G)) = {x | (x,s, p,o,RS) ∈ ℜ(G)}

and DEREIFℜ(G)(x) = (s, p,o). As our last preliminary, we introduce a recursively-defined

mapping REVERSEℜ(G) that maps every OWL triple t = (x1,x2,x3) to an OWL-Star triple

t∗ = (x∗1,x
∗
2,x
∗
3) such that

∀i ∈ {1,2,3}. x∗i =

REVERSEℜ(G)(DEREIFℜ(G)(xi)) if xi ∈ dom(DEREIFℜ(G))

xi otherwise
(4.5)
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We can now define m′ as

m′(G) = {t ′ | ∀t ∈ N(G). t ′ = REVERSEℜ(G)(h′(t))} (4.6)

where h′ is the inverse of h (Definition 4.3.13). We know h′ exists since h is the composition

of invertible functions by hypothesis.

The crux of this proof regards showing that m′ is indeed the inverse of m. For this let us proceed

by cases on G∗ knowing that the graph is redundancy complete:

• if G∗ is the empty graph then m(G∗) =m({}) = {} and m′({}) = {}, so m′(m({})) = {}.

• if G∗ = {(x,y,z),(s, p,o)} with x = (s, p,o), then m(G∗) = {h(id(x),y,z),h(s, p,o)} ∪

{REIFid(h(s, p,o))}. Hence, m′(m(G∗)) = {(x,y,z),(s, p,o)}: we are mapping triples

in N(G), so REIFid((h(s, p,o)) is not considered by m′. As a consequence, m′(m(G∗))=

G∗.

• if G∗ = {(x,y,z),(s, p,o)} with z = (s, p,o): analogous to the previous case.

• if G∗ = {(x,y,z),(s1, p1,o1),(s2, p2,o2)} with x = (s1, p1,o1) and z = (s2, p2,o2), then

m(G∗) = {h(id(x),y, id(z)),h(s1, p1,o1),h(s2, p2,o2)}∪{REIFid(h(s1, p1,o1)),

REIFid(h(s2, p2,o2))}. So, m′(m(G∗))= {(x,y,z),(s1, p1,o1),(s2, p2,o2)} and m′(m(G∗))=

G∗.

• if G∗ = {(x,y,z)} then m(G∗) = {h(x,y,z)}. Thus, m′({h(x,y,z)}) = {(x,y,z)} and

m′(m(G∗)) = G∗.

• Consider G1,G2⊆G∗ such that m′(m(G1)) =G1 and m′(m(G2)) =G2. Then m′(m(G1∪

G2))=G1∪G2 because m′(m(G1∪G2))=m′(m(G1)∪m(G2))=m′(m(G1))∪m′(m(G2))=

G1∪G2.
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Hence m′ is the inverse of m and m is information preserving for G∗.

Note that the possible conflictuality of id leads to different outcomes than REIFid ,

INTERPRETid , TIMEid or PROBid: the last ones, indeed, would cause the output OWL graph

to have some repeated triples, which would lead to obtain a different OWL-Star graph than the

original if the reverse mapping m′ is applied. However, this would not cause any change to the

semantics of the graph. This result is justified by the fact that the vocabulary introduced by

OWL-Star is a syntactical transformation. For the id function, instead, its non-conflictuality

is a crucial property for keeping the graph semantics, otherwise different graph nodes may be

mistakenly grouped under the same resource.

As a result, while there might be a discrepancy on the possible consequences of conflictuality

on the graph semantics, the invertibility of all the introduced mappings remains crucial.

4.5 Framester Augmentation

Considering Figure 1, we have created a tool for extracting selectional restrictions and

a tool for switching from OWL-Star to OWL. After running these tools on the MusicBO

dataset, we have obtained OWL ontologies that can be inserted inside Framester. Specif-

ically, considering Figure 3.1, we can extract the pb:sing-01 type constraints, create an

OWL ontology and map everything to Framester by creating a domain-specific subframe for

pb:sing-01 (Figure 4.1). Remember that Framester is a hub between language resources:

the skos:closeMatch predicate maps Framenet frames (which are the main backbone of

Framester) to frames belonging to other resources (like Propbank).
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framenet frame

pb:sing.01 pb:sing.01 0pb:sing.01 1

pb:sing.01 2 pb mb:sing.01 pb mb:Person

pb mb:Artistpb mb:Cantata 0.40

0.10.13

skos:closeMatch

pbs:hasRole
pbs:hasRole

pbs:hasRole
rdfs:subClassOf

pb:sing.01 0

pb:sing.01 1pb:sing.01 2 os:probability

os:probability

os:probability

Figure 4.1: Augmented sing-01 in Framester. The framenet frame box is not a real resource,

but is used to represent a set of Framenet frames since the mapping can be many-to-one. The

prefix pb stands for Propbank and pb mb for newly created MusicBO namespace



Chapter 5

Selectional restrictions for

Neuro-Symbolic tasks

Up to this chapter we have described how domain-specific selectional restrictions can be

extracted from a corpus of knowledge graphs, creating ontologies in OWL or OWL-Star de-

scribing the associated probabilities.

With the recent development of neuro-symbolic approaches like Deep Learning, the scientific

community is trying to understand how neural networks (and machine learning in general)

can benefit from the integration of symbolic approaches like knowledge graphs. While both

knowledge graphs and relational databases are used to store information, the type of knowl-

edge they can represent is semantically and structurally different. This gap is evident when

building neural networks: indeed, most neuro-symbolic approaches rely on tabular data, while

training and testing with data stored in triples seems to be an harder task.

Nevertheless, the combination of neural networks and knowledge graphs can be beneficial in

several tasks by leveraging the advantages of representation learning together with more fac-

tual data.

73
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This chapter will describe recent popular approaches for Machine Learning on knowledge

graphs and how they can be used to integrate the extracted selectional restrictions for a task of

class membership. Overall, we will show how these additional constraints over role types are

beneficial for learning embeddings.

5.1 Machine Learning approaches for KG

In the latest years the scientific community has tried to exploit machine learning approaches

for reasoning over KGs. One of the main difficulties is to map existing methods to new struc-

tured inputs. Indeed, KGs are structurally different from tabular, textual or image datasets.

The methods shown in literature can be divided in three categories [53]:

• Tensor Decomposition Models: these approaches use multi-dimensional matrices to

represent knowledge graphs (bilinear or non bilinear models);

• Geometric Models: relies on encoding the relation as a geometric transformation be-

tween head and tail of the triple. In other words, when the embedding of head is

summed to the embedding of relation, the output should be close to the embedding of

tail. Thus, the model focuses on minimizing the distance between E(head)+E(relation)

and E(tail) with E being the embedding model.

Geometric models can be:

– Pure Geometric Models: the basic model belonging to this category is TransE,

which forces the embeddings to satisfy the vector sum described before. More

complex models are TransH and TransR, different hyperplanes to represent rela-

tions and entities;
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– Geometric Models with additional embeddings: the embeddings calculated by Pure

Geometric Models can be improved with other information sources like text de-

scriptions or constraints. STransE is an approach that exploits two additional ma-

trices W h
r and W t

r for each < h,r, t > triple. These weights multiply E(h) and E(t)

respectively before applying the vector sum, thus allowing to change the embed-

dings of an entity based on the triple considered. This reduces the disadvantages in-

troduce by Pure Geometric Models with reference to one-to-many, many-to-many

or many-to-one relations;

– Roto-Translation models: uses rotation transformations instead of or in addition

to translation. RotatE belongs to this category and represents the relation r as a

rotation between h to t in the complex space;

• Deep Learning Models: exploit the recent developments of Deep Neural Networks

to learn patterns from the knowledge graphs. By using neuro-symbolic models, long-

distance nodes are able to influence each other, i.e. they resolve the limitations of

distance-based models suffered by previously introduced models. These approaches can

be divided in:

– Graph Convolutional Networks: use convolutional layers to represent embeddings

by considering long-distance entities (ConvE);

– Capsule Neural Networks: use convolution-based networks with capsules and com-

bine their outputs to form more stable representations (CapsE);

– Recurrent Neural Networks: use RNNs to learn over arbitrary sequences of facts

instead of sequences of triples with a fixed length (RSN).

Another type of approaches which has not been explicitly stated by [53] is the use of well-

known Natural Language Processing (NLP) techniques to embed knowledge graph data. Sev-
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eral approaches have tried to develop text-to-text models to translate KGs in coherent textual

data, most of the times exploiting several linearization techniques to represent KGs in easily

parsable syntaxes (e.g. AMR [4]). Once the textual data is extracted, standard NLP techniques

can be used to obtain the desired outputs.

This two stage approach can have several pitfalls. Some of them are the following:

• the models used in the first stage can add noise and, thus, provide the subsequent step

with unreliable data.

• structural information about entities is lost, specifically axioms, hence for reasoners it is

more difficult to ascern consistency due to the change of representation.

Some approaches like RDF2Vec [52] and OWL2Vec [10] do not work by parsing KGs to

textual data, but they use language models for graph embeddings by generating sequences

of entities: the assumption is that entities that are linked together inside a graph should be

spatially closer in the embedding space. In this way, it is possible to apply NLP techniques

like word2vec [38] or RNNs to learn over KGs.

5.1.1 RDF2Vec

The first part of generating graph embeddings with RDF2Vec is the generation of se-

quences of entities. This can be done in several ways, but the approaches proposed by [52] are

the following:

• Random walks: given a graph G = (V,E) where V is the set of nodes and E is the

set of edges, random walks can be generated with a breadth-first algorithm, i.e. start-

ing from an input root node r we extract the neighbours of r. After this, the process

is recursively repeated for some random sampled neighbours, while the other adjacent
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nodes are discarded. The recursion stops when the maximum sequence length is reached

(hyperparameter of the model) or when the sampled node is terminal.

• Weisfeiler-Lehman Subtree RDF Graph Kernels [57]: this technique is usually ap-

plied for calculating the similarity of two graphs and, essentially, it is based on the

concept of node relabeling given the node’s structural context. The idea of applying

this technique instead of random walks is that, hypothetically, it could be possible to

group different nodes together if they are relabeled in the same way, hence being able to

interchangeably swap grouped nodes when creating sequences.

G.Vandewiele et al. [61] have proved that the use of the Weisfeiler-Lehman kernel on RDF

graphs does not provide more insight on the KG compared to random walks. For this reason,

in this paper, when evaluating the use of selectional restrictions on the class membership task

we only use random walks.

After the sequences collection, a self-supervised training pipeline can be used to learn the

entities embeddings. RDF2Vec uses word2vec which is a two-layer neural network model.

There are two different word2vec models: the Continuous Bag of Words model (CBOW) or

the Skip-Gram model.

CBOW

The CBOW model predicts the probability of a certain word given its context words within

a given window. In particular, given a set of words w1, ...,wN and a positive integer context

window c, the objective of CBOW is to maximize

1
N

N

∑
n=1

log p(wn | wn−c...wn+c)

where wn−c...wn+c indicates all the words inside window c except wn and p is the softmax

function.
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(a) CBOW (b) Skip-Gram

Figure 5.1: CBOW and Skip-Gram architectured (taken from [52])

The CBOW architecture averages all context words and applies neural layers with softmax to

get a score for each word. The architecture is shown in Figure 5.1a.

Skip-Gram

The Skip-Gram model is the inverse of CBOW, i.e. tries to predict the context words given

a target word. More specifically, its objective is to maximize

1
N

N

∑
n=1

∑
−c≤h≤c, j 6=0

log p(wn+ j | wn)

The architecture is shown in Figure 5.1b.

5.1.2 OWL2Vec

OWL2Vec is an extension of RDF2Vec which is able to exploit OWL ontologies to gener-

ate three documents that capture different aspects of the semantics of the ontology:

• one document for the graph structure and the logic constructors;
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• one document for the lexical information;

• one document for the their combination.

These documents are subsequently used for extracting the sequences needed for the learning

procedure.

Prior to training, some mappings (also called projections) need to be applied to translate OWL

ontologies to RDF triples. The mapping strategy used by OWL2Vec is the one proposed by

[59, 10] which is based on approximations. Specifically, complex relations like existential,

universal or cardinality restrictions are parsed into triples without using blank nodes: the idea

is that blank nodes may cause noise and make training more difficult since the different entities

are not directly linked between each other; at the same time, not the exact logical relations

would be kept in the resulting RDF.

Example 5.1.1. Consider the following existential restriction

:Purchase rdfs:subClassOf

[ a owl:Restriction ;

owl:onProperty :has_seller ;

owl:someValuesFrom :Company

] .

The mapping strategy would parse the existential restriction to

:Purchase :has_seller :Company .

Moreover, the proposed mapping strategy creates inverse relations for membership and

subsumption predicates (rdf:type and rdfs:subClassOf) to create bidirectional walks

between two entities. Note that other projection strategies may be applied instead, like the

transformation according to the OWL to RDF Graph Mapping [40] defined by W3C.



80 5. Selectional restrictions for Neuro-Symbolic tasks

Overall, OWL2Vec applies the same approach adopted by RDF2Vec, but it also introduces

additional techniques to map OWL ontologies and additional sequences produced by the walk

generator algorithm.

Structure Document

The structure document aims to represent both structural and logical constructs by applying

a walk generator algorithm over the knowledge graph. The ontology axioms are transformed

into the OWL Manchester Syntax [29], i.e. sequences are written without including the names-

paces for owl, rdf and rdfs relations. Note that the entities IRIs are left unchanged.

Example 5.1.2. Consider Example 5.1.1. The sequence obtained from the projection is

(:Purchase,:has seller,:Company)

Note that it is possible to add another sequence introducing the existential restriction over the

initial triple:

(:Purchase,subClassOf,:has seller,some,:Company)

where the relations subClassOf and some follow the OWL Manchester Syntax.

Lexical Document

The lexical document is composed by the sequences extracted in the structure document

with the entity IRIs replaced by their rdfs:label values. If the entity has no rdfs:label

relation, then the last part of the IRI is treated as label and, assuming it follows the camel-case

notation, each different word is added into the sequence.

Example 5.1.3. Consider the following sequence
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(:COMPANY031,:hasRival,:COMPANY032,:locatedIn,:LOCATION001)

where

:COMPANY031 rdfs:label "Samsung"ˆˆxsd:String .

:COMPANY032 rdfs:label "Apple"ˆˆxsd:String .

:LOCATION001 rdfs:label "California"ˆˆxsd:String .

and the predicates have no labels.

The obtained lexical sequence is

(”Samsung”,”has”,”rival”,”Apple”,”located”,”in”,”California”)

Combined Document

To preserve the correlation between IRI entities and lexical information, a combined docu-

ment is created as a mix of structural and lexical sequences. Specifically, one possible strategy

would be to create sequences from the structural document in which a few IRIs remain un-

changed, while other entities are replaced with their corresponding labels.

This procedure would benefit the embeddings of the IRIs since they can use the semantics of

their labels: this is useful when no label is available and the last part of the IRI is not infor-

mative by itself. On the other hand, word embeddings would also benefit from the structural

semantics coming from the structural document. Indeed, while the lexical document is more

similar to a natural language sentence, the structural document preserves the original triples

and relations.
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5.2 Preprocessing of MusicBO dataset for OWL2Vec

Showing whether selectional restrictions can be useful for neuro-symbolic tasks amounts

to show empirically if, by using these constraints, the output of machine learning models qual-

itatively improve for specific tasks. As in most machine learning tasks, a preliminary step of

data preprocessing must be applied to make the data compatible to the model’s architecture.

As stated in Chapter 3, this paper focuses on the MusicBO dataset, i.e. a dataset of automati-

cally created KGs from textual description about Bologna’s musical history. The dataset is not

fully compliant with RDF2Vec and OWL2Vec for the following reasons:

• .nq to .owl: the input files are .nq, i.e. N-Quads files storing information about triples

and an IRI labeling what graph in the dataset the triple belongs to (named graph).

Hence, the files are composed by a set of quadruples. This is not required by OWL2Vec,

hence the named graph IRIs need to be deleted to obtain a .owl file.

• Class and Object Properties: OWL2Vec needs to specifically state which resources

are of types owl:Class or owl:ObjectProperty in order to apply its algorithm.

Without these axioms, OWL2Vec would not be able to infer class membership and sub-

sumption axioms and, thus, it would not be able to create sequences of resources for

the structural document. Thus, for each frame, for each type of the instance covering

frame roles and for each predicate we add membership relations to owl:Class and

owl:ObjectProperty respectively.

• MusicBO IRI reduction: some of the IRIs contain meta information about the KG they

belong to. For example, the IRI associated to the class Music in one of the MusicBO

knowledge graphs is https://w3id.org/stlab/mr data/MusicBO 120 1113 amr/Music,

where the MusicBO 120 1113 amr part changes from KG to KG. Since OWL2Vec com-

putes labels and IRI embeddings, without preprocessing it would output different vectors
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for semantically equivalent concepts due to the difference between the IRIs. To avoid

this problem, every IRI mentioning ”MusicBO” is reduced by deleting the suffix, i.e.

for Music the final IRI would be https://w3id.org/stlab/mr data/Music.

Apart from the mentioned necessary changes for OWL2Vec compatibility, the dataset can

be augmented by:

• Selectional Restriction Augmentation: the probability axioms obtained from Chapter

3 can be used to augment the MusicBO KGs. Specifically, it is possible to add relations

at the TBox level by connecting frame and type of the instance covering a frame role

through a predicate role. While this procedure may not be logically sound since we

are using the same role IRI for expressing a relation between instances and a relation be-

tween classes, it is assumed that it benefits OWL2Vec since we use the same embedding.

This procedure is applied only to the train set as to not drastically change the KGs used

for evaluation and testing.

• Label Insertion: every MusicBO KG has no rdf:label relation: this is crucial for

the creation of the lexical document for OWL2Vec. Labels can be automatically added

to each entity by extracting the last part of their IRIs, i.e. the string after the last ’/’ or

’#’. This step is optional: beware that creating the lexical document can improve the

sequence sampling, but it is not a necessary step for deploying the OWL2Vec model.

The obtained dataset needs to be split into train, validation and test set. Due to computa-

tional reasons, even though the MusicBO dataset is composed by 5000 KGs, we only use 500,

100 and 200 KGs for train, validation and test set.

Since the class membership task is a classification task, we need to find the targets, i.e. the

classes that can be predicted by the OWL2Vec model given the instance and its context. The

targets are obtained on the train set by extracting each type found for each frame. Due to this,
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the evaluation and test set may contain types that do not appear in the train set and hence in the

targets. In such cases, the relative instances are not considered for evaluation since it would be

impossible to obtain the correct prediction since the right type is not within the targets.

5.3 OWL2Vec on domain-specific probabilistic axioms

The Selectional Restriction Augmentation inserts axioms regarding the reification of the

constraint so to assign a probability for each type. In the random walk algorithm it is not

possible to access the reified triple (unless it is the root of the walk) due to the fact that its

relations are not bidirectional. Indeed, from the frame or the type, the random walk algorithm

cannot obtain the reified triple since the predicates (rdf:subject and rdf:object) map

the reification to their respective resources (frame and type) and not viceversa. In other words,

the OWL2Vec algorithm cannot access the information about the probability of the type cov-

ering a frame role.

Moreover, obtaining in a single walk all the information about the reification is not guaranteed

since it would need to access different triples in the same run, i.e. it would need to access the

rdf:subject, rdf:predicate, rdf:object and :probability relations in order

to correlate each part of the statement with the probability. It is safe to assume that, with an

infinite number of walks, each part of the reified triple is considered and, thus, can learn its

embedding with the probability value. Nevertheless, the training procedure would be more

complex due to the additional IRIs to be learned and to the not straightforward correlation

between the probability and its arguments.

Due to these issues we propose, before the OWL2Vec training phase, to implement a rule-

based embedding phase to exploit the types extracted by the algorithm in Chapter 3. While
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some probabilistic patterns can be found through learning by the OWL2Vec model, we believe

that the specification of background knowledge via probabilistic rules may aid the learning

process. Note that there is no technical constraint regarding the dataset used for the generation

of probabilistic patterns or the dataset used by OWL2Vec, meaning that they can also be dif-

ferent.

In specific, the proposed rule-based embeddings would be extracted by training a neural net-

work with a margin loss based on the confidence of the specific association rule A⇒ B (Sec-

tion 3.3), i.e. the negative logarithm of the confidence value will be the distance between the

frame and its possible argument type, thus forcing the co-occurrence probability onto the fea-

ture space.

The general architecture of the model is shown in Figure 5.2.

input
Data Pre-

processing

Selectional

Restriction

Extraction

Rule-based

Learning
OWL2Vec embeddings

Figure 5.2: Model architecture
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Chapter 6

Results

This chapter focuses on the evaluation methodologies applied to the selectional restrictions

extraction and the class membership task together with their results. A brief section is also

dedicated to the OWL-Star to OWL translation, providing examples showing successful and

unsuccessful mappings.

6.1 Selectional Restriction Extraction analysis

A qualitative analysis of the obtained selectional restrictions is done with the main focus

on how constraints can show and explain the input dataset. Table 6.2 shows the most frequent

types with their frequency. Such simple analysis can already provide some insights on the

topics discusses, since a very high number of types concern the musical and artistic domain,

not considering general and cross-domain types like NaturalPerson, Thing etc.

The main assumption is that the argument types determine what topics are relevant for the

domain.

The general types, together with their original types and frequency, are shown in Table 6.3.
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Informative Not Informative

Frame Preference Frame Preference

possible-01 7.109 embarass-01 1.922

contrast-01 7.031 precipitate-01 1.921

write-01 6.837 encapsulate-01 1.841

recommend-01 6.126 embroider-01 1.827

new-01 5.935 testify-01 1.802

Table 6.1: Global Selectional Preference

The generalization of the types can also be useful for providing explanations and the general

concepts described inside the domain.

We also perform an analysis based on selectional preferences, i.e. the capability of a frame

to provide information about its argument types. Table 6.1 shows the most and least informing

frames of the MusicBO dataset. The obtained global results for selectional preferences can be

useful to provide local interpretations: when we compare the prior with the posterior distri-

bution assuming a domain-relevant frame like compose, sing or record we can see that

types like Sonatas and Song tend to get higher probabilities. Interestingly, more general frames

like write, which can be used to describe various different situations (i.e. have an higher se-

lectional preference), in this case tend to foster the probabilities of domain-relevant types, thus

showing that this type of analysis can be useful for ontology documentation. Specifically, con-

sidering write-01, it is possible to say that the domain is more focused on writing a sonata

instead of writing to a friend or writing a text, thus showing the fact that the ontology cov-

ers the musical domain. This analysis also shows that frame-based knowledge documentation

must focus on informative frames based on their selectional preference values. This follows

the idea that drastic changes of distribution for general frames leads to a better analysis of the
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domain, instead of more specific frames that are always used with a small set of types.

Type Frequency Type Frequency

NaturalPerson 2109 Concerto 101

Thing 641 Book 97

Male 359 Publication 93

Neuter 334 Letter 93

Music 258 Work-of-art 90

Man 164 Orchestra 84

Opera 154 Artist 83

City 147 Musician 77

Female 107 ... ...

Table 6.2: Frequent types in MUSICBO corpus

Generalized Type Original Types Frequency

Abstraction Interval, Position, Level, Property... 193

Attribute Position, Level, Property, Accuracy... 122

Communication Secret, Essay, Overture, Tale... 121

Person Philosopher, Hack, Hero, Scholar... 106

Auditory communication Epigram, Song, Minuet, Quartet... 77

Cognition Faith, Religion, Culture, Mind... 76

State Unease, Position, Loneliness, Opportunity... 75

... ... ...

Table 6.3: Frequent generalized types in MUSICBO corpus
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Linearization Answer Question

write thing written music music What is the subject of the thing written?

write thing written music write What has been done to the music?

write thing written duet duet
What is the name of the song

that is written in two parts?

write thing written duet write What has been done to the duet?

write thing written instrumental instrumental What type of music is the thing written?

write thing written instrumental write What has been done to the song?

Table 6.4: Competency questions about write-01

We apply the pipeline described in Section 3.3.1 to the most relevant frames based on Table

6.1. The results are shown Table 6.4. The questions can trivially be paired with their respective

SPARQL query by applying a selection with the variables inside the answer column.

6.2 OWL-Star to OWL analysis

The properties of the OWL-Star to OWL mapping have been proven in Chapter 4 and

then mapped into corresponding Framester subframes. Here we show examples of successful

and unsuccessful applications of the OWL-Star to OWL mapping, together with the resulting

subframe created to augment Framester.

Considering the following OWL-Star code,

pbdata:style-01 rdf:type owl:Class .

pbdata:Music rdf:type owl:Class .

pbdata:Concerto rdf:type owl:Class .

pbrole:thing_being_styled rdf:type owl:ObjectProperty .
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<< << pbdata:style-01 pbrole:thing_being_styled pbdata:Music >>

os:interpretation os:AllSomeInterpretation >> os:probability "33.33%" .

<< << pbdata:style-01 pbrole:thing_being_styled pbdata:Concerto >>

os:interpretation os:AllSomeInterpretation >> os:probability "33.33%" .

it can be correctly mapped into OWL:

pbdata:style-01 rdf:type owl:Class .

pbdata:Music rdf:type owl:Class .

pbdata:Concerto rdf:type owl:Class .

pbrole:thing_being_styled rdf:type owl:ObjectProperty .

:_0 rdf:type rdf:Statement;

rdf:subject pbdata:style-01;

rdf:predicate pbrole:thing_being_styled;

rdf:object pbdata:Music .

pbdata:style-01 rdfs:subClassOf [a owl:Restriction ;

owl:onProperty pbrole:thing_being_styled ;

owl:someValuesFrom pbdata:Music] .

:_0 :probability "33.33%" .

:_1 rdf:type rdf:Statement;

rdf:subject pbdata:style-01;

rdf:predicate pbrole:thing_being_styled;

rdf:object pbdata:Concerto .

pbdata:style-01 rdfs:subClassOf [a owl:Restriction ;

owl:onProperty pbrole:thing_being_styled ;
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owl:someValuesFrom pbdata:Concerto] .

:_1 :probability "33.33%" .

If the id mapping is conflictual, then the translation may give the same name to different

reification triples, resulting in a semantically ambiguous ontology. In other words, in the

previous code, if regardless of pbdata:Music and pbdata:Concerto the two triples

get mapped to : 0, the output ontology would be ambiguous.

A similar case could happen if the OWL reification of a OWL-Star triple appears in the OWL-

Star code: in that case , if id is conflictual, it could introduce new reified triple names that are

already appearing in the OWL-Star code, thus obtaining the same ambiguity of the previous

case. If the new reified triple has the same semantics of the initial OWL reified triple, then no

ambiguity would be introduced but redundancy, since multiple triples would express the same

fact. These results follow the theorems proved in Chapter 4.

The result of the translation is inserted inside Framester. An example of a created subframe

can be seen in Figure 4.1 with the frame sing-01.

6.3 Class Membership analysis

The class membership analysis has been applied with three different strategies:

1. Strategy 1: train, validation and test set created randomly from the MusicBO dataset;

2. Strategy 2: train, validation and test set created based on the source of the sentences

used to generate the graphs, i.e. the sets do not share authors;

3. Strategy 3: train and validation set created following the strategy of point 2, while

the test set is created from a knowledge graph extracted from Wikidata regarding the
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Figure 6.1: Graphical representation of the distance between resources after the rule-

based learning pipeline. The selectional restrictions considered are {sing-01,song}

⇒0.25 {Music}, {sing-01,song} ⇒0.02 {Sonata}, {sing-01,song} ⇒0.02 {Scenery},

{sing-01,song} ⇒0.02 {Soprano}, {sing-01,song} ⇒0.02 {Neuter}. Resources with

capital letters are types, lowercase are roles and with the sense-id are frames. The embed-

ding dimensions have been reduced with PCA [35]

musical domain.

Our main concern which led us to follow three different strategies is that the obtained

metrics would be too unreliable due to the similarity of the train and test sets. At the same

time, the dataset is not a gold standard since it has not been manually created and its quality

is not assured. Thus, the MusicBO dataset is a silver standard and precautionary measures

need to be adopted to avoid obtaining very optimistic and biased results.

Each selectional restriction (i.e. each rule with its probability) has been subjected to the rule-

based learning pipeline explained in Section 5.3. Each resource inside the rules has been

mapped to an embedding based on the selectional restriction probability. An example is shown
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Model Name MRR NDCG@1 NDCG@2 NDCG@5

Strategy 1 w/o rules 0.5461 0.4427 0.4839 0.5612

Strategy 1 with rules 0.5584 0.4577 0.5025 0.5824

Strategy 2 w/o rules 0.5350 0.4377 0.4772 0.5495

Strategy 2 with rules 0.5504 0.4490 0.4957 0.5751

Strategy 3 w/o rules 0.3651 0.2542 0.3186 0.3874

Strategy 3 with rules 0.3686 0.2601 0.3247 0.3928

Table 6.5: Ranking results

in Figure 6.1: since Music has an higher probability to occur with sing-01 with respect to

the other types, it is closer to the frame. Beware that the graphical representation shown in

Figure 6.1 may not be precise due to the dimensionality reduction. Additionally, a lot of types

are involved in several frames (specially Music, as shown in Figure 6.2) so their distances

may not be equal to their real confidence with sing-01, but may be altered by other typing

constraints. Each obtained embedding is subsequently used by the OWL2Vec model. We

use ranking metrics to test the model like MRR and NDCG@k with k restraining the metric

calculation over the top k results. The results are shown in Table 6.5.

The comparison between the usage of the initial rule-based learning highlights the benefits of

incorporating previous knowledge into our embeddings. It can be noted that, with an increase

of variance between train and test set (i.e. from strategy 1 to 3), the scores tend to decrease,

showing that the model performs better on similar test data. Overall, the scores obtained

from strategy 3 seem to be more reliable and provide a greater insight on the model true

performance.

The other advantage of using rule-based learning embeddings for weight initialization is the

improved convergence speed to reach the local minima (Figure 6.3). The main intuition is
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that, while usually random weights are more robust and avoid the vanishing and exploding

gradients, previous knowledge can be applied to start the weights from a better position, thus

allowing the model to quickly reach an optimal result. Indeed, this procedure can be thought

as a form of transfer learning, even though we are using the same dataset.
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Conclusions

In this thesis we have provided several applications of selectional restrictions, highlighting

how they can be used in different tasks and case scenarios. We have implemented a selectional

restrictions extractor tool to obtain the relevant type patterns for the frame arguments of the

MusicBO domain and we have provided a program implementing the mapping between OWL-

Star to OWL. We have shown that the mapping is information preserving if certain conditions

hold (Chapter 4). Additionally, we have augmented the Framester hub by defining domain-

specific subframes.

We have tested the use of selectional restrictions for neuro-symbolic tasks and shown that,

while there is a slight improvement over the model trained without the type constraints, the

major gain is achieved with regards to the convergence speed of the model. Moreover, we

have seen how selectional restrictions can be used to understand what is the domain repre-

sented by an ontology by providing useful statistics on general purpose frames.

Future work can focus on providing a well-defined framework for ontology documentation

based on selectional restrictions. The tool could aid ontology engineers in the task of ontology

alignment, i.e. linking resources between different ontologies. In general, it could be a signifi-

cant asset to provide insights on knowledge graphs. Another significant development would be

to integrate the selectional restrictions or the class membership predictions into Protege. The

plugin could be useful for ontology engineers by suggesting which class to assign to untyped

97
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instances. Moreover, new reasoners compliant with the additional type constraints could be

developed to provide a better entailment regime for domain-specific ontologies.
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