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Abstract

This thesis proposes a study on Emotion Recognition in Conversation to address the challenges

of the task with a chatbot reference case study to enhance conversational agents’ ability to un-

derstand and respond appropriately to human emotion. The study consists of two phases. The

first one involves the use of several baselines and the implementation of EmoBERTa to explore

aspects of the task, such as preprocessing, balancing technique and context modelling tested

on ERC benchmark dataset. The results reveal that the punctuation provides key information

to the task, balancing techniques can provide marginal improvements if appropriately selected

and context can provide additional information and suggest that a non-static context construc-

tion could be beneficial.

In the second phase, the effectiveness of a Few-Shot learning method, SetFit, is explored in

the context of ERC to face the scarce amount of real labelled data. An incompatibility with

the given context definition of the architecture employed by the mentioned method called for

an adaptation which proved to be ineffective. The performance of the SetFit method and fine-

tuning are compared in a limited data regime. Finally, the study explores the capabilities of

a trained model on a specific ERC dataset to adapt to limited data from a different domain

using Transfer Learning and fine-tuning with inconclusive results. The findings and insight

from this can lay the groundwork for future developments and studies in the growing field of

emotional-aware conversational agents and the application of Few-Shot learning in this task.
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Introduction

In recent years, conversational agents have become increasingly popular as a way for busi-

nesses and individuals to interact with their customers, clients, or audience[1]. However,

many conversational agents still lack the ability to understand and respond to the emotional

states of their users, which can lead to frustration or disengagement. To address this limitation,

researchers have started to explore the integration use of emotion recognition techniques in

conversational agents[2].

Emotion Recognition (ER) refers to the ability ofmachines to identify and interpret human emo-

tions based on various cues, such as facial expressions, tone of voice, or choice of words[3].

By incorporating emotion recognition into conversational agents, they can become more re-

sponsive and empathetic to the needs and feelings of their users[4, 5].

This thesis proposes a study of Emotion Recognition in Conversation (ERC) using a reactive

chatbot as a reference case study. The chatbot serves as an example of how emotion recogni-

tion can be applied in practice, but the study is not limited to chatbots and our findings can be

extended to other conversational agents or systems.

The study conducted in this thesis consists of two phases. The first phase focuses on implement-

ing and testing our version of EmoBERTa, a state-of-the-art model for emotion recognition,

and various baseline models to understand which preprocessing, data balancing techniques,

and context structure are most effective to address ERC tasks. Architectures and techniques

are evaluated employing benchmark datasets for ERC, namely MELD[6] and DailyDialog[7].

Results obtained in this phase serve to determine the experimental setting at the basis of the

second phase.

The second phase addresses the problem of lack of real data for ERC by comparing different

transfer learning approaches, such as few-shot learning and fine-tuning. Few-shot learning

is machine learning strategy that allows a model to learn new concepts or tasks employing

a small number of examples; on the other hand, fine-tuning is a process that takes a model

1



INTRODUCTION 2

that has already been trained for one given task and then tunes or tweaks the model to make it

perform a second similar task. The study evaluates the effectiveness of few-shot learning and

fine-tuning for ERC using a dataset of emotional conversations with limited labelled data. Re-

sults obtained using different approaches are comapred to determine the best one. Finally, the

capabilities of a trained model on a specific dataset to adapt to a limited data from a different

domain are explored using Transfer Learning and fine-tuning. Overall, this study contributes

to the growing field of emotion-aware conversational agents and demonstrates the potential

of few-shot learning and fine-tuning for emotion recognition in conversation. The findings

and insights from this work can inform the development of future systems that prioritize user

emotions and improve the quality of human-machine interactions.

The thesis follows this outline:

• Chapter 1: provides an overview of ERC, describing the task and its challenges. Pop-

ular datasets are then briefly described along with previous approaches. The Few-Shot

Learning objectives and methods are introduced.

• Chapter 2: presents the datasets used during the experimental phase along with descrip-

tions of their content and limitations.

• Chapter 3: contains the description of the architectures used as well as details and results

of the experiments carried out.

• Chapter 4: offers a description of the limitations encountered and proposes possible

future developments.

• Chapter 5: summarizes the work, its results and concludes.



Chapter 1

Background

In this chapter the tasks’ objectives, challenges and datasets used are described and explored.

The existing architectures and and generally useful background are introduced.

1.1 Emotion Recognition in Conversation

Emotion Recognition in Conversation seeks to develop algorithms and technologies to detect

and interpret humans’ emotional states. This aspect can provide information to implement

more accurate and engaging human-machine interactions and it’s crucial to create empathetic

machines.

Task Definition This task’s objective is to recognize the underlying emotion in dialogue

utterances. A dialogue is a sequence of N utterances, d = [u1, i2, .., uN ]. Each utterance is

composed ofMi words, ui = [w1, w2, .., wMi
], spoken by a participant to the conversation, Si,

and will have a certain emotion connotation, ei.

Challenges This task presents several challenges [8, 9]:

• Emotion Taxonomy: the first challenge to address is to define which are the emotions

in the task and how they are described. To this end, several emotion models are pro-

posed in the literature. We can divide them into two major categories: categorical and

dimensional. The categorical models classify a definite number of discrete emotions.

Ekman’s emotion model[10] constitutes a standard for emotion description. It defines

six fundamental emotions: anger, sadness, joy, surprise, disgust and fear. Plutchik’s

3



1.1. EMOTION RECOGNITION IN CONVERSATION 4

model[11], on the other hand, defines eight fundamental emotions organized in opposite

pairs: anger-fear, sadness-joy, anticipation-surprise, trust-disgust. Furthermore, it de-

fines emotion subtypes introducing different nuances of intensity. Figure 1.1 reports a

representation of this model. Dimensional models adopt a continuous description of the

emotional state. Usually, they use two of the three Valence-Arousal-Dominance(VAD)

dimensions[12], namely valance and arousal. Valence describes the emotion’s degree

of positivity and Arousal its intensity. The dimensional representation allows a more

comprehensive and comparable structure with respect to the categorical one. Different

paradigms and taxonomies offer advantages and drawbacks. For example, simpler tax-

onomies, such as Ekman’s, provide limited descriptive power with respect to Plutchik’s.

On the other hand, annotating data following the latter would be more complex because

the discrimination between related emotions would be subtle. A more fine-grained tax-

onomymay induce in a lower agreement between the annotators due to its more complex

nuances.

Figure 1.1: Plutchik’s wheel of emotions.

• Annotation: the process of annotation presents its own challenges in emotion recognition,
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as it is a subjective task and therefore reflects individual interpretations of emotions. This

subjectivity can result in differences in annotations among annotators, influenced not

only by discrepancies in perception but also by personal and cultural backgrounds. Even

when using the same taxonomy, the annotation process and resulting labels may differ.

This is especially true for the annotation process of different datasets.

• Context Modelling: in ERC the context can provide key information to classify ambigu-

ous utterances, especially short ones. Figure 1.2 reports an example of how two identical

utterances can convey two different emotions according to the context. Contextual infor-

mation can be extracted from the past and future utterances in the dialogue, depending

on the field of application.

Figure 1.2: Example of how the same utterance can express two different emotions according
to the context.

• Speaker Modelling: the participants in the conversation have different personalities and

ways of expressing themselves, distinct interpersonal relationships and dynamics, and

each one has its mood. Speaker modelling exploits the speaker’s utterance to profile

them, gaining valuable information. This aspect becomes particularly relevant in multi-

party conversations.

• Dynamics Modelling: emotion dynamics concern the evolution of the conversation par-

ticipants’ emotions throughout the dialogue. Two separate aspects are relevant in a con-

versation[13]: self and inter dependencies. Self-dependency describes the emotional

inertia of one participant and how it influences itself. Inter dependency expresses how

the participants affect each others’ emotional state. Generally, emotional inertia tends to

preserve the participant’s current, but external stimuli may cause it to change, i.e. inter-

acting with other speakers. These aspects are generally hard to model due to speakers’

personality differences, conversational topics, and the nature of the participants’ relation-

ships.
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Emotion EmotionLines MELD IEMOCAP DailyDiaog
Neutral 6530 6436 1708 85572
Anger 772 1607 1103 1022
Disgust 338 361 - 353
Fear 255 358 - 74
Joy 1710 2308 648 12885

Sadness 498 1002 1084 1150
Surprise 1658 1636 - 1823
Frustrated - - 1849 -
Excited - - 1041 -
Total 11761 13708 7433 102879

Table 1.1: Label distribution in different ERC datasets

Datasets In this paragraph, we briefly describe the datasets used as a benchmark in the task,

reporting their source as well as their taxonomy. Table 1.1 reports their label distribution. It can

be observed that the labels are generally unbalanced and this represents another big challenge

of ERC.

• IEMOCAP[14]: a multi-modal dataset composed of acted dialogues. Its modalities com-

prehend audio, text and video. The emotion labels used to annotate the utterances are

happy, sad, neutral, angry, excited, frustrated, fear and disgust.

• EmotionLines[15]: a textual dataset with dialogues gathered from the TV show Friends

and Facebook private chats. Therefore the utterances are both acted and spontaneous.

The emotion labels correspond to the six Ekman’s basic emotions and the neutral class.

• MELD[6]: a multi-modal dataset composed of acted dialogues extracted from the TV

show Friends. It is an enhancement of EmotionLines. The modalities comprise text,

audio and video. The emotion labels correspond to the six Ekman’s basic emotions and

the neutral class.

• DailyDialog[7]: a large text dataset built fromwebsites used to practice English dialogue

in daily life. Therefore, the dialogues are artificial. Each utterance is labelled with one

of the six Ekman’s basic emotions or other.
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1.1.1 Related Works

In this section, we provide an overview of the previous research done in this field. A wide

variety of approaches and modalities have been explored, even if the textual modality is a

constant throughout the literature. Many approaches involve the use of Convolutional Neural

Networks (CNN) as feature extractors as initially proposed by [16] and LSTMs as context

encoders. Several transformer-based techniques and graph-based networks are implemented.

• DialogueRNN[17]: introduces tracking of parties in the conversations. This architecture

aims to model the main parts of the conversation: the speaker, the context of the previous

utterance and the emotion evolution. To achieve this, they use three different GRUs:

– The Party GRU encodes the speakers’ states updated when the party speaks. These

states allow tracking of their emotional dynamics.

– TheGlobal GRU encodes the states of the preceding utterances and the party states.

Together they constitute the current utterance’s context representation.

– The Emotion Representation inferred by the model obtained using the current

speaker’s state and the preceding ones as context. The Emotion Representation of

the previous utterance is used for the classification step.

• DialogueGCN[18]: the goal of this model is to capture self-emotional dependency (emo-

tional inertia) and inter-speaker dependency.

Sequential Context Encoder: a bidirectional GRU in which are fed the utterance repre-

sentation ui(obtained with the text-CNN presented by Kim) and the past and future states

gi±1, obtaining gi: the context-aware utterance representation. This encoder is speaker

agnostic.

Speaker-Level Context Encoder: builds a graph where each node is the context-aware

representation gi and the directed edges represent either speaker or temporal dependency.

To reduce computational costs, the authors define a number of past (p) and future(f ) ut-

terances that can share an edge (e.g., [vi−p, .., vi, .., vi+f ]). They use transformations on

the graph information and concatenate the result with the gi representation, apply an

attention layer and feed the result to FC for the classification.

• EmoCaps[19]: the dialogues are into a series of single utterances that are then fed into

BERT and retrieve the embedding vectors. The authors highlight the use of three factors
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mainly: the utterances’ emotional tendencies (which is something close to an offset that

skews the emotion weight from the neutral class), different emotional information from

the three modalities, contextual information. They build an emotion vector which is

then merged with a sentence vector. They use residual learning in the construction of

the EmoFormer, which extracts the emotion vector. According to one author, this project

is mainly focused on the textual modality.

• EmoBERTa[20]: RoBERTa is used as a feature extractor. The peculiarity lies in the

context definition. It consists of creating an input sequence containing both the current

and the context utterances. The architecture relies on RoBERTa’s capacity of handling

three different segments. Furthermore, the authors prepended the speaker’s name to each

utterance.

• M2FNet[21]: a multi-modal hierarchical framework designed on two levels of utterance

and dialogue level feature extraction. Firstly, each modality’s features are extracted from

the utterances. Then, at the dialogue level, the model learns to label each utterance us-

ing the contextual information from the entire dialogue. The text feature extractor is

RoBERTa and uses the context definition given by [20]. Each input utterance is concate-

nated with the preceding and following utterances. The embeddings obtained from each

modality are passed to their corresponding network with a variable stack of transformers

encoders and merged for the classification.

• EmotionFlow[22]: the context is defined through the k previous utterance and the cor-

responding speaker. This method highlights the emotion interconnection between two

consecutive utterances and how likely is an emotion to shift to another (e.g. they report

that a shift from sadness to fear is unlikely). A prompt question (”How does Speakerx
feel?” is concatenated to the last k speaker-utterance pairs. The result is then fed into

RoBERTa. A Conditional Random Field layer is used to maximize the probability of the

ground truth emotion sequence over all possible sequences.

Table 1.2 reports the performances of the approaches listed above on MELD and IEMOCAP

datasets.

Considering our task, we decided to limit the scope of our work to the textual modality. As [21]

reports in their ablation studies, the textual modality provides the most relevant information to

the task. The context definition defined by [20] provides a starting point for context studies and
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Network Datasets Macro-F1 W-F1
DRNN I 61.21/- 62.75
DGCN I/M 64.18/- 64.18/58.10

EmoBERTa I/M -/- 68.57/65.61
M2FNet I/M -/- 66.38/66.23
Emocaps I/M 72.60/44.08 71.77/64.00

EmotionFlow M - 65.05

Table 1.2: Performances of the approaches presented on MELD (M) and IEMOCAP (I).

will be explored in the experimental phase. Most of these works do not produce information

about preprocessing steps.

1.2 Few-Shot Learning

Few-shot learning (FSL) is aMachine Learning framework[23]. It aims to train a model using a

limited number of supervised data samples whilemaintaining competitive performances. There

can be multiple reasons to develop this research field:

• Learning rare Cases: the data about certain supervised information might be hard or

impossible to gather due to privacy and ethical issues, for example. FSL can learnmodels

for rare cases.

• Reducing costs and effort: gathering and annotating data is resource and time-consuming.

Reducing the number of samples required to train an efficient model relieves part of the

burden.

• Deal with unbalanced data: the need for a limited number of samples to train the model

implies that unbalances in the class distributions of a dataset can be bypassed using a

balanced subset.

The reasons listed above are all relevant to the ERC task. The amount of real data gathered in

the literature so far is limited, and acquiring it may be hindered by privacy issues, especially in

a chatbot framework. Furthermore, the Emotion Recognition task is amongst the most subjec-

tive tasks making complex annotating a large corpus. Reducing the quantity of data necessary

to train models is desirable. Finally, as mentioned in section 1.1, the datasets available present

generally unbalanced label distribution. FSL could be another tool to use as a balancing tech-

nique.
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Formally, a few-shot classification problem considers a N-way K-shots scenario, in which a

training set Dtrain containsS = K×N samples where we haveN classes eachwithK examples.

In this scenario Dtrain is small and training a model able to approximate a good generalization

becomes difficult. Two different paradigms can be defined: Meta-learning-based FSL andNon

Meta-learning-based FSL[24]. The first paradigm can be classified into three approaches:

• Metric-based

• Optimization-based

• Model-based

In the following paragraph we report information on metric-based approaches in which the

model learns a distance function and leverages the meta-learning architecture to learn an em-

bedding function. Among the architectures in the literature, we report the following:

• Matching Networks[25]: these networks define a probability distribution over the out-

put labels using an attention kernel. This kernel computes a cosine similarity between

the embeddings of support and query examples and the result is normalized with a soft-

max. The classification output is defined as the sum of support samples weighted by the

attention kernel.

• Siamese Networks[26]: this architecture employs two networks with shared weights and

through the use of a distance metric, such as Euclidian Distance, it learns to recognize if

two examples belong to the same class.

• Prototypical Networks[27]: for each class, the support examples are embedded and the

averaged to create the class’s prototype. A similarity score is then used to compute the

distances between the query’s embeddings and the prototypes. The output probability is

calculated by applying a softmax to the negative distances.

As far as the second paradigm’s approaches are concerned, among them we can find Trans-

fer Learning[28], which exploits the knowledge learned from a certain task A to enhance the

modelling of a task B.
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1.2.1 Related Works

This section describes some approaches and method for FSL related to ERC and other tasks.

In [29], the authors propose an architecture for FLS in ERC using a Text-CNN as the utterances

feature extractor followed by a BiLSTM to capture the dialogue’s contextual information. This

part of the model is the context encoder. Its output is fed to 2 Fully Connected layers which

produce the representation used to compute the prototypes. Finally, to capture dependencies

between the labels they introduce a CRF layer. They use episodic learning[30] to train the

model which is tested on DailyDialog and a dataset proposed by them composed of French

customer service chats. The model’s evaluation on DailyDialog’s test set is carried out using

1000 random samples, making it not comparable with our experiments. The F1-weighted they

produce is 0.3522.

The authors of [31] propose an efficient and prompt-free framework for few-shot fine-tuning

of Sentence Transformers (ST). This method finetunes a pretrained ST using a small number of

text pair, in a contrastive Siamese manner. The resulting model is able to produce meaningful

embeddings used to train a classification head. This strategy has been applied to several tasks,

Emotion Recognition included, achieving good results. We choose this simple framework as

a starting point for our FSL experiments to test its effectiveness in ERC. For further details on

the training procedure and the architecture employed, refer to section 3.2.1.



Chapter 2

Datasets

This section describes the characteristics and limitations of the datasets used in the experiments.

We illustrate the data’s source and the modality present in the dataset, the features structure and

the taxonomy used. Finally, statistics about the utterances, dialogues and label distribution are

reported.

2.1 Multimodal EmotionLines Dataset - MELD

Multimodal EmotionLines Dataset[6] (MELD) is a dataset composed of dialogues extracted

from the Friends TV show. It contains annotations to address both the Emotion Recognition

and Sentiment Analysis tasks. The dataset encompasses three different modalities: textual, au-

dio, and video. It is an expansion and enhancement of the EmotionLines dataset[15], which

comprises only the textual modality. The annotations have been improved thanks to the addi-

tional information provided by audio and video. Moreover, the dialogues have been filtered,

removing the utterances that were not compliant with constraints imposed on their starting and

ending times.

As far as the ERC task is concerned, each utterance is annotated according to Ekman’s emo-

tion model mentioned in section 1.1. Therefore, the emotion labels are Anger, Disgust, Fear,

Joy, Surprise and Sadness. The utterances considered not to contain any emotional value are

labelled as Neutral.

On the other hand, the sentiment labels are given using an aggregation method:

• The negative label is associated with anger, disgust, fear and sadness.

• The positive label is associated with joy.

12
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• The neutral label to the neutral emotion labeled utterances.

The sentiment associated with surprise is evaluated for each utterance since it can be either

positive or negative. Table 2.1 reports the number of samples for each emotion across the train,

validation and test splits given by the authors of the dataset. Amidst these divisions, the mean

length of each utterance - that is, the number of words within each sentence - is practically

identical. Similarly, the amount of emotions in each conversation is also almost equivalent.

Table 2.3 reports handy statistics about the utterances and dialogues.

Emotion Train Val Test
neutral 4710 470 1256
joy 1743 163 402

surprise 1205 153 345
anger 1109 150 281
sadness 683 111 208
disgust 271 40 68
fear 268 22 50
Tot. 9989 1109 2610

Table 2.1: Label distribution across MELD’s splits.

The dataset’s features are:

• Sr No: serial number associated to the utterance.

• Utterance: individual utterance reported as a string.

• Speaker: the utterance speaker’s name.

• Emotion: the emotion expressed by the speaker. This feature represents the label used

in our task.

• Sentiment: the emotion’s polarity (positive, neutral, negative)

• Dialogue ID: utterance’s dialogue.

• Utterance ID: the utterance’s index in the dialogue.

• Season: utterance’s season.

• Episode: utterance’s episode.

• StartTime: utterance’s begin time in the episode.
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• EndTime: utterance’s end time in the episode.

Table 2.2 reports a snippet of the dataset.

Utterance Speaker Emotion Sentiment
Can I tell you a little secret? Phoebe neutral neutral

Yeah! Rachel joy positive
I want to keep one. Phoebe neutral neutral

”Ohh, I’m gonna be on the news!” Rachel joy positive

Table 2.2: Example of a dialogue extracted from MELD’s test set.

This dataset was selected because is a popular benchmark in ERC. The multi-modal nature

offers the opportunity to continue the work integrating other modalities in future endeavours

and, while its multi-party conversation presents a challenge, it provides a more general setup.

2.1.1 Bias based on the speaker’s personality

There are 304 different speakers that make an appearance in the dataset. The main six char-

acters hold most of the utterances (about 83%) as shown in Figure 2.1. The unbalance in the

speakers’ distribution might introduce a bias in the models through the characters’ interaction,

dynamics and personalities, even if the speakers’ names are omitted. We cannot avoid this bias

because the characters’ interactions are deeply intertwined. Therefore, removing characters

from one split to prevent information leakages into other splits would result in deleting most

of the available data.

2.1.2 Unbalanced Data

Exploratory Data Analysis revealed that the dataset is unbalanced. This is particularly evident

by analyzing the label count. The neutral class is the most populated one while the emotional

classes are less frequent, especially the negative ones. A possible reason for this disparity could

lie in the data origins because the dialogues are extracted from a comedy show, it can be ex-

pected the negative emotions to be the minority. However, the unbalance issue is related to the

task: it is clearly stated in the literature that other benchmarks [7, 14, 15, 32, 33] for ERC tasks

suffer this phenomenon as well. A hypothesis could be that the utterances are extracted from

dialogues, which generally contain a non-uniform emotion distribution. Therefore, this unbal-

ance can be expected even in data collected in real scenarios. In [29], authors present a French
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Figure 2.1: MELD number of utterances per speaker.

MELD Statistics Train Validation Test
Avg. utterance length 8.0 7.9 8.2
Max utterance length 69 37 45
Number of dialogues 1039 114 280
Number of utterances 9989 1109 2610
Number of speakers 260 47 100

Avg. number of utterances/dialogue 9.6 9.7 9.3
Avg. number of emotions/dialogue 3.3 3.3 3.2

Number of emotion shift 4003 427 1003

Table 2.3: MELD Statistics

dataset of collected private chats and the same phenomenon occurs. During the experimental

phase, we tested potential approaches to this issue (refer to section 3.1.3.2).

2.2 DailyDialog

DailyDialog[7] is a multi-turn dialogue dataset. The raw data are extracted from websites used

for English learners to practice in daily dialogues, hence the name. The conversations are

artificial and encompass various daily life topics and contexts such as an interaction between a

customer and a shopkeeper or two students. DailyDialog comprises only the textual modality

and. Ekman’s emotion model is used as the taxonomy for the annotation with the addition of a
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other class, which for our purposes we associate with MELD’s neutral class. The conversation

topics are clustered into 10 categories. The largest three are Relationships, Ordinary life and

Work. Furthermore, a label indicating the intention behind an utterance is annotated. The act

classes are:

• Inform: statements and question that provide information.

• Question: utterances that seeks information.

• Directives: requests, instructions and suggestions.

• Commissive: reactions to requests and offers.

Utterances Dialogue_ID Utterance_ID Emotion Act
The taxi drivers are on strike again. 1 0 neutral inform

What for? 1 1 neutral question
They want the government to reduce [..] 1 2 neutral inform

It is really a hot potato. 1 3 neutral inform

Table 2.4: Dialogue example extracted from DailyDialog’s test set.

The data are stored in text files that need to be parsed to obtain a structured dataset. Hence, we

exploit this operation to retrace MELD’s structure adding Dialogue IDs and Utterances IDs as

defined in section 2.1.

The dataset’s features are:

• Utterance: individual utterance reported as a string.

• Act: the intention behind the utterance.

• Emotion: the emotion expressed in the utterance.

• Dialogue ID: dialogue identifier.

• Utterance ID: utterance’s index in the dialogue.

Table 2.4 is an example of a dialogue extracted from the dataset. Table 2.5 reports the number

of samples for each emotion across the train, validation and test splits provided by the authors

of the dataset. It can be observed that the label distribution is heavily unbalanced, as it was also

mentioned in section 2.1.2, and the neutral class is the most populated class by a large margin.

Table 2.6 reports an overview of the sets’ statistics.
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Emotion Train Val Test
neutral 72143 7108 6321
joy 11182 684 1019

surprise 1600 107 116
sadness 969 79 102
anger 827 77 118
disgust 303 3 47
fear 146 11 17
Tot. 87170 8069 7740

Table 2.5: Label distribution across DailyDialog’s splits.

DailyDiaog Train Validation Test
Avg. utterance length 13.6 13.5 13.8
Max utterance length 278 166 204
Number of dialogue 11118 1000 1000

Number of utterances 87170 8069 7740
Avg. number of utterances/dialogue 7.84 8.07 7.74
Avg. number of emotions/dialogue 1.58 1.56 1.61

Table 2.6: DailyDialog Statistics

This dataset was selected as MELD’s counterpart in later experiments. The taxonomy used

in the annotation process is the same one used in MELD, but the different text structures and

contents can provide the setup for the experiments on few-shot learning in another domain.



Chapter 3

Experiments

3.1 Experiments on ERC

This section includes descriptions of the models’ architectures, as well as the details of the

experiments conducted, and the results obtained. In addition, analysis and hypotheses are for-

mulated on the behaviours witnessed.

3.1.1 Evaluation metrics

The metrics that we used to evaluate the performances are the macro and weighted F1-score.

The former is the unweighted mean of the F1 scores. It reflects how the model truly fares in

the task, giving the same importance to every class and limiting the skew due to the unbalances

present in the data. The latter considers the F1-score of each class weighted with its support.

As a consequence, the more populated classes, such as the neutral one in our case, will have

greater importance when computing the score.

3.1.2 Architectures

3.1.2.1 Baselines

Few baselines have been tested on MELD:

• Most Frequent Classifier.

• Random Uniform Classifier.

• NRCLexicon[34].

18
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• Text-CNN[16].

Random Baselines The first two baselines make predictions relying only on the number

and the frequency of labels ignoring the input features: the uniform baseline generates the

prediction considering each label equally probable. Conversely, the most frequent baseline

predicts that every sample has the same label as the dataset’s most populated class.

Lexicon The lexicon baseline uses the knowledge gathered in the NRCLexicon. This tool

contains associations between words and a set of eight emotions, namely anger, fear, anticipa-

tion, trust, surprise, sadness, joy, and disgust. For example, the word abundance is associated

with joy and trust emotions. When an utterance is analyzed using the lexicon, it builds a list

of emotions according to the words and their associations. The most frequent ones, tied to an

equal number of occurrences, are stored in a top emotion list. The utterance’s label is com-

pared with the emotion list to generate a prediction from this tool. The prediction is correct if

the label is in the list or the list is empty when the label is neutral. Otherwise, the prediction is

considered wrong. This method generates a recall score.

Text-CNN The Text-CNN has been used as a feature extractor in several ERC pieces of re-

search [17, 18, 29, 35, 36]. This model’s architecture, in our implementation, comprises an

embedding layer in which we upload the embedding matrix. The embedded input is reshaped

and given to 3 convolutional layers with 3,4 and 5 as filter sizes respectively. Each layer has

50 filters. The feature maps produced are global max pooled and concatenated to be fed to a

dense layer. The output of this process is a vector representing the textual features which are

then given as input to a softmax activated layer to produce the classification prediction. Table

3.1 summarises this architecture.

The following paragraph describes the operations executed to prepare an input the neural net-

work can process. Firstly, the utterances are preprocessed, and then we add a blank space

between each word and punctuation mark, if any, to avoid spurious encoding. To avoid infor-

mation leakages between the splits, we build the embedding matrix following these steps for

each split:

• We create a vocabulary containing all the unique words in the split. If it already exists,

we expand it with unseen words.



3.1. EXPERIMENTS ON ERC 20

• The co-occurrence matrix is built on the split’s utterance. This matrix contains the num-

ber of times two words occur within a fixed window in the utterances. This window

defines a neighbourhood.

• The embedding matrix is built and expanded by associating each newword’s index to the

corresponding pre-trained embedding vector from an embedding model. When out-of-

vocabulary (OOV) words are met, namely the words not present in the embedding model,

we compute the mean of the neighbouring words’ embeddings. If this is not possible, we

initialize the vectors randomly.

The utterances are then encoded, substituting each word and punctuation mark to the corre-

sponding index in the vocabulary. Simultaneously, we pad and truncate the utterances to the

desired maximum length. We use GloVe[37] as embedding model with 300 as the embedding

dimension. The embeddings are kept static throughout the training. TheOOVwords are around

3.94% of the unique words found. Using the mean of the 4 neighbouring words, we compute

their embeddings. As mentioned in the previous section, to discern which preprocessing is the

most appropriate and gain insight into which textual elements are more relevant to the ER task,

we use this model to test different preprocessing styles. We report the results in section 3.1.4.1.

3.1.2.2 RoBERTa

One of the architectures used during this experimental phase is RoBERTa[38]. This pre-trained

language model is based on BERT’s architecture but uses a different training setting, it is com-

posed ofmultiple layers of transformer encoders as it was defined by [39]. The number of layers

and their hidden sizes change according to the model version, either base or large. BERT takes

as input a concatenation of two segments (sequences of tokens), x1, .., xN and y1, ..., yM which

usually consist of more than one natural sentence. The two segments are presented as a single

input sequence to BERT with special tokens delimiting them:

[CLS], x1, ..., xN , [SEP ], y1, ..., yM , [EOS] (3.1)

Two different versions of this architecture are available RoBERTabase and RoBERTalarge. They

are composed of multiple layers of transformer encoders as it was defined by [39]. The archi-

tectural difference lies in the structural parameters such as the hidden layers’ number and their

size, namely 768 for 12 layers in the base model and 1024 for 24 layers in the large version,
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Layer (type) Output Shape Param #
=========================================
input (InputLayer) [(None, 10)] 0
___________________________________________
embedding (Embedding) (None, 10, 300) 2298000
___________________________________________
reshape (Permute) (None, 300, 10) 0
___________________________________________
Conv_filter_3 (Conv1D) (None, 298, 50) 1550
___________________________________________
Conv_filter_4 (Conv1D) (None, 297, 50) 20508
___________________________________________
Conv_filter_5 (Conv1D) (None, 296, 50) 2550
___________________________________________
global_max_pooling1d (GlobalMa xPooling1D) (None, 50) 0
___________________________________________
concatenate (Concatenate) (None, 150) 0
___________________________________________
dense (Dense) (None, 100) 15100
___________________________________________
dropout (Dropout) (None, 100) 0
___________________________________________
dense_1 (Dense) (None, 7) 707
___________________________________________

==========================================
Total params: 2,319,957
Trainable params: 21,957
Non-trainable params: 2,298,000

Table 3.1: Model architecture used for Text-CNN Model

and ultimately in the number of total parameters in the model, 125M and 355M. This model

is used as a feature extractor from the textual input. The pooled output corresponding to the

[CLS] token is then fed to a Fully Connected layer and the classification is performed through

a FC with softmax activation function. In all experiments described in section 3.1.3.2, we used

mainly the larger model1.

1https://huggingface.co/roberta-large



3.1. EXPERIMENTS ON ERC 22

3.1.3 Analyzed Aspects

This section describes the dimension explored divided according to the used architecture.

3.1.3.1 Aspects analyzed with Baselines

Preprocessing Data preprocessing is an essential step in everyMachine Learning application

aimed at transforming raw into clean data. In NLP data processing techniques are mainly

used to remove unwanted text components that can be detrimental to the task at hand or to

standardize the characters present in the corpus. To enhance model deployment and ensure

robustness in the face of diverse real-world data, a crucial step is the effective cleansing of

input data, which allows for a reasonable expectation that the textual components of the data

seen during training will be reflected. In the present experimentation, various preprocessing

approaches were explored to determine their efficacy and potential drawbacks for the task at

hand.

3.1.3.2 Aspects analyzed with RoBERTa

1. Context

As mentioned in section 1.1, it is possible to leverage contextual information. The authors

of [20] have designed an easy way to input context information along with the utterances that

have to be classified. Such a method consists of prepending and appending the past and future

utterances to the currently considered utterance. This method exploits the computational power

and the pretraining of the RoBERTa architecture[38] which is capable to handle sentences di-

vided into three different segments delimited by the separator token ’</s></s>’. This special

sequence of characters is associated with a specific meaning during the pretraining phase of

the language model: </s></s> is used as a separator between segments, [SEP], </s> is used

as end of sequence, [EOS], and <s> is used as classification token, [CLS].

The input built in this way will have the following structure:

”<s>past_utterances</s></s> current_utterance </s></s> future_utterances</s>” (3.2)

Considering the context of this thesis’s application, i.e. a chatbot, it is not possible nor it would

appropriate to consider future utterances because they are not known beforehand, especially

in a real time scenario. Therefore, to training the model with this input structure would not
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be meaningful because it is a scenario which would never be encountered once the model is

deployed. As a consequence, the input comprises only a number of past utterances. To deter-

mine how variations of this number affect the performances, it is necessary to investigate its

influence on the predictions’ accuracy. It must be noted that the contextualized input should

be built before applying any of the balancing techniques discussed in the section 3.1.3.2, oth-

erwise, the dialogue structure present in the dataset could be altered, losing key information

about its unfolding.

To build the contextualized input, the dataset structure is exploited: each dialogue is processed

and identified through the ID and its utterances are considered to be sequential and to each one is

given a new ID. This step was necessary due to the fact the given IDs are not always consecutive

and the missing values would create a gap hindering the process. The utterances with ID in

the range [current_utterance_ID−number_past_utterances, current_utterance_ID] are

concatenated into a context string which is then prepended along with the [SEP] to the current

utterance. It must be noticed that there are spurious contexts: if we consider 3 past utterances

as context, for example, the first 3 utterances will have a different number of past utterances

prepended because there are not enough utterances spoken in the dialogue yet. The model

is able to handle this difference due to its pretraining and because the context is defined as a

sequence and there is no special character to separate its different utterances. The first utterance

of each dialogue will always be context-less by definition and they will remain unmodified. It

was tested if the addition of a blank space or an empty string followed by the separator improved

the model performance but they were either unaffected or slightly worse.

Considering the dialogue reported in Table 2.2 the respective contextualized utterances with

one past utterance are reported in Table 3.2. To achieve this goal each dialogue is processed

and each utterance is prepended to the chosen number of past utterances. The result is stored

as a new feature of the dataset and will be used as input for the model training.

ID Current utterance Contextualized utterance
0 Can I tell you a little secret? Can I tell you a little secret?
1 Yeah! Can I tell you a little secret?</s></s> Yeah!
2 I want to keep one. Yeah!</s></s>I want to keep one.
3 ”Ohh, I’m gonna be on the news!” I want to keep one.</s></s>”Ohh, I’m gon...

Table 3.2: Example of the current and contextualized utterance
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Emotion Emotion Count Weight
neutral 4710 0.303
joy 1743 0.819

surprise 1205 1.184
anger 1109 1.287
sadness 683 2.089
disgust 271 5.266
fear 268 5.325

Table 3.3: Class weights computed on the MELD’s training set

2. Balancing Techniques

As mentioned in section 2.1.2, the available datasets are quite unbalanced. Several tech-

niques can be employed to minimize the effects of the different class distributions without

discarding any data, due to the limited amount available.

The techniques that could be tested are:

• Classe Weights

• Resample

• Adversarial Augmentation

Class Weights One of the techniques tried is using class weights computed with the sklearn

library. This method computes class weights that are then applied to the loss function during

training in order to reduce the prediction skew of the model towards the most populated label

in the dataset. This technique’s objective is to magnify the effects of predictions for the less

populated classes and reduce the weight of the predictions of the most populated ones. The

weights computed with the balanced mode offered by sklearn will reflect the frequency of the

class they are associated with. The less populated class will have a bigger weight on the loss

function while, on the other hand, the most frequent classes will generally have smaller weights

(possibly smaller than one). Table 3.3 reports the weights computed on MELD’s training set.

It’s worth noting that this method improves the recall of the less populated classes but also

reduces the precision of their prediction and the recall of the other classes is worse. The overall

F1-scores (weighted and macro) are either unchanged or worse.

Resample The second technique applied is resampling. This strategy can be performed by

upsampling the least populated classes by injecting copies of certain samples already present
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in the training split multiple times or by downsampling the most populated classes removing

examples. This method has to be used with caution because it can reduce the generalization

capabilities of the model, increasing overfitting chances due to the reduced diversity in the

training examples. Given MELD class distribution, refer to section 2.1.2, it is desirable to

increase the number of utterances with the fear, disgust and sadness labels. It would be also

possible to undersample the neutral class, by removing the samples labeled as such, but con-

sidering the limited amount of data available it was undesirable. A test could be to combine

the two techniques and compute the weights on the upsampled dataset: we would still benefit

from the upsampling’s effects and the weights computed would be more uniform, imposing a

less severe penalty on the neutral class.

Adversarial Augmentation Adversarial Augmentation presents a technique used to tarnish

textual data by introducing grammatical errors, removing words, and swapping word positions.

It is possible to use the TextAttack[40] library to apply this strategy. This process could be used

to introduce noise in the available clean data, bringing them closer to the real data in the case

study we are analyzing. The messages exchanged with a chatbot might contain grammatical

errors, such as typos and word misspellings, and missing or wrongly automatically corrected

words[29]. This technique’s efficacy cannot be evaluated on the available benchmark dataset

without altering the test sets, therefore making the results incomparable with other models.

Furthermore, to confirm the validity of this approach real data should be gathered and inspected.

3.1.4 Experimental Setup and Results

3.1.4.1 Baseline Experiments

Experimental Setup

The first experiments were done with most frequent and uniform baselines and the Text-

CNN. It must be noted that these baselines do not consider any contextual information from

other utterances in the dialogue. The most frequent and uniform baselines do not require any

particular setup because they only consider the label distribution of the training set, the first

one, and the number of labels in the second one. The lexicon baseline uses the method we

described in section 3.1.2.1 to generate the prediction. As mentioned in the 3.1.3.1, with the

Text-CNN several different text preprocessing are tested to find the most appropriate one. The

differences in the preprocessing steps mainly concerned punctuation. The utterances’ text was



3.1. EXPERIMENTS ON ERC 26

Preprocess F1-Weighted F1-Macro
1 0.36338 0.15704
2 0.48703 0.25717
3 0.46323 0.23496
4 0.47230 0.23886

Preprocess F1-Weighted F1-Macro
1 0.34967 0.13908
2 0.45221 0.22181
3 0.43739 0.21192
4 0.44661 0.21032

Table 3.4: Text-CNN Scores on MELD Test split with different preprocessing, best results
highlighted in bold, max input length set to longest in the training set (left), max length set to
10 (right). The preprocess used correspond to the ones enumerated in 3.1.4.1.

always standardized and lowered and the contractions expanded throughout the experiments.

The different preprocessing configurations analyzed are the following:

1. The text was stripped of all punctuation.

2. All punctuation removed except for question and exclamation marks.

3. All punctuation removed except for question and exclamation marks, dots and commas.

4. All punctuation kept.

In these experiments, the model was trained with both the maximum length of the input equal

to 10, i.e. slightly above the training set average, and with the maximum length equal to the

longest utterance in the training split.

Results Table 3.4 reports the preprocessing experiments’ results. By inspecting them, we

can observe that the punctuation characters provide salient information to the model, espe-

cially question and exclamation marks. Intuitively, these punctuation marks are indicators of

a particular emotive inflexion of the utterance otherwise undetectable by the model. The dif-

ferences between removing or keeping the other punctuation marks are marginal. Considering

these results, we choose to keep all the punctuation and only standardize the characters in the

utterance text because several different punctuation characters represent the same one (i.e. dif-

ferent symbols to represent dots, commas, dashes, apostrophes, etcetera) without removing any

of them.

Table 3.5 reports the baselines’ F1-scores onMELD’s test set. We use the best Text-CNN score,

i.e. the best score obtained in the preprocessing experiments.
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Model F1-Weighted F1-Macro Macro recall
Most-Frequent 0.31 0.09 0.14

Uniform 0.17 0.11 0.13
Lexicon - - 0.19
Text-CNN 0.487 0.257 0.25

Table 3.5: Baseline Scores on MELD Test split

3.1.4.2 RoBERTa Experiments

This section describes the experiments carried out using the RoBERTa architecture and the

context definition given in 3.1.3.2, namely the context exploration and balancing technique,

and reports the results that emerged.

1. Context Experiments

Experimental Setup To find the optimal number of utterances to build the context and

evaluate their effects on the performances, we train the model with several past sentences,

namely between 0 and 4. The model used to carry out these experiments is the one described

in 3.1.2.2. The maximum length of the input is fixed to 90 tokens. We made this choice to keep

the training time moderate without truncating a significant amount of samples (only 5% of the

utterance are truncated with 4 past utterances). We use the RobertaTokenizer2 to encode and

tokenize the utterances. The padding and truncation are set on the left side of the input string

to maintain the current utterance unmodified.

Results Table 3.6 displays these experiments’ results. We can observe that introducing even

a single past utterance enhances the performance; however, when utilizing more than one ut-

terance as context, the improvement is less significant. These outcomes might suggest that the

preceding utterance is more closely linked to an emotional shift in the speaker and is generally

the most relevant to the current utterance at the content level. The table also shows that using

two past utterances leads to worse performance compared to the case with one past utterance.

These findings might imply that emotional shifts occur more frequently directly in response to

other participants in the conversation. These results might suggest that the additional context

utterance increases the noise in the input rather than bringing new information. Moreover, the

dataset’s non-dyadic nature might be involved because other speakers may intervene in the

conversation with unrelated sentences. Another possible interpretation of these results is that
2https://huggingface.co/roberta-large
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N past utt F1-weighted F1-macro
0 0.63773 0.46742
1 0.65267 0.50598
2 0.65033 0.48966
3 0.66317 0.50992
4 0.6505 0.50185
1/3 0.66638 0.51666

Table 3.6: RoBERTalarge performance on MELD Test with a different number of past utter-
ances. The last line reports the scores of the model trained using the third and first past utter-
ances as context.

the 2nd past utterance belongs to the current speaker, and their emotional inertia is harder to

capture by the model.

With the goal of investigating the phenomenon just mentioned, another setting has been tested.

We considered the first and third past utterances since the performances improved back when

the 3 past utterances were employed. The results are reported 3.6. Those results indicate a

slight improvement with respect to the previous settings. Such results support the initial hy-

pothesis that adding the past dialogue indiscriminately as a context can be detrimental.

2. Balancing Techniques

Experiment Setup Considering the results obtained in the previous section, we decided to

use one past utterance as context. We made this decision because it was the most influential

past utterance. This model version was trained with the dataset augmented using resampling,

namely upsample. The less populated classes were upsampled, namely disgust, fear, sadness,

anger, surprise. The upsample proportion was chosen according to their initial sample count

to have mostly balanced emotion classes.

• The disgust and sadness classes were augmented by 1.5 their original size.

• The fear class size was doubled.

• The anger class was augmented by half its size.

• The surprise class was augmented by 0.4 its size.

The final sample count is reported in Table 3.7. We expect the model to benefit from this larger

training set and the performances to improve. We also train the model with the class weight

balancing technique with the weights reported in Table 3.3 and compare the two techniques. Fi-

nally, even if the two techniques have similar effects, we tried to combine them and verify if the
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model improves. In fact, the upsampled training dataset still presents some balance issues and

to contrast them the class weights introduced in section 3.1.3.2 were used during the training

phase. We expected that the performances would improve because the class weights impose a

less severe and more uniform penalty on the loss function allowing better performances on the

more frequent classes with respect to the weights in Table 3.3.

Emotion Count Class Weight
neutral 4710 0.3796
anger 1663 1.0752
disgust 667 2.6410
fear 670 2.6687
joy 1743 1.0258

sadness 1366 1.3089
surprise 1687 1.0598
Total 12516 -

Table 3.7: Upsampled MELD train split emotion count and respective class weights

Results Table 3.8 reports the results. The model benefits from the upsampled training set and

the performances are improved. On the other hand, the model trained using the class weights

show signs of overfitting and the model loses some of its generalization capabilities. The

expectations on the combined techniques were not met because also this model overfits with

respect to the case without class weights. This can be due to the very objective of the class

weights. By giving more importance to the less frequent classes, which are the upsampled

ones, the model overfits on those examples and loses some of its generalizing capabilities.

By inspecting the precision and recall scores of the model trained with and without the class

weights and comparing them, it is possible to notice that the recall scores of the fear and disgust

are nearly the same and these are the most augmented classes, whereas it was expected to see an

improvement. On the other hand, classes like sadness and anger experience this improvement.

This behaviour might indicate that the class weights combined with upsampling can result in

detrimental effects.
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Balance technique F1-weighted F1-macro
No Balancing 0.65267 0.50598
Upsample 0.6630 0.5242

Class Weights 0.60145 0.45681
Upsample and CW 0.61 0.4661

Table 3.8: RoBERTa trained with different balancing techniques. The best results are high-
lighted in bold.

3.2 FewShot for ERC

In this section, the chosen method to perform Few-Shot learning is described in detail along

with the aspects analyzed during the experiments. Then we define the experimental setups and

report the results obtained.

3.2.1 Architecture: SetFit

Sentence Transformer Fine Tuning[31] (SetFit) is a prompt-free method proposed to perform

few-shot learning in text classification tasks. It employs a sentence transformer[41] to gener-

ate meaningful sentence embeddings which are then passed to a classification head. Sentence

transformers are modifications of the pre-trained transformer models, such as BERT, which

use Siamese and triplet network structures to create a meaningful embedding space where se-

mantically similar sentences are close to each other.

The training defined by the authors of SetFit is done in two distinct phases. Firstly, the sentence

transformer is finetuned in a Siamese fashion using contrastive learning, a technique often used

in image recognition[42]; By using this strategy it is easier to deal with the limited amount of

available data because it allows the generation of a number of triplets to train the model on sig-

nificantly larger than the initial examples. Formally, given the set D = {X,Y } of K samples,

with K small, where xi, yi are a sentence,label pair, R positive triplets are built for each class c.

These triplets are defined as T c
p = {xi, xj, 1}, meaning that the two sentence xi and xj share the

same class. Conversely, negative triplets are built using two sentences that belong to different

classes, formally T c
n = {xi, xj, 0}. The final training set is generated by concatenating all the

produced triplets. The number of triplets generated, |T|, follows the following formula:

|T | = 2R|C| (3.3)
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where |C| is the number of samples per class in the given set D, R is a hyperparameter. This

procedure allows the generation of a much larger number of training samples with respect to

the one initially available. Once the training set is built, the sentence transformer is finetuned

using CosineSimilarity as loss function, while the classification head’s weights are frozen. Its

combination with the triplets allows the model to push close to each other sentences that belong

to the same class and drive away those that belong to different ones. This procedure allows the

model to create a meaningful feature embedding space, which can be exploited to classify the

utterances.

The second phase consists of training the classification head. The sentences in the training set

D are embedded with the sentence transformer, whose weights are now frozen, creating the

input for the head along the labels, namely T = {Emb(X), Y }. The head is trained using

a CategoricalCrossEntropy loss. Due to the small amount of data used in this scenario, the

model tends to overfit quickly. To limit the effects of this phenomenon, the training is stopped

when the validation loss did not improve for a certain number of epochs and the weights were

restored to the best loss value.

Figure 3.1: SetFit trainig diagram[31].

3.2.2 Aspects Analyzed

In the following section, we describe the aspects analyzed of the SetFit method to assess its

effectiveness and limitation related to the ERC task.

3.2.2.1 Context Definition in SetFit architecture

The introduction of past utterances in the input as defined in 3.1.3.2 might increase the noise

in the embeddings. The addition of the context to the current utterance would increase the

data variance significantly. Furthermore, the utterances prepended will not have generally the



3.2. FEWSHOT FOR ERC 32

current utterance’s label. Mixing them would decrease the triplets’ efficiency because they

would contain contrasting information. To address this concern, the experiments in section

3.2.3.1 are carried out.

3.2.2.2 Integration of Contextual information in SetFit

The results that emerged in section 3.2.3.1 indicate that the context definition given in section

3.1.3.2 is not compatible with the ST architecture trained with the SetFit strategy. To address

these incompatibilities, the classification head architecture has been modified. The sentence

transformer is still used to create the embeddings and is trained with the same method, but

the input to the classification head will be both the context and the current utterance’s em-

bedding which are merged according to different techniques. The new vector representing

the information extracted from both utterances is fed to FC layers to generate the prediction.

We hypothesize that adding the context embedding information could give more depth to the

current utterance embedding, allowing the model to capture possible nuances that were not

evident previously. The experiment in section 3.2.3.2 reports the different merging strategies’

performance and their comparison.

3.2.2.3 Performance comparison

To assess the effectiveness of the SetFit method and the modified architecture described in

section 3.2.2.2, we need to compare different strategies and other architectures. Section 3.2.3.3

reports the experiments carried out to compare the following elements:

• The few-shot learning and fine-tuning technique.

• The context contribution to the SetFit method.

• How the sentence transformer impacts the performances in the few-shot scenario.

The results should provide insight into how the few-shot learning paradigm, namely the SetFit

method with and without context, performs in the ERC task and if it is better than finetuning

the model when the available data are limited.
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3.2.3 Experimental setups and Results

In this section are described the experimental setups and the results obtained.

3.2.3.1 Context Definition in SetFit architecture

Experimental Setup As mentioned in section 3.2.2.1, we have to verify if the method as

defined can handle the context definition given in section 3.1.3.2. To that end, we trained the

model with the same subset of MELD’s training split composed of five examples (shots) from

each class, picked randomly. A different number of past utterances was added as context for

each experiment.

Results Table 3.9 shows that the performances deteriorate as the number of past utterances

increases. These results justify the change in the classification head described in section 3.2.2.2.

N past utterance F1-Weighted F1-Macro
0 0.30881 0.25678
1 0.30356 0.21779
2 0.28844 0.19504
3 0.22634 0.15396

Table 3.9: Setfit scores on MELD Test split with past utterances as context prepended to the
current sentence.

3.2.3.2 Integration of Contextual information in SetFit

Experimental Setup The second experimental scenario aimed to confront different merging

strategies and how they impacted the model’s performances when trained with a different num-

ber of shots, namely 5,10,15,20,50,100,150 examples from each class. Each subset of samples

is fixed and built incrementally on the smaller ones: the 20-shot subset contains the 15-shot,

which in turn will comprise the 10-shot subset, etcetera. The R hyperparameter mentioned in

section 3.2.1 was set to 20 for these experiments. Being the classes balanced and remembering

Equation 3.3, the number of triplets generated is equal to:

|T | = 2× 20× number_of_classes× n_shots (3.4)

For these experiments, we used the sentence transformer paraphrase-mpnet-base-v23[41],
3https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
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which has 110M parameters. The merging strategies tested are:

1. Adding the context embedding vector to the current utterance one, through an Add layer.

2. Average of the context and the current utterance embeddings, through an Average layer.

3. Concatenating the context and the current utterance embeddings, through a Concatenate

layer.

Results Figure 3.2 reports the score progression of the model for the chosen shots. It is possi-

ble to observe that the concatenation performs better than the other two across the whole span

of shots. These results can be justified by the fact that the current utterance embedding is not

modified and its features carry the bulk of information, while the context should enrich the rep-

resentation. On the other hand, the average and add merge strategies alter the current utterance

embedding when merging the context embedding, also introducing noise. This difference in

the merged vector construction could explain the performance differences between these two

strategies and the concatenation one.

Figure 3.2: Context merge strategies .

3.2.3.3 Performance comparison

Experimental setup As mentioned in section 3.2.2.3, the following experiments were per-

formed to gain insight into the methods and architecture effectiveness. To gauge the context
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contribution to the architecture defined in section 3.2.2.2 it is necessary to test it without it.

Therefore, we trained the model without the addition of the context embedding. The sentence

transformer ”all-roberta-large-v1”4 was chosen for these experiments. The same transformer

architecture is used in the experiments in section 3.1 but is finetuned to work as an ST. By

choosing a different transformer, we could also gain some insight into how the model dimen-

sion affects the performances in this scenario, comparing it with the results presented in section

3.2.3.2 (we called it ContextSFParaphrase). We chose concatenation as the merge strategy be-

cause it yielded the best results. We tested the following experimental settings:

1. SetFitRoberta: the SetFit method tested without the addition of any contextual informa-

tion, with all-roberta-large-v1 employed as ST.

2. ContextSFRoberta: the concatenation of the context performed with a larger sentence

transformer.

3. Finetuning: the RoBERTa transformer used in the previous section is finetuned using

the same number of shots so that it is possible to confront the two methods’ differences.

Results In Figure 3.3 it is possible to observe the evolution of the F1-scoremacrowith respect

to the number of shots used.

1. For a small number of shots, the SetFit method performs vastly better than standard

finetuning and the dimension of the sentence transformer plays a negligible role in the

model’s performance and becomes relevant only for larger amounts of data. The reason

for the sharp gap between finetuning and SetFit methods lies in the amount of data used

for the training of the model’s body: the former relies only on the given shots, and the

latter through triplet generation and contrastive learning actually learns from a much

bigger dataset (even if the initial amount of data is the same).

2. It is possible to notice that the context injection to the model as defined in section 3.2.2.2

fails to capture meaningful additional information and the scores are nearly the same for

every set of shots.

3. We can observe that the score curve of the few shot learners after a rampant start slows

down and almost meets a plateau, meanwhile the finetuning benefits from the larger

amount of data and largely improve its performances.
4https://huggingface.co/sentence-transformers/all-roberta-large-v1
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Figure 3.3: Finetune and Fewshot learning performances.

3.2.3.4 Full Dataset Performance Comparison

Experimental Setup The following experiments are performed to compare how the two

training methods, namely Finetuning and SetFit, fare when the whole dataset is available. We

kept the context fixed to one past utterance. As far as the finetuning is concerned, the results

used are the ones presented in section 3.1 for the complete dataset and those in the previous

section for the low shots values. The same goes for the few-shot learning scores, we only train

the model with ”all-roberta-large-v1” using all the samples available in MELD’s training split.

For this experiment, the R hyperparameter was tested in a range between 2 and 5 to find the op-

timal value. We kept the range small to keep the training time limited. The R hyperparameter

is then set to 3 because the performances started to decline after it.

Results Figure 3.4 reports the score progression of the to models. We can be observed the

finetuned model outperforms the model trained with the SetFit method. The reason behind

this difference could lie in the context information, which RoBERTa integrates better than the

ContextSFRobertamodel, and in the nature of the representation generated by the two encoders.
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Figure 3.4: Models’ trained using the Finetune and Fewshot learning techniques with MELD’s
full training split.[riscrivere]

3.2.4 Interdataset performances of finetuning and FSL

The last experiments aimed to understand if the few-shot learning paradigm could be more

effective than using Transfer Learning or fine-tuning models with few samples. This method

could be helpful in scenarios where an already trained model has to adapt to different data

whose availability is limited.

Experimental Setup In the fine-tuning case, we trained the whole model. Conversely, when

using Transfer Learning, the encoder block of the models, namely RoBERTa and the sentence

transformer all-roberta-large-v1, are frozen during training and only the classification head’s

weights are updated. We used a subset of data extracted from DailyDialog’s training set to

simulate the limited data scenarios and train the models with said methods on an increasing

number of shots, namely 0,5,10,15,20,50,100,150 examples per class. We used the models

trained with the whole MELD’s training split in the previous section as a starting point. The

performances are then evaluated on the test sets of both MELD and DailyDialog. The perfor-

mance differences should provide insight into the methods’ effectiveness.

Results Figure 3.5 and Figure 3.6 report the evolution of the macro F1-score of the SetFit ar-

chitecture and RoBERTa architecture, respectively. The performances generally decrease with
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Figure 3.5: Transfer Learning and Finetuning on few-shots from DailyDialog’s training split
of ContextSFRoBERTa, previously trained with the SetFit strategy on MELD’s training split.
The black line represents the model’s performance without additional training (0-shot).

Figure 3.6: Transfer Learning and Finetuning on few-shots from DailyDialog’s training split
of RoBERTa previously fine-tuned on MELD’s training split. The black line represents the
model’s performance without additional training (0-shot).

respect to the model not trained on DailyDialog’s subsets and show unstable behaviour. The

SetFit model trained using Transfer learning (blue curve in Figure 3.5) shows an improvement

with a low number of shots on MELD’s test set, peaking at 50 shots. In Figure 3.6 the trans-

fer learning performances (red curve) degrade rapidly but show signs of improvement with a

larger amount of data. Both models’ performance decreased when further fine-tuned (green

and gold curves) and showed irregular trends. The models overfit heavily on the small subsets

which would explain the performance deterioration, but the results obtained are not enough to

draw substantial conclusions and further experiments would be necessary. Nevertheless, the

transfer learning appears to be more stable than finetuning of the models. Furthermore, The

transfer learning trained SetFit model’s curve suggests that it can handle the limited amount of

data better than its RoBERTa counterpart. This might indicate that the sentence embeddings

yield a more flexible representation with respect to the one produced by the RoBERTa archi-
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tecture. As far as the finetuning is concerned, the performance degradation could also derive

from the noise introduced in the encoded representation by the differences in the utterances’

text structure and content. The differences in the annotation process of the two datasets should

play a minor role, if any, in this instance otherwise we would expect the performances on Dai-

lyDialog to improve and those on MELD to decrease, but the curves generally follow the same

trend. Again, to gather more insight and find support for these hypotheses further experiments

should be carried out.
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Discussion

In this section, we discuss the challenges encountered and the criticalities that emerged during

the experimental phase and possible margins of improvement.

4.1 Emotion Recognition in Conversation

The architectures used in this experimentation are taken from the literature and tested with

different scenarios to gain insight into different aspects of the task.

Limitations

The lack of real data makes difficult the evaluation of the model performance in the wild.

The data encountered might significantly differ from the training data and also present new

challenges, such as a different way to express emotion according to the domain of application,

and differences in the language used, such as vocabulary and sentence articulation, and noisier

text, presenting typos or grammatical errors. The RoBERTa model utilizes a static context def-

inition which improves the performance, but it is limited by its lack of flexibility. Furthermore,

no information about the speakers or their emotional dynamics has been integrated into the

proposed model.

Future Developments

Possible improvements in this aspects are:

• Real Data: gather real data to evaluate the model’s behaviour on it. The Adversarial

Augmentation techniques mentioned in section 3.1.3.2 could be explored in this phase if

it is appropriate with respect to the data’s nature.

40
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• Improve Context Definition: in light of the results of the context experiments carried

out in section 3.1.4.2, a possible improvement is to define a more complex decision

process to pick the contextual past utterances rather than use a fixed number. In this way,

the noise introduced by the contextual utterance could be reduced and the information

gained increase.

• Test different architectures: other architectures from the literature could be tested and

merged together to integrate different aspects of the task, such as CRFs for Emotion

Dynamics and LSTMs for speakers’ information.

4.2 Few-Shot Learning for ERC

As far as Few-Shot Learning applied to ERC is concerned, the experiments prove that methods

such as SetFit can provide a strategy to train models with limited data, but the model imple-

mented fails to capture characteristic aspects of the task.

Limitations The main challenges arisen in this experimentation are:

• Architectural limitations: the employment of a sentence transformer to generate mean-

ingful embeddings by the SetFit method imposes certain limitations in the ERC task. As

mentioned in section 1.1, in this scenario identical utterances may convey very different

emotions, but the embeddings of these utterances do not reflect this difference. The in-

tegration of contextual information in the model to reduce the impact of this issue and

generally enhance the representation was not successful.

• Overfitting: the small amount of data used in the few-shot experiments leads to overfit-

ting the models. Even if in the experiments reported in 3.2.3, we were able to partially

contain this phenomenon, it was not the case in section 3.2.4. This phenomenon might

depend on several factors:

– The architecture is too complex for the given task and other

– The training parameters are not optimal for this scenario.

– The regularization techniques employed are not appropriate.
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• Data used: the subsets used to train the models in the Few-Shot learning experiments

were balanced, whereas the test sets of the dataset have an unbalanced label distribution.

This could influence the evaluation yielding a slightly pessimistic estimation.

The experiments to adapt the trained models to new data require further investigation. While

transfer learning applied to the architecture proposed to tackle the FSL showed better perfor-

mances with respect to the other scenario, it is not enough to draw conclusive results. The

hyperparameter could not be optimal for the other settings, mainly the R parameter that deter-

mines the number of triplets generated could influence the quality of the

Future developments

There are several areas where improvements could potentially be made in the architecture

used and in the experimental setups:

• Context Integration: develop a method to integrate the context information in an archi-

tecture as it is defined in the SetFit strategy. Using an LSTM to keep track of the dialogue

evolution could be a starting point.

• Cross-validation: to remove the bias introduced by using the same subsets in the Few-

Shot experimentation, the experiments should be repeated with different fixed subsets in

multiple runs and average the results. This could yield also a measure of the variability

of the performances derived from the training data. It should be noticed that the limited

amount of examples in certain classes could cause the subsets to overlap for larger shots

number.

• Hyperparameters search: the hyperparameters used in section 3.2.3 may not be the op-

timal ones and searching for better configurations could enhance the performance.

• Regularization techniques: to try to reduce the model overfitting different regularization

techniques should be explored, such as regularizers.
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Conclusions

In this work, we explored methods and architectures used in Emotion Recognition in Conversa-

tion and Few-Sot Learning applied to this task. The scope of this thesis was to explore some of

the challenging aspects of the ERC task, such as context modelling and data unbalance, with a

reactive chatbot application as a reference case study. These aspects have been explored in the

first phase of the thesis. The lack of real data to train the model on, the difficulty of gathering

such data, and the expensive annotation process inspired the employment of Few-Shot learning

techniques; which have been explored in the second phase of the study.

In the first part of the study, a few baselines were tested to define the performance starting point

and, among them, the Text-CNN was used to test different preprocessing pipelines to gather

insight into the importance of the textual elements. These experiments revealed that punctua-

tion marks provide key information to the model, significantly enhancing the performances on

MELD’s test set.

The RoBERTa architecture along with the context definition defined by [20], described in sec-

tion 3.1.3.2, was used to explore a different number of utterances used as context and gauge

their contribution to the performances. The introduction of the preceding utterance in the di-

alogue proved to be beneficial for the model, but adding more elements of the past dialogue

as context introduces noise, limiting the improvement. Preliminary tests on a different context

structure suggest that a choice of the most relevant past utterances tailored to the current one

could lead to better results. After fixing a context configuration, several balancing techniques,

namely class weights and upsampling, are explored to deal with the unbalanced label distribu-

tion reported in many datasets related to the task. The class weights proved to be less effective

than upsampling in the tested setting.
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The second phase of the study comprises the exploration of the Few-Shot learning techniques

involved testing the SetFit method and applying it to the ERC task. The architecture trained

with this strategy was incompatible with the given context definition and required to be adapted

to support the integration of contextual information. By inspecting the results, the proposed

modification of the classification head failed to capture the contextual information. The intro-

duction of an LSTM layer in this part of the model to keep track of the dialogue evolution could

be a starting point for future developments to integrate context modelling. Nevertheless, this

method proved to be more effective than fine-tuning in training the model with limited data.

As far as the use of the SetFit method as a more efficient strategy than fine-tuning to train on

a limited amount of data, starting from a model trained beforehand on other data related to the

task, the results were inconclusive. Other than formulating several hypotheses to explain the

models’ behaviour, reported in section 3.2.4, we cannot draw any solid conclusions. Further

investigations are required to obtain conclusive evidence about this topic.

This work provides insight into some aspects of both ERC and FSL applied to ERC and sets a

starting point for future development.
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