
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Autonomous and Adaptive Systems

PERFORMANCE ANALYSIS OF THE DESIGN
OF EXPERIENCE REPLAY BUFFERS BASED

ON INTRINSIC MOTIVATION IN DEEP
REINFORCEMENT LEARNING

CANDIDATE SUPERVISOR

Giulio Vaccari Chiar.mo Prof.

Mirco Musolesi

CO-SUPERVISOR

Dott. Giorgio Franceschelli

Academic year 2021-2022

Session 3rd

To my family

ii

Abstract

In Reinforcement Learning, an intelligent system, usually referred to as an

agent, must learn to maximize a cumulative reward by correctly behaving in

an initially unknown environment. In order to improve, the agent must collect

feedback from its interactions with the surrounding world, which guides the

agent in adapting its actions to achieve better scores. However, there are some

environmentswhere feedback is not constantly provided, thusmaking learning

more difficult. In these circumstances, we say that the reward is sparse, and

including additional modules in the learning framework can be necessary to

improve agent performance.

Methods based on intrinsic motivation try to address the problem of sparse

feedback by introducing an additional reward that incentives the agent when

its behavior leads it to explore interesting regions of the environment. For ex-

ample, this reward could be proportional to the novelty of the states visited by

the agent during its exploration. In this way, the agent learns to better explore

the problem state space, without being blocked by the absence of feedback.

This thesis aims to implement and analyze a new framework for dealing

with sparse reward environments. To this end, three different models based on

as many intrinsic motivation techniques are implemented. Each model makes

use of a prioritized experience replay buffer in which transitions priorities are

given by intrinsic motivation scores.

Analysis of the results shows that prioritization based on temporal dif-

ference errors remains the best performing approach, but it also revealed an

interesting potential in certain categories of intrinsic motivation techniques,

capable of achieving higher scores than those obtained from a uniform prior-

ity model.

Contents

1 Introduction 8

1.1 Overview . 8

1.2 Contributions . 9

1.3 Structure of the Thesis . 10

2 Background 11

2.1 Reinforcement Learning . 11

2.1.1 Introduction to Reinforcement Learning 11

2.1.2 Markov Decision Processes 12

2.1.3 Episodic and Continuing Tasks 13

2.1.4 Policies and Value Functions 14

2.1.5 Temporal Difference Learning 16

2.1.6 On-Policy and Off-Policy Algorithms 18

2.1.7 Experience Replay Buffers 19

2.1.8 Prioritized Experience Replay 19

2.2 Agents . 21

2.2.1 Deep Reinforcement Learning 21

2.2.2 Value-Based and Policy-Gradient Methods 22

2.2.3 Q-Learning and Extensions 24

2.3 Intrinsic Motivation . 28

2.3.1 Challenges of Sparse Reward Environments 28

2.3.2 Curiosity as a Reward 30

2.3.3 Count After Hashing 33

2.3.4 Intrinsic Curiosity Module 35

2.3.5 Random Network Distillation 38

3 Curiosity as Priority 40

3.1 Intrinsic Motivation for Efficient Learning 40

3.2 Curiosity as Priority . 41

3.3 Learning Framework . 41

4 Implementation 44

4.1 Double Deep Q-Network Agent 44

4.2 Prioritized Experience Replay 45

4.3 Prioritizers . 46

4.3.1 Count After Hashing 46

4.3.2 Intrinsic Curiosity Module 46

4.3.3 Random Network Distillation 47

4.4 Other Implementation Details 48

5 Experiments and Results 49

5.1 Baselines . 49

5.2 Testing Environment . 50

5.3 Evaluation Metrics . 51

5.4 Analysis of Priority Values Over Training 52

5.4.1 AESH . 52

5.4.2 ICM . 54

5.4.3 DIST . 56

5.4.4 TD . 58

5.5 Results Analysis . 59

5.6 Performance and Time Complexity 61

6 Discussion and Conclusions 63

6.1 Contributions . 63

6.2 Limits of the Approach . 63

6.3 Future Work . 64

6.4 Final Conclusions . 65

Bibliography 66

Acknowledgements 71

List of Figures

2.1 RL interaction process in a schematic way 11

2.2 Computation of q(s, a) using a function approximator 21

2.3 Dueling architecture from [32]. A classic DQN (top) and the

dueling DQN (bottom). 26

2.4 ATARI Breakout . 29

2.5 Mountain Car from OpenAI Gym 30

3.1 Interactions between the different components in the learning

framework. 42

5.1 AESH Reward Plot . 52

5.2 AESH Priorities Results . 52

5.3 ICM Reward Plot . 54

5.4 ICM Priorities Results . 54

5.5 DIST Reward Plot . 56

5.6 DIST Priorities Results . 56

5.7 TD Reward Plot . 58

5.8 TD Priorities Results . 58

5.9 Reward plot for all models 59

List of Tables

5.1 Mean cumulative reward achieved by the models at different

time steps of training. The scores are computed by an average

across 10 random seeds. 61

Chapter 1

Introduction

1.1 Overview

The advent ofmachine learning hasmarked the beginning of a new era in com-

puter science, where programs have the capacity to solve problems for which

a solution is difficult or impossible to state formally, using standard program-

ming techniques. In this context, different branches of machine learning have

been developed in order to solve problems in different areas.

However, there are still situations in which we are far from fully exploit-

ing the potential of the subject, and among them, there is the increasingly im-

portant field of reinforcement learning. Reinforcement learning concerns the

development of intelligent agents with the task of maximizing a predefined

notion of “reward” in a given environment. In practice, this simple defini-

tion may include problems that range from simple Atari games to autonomous

driving and complex robotic control. Among these, some are more challeng-

ing than others: in some games, for example, our agent can be easily guided to

the goal by frequent feedback provided by the game itself; in others, our agent

may be required to proceed for a long time without any kind of indication

about the correctness of its choices, making learning more difficult.

In order to allow a better exploration of the state space in these sparse

reward environments, several techniques have been proposed based on the

notion of intrinsic motivation [1, 11, 34]. This family of methods introduces

an additional reward, i.e the intrinsic reward, that is able to provide feedback

also in scenarios where the classical reward is rare. This new feedback rewards

the agent for exploring new states that are substantially different from the ones

previously visited, in practice rewarding its curiosity.

This research thesis is about implementing and testing a new approach

to improve the efficiency of agents used in sparse reward environments, by

exploiting the notion of intrinsic motivation to focus the learning of the agent

toward its most “curious” past experiences.

To this end, a variant of the classic prioritized experience replay [26] is im-

plemented, in order to analyze the effect that a prioritization based on intrinsic

motivation has on agent training.

1.2 Contributions

This thesis aims to investigate a new approach to the resolution of problems in

sparse reward environments, by studying what happens when the rewards pro-

duced by intrinsic motivation modules are used in the prioritization of transi-

tions inside a prioritized experience replay (PER) [26]. Experience replay [19]

allows agents to learn from accumulated experiences and, in its prioritized ver-

sion, can be used to give some experiences more importance than others.

For the purpose of this thesis, an off-policy deep reinforcement learning

model is implemented and tested using prioritized replay buffers based on

three intrinsic motivation techniques. These are the count-based method pre-

sented in [30], the prediction-based intrinsic curiosity module introduced in

[22], and the random network distillation approach of [8]. For each technique,

a model is trained by means of an experience replay that uses priority values

obtained from the corresponding intrinsic reward function. The performances

of the agent with the three replay buffers are evaluated in theMountainCar [21]

sparse reward environment, together with two baseline models which use a

uniform replay buffer [19] without prioritization and the original prioritized

experience replay introduced in [26].

1.3 Structure of the Thesis

The discussion is organized as follows. First, chapter 2 will start introducing

some fundamental concepts of Reinforcement Learning. Then, wewill deepen

into the theory behind the specific agent used to conduct this research. At the

end of the chapter, we will discuss the use of intrinsic motivation in the context

of reinforcement learning and sparse reward environments.

Chapter 3 will present the core idea of this work. It will introduce the

methods that will be compared and analyzed in the following chapters, to-

gether with the learning framework used in this thesis.

In chapter 4, we will see the actual implementation of the modules pre-

sented in the previous sections. In particular, we will see the implementation

details of the agent, the prioritized experience replay, and the three different

prioritizers.

Chapter 5 will first discuss the modalities in which the experiments of this

thesis will be conducted. It will introduce the environment chosen for the

testing of the models, and the definition of the baselines. Then, we will see a

comparison of the performances achieved by the tested models, by analyzing

their reward curves over the training. At the same time, we will conduct an

analysis of the priority values produced by the prioritizers, in order to under-

stand how they affect the agent.

Finally, chapter 6 will summarize the main contributions of this work, dis-

cussing the strengths and the limitations of the approach. The thesis will then

be concluded with some final considerations and perspectives on possible fu-

ture work to extend this research.

Chapter 2

Background

2.1 Reinforcement Learning

2.1.1 Introduction to Reinforcement Learning

Reinforcement learning is a branch of machine learning that concerns the de-

velopment of intelligent agents capable of adapting to an unknown environ-

ment in order tomaximize a notion of cumulative reward. The agent can obtain

rewards from the environment by interacting with it, as shown in figure 2.1.

Agent

Environment

action
at

si+1

ri+1

state
st

reward
rt

Figure 2.1: RL interaction process in a schematic way

At each time step, the agent is provided with an observation, which is

a representation of the current state of the environment. Starting from that

observation, the agent decides which action to perform. In response to it, the

environment returns a reward signal together with a new observation. That

reward will represent the feedback that will be used by the agent to correct

its behavior until reaching a good performance. This cycle is repeated several

times until the agent terminates its execution.

The agent goal is to learn a way of acting that allows it to maximize the

sum of the rewards obtained in a training episode.

2.1.2 Markov Decision Processes

In order to approach the resolution of these agent-environment problems, we

first need to define them formally. In reinforcement learning these interactions

are stated as Markov Decision Processes (MDP).

We report the MDP formalization presented in [29], where it is defined by the

combination of four components:

• S is the set of states which represent the possible configurations of the

environment

• A(s) is the set of actions that the agent can perform from state s ∈ S

• R is the set of rewards, usually expressed as real numbers, which are

given to the agent as a consequence of its actions

• p(st+1, r|st, at) is the function that determines the dynamics of the

MDP. It gives the probability of leading to a new state st+1 ∈ S and

receiving a reward r ∈ R by performing action at ∈ A(st) from state

st ∈ S

At each time step t, the agent starts from a state st and chooses an action

at ∈ A(s) to perform. Then, the environment moves to a new state st+1 and

receives a reward rt ∈ R following the probability distribution defined by p.

The agent’s goal is the maximization of the cumulative reward defined as

the sum of all the rewards obtained during its interactions with the environ-

ment.

2.1.3 Episodic and Continuing Tasks

Agents can be used in two different types of tasks, based on whether their

interactions with the environment can or cannot be broken down into finite

sequences of steps.

In episodic tasks each agent-environment interaction has an end after a

finite amount of time steps. This finite sequence of interactions is called

episode, and in this context, we can define the cumulative reward achieved by

the agent simply as the sum of the rewards obtained at each time step within

the episode:

G
.=

T∑
t=0

rt (2.1)

where T is the length of the episode.

In continuing tasks the interactions between the agent and the environ-

ment do not necessarily lead to a terminal state. For this reason, we need to

introduce an additional term in the definition of the cumulative reward, called

discount rate γ ∈ [0, 1]. The discount rate is used as a coefficient for the

rewards achieved at each time step, and it ensures that a possibly infinite sum-

mation of rewards leads to a finite result. From an intuitive point of view, the

discount rate can be seen as a way to weigh the importance of later rewards

against earlier ones. For example, by decreasing γ it is possible to give more

importance to rewards obtained earlier in the episode compared to the ones

achieved later.

The cumulative reward for continuing tasks is defined as:

G
.=

∞∑
t=0

γtrt (2.2)

Because of the positive effect that the discount rate has on the agent’s percep-

tion of reward, the use of γ is also extended to episodic tasks.

2.1.4 Policies and Value Functions

In the setting of a Markov decision process, we need a way to formalize the

current behavior of the agent, in order to be able to measure and improve its

performance. In reinforcement learning, a policy π is a probability distribu-

tion function defined over the set of possible actions A(s) conditioned by a

state s of the Markov decision process. In practice, a policy π encodes the be-

havior of the agent by associating to each action available from a given state

a probability value that indicates how much is probable that the agent would

take that action starting from that state.

Given the policy that represents the behavior of an agent, we can now de-

fine a function to estimate its performance. The value function vπ(s) gives the

expected cumulative return obtainable starting from the state v and following

the policy π afterward. vπ(s) is also called state-value function, and it can be

formalized as follows:

vπ(s) .= Eπ[Gt|st = s] = Eπ[
∞∑

k=0
γkrt+k+1|st = s] (2.3)

where E[·] denotes the expected value of a random variable assuming of fol-

lowing the policy π at each time step k greater than t.

In a similar way, it is possible to define another very useful function called

action-value function qπ(s, a), which represents the expected return starting

from state s and immediately taking action a, then following the policy π:

qπ(s, a) .= Eπ[Gt|st = s, at = a] = Eπ[
∞∑

k=0
γkrt+k+1|st = s, at = a] (2.4)

These value functions are particularly important because they are strictly con-

nected with the concept of optimal policy. In order to solve a reinforcement

learning problem, we need to find a policy that maximizes the amount of re-

ward collected over the long run, and in a Markov decision process, there is

always at least one policy that is optimal compared to the others. We denote

a generic optimal policy with π∗, and we define its associated optimal value

function v∗ as follows:

v(s)∗ .= max
π

vπ(s) ∀s ∈ S (2.5)

Note that every optimal policy π∗ is characterized by the same value function

v∗. In the same way, we can define the optimal action-value function q∗ as:

q∗ .= max
π

qπ(s, a) ∀s ∈ S and ∀a ∈ A (2.6)

As can be easily observed, once we have an optimal value function, it is possi-

ble to obtain an optimal policy by simply taking in each state the action which

maximizes the value function. Thanks to this result, we can reduce the reso-

lution of a reinforcement learning problem to the one of obtaining an optimal

value function to follow. But how can we compute an optimal value function

for our problem?

The first possibility is to use the Bellman optimality equation, which gives

us a way to compute it exactly. First of all, let express a generic state-value

function vπ of a policy π as follows:

vπ(s) =
∑

a

π(a|s)
∑
s′ ,r

p(s′
, r|s, a)[r + γvπ(s′)] (2.7)

where a ∈ A(s) for each state s, and s
′ are possible successor states of s with

rewards r associated to the transitions.

We can then rewrite the previous equation under the optimal policy, which

assumes the following form:

v∗(s) = max
a

∑
s′ ,r

p(s′
, r|s, a)[r + γv∗(s′)] (2.8)

Bellman’s equations allow expressing the value of v∗(s) recursively in a very

elegant form, whose application, however, is not always feasible. In fact, in

order to use Bellman’s equations to compute v∗(s), we would need to know

the full dynamics of the environment, which however are usually unknown at

the start of the MDP. In addition to this, if the MDP is very complex, the use

of Bellman’s optimality equations is computationally infeasible.

The second possibility for the computation of v∗ consists in estimating

it using past experiences collected by the agent during its training inside the

MDP. There are several ways to accomplish this task, but in this thesis we will

concentrate on a class of techniques that allows the agent to learn a policy from

past transitions between pairs of states, which is called temporal difference

learning.

2.1.5 Temporal Difference Learning

Temporal difference learning refers to a family of reinforcement learningmeth-

ods that are able to learn a policy starting from a set of MDP transitions in the

form (St, At, Rt, St+1, At+1), where:

• St is the starting state

• At is the action performed from the starting state St

• Rt is the reward received in the transition

• St+1 is the state reached after the transition

• At+1 is the successive action performed from St+1

Generally, these transitions are used to learn an action-value function q(s, a) in

an iterative estimation process. Learning qπ for the current policy π is useful

because qπ can then be used to improve the policy π itself. Since a change in

π is reflected in a change in qπ, we need to keep updating q until the training

converges. The repetition of this cycle should lead to the improvement of the

policy and therefore to the improvement of the behavior of our agent.

The simplest method of this family of techniques is called TD(0), intro-

duced by Sutton in [28]. TD(0) is designed to solve the easier problem of

estimating the value function vπ associated with a given policy π. In order to

do so, it uses the following formula to compute the next approximation of V :

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St)) (2.9)

where γ is the discount rate and α is the learning rate.

The TD(0) update of V (St) involves the use of bootstrapping, where current

estimates of V are used to update V itself. As we can see, the update requires

information that can be obtained in a single transition from time step t to time

step t + 1 together with the action that will be selected in the subsequent time

step, thus making this method especially useful in continuing tasks or in gen-

eral when we don’t want to wait for the end of an episode to perform an update.

Looking closely at the previous formula, we can individuate a term which

represents the discrepancy between the current estimate of V (St) and its new

updated estimation after observing the transition:

δt =
T arget︷ ︸︸ ︷

Rt+1 + γV (St+1)−V (St) (2.10)

This is called the Temporal Difference (TD) Error of the transition and consists

of the difference between a target and the current estimate V (St). The target

in TD(0) can be seen as an approximation of the real value of V (St), inferred

from the transition.

For any fixed policy π, it is possible to prove that this method converges

to vπ under some simple assumptions concerning the learning rate, as stated

in [29].

Finally, here is the full pseudocode for TD(0):

Algorithm 1: TD(0)
Input: policy π, learning rate α ∈ (0, 1]
Output: value function V
Initialize V arbitrarily, except that V (s) = 0 if s is terminal
foreach episode do

Initialize S0
foreach step t in episode do

Choose action At using policy π from state St

Take action At and observe Rt, St+1
V (St)← V (St) + α(Rt + γV (St+1)− V (St))
St ← St+1

end
end
return V

2.1.6 On-Policy and Off-Policy Algorithms

As seen in temporal difference learning, it is possible for an agent to learn

a policy starting from a set of experiences, i.e. the transitions, that can be

obtained by exploring the environment. In order to explore, the agent must

follow a policy that determines its behavior when deciding which actions to

perform from each visited state. We can refer to this policy as the behavioral

policy of the agent.

In reinforcement learning, there is a distinction between agents whose be-

havioral policy coincides with the current policy being trained, i.e. the target

policy, and agents for which the two do not necessarily coincide.

Formally, we say that a learning algorithm is on-policy when the explo-

ration of the states follows the target policy. Otherwise, we say that the learn-

ing algorithm is off-policy.

Algorithms that perform training on-policy usually do so because the learn-

ing process is based on successive improvements of the current policy that fol-

lows a local search approach. In this setting, it is necessary for the transitions

used to construct the updates to be obtained considering the current state of the

policy and not an old version of it. On the other hand, algorithms that perform

training off-policy do not require this constraint on the transitions. Off-policy

methods try to make the agent converge directly to an optimal policy using

experiences that can be obtained also without following the actual policy. For

example, an off-policy agent can be trained also using transitions that are ex-

plored some time before in training, while for an on-policy agent this could

lead to wrong policy updates.

2.1.7 Experience Replay Buffers

Instead of directly using the obtained experience to perform a policy update,

off-policy algorithms make use of a data structure called experience replay

buffer [19].

An experience replay buffer is a memory where transitions collected by

the agent are stored in order to be used later for training the policy. Each

time a new transition is collected, it is stored in the buffer instead of being

immediately used for computing an update. Then, at regular intervals, a batch

of transitions is sampled from the buffer and an update is performed using

those experiences. The main utility of a replay buffer comes from the fact that

it helps reduce the temporal correlations between transitions used to compute

updates, which helps the training of the agent.

Experience replay buffers can be safely used only when the training al-

gorithm expects transitions that can be obtained with a different version of

the policy. For this reason they are generally used with off-policy algorithms,

while they are usually avoided with on-policy approaches.

2.1.8 Prioritized Experience Replay

In a classic experience replay buffer, transitions are sampled with uniform

probability to construct the policy updates. Vice versa, a Prioritized Experi-

ence Replay (PER) [26] is a variant of the classic experience replay buffer in

which transitions stored in the buffer are not sampled with uniform probabil-

ity, but instead with a probability given by their priorities.

According to the original paper, each time a new transition is obtained

from the environment and inserted in the buffer, its priority is set to amaximum

value to ensure that it is used for training the agent at least one time. Then,

after a batch of transitions are sampled for computing an update, their priorities

are updated with values proportional to how much the agent has still to learn

from those experiences. Specifically, the updated priorities are given by the

temporal difference (TD) errors computed in the last policy update.

When sampling a batch of experiences from the buffer, each transition has

a probability of being chosen which is monotonic in its priority, according to

the following formula:

P (i) = pα
i∑

k pα
k

(2.11)

where pi > 0 is the priority of transition i. The hyper-parameter α decides the

smoothing of the probabilities: it determines how much prioritization is used.

The use of prioritized sampling, however, presents an issue: it introduces

bias in the training because it alters the distribution of the data used to con-

struct the policy’s updates. This could have a negative impact on the final

performance of the agent, and therefore it needs to be corrected. To solve this

problem, PER uses an additional mechanism to control the importance given

during training to each transition sampled, which is the weighted importance

sampling (weighted IS). With this approach, the contribution of a sampled

transition is modulated by an IS weight calculated as follows:

wi =
(

1
N
· 1

P (i)

)β

(2.12)

When constructing the updates, these weights will be multiplied by the tem-

poral difference errors associated with the transitions in question with the aim

of modifying how much they affect the policy. The value of β determines

the compensation factor for the data distribution, which fully compensates for

the non-uniform probabilities when β = 1. Conceptually, at the beginning of

training this value should be low, in order to exploit the benefits of prioritiza-

tion. Then, it should gradually increase until reaching a value near 1. In fact,

in the early stages of training the alteration of the data distribution is not so

problematic, while it is very important to correct it toward its end.

As stated in [26], the introduction of PER allows to speed up learning by a

factor of 2 on the Atari benchmark [4] compared to the classical replay buffer.

This is possible thanks to the fact that during the training of the policy, prece-

dence is given to those experiences where the agent obtained larger errors,

from which it can therefore learn more.

2.2 Agents

2.2.1 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) comes from the combination of classic

reinforcement learning with deep learning. The introduction of deep networks

inside agents’ architectures was necessary to deal with complex environments

that can be seen in real-life problems. In particular, deep networks become

very useful every time we need to process high-dimensional state represen-

tations. In classical reinforcement learning, a temporal difference algorithm

would use a simple table for implementing the action-value function q(s, a).

The problem is that if the state space cardinality is too vast, the size of the table

would be too large to be manageable. For this reason, we need to replace the

tabular implementation of q(s, a) with an approximation of it that exploits the

capabilities of deep learning.

Function
Approximator

state

action

q

Figure 2.2: Computation of q(s, a) using a function approximator

Using a deep network as a function approximation of q(s, a)will provide a

mapping between states (or action-state pairs) to state (or action-state) values,

as seen in figure 2.2. The training of the DRL agent will then consists in train-

ing its deep networks, which can be performed by integrating reinforcement

learning algorithms with gradient descent techniques.

2.2.2 Value-Based and Policy-Gradient Methods

Historically, deep reinforcement learning algorithms can be divided into two

main categories, which are the value-based methods and the policy-gradient

methods. What characterizes the two approaches is the way they learn a policy

from the experiences collected by the agent.

Value-based methods rely on learning an action-value function q(s, a) that

will be used to derive it. The value function can be estimated in different ways,

for example using a temporal difference approach as seen previously with the

TD(0) algorithm, or also with other techniques likeMonte Carlomethods [29].

In addition, the estimation of a value function during the training of a policy

π can be performed following either an on-policy or an off-policy method-

ology, resulting in methods like Semi-Gradient SARSA [24, 29] and Deep

Q-Learning [20].

In DRL the current estimation q̂ of the action-value function is imple-

mented using a neural network which is trained by updating its weights vector

θ. The general gradient descent update for value-based algorithms has the

following form:

θt+1 = θt + α[Ut − q̂(st, at; θt)]∇q̂(st, at; θt) (2.13)

where α is the learning rate, ∇q̂(st, at; θt) is the gradient of q̂ with respect

to the state and the actions selected at time step t, and Ut is the target of the

update. Ut represents the value that q̂(st, at; θt) should assume, and the differ-

ence between the two quantities is the error that will determine the intensity

and the direction of the gradient update. In general Ut is unknown, so an es-

timation of it is used instead. The way this estimation is constructed differs

among the various value-based algorithms.

Starting from the actual estimate q̂ of the action-value function, value-

based methods implement their policy following the actions with the highest

value from the current state st:

at = argmax
a

q̂(st, a) (2.14)

Unfortunately, the above method typically does not lead to a sufficient explo-

ration of the problem space, making learning very difficult. A simple solution

to this problem consists in using the so-called ϵ-greedy search, which intro-

duces a stochastic component in the agent’s decision process. At each time

step, the agent has a probability equal to ϵ ∈ [0, 1] to perform an action chosen

at random instead of performing the best one according to the value function.

Usually, the ϵ value is high at the start of the training and then is decreased

until it reaches a value near 0.

On the other hand, policy-gradient approaches eliminate the necessity of

learning a value function and directly train a policy using the experiences col-

lected by the agent. As stated in the previous sections, a policy is represented

as a mapping π between states and action probabilities, and it can be used to

determine how much is probable that the agent at time step t will perform a

certain action from the given state st:

π(a, s; θ) = Pr(at = a|st = s, θt = θ) (2.15)

θ here is the vector that represents the weights of the neural network that en-

codes π, which is called policy network. In policy-gradient methods, the pol-

icy network is trained directly from transitions (or from full trajectories of

transitions), by using gradient ascent updates. A basic example of this ap-

proach can be seen in the classic REINFORCE algorithm [35].

Although the classification introduced in this section is certainly important

from a conceptual point of view, there are also algorithms that do not belong

to either category, or that derive from a combination of the two. Actor-Critic

algorithms are the best example of an architecture that manages to exploit

the best of both approaches, combining the direct training of a probabilistic

policy, with that of a value function that is used to drive the improvement of

the previous one. For further discussion of the above methods, we recommend

reading [29].

2.2.3 Q-Learning and Extensions

Q-Learning [33] is a classical value-based reinforcement learning algorithm

belonging to the family of temporal difference methods. The training of a Q-

Learning agent consists in learning an action-value function Q(s, a), which

will be used within an ϵ-greedy exploration strategy. The update of the cur-

rent Q function is performed off-policy, making Q directly approximate the

optimal value function q∗:

Q(St, At) = Q(St, At) + α(Rt + γ max
A

Q(St+1, A)−Q(St, At)) (2.16)

As we can see, the algorithm is off-policy because the update’s target uses the

best action from St+1 (according to the current Q) instead of choosing the one

actually used in the transition. Thanks to this, it is possible to train the agent

using an experience replay buffer, increasing its convergence speed.

Q-Learning has been adapted to be used with deep learning, resulting in

the Deep Q-Learning algorithm presented in [20] by Mnih et al., usually ab-

breviated in DQN forDeep Q-Network. In this version, a deep neural network

Algorithm 2: Q-Learning
Input: ϵ > 0, learning rate α ∈ (0, 1]
Output: action-value function Q
Initialize Q(S, A) arbitrarily, except for terminal states
foreach episode do

Observe S0
foreach step t in episode do

Choose action At at random with probability ϵ
otherwise At = maxA Q(St, A)
Take action At and observe Rt, St+1
Q(St, At)← Q(St, At)+α(Rt +γ maxA Q(St+1, A)−Q(St, At))
St ← St+1

end
end
return Q

is used to implement the action-value function q̂(s, a), which is trained by gra-

dient descent using the following adaptation of formula 2.16:

θt+1 = θt + α[Rt + γ max
A

q̂(St+1, A; θt)− q̂(St, At; θt)]∇q̂(St, At; θt)

(2.17)

where θt is the weight vector of the network at time t.

In [20], a DQN extended with an experience replay buffer was used for the

first time to solve a large number of Atari games. The observations provided

by the game environment were in the form of tensors of pixels, representing

a concatenation of visual frames from the game screen. For this reason, the

neural architecture of the agent included also a first set of convolutional layers

that allowed the processing of those frames.

Over the years, the classic DQN model has undergone some structural

changes with the aim of improving its performance. Next we will look at the

main ones, analyzing how they affect the basic model.

In 2015, Wang et al. introduced in [32] a modified version of DQN called

Dueling DQN. In particular, this variant changed the final layer of the neural

network, in which the computation of q̂(S, A) values was broken down into

two sub-problems. In figure 2.3 we can see this new architecture compared to

the classic one.

Figure 2.3: Dueling architecture from [32]. A classic DQN (top) and the dueling
DQN (bottom).

In a dueling DQN, qπ(s, a) is decomposed as the sum of:

• vπ(s): the state value of s

• Aπ(s, a) the advantage of taking action a in state s

by doing so, we have:

qπ(s, a) = vπ(s) + Aπ(s, a) (2.18)

The computation of the q-values is divided into two streams, which are then

combined to produce an action-value for each possible action.

As explained by the authors:

“Intuitively, the dueling architecture can learn which states are (or are

not) valuable, without having to learn the effect of each action for each

state. This is particularly useful in states where actions do not affect the

environment in any relevant way.”

Unfortunately, if we combine the two quantities by simply summing them

together, we will not be able to correctly distribute the error among the two

streams during backpropagation. The authors proposed a solution to this prob-

lem which is to force Aπ(s, a) to be equal to zero when a is the best action

according to the current policy.

qπ(s, a) = vπ(s) + (Aπ(s, a)−max
a

Aπ(s, a)) (2.19)

Experimentally, replacing max with a mean proved to be a better solution, as

it increases stability during training.

qπ(s, a) = vπ(s) + (Aπ(s, a)−mean
a

Aπ(s, a)) (2.20)

The idea behind the second upgrade we are about to see tries to solve an

inherent problem of Q-Learning through the introduction of an additional es-

timator, i.e. an additional neural network in the context of DRL. Precisely be-

cause of this two-network architecture, the resulting algorithm takes the name

of Double DQN.

In classic Deep Q-Learning, the approximation of the target in the update

formula is computed with a maximum over all the possible actions from the

state st+1. Since this approximation is noisy, it is possible to prove that this

approach leads to an overestimation of the correct action value. To solve the

problem and eliminate this bias, Double Q-Learning introduces an additional

network Q′, named target network. The target network has the same structure

as the primary one Q, and it is used to decouple the choice of the action from

the estimation of its value.

In the computation of the update target, a Double Deep Q-Network model

(DDQN) first uses its primary network to choose the action with maximum

value from state St+1:

target_action = argmax
A

Q′(St+1, A; θ′
t) (2.21)

Then, the target network is used to evaluate that action in the construction

of the network update (instead of using the value obtained from the primary

networks). So, the target used in the DDQN update formula will have the

following form:

Yt = Rt + γQ′(St+1, argmax
A

Q(St+1, A; θt); θ′
t)−Q(St, At; θt) (2.22)

As we can see, Q selects the action, while Q′ evaluates it.

While the weights θ of the primary network are updated using gradient de-

scent with the target above, the weights θ′ of the target network are updated

periodically by copying the ones of the primary network every τ training steps.

The technique we just discussed comes from the paper [31] by Hasselt et

al.. This, in turn, is an adaptation of the idea introduced in [14] by Hasselt,

in the context of the classic Q-Learning. There is also an additional version

introduced by Fujimoto et al [13] in the context of actor-critic methods.

DuelingDQN andDouble DQN are two independent variants of the classic

DQN, but as we will see in later chapters, our experiments are based on an

agent that makes use of both upgrades. In fact, ours will be a Double DQN

architecture in which each of the two networks has a dueling final layer.

2.3 Intrinsic Motivation

2.3.1 Challenges of Sparse Reward Environments

As observed in the previous algorithms, the role of the reward signal is cru-

cial to guide the learning of the agent. The updates for the agent’s policy are

constructed using immediate and predicted reward values; without them, the

agent simply could not learn which actions are good and which are not. These

rewards are generated directly from the environment, and often they are suffi-

ciently dense to allow the agent to learn with continuity. For example, in the

famous ATARI game Breakout (figure 2.4), the agent is rewarded each time

it increases its score, which happens every time it manages to hit a tile with

the ball.

Figure 2.4: ATARI Breakout

However, in many real-life problems, the feedback provided by the envi-

ronment is not frequent, or even rarely observable. In these situations, we say

that the reward is sparse.

In sparse reward environments, learning becomes more difficult because

the agentmight need to try a very large number of interactions before obtaining

a single useful feedback, and in that time it would be unable to learn anything.

A famous example of this kind of environment is theMountain Car problem,

which first appeared in [21]. In Mountain Car the agent controls a little car

positioned between two hills in a bi-dimensional environment (figure 2.5).

The goal is to learn a way to strategically accelerate the car to reach the top of

the right hill. In order to achieve sufficient momentum to escape the valley,

the car needs to be pushed a bit in the opposite direction before moving toward

the right hill. The difficulty of this problem lies in the fact that the only reward

provided is a constant −1 value at each time step until the agent reaches the

final position, or until the time runs out.

Figure 2.5: Mountain Car from OpenAI Gym

The agent won’t be able to learn anything until a random combination of

its moves takes it to the hilltop goal at least once. From that moment, it will

be possible for the obtained positive feedback to be propagated throughout the

agent’s policy, allowing it to learn the effects of its own moves. If the state

space of the problem is large, this kind of approach could not be feasible.

2.3.2 Curiosity as a Reward

To deal with the difficulties of sparse reward environments, an interesting so-

lution has been proposed which draws inspiration from the notion of intrinsic

motivation [11] used in the field of human psychology. Intrinsic motivation

refers to the concept of internal gratification that drives people toward doing

activities for inherent satisfaction, and not for achieving an external goal [25].

For example, human curiosity is a form of intrinsic motivation that rewards

exploratory behaviors in unfamiliar environments. This kind of process can

be seen easily in young infants that try to interact with every new object they

encounter [1].

In reinforcement learning, intrinsic motivation can be embedded inside

training in order to reward agents when they perform actions that lead them

to discover new states of the environment or to try new kinds of interactions.

As summarized in [34], there are several possible ways to integrate intrinsic

motivation to guide learning, but generally, this is implemented as an addi-

tional reward that is given to the agent to encourage it to explore more. This

additional reward is called intrinsic reward because it is generated inside the

agent to reward its intrinsic behavior, independently from the environment’s

goal. Usually, this reward value is computed at each training step based on

the characteristic of the current state that has just been discovered, along with

other information related to past transitions and the current behavior of the

agent. Intrinsic reward is opposed to the classic reward we refer to as extrinsic.

Both intrinsic and extrinsic rewards are then commonly combined to obtain

the feedback that will be given to the agent, which will be used to compute

the policy updates. The introduction of this new form of combined reward is

able to change the policy that is learned by the agent: the latter should find a

balance between the maximization of the external reward (which remains the

main goal) and fruitful exploration of the surrounding world.

In the following sections, we will look at some intrinsic motivation tech-

niques used in reinforcement learning that differ in theway the intrinsic reward

is computed.

A first family of techniques comprehends the count-based methods for the

generation of intrinsic feedback. Count-based methods generate the intrinsic

reward at each training step by looking at the state st+1 just reached in the cur-

rent agent’s transition. The intrinsic feedback is then computed as an inverse

function of the number of times a state similar to st+1 has already been seen.

In general, these methods try to estimate the novelty of the states visited by

the agent in order to encourage the exploration of new states dissimilar from

the ones already encountered. Certainly, there are many methods belonging to

this category that would be interesting to delve into. An example of a count-

based strategy to guide exploration can be seen in the classic UCB algorithm

introduced in [18], in which the action selection is influenced by a bonus given

by the number of times each action has already been chosen in past transitions.

The approach presented by Bellemare et al. in [5] instead constructs a density

model as a way of representing the information about the past states explored

by the agent. This model is then used to derive pseudo-counts from which to

obtain the intrinsic reward values.

The second category of techniques that we will discuss comprehends the

prediction-based methods. These methods start from the idea that the intrin-

sic reward should encourage the agent to improve its knowledge about the

dynamics of the environment. In order to do so, a prediction model is incor-

porated into the training algorithm. This will be used to define a prediction

problem which should give us a measure of how familiar the agent is with the

dynamics of the environment. Then, the intrinsic reward will be computed as

a function of the error in the agent prediction. In fact, the goal of this family

of methods is to encourage the agent to concentrate the exploration in those

states where its predictive abilities are poorer, in which the agent has prob-

ably been trained less and has more to learn. Even in this context, there are

several implementations of the idea underlying this category. Houthooft et al.

in VIME [15] proposed a strategy based on variational inference in Bayesian

neural networks [6], consisting in the maximization of information gain about

the agent’s belief of environment dynamics. Another interesting approach in-

troduced by Pathak et al. in [23] involves the use of an ensemble of prediction

models instead of just one. In this strategy, the intrinsic rewards are com-

puted by measuring the disagreement between the predictions of the different

models in the ensemble: higher the variance across the outputs of the models,

higher the reward.

Among the algorithms we will use, there is one that could be considered

as a hybrid approach between the two strategies previously introduced. Here

the novelty of the states is taken into consideration to determine the intrinsic

reward to assign in a transition, but on the other hand, a prediction problem is

used in order to generate the feedback.

There are also other categories of intrinsic motivation techniques that, al-

though not explored in depth in this thesis, deserve close attention. Among

these we find memory-based methods, whose distinguishing feature is that

they make use of an external memory to solve some of the problems encoun-

tered by other approaches. An excellent example can be found in the recent

Never Give Up [2] method by Badia et al., which makes use of an episodic

memory-based intrinsic reward that combines per-episode and life-long nov-

elty.

The are also other promising approaches to encourage an intelligent ex-

ploration of the search space which does not involve the use of an explicit

intrinsic reward. For example in the Exploration via Empowerment Gain [3]

presented by Becker-Ehmck et al. the agent exploration is driven by the notion

of empowerment [17], which is a measurement of the perceived control over

its environment. Finally, in [12] Ecoffet et al. propose a new approach for

hard-exploration problems which involves a multi-step algorithm to improve

the exploratory capabilities of the agent.

2.3.3 Count After Hashing

Classical count-based techniques used in the context of tabular reinforcement

learning directly counted the number of times each state (or each state-action

pair) has been visited during training in order to produce the intrinsic feedback

[27].

In 2016 Tang et al. presented a count-based method [30] for the generation

of intrinsic rewards which was capable of working with very large state spaces

and with high-dimensionality observations, i.e., when tabular methods can not

be used.

This approach also uses a table in which to store information about the past

transitions of the agent; however, this is no longer associated with individual

states, but rather with sets of states.

For this purpose, a hash function ϕ is introduced to map each state to an

encoding in Zk:

ϕ : S → Zk (2.23)

The main idea is to define ϕ as a locality-sensitive hashing (LSH) function, so

it will map similar states to the same discrete encoding.

Each time a state s is visited during the training of the agent, ϕ is used to

obtain its encoding ϕ(s). Then, this code is used as an index in a hash table

n(·) that keeps track of the number of times a state with that code has already

been seen.

The intrinsic reward ri(s) is computed as a function of this count, and it is

simply added as a bonus to the extrinsic reward re to obtain the final reward

given to the agent:

ri(s) = β√
n(ϕ(s))

(2.24)

rt(s) = re
t + ri

t(s) (2.25)

where β ∈ R≥0 is the bonus coefficient. The higher the number of times a

state similar to s has already been explored, the lower the intrinsic reward will

be. Initially all the counts in n(·) are set to zero. Then at each time step t, the

count n(ϕ(st)) associated with the current state st is increased by one.

The hashing function used in the original paper is SimHash [9], a compu-

tationally efficient type of LSH:

ϕ(s) = sgn(Ag(s)) ∈ {−1, 1}k (2.26)

where g : S → RD is an optional preprocessing function and A is a k × D

matrix with i.i.d entries drawn from a standard Gaussian distributionN (0, 1).

The value k controls the granularity of the discretized state space.

The use of an additional function g can be very useful when working in

complex environments, such as when observations are images. As mentioned

by the authors, when working in an environment with visual observations such

as those of Atari games, the direct use of SimHash gives poor results. For

this reason, the encoding part of a neural autoencoder (AE) was used as g

preprocessing function. In the middle of the AE architecture a layer whose

output b(s) is given by D sigmoid functions is considered. The g function is

defined as the output b(s) rounded to the nearest integer:

g(s) = ⌊b(s)⌉ ∈ {0, 1}D (2.27)

We will not elaborate further on the implementation details of the AE,

since no visual environments will be used in the experiments covered by this

thesis, and therefore we will not make use of it. We recommend reading the

original paper to delve deeper into this topic.

2.3.4 Intrinsic Curiosity Module

In 2017 Pathak et al. introduced in [22] a prediction-based technique of intrin-

sic motivation for reinforcement learning which determines the value of the

intrinsic reward on the basis of the agent’s current understanding of the envi-

ronment. To do so, the agent learns to predict the most probable evolution of

a given state given a possible action. Then, the intrinsic reward is computed

as a function of the error in the agent prediction.

The method proposed in [22] generates intrinsic rewards using a module

named Intrinsic Curiosity Module (ICM), which formulates curiosity as the er-

ror of the agent in predicting the consequence of its own actions, by following

the strategy explained above. Themain contribution introduced by ICM is that

before facing the prediction problem, the state representations are mapped in

a feature space designed to give importance to only those characteristics of the

observations relevant to the prediction task. In particular, by using this feature

space, the states embeddings will contain only the information relevant to the

action performed by the agent, thus focusing the prediction on the aspects of

the observations that can be influenced by the behavior of the agent, ignoring

the rest. This is useful to avoid a series of problems that can occur when work-

ing within the raw sensory space, ranging from the high dimensionality of the

observations, which can make the prediction problem unnecessarily difficult,

to the famous “Noisy-TV problem” (as explained in [22]). The feature space

is learned directly during the training of the agent, using a self-supervised in-

verse dynamics model.

ICM is made of two neural sub-models, the inverse dynamics model and

the forward dynamics model, which are trained together with the agent’s pol-

icy. The inverse dynamics model consists in two components that are closely

connected: the first is the embedding network ϕ, which maps a raw state s

into a feature vector ϕ(s). The second component takes as input ϕ(st) and

ϕ(st+1) and predicts the action at causing the transition. The second com-

ponent’s purpose is to be used to train ϕ, starting with the idea that if the

embedding function is optimized to solve the action-prediction problem, then

it will produce good representations of the states which will be useful also for

the original prediction problem.

The two combined components define the inverse dynamics model g:

ât = g(st, st+1; θI) (2.28)

where, ât is the predicted estimate of the action at. The neural networkweights

θI are trained in order to minimize a loss function LI which measures the

discrepancy between ât and at. The tuples (st, at, st+1) required to learn g

are obtained while the agent interacts with the environment using its current

policy π(s).

The forward dynamics model consists of a neural network that implements

the function f , which given the inputs ϕ(st) and at predicts the encoded next

state ϕ(st+1),

ϕ̂(st+1) = f(ϕ(st), at; θF) (2.29)

where ϕ̂(st+1) is the predicted estimate of ϕ(st+1). The weights θF are learned

by minimizing the loss function LF :

LF (ϕ(st+1), ϕ̂(st+1)) = 1
2
||ϕ̂(st+1)− ϕ(st+1)||22 (2.30)

The overall optimization problem used to train both the agent and the ICM

is a composition of the loss functions LI and LF , together with the maximiza-

tion of the agent’s policy expected sum of rewards:

min
θP ,θI ,θF

[
−λEπ(st;θP)[

∑
t

rt] + (1− β)LI + βLF

]
(2.31)

where θP are the weights of the agent’s policy, λ > 0 is a scalar that weighs

the importance of the policy gradient loss against the importance of learning

the intrinsic reward signal, and 0 ≤ β ≤ 1 is a scalar that weighs the inverse

model loss against the forward model loss.

Then, the intrinsic reward signal ri
t is computed using the forward model

as:

ri
t = η

2
||ϕ̂(st+1)− ϕ(st+1)||22 (2.32)

where η > 0 is a scaling factor.

Finally, the actual reward used to train the agent’s policy is obtained by

summing together the extrinsic and the intrinsic rewards:

rt = re
t + ri

t (2.33)

where re
t denotes the extrinsic reward produced by the environment at time t.

2.3.5 Random Network Distillation

The method introduced in 2018 by Burda et al. in [8] is a simple but very

effective solution for generating intrinsic rewards which can be placed some-

where between count-based and prediction-based methods. This approach is

based on the introduction of two additional neural networks with the same

structure, which will be used to define a prediction problem about the nov-

elty of the visited states. The first network is called target network, and it is

randomly initialized before starting the training to map states to vectors of ran-

dom numbers. The target network is used to set the prediction problem that

the predictor network will try to solve, by training on the data collected by

the agent. Each time a new state is visited in a transition, first, the target net-

work is used on the observation to obtain the random vector associated. Then

the predictor network is applied to the same observation trying to predict the

same output vector produced by the target. During the training of the agent,

the predictor is trained by gradient descent to minimize the MSE loss between

the two vectors, but at the same time, this error value is used as the intrinsic

reward for the agent. By referring to f as the function computed by the target

network, and f̂ the function computed by the predictor network with weights

θ, we have:
f : S → Rk

f̂ : S → Rk

ri
t = ||f̂(st+1; θ)− f(st+1)||22

(2.34)

The main idea behind this technique is that the prediction error is expected

to be lower for states similar to the ones seen often by the agent during train-

ing. In fact, the predictor will be trained more on those observations. On the

other hand, the error will be higher for those rarely seen states on which the

predictor has trained less, which might be more interesting.

Despite its simplicity, this method was able to achieve excellent perfor-

mance on hard-exploration games like Montezuma’s Revenge. A crucial role

in obtaining these good results was played by the pre-processing of the states

before giving them as input to the networks, and by the normalization of the

generated intrinsic reward values. The observations are normalized bywhiten-

ing each dimension by subtracting the running mean and then dividing by the

running standard deviation. The normalized observations are then clipped in

[−5, 5]. The normalization parameters are initialized before starting the train-

ing by stepping a random agent in the environment for a small number of

steps. This normalization scheme is used for both target and predictor net-

works, but not for the agent’s policy network. Regarding the normalization

of the intrinsic reward values, these are divided by a running estimate of the

standard deviations of the intrinsic returns. This allows the rewards to be on

a consistent scale across different environments and points in time during the

training of the agent.

Chapter 3

Curiosity as Priority

3.1 Intrinsic Motivation for Efficient Learning

As seen in the previous chapter, some of the most popular methods for in-

corporating intrinsic motivation into the training of the agents are based on a

modification of the classical reward that the environment provides. All these

techniques define specific modules that are used to produce intrinsic reward

values on the basis of the training history and of the last state just explored.

These intrinsic reward values are then combined with the extrinsic reward

to obtain the feedback used to guide the training of the agent. In the three

approaches presented in the previous chapter, this combination is always per-

formed by simply adding together the two kinds of rewards.

The aim of this thesis is to experiment a new way of using this intrinsic

feedback that no longer relies on changing the reward provided to the agent.

Instead, these same intrinsic values will be used to direct the agent’s training

on those past experiences which it considers more interesting. The main idea

of this approach is to use intrinsic reward modules to evaluate how much the

transitions collected by the agent are useful from an intrinsic motivation per-

spective. Then, in constructing the updates used to train the policy, higher

priority will be given to those past experiences that received higher scores.

Conceptually, this method will train the agent more on those experiences

considered useful by the intrinsic motivation modules, which could lead to an

increase in sample efficiency during learning.

3.2 Curiosity as Priority

The approach outlined above finds a natural implementation when combined

with the use of a prioritized experience replay. As we have studied in chapter

2, the use of a PER influences the transitions that are selected to construct the

policy updates during the agent training. In fact, when we sample a random

batch of transitions from a PER, the probability of extracting each transition is

proportional to its priority. These priorities in the classic PER are defined as

the temporal difference errors computed during the last update that used those

transitions. In the context of our experiments, we will use a modified version

of PER that uses intrinsic motivation values as priorities instead of classical

TDs. In this way, transitions will be sampled with a probability proportional

to their intrinsic motivation scores, resulting in policy updates more focused

on the most “curious” past experiences.

3.3 Learning Framework

Our learning framework consists of four major components that interact with

each other: the agent, the environment, the prioritized experience replay, and

the intrinsic motivation module.

For this research, a Double Deep Q-Network has been chosen for the agent

implementation. Thismodel is naturally inclined to be usedwith a PER, and its

not-so-complex architecture should make the comparison between the various

configurations tested more transparent.

In figure 3.1 we can see a simplified schematic of how the framework

works. The interactions between the agent and the environment produce the

training transitions, which are stored in a prioritized experience replay with

Figure 3.1: Interactions between the different components in the learning framework.
The interactions between the agent and the environment produce collections
of transitions that are stored in the PER buffer. Past collected experiences are
sampled from the buffer and used to train both the policy and the intrinsic
motivation module. Each time a batch of transitions is sampled, the current
intrinsic motivation module is used to update those transitions’ priorities.

an initial maximum priority level.

At regular intervals, a batch of transitions is sampled from the PER buffer

and used to construct a policy update. The same transitions are also used to

train the components of the intrinsicmotivationmodule. Each time a transition

is sampled from the buffer, its priority is updated using the intrinsic motivation

module, and the training proceeds.

Due to the modularity of the framework, it is possible to easily test dif-

ferent modules for the generation of the priority values. In this thesis three

intrinsic motivation techniques are implemented and tested in order to be used

as intrinsic motivation modules. These are the three methods explained in the

sections 2.3.3, 2.3.4 and 2.3.5.

The intrinsic reward modules are implemented following the same struc-

ture they have in their original papers, with small adaptations to our use case.

In the following chapter we will discuss the implementation details of the

agent, the PER, and the three intrinsic curiosity modules which will be com-

pared in the experiments together with two baseline models.

Chapter 4

Implementation

4.1 Double Deep Q-Network Agent

The agent used in the experiments is based on the Double Deep Q-Network

model studied in section 2.2.3. Specifically, the algorithm uses a pair of two

identical deep networks to compute the action values q̂(s, a), by following the

approach described in [31]. Both networks present a final dueling layer as

described in [32], using a mean over the advantages Aπ(s, a) in the combina-

tion of the output streams. The agent’s policy is then implemented using an

ϵ-greedy search with an ϵ value that decreases linearly over training.

Each deep neural network first processes the input through two dense lay-

ers with 128 units and rectified linear units ReLU as activation functions. Then

each network presents a final dueling layer with linear activations and mean

combination as described before.

The agent is trained with Adam [16] optimizer, using a learning rate equal

to 1e − 3 and a discount rate γ equal to 0.99. The loss function used to train

the model is the Huber loss. The value of ϵ used in the search starts at 1 and

linearly decreases to 1e− 2 over the first 10% of training steps, after which it

remains constant. In the double DQN architecture, the weights of the primary

network are copied into the target network every 500 gradient updates of the

former.

4.2 Prioritized Experience Replay

The implementation of prioritized experience replay follows the methods de-

scribed in the original paper [26]. In particular, its variant with proportional

prioritization is chosen.

Following the paper, the PER is implemented through the use of a data

structure called “sum-tree”, which conceptually resembles a binary heap but

with a different property that determines its structure: in a sum-tree, the value

of a parent node is the sum of its children. Leaf nodes store the values and

the internal nodes are intermediate sums, with the root node containing the

total sum of all the values stored in the tree. The sum-tree is the primary

data structure that constitutes the buffer, which is responsible for keeping in

memory the indices and priorities of the transitions collected by the agent. The

replay buffer is in fact the union of a sum-tree and a classic array in which the

transitions, identified by the indices kept in the tree, are stored. The sum-

tree provides an efficient way of calculating the cumulative sum of priorities,

allowing O(log(n)) updates and sampling [26].

To sample a mini-batch of k transitions, the range [0; ptotal] is divided into

k equal ranges. Then, a value is uniformly sampled from each range. For each

of these values, the sum-tree is traversed until reaching a leaf node determined

by its priority value. The transitions that correspond to each of these sampled

values are retrieved from the tree and will constitute the mini-batch.

The PER buffer used for our experiments has a capacity equal to 1/10 of

the number of steps for which the agent is trained. An update is performed

every 4 transitions entering the buffer, using mini-batches of 64 transitions.

The value of α to smooth the priorities of the transitions is equal to 0.6, while

the initial value of β to regulate their importance starts at 0.4 and then increases

linearly during training until reaching the value of 1 at the end of it.

4.3 Prioritizers

4.3.1 Count After Hashing

In [30], the authors explain how poor results are obtained when the hashing

algorithm is applied directly to visual observations, as in the case of Atari

games. For this reason, the authors introduced the use of an autoencoder for

state preprocessing.

In the context of this thesis, the models will be tested on a nonvisual envi-

ronment, which has low-dimensionality observations. It was therefore chosen

to opt for the architecture that does not make use of AE, and thus no additional

neural network is used.

The hash table is implemented with a Python dictionary, using string keys

obtained from the output of the hash function ϕ(s), as explained in section

2.3.3.

The length k for the hash codes is set to 32, so the resulting A matrix is

32×n, where n is the dimensionality of an environment’s observation. Finally,

the β value used in the generation of the intrinsic scores is equal to 1.

4.3.2 Intrinsic Curiosity Module

The module consists of three neural networks: the first two are used to rep-

resent the embedding model and the inverse model, while the last one is the

forward model used to generate the intrinsic motivation scores.

The embedding network maps a state s to an embedding ϕ(s) with 32

dimensions. When used to evaluate a transition, the network is applied to

both states st and st+1, in order to obtain the associated embeddings. The

concatenated pair (ϕ(st), ϕ(st+1)) is then passed to the inverse dynamics net-

work, which produces a soft-max distribution over all possible actions. The

loss function LI for the inverse dynamics system is computed as a categorical

cross-entropy between the real and the predicted actions. Lastly, the forward

network maps the pair (ϕ(st), at) to the predicted encoding ϕ̂(st+1) of st+1.

The loss function LF for the forward model is implemented as a mean squared

error between ϕ(st+1) and ϕ̂(st+1). The three networks are trained together by

minimizing the following loss:

L = (1− β)LI + βLF (4.1)

where β is equal to 0.2.

The three neural networks present a similar structure with a single hidden

dense layer comprising 128 units and ReLU activations. This architecture

was chosen so that the composition of the embedding model and the forward

model would result in having a similar structure to the policy network used by

the agent. Both embedding and forward networks end with a dense layer with

linear activations. The inverse dynamics network ends with a dense layer with

soft-max activations. The networks are trained using Adam [16] optimizer and

a learning rate equal to 1e− 3.

4.3.3 Random Network Distillation

The module consists of a target and a predictor network with the same neural

structure, together with a normalization procedure for the environment obser-

vations.

The states are preprocessed by subtracting the running mean and then di-

viding by the running standard deviation. These running estimates are com-

puted from the states used to train the prioritizer. The normalized observations

are then clipped between -5 and 5. The normalization parameters are initial-

ized by means of trajectories collected using a random agent in the environ-

ment for a small number of steps before the training starts. The normalization

is applied to the input of both target and predictor networks, but not for the

agent’s policy network. This follows the same preprocessing scheme proposed

in [8].

Both the target and the predictor networks process a normalized input state

s by means of two consecutive dense layers with 128 units and ReLU activa-

tions. Then both networks end with a dense layer with linear activations and

a number of units equal to the number of actions available in the training en-

vironment.

The predictor network is trained using Adam [16] optimizer and a learning

rate equal to 1e − 3. The minimized loss function is the same mean squared

error used to generate the intrinsic motivation scores (see Section 2.3.5). In

order to allow for a better comparison with the priority values generated by the

other models, the intrinsic motivation scores were not divided by the running

estimate of their standard deviation as done in the original paper.

4.4 Other Implementation Details

In all the experiments an update of the agent’s policy is performed every 4

steps in the environment, thus for every 4 transitions entering the buffer. The

components of the intrinsic motivation module are trained every 3 agents’

updates, so every 12 steps in the environment. Each training step that involves

both the agent and the intrinsic motivationmodule is performed using the same

batch of experiences for both models.

All models are trained for a number of time steps equal to 399’000 plus

1000 initial steps used to insert the first transitions into the buffer and initialize

the observation normalization parameters of the RandomNetwork Distillation

model.

Before using the scores produced by the intrinsic motivation modules as

priority values, these are first clipped to 1 for stability reasons.

Chapter 5

Experiments and Results

5.1 Baselines

The following experiments aim to compare five different models to test the

effect of curiosity-based transitions prioritization during the training of a rein-

forcement learning agent. The tested agent will be the same in all the experi-

ments, based on a Double Deep Q-Network (DDQN) architecture as explained

in the previous chapter. The models will differ only in the prioritization sys-

tem used in their experience replay buffer.

The first three models use an intrinsic motivation module for the genera-

tions of priorities. The first one (AESH) is based on the count-based approach

introduced in Section 4.3.1. The second one (ICM) is based on the prediction-

based module presented in Section 4.3.2. Finally, the third one (DIST) is

based on the hybrid approach seen in Section 4.3.3. Each model presents a

DDQN agent which makes use of a prioritized experience replay [26] (see

Sections 4.1 and 4.2) whose priorities are generated by the respective intrinsic

motivation module.

The last two models represent the baselines for our experiments: the first

is a DDQN agent with the original TD-based PER (TD), while the second is a

DDQN agent with a classic experience replay with uniform probabilities [19]

(UNIFORM). We remark that the DDQN agents used by the baselines have

the same architectures as those used by the three experimental models.

5.2 Testing Environment

In order to carry out the tests of the three experimentalmodels togetherwith the

two baselines, the research was directed toward an environment that presents a

sparse reward. At the same time, it was necessary that such environment could

be addressed by a Double Deep Q-network agent in a reasonable amount of

training steps.

Under these premises, the MountainCar environment [21] provided by the

OpenAI Gym library [7] is chosen as the benchmark for the five models.

MountainCar has already been introduced in the second chapter of this

thesis, and as we have studied, it requires the agent to engage in pushing a car

up a two-dimensional valley with the intent of reaching the top of the hill. The

problem exists in two variants, one with a discrete action space, and the other

with continuous actions. We selected the first setting, which was considered

more appropriate for our agent architecture.

The discrete MountainCar environment allows the following action space:

MountainCar Action Space

Num Effect

0 Accelerate to the left

1 Don’t accelerate

2 Accelerate to the right

The environment states are represented as a 2-dimensional vector of float-

ing numbers as follows:

Observation Space

Dimension Meaning

0 Position of the car along the x-axis

1 Velocity of the car

The reward is sparse and it is equal to -1 at each time step, so the agent

is encouraged to reach the top of the hill as fast as possible. The episode

terminates when the time runs out, or when the car reaches the top of the hill,

that is, when the position of the car is greater than or equal to 0.5. Each episode

has a maximum duration of 200 time steps, which means the worst possible

cumulative reward obtainable in an episode is equal to -200.

5.3 Evaluation Metrics

The models are evaluated by considering the total amount of reward collected

during a full episode. Since one of the goals of this analysis is to measure

the sample efficiency of the different replay buffers, the evaluations are per-

formed by comparing models that have been trained with the same number

of gradient updates. In particular, each model is trained for 399’000 steps

plus 1’000 pre-train steps to fill the buffer and initialize the DIST observation

normalization parameters. A policy update occurs every 4 steps, for a total

number of ~100’000 updates. Every 4’000 training steps, the training process

is paused and the model is evaluated by counting the total reward collected in

a full evaluation episode. This ensures a fair comparison, since at each time

all the models have undergone the same number of training updates. Dur-

ing evaluation episodes, the agent makes moves that always follow its policy,

without using the ϵ-greedy strategy.

Together with the reward plots, we also perform an analysis of the priority

values generated by the intrinsic motivation modules during training, to see

how they impact the reward curves.

All the presented graphs are the result of averaging over 10 different com-

plete model training sessions, for which different random seeds were used to

ensure the statistical significance and the reproducibility of the experiments [10].

Along with the mean values, confidence intervals with 95% confidence level

will also be shown.

5.4 Analysis of Priority Values Over Training

We will devote the next five subsections to analyze the performance of each

of the five models. In addition to the reward plots, we will also consider the

curves of the priorities generated by the different prioritizers during the train-

ing of the agents. Finally, we will compare all the models against each other

(subsection 5.5).

5.4.1 AESH

Figure 5.1: AESH Reward Plot
Cumulative rewards obtained in evaluation episodes every 4000 training
steps, with mean and 95% confidence intervals across 10 different random

seeds.

Figure 5.2: AESH Priorities Results
Max priority computed per-batch, with mean and 95% confidence intervals

across 10 different random seeds.

Wewill start with the AESHmodel, i.e the one with the count-based prior-

itizer. Figure 5.1 gives us a measure of the increase in the model performance

during training, by visualizing the cumulative rewards that the agent obtained

in the evaluation episodes. Figure 5.2 aims at studying the max priority values

generated per-batch over training by the intrinsic motivation module. Every

time a batch of transitions is sampled from the PER and used to construct an

update for the agent’s policy, the priorities of those transitions are re-evaluated

by the prioritizer. The priorities plot shows the maximum priority value of

each batch at every agent’s update.

As we can see, the generated priorities seem more relevant in the first half

of the training process compared to the second. In the very first steps we

can observe very high priority values due to the obvious novelty of the initial

states. In the first 30% of training, we observe the maximum variance across

priorities: here the model begins to explore the states of the environment for

the first time, generating rather high intrinsic motivation scores. Instead, in

the next steps we can see a kind of up-and-down pattern in the priority values.

One possible explanation for this phenomenon is that in the second half of

training the model becomes capable of reaching the final states of the environ-

ment consistently. At the same time, however, the latter remains rarer than the

initial states. This leads to a right imbalance between the counts of the more

common intial states versus the rarer and more interesting final states. The

priorities of the earlier states will tend to decline more rapidly than those of

later ones, which, in proportion, are observed less often.

5.4.2 ICM

Figure 5.3: ICM Reward Plot
Cumulative rewards obtained in evaluation episodes every 4000 training
steps, with mean and 95% confidence intervals across 10 different random

seeds.

Figure 5.4: ICM Priorities Results
Max priority computed per-batch, with mean and 95% confidence intervals

across 10 different random seeds.

Figure 5.3 and 5.4 show us, respectively, the reward scores obtained by

the ICM model during its evaluation episodes and the maximum priorities

generated during its training.

This time we can see a gradual increase in priority values that extends to

about the first 20% of the training steps. Because of the ϵ-greedy exploration

strategy of the DDQN agent, the latter will not be able to reach the final states

of the environment from the very beginning. In these early steps, the ICM

prioritizer soon becomes good at predicting the outcome of the agent’s actions,

since the agent is not yet able to deviate much from its initial state, because

of its mostly random actions. This leads to very low errors in the predictions

and therefore low priorities.

After the initial random exploration, the agent starts to reach the final states

of the environment for the first time. In figure 5.3 this is visible only starting

from around 25% of training, but it is referred to the evaluation episodes where

the agent’s behavior is more rigid in following its policy. Within the training

episodes, it takes the agent less time to encounter the end states for the first

time, as it explores more.

As we can see, the first encounters with final states lead to an increase

in priority values. In fact, the appearance of such observations will increase

the variability of states in the next-state-prediction problem faced by ICM,

increasing the intensity of errors and thus priorities.

Compared to the count-based prioritizer, this time the trend of priorities

seems to be more variable, with multiple times when priorities tend to rise

and then fall. Probably this phenomenon stems from the changes undergone

by the agent’s policy, which changing during training leads to an alteration of

the distribution of states observed by the prioritizer. In turn, this may result in

a change in the encodings of the states obtained from the embedding network,

requiring the forward network some time to readjust.

5.4.3 DIST

Figure 5.5: DIST Reward Plot
Cumulative rewards obtained in evaluation episodes every 4000 training
steps, with mean and 95% confidence intervals across 10 different random

seeds.

Figure 5.6: DIST Priorities Results
Max priority computed per-batch, with mean and 95% confidence intervals

across 10 different random seeds.

Figure 5.5 and 5.6 show us, respectively, the reward scores obtained by

the DIST model during its evaluation episodes and the maximum priorities

generated during its training.

Unfortunately, The prioritizer based on the random network distillation

has the least impact on the training of the agent. After an initial (small) spike

in the priorities due to the novelty of the initial states, the predictor network

soon becomes too good at predicting the output of the target, causing all the

intrinsic values to decrease to values very close to 0.

Despite attempts to change the structure of the networks, the problem re-

mained. Probably the low dimensionality of the observations made the appli-

cation of this intrinsic motivation technique less effective.

Nevertheless, it is interesting to note that around the 50’000 step, there

are some small peaks in the priorities generated. These are probably due to

the first appearances of those states near the goal, which make the prediction

problem more difficult. This increase in the priorities is caused by the errors

made by the predictor network in predicting the target output. However, after

a short time (i.e. once it learns the target outputs), this error vanishes, and the

priority distribution becomes approximately uniform.

5.4.4 TD

Figure 5.7: TD Reward Plot
Cumulative rewards obtained in evaluation episodes every 4000 training
steps, with mean and 95% confidence intervals across 10 different random

seeds.

Figure 5.8: TD Priorities Results
Max priority computed per-batch, with mean and 95% confidence intervals

across 10 different random seeds.

For comparison, we also report the priorities generated in the classic TD-

based PER (figure 5.8), together with its evaluations (figure 5.7).

As in the original paper [26], each priority value is obtained from the TD-

error of the related transition. The absolute value of TD-errors is taken, and

then it is clipped to 1. Note that we are not including here the additional

transformations performed by the PER to the priorities explained in section

2.1.8. Those are in fact applied in all prioritizers since they are related to the

use of a prioritized replay buffer in general.

This time the priorities vary greatly in the first 20% of the training. Later,

we can see how in the successive batches of transitions used to update the

agent, there is usually at least a transition with a priority near 1, which means

that it should be useful to improve the agent’s policy.

5.5 Results Analysis

By looking at the overall picture, we can see that the prioritized experience

replay with TD-based prioritization appears to be the best-performing model

by a small margin, since it was the fastest to converge to a high and stable

score. However, we can see that among all the experimental models, ICM

performed the best, achieving a level of performance very close to that of TD.

Figure 5.9: Reward plot for all models
Cumulative rewards obtained from all models in evaluation episodes every
4000 training steps, with mean and 95% confidence intervals across 10

different random seeds.

ICM not only managed to reach scores close to those obtained by TD, but

it also achieved good sample efficiency. The similarity in the scores obtained

by the two models could indicate that the criterion for selecting the best expe-

riences is actually similar as well. The generation of ICM priorities is in fact

based on the calculation of a prediction error which ideally should indicate

how much the agent still has to learn about the dynamics of the environment.

The error committed by the prediction model on a set of transitions should in

fact decrease with the number of times the agent is trained on those same tran-

sitions. In the same way, TD-based prioritization favors those experiences in

which the model has made the most mistakes in the past. In a certain sense,

one could say that the prioritization carried out by ICM resembles a TD-based

one applied to a proxy of the agent’s knowledge of the environment. In TD

this knowledge is contained in the agent’s value function, whereas with ICM

it is represented via the embedding and forward networks.

On the other hand, AESHwas the worst model compared to the others. Af-

ter starting out with good variability in the priority values generated, this then

dropped dramatically compromising the quality of the prioritization. After the

first 30% of training steps, we can observe how the number of transitions re-

ceiving high priority values drops drastically. This would not necessarily be a

negative thing, since transitions with high priority might actually be the most

useful for the purpose of agent training. Unfortunately, though, it seems that

this strong discrimination in transitions led to worse results even compared

with the model with uniform priorities. In addition, we can see how these

priority peaks dropped over time, eventually leading to the generation of only

near-zero priorities.

The last experimental model, DIST, was the one whose priorities had the

least influence on the agent’s training. In fact, the values generated were al-

ways very low, and even the smallest peaks soon disappeared, giving way to

an almost uniform distribution. Precisely because of the low impact of prior-

itization, it is not surprising that the performance of DIST was very similar to

that of the model with uniform priorities, although at the end of training its

scores appeared to be slightly higher than those of UNIFORM. This approach

could work better with high-dimensional observations, like in the context of

visual Atari games, but it proved to be ineffective on the simplest representa-

tions of states present in MountainCar.

On a positive note, we can observe that all three models appeared capable

of recognizing the appearance of later states, as visible in the priority curves.

MountainCar Time Step
300k 400k

AESH -146.3 -145.2
ICM -108.2 -111.6
DIST -162.0 -116.4
TD -103.2 -110.8
UNIFORM -165.1 -130.3

Table 5.1: Mean cumulative reward achieved by the models at different time steps of
training. The scores are computed by an average across 10 random seeds.

The table 5.1 shows the average scores obtained by the models at time

steps 300’000 and 400’000. Note how the models TD and ICM were able to

achieve a good score earlier than the other models, as visible in their average

rating at time step 300’000. Nevertheless, as visible in Figure 5.9, at time step

300’000 the variance in the scores obtained by ICM was much greater than

that of TD, whose results were more stable. We recall how this variability

can be observed because of the repetition of the tests on 10 different random

seeds. In fact, each final score was obtained by averaging the performance of

10 randomly initialized models.

5.6 Performance and Time Complexity

Whenever a batch of transitions is sampled to make an update to the agent’s

policy, the priorities of those transitions must be updated using the current

prioritizer.

In the classical TD-based PER, this update requires only the time to change

the priorities in the buffer’s sum-tree, which can be done for each transition in

O(log(N)) time, where N is the number of transitions stored in the buffer. In

the context of our three prioritizers, the new priority values need to be com-

puted using a separate intrinsic motivation module, which also needs to be

trained. We will now perform a very brief analysis of the most costly steps

in using these prioritizers, focusing on the applications of the neural networks

inside the models and their training.

In the ICM model, the priority calculation for a single transition requires

two applications of the embedding network and one application of the forward

network. Instead, its training requires two applications of the embedding net-

work, one of the forward network, and one of the inverse dynamics network.

The DIST model, on the other hand, requires only one application of the

target network and one of the predictor network in order to compute the pri-

orities. The training involves only the predictor, and it requires a single appli-

cation of both the predictor and the target. However, we need also to consider

that this prioritizer requires normalization of observations before neural net-

works are applied.

The time required by the AESH model varies according to whether or not

we use an autoencoder to encode states. When we use an AE, the priorities

computation requires the additional encoding of the state st+1 of the transition.

The training of the AESH prioritizer concerns only its autoencoder when this

is present, and in that case, it requires a single application of the full AE to

each state st+1 in the training transitions. However, our prioritizer did not

include any autoencoder. Nevertheless, during our experiments, the AESH

model proved to be the slowest due to the difficulty in parallelizing the hash-

code search operation within the count table.

Chapter 6

Discussion and Conclusions

6.1 Contributions

In this thesis we have studied the effect of using intrinsic motivation for the

prioritization of experience replay during the training of an off-policy rein-

forcement learning agent. Three different prioritizers have been implemented

and evaluated, based on different curiosity-driven techniques [8, 22, 30], to-

gether with two baseline models. In addition, an analysis of priorities gen-

erated during model training was carried out in order to relate them to the

performances of the agents.

The results of this research showed that TD-based prioritization currently

remains the best approach, but we were able to investigate the main challenges

and the potential of adapting some influential intrinsic reward generators in

order to be effectively used for prioritization.

6.2 Limits of the Approach

Overall, there would seem to be two main aspects to consider. The first con-

cerns an inherent problem in using intrinsic rewards as priority values. This

can be observed mainly in the AESH and DIST methods, and it concerns the

fact that the priority values generated, rightly, are high only for those obser-

vations that appear new to the prioritizer. The problem is that in the context

of prioritization, one may have to work with transitions that are only slightly

different from each other but equally important in order to construct useful

policy updates. Thus, it becomes important to choose intrinsic motivation

techniques capable of generating well-differentiated values over the course of

training that do not drop drastically after a few steps.

The second aspect, on the other hand, is about the importance played by

the normalization criterion chosen for priorities. In the experiments, the in-

trinsic reward values generated by the three models were used almost directly

as priorities, without any special pre-elaboration. This does not seem to have

been a major problem for ICM, but a more elaborate preprocessing strategy

could help in models such as DIST.

Finally, from amore theoretical point of view, wemust also consider how it

is not obvious that an experience considered “curious” is also useful in order

to improve the current estimate of the value network. This may vary also

according to the category of the intrinsic motivation method adopted. For

example, the notion of curiosity used by prediction-based methods might be

better suited in the context of experience prioritization than the one of other

families of techniques. More research would deserve to be done on the topic.

6.3 Future Work

As we have seen, not all intrinsic motivation strategies have proven to be ef-

fective for use in priority generation. It was very interesting to note that the

prediction-based method performed much better than the others, perhaps indi-

cating that the entire category ofmethodsmight be well suited for this purpose.

It would therefore be useful to test other intrinsic motivation techniques, es-

pecially those belonging to unexplored categories, to see how they perform in

this context. Research could be directed towards the adaptation of other types

of intrinsic reward techniques, or the development of new ones specifically

designed for the purpose of prioritization.

Another component of our framework that could certainly be interesting

to extend in possible future work concerns the preprocessing of the intrinsic

scores generated by the modules. For example, it would be useful to try new

normalization strategies, perhaps using statistics calculated from the transi-

tions currently in the buffer. More generally, it would also be interesting to

try new preprocessing methodologies that are not limited to simple normal-

ization.

Finally, it remains to be tested the effect that a combination of TD and

intrinsic motivation scores would have on prioritization, with the possibility

of a dynamic combination of the two that changes during training.

6.4 Final Conclusions

In conclusion, we have seen how the prioritization of transitions based on

temporal difference errors remains the preferred strategy at present. At the

same time, however, we have seen much potential for improvement in the

intrinsic motivation approach. The ability of the prioritizers to recognize the

appearance of states close to the goal and to reward the related transitions

accordingly is certainly worthy of interest. Furthermore, our analysis revealed

that certain categories of intrinsic motivation techniques appear to be more

suitable than others for use in prioritizing experiences. Much work remains to

be done, but there appear to be premisses that would justify such an effort.

Bibliography

[1] A. N.M. Alison Gopnik and P. K. Kuhl. The scientist in the crib: minds,

brains, and how children learn, 1999.

[2] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kap-

turowski, O. Tieleman, M. Arjovsky, A. Pritzel, A. Bolt, and C. Blun-

dell. Never give up: learning directed exploration strategies, 2020. DOI:

10.48550/ARXIV.2002.06038. URL: https://arxiv.org/abs/

2002.06038.

[3] P. Becker-Ehmck, M. Karl, J. Peters, and P. van der Smagt. Explo-

ration via empowerment gain: combining novelty, surprise and learn-

ing progress. In ICML 2021 Workshop on Unsupervised Reinforcement

Learning, 2021.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade

learning environment: an evaluation platform for general agents. Jour-

nal of Artificial Intelligence Research, 47:253–279, June 2013. DOI:

10.1613/jair.3912. URL: https://doi.org/10.1613%2Fjair.

3912.

[5] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and

R. Munos. Unifying count-based exploration and intrinsic motivation,

2016. DOI: 10.48550/ARXIV.1606.01868. URL: https://arxiv.

org/abs/1606.01868.

https://doi.org/10.48550/ARXIV.2002.06038
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2002.06038
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613%2Fjair.3912
https://doi.org/10.1613%2Fjair.3912
https://doi.org/10.48550/ARXIV.1606.01868
https://arxiv.org/abs/1606.01868
https://arxiv.org/abs/1606.01868

[6] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight

uncertainty in neural networks, 2015. DOI: 10.48550/ARXIV.1505.

05424. URL: https://arxiv.org/abs/1505.05424.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,

J. Tang, and W. Zaremba. Openai gym, 2016. eprint: arXiv:1606.

01540.

[8] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by ran-

dom network distillation, 2018. DOI: 10.48550/ARXIV.1810.12894.

URL: https://arxiv.org/abs/1810.12894.

[9] M. S. Charikar. Similarity estimation techniques from rounding algo-

rithms. In Proceedings of the Thiry-Fourth Annual ACM Symposium on

Theory of Computing, STOC ’02, pages 380–388, Montreal, Quebec,

Canada. Association for ComputingMachinery, 2002. ISBN: 1581134959.

DOI: 10.1145/509907.509965. URL: https://doi.org/10.

1145/509907.509965.

[10] C. Colas, O. Sigaud, and P.-Y. Oudeyer. How many random seeds?

statistical power analysis in deep reinforcement learning experiments,

2018. DOI: 10.48550/ARXIV.1806.08295. URL: https://arxiv.

org/abs/1806.08295.

[11] E. L. Deci and R.M. Ryan. IntrinsicMotivation and Self-Determination

in Human Behavior. Springer US, 1985. DOI: 10.1007/978-1-4899-

2271-7. URL: https://doi.org/10.1007%2F978-1-4899-2271-

7.

[12] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-

explore: a new approach for hard-exploration problems, 2019. DOI:

10.48550/ARXIV.1901.10995. URL: https://arxiv.org/abs/

1901.10995.

https://doi.org/10.48550/ARXIV.1505.05424
https://doi.org/10.48550/ARXIV.1505.05424
https://arxiv.org/abs/1505.05424
arXiv:1606.01540
arXiv:1606.01540
https://doi.org/10.48550/ARXIV.1810.12894
https://arxiv.org/abs/1810.12894
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.1145/509907.509965
https://doi.org/10.48550/ARXIV.1806.08295
https://arxiv.org/abs/1806.08295
https://arxiv.org/abs/1806.08295
https://doi.org/10.1007/978-1-4899-2271-7
https://doi.org/10.1007/978-1-4899-2271-7
https://doi.org/10.1007%2F978-1-4899-2271-7
https://doi.org/10.1007%2F978-1-4899-2271-7
https://doi.org/10.48550/ARXIV.1901.10995
https://arxiv.org/abs/1901.10995
https://arxiv.org/abs/1901.10995

[13] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approx-

imation error in actor-critic methods, 2018. DOI: 10.48550/ARXIV.

1802.09477. URL: https://arxiv.org/abs/1802.09477.

[14] H. Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-

Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Infor-

mation Processing Systems, volume 23. Curran Associates, Inc., 2010.

URL: https://proceedings.neurips.cc/paper/2010/file/

091d584fced301b442654dd8c23b3fc9-Paper.pdf.

[15] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P.

Abbeel. Vime: variational information maximizing exploration, 2016.

DOI: 10.48550/ARXIV.1605.09674. URL: https://arxiv.org/

abs/1605.09674.

[16] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization,

2014. DOI: 10.48550/ARXIV.1412.6980. URL: https://arxiv.

org/abs/1412.6980.

[17] A. S. Klyubin, D. Polani, and C. L. Nehaniv. All else being equal be

empowered. In M. S. Capcarrère, A. A. Freitas, P. J. Bentley, C. G.

Johnson, and J. Timmis, editors, Advances in Artificial Life, pages 744–

753, Berlin, Heidelberg. Springer Berlin Heidelberg, 2005.

[18] T. Lai and H. Robbins. Asymptotically efficient adaptive allocation

rules. Advances in Applied Mathematics, 6(1):4–22, 1985. ISSN: 0196-

8858. DOI: https://doi.org/10.1016/0196-8858(85)90002-8.

URL: https : / / www . sciencedirect . com / science / article /

pii/0196885885900028.

[19] L.-J. Lin. Self-improving reactive agents based on reinforcement learn-

ing, planning and teaching. 8(3–4):293–321, May 1992. ISSN: 0885-

6125. DOI: 10.1007/BF00992699. URL: https://doi.org/10.

1007/BF00992699.

https://doi.org/10.48550/ARXIV.1802.09477
https://doi.org/10.48550/ARXIV.1802.09477
https://arxiv.org/abs/1802.09477
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://doi.org/10.48550/ARXIV.1605.09674
https://arxiv.org/abs/1605.09674
https://arxiv.org/abs/1605.09674
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/0196-8858(85)90002-8
https://www.sciencedirect.com/science/article/pii/0196885885900028
https://www.sciencedirect.com/science/article/pii/0196885885900028
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.

Wierstra, andM.Riedmiller. Playing atari with deep reinforcement learn-

ing, 2013. DOI: 10.48550/ARXIV.1312.5602. URL: https://

arxiv.org/abs/1312.5602.

[21] A. W. Moore. Efficient Memory-based Learning for Robot Control.

Technical report, University of Cambridge, 1990.

[22] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven ex-

ploration by self-supervised prediction, 2017. DOI: 10.48550/ARXIV.

1705.05363. URL: https://arxiv.org/abs/1705.05363.

[23] D. Pathak, D. Gandhi, and A. Gupta. Self-supervised exploration via

disagreement, 2019. DOI: 10 . 48550 / ARXIV . 1906 . 04161. URL:

https://arxiv.org/abs/1906.04161.

[24] G. A. Rummery andM. Niranjan. On-line q-learning using connection-

ist systems. In 1994.

[25] D. E. Ryan RM. Intrinsic and extrinsic motivations: classic definitions

and new directions. Contemp Educ Psychol, January 2000. DOI: 10.

1006/ceps.1999.1020.

[26] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience

replay, 2015. DOI: 10.48550/ARXIV.1511.05952. URL: https:

//arxiv.org/abs/1511.05952.

[27] A. L. Strehl and M. L. Littman. A theoretical analysis of model-based

interval estimation. In Proceedings of the 22nd International Confer-

ence on Machine Learning, ICML ’05, pages 856–863, Bonn, Ger-

many. Association for ComputingMachinery, 2005. ISBN: 1595931805.

DOI: 10.1145/1102351.1102459. URL: https://doi.org/10.

1145/1102351.1102459.

https://doi.org/10.48550/ARXIV.1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://doi.org/10.48550/ARXIV.1705.05363
https://doi.org/10.48550/ARXIV.1705.05363
https://arxiv.org/abs/1705.05363
https://doi.org/10.48550/ARXIV.1906.04161
https://arxiv.org/abs/1906.04161
https://doi.org/10.1006/ceps.1999.1020
https://doi.org/10.1006/ceps.1999.1020
https://doi.org/10.48550/ARXIV.1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://doi.org/10.1145/1102351.1102459
https://doi.org/10.1145/1102351.1102459
https://doi.org/10.1145/1102351.1102459

[28] R. S. Sutton. Learning to predict by the methods of temporal differ-

ences. 3(1):9–44, August 1988. ISSN: 0885-6125. DOI: 10.1023/A:

1022633531479. URL: https://doi.org/10.1023/A:1022633531479.

[29] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.

A Bradford Book, Cambridge, MA, USA, 2018. ISBN: 0262039249.

[30] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schul-

man, F. De Turck, and P. Abbeel. Exploration: a study of count-based

exploration for deep reinforcement learning, 2016. DOI: 10.48550/

ARXIV.1611.04717. URL: https://arxiv.org/abs/1611.04717.

[31] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning

with double q-learning, 2015. DOI: 10.48550/ARXIV.1509.06461.

URL: https://arxiv.org/abs/1509.06461.

[32] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de

Freitas. Dueling network architectures for deep reinforcement learning,

2015. DOI: 10.48550/ARXIV.1511.06581. URL: https://arxiv.

org/abs/1511.06581.

[33] C. J. C. H.Watkins.Learning fromDelayed Rewards. PhD thesis, King’s

College, Cambridge, UK, May 1989. URL: http://www.cs.rhul.

ac.uk/~chrisw/new_thesis.pdf.

[34] L. Weng. Exploration strategies in deep reinforcement learning. lilian-

weng.github.io, June 2020. URL: https://lilianweng.github.

io/posts/2020-06-07-exploration-drl/.

[35] R. Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning, 1992.

https://doi.org/10.1023/A:1022633531479
https://doi.org/10.1023/A:1022633531479
https://doi.org/10.1023/A:1022633531479
https://doi.org/10.48550/ARXIV.1611.04717
https://doi.org/10.48550/ARXIV.1611.04717
https://arxiv.org/abs/1611.04717
https://doi.org/10.48550/ARXIV.1509.06461
https://arxiv.org/abs/1509.06461
https://doi.org/10.48550/ARXIV.1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://lilianweng.github.io/posts/2020-06-07-exploration-drl/
https://lilianweng.github.io/posts/2020-06-07-exploration-drl/

Acknowledgements

I would like to thank Prof. Mirco Musolesi and Dott. Giorgio Franceschelli

for all the help they gave me in writing this thesis. Reinforcement learning

has always fascinated me, and I am very happy to have been able to do a small

research in this area.

I would like to thank my family who has always been there for me and sup-

ported me.

Finally, I would like to thank all my friends who have made these years won-

derful.

	Introduction
	Overview
	Contributions
	Structure of the Thesis

	Background
	Reinforcement Learning
	Introduction to Reinforcement Learning
	Markov Decision Processes
	Episodic and Continuing Tasks
	Policies and Value Functions
	Temporal Difference Learning
	On-Policy and Off-Policy Algorithms
	Experience Replay Buffers
	Prioritized Experience Replay

	Agents
	Deep Reinforcement Learning
	Value-Based and Policy-Gradient Methods
	Q-Learning and Extensions

	Intrinsic Motivation
	Challenges of Sparse Reward Environments
	Curiosity as a Reward
	Count After Hashing
	Intrinsic Curiosity Module
	Random Network Distillation

	Curiosity as Priority
	Intrinsic Motivation for Efficient Learning
	Curiosity as Priority
	Learning Framework

	Implementation
	Double Deep Q-Network Agent
	Prioritized Experience Replay
	Prioritizers
	Count After Hashing
	Intrinsic Curiosity Module
	Random Network Distillation

	Other Implementation Details

	Experiments and Results
	Baselines
	Testing Environment
	Evaluation Metrics
	Analysis of Priority Values Over Training
	AESH
	ICM
	DIST
	TD

	Results Analysis
	Performance and Time Complexity

	Discussion and Conclusions
	Contributions
	Limits of the Approach
	Future Work
	Final Conclusions

	Bibliography
	Acknowledgements

