
ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE

AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Natural Language Processing

PROMPTING TECHNIQUES FOR NATURAL
LANGUAGE GENERATION IN THE MEDICAL

DOMAIN

CANDIDATE SUPERVISOR

Martina Rossini Prof. Paolo Torroni

CO-SUPERVISORS

Prof. Elena Cabrio

Dr. Serena Villata

Academic year 2021-2022

Session 3rd

ii

Abstract

Generating automatic explanations for the predictions of machine learning models has

long since been a major challenge in Artificial Intelligence, especially when considering

sensible domains like healthcare. In this thesis, we approach the problem of generating a

fluent, natural language justification for a medical diagnosis given all the information in

the case description and the disease’s symptomatology. We treat this problem as a data-

to-text task and solve it using prompting techniques for natural language generation.

In particular, we propose two architectural modifications to standard Prefix Tuning

called Layer Dependency and Prefix Pooling; we evaluate their results, comparing with

current state-of-the-art methods for the data-to-text task, on both a general-purpose

benchmark (WebNLG) and on a dataset of clinical cases and relative explanations built

as part of the ANTIDOTE project. Results show that layer dependency boosts the

generation capabilities of our models when training on a limited computational budget,

while Prefix Pooling is a valid dynamic prompting technique that achieves performances

on par with the current state-of-the-art without requiring any additional information to

be associated with the input. Finally, we note how, for our domain and in the context of

the ANTIDOTE project, interpreting the explanation-generation task as data-to-text

is a viable approach which produces high-quality justifications.

iii

Contents

Abstract

1 Introduction 1

2 The ANTIDOTE Project 6

3 Background 10

3.1 Pre-trained Language Models . 15

3.1.1 GPT-2 . 18

3.1.2 BART . 19

3.1.3 T5 . 21

3.2 Lightweight Fine-tuning Strategies . 24

3.2.1 Adapter-tuning . 24

3.2.2 Prompting . 25

3.3 Text Generation . 29

3.3.1 Decoding Methods . 30

3.3.2 Evaluation Metrics . 32

4 Generating Text via Prompting 36

4.1 Prefix Tuning . 37

4.1.1 A different parametrization . 39

4.2 Control Prefixes . 39

4.3 Prefix Pooling . 41

5 Datasets 44

5.1 WebNLG . 45

iv

5.2 USMLE-Symp . 49

6 Experiments 56

6.1 Experimental Setup . 56

6.2 Evaluation Strategy . 58

6.3 Experimental Results on WebNLG . 59

6.3.1 Prefix Tuning . 59

6.3.2 Control Prefixes . 64

6.3.3 Prefix Pooling . 67

6.4 Experimental Results on USMLE-Symp 69

6.4.1 Prefix Tuning . 70

6.4.2 Control Prefixes . 73

6.4.3 Prefix Polling . 79

7 Discussion 82

7.1 WebNLG: Analysis of Results . 82

7.2 USMLE-Symp: Analysis of Results . 85

8 Conclusions 89

Bibliography 91

Appendices 100

A Hyperparameters 101

A.1 Prefix Tuning . 101

A.2 Control Prefixes . 102

A.3 Prefix Pooling . 103

B Qualitative Analysis 104

B.1 WebNLG Human Evaluation . 104

B.2 USMLE-Symp Human Evaluation . 110

v

C Visualizations 116

C.1 T-SNE Prefixes Representation . 116

C.1.1 WebNLG Visualizations . 117

C.1.2 USMLE-Symp Visualizations . 119

C.2 Attention Heatmaps . 122

Acknowledgements 123

vi

List of Figures

2.1 Overview of the ACTA [24, 26] system for argumentative components

extraction from the abstract of a clinical trial. 7

2.2 Overview of the explanation generation pipeline 8

3.1 Neural architecture with contextual encoder. Image adapted from [35]. . 13

3.2 Various noising schemes proposed in BART [16]. 21

3.3 Span-based language masking objective in T5. 23

3.4 Design decisions in prompting algorithms. Image adapted from [19]. . . . 28

4.1 Schematized view of a Transformer’s layer: learnable weights for Prefix

Tuning are shown in pink and purple. Picture from the AdapterHub [33]

website. 37

4.2 Comparison between Prefix Tuning and Control Prefixes for a single-task

batch. Image adapted from [6]. 40

4.3 Intuition behind the Prefix Pooling dynamic prompting approach. 42

5.1 Histograms of input triplet sets’ length in characters and words for the

whole WebNLG dataset. 47

5.2 WebNLG input size in number of components for the whole dataset. . . . 48

5.3 Box plot of category-wise input size in words and number of components.

The plot refers to the whole WebNLG dataset. 48

5.4 Histograms of input triplet sets’ length in characters and words for the

whole USMLE-Symp dataset. 53

5.5 USMLE-Symp input size in number of components for the whole dataset. 53

5.6 Box plot of category-wise and polarity-wise input length in words. The

plot refers to the whole USMLE-Symp dataset. 54

vii

6.1 Validation loss for t5-large with and without textual preamble (prefix

tuning setting). 60

6.2 Validation BLEU for gpt2-medium in prefix tuning setting with and with-

out layer dependency. 63

6.3 Validation BLEU for t5-large in control prefixes setting with and with-

out layer dependency. 65

6.4 Validation BLEU for t5-base in prefix pooling setting with and without

layer dependency. 67

C.1 Control prefixes learned for WebNLG by model gpt2-large with and

without layer dependency. 117

C.2 Control prefixes learned for encoder, decoder, and cross attentions in

t5-large with layer dependency. 118

C.3 Prefix Pool learned for WebNLG by model gpt2-large with and without

layer dependency. 118

C.4 Prefix pools learned for encoder, decoder, and cross attentions in t5-large

with layer dependency. 119

C.5 Control prefixes learned for USMLE-Symp by model bioGPT, with and

without additional polarity information. 120

C.6 Encoder control prefix components for biobart-large on the USMLE-

Symp dataset. 120

C.7 Prefix pools learned by bioGPT on the USMLE-Symp data. 121

C.8 Prefix pools learned for encoder, decoder, and cross attentions in biobart-large

on the USMLE-Symp data. 121

C.9 Comparisons of attention weights of head 14 of the last layer in gpt2-large

for the WebNLG dataset. 122

C.10 Comparisons of attention weights for head 14 of the last layer in bioGPT

for the USMLE-Symp dataset. 122

viii

List of Tables

2.1 Pattern-based post-hoc explanations . 9

3.1 Different paradigms in NLP. Table adapted from [19]. 14

3.2 PLMs for generative tasks in the medical domain. 17

3.3 GPT-2 model variations in the HuggingFace’s transformers [52] library. . 18

3.4 T5 model scaling and sizes. dff represents the dimensionality of the

hidden layer in the feed-forward network. 22

3.5 Examples of textual prompts and relative answer space for different NLP

tasks. Table adapted from [19]. 26

3.6 Example of input triplets and generated output for the data-to-text task.

Adapted from [41]. 33

5.1 WebNLG dataset: qualitative examples. 46

5.2 WebNLG summary statistics for both input and verbalizations. 49

5.3 Template reference verbalization for why and why-not explanations. . . . 51

5.4 USMLE-Symp dataset: qualitative examples. 52

5.5 USMLE summary statistics for both input and verbalizations. 55

6.1 Triplet linearization scheme. 59

6.2 Validation BLEU for t5-base and t5-large with and without textual

preamble (prefix tuning setting). 60

6.3 WebNLG validation set, qualitative examples for model t5-large. The

checkmark ✓indicates the use of the preamble “translate Graph to En-

glish: ”. 62

6.4 BLEU scores on WebNLG validation set for all our prefix tuning models,

with and without layer dependency . 63

ix

6.5 Prefix tuning test results on WebNLG using the beam search decoding

strategy. ↑ indicates that the higher the metric the better, while ↓ indi-

cates that we want to obtain the lowest possible score. 64

6.6 Prefix tuning test results on WebNLG using the contrastive search de-

coding strategy. ↑ indicates that the higher the metric the better, while

↓ indicates that we want to obtain the lowest possible score. 64

6.7 Comparison of validation BLEU scores on WebNLG for all control pre-

fixes models, with and without layer dependency 65

6.8 Control prefixes test results on WebNLG using the beam search decod-

ing strategy. ↑ indicates that the higher the metric the better, while ↓

indicates that we want to obtain the lowest possible score. 66

6.9 Comparison of validation BLEU scores on WebNLG for all prefix pooling

models, with and without layer dependency 67

6.10 Prefix Pooling test results on WebNLG using the beam search decod-

ing strategy. ↑ indicates that the higher the metric the better, while ↓

indicates that we want to obtain the lowest possible score. 68

6.11 Comparison of validation BLEU scores on USMLE-Symp for general-

purpose and domain-specific models. The scores refer to the Prefix Tun-

ing setting. 71

6.12 Qualitative generation example from the USMLE-Symp validation set.

The example is of category Immunology and has negative polarity 72

6.13 Prefix Tuning test results on USMLE-Symp dataset using the beam

search decoding strategy.↑ indicates that the higher the metric the better,

while ↓ indicates that we want to obtain the lowest possible score. 73

6.14 Validation BLEU scores for the USMLE-Symp dataset in Control Prefixes

setting. These values were obtained when using polarity as a guidance

signal. 74

6.15 Qualitative generation example from the USMLE-Symp validation set.

The texts have been generated using Control Prefixes with polarity as

the guidance signal. 75

x

6.16 Validation BLEU scores for the USMLE-Symp dataset in Control Pre-

fixes setting. These values were obtained when using the category as a

guidance signal. 76

6.17 Qualitative generation example from the USMLE-Symp validation set.

The texts have been generated using Control Prefixes with category as

the guidance signal. 76

6.18 Validation BLEU scores for the USMLE-Symp dataset in Control Pre-

fixes setting. These values were obtained when using both category and

polarity as a guidance signal. 77

6.19 Qualitative generation example from the USMLE-Symp validation set.

The texts have been generated using Control Prefixes with category and

poalrity as the guidance signal. 78

6.20 Polarity-only Control Prefixes test results on USMLE-Symp dataset. ↑

indicates that the higher the metric the better, while ↓ indicates that we

want to obtain the lowest possible score. 78

6.21 Validation BLEU scores for the USMLE-Symp dataset in Prefix Pooling

setting. 79

6.22 Qualitative generation example from the USMLE-Symp validation set.

The texts have been generated using Prefix Pooling. 80

6.23 Prefix Pooling test results on USMLE-Symp dataset. ↑ indicates that the

higher the metric the better, while ↓ indicates that we want to obtain

the lowest possible score. 80

7.1 Comparison between Prefix Tuning, Control Prefixes and Prefix Pooling

for two of our models, t5-base and bart-large. 84

7.2 Comparison of test results on USMLE-Symp dataset. 87

A.1 Beam search decoding parameters . 101

A.2 Contrastive search decoding parameters 101

A.3 Detailed report of the hyperparameters for the prefix tuning models in

this work. L-rate stands for learning rate. 102

xi

A.4 Detailed report of the hyperparameters for the control prefixes models in

this work. L-rate stands for learning rate. 102

A.5 Detailed report of the hyperparameters for the prefix pooling models in

this work. L-rate stands for learning rate. 103

B.1 Generation example from the WebNLG seen category Astronaut in prefix

tuning setting. The checkmark (✓) indicates the use of layer dependency. 105

B.2 Generation example from the WebNLG seen category Building in prefix

tuning setting. The checkmark (✓) indicates the use of layer dependency. 106

B.3 Generation example from the WebNLG unseen category MeansOfTrans-

portation. 107

B.4 Generation example from the WebNLG unseen category Artist. 108

B.5 Generation example from the WebNLG unseen category Politician. Com-

parison of various approaches for t5-large and bart-large. 108

B.6 Generation example from the WebNLG unseen category CelestialBody. . 109

B.7 Generation example from the WebNLG unseen category Athlete. 109

B.8 Generation example from the USMLE-Symp validation set. The example

is of category Blood and blood-forming tissues and has positive polarity . 110

B.9 Generation examples from the USMLE-Symp validation set. Both triplet

sets are short, having at most two components. 111

B.10 Generation example from the USMLE-Symp validation set. The texts

have been generated using Control Prefixes with polarity as the guidance

signal. 111

B.11 Generation example from the USMLE-Symp validation set. The texts

have been generated using both Control Prefixes and Prefix Pooling. . . . 112

B.12 Generation example with negative polarity from USMLE-Symp test set. . 113

B.13 Second generation example with negative polarity from the USMLE-

Symp test set. 113

B.14 Generation example with positive polarity from USMLE-Symp test set. . 114

B.15 Second generation example with positive polarity from the USMLE-Symp

test set. 115
xii

Chapter 1

Introduction

Generating automatic explanations for the predictions of machine learning models has

long since been a major challenge in Artificial Intelligence. In recent years the topic

has become even more important, due to both the rise in research on neural black-box

models and the increasing number of applications of such models in sensitive domains.

One of these domains is healthcare, in which it is fundamental that the model is not only

able to provide a diagnosis based on a clinical case, but also to explain the reasoning

that led it to that conclusion. Some important contributions in this area [7, 48] point

out how the provided explanations should be both convincing and easy to interpret,

which lead to investigating the possibility of using natural-language, argument-based

explanations.

This work was carried out as part of the European project ANTIDOTE1 (funded by

the CHIST-ERA 2019 call), which aims to provide a unified framework for learning to

take decisions in the medical domain to provide justifications for said decisions. This

is obviously a very broad and challenging task, which is tackled by a consortium of

European universities and research centers. In particular, the French portion of the

consortium - in collaboration with whom this thesis was carried out - is working on

generating natural language argument-based explanations for educational purposes. In

fact, medical residents are trained through standardized tests, where they are presented

with a clinical case and have to decide which is the most likely diagnosis among a limited

set of possibilities. They also have to provide an explanation for their decision. In order

1https://univ-cotedazur.eu/antidote

https://univ-cotedazur.eu/antidote

Introduction 2

to produce a model that can automatize this process, at the current state of the project a

full pipeline was designed that (i) detects the symptoms in the description of the clinical

case, (ii) matches them with the symptoms that a medical knowledge base associates

with the possible diagnosis and (iii) generates natural language explanations based on

the previously extracted information. In particular, this work focuses on improving the

last step, moving away from pattern-based explanations toward more complete, fluent,

and discoursive justifications.

More precisely, since all the components necessary to explain a diagnosis based on

patient symptoms had already been extracted, we decided to frame our problem as

a data-to-text task. We structure the available information as triplets of three main

types: (patient, hasSymptom, symptom), (patient suffersFrom, disease), and

(disease, hasAsSymptom, symptom). Our explanation is then obtained by verbalizing

a triplet set containing all the patient’s symptoms, the hypothesized diagnosis, and its

associated symptomatology. The verbalization is produced using generative pre-trained

language models like BART [16] and GPT-2 [37]. While designing this architecture, we

had to solve some challenges and take into consideration some important requirements,

like:

• The shortage of training data. Indeed, medical-domain datasets are small due to

the significant labeling efforts required by expert personnel, but also due to privacy

issues. In our case, we only had the 314 example medical questions annotated by

Marro et al. [23]. We thus had to rely on augmenting the dataset with multiple

reference verbalization per triplet set; we also devised smaller and easier inputs

that basically represent individual portions of the whole explanation (i.e., only

the patient symptoms or only the disease information).

• Lightweight fine-tuning of the language models. The small training set made it

extremely challenging to approach the problem through standard fine-tuning while

avoiding overfitting. We thus focused our attention on lightweight fine-tuning

strategies, and in particular on prompting [19] and Prefix Tuning [18], where the

main idea is to concatenate a small number of additional tunable parameters to

the keys and values of the attention at each layer of our model while keeping the

Introduction 3

rest of the architecture frozen. This also allows for easy model sharing.

• The need for controllable generation. Indeed, in the medical domain, it is espe-

cially important to be able to steer the generated text toward the preferred topic,

as well as to be able to ensure it has some important qualities. For instance, one

might want the generated verbalization to be more technical when it has to be

shown to a doctor or to a medical resident, while the same level of complexity is

probably not desirable when the recipient is the patient.

Our work also focused on examining and comparing the performances of existing

state-of-the-art prompting techniques [6, 18], as well as trying to improve them. Indeed,

we first propose a slight modification to the standard Prefix Tuning [18] architecture

which introduces an explicit prior telling the models that the prefix at layer i should

depend on that at layer i − 1. Extensive experiments are performed on the effectiveness

of this dependency, showing that it tends to boost performances for smaller models and

in particular when training with a limited computational budget. Next, we propose a

new dynamic prompting technique, where the prefixes are input-dependent but, differ-

ently from Control Prefixes [6], do not require the presence of additional non-textual

information acting as a guidance signal. Again, we conducted an array of tests com-

paring this technique with both Prefix Tuning and Control Prefixes, primarily showing

that it is able to reach performances on par with them and, in some circumstances,

also to outperform them. Notice that, since we proposed some architectural changes

and advancements, we also employed a general-purpose data-to-text benchmark called

WebNLG [10] in addition to the medical data collected in the ANTIDOTE project. This

was done in order to render our models more directly comparable with those coming

from the research community.

Summarizing, the main contributions of this thesis are the following:

1. We provide an analysis of the advantages and disadvantages of prompting tech-

niques for natural language generation, with a particular focus on data-to-text

tasks;

2. We propose two architectural modifications of the current state-of-the-art, aiming

Introduction 4

to solve some weak points of existing techniques. For instance, the new Prefix

Pooling approach addresses the impossibility of having a dynamic prefix that

changes together with the input triplet, when no additional information is present.

This would indeed be important, as within the same dataset, instance complexity

can vary greatly.

3. We apply the aforementioned prompting techniques to the medical domain, show-

ing that they are a viable approach to producing coherent explanations of a di-

agnosis in natural language. We also note that they overcome the limitations of

the pattern-based justification employed by Marro et al. [23].

The remainder of this work is organized as follows; Chapter 2 presents in detail

the context of the ANTIDOTE project, as part of which this thesis was carried out.

Chapter 3 presents a broad overview of transformer-based pre-trained language models,

with a specific focus on the three generative architectures which we exploit in the course

of our experiments, that is, GPT-2 [37], BART [16] and T5 [38]. We also present in

this chapter the medically-oriented versions of the aforementioned models, as well as

give a primer on both lightweight fine-tuning strategies and the text generation task.

Chapter 4 goes into more detail about the use of prompting techniques for natural

language generation, formally introducing Prefix Tuning [18], Control Prefixes [6] and

our two architectural modifications. Then, Chapter 5 presents the two datasets used

during our experiments, WebNLG and USMLE-Symp. For each of them, we provide

a set of statistics related to the input length in words and characters, as well as show

some characterizing examples. Chapter 6 details the experimental studies we carried

out: we first present the technological stack used to develop our models and track their

performances during training, then explain the evaluation process, which varies together

with the dataset, and - finally - report the various experiments we realized, together with

their results and some qualitative examples of model performances. Chapter 7 offers

a summary of the main results of our experiments and highlights any limitations or

critical points of our work, while Chapter 8 draws some conclusions and presents possible

improvements and future work. Finally, the appendices provide more details about the

hyperparameters (Appendix A), illustrate multiple qualitative examples of the models’

Introduction 5

output for each dataset (Appendix B), and display some interesting visualizations to

further analyze the performances (Appendix C).

Chapter 2

The ANTIDOTE Project

This work has been carried out in the context of the ANTIDOTE [1] project1 with

funding from the European coordinated research consortium on long-term ICT and

ICT-based scientific challenges (CHIST-ERA). Indeed, this work was supported by the

CHIST-ERA grant of the Call XAI 2019 of the ANR with the grant number Project-

ANR-21-CHR4-0002.

ANTIDOTE - which stands for “ArgumeNtaTIon-Driven explainable artificial intel-

ligence fOr digiTal mEdicine” - aims to provide a unified framework for both learning

to take decisions in the clinical domain and providing an explanation of said decisions.

Indeed, the correlation between the internal states of a deep neural network and its

output is not well studied, which is a great limitation when applying these models to

real-world scenarios. This is especially true in the medical domain, where the need

for high-quality explanations is a critical factor. The project specifically focuses on

argumentation-driven justifications because high-quality and human-provided explana-

tions are often based on giving examples in support of the final decision, while pointing

out the reasons for rejected alternatives - that is, they are based on argumentative

mechanisms.

The ANTIDOTE project is carried out by a consortium of European universities and

research centers under the coordination of professors Cabrio and Villata from the Côte

d’Azur University in Sophia Antipolis, France. The French branch of the consortium,

where the work for this thesis was realized, focuses its research efforts on the argument

1https://univ-cotedazur.eu/antidote

https://univ-cotedazur.eu/antidote

The ANTIDOTE Project 7

mining and generation part of the pipeline: in particular, their main contributions are

two-fold. First, they implemented ACTA2 [24, 26], a tool for automating the argumen-

tative analysis of clinical trials, intending to support clinicians in the application of

evidence-based medicine (EBM) - that is, the use of current best evidence and scientific

information coming from systematic reviews to guide clinical decision making. The tool

allows for automatic extraction of argumentative components from the abstract of a

randomized control trial, as well as for the visualization of the relations (i.e., support or

attack) between them. Moreover, ACTA can be used to extract elements of the PICO

model3 from the given abstract and to identify the effects of the trial on an outcome.

Figure 2.1: Overview of the ACTA [24, 26] system for argumentative components ex-
traction from the abstract of a clinical trial.

Second, they are focusing on generating natural language argument-based expla-

nations to be used for educational purposes in the medical domain. Indeed, medical

students are often trained through standardized tests where they are given a clinical

case and asked to identify the most likely diagnosis from a pre-defined set of possibili-

ties, while also explaining their reasoning. Figure 2.2 gives an overview of the proposed

2https://ns.inria.fr/acta/
3PICO [39] is a format to help clinicians formulate their clinical questions. The acronym stands

for Population or Patient, Intervention, Comparison/Control, and Outcome.

https://ns.inria.fr/acta/

The ANTIDOTE Project 8

pipeline for this system [23], which:

1. Detects symptoms and patient information from the clinical case

2. Matches the detected symptoms with those in a medical knowledge base to iden-

tify the disease(s) they are associated with. The reference knowledge base is the

Human Phenotype Ontology (HPO) [15], a comprehensive Web Ontology Lan-

guage (OWL) that systematically defines human phenotypes and also organizes

them logically. It has broad coverage, currently containing more than 13k terms,

and is thus an important resource for most - if not all - of today’s computational

disease models.

3. Generates pattern-based natural language explanations of two main types, de-

pending on whether the interest is on justifying the model’s prediction with pos-

itive examples or on explaining why a different alternative was rejected. A third

template is used to enrich the explanations with additional arguments, for instance

by drawing the reader’s attention to other statistically important symptoms for

the correct disease that are not explicitly mentioned in the clinical case. Table 2.1

shows the pattern used for all three types of argumentations.

Figure 2.2: Overview of the explanation generation pipeline

Our work focuses on improving the aforementioned natural language explanations,

moving away from the single templates and towards more complex discursive justifi-

cations. In particular, this is achieved by feeding all the components we previously

extracted from the clinical case (and on which the pattern-based explanation is based)

The ANTIDOTE Project 9

Table 2.1: Pattern-based post-hoc explanations

Pattern Type Template
Why template The patient is affected by [correct diagnosis] be-

cause the following symptoms have been identified
[list of matched symptoms from HPO]. Moreover,
[list of obligatory symptoms] are obligatory symp-
toms (always present, i.e., 100% of the cases) and
[list of frequent symptoms] are very frequent symp-
toms (holding in 80% to 90% of the cases) for [cor-
rect diagnosis] and are present in the case descrip-
tion.

Why-not template The diagnosis [wrong diagnosis] has to be discarded
because the patient is not showing the symptoms [list
of missing symptoms], which cannot be found in the
case description. Moreover, [list of obligatory symp-
toms] are obligatory symptoms (always present, i.e.,
100% of the cases), and [list of frequent symptoms]
are very frequent symptoms (holding in 80-90% of
the cases) for [incorrect diagnosis] and they are not
present in the description.

Additional-info
template

Furthermore, [list of symptoms] are also very fre-
quent symptoms for [correct diagnosis] and could
be present in the findings part of the clinical case.

to a pre-trained generative language model like GPT-2. As will be explained in more

detail in Section 5.2, we organize all the information extracted from the clinical case in

a set of triplets and we frame the problem as a data-to-text task.

Finally, note that while designing this solution we had to consider some key require-

ments: for instance, we know that labeled data in the medical domain is scarce due

to both patient privacy issues and significant labeling efforts. We should thus be able

to perform lightweight fine-tuning of our language model. We also need to have some

control over the generation, to steer it towards a certain topic or to specify the amount

of details to use. Indeed, in the medical domain, one might want to provide a more

detailed and comprehensive explanation to the clinician and a less complex but equally

useful explanation to the patient. More details about the implemented architectures

are given in Chapter 4, while the medical dataset is described in Chapter 5.

Chapter 3

Background

In recent years, deep learning solutions have been widely adopted for countless Artifi-

cial Intelligence (AI) applications, ranging from image classification to image captioning

and natural language generation. Neural approaches are able to perform representation

learning, that is, they can learn low-dimensional continuous vectors (i.e., distributed

representations) encoding both general-purpose and task-specific features of the under-

lying training data. In doing so, they remove the need for a heavy feature engineering

pipeline, where researchers and domain experts use their knowledge to extract interest-

ing features from raw data [19]. Despite their popularity, it has been pointed out [11]

that these new models are prone to over-fitting when the amount of training data is not

sufficient, becoming unable to achieve good generalization on unseen data.

A fully supervised training setting - where we train a task-specific model from scratch

on the relative dataset - has long since played a central role in the Machine Learning

landscape. However, obtaining high-quality human annotations is an expensive and

time-consuming process, more so when the task requires specific domain knowledge;

because of this, real-world datasets are often not big enough to effectively train a deep

learning model in a fully-supervised setting [11]. Therefore, inspired by the human

ability to use previously acquired knowledge for solving new problems, transfer learning

was introduced as a way to effectively train big neural models on a limited amount of

human-annotated data. This technique is usually composed of two separate training

steps: (i) a pre-training phase, to capture knowledge from one (or more) source tasks,

and (ii) a fine-tuning phase, which tries to transfer the previously acquired knowledge

to new target tasks [11, 35].

Background 11

The transfer learning paradigm is very influential and it has been used in Com-

puter Vision (CV) and Natural Language Processing (NLP) alike. Choosing a good

task to solve during the pre-training phase is particularly important for learning good

representations; in principle, we want the problem to be challenging while still having

an abundance of training data. We can identify the following three main categories of

pre-training tasks [35]:

1. Supervised pre-training: based on a labeled dataset, we learn a function that is

able to map inputs to outputs.

2. Unsupervised pre-training: starting from unlabeled data, we extract some patterns

or intrinsic information from it.

3. Self-supervised pre-training: a blend of supervised and unsupervised learning

where the data is originally unlabeled and the ground truth information is auto-

matically produced starting from the examples themselves. The basic idea behind

this paradigm in NLP is to try and predict a masked part of the input starting

from the remaining parts.

Supervised pre-training tasks are especially popular in CV, resulting in a long series

of convolutional architectures pre-trained on the big ImageNet [8] dataset for visual

recognition and then fine-tuned on custom data, either for the same task (i.e., image

classification) or for a different one. Indeed, the weights of an image classification

network can also be used as initialization for models tackling different tasks like object

detection, where obtaining huge labeled datasets would be too expensive; it has been

shown that this speeds up convergence and improves generalization [35].

Most common NLP tasks have higher annotation costs with respect to the Computer

Vision counterparts, which makes obtaining labeled datasets of the same size as Ima-

geNet extremely hard. Since constructing a large-scale unlabeled corpus is much easier,

research efforts focused on learning good representations from unlabeled data, that is,

researchers moved towards unsupervised or self-supervised pre-training paradigms.

Background 12

Pre-trained Word Embeddings: This first generation of pre-trained models for

natural language processing marks an initial attempt to learn how words can be rep-

resented as dense vectors starting from unlabeled data. Many different approaches

were developed, some of which do not rely on neural architectures at all. For in-

stance, GloVe [31] obtains pre-trained word embeddings by computing global word-

to-word co-occurrence statistics from a large unlabeled corpus. Other relevant tech-

niques like Word2Vec [25], instead, use shallow neural architectures trained to recon-

struct the linguistic contexts of words. All of these approaches are able to capture

latent semantic and syntactic similarities among words; for example, we might find

that embed(“China”) - embed(“Beijing”) ≈ embed(“Japan”) - embed(“Tokyo”).

Moreover, the embedding vectors usually demonstrate peculiar properties like compo-

sitionality, meaning that we might observe embed(“Germany”) + embed(“Capital”)

to be close to embed(“Berlin”) in the embedding space [35]. Some probing tasks [40]

also showed that these vectors can capture hierarchical information, like the fact that

a dog is an animal or that a woman is a human being. However, they do not capture

contextual information and thus have problems with polysemous words, whose sense

changes depending on the context. Since these words are very common in the English

language, a first-generation pre-trained model cannot capture, for instance, that the

word bank has two completely different meanings in the sentences “I want to open a

bank account” and “It was lying on the river bank” [11]. Moreover, while these methods

do improve the performance of NLP architectures on downstream tasks, they are only

ever useful as an initialization prior for the embedding layer, which implies that the

remaining parts of the architecture still have to be learned from scratch [11].

Pre-trained Contextual Encoders: In order to have a token’s representation that

changes with the context, second-generation pre-trained language models were intro-

duced. They feed word vectors to a neural encoder and use its hidden state as a

dynamic (or contextual) embedding; Figure 3.1 illustrates a generic neural architecture

for NLP which includes a contextual encoder. Contextual encoders are typically divided

into two main categories, sequence models - like convolutional or recurrent networks -

and non-sequence models (i.e., Transformer-like architectures [49]), which typically use

Background 13

Figure 3.1: Neural architecture with contextual encoder. Image adapted from [35].

a fully-connected architecture to model the relation between words and then learn the

actual linguistic structure of the sentence thanks to an attention mechanism. Sequence

models can usually be trained with a smaller amount of data, but struggle to capture

long-term dependencies between words. Probing tasks [19] showed that contextual word

embeddings are able to capture both linguistic (i.e., syntax, grammar, and semantics

for different word senses) and world knowledge present in the training data.

Modern Language Models (LMs) are usually pre-trained in a self-supervised setting

to predict the probability that a word/sentence occurs in a span of text. Since we have

abundant raw unlabeled data, we can use this phase to learn robust and general-purpose

features for our language of choice. We typically consider the learned representation

to be good if it captures both implicit linguistic rules and common sense information

that might be hiding in the training corpus [35]. A Pre-Trained LM (PLM) is then fine-

tuned in order to solve different downstream tasks. Note that, while this is currently

the dominant solution in order to transfer the PLM’s knowledge to a new task, it is

not parameter efficient [11], which can be impractical and problematic in two main

scenarios:

1. Multi-task systems, where we would need to store a separate copy of all the

model’s parameters for every downstream task we have to solve. Given the current

Background 14

size of language models, this quickly becomes prohibitive in terms of memory

requirements: consider, for instance, that GPT-2 [37] has 775M weights, while

GPT-3 [4] parameter’s number surpasses 100 billion.

2. Low-data situations, where we would have to fine-tune large-scale models with

few labeled training examples, thus potentially incurring in over-fitting.

For this reason, different techniques for lightweight fine-tuning are being developed

and research is shifting towards a “pre-train, prompt, predict” paradigm [19], whose

main idea is to stop adapting the pre-trained LM to a downstream task. Instead, we

make the downstream task more similar to the problem our model learned to solve

during its pre-training phase. This is done through a prompt, which could either be

textual or composed of learnable parameters; for instance, if we want to recognize the

topic of the sentence “The Italian team lost the match”, we might feed it to the language

model followed by the prompt “The text is about _” and ask it to fill the blank.

Table 3.1: Different paradigms in NLP. Table adapted from [19].

Paradigm Task relation

Fully-supervised learning

Pre-train, Fine-tune (Self-supervised pre-training)

Pre-train, Prompt, Predict

This new paradigm is particularly interesting in low-data scenarios because, by selecting

an appropriate prompt, the pre-trained LM might be able to predict the desired output

without needing any fine-tuning steps [19]. Table 3.1 shows how the process of training

language models evolved during the years; note that the blue color means unsupervised

training, the red one means supervised training, and the purple stands for prompting.

Also notice that a connection LM → Task means that we are adapting the LM objective

3.1 Pre-trained Language Models 15

to a downstream task, while a connection Task → LM indicates that we are adapting the

formulation of the downstream task to better align with the language model’s objective.

Finally, the dashed lines suggest that the parameters of the pre-trained LM can be

shared across downstream tasks.

The remaining part of this chapter is organized as follows: Section 3.1 explains in

more detail the architecture and the pre-training objective of common PLMs which are

suitable for the objective of this thesis, that is, for text generation. Section 3.2 introduces

lightweight fine-tuning strategies, highlighting the advantages and disadvantages of the

various possibilities. Finally, Section 3.3 gives a primer on text generation, explaining

how we can decode the output of a LM to obtain an actual sentence and detailing some

common evaluation metrics for this complex task.

3.1 Pre-trained Language Models

Modern pre-trained language models are often variations of the Transformer architec-

ture [49], a non-recurrent sequence-to-sequence model based on feed-forward layers and

attention. The attention mechanism, in particular, is crucial as it is able to seamlessly

draw connections between any two parts of the input sentence, thus resolving the prob-

lems with long-term dependencies typical of recurrent approaches. Moreover, we should

note that Transformer-like architectures do not suffer from vanishing gradients and are

more GPU-friendly than RNNs.

In psychology, attention can be loosely defined as the human ability to focus on cer-

tain stimuli, features, or events in the environment, while tuning out other details [29];

similarly, here we use attention to give more weight to certain parts of the input text.

In particular, the attention function used in the Transformer is called scaled dot-product

attention and takes as input queries and keys of dimension d1 and values of dimension

d2. For every query vector qi, we compute its dot product with the keys and divide

the result by the square root of d1 before feeding everything to a soft-max function; we

obtain weights that are used to compute a weighted sum of the value vectors. Note that

the scaling by
√

d1 prevents large values in the dot products from dominating the at-

tention weights and potentially pushing the soft-max function into regions of the space

3.1 Pre-trained Language Models 16

where it has small gradients [49]. Formally, given a set of queries Q = {q1, . . . , qn}, keys

K = {k1, . . . , km} and values V = {v1, . . . , vm} we can compute the matrix of outputs

as shown in Equation 3.1.

Attention(Q, K, V) = softmax
(

QKT

√
d1

)
V (3.1)

Instead of computing a single attention function with key, value, and query vectors of

a dimension equal to the hidden size of the model (i.e., dmodel = 512), the Transformer’s

authors actually devise a multi-head attention: they linearly project queries and keys

into a smaller dimension d1 for h different times and then do the same for the values

but using dimension d2. Each of these projected versions of Q, K, and V is used to

compute the scaled dot-product attention as in Equation 3.1, yielding as output a d2-

dimensional matrix. This results in h separate output matrices that are concatenated;

the final output is then linearly projected to the expected final size. More formally,

multi-head attention is defined as

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W 0

where headi = Attention(QW Q
i , KW K

i , V W V
i)

(3.2)

where the projection matrices have sizes W Q
i , W K

i ∈ Rdmodel×d1 , W V
i ∈ Rdmodel×d2 and

W O ∈ Rhd2×dmodel . In Vaswani et al. [49] we actually have d1 = d2 = dmodel/h; then, due

to the reduced dimension of each head, the computational cost of a multi-head attention

is similar to that of a single attention computed on the full dimensionality dmodel.

Both encoder and decoder in the Transformer include self-attention layers, where

queries, keys, and values all come from the previous layer; however, while every position

in the encoder can attend to all positions in the previous layer, in order to preserve the

auto-regressive property of the architecture every position in the decoder can only attend

to positions before itself. This is realized in practice by masking out (i.e., setting to

a very low value) the elements in input to the soft-max which corresponds to illegal

connections. Moreover, in the decoder we also have cross-attention layers, where the

queries come from the previous decoder layer while the keys and values come from the

encoder’s output; this allows every position in the decoder to attend to the whole input

3.1 Pre-trained Language Models 17

sequence.

The original Transformer architecture [49] was trained in a supervised manner on

a Neural Machine Translation task; later on, BERT (Bidirectional Encoder Represen-

tations from Transformers) [9] was introduced as a Transformer-based model making

better use of the pre-trained representation for downstream tasks. The authors argue

that the unidirectionality of previous LMs leads to sub-optimal results on sentence-level

tasks and, more in general, on all those tasks like question answering where incorpo-

rating context from both dimensions is crucial. They thus propose a Masked Language

Modeling (MLM) pre-training objective, where they randomly mask some tokens in the

input and ask the model to reconstruct the original text given the context around the

masked words. Since many downstream tasks are based on understanding the relation-

ship between two or more sentences, BERT’s authors introduce a second pre-training

objective called Next Sentence Prediction (NSP), where they feed to the model the

concatenation between two sentences A and B, but B is really the sentence follow-

ing A in the original text only 50% of the times, while it is randomly chosen in the

remaining 50%. Using these two pre-training objectives, along with task-specific fine-

tuning, BERT achieves never seen before accuracy on all the tasks from the GLUE

benchmark [50] for natural language understanding.

Table 3.2: PLMs for generative tasks in the medical domain.

Model Task Loss

BioGPT [22] CLM L = −
T∑

t=1
log p(xt|x<t)

BioBART [53] DAE L = −
j∑

t=1
log p(xt|xxi:j , xi:t−1)

SciFive [34] Seq2Seq MLM L = −
T∑

t=1
log p(xt|x̂, x<t)

Since the main objective of this work is text generation, in the remainder of this

Section we will introduce language models that are suitable for our goal; in particular,

because we aim to perform data-to-text in the medical domain, we carefully select

PLMs that have previously been pre-trained on medical data, like PubMed abstracts or

https://huggingface.co/microsoft/biogpt
https://huggingface.co/GanjinZero/biobart-base
https://huggingface.co/razent/SciFive-base-Pubmed

3.1 Pre-trained Language Models 18

articles. Indeed, a generative model trained on general-purpose documents, when used

on medical data, runs the risk of encountering a huge amount of words that it never saw

during pre-training. In most cases, generative models use subword-based tokenization

algorithms, meaning that they are able to deal with tokens not in the vocabulary by

splitting them into sub-words instead of just mapping them to a global OOV (Out-

Of-Vocabulary) token as most recurrent models do. Still, having to decompose in sub-

tokens a big percentage of the input words in order for the model to process them, might

have a pretty big impact on the model’s performance. Table 3.2 offers a summary of the

models we consider, together with their pre-training objectives; note that xi:j denotes a

masked n-gram spanning from i to j in the sequence x and x̂ is a randomly perturbed

text from the sequence x.

3.1.1 GPT-2

The GPT-2 model [37] is a decoder-only Transformer [49] with masked self-attention

heads. The number of layers, the dimension of the hidden space, and the number of

heads in the attention mechanism all depend on model size; the various architectures

are shown in Table 3.3. With respect to the original GPT [36] work, here the authors

modify the position of layer normalization in each block and increase the vocabulary

size to 50,257. They also use a context of 1024 tokens, meaning that this model learns

to reason on longer spans of text.

Table 3.3: GPT-2 model variations in the HuggingFace’s transformers [52] library.

Model Name Parameters Layers dmodel Heads
gpt2 124M 12 768 12
gpt2-medium 355M 24 1024 16
gpt2-large 774M 36 1280 20
gpt2-xl 1558M 48 1600 25

GPT-2 is trained using a simple Causal Language Modeling (CLM) objective, where

the network is asked to predict the next token, knowing everything that came before

it in the text. The dataset used for the pre-training step is called WebText and it

was realized ad hoc by scraping the information from 45 million Reddit outgoing links.

3.1 Pre-trained Language Models 19

Thanks to the diverse pre-training dataset, the simple CLM goal actually includes the

information and evidence needed to solve a variety of downstream tasks across different

domains. Indeed, the authors show that their biggest proposed model, GPT2-xl, can

obtain state-of-the-art results in a zero-shot setting for a variety of tasks.

In order to achieve this zero-shot capability, the authors focus on realizing a general

language model - that is, one which is able to compute the probability of every word

and to generate every word. Because common pre-processing steps like lowercasing and

the use of OOV tokens restrict the space of strings that can be modeled, they use Byte

Pair Encoding (BPE) tokenization [42] applied over byte sequences, which results in a

base vocabulary size of just 256. Since the size of the vocabulary is limited, the authors

wish to avoid including many variations for a given common word (i.e., dog., dog?, dog!);

they thus prohibit certain types of merges to the algorithm. With this approach, they

can effectively model any Unicode string, making their architecture easy to evaluate on

any dataset without worrying about the pre-processing steps.

BioGPT [22] is a domain-specific version of GPT2-medium for biomedical text gen-

eration, which has been pre-trained from scratch using 15 million PubMed abstracts.

In particular, the dataset was built by collecting all the PubMed items uploaded before

2021 and filtering out those that had a title but no abstract. The authors also point

out the importance of using an in-domain vocabulary, which is not taken from standard

GPT-2 but learned from the collected biomedical corpus using BPE; the final size of

BioGPT’2 vocabulary is 42,384 tokens. The model is trained with a Causal Language

Modeling objective as standard GPT-2 and then tested on biomedical NLP tasks like

question answering, end-to-end relation extraction, document classification, and text

generation. BioGPT is able to achieve better generation capabilities with respect to

standard GPT-2 in the medical domain.

3.1.2 BART

BART (Bidirectional and Auto-Regressive Transformer) [16] follows the standard sequence-

to-sequence architecture of the original Transformer model [49]. It is released in two

different versions, bart-base with 6 layers in both encoder and decoder and a hidden

3.1 Pre-trained Language Models 20

size of 768, and bart-large with 12 layers in each component and a hidden size of

1024. BART is a denoising autoencoder and as such, it is trained in two steps: (i)

text corruption according to a certain scheme and (ii) optimization of a reconstruction

loss between the decoder’s output and the original document. Differently from similar

architectures, BART is not tied to a specific noising scheme but supports various types

of document corruption. Indeed, the authors perform an ablation study on the schemes

shown in Figure 3.2 using bart-base and find that the best performances are obtained

when combining these two noising approaches:

1. Text infilling: we mask (using a single [MASK] token) arbitrarily long spans of

text, including zero-length spans. The model is then asked to reconstruct the

original sentence, which forces it to reason on overall sentence structure more

than the standard MLM objective does. In practice, the authors mask only about

30% of the tokens in each input element.

2. Sentence permutation: the key idea is to randomly shuffle all the sentences of

the original text. The authors notice that this noising scheme only produces a

significant gain in performance on summarization tasks, but speculate that larger

models may have a higher chance of learning significant features from this noising

function.

BART can be applied to a variety of downstream tasks: it performs particularly

well when fine-tuned for text generation, but this does not come at the expense of its

NLU capabilities. Indeed, BART obtains results comparable with RoBERTa [21] on key

natural language understanding benchmarks like GLUE [50]. It also outperforms previ-

ous state-of-the-art architectures on generative tasks, improving over their results both

on CNN/DailyMail [27] summarization - which is suitable for extractive approaches

- and on XSum [28] summarization, which is instead highly abstractive. Similar im-

provements can also be found in tasks like abstractive question answering and dialogue

response generation.

BioBART [53] was proposed as a way to address the lack of autoregressive models

in biomedical NLP, as the authors point out how most pre-trained architectures in

the medical domain are encoder-only transformers with scarce generation capabilities.

3.1 Pre-trained Language Models 21

Figure 3.2: Various noising schemes proposed in BART [16].

BioBART is continuously pre-trained on PubMed abstracts, meaning that the model is

initialized with the weights from standard BART and then pre-training is continued on

domain-specific texts. One major disadvantage of this continual pre-training approach is

that the vocabulary is constrained to be the same as the original model; still, it has been

shown to be able to achieve comparable performances with respect to the pre-training

from scratch approach. Note that the authors perform domain-specific ablation studies

on the noising schemes and find sentence permutation to have a negative impact on

performance; during continual pre-training, they thus use only text infilling [53].

BioBART is evaluated on various natural language generation tasks in the medical

domain (i.e., summarization, dialogue, named entity recognition) and it proves to be a

strong in-domain baseline, outperforming the general model.

3.1.3 T5

T5 (Text-To-Text Transfer Transformer) [38] is a standard encoder-decoder Trans-

former [49] with only minor changes related to the position of layer normalization and

to the attention masks; it achieves good performances on both understanding and gen-

eration tasks. The baseline T5 model comprises 12 blocks in both encoder and decoder,

a hidden space of size 768, and 12 heads in the attention; the authors note how scal-

ing up this base architecture improves performance. However, since there are many

low-resource settings where a smaller model is useful, they release a whole family of

networks whose details are given in Table 3.4.

The model is pre-trained on a modified version of the data scraped by Common

Crawl1, an open repository of data crawled from the web and devoid of markup and

1https://commoncrawl.org/

https://commoncrawl.org/

3.1 Pre-trained Language Models 22

Table 3.4: T5 model scaling and sizes. dff represents the dimensionality of the hidden
layer in the feed-forward network.

Model Name Parameters Layers dmodel Heads dff

t5-small 60M 6 512 8 2048
t5-base 220M 12 768 12 3072
t5-large 770M 24 1024 16 4096
t5-3b 2.8B 24 1024 32 16384
t5-11b 11B 24 1024 128 65536

non-textual content. Unfortunately, while the Common Crawl corpus has been used for

various NLP applications throughout the years, most of it is either (i) not really natural

language but gibberish and/or standardized templates for menus and error messages or

(ii) not useful for the target tasks as it contains offensive language or source code.

The authors thus devise come heuristics to clean the data and - because most of their

tasks of interest are in English - they also filter based on language. The final dataset

is called “Colossal Clean Crawled Corpus” (C4) and, being much bigger than most

datasets used for pre-training, allows them to limit/avoid repetitions, which are shown

to degrade performance [38].

Self-supervised pre-training is performed using a span-based language masking ob-

jective, where we randomly drop 15% of the tokens in the input sequence and replace

all consecutive spans of dropped-out tokens with a single sentinel token. These sentinels

are special tokens added to the model and do not correspond to any wordpiece. The

model is then trained to predict all the dropped-out parts of the text and return them

delimited by the same sentinel token we used in the input. An example of this data

representation and objective is shown in Figure 3.3; notice how the authors also include

a final sentinel token to signal the end of the output sequence.

T5’s paper also points out how, in this text-to-text framework, one can easily realize

multi-task learning by mixing various datasets together. Based on this observation, the

authors realize multi-task pre-training for their final model simply by considering the

unsupervised objective as one of the tasks to be joined together. In this context, the

most important factor to decide upon is how much data the model should see for each

task: ideally, it should be enough for the LM to learn that task well but not enough to

3.1 Pre-trained Language Models 23

Figure 3.3: Span-based language masking objective in T5.

memorize the training set. In general, multi-task training alone performs worse than

the standard “pre-train and fine-tune” approach. However, if one relaxes the notion

of multi-task learning to include a situation where the model is trained on multiple

datasets but can still be fine-tuned for the individual tasks later on, the performances

become comparable. Plus, with the multi-task approach, we have the advantage of

being able to monitor the “downstream” performance throughout the whole training.

T5 can be easily applied to generative tasks, classification/natural language un-

derstanding problems, and even regression. It obtains comparable results to those

of task-specific architectures and - when scaling up the model - it can also achieve

state-of-the-art performances on benchmarks NLU such as GLUE and on abstractive

summarization tasks like CNN/Daily Mail.

SciFive [34] is a domain-specific adaptation of T5 [38] for biomedical tasks. In

particular, the model is continuously pre-trained starting from the standard checkpoints

of t5-base and t5-large using the original span-based language masking objective. For

this phase, the authors combine the C4 dataset with two large biomedical corpora in

order to avoid overfitting: specifically, they use abstracts from PubMed and full-text

articles from PubMed Central (PMC), a dataset of free articles in the biomedical and

life sciences domain. Indeed, they hypothesize that training the model on complete

articles may improve its biomedical knowledge while still helping to retain a generalized

representation of natural language.

SciFive is then fine-tuned on different medical NLP tasks including question an-

swering, natural language inference, and named entity recognition. The model obtains

3.2 Lightweight Fine-tuning Strategies 24

competitive results on the natural language understanding tasks while reaching state-

of-the-art results on generation [34].

3.2 Lightweight Fine-tuning Strategies

As previously stated, fine-tuning is still the main paradigm for adapting large pre-

trained language models to downstream tasks, even if it lacks parameter efficiency. It

has also been pointed out how, during the fine-tuning phase, generative models may

forget important language skills that were acquired through pre-training [12]. Several

attempts have been made at alleviating this problem: for instance, He et al. [12] propose

a “mix-review” strategy where, for each fine-tuning epoch, the target task data is mixed

with a random subset of the pre-training corpus. On a similar wavelength, Chen et

al. [5] propose “recall and learn”, where a technique called pre-training simulation is

used to keep the model’s parameters during fine-tuning close to their pre-trained values;

the main idea behind this work is leveraging the multi-task learning paradigm to use

the pre-training objective as an auxiliary task during fine-tuning. While both these

techniques are able to alleviate forgetting, they do not improve the models’ parameter

efficiency.

For this reason, several lightweight fine-tuning approaches have been proposed, often

based on the addition of some task-specific modules between the PLM’s layers: these

techniques typically freeze the majority of the pre-trained weights, only updating the

task-related parameters [19]. In the following Sections, we will explore in more detail the

two main approaches to lightweight fine-tuning at the moment, Adapters and Prompt-

tuning.

3.2.1 Adapter-tuning

Given a pre-trained Transformer model with parameters θ, Adapter-tuning inserts some

task-specific modules with parameters ϕ between its layers; these modules are called

adapters. Typically, the new parameters ϕ are trained on the target task while keeping

the PLM fixed, which implies that only the new weights can learn to encode task-specific

3.2 Lightweight Fine-tuning Strategies 25

features [33].

It has been empirically proven that adding a two-layer bottleneck feed-forward neural

network at every layer of the pre-trained Transformer works well [13]; however, deciding

exactly where these additional parameters should be placed requires a significant effort

as it might have a strong impact on performances [33]. Adapters are usually learned for

every downstream task separately and have been shown to obtain results comparable

with full fine-tuning while limiting the risk of forgetting. Moreover, they mitigate

the problems related to traditional fine-tuning’s parameter efficiency in a multi-task

scenario, because storing separate copies of millions or billions of weights is not necessary

anymore: approximately 99% of the parameters required by a target task are fixed

during training, and can be shared across multiple models. This has the added benefit

of making it easier to add new objectives to an existing multi-task architecture [33].

It is also interesting to point out how adapters are modular, meaning that we can

stack them one on top of the other or dynamically exchange one adapter for another:

indeed, since the parameters of the pre-trained language model are fixed, every adapter

must learn a representation that is compatible with the following layer on the trans-

former architecture [33].

3.2.2 Prompting

In its most basic form, the prompting paradigm consists of three steps, (i) prompt

addition, (ii) answer search and (iii) answer mapping. First of all, a prompting function

fprompt(·) is applied on the input x in order to obtain the prompt x′. This function can

be thought of as a template, a textual string containing an input slot [X] and an answer

slot [Z]: the first slot is filled with the input text x, while [Z] will later contain the

generated answer.

For instance, for topic classification with x = “The Italian team lost the match.”

a possible template could be “[X] This text is about [Z].”, meaning that the prompt

x′ would become “The Italian team lost the match. This text is about [Z].” Other

interesting templates for different tasks are shown in Table 3.5; all of them have an

empty slot to be filled with the answer z. If [Z] is in the middle of the text we

3.2 Lightweight Fine-tuning Strategies 26

talk about a cloze prompt, while if the whole text comes before [Z] we talk about

prefix prompts. In practice, which shape to choose depends on both the task we are

solving and the used PLM: prefix prompts work well with auto-regressive LMs and/or

for generative tasks, while cloze prompts tend to be preferred when we work with masked

LMs. Also notice how, for simplicity, the templates shown in Table 3.5 are all composed

of natural language tokens, while in reality they could be composed of “virtual words”

(i.e., numeric ids which are later mapped to embeddings) or simply continuous vectors

in the parameter space [19].

Table 3.5: Examples of textual prompts and relative answer space for different NLP
tasks. Table adapted from [19].

Task Type Task Input ([X]) Template Answer ([Z])

Text CLS

Sentiment My mom loved it. [X] the product is [Z]
great
fantastic
...

Topic Our team lost. [X] the text is about [Z]
food
sport
...

Text-pair CLS NLI [X1]: An old man...
[X2]: A man walks... [X1]? [Z] [X2]

entailment
contradiction
neutral

Tagging NER [X1]: Al goes to Rome
[X2]: Rome [X1] [X2] is a [Z] entity

location
person
...

Text Gen

Summary OpenAI released... [X] TL;DR: [Z]
The company...
AI models...
...

Translate Ça marche French: [X] English: [Z]
It works.
Got it.
...

Data2text
subj: Belgium
rel: language
obj: Dutch

[X] Text: [Z]
Dutch is...
In Belgium...
..

During the answer search phase, a set Z of admissible answers is created: for gen-

erative tasks, it may be equal to the entire vocabulary of the language model but it is

usually a small subset of words. For instance, for the topic classification example, Z

might be defined as {“sports”, “science”, “politics”, “food”}. Then, the correct answer

to a prompt is obtained by searching over the set Z of potential answers as shown in

3.2 Lightweight Fine-tuning Strategies 27

Equation 3.3, where hfill(x′, z) indicates the prompt x′ has been filled with answer z

and P (·) indicates the probability of the filled prompt computed using a pre-trained

language model.

ẑ = search
z∈Z

P (hfill(x′, z); θ) (3.3)

Note that the search over the answer space may be a greedy one (i.e., an argmax

operation) or it might use more complex techniques like beam search or sampling.

The final answer mapping step brings us from the answer ẑ with the highest score to

the actual output ŷ; this is trivial for generative tasks where answers and output coin-

cide. However, for some classification tasks, the mapping should be explicitly provided,

as it may be possible to, for instance, use a variety of different words (i.e., “cooking”,

“cuisine” or “foodstuff”) to refer to a single document topic (i.e., “food”) [19].

Figure 3.4 shows some important design decisions for a prompting algorithm; note

that since our focus in this work is natural language generation, answer engineering (i.e.,

the way in which we design Z and, possibly, the mapping function) is not considered.

Indeed, we already pointed out how, for generative tasks, Z is usually equal to the entire

vocabulary of our model, making this step trivial.

In Section 3.1 we already discussed various pre-trained language models, pointing

out their capabilities: every one of those architectures can, in principle, be used to

compute the answer’s probability in a prompting method. Moreover, we call prompt

engineering the process of deciding which prompting function fprompt to use in order to

obtain the best performance on the downstream task. Figure 3.4 shows how prompt

engineering consists of two main choices: the desired prompt shape (i.e., cloze or prefix)

and whether to use a manual or an automated approach to create the prompts. Indeed, a

very natural way to produce prompts is to manually create them based on our intuition;

the LAMA [32] dataset, for instance, provides a set of handcrafted cloze prompts used

to probe LM’s knowledge. However, manually generating appropriate prompts can be

extremely challenging for certain tasks (i.e., semantic parsing), thus automated prompts

were proposed. Automated prompts can be discrete or hard (i.e., actual text strings)

as in AutoPrompt [44], where the original input is combined with a set of learnable

trigger tokens according to a template. Since the prompts do not need to be human

3.2 Lightweight Fine-tuning Strategies 28

Prompting

Training
Strategies

Parameter
Updates

Promptless
Finetuning BERT [9]; RoBERTa [21]

Tuning-free
Prompting GPT-3 [4]

Fixed LM
Prompt-
tuning

Prefix Tuning [18]

Fixed
Prompt

LM-tuning
T5 [38]

Prompt+
LM-tuning P-tuning [20]

Training
Data Size

Few/zero-
shot GPT-3 [4]

Full-data Control Prefixes [6]

Pre-trained
Models

Left-to-
right LM GPT [36]; GPT-2 [37]; GPT-3 [4]

Masked LM BERT [9]; RoBERTa [21]

Encoder-
Decoder T5 [38]; BART [16]

Prompt
Engineering Shape Cloze LAMA [32]

Prefix Prefix Tuning [18];
Control Prefixes [6]

Human
Effort Handcrafted GPT-3 [4]; LAMA [32]

Automated Discrete AutoPrompt [44]

Continuous Prefix Tuning [18];
Control Prefixes [6]

Figure 3.4: Design decisions in prompting algorithms. Image adapted from [19].

3.3 Text Generation 29

interpretable, some methods use continuous (or soft) templates: they add new weights

to the LM which are directly responsible for parametrizing the prompt, meaning that

prompt tokens are not in natural language anymore.

Finally, Figure 3.4 also shows that different prompting algorithms admit different

training regimes, both regarding the amount of training data (i.e., the full dataset or

zero/few-shot learning) and the number of parameters updated. In particular, we should

note that the “fixed-LM prompt tuning” regime, which is mainly used for automated

continuous prompts, keeps the LM weights frozen and only trains the prompt parame-

ters. This method can be seen as a sort of lightweight fine-tuning strategy, as it improves

parameter efficiency and solves the forgetting problem of traditional fine-tuning. Prefix

Tuning [18] and Control Prefixes [6], which will be better described in Section 4, both

use this training regime.

3.3 Text Generation

Text generation is an important NLP task that aims to produce coherent and reasonable

text in a certain human language. Some common applications of generative techniques

are abstractive text summarization, dialogue systems, image captioning, and machine

translation. Since generative models are able to learn a way to map inputs to outputs

requiring little to none human help, they can also be used to generate free text [17].

Usually, text generation is conditioned on the input data x and to different for-

mats/types of input correspond different instances of the generative task:

1. If x is not provided, the task degenerates into standard language modeling and

the output text just needs to be grammatically correct and to sound natural in

the chosen language.

2. When x is a sequence of discrete categories (like topic classes), the task becomes

controlled generation - meaning that x should steer the content of the output text.

This is particularly important in real-world scenarios, as most of them require a

way to control certain aspects of the generation. For instance, in the medical

domain, we may want to control for the complexity of the answer provided by

3.3 Text Generation 30

the PLM, whose level of technical detail should vary depending on whether it is

intended for doctors or patients.

3. When x is a table or any other kind of structured knowledge, the task is called

data-to-text and the main objective of the output is to describe x’s content in a

coherent and accurate manner.

4. When x is an image, a video, or some speech feature we are talking about tasks

like image/video captioning or speech recognition. Ideally, the output text should

be coherent and faithful to the input.

5. Finally, when x is a text span, we can have multiple possible tasks depending on

the application (i.e., machine translation or summarization). Again, the output

text is expected to be correct from a grammatical point of view and to respect

certain properties which depend on the objective of the downstream task [17].

PLMs for conditional text generation typically output a probability distribution

over the whole model’s vocabulary for deciding the next word in the sequence, given all

the previous ones. Since computing the overall best output sequence is an intractable

problem, various decoding strategies have been proposed in recent years [14]. They

will be explored in more detail in Section 3.3.1. Finally, notice that automatically

evaluating the performance of a generative model is non-trivial as distinguishing correct

and incorrect answers often requires knowledge of the target human language, knowledge

about the task, and knowledge about the target domain. Popular automatic evaluation

metrics for our target task (i.e., data-to-text) are explained in Section 3.3.2

3.3.1 Decoding Methods

As mentioned above, the output of a generative model is a conditional probability of each

word in the target text given the input and the previously generated words. Supposing

the sequence of tokens generated so far is y<t = (y1, · · · , yt−1), the model outputs the

following probability distribution P (yt = wi|y<t, x) for ∀ i ∈ {1, . . . , V } with V the size

of the vocabulary. A decoding strategy in general aims to obtain the most likely output

3.3 Text Generation 31

sentence overall, i.e., to pick sentence y∗ such that

y∗ = arg max
y

P (y|x) = arg max
y

∏
t

P (yt|y<t, x) (3.4)

However, finding such an optimal decoded sequence is an intractable problem, and no

sub-exponential algorithms exist to solve it [14]. The easiest way to overcome this

problem is to use a greedy algorithm, picking the most probable word at every step;

this is a deterministic approach and typically produces short repetitive sentences [14].

Other, more sophisticated, alternatives have been proposed: we particularly focus on

beam search as it is currently used in [6] to achieve state-of-the-art performances on

the data-to-text task. We also consider contrastive search [46], a recently proposed

decoding strategy aiming to make the generated text more natural and less repetitive.

Beam Search At every decoding step, this method keeps track of the most likely b

tokens and, only at the end it selects the sequence with the overall highest probability.

Usually, the scoring function for a partial sequence is its log-likelihood. Beam search

improves over greedy search but can still include repetitions and only explores a limited

portion of the search space. This means that, when we use beam search to generate

multiple outputs, we often obtain slight variations of the same highly probable sentence,

usually involving changes in punctuation or the exchange of a word with a synonym.

Nevertheless, for tasks like data-to-text, which do not require high diversity in the

generated outputs, beam search and its variants currently achieve great performances.

Contrastive Search This strategy was proposed to alleviate the degeneration prob-

lem - that is, the tendency of decoding algorithms to produce dull and repetitive sen-

tences. As briefly mentioned before, this problem is particularly relevant for open-

ended text generation tasks like poetry or open-domain dialogue generation; indeed,

contrastive search has been shown to significantly outperform other decoding strategies

on these kinds of tasks [46], while it has not been evaluated on conditional generation

tasks like data-to-text. At every decoding step, contrastive search selects the new token

3.3 Text Generation 32

yt as

yt = arg max
v∈V (k)

{
(1 − α) · P (v|y<t, x)︸ ︷︷ ︸

model confidence

−α · (max{s(hv, hyj
) : 1 ≤ j ≤ t − 1})︸ ︷︷ ︸

degeneration penalty

}
(3.5)

where V (k) is the set of top-k prediction of the language model at step t, x is the input fed

to the model and s(·) is the cosine similarity between tokens. The term degeneration

penalty in Equation 3.5 uses the cosine similarity between token representations to

measure how discriminative the new candidate v is with respect to the previous context.

Intuitively, a high degeneration penalty means that v is quite similar to the context,

leading to repetitive content that - at least in open-ended text generation - should be

avoided. Notice that we have two main hyper-parameters: k, which has the same role

as b in beam search and is typically chosen in the interval [3, 10], and α ∈ [0, 1], which

regulates the relative importance of degeneration penalty and model confidence [46].

3.3.2 Evaluation Metrics

As previously mentioned, automatically evaluating the quality of a text generation

model is non-trivial. Particularly, we are interested in data-to-text tasks, where the

input fed to the PLM is structured or semi-structured (i.e., a table or a knowledge

graph): here a good evaluation metric should check that the text is fluent, covers all the

information provided by the data source and does not hallucinate knowledge. Consider

the example in Table 3.6 with three possible generation outcomes: the first one is correct

and coherent, but it is missing the birthplace information, while the second one contains

a wrong date of birth. The third option is grammatically and factually correct and it

contains all the relevant information, but its wording is quite different with respect

to the reference sentence [41]. Ideally, a good metric should more strongly penalize

the generated sentences containing wrong information with respect to those that are

missing some details; sentences that cover all the relevant details in a faithful way but

just use different wordings with respect to the reference should suffer from a very small

penalization.

The most common metrics used to evaluate data-to-text models are word-based,

3.3 Text Generation 33

Table 3.6: Example of input triplets and generated output for the data-to-text task.
Adapted from [41].

Triplet (John E Blaha, birthdate, 1942 08 26) (John E Blaha, birthplace,
San Antonio) (John E Blaha, occupation, Fighter Pilot)

Reference John E Blaha, born in San Antonio on 1942-08-26, worked as a
fighter pilot

Generated 1. John E Blaha who worked as a fighter pilot was born on
26.08.1942.
2. Fighter pilot John E Blaha was born in San Antonio on the 26th
July 1942.
3. John E Blaha, born on the 26th of August 1942 in San Antonio,
served as a fighter pilot.

meaning that they either (i) interpret both reference and generated sentence as a bag

of words or as an n-gram list, then assign a score to the generated text based on the

overlap between the two representations or (ii) assign a score to the generated text

based on the number of word edits required to make it similar to the reference [41].

BLEU Bilingual Evaluation Understudy (or BLEU) [30] was one of the first auto-

mated metrics proposed for text generation, targeting in particular machine translation.

It is a precision-based metric that computes the ratio between the number of overlap-

ping n-grams and the total number of n-grams in the generated sentence. If we call G

the set of all the candidate generate sentences, we can then define the modified n-gram

precision pn as

pn =
∑

g∈G
∑

n-gram∈g Countclip(n-gram)∑
g∈G

∑
n-gram∈g Count(n-gram)

(3.6)

where Countclip(n-gram) is the truncated number of occurrences of an n-gram, so as not

to exceed its maximum count in a single reference sentence. We can immediately notice

that pn is computed by summing over all the generated sentences: indeed, BLEU is a

corpus-level metric, as it returns a single score for the whole dataset [41].

Once pn has been computed for different values of n = 1, . . . , N , we compute the

actual score BLEU-N by taking a weighted mean of those values with uniform weights

wn and multiplying it by a brevity penalty as shown in Equation 3.7. Indeed, we would

3.3 Text Generation 34

like our generated sentences to have a length similar to the references: longer candidates

are already penalized in pn so we just need to add a brevity penalty BP computed as

shown in Equation 3.8, where |g| and |r| are respectively the generated sentence and

the reference length [41, 30].

BLEU-N = BP · exp
(

N∑
n=1

wn log Pn

)
(3.7)

BP =

1 if |g| > |r|

e(1−|r|/|g|) otherwise
(3.8)

METEOR BLEU only allows for matches between n-grams and does not take recall

into account. To address these drawbacks, Metric for Evaluation of Translation with

Explicit ORdering (or METEOR) [3] is proposed. It is based on the F-score and uses

a more relaxed matching scheme: in practice, it first performs exact token matching,

then matches together words with the same stem, and, finally, checks for synonyms and

paraphrases.

Notice how METEOR examines one word at a time, thus not really considering n-

gram matches natively. Instead, it uses a fragmentation penalty term to reward longer

sequences of contiguous unigram matches. To compute this term, it is first necessary

to group into chunks the sequences of matched words. The minimum number of chunks

(one) is obtained when all the words in the generated sentence match the reference, while

the maximum number of chunks - which is equal to the unigram length of the sentence

- is obtained when no words in the generation match with those in the reference [41].

Keeping this in mind, METEOR is computed as

METEOR = F-SCORE · (1 − Penalty)

Penalty = 0.5 ·
[

#chunks
#matched unigrams

]3 (3.9)

where the F-score is obtained by using unigram precision and recall computed according

to the relaxed matching strategy described above.

3.3 Text Generation 35

TER As briefly mentioned, many automated metrics are also based on Word Error

Rate (WER). A first formulation of WER computes the edit distance as the number of

insertions, deletions, and substitutions needed to recover the reference starting from the

generated text; Equation 3.10 shows how to compute the Word Error Rate according

to this definition.

WER = #substitutions + #insertions + #deletions
reference length

(3.10)

Notice that this initial formulation of WER relies heavily on the reference sentence.

Since we know that there are many ways to express the same concept in natural lan-

guage, this metric has also been extended to accept multiple references. Moreover, the

word order is very important in WER and, every time a unigram is found in a different

position in the generation with respect to the reference, we are required to first delete it

and then insert it back in the correct place [41]. However, giving such a large weight to

a misplaced word might be counter-intuitive, because a natural language sentence can

still be correct if the word order changes in some parts. Thus, the alternative Trans-

lation Edit Rate (TER) was proposed which adds “word shifting” to the admissible

operations [45].

Chapter 4

Generating Text via Prompting

As previously mentioned, text generation tasks aim to produce coherent text in a certain

human language, often conditioned on some other information. Prompting techniques

can easily be used for generative tasks by combining prefix prompts with auto-regressive

LMs [19]. For instance, GPT-3 [4] shows great few-shot capabilities on a wide range of

tasks including machine translation and question answering, simply using handcrafted

natural language prompts.

Li and Liang [18] point out how having a proper context can steer the LM toward

producing the desired output without needing to change its parameters. Supposing we

want to generate a certain word x, we know that if we prepend as a context some tokens

that often appear together with it, then the LM will assign a much higher probability to

x. This can be intuitively extended to the generation of a whole span of text, but how

to choose the context is non-trivial: preliminary experiments show that, while natural

language instructions may help a human annotator and can be used to steer LMs like

GPT-3 that have hundreds of billions of parameters, they fail for most smaller language

models (i.e., GPT-2 and BART). Li and Liang [18] thus propose to optimize the context

as continuous parameters that will be prepended to the input at every layer of the LM.

Differently from embedding-only tuning, where we can just optimize the embeddings of

the prompt’s “virtual tokens” and the upper-level activations are left to be computed

by the frozen transformer, in Prefix Tuning we have a tunable prompt element at every

layer of the model. The authors show that Prefix Tuning improves performances by a

wide margin with respect to embedding-only tuning.

Because Li and Liang [18] show that Prefix Tuning can close the gap with traditional

4.1 Prefix Tuning 37

fine-tuning strategies for data-to-text tasks while being more parameter efficient and

limiting forgetting, all the approaches we explore in this work are based on it. Section 4.1

goes into more detail on the Prefix Tuning technique, while Sections 4.2 and 4.3 explain

two alternative approaches still based on the idea of optimizing a prefix at every level

of the transformer - that is, Control Prefixes and Prefix Pooling.

4.1 Prefix Tuning

Prefix Tuning [18] can intuitively be understood as the concatenation of new learnable

weights to the attention keys and values of every layer in our architecture, as shown in

Figure 4.1. More formally, suppose we have a generative Transformer-based language

Figure 4.1: Schematized view of a Transformer’s layer:
learnable weights for Prefix Tuning are shown in pink
and purple. Picture from the AdapterHub [33] website.

model pϕ(y|x) parametrized by ϕ and we denote with d the dimension of the hidden

state and with L the number of layers. Then, when computing the attention at layer

i, we call Qi ∈ RN×d the query matrix, and Ki, Vi ∈ RM×d the key and value matrices

respectively. Note that N simply indicates the number of tokens of the query, while M

is the number of tokens in key and value.

The idea behind Prefix Tuning is to learn a set of key-value pairs P = {P1, · · · , PL},

where Pi ∈ Rρ×2dL, ∀i ∈ 1 . . . L and ρ is the length of our prompt - that is, the number

of additional key-value pairs we add to every attention computation. In practice, at

4.1 Prefix Tuning 38

layer i we augment Ki and Vi as shown in Equation 4.1, obtaining K̂i, V̂i ∈ R(ρ+M)×d

K̂i = [Pi,K ; Ki] V̂i = [Pi,V , Vi] (4.1)

Recall that decoder-only models like GPT-2 have a single type of attention (i.e., the

masked self-attention in the decoder), thus we learn a single overall general task prefix

parametrized by θ that we call Pθ. For encoder-decoder architectures (i.e., BART,

T5), the authors find it beneficial to learn a different set of key-value pairs for every

attention type: we thus call P E the prefix for the encoder self-attention, P C the prefix

for the decoder cross-attention and P M the prefix for the decoder masked attention. The

overall general task prefix is still indicated as Pθ = {P E, P C , P M} and parametrized

by the free weights θ. The training objective in Prefix Tuning is the same as used in

standard fine-tuning, but we freeze the LM parameters ϕ and only tune the prefix θ.

This is a sensible lightweight fine-tuning choice because the prefix parameters always

influence the hidden states of our model as they are concatenated to the left of all other

activations (i.e., they act as a context) [18].

Li and Liang [18] also show that updating directly the prefix parameter’s matrix Pθ is

particularly sensitive to the choice of learning rate and initialization. The optimization

step can be stabilized by over-parametrizing the prefix through the use of a two-layer

feed-forward network. This increases the number of learnable parameters, thus making

our model less parameter-efficient at training time: however, the reparametrization can

be dropped after training is concluded and we only need to store Pθ for inference.

Prefix Tuning outperforms adapter-tuning and other lightweight fine-tuning strate-

gies on the data-to-text generation task, showing performances comparable with stan-

dard fine-tuning and even outperforming it in low-data settings [18]. Moreover, this

technique can generalize well to different domains and is easy to scale up with the size

of the fixed language model. The length ρ of the prefix is a tunable hyper-parameter

and the authors note that increasing it results in improved performances up to a cer-

tain threshold: this is reasonable because a longer prefix implies a greater amount of

parameters, which make our architecture more expressive [18].

4.2 Control Prefixes 39

4.1.1 A different parametrization

Despite being simple and effective, Li and Liang’s parametrization of the prompt via

a two-layer feed-forward network has a small drawback. Indeed, the output of the

MLP (with shape ρ × 2dL) already represents prefix keys and values for every layer

of the model, implying that the prefix at layer i + 1 is computed without an explicit

dependency on the prefix at layer i. Since features computed by a network at each layer

depend on lower-level features coming from previous layers, we argue that introducing

this prior in the prefix parametrization could be beneficial. Accordingly, for every layer

i + 1 we use as a prefix a weighted sum between its value and that of the previous layer

as estimated by the MLP, i.e., P̂i+1 = Pi+1 + wiPi. Note that this approach only adds

L − 1 trainable parameters to the model and, while seemingly naive, may effectively

improve performance as we show in Section 6.

4.2 Control Prefixes

Prefix Tuning achieves great generation capabilities and is able to close the gap with

traditional fine-tuning for the data-to-text task; however, it just prepends a general

task prefix to all the input examples, thus leaving no way to incorporate attribute-level

information and/or control the generation. The controllability factor is particularly

relevant in the medical domain, as we might want to be able to steer the content of the

generated explanations and their level of technical details.

To address these issues, Clive et al. [6] proposed Control Prefixes, a dynamic prompt-

ing technique that extends Prefix Tuning where example-specific information can act

as a guidance signal. In particular, this additional information influences the choice

of a second prefix, which gets concatenated with the static task-specific prompt from

Prefix Tuning. This second modular prefix can operate together with the static one

to guarantee more fine-grained control over the generation, while the underlying pre-

trained language model stays frozen. A comparison between this technique and Prefix

Tuning can be found in Figure 4.2; note that the guidance signal can either provide new

information about the input (i.e., the domain of a set of triplets) or specify a desired

4.2 Control Prefixes 40

Figure 4.2: Comparison between Prefix Tuning and Control Prefixes for a single-task
batch. Image adapted from [6].

property for the output (i.e., the length or the level of details of the explanation).

More formally, this technique assumes that the training corpus contains at least

one guidance attribute G1 with R possible discrete labels. In addition to the task-

specific prefix Pθ defined as in Section 4.1, the model now also includes also a set

of control prefixes Cθ = {Cθ,1, . . . , Cθ,R}, where Cθ,k ∈ Rρc×2dL represents the set of

parameters learned for value k of our guidance attribute G1. Note that d still indicates

the dimension of the model’s hidden state, L still represents the number of layers, and

ρc denotes the length of the dynamic control prefix for the particular attribute G1.

Accordingly, Equation 4.2 shows the new keys and values for the attention at layer i of

our model; note that F(·) is the function which takes the attribute label indicated by

G1 and returns the respective set of prefix vectors.

K̂i = [F(G1)i,K ; Pi,K ; Ki] V̂i = [F(G1)i,V ; Pi,V ; Vi] (4.2)

Notice how the modular control prefixes act as a left context for both the model’s

original key and values and the parameters of the static, task-specific, prefix. This

means that the task-specific parameters can somehow adapt themselves to the control

prefixes, making it possible for the fine-grained control over the generation to also help

downstream task performance [6].

Similarly to Prefix Tuning [18], in encoder-decoder models we again have different

4.3 Prefix Pooling 41

control prefixes for every type of attention, meaning that every prefix Cθ,k comprises

of three constituents Cθ,k = {CE
k , CC

k , CM
k }. To stabilize the optimization process we

again need to employ a re-parametrization: the authors find it beneficial to share it with

the static task-specific prefix Pθ and point out that, otherwise, the number of learnable

weights at training time would increase dramatically, leading to reduced performance.

When using the triplet categories as guidance signal in a data-to-text task, Clive et

al. [6] show that their method can more effectively capture some of the input’s properties

while improving over both previous state-of-the-art fine-tuning strategies and Prefix

Tuning. Control Prefixes can also be used to perform zero-shot learning: indeed, we

can expect that, when attribute labels are semantically similar, their respective control

prefixes have a similar impact on the task-specific prefix and frozen language model.

Under this assumption, when dealing with unseen test-time categories (i.e., those that

were not part of the training set), we can obtain a good zero-shot performance by

mapping them to their GloVe [31] embeddings and computing the cosine similarity

in the embedding space between every train label and every unseen category. We

finally select as control prefix for an example with previously unseen category, the one

corresponding to the most similar training label [6].

4.3 Prefix Pooling

We said that, while task-specific prefixes (i.e., Prefix Tuning [18]) can close the gap with

traditional fine-tuning techniques, they are static and do not depend in any way on the

input example. We however argue that, in the same task, we might have examples

of different complexity: for instance, in data-to-text, it’s much harder to produce a

coherent description that is neither missing nor hallucinating information for long triplet

sets, while examples with just one or two triplets in the input set are almost trivial.

Based on this observation, we might want our prefix, or at least a part of it, to change

depending on the input. Control Prefixes [6] are a dynamic prompting technique that

may seem a good solution to our problem. Recall however that, while they do work

well in a zero-shot setting at inference time, the additional guidance attribute must be

present during training for this approach to be employed.

4.3 Prefix Pooling 42

In this work we thus propose Prefix Pooling, a dynamic prompting technique that

does not make use of any guidance signal extraneous from the input text; we show the

intuition behind this approach in Figure 4.3. Inspired by Wang et al. [51], we design

Figure 4.3: Intuition behind the Prefix Pooling dynamic prompting approach.

a pool of E prefixes {Pθ,1, · · · , Pθ,E}, each one of length m and associated to a key ki,

which can either have a fixed value (i.e., the mean/max of the m vectors in Pθ,i) or be a

learned vector. Then, every input example is fed to the embedding layer of our frozen

PLM, and a query vector is computed starting from the obtained embedding matrix;

similarly to what we said for the keys, the query vector could simply be the mean/max

over the matrix or it could be computed through more sophisticated approaches like a

small MLP. Once we have a set of keys and a query, we compute the similarity between

them, pick the n keys with the highest value and concatenate the corresponding prefixes

to the task-specific prompt. More formally, if G(·) is the function which, starting from

the input ids X returns the top n prefixes according to the process described above, the

keys and values of the attention for layer i of our model become the following, where

PiK
, Pi,V are the standard task-specific prefixes defined in Section 4.1.

K̂i = [G(X)i,K ; Pi,K ; Ki] V̂i = [G(X)i,V ; Pi,V ; Vi] (4.3)

Note that the number of prefixes E in the pool, the length m of those prefixes, and

the number n of dynamic prefixes to concatenate to the task-specific prompt are all

tunable hyper-parameters of our model. Moreover, since both prefixes and keys are

randomly initialized, to ensure that all the weights get updated, in 30% of the cases

4.3 Prefix Pooling 43

during training we swap the actual top-n selected prefixes for some random ones.

Following both Prefix Tuning [18] and Control Prefixes [6] the prompts are not

directly optimized but we employ a two-layer MLP re-parametrization, which can be

dropped once training is concluded. Also note that in encoder-decoder models we use

three different pools, one for every type of attention.

Chapter 5

Datasets

In this work, we strive to solve a data-to-text task in the medical domain, producing

high-quality descriptions of clinically-oriented triplet sets. As motivated in Chapters 3

and 4, we choose to employ state-of-the-art prompting techniques and we propose a

novel dynamic prompting approach. Because of this, we also use a general domain

benchmark to provide fair comparison with previous research: particularly, we work

with the popular WebNLG [10] benchmark for neural data-to-text generation, which

we introduce in Section 5.1. Focusing on the medical domain, our triplets need to con-

tain information about the symptoms reported in a clinical case and about the related

correct disease. Then, in line with the scope of the ANTIDOTE project, the generated

description can be used to interpret automatic diagnoses in a post-hoc1 fashion. To

the best of our knowledge, no dataset is available to perform data-to-text on clinical

data that satisfies these requirements. In Section 5.2 we thus present USMLE-Symp,

a corpus that was created ad hoc using the previously annotated ANTIDOTE [1] data

and the medical information coming from the HPO [15] ontology.

Notice that both datasets are analyzed under the same settings: we report infor-

mation about the input size in characters, words, and number of triplets for the whole

dataset. We report information about the reference descriptions’ length in words and

characters only for the train split. Throughout the whole analysis, we consider as a

character any symbol in the text, once leading and trailing spaces have been removed.

We instead consider as a word any entry of the text after dividing camel case words

1Post-hoc explanations start from a previously trained black-box AI model and try to produce a
human-understandable representation of its inner workings.

5.1 WebNLG 45

(i.e., “birthPlace” becomes “birth Place”) and performing tokenization based on whites-

paces, hyphens/dashes, and underscores.

5.1 WebNLG

The WebNLG corpus maps RDF (Resource Description Format) triples extracted from

DBpedia [2] to a textual description in English. DBpedia is a multilingual knowledge

base built starting from Wikipedia’s structured information. This data is stored as

triplets of the format (subject, property, object) where the subject is a Uniform

Resource Identifier (URI), a sequence of characters that identifies a resource uniquely

and universally. The property is simply a binary relation and the object is either

another URI or a literal value (i.e., a string, a date, or a number). The extracted sets

of triplets are annotated via crowdsourcing following four main steps:

1. Clarifying properties: the meaning of a DBpedia property may be unclear with-

out consulting the documentation, thus they are manually changed to easier-to-

verbalize synonyms.

2. Getting verbalizations for triplets sets of size one: three separate descriptions are

collected for data units with size one (i.e., single triplets). In this phase, both

automatic and manual checks are employed to ensure data quality.

3. Getting verbalizations for longer triplet sets: the annotators are asked to merge

together descriptions corresponding to single triplets to form natural-sounding

verbalizations. Building upon the single-triplet descriptions helps reducing the

risk of misinterpreting the original meaning of that data unit.

4. Quality verification: the quality of the descriptions obtained at step 3 is verified

using crowdsourcing. The participants are asked to assess their fluency, semantic

adequacy with respect to the original triplet, and grammatical correctness.

Table 5.1 shows some qualitative examples of the triplet sets and relative verbaliza-

tions obtained following the procedure above. In particular, for this work we used the

5.1 WebNLG 46

Table 5.1: WebNLG dataset: qualitative examples.

Triplets (Aarhus_Airport, cityServed, “Aarhus, Denmark”)

References 1. The Aarhus is the airport of Aarhus, Denmark.
2. Aarhus Airport serves the city of Aarhus, Denmark.

Triplets (Buzz_Aldrin, dateOfRetirement, “1971-07-01”), (Buzz_Aldrin, timeInSpace,
“52.0”(minutes))

References

1. Buzz Aldrin, who retired on July 1, 1971, spent 52.0 minutes in space.
2. Buzz Aldrin spent 52 minutes in outer space before he retired on January

7th, 1971.
3. Buzz Aldrin, who retired on July 1st 1971, once spent 52 minutes in outer space.

Triplets (A.S._Roma, ground, Stadio_Olimpico), (A.S._Roma, league, Serie_A)

References
1. AS Roma, in the Serie A league, has its grounds in Stadio Olimpico.
2. A.S. Roma play in Serie A and their ground is the Stadio Olimpico.
3. A.S Roma’s ground is Stadio Olimpico, and they play in the Serie A league

Triplets
(A_Wizard_of_Mars, language, English_language), (English_language, spokenIn,
Great_Britain), (United_States, capital, Washington,_D.C.), (A_Wizard_of_Mars,
country, United_States)

References

1. Washington, D.C. is the capital of the United States where A Wizard of Mars
originates. This novel is published in English which is the language spoken in
Great Britain.

2. A Wizard of Mars was Published in the United States. The book is written in
English (originated in Great Britain). The capital of the US is Washington D.C.

Triplets

(14th_New_Jersey_Volunteer_Infantry_Monument, category, Historic_districts_
in_the_United_States), (14th_New_Jersey_Volunteer_Infantry_Monument,
district, Monocacy_National_Battlefield),(14th_New_Jersey_Volunteer_
Infantry_Monument, established, “1907-07-11”)

References

1. The 14th New Jersey Infantry Monument which is located in the Monocacy
National Battlefield was established on 11 July 1907. It falls within the category of
Historic districts in the US.

2. Monocacy National Battlefield is the location of the 14th New Jersey Volunteer
Infantry monument which was established on 11 July 1907 and belongs to the
category of historic districts in the US.

3. The 14th New Jersey Volunteer Infantry Monument was established on 11 July
1907 and is located in the Monocacy National Battlefield. being a historic district
in the United States.

HuggingFace hosted2 version of the WebNLG 2017 Challenge dataset, which consists

of 25,212 data/text pairs with a total of 9,669 distinct input triplet sets. The training

and validation data describe entities coming from 10 distinct DBpedia categories (i.e.,

Astronaut, University, Monument, Building, ComicsCharacter, Food, Airport, Sport-

sTeam, City, and WrittenWork). The test dataset also includes examples belonging to

2https://huggingface.co/datasets/web_nlg/viewer/webnlg_challenge_2017

https://huggingface.co/datasets/web_nlg/viewer/webnlg_challenge_2017

5.1 WebNLG 47

five additional unseen categories, which can be used to estimate our models’ general-

ization capabilities to different domains. Figure 5.1 shows the distribution of the triple

set’s length in characters and words for the whole dataset. We can see that most inputs

are shorter than 600 characters and 60 words, respectively. Since every model we are

planning to use has its own (often sub-word based) tokenizer, these values only give us

an idea of the effective number of tokens the input will have in practice. We still argue

that the low estimations indicate that there is no need to truncate the triplet sets, and

potentially lose meaningful information, to abide by the maximum length each model

can process (i.e., usually 512 tokens). Similarly, Figure 5.2 shows the input size in

(a) Distribution of input length in characters. (b) Distribution of input length in words.

Figure 5.1: Histograms of input triplet sets’ length in characters and words for the
whole WebNLG dataset.

number of triplets for the whole dataset: we can see how most inputs are composed

of up to 5 triples while only few of them have 6 or 7 components. This is important

because, as previously mentioned, the more triplets we need to verbalize the harder it

is to get a coherent description that contains all necessary information without hallu-

cinating. Next, we investigate whether there is any correlation between the extent of

the input and its category: because the length distributions in characters and words

are very similar, for this analysis we only consider input size in words and number

of components. Figure 5.3 shows our results: we can clearly see that some categories

(i.e., University, Astronaut) tend to have inputs with more triplets, which can also be

assumed to be more complex to verbalize. Moreover, it is quite clear that, in general,

a bigger number of words implies a bigger number of triplets in the data unit. There

5.1 WebNLG 48

might however be exceptions to this rule: for instance, the triplets might be composed

of long and repeated subjects or objects. This is clearly the case for the last example

of Table 5.1 that contains more words and characters than the second-to-last example

while being composed of one less triplet.

Figure 5.2: WebNLG input size in number of components for the whole dataset.

(a) Category-wise input length in words. (b) Category-wise input size in triples’ number.

Figure 5.3: Box plot of category-wise input size in words and number of components.
The plot refers to the whole WebNLG dataset.

Finally, Table 5.2 shows some summary statistics related to the length (in both

words and characters) of the input and of the target verbalizations. Note that the

information about the descriptions is only computed on the training set. We can see

5.2 USMLE-Symp 49

that neither the input nor the train verbalizations ever go below 3 words, while their

mean length are 19.75 ± 12.46 and 19.84 ± 10.20 respectively. Finally, notice that we

have a lot of variability in the size of both input and target sentence.

Table 5.2: WebNLG summary statistics for both input and verbalizations.

Type Mean Min Max Std

Triplet chars 147.96 24.00 671.00 95.41
words 19.75 3.00 93.00 12.46

Verbalization chars 117.08 20.00 445.00 60.71
words 19.84 3.00 72.00 10.20

5.2 USMLE-Symp

The USMLE-Symp dataset is built specifically for our clinical data-to-text task: as

explained in Chapter 2, a system generating template-based explanations for the di-

agnosis associated to a USMLE3 clinical case was already produced in the context of

the ANTIDOTE project. This work aims to improve those natural language explana-

tions by moving away from single templates: in particular, we frame the problem as a

data-to-text task and strive to solve it using pre-traiend language models. In order to

do this, we first need to generate the dataset starting from the following four types of

previously extracted information:

• Case symptoms: all the symptoms that are detected from the USMLE case

description. We use this information to build triplets of the type (patient,

Has_Symptom, symptom) or (patient, is, symptom) if the symptom is actu-

ally an adjective like confused.

• Patient diagnosis: we use the information about correct and incorrect diagnoses

for our clinical case in order to build triplets of the following types, (patient,

3The MedQA-USMLE is a multiple choice question answering dataset collected from professional
medical board exams. Previous work in the context of the ANTIDOTE project focused on annotating
part of it with symptoms, population groups, and findings in order to train an automated extraction
system.

5.2 USMLE-Symp 50

Suffers_from, correctDisease) and (patient, Does_not_suffer_from,

incorrectDisease).

• Symptoms associated with a disease: for every disease for which we find a match

in the HPO ontology, we extract the related symptoms and build triplets of the

type (disease, Has_as_symptom, symptomName).

• Patient information: the details about age group and gender of the patient, which

is used to build triplets of the type (patient, is_A, populationGroup). Note

that to introduce variety in our corpus we sometimes decide to omit the aforemen-

tioned triplet and just substitute patient with populationGroup in all the other

components. This means that if we know that the patient is a 32 years old woman

and that she is confused we might generate either the set of triplets (patient,

is_A, 32 years old woman), (patient, is, confused) or the single triplet

(32 years old woman, is, confused).

Considering all these triplets together for a certain clinical case, we can obtain the rela-

tive why or why-not explanations, whose verbalization is given by the templates shown

in Table 2.1. Because it is likely that the same concept can be described in multiple

ways, we produce additional reference target texts using the online paraphrasing tool

QuillBot4. We also tried to use language models fine-tuned for text rewording but we

obtained lower-quality results, often missing crucial information. Table 5.3 shows the

final templates we use to verbalize both explanation types for our dataset.

We previously pointed out how, in benchmark data-to-text datasets like WebNLG,

data units are composed of different amounts of triplets, ranging from simple 1-component

examples to more complex inputs with 6 or 7 elements. In order to mimic this struc-

ture for our clinical data, we also generate multiple template verbalizations for every

single triplet containing only patient and/or disease information. We then group them

together to obtain data units of intermediate sizes (i.e., 4-7 triplets). Table 5.4 shows

some qualitative examples of the triplet sets and relative verbalizations obtained through

this procedure; notice how the textual descriptions often appear less fluent than the

4https://quillbot.com/

https://quillbot.com/

5.2 USMLE-Symp 51

Table 5.3: Template reference verbalization for why and why-not explanations.

Why

1. The patient is showing [DISEASE] as the following symptoms are direct symptoms
of [DISEASE] and appear in the case description: [SYMPTOMS].
2. The patient can be diagnosed with [DISEASE] as they are showing the following
symptoms, which are direct symptoms of [DISEASE]: [SYMPTOMS].
3. The following symptoms, [SYMPTOMS], which are direct symptoms of [DISEASE],
indicate that the patient has that disease.
4. These symptoms, [SYMPTOMS], are indicative of the disease [DISEASE], which is
thus the correct diagnosis.
5. The patient is exhibiting symptoms like [SYMPTOMS], which are direct signs of
[DISEASE]. The patient should thus be diagnosed with [DISEASE].

Why not

1. As for the [DISEASE] diagnosis, it has to be discarded because the patient is not
showing [SYMPTOMS], symptoms that cannot be found in the case description.
2. The patient is not exhibiting [SYMPTOMS], hence the [DISEASE] diagnosis must be
rejected.
3. The following list of symptoms is not found in the case description, hence the
[DISEASE] diagnosis must be rejected: [SYMPTOMS].
4. Due to the patient’s lack of certain symptoms, which are not mentioned in the
case description, the [DISEASE] diagnosis has to be rejected. The missing symptoms
are: [SYMPTOMS].
5. [DISEASE] has been rejected as a possible diagnosis for the patient due to the lack
of the following symptoms: [SYMPTOMS].
6. The patient is not exhibiting these symptoms: [SYMPTOMS]. Since they are signs
of [DISEASE], that diagnosis must be discarded.

WebNLG ones, as well as less grammatically correct. This is to be expected since the

WebNLG data was crowdsourced while ours is mostly based on paraphrased templates.

The final dataset has 10,938 data/text pairs and a total of 5,353 distinct input units; it

is split into a training set containing 3,735 triplets and 7,596 input/target pairs, a test

set composed of 916 data units, and a validation set of size 702. In order to associate

category information to every example in our dataset, we extract the most relevant

symptom or disease from it and search for its classification in the HPO ontology. When

no match is found in HPO, category information for a disease/symptom is selected to

be the same as the one of its closest neighbor in the embedding space, where the embed-

dings are computed through a pre-trained PubMedBERT5 model. We also add polarity

information to our dataset, that is, for every example, we label it as positive if it states

that a patient has a certain disease/symptom and as negative otherwise. We aim to use

this information to steer the language model toward producing effective explanations

5https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext

https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext

5.2 USMLE-Symp 52

for the desired situation. That is, we do not want the language model to produce a

“why” description when we are trying to justify a negative diagnosis or vice-versa (i.e.,

a “why-not” explanation to a positive diagnosis).

Table 5.4: USMLE-Symp dataset: qualitative examples.

Triplets (patient, is_a , 34-year-old woman), (patient, Suffers_from, Thrombotic thrombo-
cytopenic purpura)

References

1. The patient, a 34-year-old woman, has been diagnosed with Thrombotic thrombo-
cytopenic purpura.

2. The patient is a 34-year-old woman and suffers from Thrombotic thrombo-
cytopenic purpura.

Triplets (Beta-thalassemia major, Has_as_symptom, Upslanted palpebral fissure)

References
1. Upslanted palpebral fissure is a symptom of Beta-thalassemia major.
2. People with the disease Beta-thalassemia major may show Upslanted palpebral

fissure as a symptom.]

Triplets

(Bullous pemphigoid, Has_as_symptom, Diabetes mellitus), (Bullous pemphigoid,
Has_as_symptom, Recurrent infections), (Bullous pemphigoid, Has_as_symptom,
Autoimmunity), (Bullous pemphigoid, Has_as_symptom, Eczema), (Bullous
pemphigoid, Has_as_symptom, Urticaria)

References

1. The disease Bullous pemphigoid is typically characterized by these symptoms:
Diabetes mellitus, Recurrent infections, Autoimmunity, Eczema and Urticaria.

2. These symptoms indicate that the patient my suffer from Bullous pemphigoid:
Diabetes mellitus, Recurrent infections, Autoimmunity, Eczema and Urticaria.

Triplets
(patient, is_a, 34-year-old woman), (patient, Has_symptom, fever), (patient,
Has_symptom, headache), (patient, is, confused), (patient, is, oriented only to
person), (patient, Has_symptom, petechiae)

References

1. The patient, a 34-year-old woman, has the following symptoms: fever, head-
ache and petechiae. The patient is also confused and oriented only to person.

2. The patient is a 34-year-old woman and is affected by these symptoms: fever,
headache and petechiae. The patient is also confused and oriented only
to person.

Triplets

(von Willebrand disease, Has_as_symptom, Abnormality of thrombocytes)
(von Willebrand disease, Has_as_symptom, Abnormality of coagulation),
...
(40-year-old woman, Does_not_suffer_from, von Willebrand disease),
(40-year-old woman, Has_symptom, fever and confusion), (40-year-old woman,
Has_symptom, petechiae)

References

1. The patient is not exhibiting Abnormality of thrombocytes, Abnormality
of coagulation, Abnormal platelet function, Abnormal mitral valve
morphology and Venous insufficiency, hence the von Willebrand disease
diagnosis must be rejected.

2. Due to the patient’s lack of certain symptoms, which are not mentioned in the case
description, the von Willebrand disease diagnosis has to be rejected. The missing
symptoms are: Abnormality of thrombocytes, ...

3. von Willebrand disease has been rejected as a possible diagnosis for the patient due
to the lack of the following symptoms: Abnormality of thrombocytes, Abnormality
of coagulation, ...

5.2 USMLE-Symp 53

Figure 5.4 shows the distribution of the triplet set length in both characters and

words for the whole dataset. We can see that most inputs are shorter than 200 characters

and 20 words respectively, although there are some outliers that appear far longer. As

pointed out for WebNLG in Section 5.1, these values are only an estimation of the

effective length our input will have once processed by the appropriate tokenizer, but

they are enough to state that we will not need to truncate our input before feeding

it to the model. Figure 5.5 instead shows the input size in number of triplets for the

(a) Distribution of input length in characters. (b) Distribution of input length in words.

Figure 5.4: Histograms of input triplet sets’ length in characters and words for the
whole USMLE-Symp dataset.

Figure 5.5: USMLE-Symp input size in number of components for the
whole dataset.

whole dataset: again, this is relevant because the higher the number of components, the

harder it is to correctly verbalize the input set without omitting important information

or hallucinating details that are not really there. We notice that most input sets are

5.2 USMLE-Symp 54

short and contain only a maximum of three components, which may indicate that our

data is easier to verbalize with respect to WebNLG. Indeed, despite the complexity of

the medical topics, our triplets are pretty standardized as they are generated ad hoc from

previously extracted information and not carefully selected from an existing knowledge

base like DBpedia. Next, we investigate whether any correlation exists between the

(a) Category-wise input length in words. (b) Polarity-wise input length in words.

Figure 5.6: Box plot of category-wise and polarity-wise input length in words. The plot
refers to the whole USMLE-Symp dataset.

input length in words and its category/polarity. The results of such analysis are reported

in Figure 5.6: we omit category Connective tissue from the analysis because it only has

one triplet in the whole dataset - more precisely, in the test split - and as such, the

displayed box plot would make no sense for it. We also do not show eventual outliers,

which explains why the maximum number of words for a triplet in Figure 5.6a is around

22. We immediately notice that some categories (i.e., Cellular phenotype, Head and

neck, Prenatal and Birth) tend to have longer inputs and thus can be assumed to be more

complex to verbalize. Categories like Respiratory System and Muscolature instead tend

to have smaller triplet sets, often not exceeding 10 words each. Moreover, Figure 5.6b

shows that, while we do have fewer examples with negative polarity than with positive,

the negative ones are often longer and have a bigger spread.

Finally, Table 5.5 shows some summary statistics about the length in both words

5.2 USMLE-Symp 55

and chars of the input and of the target descriptions. Because we pointed out the

presence of outliers, we do not just show mean, minimum, maximum, and standard

deviation but also the 99th percentile. We can see that 99% of the input triplet sets

have a length in words equal to or lower than 42, while for the target verbalizations

the value becomes 26. We also notice that no triplet has a length lower than 5 and

that no description in the training set has less than 6 words, with mean values that are

respectively 10.07 ± 7.52 and 11.93 ± 3.86.

Table 5.5: USMLE summary statistics for both input and verbalizations.

Type Mean Min Max Std 99%

Triplet chars 75.59 33.00 976.00 56.74 342.44
words 10.07 5.00 147.00 7.52 42.0

Verbalization chars 76.37 29.00 322.00 28.56 205.00
words 11.93 6.00 45.00 3.86 26.0

Chapter 6

Experiments

In this chapter, we describe in detail the experimental settings used during the training

phase and the relative evaluation procedures. Section 6.1 gives an overview of the

libraries and tools we adopted, while Section 6.2 focuses on the evaluation strategies

used for the general purpose and for the medically-oriented portions of our work.

The remaining sections present an analysis of the results we obtained applying each

of the three prompting techniques described in Chapter 4 to the WebNLG benchmark

and to our own clinical data. In particular, Section 6.3 focuses on the general domain

DBpedia triplets, while Section 6.4 details the performances obtained on the USMLE-

Symp dataset.

6.1 Experimental Setup

The code developed during this thesis1 is written in Python, a high-level programming

language that has become a staple in the scientific domain. Indeed, Python allows for

straightforward data manipulation and analysis, making it easy to conduct complex

statistical evaluations, implement machine learning algorithms and create data visu-

alizations. We now provide a non-exhaustive list of the libraries used for this work,

focusing on the most relevant ones. We rely on NumPy for vector operations on CPU

and on Pandas DataFrames to deal with Comma-Separated Values (CSV) files contain-

ing the evaluation results. Pandas is also employed to read and write Pickle files, that

1https://github.com/mwritescode/data2text-prompting

https://github.com/mwritescode/data2text-prompting

6.1 Experimental Setup 57

is, to serialize and de-serialize a Python object, converting it to a byte steam that can

be saved on disk, allowing for easy reconstruction of the original object later on. This is

especially important when dealing with the clinical USMLE-Symp data. Moreover, all

the figures and plots we show in this work are realized through Matplotlib in conjunction

with Seaborn, two data visualization packages that allow for effortless integration with

NumPy and Pandas.

For implementing and training our neural architectures we rely on PyTorch, an

open-source machine learning library providing an automatic differentiation system and

tensor computation with strong acceleration via GPU. For code organization and model

sharing we exploit HuggingFace, a data science platform providing tools to build, train

and deploy deep learning models and applications. In particular, we build upon the

HuggingFace transformers [52] library to develop our prompting techniques and rely

on the online HuggingFace hub for access to pre-trained models’ checkpoints. We also

employ the Gensim library for accessing and using pre-trained vector embeddings like

GloVe [31].

All our experiments and relative evaluations were either performed on the GPU

cluster made available by the Department of Computer Science and Engineering of the

University of Bologna, on Google Colaboratory or on Kaggle. The latter is an on-

line community platform allowing machine learning practitioners to collaborate with

other users, publish datasets and compete on data science challenges. When using this

platform, which provides 30 hours per week of free GPU usage to its users, we always

selected the NVIDIA Tesla P100 GPU, with 16 GB of RAM. Colab is an online platform

that allows to execute Python code in the browser and which requires minimal setup.

Their free tier allows users to exploit some computational resources free of charge while

abiding by certain usage limits; when using this platform we were often assigned an

NVIDIA Tesla T4 GPU with 16 GB of RAM. Finally, the university cluster is a High-

Performance Computing (HPC) cluster composed of 10 nodes, each one equipped with

an NVIDIA GeForce RTX 2080 Ti GPU and an Intel Xeon quad-core CPU. Computa-

tional resources on this cluster can be accessed by submitting a request to a SLURM

service, an open-source and fault-tolerant job scheduling system.

The training runs that were executed through Colaboratory and Kaggle used Jupyter

6.2 Evaluation Strategy 58

notebooks, as did all the results’ analyses. Finally, experiment and weight tracking is

realized through Weights & Biases (W&B)2, a free online system for dataset and model

versioning, as well as for experiments and metrics logging.

6.2 Evaluation Strategy

All our evaluations are performed on validation and test sets that vary between domains

and which have been described in Chapter 5, when presenting the datasets. Following

both Li and Liang [18] and Clive et al. [6], we evaluate our data-to-text task using

BLEU [30], METEOR [3] and TER [45], as well as show some non cherry-picked exam-

ples for qualitative evaluation. In particular, for both WebNLG and USMLE-Symp we

use BLEU as our main validation metric, which we periodically track over training. For

this step, we make use of HuggingFace’s evaluate library, which provides a straightfor-

ward, consistent, and reproducible way to evaluate natural language processing models.

Regarding the final scores on the test set, for WebNLG we use the official evaluation

protocol3, which assesses the quality of the generated verbalizations in terms of the

three automatic metrics mentioned above and previously detailed in Section 3.3.2. The

provided script produces a score for the whole dataset and also separate scores for seen

and unseen categories, all of which are reported in the tables we propose in Section 6.3.

We should note that this benchmark evaluation only uses at most three reference ver-

balizations per example, as it is known that variations in the number and quality of

the references make the comparison of scores across datasets troublesome. This means

that, if the triplet set i is associated with K > 3 ground truth descriptions, only the

first three will be used in the computation of BLEU, METEOR, and TER. Using the

official evaluation script allows for easy comparison with current state-of-the-art results

on the WebNLG benchmark, which is especially important in the context of the new

proposed architectures. Finally, the test scores for USMLE-Symp are again computed

using the standardized implementation of BLEU, TER, and METEOR provided by

2The W&B project for this work is available at https://wandb.ai/mwritescode/data2text-
prompting

3available at https://gitlab.com/webnlg/webnlg-automatic-evaluation

https://wandb.ai/mwritescode/data2text-prompting
https://wandb.ai/mwritescode/data2text-prompting
https://gitlab.com/webnlg/webnlg-automatic-evaluation

6.3 Experimental Results on WebNLG 59

HuggingFace’s evaluate library.

6.3 Experimental Results on WebNLG

For the WebNLG dataset, we experiment with the three model types described in Sec-

tion 3.1. In particular, we employ two versions of T5 [38], t5-base and t5-large,

respectively with 220M and 770M parameters. Moreover, following Li and Liang [18],

we also experiment with two versions of GPT-2 [37], namely gpt2-medium (350M pa-

rameters) and gpt2-large (770M parameters). Regarding BART [16], we only use the

more expressive bart-large, with 560M parameters. The following sections illustrate

our results with each of the three prompting techniques described in Chapter 4, that is,

Prefix Tuning [18], Control Prefixes [6] and Prefix Pooling.

The input triplets are linearized according to the scheme shown in Table 6.1. Notice

that the linearization employed for T5 is different than the one we use for the other

models, as preliminary experiments show it to be more effective. Moreover, we should

point out that, differently from Clive et al. [6], we do not use three special tokens (<H>,

<R>, and <T>) to indicate the start of subject, predicate, and object in a triplet. Indeed,

one of the reasons why we choose prompting techniques is their ability to achieve good

results while keeping the underlying pre-trained language model fixed; however, adding

the aforementioned special tokens would mean having to train at least a portion of its

embedding matrix.

Table 6.1: Triplet linearization scheme.

Triplet set (subject1, predicate1, object1), (subject2, predicate2, object2)

GPT-2/BART | subject1 : predicate1 : object1 | subject2 : predicate2 : object2

T5 subject1 | predicate1 | object1 & subject2 | predicate2 | object2

6.3.1 Prefix Tuning

As explained in Section 3.1, T5 is trained on a multi-task objective through the help

of some textual prefixes. For instance, for a summarization task we could prepend

“summarize: ” to the actual input, while in order to translate between French and

6.3 Experimental Results on WebNLG 60

English, we could use prefixes like “translate French to English: ”. Following Clive et

al. [6], we try to add “translate Graph to English: ” to the beginning of all our in-

put examples: this makes our data-to-text task more closely resemble the pre-training

objective. The effects of using such a textual prefix are verified through preliminary

experiments on both t5-base and t5-large. In particular, we train both models in

standard Prefix Tuning setting for 7 epochs and employ the validation BLEU for early

stopping. We use Adafactor [43] as our optimizer with a starting learning rate of 5e-7

and a linear decay scheduler with 2000 warm-up steps. We also keep the backbone

completely frozen and do not update batch statistics nor use dropout for the underly-

ing pre-trained language model. The verbalizations are generated using beam search

decoding with 5 beams. From the graph in Figure 6.1 we can immediately see that

the validation loss curve is noticeably lower when using the preamble, indicating that

the similarity to the pre-training task has an impact on model performance. Despite

this, Table 6.2 shows that the differences in BLEU scores on the validation set are not

as evident. Moreover, the aforementioned results from the automatic evaluation pro-

cedure actually imply that the preamble harms performances instead of helping them.

Table 6.2: Validation BLEU for t5-base
and t5-large with and without textual
preamble (prefix tuning setting).

Preamble BLEU

t5-base
- 65.35
✓ 65.09

t5-large
- 66.04
✓ 65.86 Figure 6.1: Validation loss for t5-large

with and without textual preamble (prefix
tuning setting).

Since these preliminary results contradict both Figure 6.1 and the hypothesis set forth

by Clive et al. [6], we also perform a qualitative evaluation of the generated text. We no-

tice that in 25% of the cases, the produced description remains identical when omitting

the textual prompt, and show in Table 6.3 some examples of input triplets for which

6.3 Experimental Results on WebNLG 61

model t5-large generates two different verbalizations. As we can see, oftentimes when

the preamble “translate Graph to English: ” is included, the descriptions are more

coherent and fluent, leading us to hypothesize that this is one case where automatic

evaluation metrics may fail. We thus decide to use the textual prefix in all the following

experiments, despite the slightly lower scores it achieves on the validation set. We also

point out that both versions of t5-large seem to have learned to correctly verbalize

the input triplet, despite errors or imprecisions in the label. For instance, in the second

example of Table 6.3 both models state that the president/leader of the United States

is John Roberts, which - while factually incorrect - is implied by the input triplets. The

annotator who provided the reference description, instead, probably recognized that

the triplet itself was factually incorrect and tried to resolve the error: in doing this,

they introduced additional information (i.e., the fact that John Roberts is the Chief

Justice of the United State), that the model has no way of knowing just by looking at

the input. We note that this is a potential problem with crowdsourced datasets that

should be further looked into in order to produce high-quality results: crowdsourced

data is indeed more flexible than template-based verbalizations but it increases the risk

of having incorrect gold standards.

We now experiment with the layer dependency introduced in Section 4.1 for the pre-

fix parametrization. We train all our models for 7 epochs and perform early stopping

on the validation BLEU. The T5 models all use the aforementioned textual preamble,

while for a more detailed view of the model-wise training hyperparameters we refer to

Appendix A. Table 6.4 shows the results in terms of validation BLEU for each of our

five models, with and without layer dependency. We notice that this modification does

not have a big impact on performance, as for all architectures the difference is below

1 BLEU point. In particular, despite what our preliminary experiments showed, we

notice that only t5-large seems to benefit from the introduction of layer dependency,

while for all other models, the modification actually appears to hurt performances.

Figure 6.2 shows the learning curve in terms of validation BLEU for the model with

the largest decrease in performance, that is, gpt2-medium: we notice that layer de-

pendency seem to help the model achieve better generation capability at the start of

6.3 Experimental Results on WebNLG 62

Table 6.3: WebNLG validation set, qualitative examples for model t5-large. The
checkmark ✓indicates the use of the preamble “translate Graph to English: ”.

Triplet (Angola,_Indiana, isPartOf, Pleasant_Township,_Steuben_County,_Indiana)

References 1. Angola, Indiana is part of Pleasant Township, which is in Steuben County.

T5-large ✓ Angola is part of Pleasant Township, Steuben County, Indiana.

T5-large Angola, Indiana is part of Pleasant Township, Steuben County, Indiana.

Triplet

(United_States, ethnicGroup, African_Americans), (United_States, language,
English_language), (United_States, leaderTitle, President_of_the_United_States)
(United_States, leaderName, John_Roberts), (250_Delaware_Avenue, location,
United_States)

References

1. 250 Delaware Avenue is located in the United States, where the leader is known
as the President of the United States, supported by the United States of
America‘s Chief Justice, John Roberts. The main language is English, and one of
the ethnic groups is the African Americans.

T5-large ✓ 250 Delaware Avenue is located in the United States, where English is the language,
African Americans are one of the ethnic groups and the leader is John Roberts.

T5-large
250 Delaware Avenue is located in the United States, where English is the language
and African Americans are an ethnic group. The leader of the United States is
called John Roberts and the leader is known as the President of the United States.

Triplet (A_Long_Long_Way, language, English_language), (English_language, spokenIn,
Great_Britain), (A_Long_Long_Way, followedBy, The_Secret_Scripture)

References 1. A Long Long Way (followed by the book The Secret Scripture) is written in
the English language, which is spoken in Great Britain.

T5-large ✓ A Long Long Way was written in English, which is spoken in Great Britain. It was
followed by The Secret Scripture.

T5-large A Long Long Way was written in English which is the language spoken in Great
Britain. It was followed by The Secret Scripture.

Triplet
(Acharya_Institute_of_Technology, officialSchoolColour, ’Blue, White and Orange’),
(Acharya_Institute_of_Technology, was given the T́echnical Campusśtatus by,
All_India_Council_for_Technical_Education)

References
1. The official school colours for Acharya Institute of Technology are blue, white

and orange and the school got its Technical Campus status from the All India
Council.

T5-large ✓
The official school colours of the Acharya Institute of Technology are blue, white
and orange and it was given the ’Technical Campus’ status by the All India Council
for Technical Education.

T5-large
The Acharya Institute of Technology was given the ’Technical Campus’ status
by the All India Council for Technical Education in the colours of blue, white
and orange.

Triplet (Adare_Manor, completionDate, 1862), (Adare_Manor, architect, James_Pain),
(Adare_Manor; owner; J._P._McManus)

References 1. James Pain was the architect of Adare Manor which was completed in 1862 and is
owned by J P McManus.

T5-large ✓ James Pain was the architect of Adare Manor which was completed in 1862 and is
owned by JP McManus.

T5-large James Pain designed the Adare Manor which was completed in 1862 and owned by
J.P.McManus.

6.3 Experimental Results on WebNLG 63

training, but then rapidly saturates. We speculate that the alternative parametriza-

tion could indeed be an asset when dealing with a limited computational budget.

Table 6.4: BLEU scores on WebNLG vali-
dation set for all our prefix tuning models,
with and without layer dependency

Layer Dep BLEU

t5-base
- 65.09
✓ 64.85

t5-large
- 65.86
✓ 66.16

gpt2-medium
- 66.19
✓ 65.23

gpt2-large
- 66.06
✓ 66.00

bart-large
- 64.92
✓ 64.88

Figure 6.2: Validation BLEU for gpt2-
medium in prefix tuning setting with and
without layer dependency.

Finally, Tables 6.5 and 6.6 show the results obtained by our best models on the test

set, evaluated using the official script. Because the decoding strategy can play an im-

portant role when evaluating a generative model, we show the performances for the two

schemes described in Section 3.3.1. That is, we follow the current state-of-the-art results

in data-to-text [6, 18] and use beam search with 5 beams, but we also experiment with

contrastive search, a recent strategy proposed to improve open-ended text generation

without incurring in repetitions or losing semantic meaning. In particular, since we are

performing conditional text generation, we set the degeneration penalty to a low value

of 0.1 in order not to penalize too much the repetition of words and n-grams, which is

often welcome, if not required, in our setting. Note that, in both tables, a checkmark

(✓) next to a model name indicates that we are using prefix parametrization with layer

dependency. We can immediately notice that beam search decoding decidedly outper-

forms contrastive search for our setting. The BLEU score is particularly affected by this

change, dropping by about 2 points, while METEOR and TER only vary by 0.01/0.02.

Because no improvements are seen, in any of the three scores, when using contrastive

6.3 Experimental Results on WebNLG 64

search decoding, the following experiments will only show the results achieved by beam

search. We also notice that the model t5-large with layer dependency obtains the

best scores across all metrics on the test set: it is interesting to point out that this was

only our second-best model on the validation set, as it was slightly outperformed by

gpt2-medium. The latter model has instead dramatically lower performances on the test

set, especially on the unseen partition: this indicates that gpt2-medium finds it harder

to generalize to new domains. Appendix B shows some qualitative examples of the

verbalizations generated by our models and provides a brief analysis of the differences.

Table 6.5: Prefix tuning test results on WebNLG using the beam search decoding
strategy. ↑ indicates that the higher the metric the better, while ↓ indicates that we
want to obtain the lowest possible score.

BLEU ↑ METEOR ↑ TER ↓
Seen Unseen All Seen Unseen All Seen Unseen All

t5-base 64.14 46.88 56.46 0.46 0.39 0.43 0.33 0.48 0.40
t5-large ✓ 65.12 50.60 58.58 0.46 0.41 0.44 0.33 0.43 0.37
gpt2-medium 61.63 43.77 53.59 0.44 0.36 0.40 0.35 0.49 0.41
gpt2-large 63.83 45.99 55.78 0.45 0.38 0.42 0.33 0.49 0.40
bart-large 63.88 48.50 56.96 0.45 0.40 0.43 0.34 0.45 0.39

Table 6.6: Prefix tuning test results on WebNLG using the contrastive search decoding
strategy. ↑ indicates that the higher the metric the better, while ↓ indicates that we
want to obtain the lowest possible score.

BLEU ↑ METEOR ↑ TER ↓
Seen Unseen All Seen Unseen All Seen Unseen All

t5-base 62.66 43.70 53.90 0.45 0.38 0.42 0.35 0.50 0.42
t5-large ✓ 63.86 49.18 57.24 0.46 0.40 0.43 0.34 0.44 0.39
gpt2-medium 60.67 39.08 50.71 0.44 0.36 0.40 0.37 0.59 0.47
gpt2-large 63.41 40.96 52.84 0.45 0.38 0.41 0.35 0.56 0.45
bart-large 61.48 45.16 54.16 0.44 0.38 0.41 0.35 0.47 0.41

6.3.2 Control Prefixes

Given the non-conclusive results regarding the effectiveness of layer dependency for the

prefix parametrization, in the control prefixes setting we realize our experiments both

6.3 Experimental Results on WebNLG 65

with and without it. We still use all the five model types mentioned in Section 6.3, that

is, T5 both in sizes base and large, GPT-2 medium and large, and BART large. All

our pre-trained models have between 220M and 770M parameters.

We use 10 control prefixes at training time, corresponding to the ten seen DBpedia

categories. At test time, we follow Clive et al. [6] and deal with unseen categories by

performing zero-shot learning: we map each new class to the closest seen category in the

embedding space, where the embeddings are computed using GloVe [31]. We train for

a maximum of 7 epochs and perform early stopping based on the validation BLEU; the

model-wise hyperparameters we use are reported in Appendix A. Table 6.7 shows our

models’ results in terms of validation BLEU both with and without layer dependency.

Table 6.7: Comparison of validation BLEU
scores on WebNLG for all control prefixes
models, with and without layer dependency

Layer Dep BLEU

t5-base
- 65.88
✓ 65.92

t5-large
- 66.11
✓ 66.06

gpt2-medium
- 65.77
✓ 66.03

gpt2-large
- 65.98
✓ 65.86

bart-large
- 65.28
✓ 65.26

Figure 6.3: Validation BLEU for t5-
large in control prefixes setting with and
without layer dependency.

We immediately notice that layer dependency seems to improve performances for the

smaller pre-trained language models, that is, t5-base and gpt2-medium, not have much

impact at all on our middle-sized model (i.e., bart-large) and cause a slight capability

degradation in the two remaining bigger architectures. This seems to indicate that

the prior is particularly effective to boost the performances of smaller models. We also

hypothesize that our naive addition to the prefix’s parametrization works slightly better

in this setting because we apply it after the concatenation of the two prefix components,

6.3 Experimental Results on WebNLG 66

thus somehow merging static and dynamic prompts.

Figure 6.3 shows the learning curve in terms of validation BLEU for t5-large, which

- as we just pointed out - appears to suffer slightly from the change in parametrization

strategy: we can see that the BLEU scores for the first epochs are decidedly higher

when using layer dependency, but then rapidly saturate. This seems to confirm our

previous hypothesis that the modification is an asset particularly when training on

a limited computational budget. Finally, Table 6.8 shows the results of the official

Table 6.8: Control prefixes test results on WebNLG using the beam search decoding
strategy. ↑ indicates that the higher the metric the better, while ↓ indicates that we
want to obtain the lowest possible score.

BLEU ↑ METEOR ↑ TER ↓
Seen Unseen All Seen Unseen All Seen Unseen All

t5-base ✓ 64.01 45.97 55.93 0.46 0.39 0.42 0.34 0.48 0.41
t5-large 64.94 49.61 58.05 0.46 0.40 0.43 0.33 0.44 0.38
gpt2-medium ✓ 62.26 41.01 52.77 0.44 0.36 0.40 0.35 0.52 0.43
gpt2-large 63.51 42.97 54.36 0.45 0.37 0.41 0.34 0.50 0.42
bart-large 63.51 45.00 55.25 0.45 0.38 0.42 0.34 0.47 0.40

WebNLG evaluation script on the test set for our best configuration of each model

type. Notice that a checkmark (✓) next to the model name indicates that we are using

layer dependency, as described in Chapter 4. We can see that t5-large achieves the

overall best performances on all three metrics; this is especially true for what concerns

the unseen categories, where it obtains approximately 4 BLEU points more than the

next best model (i.e., t5-base). We should also point out that gpt2-medium achieves

very similar performances on the validation set, but generalizes poorly to new examples

that cover different topics. This leads us to assert that t5-large is able to better adapt

to unfamiliar domains.

It is also interesting to note that, despite having the smallest amount of parameters,

t5-base with layer dependency performs better than much bigger pre-trained models

like gpt2-large and bart-large on all three metrics, both in terms of seen and unseen

categories. This is not necessarily surprising if we consider that textual prefixes were al-

ready used in T5’s pre-training objective, meaning that this class of models is especially

6.3 Experimental Results on WebNLG 67

well-suited to work with prompting/prefix tuning techniques. For some qualitative ex-

amples of the verbalizations generated using control prefixes, we refer the reader to

Appendix B, where we also provide a brief analysis of the differences with respect to

standard prefix tuning.

6.3.3 Prefix Pooling

In order to further analyze the eventual benefits provided by layer dependency, we

realize our experiments in the Prefix Pooling setting both with and without changing

the parametrization. We still use the five model types employed for Prefix Tuning and

Control Prefixes, all with sizes between 220 and 770 million parameters.

We use a pool of 10 prefixes, each one with length two; for every example in our

dataset we select the k = 3 prefixes with key most similar to the query produced from

the input embeddings. We also limit the size of the static task prefix to three in order

to curb the risk of overfitting. We train for a maximum of 7 epochs and again perform

early stopping based on the validation BLEU; for more detailed, model-wise hyperpa-

rameters, we refer to Appendix A.

Table 6.9: Comparison of validation BLEU
scores on WebNLG for all prefix pooling
models, with and without layer dependency

Layer Dep BLEU

t5-base
- 64.76
✓ 64.63

t5-large
- 65.74
✓ 65.46

gpt2-medium
- 65.94
✓ 65.91

gpt2-large
- 65.94
✓ 65.87

bart-large
- 65.45
✓ 65.01

Figure 6.4: Validation BLEU for t5-base
in prefix pooling setting with and without
layer dependency.

6.3 Experimental Results on WebNLG 68

Table 6.9 shows the performances achieved by our models with and without layer de-

pendency: we notice that, when the dynamic prefix is chosen based on similarity with

the input embeddings, the prior about layer dependency does not produce improve-

ments on most models’ overall performances. This might be due to the fact that we are

already pushing the expressivity of our architecture with the input-dependent prefixes,

so that adding another element of complexity simply causes degradation. Figure 6.4

shows how the validation BLEU score changes during training for model t5-base when

varying the parametrization: we can, once again, observe that our modification helps to

achieve a better score within a limited amount of epochs before performances saturate.

Finally, Table 6.10 shows the results that our best configurations achieved on the test

set according to the official evaluation script.

Table 6.10: Prefix Pooling test results on WebNLG using the beam search decoding
strategy. ↑ indicates that the higher the metric the better, while ↓ indicates that we
want to obtain the lowest possible score.

BLEU ↑ METEOR ↑ TER ↓
Seen Unseen All Seen Unseen All Seen Unseen All

t5-base 64.50 47.50 56.86 0.46 0.39 0.43 0.33 0.46 0.39
t5-large 64.49 51.32 58.52 0.46 0.41 0.44 0.33 0.44 0.38
gpt2-medium 62.76 43.40 54.06 0.45 0.37 0.41 0.34 0.49 0.41
gpt2-large 63.81 46.85 56.13 0.45 0.38 0.42 0.33 0.50 0.41
bart-large 63.14 50.45 57.44 0.45 0.40 0.42 0.33 0.43 0.38

We can immediately see that t5-large is the best-performing model, closely followed

by t5-base. We however also observe how, with the new dynamic prompting technique

we propose, bart-large obtains the same TER scores, and gets quite similar BLEU and

METEOR values, especially for what concerns the unseen categories. This is promising,

as bart-large is much smaller than t5-large, containing approximately 32% fewer

parameters. Moreover, comparing with Tables 6.5 and 6.8, we notice that Prefix Pooling

improves performances on unseen categories for several models (i.e.: bart-large, the

two GPT-2 and t5-large) over both standard Prefix Tuning and Control Prefixes,

while achieving prompt dynamicity. Thus, the new technique might be better equipped

to adapt to changes in topic or domain of the triplets.

6.4 Experimental Results on USMLE-Symp 69

Finally, notice that Prefix Pooling lets us design prompts that vary for every in-

put example, thus reflecting its complexity, without needing any external conditional

information and without compromising on performances with respect to previous state-

of-the-art approaches.

6.4 Experimental Results on USMLE-Symp

For our medical USMLE-Symp dataset, we again experiment with the three generative

models described in Section 3.1, but now also consider their versions pre-trained specif-

ically on clinical data. In particular, in Section 6.3 we proved that t5-large always

outperforms the smaller model t5-base, which is hardly surprising as the more param-

eters our model has the more it is expressive. However, we note that the USMLE-Symp

dataset, while targeting a more complex domain, should overall be considered easier

to solve with respect to WebNLG as it is not crowdsourced or expertly annotated

but mostly template-based. We thus acknowledge that more expressive models like

t5-large might overfit our second dataset and do not limit our analysis to it, but still

consider also t5-base. For both models, we also employ their clinical counterparts,

which are called SciFive-large and SciFive-base.

We then note that Microsoft provides only one version of BioGPT [22], whose param-

eter count roughly corresponds to that of gpt2-medium. We thus focus our experiments

only on these two models, discarding the more expressive gpt2-large for the medical

domain. Finally, we consider both bart-large and the corresponding biobart-large,

which is continually pre-trained using PubMed’s abstracts. Also notice that, since this

dataset is smaller than WebNLG, we set the maximum amount of epochs to 4 in order

to limit overfitting and perform early stopping on the validation BLEU when needed.

We train all our models with layer dependency, as our previous experiments showed its

capacity to boost performances when working with a limited computational budget.

The input triplets are linearized according to the same scheme used for WebNLG,

which is shown in Table 6.1. We again point out that, differently from Clive et al. [6],

we do not employ any special tokens to signal the start of subject, predicate, and ob-

ject in a triplet. The following sections illustrate the results we obtain with each of the

6.4 Experimental Results on USMLE-Symp 70

prompting techniques described in Chapter 4. In particular, our tables refer to the same

three automated metrics we used for WebNLG, that is, BLEU [30], METEOR [3] and

TER [45]. We use the stable and reproducible implementation provided by Hugging-

Face’s evaluate library and limit the maximum number of references per input example

to two. We should note that, with this implementation, TER can take on any value

greater than zero, which is the perfect score and indicates that no edits are necessary

to turn the predicted verbalizations into their corresponding references.

6.4.1 Prefix Tuning

Here we experiment with all four models mentioned above (i.e.: gpt2-medium, t5-base,

t5-large, and bart-large) and compare the results with their medical versions, that

were pre-trained, from scratch or continually, on clinical data. Following the results

obtained for WebNLG in Section 6.3, we pre-pend the textual preamble “translate Graph

to English: ” to all T5/SciFive models, in order to bring our task closer to those on

which the models were pre-trained. As previously stated, we train for 4 epochs and use

the validation BLEU score for early stopping; following both Li and Liang [18] and Clive

et al [6], we also keep the underlying PLM frozen and only update the prefix parameters.

The model-wise hyperparameters we use are detailed in Appendix A, together with the

parameters used for generation. Again, following our previous results on the comparison

between contrastive and beam search, we focus on the latter as it guarantees higher-

quality generations, especially for what concerns the BLEU score.

Table 6.11 shows the performances of our models and of their medical counter-

parts in terms of validation error: as we can see model bioGPT achieves the overall

best results, with SciFive-base coming in as a close second. Moreover, as expected,

the models pre-trained on clinical data coming from PubMed’s abstracts and full-text

articles generally perform better in terms of automatic scores. We however already

noted how the automated scores do not always have a strong correlation with human

evaluation, as they typically focus on aspects like edit distance and n-grams overlap

and not as much on semantics. We thus report some qualitative examples over the

6.4 Experimental Results on USMLE-Symp 71

USMLE-Symp validation set, in order to better assess the difference made by domain-

specific information. This is especially interesting for the data-to-text task because, to

join together two or more triplets in a coherent and fluent way, the most important

capability a model should have is grammatical/lexical knowledge of the English lan-

guage. Information about the correctness of the underlying medical data is not a strict

requirement for this task because the models should assume the information provided

in the triplets to be correct and simply verbalize it, without fixing eventual errors in

the input. We thus argue that knowledge of the English language is more important

than comprehension of the domain-specific topic alone; however, the generative pre-

trained language models have been deliberately designed to maintain a high degree of

linguistic knowledge and the added medical information can make it easier to describe

inputs full of otherwise unfamiliar medical terms. Table 6.12 displays the generated

Table 6.11: Comparison of validation BLEU scores on USMLE-Symp for general-
purpose and domain-specific models. The scores refer to the Prefix Tuning setting.

Domain Specific BLEU

t5-base - 97.91
✓(SciFive-base) 98.46

t5-large - 97.90
✓(SciFive-large) 97.88

gpt2-medium - 98.01
✓(bioGPT) 98.49

bart-large - 98.21
✓(biobart-large) 98.23

verbalizations for an instance with negative polarity coming from the validation set,

while we refer the reader to Appendix B.2 for more qualitative examples and a deeper

analysis of the differences between models. From Table 6.12 we can immediately notice

how gpt2-medium produces a somewhat non-sensical explanation with wrong polarity

(i.e.: positive), while the domain-specific bioGPT produces an almost perfect descrip-

tion. It only mistakenly includes pain amongst the symptoms of Tuberculosis that the

patient does not have, probably misinterpreting the triplet (patient, Has_symptom,

pain). Something similar also happens for models t5-base and SciFive-base, where

6.4 Experimental Results on USMLE-Symp 72

the general-purpose PLM gets the polarity wrong and the domain-specific model adds

symptoms the patient is actually suffering from in the list of reasons why the diagnosis

is incorrect. Differently, our two bigger models (t5-large and bart-large) generate

problematic outputs even when switching to the corresponding clinically oriented archi-

tectures: indeed, BART’s output contains all the correct symptoms and has the correct

polarity, but it fails to identify a causality link between those symptoms and the lack of

a diagnosis. Similarly, BioBART, contains the correct symptomatology but produces an

explanation with opposite polarity and misses the causality link. The same can be said

Table 6.12: Qualitative generation example from the USMLE-Symp validation set. The
example is of category Immunology and has negative polarity

Triplet

(Tuberculosis, Has_as_symptom, Fever), (Tuberculosis, Has_as_symptom,
Abnormal lung morphology), (Tuberculosis, Has_as_symptom, Cough), (Tuber-
culosis, Has_as_symptom, Weight loss), (Tuberculosis, Has_as_symptom, Fati-
gue), (patient, is_a, 37-year-old woman), (patient, Does_not_suffer_from, Tuber-
culosis), (patient, Has_symptom, shortness of breath), (patient, Has_symptom,
difficulty walking), (patient, Has_symptom, pain), (patient, Has_symptom,
aches),(patient, Has_symptom, pains)

Reference The patient is not exhibiting Fever, Abnormal lung morphology, Cough, Weight
loss and Fatigue, hence the Tuberculosis diagnosis must be rejected.

gpt2-medium
These symptoms indicate that the patient my suffer from Tuberculosis: Fever,
Abnormal lung morphology, Cough, Weight loss, Fatigue and People with the
following symptoms: Shortness of breath, Aches and Pain.

bioGPT
The following list of symptoms is not found in the case description, therefore
the Tuberculosis diagnosis must be rejected: Fever, Abnormal lung morphology,
Cough, Weight loss, Fatigue and Pain.

t5-base The patient, a 37-year-old woman, has been diagnosed with Tuberculosis: Fever,
Abnormal lung morphology, Cough, Weight loss and Fatigue.

SciFive-base These symptoms indicate that the patient does not suffer from Tuberculosis:
Fever, Abnormal lung morphology, Cough, Weight loss, Fatigue, Pain and pain.

t5-large These symptoms indicate that the patient has Tuberculosis: Fever, Abnormal
lung morphology, Cough, Weight loss and Fatigue.

SciFive-large
These symptoms indicate that the patient my suffer from Tuberculosis:
Fever, Abnormal lung morphology, Cough, Weight loss, Fatigue and is_a
37-year-old woman.

bart-large
The patient, a 37-year-old woman, does not suffer from Tuberculosis. The
patient has the following symptoms: Fever, Abnormal lung morphology, Cough,
Weight loss and Fatigue.

biobart-large TheThe patient is a 37-year-old woman and is affected by Tuberculosis:
Fever, Abnormal lung morphology, Cough, Weight loss and Fatigue.

for t5-large and SciFive-large, as they both produce a positive explanation. This

6.4 Experimental Results on USMLE-Symp 73

leads us to conclude that, given the relative simplicity of the dataset, the bigger mod-

els soon start to overfit the training data, thus losing the ability to correctly verbalize

new samples. We also hypothesize that, in these situations, using the domain-specific

model might hurt performances even more because it is naturally more expressive, hav-

ing been trained to retain linguistic knowledge but also absorb medical information.

In the following, we will not consider the large version of model T5 anymore for our

experiments, as it does not produce any real performance improvement with respect to

t5-small, which has 28% fewer parameters.

In Table 6.13 we now show BLEU, METEOR, and TER scores obtained by our

three best models in Prefix Tuning setting on the test set. As we can see, despite not

obtaining the best results in terms of BLEU on the validation set, BioBART performs

the best on the test data, particularly for what concerns the TER score. This implies

that, in general, a smaller amount of insertions, deletions, or substitutions are needed

to recreate the reference text starting from the verbalizations it produces.

Table 6.13: Prefix Tuning test results on USMLE-Symp dataset using the beam search
decoding strategy.↑ indicates that the higher the metric the better, while ↓ indicates
that we want to obtain the lowest possible score.

BLEU ↑ METEOR ↑ TER ↓
bioGPT 96.26 0.982 3.46
SciFive-base 96.32 0.984 3.08
biobart-large 96.78 0.986 2.78

6.4.2 Control Prefixes

We previously showed that, in general, domain-specific models provide a small boost

in performance for what concerns automated metrics and also help in maintaining the

polarity consistent between reference and generation. We thus focus our attention on

the more expressive medical models and try to see whether their performances could be

further improved by introducing dynamic prefixes. We also showed that both t5-large

and SciFive-large do not provide any improvements in terms of validation BLEU

with respect to their small counterparts: because of this, our efforts now focus on

6.4 Experimental Results on USMLE-Symp 74

the remaining three models, that is, SciFive-base, biobart-large and bioGPT. As

before, we train for 4 epochs at most while keeping the underlying language model

frozen and performing early stopping on the validation BLEU. We also reduce the

length of the task-specific prefix to three, to account for the fact that this dataset is

small and template-based and, therefore, easier than WebNLG. More detailed model-

wise hyperparameters are described in Appendix A.

Polarity as guidance signal We noted that Prefix Tuning models struggle to assign

the correct polarity to the produced verbalization, often generating “why” explanations

when we require a “why-no” justification and vice-versa. We thus employ Control Pre-

fixes [6] to specify the desired polarity of the output text and to steer the generation

towards being of the correct type. In particular, the idea is to use the information

about whether a diagnosis is positive or negative as a guidance signal in order to select

the appropriate dynamic prefix, which is then concatenated to the task-specific prompt

and should help exercise a more fine-grained control on the produced text. Table 6.14

shows the results obtained by our three models on the validation set: as we can see

all architectures improved their BLEU score with respect to the Prefix Tuning setting

and, particularly, biobart-large’s score increased by 0.42 points. Because the models’

Table 6.14: Validation BLEU scores for the USMLE-Symp dataset in Control Prefixes
setting. These values were obtained when using polarity as a guidance signal.

BioGPT SciFive-base biobart-large

BLEU 98.64 98.66 98.65

performances are all very close together, we also qualitatively examine some instances

from the validation set, in order to verify whether the guidance signal has the desired

effect. Table 6.14 shows the verbalization generated by each model for our running Tu-

berculosis example, while Appendix B.2 reports more examples for input triplets with

positive polarity. We immediately see that both bioGPT and biobart-large produce

extremely good verbalizations, where the polarity is correct, the causal relationship

between symptoms occurrence and diagnosis is pointed out and no symptom is hallu-

cinated. Model SciFive-base instead keeps considering pain as something the patient

6.4 Experimental Results on USMLE-Symp 75

Table 6.15: Qualitative generation example from the USMLE-Symp validation set. The
texts have been generated using Control Prefixes with polarity as the guidance signal.

Triplet

(Tuberculosis, Has_as_symptom, Fever), (Tuberculosis, Has_as_symptom,
Abnormal lung morphology), (Tuberculosis, Has_as_symptom, Cough),

...
(patient, Has_symptom, aches),(patient, Has_symptom, pains)

Reference The patient is not exhibiting Fever, Abnormal lung morphology, Cough, Weight
loss and Fatigue, hence the Tuberculosis diagnosis must be rejected.

bioGPT
Tuberculosis has been rejected as a possible diagnosis for the patient due to the
lack of the following symptoms: Fever, Abnormal lung morphology, Cough,
Weight loss and Fatigue.

SciFive-base The patient is not exhibiting these symptoms: Fever, Abnormal lung morpho-
logy, Cough, Weight loss, Fatigue and Pain

biobart-large
The following list of symptoms is not found in the case description, hence the
Tuberculosis diagnosis must be rejected: Fever, Abnormal lung morphology,
Cough, Weight loss and Fatigue.

is not experiencing and, what is more important, does not conclude anything about

the diagnosis. This is particularly significant if we remember that SciFive obtains the

best BLEU score on the validation set because it highlights how automatic evaluations

of generative systems may fail. Notice that, despite the missing conclusions, we can

still state that SciFive generates a verbalization with “negative” polarity, as it clearly

captures that we are talking about missing symptoms.

Overall, we can then state that including polarity as a guidance signal has a positive

impact on performance and helps steer the generation toward the desired type.

Category as a guidance signal Next, we try to use the HPO category associated

with each triplet as the conditional information on which our dynamic prefixes are

based. We have 20 general categories coming from the medical domain and only one

unseen category present in the test set, that is, Connective tissue. We follow the zero-

shot learning procedure described by Clive et al. [6] in order to deal with it: we assume

semantic similarities between classes, compute their GloVe embeddings and then re-map

the examples with unseen category to their closes seen class in the embedding space.

In this case, Connective tissue gets remapped to Skeletal system. Table 6.16 displays

the results obtained by our three models in terms of validation BLEU: as we can see,

SciFive-base obtains once again the greatest score, closely followed by bioGPT. In

6.4 Experimental Results on USMLE-Symp 76

Table 6.16: Validation BLEU scores for the USMLE-Symp dataset in Control Prefixes
setting. These values were obtained when using the category as a guidance signal.

BioGPT SciFive-base biobart-large

BLEU 98.47 98.49 97.81

contrast, biobart-large performances seem to deteriorate with respect to the static

Prefix Tuning setting. We also notice that these results are all significantly lower than

those we got when using polarity as a guidance signal, suggesting that the input triplets

composition does not vary a lot with its category. We nevertheless show in Table 6.17 the

generated verbalizations for our running Tuberculosis example; we again refer the reader

to Appendix B.2 for other description samples. We can immediately notice that the

Table 6.17: Qualitative generation example from the USMLE-Symp validation set. The
texts have been generated using Control Prefixes with category as the guidance signal.

Triplet

(Tuberculosis, Has_as_symptom, Fever), (Tuberculosis, Has_as_symptom,
Abnormal lung morphology), (Tuberculosis, Has_as_symptom, Cough),

...
(patient, Has_symptom, aches),(patient, Has_symptom, pains)

Reference The patient is not exhibiting Fever, Abnormal lung morphology, Cough, Weight
loss and Fatigue, hence the Tuberculosis diagnosis must be rejected.

bioGPT The disease Tuberculosis is typically characterized by these symptoms: Fever,
Abnormal lung morphology, Cough, Weight loss and Fatigue.

SciFive-base The 37-year-old woman is not affected by Tuberculosis.

biobart-large
These symptoms indicate that the patient my suffer from Tuberculosis: Fever,
Abnormal lung morphology, Cough, Weight loss and Fatigue. The patient is also
a 37-year-old woman.

quality of the generation degraded: for instance, the text generated by SciFive-base

only states that the patient is not affected by Tuberculosis, without citing any symptom

at all. By contrast, bioGPT correctly captures the symptomatology associated with

Tuberculosis but completely ignores the patient. Finally, biobart-large produces a

complete justification but mistakes the polarity: we thus have a description of why

the patient might have Tuberculosis instead of a “why-no” explanation. These results

lead us to conclude that category information is not necessarily a useful addition when

performing data-to-text, especially in situations where the dataset is small and all triplet

sets have a similar structure and same predicates, independently from the HPO category

6.4 Experimental Results on USMLE-Symp 77

of the disease they describe.

Category and polarity as guidance signals Despite having found that category

information on its own does not help performances on the USMLE-Symp dataset, we still

experiment with using the two guidance signals together. When doing this we effectively

compute two separate sets of control prefixes, then select the appropriate one given the

input’s polarity from the first set and concatenate it to the left of the category-based

dynamic prefix. Everything is then pre-pended as a left context to the actual model

input. We speculate that letting polarity prefixes influence the category-based ones

could make it easier for the model to work out interesting correlations between these

two variables in our dataset, thus improving performances. Table 6.18 displays the

results we obtain from this experiment in terms of validation BLEU: as we can see,

bioGPT achieves the higher score we have registered up until now, while performances

for biobart-large notably improve from the category-only setting, but remain below

the obtained scores for both polarity-only Control Prefixes and Prefix Tuning. The

results for SciFive-large instead drop lower with respect to both the other versions

of Control Prefixes. However, we showed multiple times how simply using automatic

Table 6.18: Validation BLEU scores for the USMLE-Symp dataset in Control Prefixes
setting. These values were obtained when using both category and polarity as a guidance
signal.

BioGPT SciFive-base biobart-large

BLEU 98.81 98.42 98.04

evaluation scores to evaluate a generative language model might be misleading. We thus

display in Table 6.19 the verbalizations generated for our running example on Tuber-

culosis diagnosis, while more qualitative samples can be found in Appendix B.2. We

immediately notice that, despite the better validation BLEU, the generated descriptions

are not correct and pretty closely resemble those we obtained when just using the cate-

gory as a guidance signal. Indeed, both bioGPT and biobart-large capture the lack of

certain relevant symptoms in our patient, but do not draw any conclusions from it. The

verbalization produced by SciFive-large instead includes the disease but mistakenly

6.4 Experimental Results on USMLE-Symp 78

Table 6.19: Qualitative generation example from the USMLE-Symp validation set. The
texts have been generated using Control Prefixes with category and poalrity as the
guidance signal.

Triplet

(Tuberculosis, Has_as_symptom, Fever), (Tuberculosis, Has_as_symptom,
Abnormal lung morphology), (Tuberculosis, Has_as_symptom, Cough),

...
(patient, Has_symptom, aches),(patient, Has_symptom, pains)

Reference The patient is not exhibiting Fever, Abnormal lung morphology, Cough, Weight
loss and Fatigue, hence the Tuberculosis diagnosis must be rejected.

bioGPT The patient is not exhibiting Fever, Abnormal lung morphology, Cough, Weight
loss and Fatigue.

SciFive-base The disease Tuberculosis is not affected by these symptoms: Fever, Abnormal
lung morphology, Cough, Weight loss, Fatigue and Pains.

biobart-large The patient is a 37-year-old woman and is not exhibiting Fever, Abnormal
lung morphology, Cough, Weight loss and Fatigue.

states that Tuberculosis is not “affected” by the relevant symptoms.

We thus conclude that, even when combined with polarity, information about the

HPO category associated with a certain disease/symptom only causes the performances

to worsen. This might be due to overfitting, as the dataset is quite small, or it might be

due to the fact that our input triplet sets are quite standardized: they often have the

same structure and use the same predicates, independently from the category. Thus,

adding the categorical information might be completely irrelevant and just confuse our

model. Given these observations, we conclude that the models produced with polarity-

only Control Prefixes are the best so far and show in Table 6.20 their performances in

terms of BLEU, METEOR, and TER on the test set. We notice that biobart-large

Table 6.20: Polarity-only Control Prefixes test results on USMLE-Symp dataset. ↑
indicates that the higher the metric the better, while ↓ indicates that we want to obtain
the lowest possible score.

BLEU ↑ METEOR ↑ TER ↓
bioGPT 97.63 0.989 2.39
SciFive-base 97.35 0.987 2.87
biobart-large 96.08 0.981 3.45

is the only model for which performances on the test set slightly deteriorated with

respect to standard Prefix Tuning; the other two models obtain an increase in BLEU

6.4 Experimental Results on USMLE-Symp 79

of approximately one point each and a considerable decrease in TER, meaning that

a smaller number of edits are necessary to turn the generated text into the reference

verbalization.

6.4.3 Prefix Polling

We again focus our attention on the three domain-specific models that achieved the

best results in Prefix Tuning and Control Prefixes, that is, SciFive-base, bioGPT and

biobart-large, in order to verify whether the same results could be obtained using

dynamic prefixes that do not rely on any additional information. As always, we train

for a maximum of 4 epochs and perform early stopping on the validation BLEU score;

we keep the underlying language model frozen and only train the prompt parameters.

A more detailed account of model-wise parameters is shown in Appendix A. We use a

pool of 10 prefixes from which the dynamic prompts are extracted based on similarity

with the input embeddings, but we never use this dynamic prompt alone; instead, it is

combined with a static, task-specific prefix.

Table 6.21 shows the results achieved by our models in terms of validation BLEU: we

should note that biobart-large outperforms both SciFive-base and bioGPT, while

also obtaining higher scores with respect to its Control Prefixes and Prefix Tuning

variations. This seems to indicate that Prefix Pooling has a better generalization ca-

pability with respect to current state-of-the-art. Moreover, Table 6.22 shows the texts

Table 6.21: Validation BLEU scores for the USMLE-Symp dataset in Prefix Pooling
setting.

BioGPT SciFive-base biobart-large

BLEU 98.34 98.26 98.68

generated by all three models for our running Tuberculosis example, letting us examine

the verbalizations from a qualitative point of view. As previously pointed out, Ap-

pendix B.2 contains more in-depth examples to individually assess the performances

of this technique. In accordance with the validation BLEU results, we notice that

the text generated by biobart-large has a high quality: it includes all the relevant

6.4 Experimental Results on USMLE-Symp 80

Table 6.22: Qualitative generation example from the USMLE-Symp validation set. The
texts have been generated using Prefix Pooling.

Triplet

(Tuberculosis, Has_as_symptom, Fever), (Tuberculosis, Has_as_symptom,
Abnormal lung morphology), (Tuberculosis, Has_as_symptom, Cough),

...
(patient, Has_symptom, aches),(patient, Has_symptom, pains)

Reference The patient is not exhibiting Fever, Abnormal lung morphology, Cough, Weight
loss and Fatigue, hence the Tuberculosis diagnosis must be rejected.

bioGPT The patient, a 37-year-old woman, has the following symptoms: Fever, Abnormal
lung morphology, Cough, Weight loss, Fatigue and Pain.

SciFive-base The disease Tuberculosis is typically characterized by these symptoms: Fever,
Abnormal lung morphology, Cough, Weight loss, Fatigue, Pain and pains.

biobart-large The patient is not exhibiting Fever, Abnormal lung morphology, Cough, Weight
loss and Fatigue, hence the Tuberculosis diagnosis must be rejected.

symptoms that are missing from the case description, does not hallucinate information,

and correctly concludes that the diagnosis should be refused. This is not the case for

the remaining two models, as they both omit the conclusions and mistake the polarity

for positive, despite also having good BLEU scores on the validation set.

Finally, Table 6.23 shows our models’ results on the test set: as always, we show

BLEU, METEOR, and TER computed using HuggingFace’s evaluate library and with

a maximum number of references equal to two.

Table 6.23: Prefix Pooling test results on USMLE-Symp dataset. ↑ indicates that the
higher the metric the better, while ↓ indicates that we want to obtain the lowest possible
score.

BLEU ↑ METEOR ↑ TER ↓
bioGPT 96.92 0.985 2.98
SciFive-base 96.39 0.982 3.54
biobart-large 96.37 0.980 3.59

We see that despite what Tables 6.21 and 6.22 indicate, bioGPT obtains higher BLEU

and METEOR scores than biobart-large on the test set, as well as a lower TER. This

implies that bioGPT trained with Prefix Pooling generalizes better to unseen data with

respect to the other models. Moreover, its scores also outperform the model’s results in

the Prefix Tuning setting, indicating that Prefix Pooling can achieve results on par with

previous state-of-the-art while combining static and dynamic prefixes and without the

6.4 Experimental Results on USMLE-Symp 81

need for any guidance signal. We again point out how completely flexible this approach

is: it can be used in conjunction with a static task-specific prompt as we are doing right

now, but also combined with Control Prefixes to steer the generated text toward having

the desired characteristics. Finally, it could be used alone in a completely dynamic

setting.

Chapter 7

Discussion

The main contribution of this thesis is two-fold: we first focused on analyzing and

improving the weak points of existing prompting techniques for natural language gener-

ation, particularly concentrating on the data-to-text task. Next, we applied the afore-

mentioned techniques to the medical domain, with the express aim to verbalize triplet

sets containing all the necessary information for explaining a positive or negative di-

agnosis, given the clinical case. In this way we realize discursive justifications, moving

away from the single template-based explanations that are produced by Marro et al.’s

system [23]. We now summarize the primary results obtained by the experiments de-

scribed in Chapter 6: Section 7.1 focuses on our modifications to the Prefix Tuning

architecture and highlights the impact of the decoding strategy on the results of a gen-

erative model. Section 7.2 instead focuses on the performances obtained on the medical

data, on highlighting the advantages of using a domain-specific model, and on the lim-

itations of a data-to-text dataset where descriptions have been produced starting from

template verbalizations.

7.1 WebNLG: Analysis of Results

We use the WebNLG dataset as a benchmark, to compare our newly proposed architec-

tures with standard Prefix Tuning [18] and Control Prefixes [6] using a standardized test

suite. This makes our scores more directly comparable with other results coming from

the research community. We now discuss in detail some critical points that emerged

from the experiments of Section 6.3.

7.1 WebNLG: Analysis of Results 83

Layer Dependency When we introduced layer dependency in Chapter 4, we said

that the main idea was to introduce a prior, telling the model that the keys and values

of the prefix at each layer of the transformer should depend on those before it. Our

results seem to imply that such a prior has the desired effect only up to a point: indeed,

models using our layer dependency typically have higher BLEU scores from the very

first epochs, but the performances soon saturate. This is especially true for smaller, less

expressive models. Overall, we can state that layer dependency seems to have a positive

impact on performance when training with a limited computational budget, but that,

when the number of epochs we train for increases, the benefits start to lessen. We also

noticed a small boost in performances in Control Prefixes with respect to Prefix Tuning,

leading us to believe that layer dependency is also introducing an explicit link between

the static, task-specific prompt and the dynamic, example-dependent one. In practice,

it is likely that using this new parametrization for Control Prefixes approaches does not

only provide a prior but also encourages the sharing of information between the two

prefix components.

Contrastive vs. Beam Search We also compared the results obtained by our prefix

tuning models when varying the decoding strategy, as different techniques might produce

vastly different verbalizations, thus having a big impact on performance. In particular,

we focused on two methods, beam search, which currently achieves state-of-the-art

results on data-to-text benchmarks [6, 18], and contrastive search, a novel technique

that has, up until now, mainly been tested for open-ended text generation. Our results

show that the latter is decidedly outperformed by beam search: we find that the BLEU

score, in particular, is strongly affected by this change and drops by about 2 points in

mean across all five models, while METEOR and TER are less impacted. The drop in

performance is reasonable as Su et al. [46] introduce contrastive search for tasks like

dialogue or poetry generation, where the aim is to produce a coherent continuation

starting from a limited preceding context and without repetitions. In the data-to-text

task, we are however solving a conditional generation problem, where repetitions might

be welcome, if not required. It all depends on the structure of the input triplets. Thus,

even keeping a low degeneralization penalty of 0.1, contrastive search runs the risk of

7.1 WebNLG: Analysis of Results 84

forbidding multiple necessary occurrences of the same word. Su et al. [46] also point out

that their decoding strategy works best on isotropic models, i.e., those models where all

word vectors in the vocabulary are uniformly distributed with respect to direction. The

idea is that, in anisotropic models, the cosine similarities between tokens all tend to be

very high, because they are all located in a narrow portion of the whole space. This

may cause the generative process to degenerate, producing repetitive tokens at multiple

steps. Isotropy has however not been correctly evaluated yet for most of the generative

pre-trained language models we use, as it has only recently been identified as a possible

issue during the generation step [46].

Prefix Pooling In Section 4.3 we introduced Prefix Pooling, a new dynamic prompt-

ing technique that does not require any guidance signal. This could be extremely useful

when no additional information is given together with the input, but we still know that

the examples in our datasets might have different complexities. For instance, we pointed

out how, in our data-to-text task, it is typically much harder to correctly verbalize a

longer triplet set. Table 7.1 shows a more direct comparison between the performances

of two models, that is, t5-base and bart-large, on our three main settings - Prefix

Tuning, Control Prefixes, and Prefix Pooling. As we can see, Prefix Pooling can gener-

Table 7.1: Comparison between Prefix Tuning, Control Prefixes and Prefix Pooling for
two of our models, t5-base and bart-large.

BLEU ↑ METEOR ↑ TER ↓
Seen Unseen All Seen Unseen All Seen Unseen All

t5-base

Prefix Tuning 64.14 46.88 56.46 0.46 0.39 0.43 0.33 0.48 0.40
Control Prefixes 64.01 45.97 55.93 0.46 0.39 0.42 0.34 0.48 0.41
Prefix Pooling 64.50 47.50 56.86 0.46 0.39 0.43 0.33 0.46 0.39

bart-large

Prefix Tuning 63.88 48.50 56.96 0.45 0.40 0.43 0.34 0.45 0.39
Control Prefixes 63.51 45.00 55.25 0.45 0.38 0.42 0.34 0.47 0.40
Prefix Pooling 63.14 50.45 57.44 0.45 0.40 0.42 0.33 0.43 0.38

ally achieve higher performances than Control Prefixes, while not needing any additional

information to be associated with the input triplet sets. In particular, it is always the

7.2 USMLE-Symp: Analysis of Results 85

technique resulting in lower TER scores, indicating that a small number of edits are

needed to recover a reference verbalization from the generation. Moreover, Prefix Pool-

ing also outperforms or obtains results on par with Prefix Tuning: in particular, it

seems to generalize well to new categories, obtaining better BLEU and TER scores for

the unseen portion of the test set. We should also note that Prefix Pooling can be easily

used in a purely dynamic way, without any task-specific prefix, or it can be combined

with Prefix Tuning and/or Control Prefixes. This makes the whole architecture very

flexible and allows for controlling the generation in a purely dynamic setting.

7.2 USMLE-Symp: Analysis of Results

The main objective of this work is to provide discoursive, symptom-based justifications

for a medical diagnosis given both the clinical case and some information about the

characterizing symptoms of the disease we are examining. We propose to frame this

problem as a data-to-text task and solve it using prompting techniques: in particular,

we experiment with current-state-of-the-art techniques like Control Prefixes [6] and

Prefix Tuning [18], as well as with our newly proposed Prefix Pooling approach. We

now highlight some crucial points that emerged from the experiments we detailed in

Section 6.4.

General-purpose vs. Domain specific We hypothesized that, in tasks like data-

to-text, where our main objective is to re-formulate in a natural, fluent, and coherent

way information that is already present in the input, domain knowledge is not as im-

portant as linguistic knowledge. Indeed, our results in the Prefix Tuning setting show

that general-purpose PLMs perform almost as well as those pre-trained on PubMed’s

abstracts or full-text articles. We however note that our medical models have been

designed explicitly for text generation, so that they all maintain a good understanding

of the English language and its grammar. Because of this, even if the difference in per-

formance was limited, domain-specific models still outperformed their general-purpose

counterparts. In particular, medically-oriented models obtain higher BLEU scores on

the validation set and typically find it easier to avoid hallucinations and symptoms

7.2 USMLE-Symp: Analysis of Results 86

repetitions. They also are better in general at capturing the correct polarity of the

generated text.

Control Prefixes After showing that domain-specific models typically provide a

small boost in performance with respect to their general-purpose counterparts, we ex-

perimented with different guidance signal possibilities for the Control Prefixes approach.

Indeed, our USMLE-Symp dataset, as described in Section 5.2, provides both polarity

and category information associated with each example. Manually analyzing the pro-

duced verbalizations showed that even the clinical models sometimes struggle to come

up with the correct polarity, especially for what concerns longer and more complex

triplet sets. We thus hypothesized that introducing a related control prefix might pro-

duce improvements on this aspect. Notice that we can assume to always have this

additional information available for every new triplet set. Indeed, positive or negative

polarity is actually a desired output’s characteristic more than an additional descriptive

attribute for the input. Moreover, it is also true that, in the symptom-based diagnosis

justification system that is being developed as part of the ANTIDOTE project [1], once

the information is passed to the explanation generation step we already know which

polarity the output justification should have. We thus first tried using polarity as a

guidance signal and obtained improvements of at least 0.20 validation BLEU points for

all our models. What is more important, qualitative analysis of the results showed a

significant improvement in polarity alignment for both bioGPT and biobart-large.

Next, we tried to use the HPO category associated with the main disease/symptom

in the input triplet set as a guidance signal, following Clive et al. [6] that report a notice-

able improvement in performances on WebNLG when using this additional information.

We however should note that our dataset has a significant difference from WebNLG,

that is, the predicates we use are very standardized and mostly do not change with the

triplets’ category. Because of this, the second form guidance signal does not produce

any significant improvement in terms of validation BLEU scores, nor in terms of quality

of the generation. Instead, it seems to confuse the models, probably because it is in-

dicating that two instances with different HPO categories should be treated differently

somewhat, but both the triplet sets and the relative verbalizations have a very similar

7.2 USMLE-Symp: Analysis of Results 87

structure.

Finally, despite not having found any benefit from the use of the HPO category as

a guidance signal, we experimented with combining category and polarity. We mainly

wanted to verify whether an interaction between the two types of control prefixes could

be beneficial to our generations. Indeed, we noticed an improvement in validation

BLEU, especially for what concerns bioGPT, which obtains its highest scores with this

configuration. However, a qualitative analysis of the results shows that they are quite

similar to those produced by Control Prefixes with category-only guidance signal (i.e.,

they are missing a lot of crucial information). Thus, once again, the addition of category

information seems to hurt performances instead of promoting coherence and fluency.

Also notice that we have another example of the unreliability of automatic scores, as

the validation BLEU for bioGPT is approximately 0.20 points higher than it was for

polarity-only Control Prefixes, but the semantics of the produced generations do not

reflect this improvement.

Comparison between Prompting techniques We now compare our three prompt-

ing techniques, that is, Prefix Tuning, Control Prefixes, and Prefix Pooling. In particular

Table 7.2 shows the results obtained by both bioGPT and biobart-large in terms of

test BLEU, METEOR, and TER for each of the approaches. The Control Prefixes

results refer to the polarity-only setting, which achieves the overall best results on the

validation set among the possibilities we tried. We note that, for bioGPT, Prefix Pool-

Table 7.2: Comparison of test results on USMLE-Symp dataset.

BLEU ↑ METEOR ↑ TER ↓
bioGPT

Prefix Tuning 96.26 0.982 3.46
Control Prefixes 97.63 0.989 2.39
Prefix Pooling 96.92 0.985 2.98

biobart-large

Prefix Tuning 96.78 0.986 2.78
Control Prefixes 96.08 0.981 3.45
Prefix Pooling 96.37 0.980 3.59

7.2 USMLE-Symp: Analysis of Results 88

ing outperforms Prefix Tuning in terms of automatic metrics while, from a qualitative

point of view, the generated verbalizations are pretty similar. Control Prefixes with

polarity information instead achieves the best results both qualitatively and quantita-

tively. For biobart-large, both dynamic prompting approaches are outperformed by

standard Prefix Tuning. Notice that this might also be partially due to overfitting, as

our dataset is quite small, the model biobart-large is bigger than bioGPT and the

dynamic prefixes add degrees of complexity to our architecture.

Dataset Limitations We now acknowledge some limitations of the USMLE-Symp

dataset due to its construction process. First of all, the verbalizations are generated

automatically starting from the triplet components and using the templates shown in

Section 5.2. This means that there is not a lot of variation and the dataset appears quite

easy to solve. Crowdsourced annotations like those in WebNLG obviously produce a

more challenging dataset; however, the process can be long and tedious. Moreover, due

to the particular domain we are operating in, annotators with specific medical knowledge

would have to be found. We also note that the category for a given triplet set was taken

from HPO whenever a match between its disease/symptoms was found, but when no

match was present we used the closest neighbor in the embedding space among the

categories already found. This process was done automatically using a clinical version

of BERT to compute the embeddings and the assignments have not been medically

verified: eventual errors in this step might also contribute to explaining why category

information does not improve performances when used as a guidance signal in Control

Prefixes. Finally, we note that some of the more complex input triplet sets have been

associated with an explanation that does not make use of all their components. Some

examples of this situation are shown in our qualitative analysis in Appendix B.2. Often,

the discarded information is related to patient symptomatology that is not characteristic

of the main disease we are describing. The poor quality of the reference verbalization

for these kinds of examples, together with the fact that they constitute a small portion

of the training data, contributes to lower our models’ performances.

Chapter 8

Conclusions

In this thesis, we experimented with prompting techniques for natural language genera-

tion in the medical domain. In particular, our aim was to generate fluent and discoursive

justifications for a diagnosis given all the information about the patient that was present

in the case description and all the symptoms linked with their disease. We framed the

problem as a data-to-text task and solved it using lightweight prompting techniques

like Prefix Tuning [18] and Control Prefixes [6]. We also proposed layer dependency,

a straightforward modification to the way in which the prefix is parametrized that in-

troduces an explicit dependency between the prompts used at different levels of the

PLM. We proved through our experiments that layer dependency is able to produce a

boost in performance when training with a limited computational budget, especially for

smaller, less expressive models. For instance, it improves the validation BLEU score for

t5-base by approximately 0.60 points when training for only four epochs. Our second

contribution is a new dynamic prompting technique called Prefix Pooling, which is able

to achieve performances on par with both Prefix Tuning and Control Prefixes, and even

outperforms them on occasion, while not requiring any form of additional information.

Our techniques obtain impressive results on the medical USMLE-Symp dataset:

the best model is bioGPT with control prefixes based on the polarity information, which

achieves 97.63 BLEU points on the test set. Despite this, we should note that the dataset

we use for both training and testing is based on template explanations whose quality

may be lacking, especially when the number of triplets in the input set grows. The

fact that all our gold standards are pattern-based plays an important role in partially

explaining the excellent results our models are obtaining. Indeed, the sophisticated

Conclusions 90

language models we are employing are surely good enough to learn how to mimic a set

of templates. Thus, to verify the robustness of such a system before a real prototype can

be deployed, it is important to gather a more complex and interesting dataset. Several

possibilities are available, ranging from crowdsourcing to expert annotations, but we

should point out another interesting possibility: since our USMLE-Symp data contains

case descriptions collected from professional medical board exams, online studying and

revising tools like Quizlet1 offer a huge amount of material already solved by medical

students, with the relative explanations. This could be an interesting approach to

collect more discoursive and fluent ground truth justifications, even if it does not give

any quality guarantee.

It would be valuable to also perform additional experiments with our proposed Pre-

fix Pooling strategy, in order to assess its performances on more complex generative

tasks like abstractive summarization or machine translation. Finally, we still did not

extensively test the flexibility of this architecture: the prompts are now chosen from the

pool based on their key’s similarity with the input embeddings. However, these embed-

dings could also be pre-processed somehow: we could for example pass them through

some network layers to extract more meaningful and high-level information. Moreover,

we only tested Prefix Pooling in conjunction with a static, task-specific prompt, while

we know that the modular way in which it is designed makes it possible to use it alone,

in a fully-dynamic setting, or combine it with Control Prefixes to achieve controllable

generation.

1https://quizlet.com/

https://quizlet.com/

Bibliography

[1] ANTIDOTE (ArgumeNtaTIon-Driven explainable artificial intelligence fOr digi-

Tal mEdicine). en, December 2020. url: https://www.chistera.eu/projects/

antidote (visited on 11/30/2022).

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia:

a nucleus for a web of open data. In K. Aberer, K.-S. Choi, N. Noy, et al., editors,

The Semantic Web, pages 722–735, Berlin, Heidelberg. Springer Berlin Heidelberg,

2007. isbn: 978-3-540-76298-0.

[3] S. Banerjee and A. Lavie. METEOR: an automatic metric for MT evaluation with

improved correlation with human judgments. In Proceedings of the ACL Workshop

on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or

Summarization, pages 65–72, Ann Arbor, Michigan. Association for Computa-

tional Linguistics, June 2005. url: https://aclanthology.org/W05-0909.

[4] T. B. Brown, B. Mann, N. Ryder, et al. Language models are few-shot learners,

2020. doi: 10.48550/ARXIV.2005.14165. url: https://arxiv.org/abs/2005

.14165.

[5] S. Chen, Y. Hou, Y. Cui, W. Che, T. Liu, and X. Yu. Recall and learn: fine-tuning

deep pretrained language models with less forgetting. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 7870–7881, Online. Association for Computational Linguistics, November

2020. doi: 10.18653/v1/2020.emnlp-main.634. url: https://aclanthology.

org/2020.emnlp-main.634.

[6] J. Clive, K. Cao, and M. Rei. Control prefixes for parameter-efficient text gen-

eration. In Proceedings of the 2nd Workshop on Natural Language Generation,

https://www.chistera.eu/projects/antidote
https://www.chistera.eu/projects/antidote
https://aclanthology.org/W05-0909
https://doi.org/10.48550/ARXIV.2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2020.emnlp-main.634
https://aclanthology.org/2020.emnlp-main.634
https://aclanthology.org/2020.emnlp-main.634

BIBLIOGRAPHY 92

Evaluation, and Metrics (GEM), pages 363–382, Abu Dhabi, United Arab Emi-

rates (Hybrid). Association for Computational Linguistics, December 2022. url:

https://aclanthology.org/2022.gem-1.31.

[7] K. yras, A. Rago, E. Albini, P. Baroni, and F. Toni. Argumentative xai: a survey,

2021. doi: 10.48550/ARXIV.2105.11266. url: https://arxiv.org/abs/2105

.11266.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: a large-scale

hierarchical image database. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota. Association for Computational Lin-

guistics, June 2019. doi: 10.18653/v1/N19-1423. url: https://aclanthology.

org/N19-1423.

[10] C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini. Creating training

corpora for NLG micro-planners. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 179–

188, Vancouver, Canada. Association for Computational Linguistics, July 2017.

doi: 10.18653/v1/P17-1017. url: https://www.aclweb.org/anthology/P17-

1017.pdf.

[11] X. Han, Z. Zhang, N. Ding, et al. Pre-trained models: past, present and future,

2021. doi: 10.48550/ARXIV.2106.07139. url: https://arxiv.org/abs/2106

.07139.

[12] T. He, J. Liu, K. Cho, M. Ott, B. Liu, J. Glass, and F. Peng. Analyzing the for-

getting problem in pretrain-finetuning of open-domain dialogue response models.

In Proceedings of the 16th Conference of the European Chapter of the Association

https://aclanthology.org/2022.gem-1.31
https://doi.org/10.48550/ARXIV.2105.11266
https://arxiv.org/abs/2105.11266
https://arxiv.org/abs/2105.11266
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/P17-1017
https://www.aclweb.org/anthology/P17-1017.pdf
https://www.aclweb.org/anthology/P17-1017.pdf
https://doi.org/10.48550/ARXIV.2106.07139
https://arxiv.org/abs/2106.07139
https://arxiv.org/abs/2106.07139

BIBLIOGRAPHY 93

for Computational Linguistics: Main Volume, pages 1121–1133, Online. Associa-

tion for Computational Linguistics, April 2021. doi: 10.18653/v1/2021.eacl-

main.95. url: https://aclanthology.org/2021.eacl-main.95.

[13] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Ges-

mundo, M. Attariyan, and S. Gelly. Parameter-efficient transfer learning for NLP.

In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th Interna-

tional Conference on Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pages 2790–2799. PMLR, September 2019. url: https://

proceedings.mlr.press/v97/houlsby19a.html.

[14] D. Ippolito, R. Kriz, J. Sedoc, M. Kustikova, and C. Callison-Burch. Comparison

of diverse decoding methods from conditional language models. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics,

pages 3752–3762, Florence, Italy. Association for Computational Linguistics, July

2019. doi: 10.18653/v1/P19-1365. url: https://aclanthology.org/P19-136

5.

[15] S. Köhler, M. Gargano, N. Matentzoglu, et al. The human phenotype ontology in

2021. en. Nucleic Acids Res., 49(D1):D1207–D1217, January 2021.

[16] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy-

anov, and L. Zettlemoyer. BART: denoising sequence-to-sequence pre-training

for natural language generation, translation, and comprehension. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics,

pages 7871–7880, Online. Association for Computational Linguistics, July 2020.

doi: 10.18653/v1/2020.acl-main.703. url: https://aclanthology.org/202

0.acl-main.703.

[17] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen. Pretrained language models

for text generation: a survey, 2022. doi: 10.48550/ARXIV.2201.05273. url:

https://arxiv.org/abs/2201.05273.

https://doi.org/10.18653/v1/2021.eacl-main.95
https://doi.org/10.18653/v1/2021.eacl-main.95
https://aclanthology.org/2021.eacl-main.95
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/P19-1365
https://aclanthology.org/P19-1365
https://aclanthology.org/P19-1365
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://doi.org/10.48550/ARXIV.2201.05273
https://arxiv.org/abs/2201.05273

BIBLIOGRAPHY 94

[18] X. L. Li and P. Liang. Prefix-tuning: optimizing continuous prompts for gener-

ation. In Proceedings of the 59th Annual Meeting of the Association for Com-

putational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages 4582–4597, Online. Associ-

ation for Computational Linguistics, August 2021. doi: 10.18653/v1/2021.acl-

long.353. url: https://aclanthology.org/2021.acl-long.353.

[19] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. Pre-train, prompt,

and predict: a systematic survey of prompting methods in natural language pro-

cessing, 2021. doi: 10.48550/ARXIV.2107.13586. url: https://arxiv.org/

abs/2107.13586.

[20] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. Gpt under-

stands, too, 2021. doi: 10.48550/ARXIV.2103.10385. url: https://arxiv.

org/abs/2103.10385.

[21] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.

Zettlemoyer, and V. Stoyanov. Roberta: a robustly optimized bert pretraining

approach, 2019. doi: 10.48550/ARXIV.1907.11692. url: https://arxiv.org/

abs/1907.11692.

[22] R. Luo, L. Sun, Y. Xia, T. Qin, S. Zhang, H. Poon, and T.-Y. Liu. BioGPT:

generative pre-trained transformer for biomedical text generation and mining.

Briefings in Bioinformatics, September 2022. issn: 1477-4054. doi: 10.1093/

bib/bbac409. eprint: https://academic.oup.com/bib/advance- article-

pdf/doi/10.1093/bib/bbac409/45989562/bbac409.pdf. url: https://doi.

org/10.1093/bib/bbac409.

[23] S. Marro, B. Molinet, E. Cabrio, and S. Villata. Natural Language Explanatory

Arguments for Correct and Incorrect Diagnoses of Clinical Cases. In ICAART

2023 - 15th International Conference on Agents and Artificial Intelligence, vol-

ume 1, pages 438–449, Lisbon (Portugal), France, February 2023. url: https:

//hal.science/hal-04002207.

https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://doi.org/10.48550/ARXIV.2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://doi.org/10.48550/ARXIV.2103.10385
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.1093/bib/bbac409
https://academic.oup.com/bib/advance-article-pdf/doi/10.1093/bib/bbac409/45989562/bbac409.pdf
https://academic.oup.com/bib/advance-article-pdf/doi/10.1093/bib/bbac409/45989562/bbac409.pdf
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.1093/bib/bbac409
https://hal.science/hal-04002207
https://hal.science/hal-04002207

BIBLIOGRAPHY 95

[24] T. Mayer, S. Marro, E. Cabrio, and S. Villata. Enhancing evidence-based medicine

with natural language argumentative analysis of clinical trials. Artificial Intelli-

gence in Medicine, 118:102098, 2021. issn: 0933-3657. doi: https://doi.org/1

0.1016/j.artmed.2021.102098. url: https://www.sciencedirect.com/

science/article/pii/S0933365721000919.

[25] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed repre-

sentations of words and phrases and their compositionality. In Proceedings of the

26th International Conference on Neural Information Processing Systems - Vol-

ume 2, NIPS’13, pages 3111–3119, Lake Tahoe, Nevada. Curran Associates Inc.,

2013.

[26] B. Molinet, S. Marro, E. Cabrio, S. Villata, and T. Mayer. Acta 2.0: a modular ar-

chitecture for multi-layer argumentative analysis of clinical trials. In L. D. Raedt,

editor, Proceedings of the Thirty-First International Joint Conference on Artifi-

cial Intelligence, IJCAI-22, pages 5940–5943. International Joint Conferences on

Artificial Intelligence Organization, July 2022. doi: 10.24963/ijcai.2022/859.

url: https://doi.org/10.24963/ijcai.2022/859. Demo Track.

[27] R. Nallapati, B. Zhou, C. dos Santos, Ç. Gulçehre, and B. Xiang. Abstractive

text summarization using sequence-to-sequence RNNs and beyond. In Proceedings

of the 20th SIGNLL Conference on Computational Natural Language Learning,

pages 280–290, Berlin, Germany. Association for Computational Linguistics, Au-

gust 2016. doi: 10.18653/v1/K16-1028. url: https://aclanthology.org/K16

-1028.

[28] S. Narayan, S. B. Cohen, and M. Lapata. Don’t give me the details, just the

summary! topic-aware convolutional neural networks for extreme summarization.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 1797–1807, Brussels, Belgium. Association for Compu-

tational Linguistics, October 2018. doi: 10.18653/v1/D18-1206. url: https:

//aclanthology.org/D18-1206.

[29] K. Oberauer. Working Memory and Attention A Conceptual Analysis and Re-

view. Journal of Cognition, 2(1):36. issn: 2514-4820. doi: 10.5334/joc.58. url:

https://doi.org/https://doi.org/10.1016/j.artmed.2021.102098
https://doi.org/https://doi.org/10.1016/j.artmed.2021.102098
https://www.sciencedirect.com/science/article/pii/S0933365721000919
https://www.sciencedirect.com/science/article/pii/S0933365721000919
https://doi.org/10.24963/ijcai.2022/859
https://doi.org/10.24963/ijcai.2022/859
https://doi.org/10.18653/v1/K16-1028
https://aclanthology.org/K16-1028
https://aclanthology.org/K16-1028
https://doi.org/10.18653/v1/D18-1206
https://aclanthology.org/D18-1206
https://aclanthology.org/D18-1206
https://doi.org/10.5334/joc.58

BIBLIOGRAPHY 96

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688548/ (visited on

12/14/2022).

[30] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic

evaluation of machine translation. In Proceedings of the 40th Annual Meeting

of the Association for Computational Linguistics, pages 311–318, Philadelphia,

Pennsylvania, USA. Association for Computational Linguistics, July 2002. doi:

10.3115/1073083.1073135. url: https://aclanthology.org/P02-1040.

[31] J. Pennington, R. Socher, and C. Manning. GloVe: global vectors for word repre-

sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for

Computational Linguistics, October 2014. doi: 10.3115/v1/D14- 1162. url:

https://aclanthology.org/D14-1162.

[32] F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and A.

Miller. Language models as knowledge bases? In Proceedings of the 2019 Con-

ference on Empirical Methods in Natural Language Processing and the 9th Inter-

national Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

pages 2463–2473, Hong Kong, China. Association for Computational Linguistics,

November 2019. doi: 10.18653/v1/D19-1250. url: https://aclanthology.

org/D19-1250.

[33] J. Pfeiffer, A. Rücklé, C. Poth, A. Kamath, I. Vuli, S. Ruder, K. Cho, and I.

Gurevych. Adapterhub: a framework for adapting transformers, 2020. doi: 10.4

8550/ARXIV.2007.07779. url: https://arxiv.org/abs/2007.07779.

[34] L. N. Phan, J. T. Anibal, H. Tran, S. Chanana, E. Bahadroglu, A. Peltekian,

and G. Altan-Bonnet. Scifive: a text-to-text transformer model for biomedical

literature, 2021. arXiv: 2106.03598 [cs.CL].

[35] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang. Pre-trained models for

natural language processing: A survey. en. Science China Technological Sciences,

63(10):1872–1897, October 2020. issn: 1869-1900. doi: 10.1007/s11431-020-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688548/
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.18653/v1/D19-1250
https://aclanthology.org/D19-1250
https://aclanthology.org/D19-1250
https://doi.org/10.48550/ARXIV.2007.07779
https://doi.org/10.48550/ARXIV.2007.07779
https://arxiv.org/abs/2007.07779
https://arxiv.org/abs/2106.03598
https://doi.org/10.1007/s11431-020-1647-3

BIBLIOGRAPHY 97

1647- 3. url: https://doi.org/10.1007/s11431- 020- 1647- 3 (visited on

12/12/2022).

[36] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving Language

Understanding by Generative Pre-Training. en.

[37] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[38] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W.

Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-

to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

url: http://jmlr.org/papers/v21/20-074.html.

[39] W. S. Richardson, M. C. Wilson, J. Nishikawa, and R. S. Hayward. The well-

built clinical question: a key to evidence-based decisions. eng. ACP journal club,

123(3):A12–13, 1995. issn: 1056-8751.

[40] D. Rubinstein, E. Levi, R. Schwartz, and A. Rappoport. How well do distribu-

tional models capture different types of semantic knowledge? In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 2: Short

Papers), pages 726–730, Beijing, China. Association for Computational Linguis-

tics, July 2015. doi: 10.3115/v1/P15-2119. url: https://aclanthology.org/

P15-2119.

[41] A. B. Sai, A. K. Mohankumar, and M. M. Khapra. A survey of evaluation metrics

used for nlg systems. ACM Comput. Surv., 55(2), January 2022. issn: 0360-0300.

doi: 10.1145/3485766. url: https://doi.org/10.1145/3485766.

[42] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words

with subword units. In Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin,

Germany. Association for Computational Linguistics, August 2016. doi: 10.186

53/v1/P16-1162. url: https://aclanthology.org/P16-1162.

https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.3115/v1/P15-2119
https://aclanthology.org/P15-2119
https://aclanthology.org/P15-2119
https://doi.org/10.1145/3485766
https://doi.org/10.1145/3485766
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162

BIBLIOGRAPHY 98

[43] N. Shazeer and M. Stern. Adafactor: adaptive learning rates with sublinear mem-

ory cost, 2018. doi: 10.48550/ARXIV.1804.04235. url: https://arxiv.org/

abs/1804.04235.

[44] T. Shin, Y. Razeghi, R. L. L. IV, E. Wallace, and S. Singh. AutoPrompt: Eliciting

Knowledge from Language Models with Automatically Generated Prompts. In

Empirical Methods in Natural Language Processing (EMNLP), pages 4222–4235,

2020.

[45] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul. A study of trans-

lation edit rate with targeted human annotation. In Proceedings of the 7th Con-

ference of the Association for Machine Translation in the Americas: Technical

Papers, pages 223–231, Cambridge, Massachusetts, USA. Association for Machine

Translation in the Americas, August 2006. url: https://aclanthology.org/2

006.amta-papers.25.

[46] Y. Su, T. Lan, Y. Wang, D. Yogatama, L. Kong, and N. Collier. A contrastive

framework for neural text generation, 2022. doi: 10.48550/ARXIV.2202.06417.

url: https://arxiv.org/abs/2202.06417.

[47] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of

Machine Learning Research, 9:2579–2605, 2008. url: http://www.jmlr.org/

papers/v9/vandermaaten08a.html.

[48] A. Vassiliades, N. Bassiliades, and T. Patkos. Argumentation and explainable

artificial intelligence: a survey. The Knowledge Engineering Review, 36:e5, 2021.

doi: 10.1017/S0269888921000011.

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,. Kaiser,

and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in

Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

url: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee9

1fbd053c1c4a845aa-Paper.pdf.

https://doi.org/10.48550/ARXIV.1804.04235
https://arxiv.org/abs/1804.04235
https://arxiv.org/abs/1804.04235
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://doi.org/10.48550/ARXIV.2202.06417
https://arxiv.org/abs/2202.06417
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1017/S0269888921000011
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

BIBLIOGRAPHY 99

[50] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. GLUE: a multi-

task benchmark and analysis platform for natural language understanding. In

Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Inter-

preting Neural Networks for NLP, pages 353–355, Brussels, Belgium. Association

for Computational Linguistics, November 2018. doi: 10.18653/v1/W18-5446.

url: https://aclanthology.org/W18-5446.

[51] Z. Wang, Z. Zhang, C.-Y. Lee, H. Zhang, R. Sun, X. Ren, G. Su, V. Perot, J. Dy,

and T. Pfister. Learning to prompt for continual learning, 2021. doi: 10.48550

/ARXIV.2112.08654. url: https://arxiv.org/abs/2112.08654.

[52] T. Wolf, L. Debut, V. Sanh, et al. Transformers: state-of-the-art natural lan-

guage processing. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing: System Demonstrations, pages 38–45, Online.

Association for Computational Linguistics, October 2020. url: https://www.

aclweb.org/anthology/2020.emnlp-demos.6.

[53] H. Yuan, Z. Yuan, R. Gan, J. Zhang, Y. Xie, and S. Yu. BioBART: pretraining

and evaluation of a biomedical generative language model. In Proceedings of the

21st Workshop on Biomedical Language Processing, pages 97–109, Dublin, Ireland.

Association for Computational Linguistics, May 2022. doi: 10.18653/v1/2022

.bionlp-1.9. url: https://aclanthology.org/2022.bionlp-1.9.

https://doi.org/10.18653/v1/W18-5446
https://aclanthology.org/W18-5446
https://doi.org/10.48550/ARXIV.2112.08654
https://doi.org/10.48550/ARXIV.2112.08654
https://arxiv.org/abs/2112.08654
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.bionlp-1.9
https://doi.org/10.18653/v1/2022.bionlp-1.9
https://aclanthology.org/2022.bionlp-1.9

Appendices

Appendix A

Hyperparameters

All the presented architectures are built on top of HuggingFace’s transformers library [52].

For Prefix Tuning, we adapted the original implementation [18] to work with version

4.26.0 of the library and extended the GPT-2 implementation to work with BioGPT [22].

Similarly, our Control Prefixes architecture follows the implementation of Clive et al. [6].

The following section show the hyperparameters we use to train our models for the ex-

periments we discussed in Chapter 6. Also notice that, whenever the generation is

performed with beam search, we use the parameters shown in table A.1, while for con-

trastive search we use those displayed in Table A.2.

Table A.1: Beam search decod-
ing parameters

Parameter Value
Max length 300
Early stop True
Num beams 5
Do sample False

Table A.2: Contrastive search
decoding parameters

Parameter Value
Max length 300
Early stop True
Top k 5
Penalty α 0.1

A.1 Prefix Tuning

Table A.3 shows in detail the hyperparameters used to train our Prefix Tuning models.

Note that the length of the task-specific prompt and the choice of hidden dimension

for the prefix are taken from the literature [18, 6]. We train for 7 epochs for the bigger

and more complex WebNLG dataset and train for 4 epochs - using layer dependency to

boost performances - when working with the USMLE-Symp dataset.

A.2 Control Prefixes 102

Table A.3: Detailed report of the hyperparameters for the prefix tuning models in this
work. L-rate stands for learning rate.

Model

t5-base/ t5-large gpt2-medium/ gpt2-large bart-large
SciFive-base bioGPT/ biobart-large

L-rate 7e-5 7e-5 1e-4 1e-4 1e-4
Optimizer Adafactor Adafactor AdamW AdamW AdamW
Warm-up 2000 2000 0 0 0
Epochs [7,4] 7 [7,4] 7 [7,4]
Batch size 5 5 5 5 5
Prefix len 48 48 5 5 5
Hidden dim 800 800 512 512 512
T5-preamble ✓ ✓ - - -
Dropout 0.0 0.0 0.0 0.0 0.0
Weight decay 0.0 0.0 0.0 0.0 0.0

A.2 Control Prefixes

Table A.4 shows in detail the hyperparameters we used to train all control prefixes

models. Note that the length of the dynamic prompt is taken from the literature [6]

and that we never rely just on the control prefixes but always pair them with the task-

specific prefix. We also do not use any additional token to indicate the start of every

triplet component. We again train for 7 epochs on the bigger WebNLG dataset and for

Table A.4: Detailed report of the hyperparameters for the control prefixes models in
this work. L-rate stands for learning rate.

Model

t5-base/ t5-large gpt2-medium/ gpt2-large bart-large
SciFive-base bioGPT/ biobart-large

L-rate 7e-5 7e-5 1e-4 1e-4 1e-4
Optimizer Adafactor Adafactor AdamW AdamW AdamW
Warm-up 2000 2000 0 0 0
Epochs [7,4] 7 [7,4] 7 [7,4]
Batch size 5 5 5 5 5
Prefix len [48, 46] 48 [5,3] 5 [5,3]
Hidden dim 800 800 512 512 512
T5-preamble ✓ ✓ - - -
Dropout 0.0 0.0 0.0 0.0 0.0
Weight decay 0.0 0.0 0.0 0.0 0.0
C-prefix Len 2 2 2 2 2

A.3 Prefix Pooling 103

4 epochs with layer dependency on the USMLE-Symp dataset. In Table A.4, when a

list of values is reported for one hyperparameter, they refer to those used for the general

purpose and for the medical portion of this work, respectively.

A.3 Prefix Pooling

Table A.5 shows a detailed report of the hyperparameters used to train all our prefix

pooling models. The pool size and the length of the dynamic prompt, as well as the

number of dynamic components to use, are derived through preliminary experimenta-

tions literature [6]. Finally, notice that we never rely on a learned key vector for every

prompt in the pool as preliminary experiments showed it to cause overfitting. As pre-

viously pointed out, we train for a maximum of 7 epochs when using WebNLG and for

a maximum of 4 epochs on USMLE-Symp, as it is a much smaller dataset. For the

same reason we also slightly decreased the length of the prefix. Then, in Table A.5,

when a list of values is present for a certain hyperparameter, the first one represents

the configuration used for WebNLG while the second represents the value choice for

USMLE-Symp.

Table A.5: Detailed report of the hyperparameters for the prefix pooling models in this
work. L-rate stands for learning rate.

Model

t5-base/ t5-large gpt2-medium/ gpt2-large bart-large
SciFive-base bioGPT/ biobart-large

L-rate 7e-5 7e-5 1e-4 1e-4 1e-4
Optimizer Adafactor Adafactor AdamW AdamW AdamW
Warm-up 2000 2000 0 0 0
Epochs [7,4] 7 [7,4] 7 [7,4]
Batch size 5 5 5 5 5
Prefix len [48,46] 48 [5,3] 5 [5,3]
Hidden dim 800 800 512 512 512
T5-preamble ✓ ✓ - - -
Dropout 0.0 0.0 0.0 0.0 0.0
Weight decay 0.0 0.0 0.0 0.0 0.0
Pool size 10 10 10 10 10
Top-k 3 3 3 3 3
P-prefix len 2 2 2 2 2

Appendix B

Qualitative Analysis

Here we present some examples of the output produced by our models, with a par-

ticular focus on highlighting benefits and drawbacks of our architectural changes. It is

important to visualize the generated verbalizations because it is notoriously problematic

to comprehensively evaluate the performances of a generative language model relying

simply on automatic metrics like BLEU and TER. Indeed, in a data-to-text task, we

are concerned with obtaining fluent text that covers all the information provided by the

source and does not hallucinate knowledge. Unfortunately, automatic metrics are often

based on n-gram overlap or on the edit distance between reference and generation, thus

not considering the semantics. This implies that we might obtain a quite good BLEU

score while still having a generation that mixes up information or completely negates

the original triplets’ content.

B.1 WebNLG Human Evaluation

We now report some examples coming from the test dataset in WebNLG. In particular,

Tables B.1 and B.2 show the verbalizations generated by each of our five models (i.e.,

gpt2-medium, gpt2-large, t5-base, t5-large and bart-large) in the Prefix Tuning

setting for two triplets with seen categories Astronaut and Building. Note that all our

T5 implementations here use the textual preamble “translate Graph to English: ”,

as specified in Section 6.3. Moreover, for each model, we make a point of signaling

with a checkmark the use of layer dependency or not, in order to check whether this

modification has a tangible impact on performance.

B.1 WebNLG Human Evaluation 105

Table B.1: Generation example from the WebNLG seen category Astronaut in prefix
tuning setting. The checkmark (✓) indicates the use of layer dependency.

Triplet

(William_Anders, dateOfRetirement, “1969-09-01”), (William_Anders, was a
crew member of, Apollo_8), (William_Anders, nationality, United_States),
(William_Anders, birthPlace, British_Hong_Kong), (Apollo_8, backup pilot,
Buzz_Aldrin), (Apollo_8, crewMembers, Frank_Borman), (Apollo_8,
operator, NASA)

Reference

William Anders was born in British Hong Kong and is a U.S Citizen. William
was a member of the Apollo 8 crew (along with Frank Borman) which was
operated by NASA’s backup pilot Buzz Aldrin. William retired on September
1st in 1969.

gpt2-medium ✓
American William Anders was born in British Hong Kong. He was a crew
member of Apollo 8 operated by NASA. The backup pilot was Buzz Aldrin
and Frank Borman was a crew member. William Anders retired on
September 1, 1969.

gpt2-medium

American William Anders was born in British Hong Kong. He was a crew
member of Apollo 8 which was operated by NASA. Buzz Aldrin was a
backup pilot and Frank Borman was a crew member. William Anders
retired on September 1, 1969.

gpt2-large ✓
American William Anders was born in British Hong Kong. He was a member
of the Apollo 8 crew along with Frank Borman and backup pilot Buzz Aldrin.
William Anders retired on the 1st of September 1969.

gpt2-large

American William Anders was born in British Hong Kong and is a citizen of
the United States. He served as a crew member on the NASA operated Apollo
8 along with backup pilot Buzz Aldrin and Frank Borman. He retired on
September 1, 1969.

t5-base ✓
American William Anders was born in British Hong Kong. He was a member
of NASA’s Apollo 8 crew, along with Frank Borman and Buzz Aldrin.
He retired on September 1st 1969.

t5-base
William Anders was born in British Hong Kong. He was part of NASA’s
Apollo 8 crew along with Frank Borman and Buzz Aldrin. He retired on
September 1st, 1969.

t5-large ✓
American William Anders was born in British Hong Kong. He was a crew
member of Apollo 8 operated by NASA. Buzz Aldrin was a backup pilot on
Apollo 8 and Frank Borman was a crew member. Anders retired on September
1st, 1969.

t5-large
American William Anders was born in British Hong Kong. He was a crew
member of Apollo 8 operated by NASA. Buzz Aldrin was a backup pilot
and Frank Borman was a crew member. He retired on September 1st, 1969.

bart-large ✓
William Anders was born in British Hong Kong and was a member of NASA’s
Apollo 8 crew along with Buzz Aldrin as backup pilot and Frank Borman as
a crew member. William Anders retired on 1969-09-01.

bart-large
William Anders, born in British Hong Kong, was a member of the NASA
operated Apollo 8 crew along with Frank Borman and Buzz Aldrin. William
Anders retired on September 1st, 1969.

B.1 WebNLG Human Evaluation 106

We can see that there are significant changes in generation quality between models:

for instance, gpt2-large in Table B.2 is missing crucial information about the country

where the hotel is located, no matter whether we use layer dependency or not. Similarly,

bart-large in Table B.1 is missing details about the nationality of William Anders. We

also note that, in general, using layer dependency does not give rise to huge differences in

the verbalizations. However, it can sometimes produce improvements for smaller models

like t5-base and gpt2-medium. Indeed, in Table B.1, t5-base with standard Prefix

Tuning omits the astronaut’s nationality, while our different parametrization seems to

recover this detail. In the same table, gpt2-medium with layer dependency avoids the

repetition of Sanders’ nationality.

Table B.2: Generation example from the WebNLG seen category Building in prefix
tuning setting. The checkmark (✓) indicates the use of layer dependency.

Triplet
(AC_Hotel_Bella_Sky_Copenhagen, location, Denmark), (AC_Hotel_Bella_
Sky_Copenhagen, tenant, Marriott_International), (AC_Hotel_Bella_Sky_
Copenhagen, floorCount, 23)

Reference AC Hotel Bella Sky Copenhagen has 23 floors and is located in Denmark.
The tenant is Marriott International

gpt2-medium ✓ Marriott International is the tenant of AC Hotel Bella Sky Copenhagen
which has 23 floors and is located in Denmark.

gpt2-medium Marriott International is a tenant of AC Hotel Bella Sky Copenhagen
which is located in Denmark and has 23 floors.

gpt2-large ✓ Marriott International is the tenant of AC Hotel Bella Sky Copenhagen,
which has 23 floors.

gpt2-large Marriott International is the tenant of AC Hotel Bella Sky Copenhagen
which has 23 floors.

t5-base ✓ Marriott International is a tenant of AC Hotel Bella Sky Copenhagen
which has 23 floors and is located in Denmark.

t5-base Marriott International is a tenant of AC Hotel Bella Sky Copenhagen
which is located in Denmark and has 23 floors.

t5-large ✓ Marriott International is the tenant of AC Hotel Bella Sky Copenhagen,
Denmark which has 23 floors.

t5-large Marriott International is the tenant of AC Hotel Bella Sky Copenhagen
which has 23 floors and is located in Denmark.

bart-large ✓ Marriott International is a tenant of the AC Hotel Bella Sky Copenhagen
which has 23 floors and is located in Denmark

bart-large Marriott International is a tenant of AC Hotel Bella Sky Copenhagen
which is located in Denmark and has 23 floors.

Next, Tables B.3–B.7 show a comparison of the verbalizations generated by models

B.1 WebNLG Human Evaluation 107

t5-large and bart-large for input triplet sets coming from each of the five unseen test

categories. In Table B.6 we can quite clearly notice how both models are unfamiliar with

the astronomy concept of an “epoch date”: they thus interpret it as a generic calendar

day. It is worth mentioning that we can see the impact of the training categories: indeed,

both our models treat the asteroid as something that can be established/created (like

a company) or as a book that can be published.

Table B.3: Generation example from the WebNLG unseen category MeansOfTrans-
portation.

Triplet
(Aston_Martin_V8, relatedMeanOfTransportation, Aston_Martin_DBS),
(Aston_Martin_V8, engine, 5.3 (litres)), (Aston_Martin_V8, successor,
Aston_Martin_Virage), (Aston_Martin_Virage, manufacturer, Aston_Martin)

Reference
The Aston Martin V8, manufactured by Aston Martin, has a 5.3 litre engine
and was succeeded by the Aston Martin Virage. The Aston Martin V8 and
Aston Martin DBS are a related means of transport.

t5-large

Prefix Tuning
Aston Martin DBS is a successor to the Aston Martin V8 which has a 5.3
litre engine and was made by Aston Martin. Aston Martin Virage is a
successor to the Aston Martin V8.

Control Prefixes
Aston Martin DBS is the manufacturer of the Aston Martin V8, which is
the successor to the Aston Martin Virage. The V8 has a 5.3 litre engine
and is related to the Aston Martin V8, which is also a means of transport.

Prefix Pooling The Aston Martin DBS is a successor to the Aston Martin V8 which has
a 5.3 litre engine. The Aston Martin Virage was also made by Aston Martin.

bart-large

Prefix Tuning Aston Martin DBS is the manufacturer of Aston Martin V8, which has a
5.3 litre engine. The V8 is a successor of the Aston Martin Virage.

Control Prefixes The Aston Martin DBS is the manufacturer of the Aston Martin V8,
which has an engine of 5.3 litres.

Prefix Pooling Aston Martin DBS is the manufacturer of Aston Martin V8 which has a
5.3 litre engine.

We should also note that the example in Table B.3 is longer than the others and thus

harder to correctly verbalize: almost all model variations apart from t5-large Prefix

Tuning and the two Prefix Pooling models consider the Aston Martin DBS as the

manufacturer of the Aston Martin V8, instead of correctly considering it as a related

means of transportation. Finally, we also point out how, in Table B.5, only bart-large

with Prefix Pooling correctly interprets the successor relation between Alberto Tessaire

and Isaac Rojas.

B.1 WebNLG Human Evaluation 108

Table B.4: Generation example from the WebNLG unseen category Artist.

Triplet
(Asunción, isPartOf, Gran_Asunción), (Agustín_Barboza, deathPlace,
Asunción), (Paraguay, leaderName, Juan_Afara), (Agustín_Barboza,
deathPlace, Paraguay)

Reference Agustin Barboza died in Asuncion, part of Gran Asunción, in Paraguay,
the country led by Juan Afara.

t5-large

Prefix Tuning Agustn Barboza died in Asunción, Gran Asunción, Paraguay, where the
leader is Juan Afara.

Control Prefixes Agustn Barboza died in Paraguay where the leader is Juan Afara.
Asunción is part of Gran Asunción.

Prefix Pooling Agustn Barboza died in Asunción, which is part of Gran Asunción.
The leader of Paraguay is Juan Afara.

bart-large

Prefix Tuning Agustín Barboza died in Asunción, part of Gran Asuncion. The leader
of Paraguay is Juan Afara.

Control Prefixes Agustín Barboza is the death place of Juan Afara who is the leader of
Paraguay. Asunción is part of Gran Asuncion.

Prefix Pooling Agustín Barboza died in Asunción, which is part of Gran Asuncion, in
Paraguay, where Juan Afara is the leader.

Table B.5: Generation example from the WebNLG unseen category Politician. Com-
parison of various approaches for t5-large and bart-large.

Triplet (Alberto_Teisaire, office (workedAt, workedAs), “Provisional President of
the Argentine Senate“), (Alberto_Teisaire, successor, Isaac_Rojas)

Reference Alberto Teisaire worked as the Provisional President of the Argentine
Senate and was succeded by Isaac Rojas.

t5-large

Prefix Tuning Alberto Teisaire succeeded Isaac Rosas as the Provisional President of
the Argentine Senate.

Control Prefixes Alberto Teisaire served as the Provisional President of the Argentine
Senate and succeeded Isaac Rojas.

Prefix Pooling Alberto Teisaire succeeded Isaac Rojas as the Provisional President of
the Argentine Senate.

bart-large

Prefix Tuning Alberto Teisaire worked at the office of Provisional President of the
Argentine Senate and is the successor of Isaac Rojas.

Control Prefixes Alberto Teisaire, who is the successor to Isaac Rojas, is the Provisional
President of the Argentine Senate.

Prefix Pooling Alberto Teisaire is the Provisional President of the Argentine Senate and
his successor is Isaac Rojas.

B.1 WebNLG Human Evaluation 109

Table B.6: Generation example from the WebNLG unseen category CelestialBody.

Triplet (10_Hygiea, formerName, “A900 GA”), (10_Hygiea, epoch, 2015-06-27)

Reference The asteroid 10 Hygiea, once called A900 GA, has the epoch date of 27th
June 2015.

t5-large

Prefix Tuning 10 Hygiea (previously known as A900 GA) was created on 2015-06-27.

Control Prefixes 10 Hygiea, whose former name was A900 GA, was published on the 27th
of June, 2015.

Prefix Pooling 10 Hygiea (A900 GA) was founded on 2015-06-27.

bart-large

Prefix Tuning A900 GA was the former name of 10 Hygiea which was discovered on
the 27th of June, 2015.

Control Prefixes A900 GA was the former name of 10 Hygiea which was established in
2015-06-27

Prefix Pooling A900 GA was the former name of 10 Hygiea which was invented on
the 27th of June 2015

Table B.7: Generation example from the WebNLG unseen category Athlete.

Triplet (Aleksandre_Guruli, club, Olympique_Lyonnais), (Olympique_Lyonnais, ground,
Parc_Olympique_Lyonnais), (Aleksandre_Guruli, club, US_Lesquin)

Reference Aleksandre Guruli, whose club is US Lesquin, played for the Olympique Lyonnais
club who have their home ground at Parc Olympique Lyonnais stadium.

t5-large

Prefix Tuning Aleksandre Guruli plays for Olympique Lyonnais, whose ground is the Parc
Olympique Lyonnais. He is also part of the US Lesquin club.

Control Prefixes Aleksandre Guruli is attached to the club US Lesquin and plays for Olympique
Lyonnais whose ground is Parc Olympique Lyonnais.

Prefix Pooling Aleksandre Guruli has represented the club US Lesquin and plays for Olympi-
que Lyonnais at their ground, Parc Olympique Lyonnais.

bart-large

Prefix Tuning Aleksandre Guruli played for US Lesquin and now plays for Olympique Lyonnais
whose ground is Parc Olympique lyonnais.

Control Prefixes Aleksandre Guruli is in the US Lesquin club and plays for Olympique Lyonnais
whose ground is Parc Olympiis.

Prefix Pooling Aleksandre Guruli plays at the Parc Olympique Lyonnais and has represented the
club US Les Quins.

B.2 USMLE-Symp Human Evaluation 110

B.2 USMLE-Symp Human Evaluation

We now show some examples from the USMLE-Symp validation and test sets. In partic-

ular, Table B.8 shows the verbalizations generated by all our Prefix Tuning models apart

from t5-large for a validation instance with positive polarity. Similarly, Table B.9 dis-

plays the produced descriptions for two easier validation triplet sets, composed of at

most two elements each. Notice that t5-large is never included in our analysis because

we previously showed (Section 6.4) how it obtains poorer automatic scores and produces

lower quality generations. Examining the aforementioned tables, we see that, for the

Table B.8: Generation example from the USMLE-Symp validation set. The example is
of category Blood and blood-forming tissues and has positive polarity

Triplet

(36-year-old woman, Suffers_from, Endometriosis), (36-year-old woman, Has_
symptom, primary infertility), (36-year-old woman, Has_symptom, unable to
conceive), (36-year-old woman, Has_symptom, dysmenorrhea), (Endometriosis,
Has_as_symptom, dysmenorrhea)

Reference
The patient can be diagnosed with Endometriosis as they are showing the
following symptoms, which are direct symptoms of Endometriosis:
dysmenorrhea.

gpt2-medium These symptoms indicate that the patient my suffer from Endometriosis:
primary infertility, unable to conceive, dysmenorrhea and dysmenorrhea.

bioGPT The 36-year-old woman has the following symptoms: primary infertility,
unable to conceive, dysmenorrhea and dysmenorrhea.

t5-base The 36-year-old woman has the following symptoms: primary infertility,
unable to conceive, dysmenorrhea and dysmenorrhea.

SciFive-base The 36-year-old woman has the following symptoms: Primary infertility,
unable to conceive and dysmenorrhea.

bart-large The 36-year-old woman has the following symptoms: dysmenorrhea and
primary infertility.

biobart-large TheThe 36-year-old woman has the following symptoms: endometriosis,
primary infertility, unable to conceive and dysmenorrhea.

more complex triplet sets, the quality of the reference verbalization is quite poor. For

instance, in Table B.8, the gold standard explains why the Endometriosis diagnosis is

the correct one using dysmenorrhea as a main symptom because it was the only one for

which a match was found in the HPO. However, no mention is made of the remaining

patient symptoms which are part of the input triplet set. It is intuitive to understand

how such misalignment between references and input may confuse our models.

B.2 USMLE-Symp Human Evaluation 111

Table B.9: Generation examples from the USMLE-Symp validation set. Both triplet
sets are short, having at most two components.

Triplet (patient, is_a, 11-year-old girl), (patient, Does_not_suffer_from,
Exanthem subitum)

Reference The patient is a 11-year-old girl and is not affected by Exanthem subitum.

gpt2-medium The patient is a 11-year-old girl and is not affected by Exanthem subitum.

bioGPT The patient is a 11-year-old girl and is not affected by Exanthey subitum.

t5-base The patient, a 11-year-old girl, does not suffer from Exanthem subitum.

SciFive-base The patient, a 11-year-old girl, does not suffer from Exanthem subitum.

bart-large The patient, a 11-year-old girl, does not suffer from Exanthem subitum.

biobart-large The patient, a 11-year-old girl, does not suffer from Exanthem subitum.

Triplet (Huntington disease, Has_as_symptom, Decreased body mass index)

Reference Decreased body mass index is a symptom of Huntington disease.

gpt2-medium People with the disease Huntington may show Decreased body mass
index as a symptom.

bioGPT Decreased body mass index is a symptom of Huntington disease.

t5-base Decreased body mass index is a symptom of Huntington disease.

SciFive-base People with the disease Huntington may show Decreased body mass
index as a symptom.

bart-large People with the disease Huntington may show Decreased body mass
index as a symptom.

biobart-large Decreased body mass index is a symptom of Huntington disease.

Table B.10: Generation example from the USMLE-Symp validation set. The texts have
been generated using Control Prefixes with polarity as the guidance signal.

Triplet
36-year-old woman, Suffers_from, Endometriosis), (36-year-old woman, Has_
symptom, primary infertility), ... , (Endometriosis, Has_as_symptom,
dysmenorrhea)

Reference
The patient can be diagnosed with Endometriosis as they are showing the
following symptoms, which are direct symptoms of Endometriosis:
dysmenorrhea.

bioGPT
The 36-year-old woman has been diagnosed with Endometriosis and is affected
by these symptoms: Primary infertility, Inable to conceive, Dysdysmenorrhea
and Endometriosis.

SciFive-base The 36-year-old woman suffers from Endometriosis: primary infertility, unable
to conceive, dysmenorrhea and Endometriosis.

biobart-large The 36-year-old woman has the following symptoms: primary infertility, unable
to conceive and dysmenorrhea.

B.2 USMLE-Symp Human Evaluation 112

Moreover, we should note that complex triplet sets like the Endometriosis one are

very much a minority part of the training set. Because of this, our models’ verbalizations

tend to list the patient symptomatology, without reaching any conclusion about the

diagnosis. Differently, for smaller examples such as those reported in Table B.9, all the

generations achieve an almost perfect overlap with the gold standards. The fact that

general-purpose models obtain results that are as good as those of the clinical versions,

confirms our hypothesis that linguistic knowledge is much more important than domain-

specific information when performing a data-to-text task, as all the necessary medical

terminology is already included in the input.

Table B.11: Generation example from the USMLE-Symp validation set. The texts have
been generated using both Control Prefixes and Prefix Pooling.

Triplet
36-year-old woman, Suffers_from, Endometriosis), (36-year-old woman, Has_
symptom, primary infertility), ... , (Endometriosis,Has_as_symptom,
dysmenorrhea)

Reference
The patient can be diagnosed with Endometriosis as they are showing the
following symptoms, which are direct symptoms of Endometriosis:
dysmenorrhea.

CONTROL PREFIXES: CATEGORY-ONLY

bioGPT The 36-year-old woman has the following symptoms: primary infertility,
unable to conceive, dysmenorrhea and endometriosis.

SciFive-base The 36-year-old woman suffers from Endometriosis, primary infertility,
unable to conceive and dysmenorrhea.

biobart-large The 36-year-old woman has the following symptoms: primary infertility,
unable to conceive and endometriosis.

CONTROL PREFIXES: ALL

bioGPT These symptoms indicate that the patient my suffer from Endometriosis:
Primary infertility, unable to conceive, Endometriosis and dysmenorrhea.

SciFive-base The 36-year-old woman has the following symptoms: Endometriosis, unable
to conceive and dysmenorrhea.

biobart-large The 36-year-old woman has the following symptoms: primary infertility,
unable to conceive, dysmenorrhea and Endometriosis.

PREFIX POOLING

bioGPT The 36-year-old woman has the following symptoms: Primary infertility, unable
to conceive, dysmenorrhea and Endometriosis.

SciFive-base The 36-year-old woman has the following symptoms: primary infertility, unable
to conceive, dysmenorrhea and endometriosis.

biobart-large The 36-year-old woman has the following symptoms: primary infertility, unable
to conceive and dysmenorrhea.

B.2 USMLE-Symp Human Evaluation 113

Table B.12: Generation example with negative polarity from USMLE-Symp test set.

Triplet
(Hemophilia A, Has_as_symptom, Reduced factor VIII activity), (Hemophilia
A, Has_as_symptom, Joint hemorrhage), ..., (patient, is_a, 27-year-old man),
(patient, Does_not_suffer_from, Hemophilia A)

Reference
The patient is not exhibiting Reduced factor VIII activity, Joint hemorrhage,
Bleeding with minor or no trauma, Thromboembolism and Oral cavity bleeding,
hence the Hemophilia A diagnosis must be rejected.

bioGPT

Prefix Tuning
The following list of symptoms is not found in the Hemophilia A patient:
Reduced factor VIII activity, Joint hemorrhage, Bleeding with minor or no
trauma, Thromboembolism and Oral cavity bleeding.

Control Prefixes

The following list of symptoms is not found in the case description, hence
the Hemophilia A diagnosis must be rejected: Reduced factor VIII activity,
Joint hemorrhage, Bleeding with minor or no trauma, Thromboembolism and
Oral cavity bleeding.

Prefix Pooling
The patient, a 27-year-old man, has the following symptoms: Reduced factor
VIII activity, Joint hemorrhage, Bleeding with minor or no trauma, Thrombo-
embolism and Oral cavity bleeding.

biobart-large

Prefix Tuning
TheThe patient is a 27-year-old man and is affected by Hemophilia A: Reduced
factor VIII activity, Joint hemorrhage, Bleeding with minor or no trauma,
Thromboembolism and Oral cavity bleeding.

Control Prefixes

The following list of symptoms is not found in the case description, hence
the Hemophilia A diagnosis must be rejected: Reduced factor VIII activity,
Joint hemorrhage, Bleeding with minor or no trauma, Thromboembolism
and Oral cavity bleeding.

Prefix Pooling
The patient is not exhibiting these symptoms: Reduced factor VIII activity,
Joint hemorrhage, Bleeding with minor or no trauma, Thromboembolism and
Oral cavity bleeding.

Table B.13: Second generation example with negative polarity from the USMLE-Symp
test set.

Triplet (patient, is_a, 32-year-old woman), (patient, Does_not_suffer_from,
Acute leukemia)

Reference The patient, a 32-year-old woman, does not suffer from Acute leukemia.

bioGPT

Prefix Tuning The patient is a 32-year-old woman and is not affected by Acute leukemia.

Control Prefixes The patient is a 32-year-old woman and is not affected by Acute leukemia.

Prefix Pooling The patient, a 32-year-old woman, does not suffer from Acute leukemia.

biobart-large

Prefix Tuning The patient, a 32-year-old woman, does not suffer from Acute leukemia.

Control Prefixes The patient is a 32-year-old woman and is not affected by Acute leukemia.

Prefix Pooling The patient, a 32-year-old woman, does not suffer from Acute leukemia.

B.2 USMLE-Symp Human Evaluation 114

We also point out that, in general, medical models generate more complete and flu-

ent verbalizations, while avoiding unnecessary repetitions. For instance, in Table B.8

SciFive-large avoids the repetition of symptom dysmenorrhea. Tables B.12 to B.15

show four examples of varying degrees of complexity coming from the USMLE-Symp test

dataset: we mainly focus on comparing the three prompting techniques one against the

other, thus only displaying the texts generated by models bioGPT and biobart-large.

Table B.14: Generation example with positive polarity from USMLE-Symp test set.

Triplet

(47-year-old man, Suffers_from, Polyarteritis nodosa), (47-year-old man,
Has_symptom, joint and muscle pain), (47-year-old man, Has_symptom,
diffuse abdominal pain), (47-year-old man, Has_symptom, diffuse tenderness),
(47-year-old man, Has_symptom, occult blood), (Polyarteritis nodosa, Has_
as_symptom, Fever), (Polyarteritis nodosa, Has_as_symptom, Elevated
circulating C-reactive protein concentration), (Polyarteritis nodosa, Has_
as_symptom, Hypertension), (Polyarteritis nodosa, Has_as_symptom,
Abnormality of cardiovascular system morphology), (Polyarteritis nodosa, Has_
as_symptom, Raynaud phenomenon), (Polyarteritis nodosa, Has_as_
symptom, Cardiomyopathy)

Reference
The patient is showing Polyarteritis nodosa as the following symptoms are
direct symptoms of Polyarteritis nodosa and appear in the case description:
abdominal pain.

bioGPT

Prefix Tuning

The 47-year-old man has the following symptoms: joint and muscle pain,
diffuse abdominal pain, diffuse tenderness, occult blood and Elevated circula-
ting C-reactive protein concentration. The patient has the following symptoms:
Raynaud phenomenon, cardiomyopathy and Raynaud phenomenon.

Control Prefixes
These symptoms indicate that the patient my suffer from Polyarteritis
nodosa: Joint and muscle pain, Diffuse abdominal pain, Diffuse tenderness,
Diffuse tenderness and Elevated circulating C-reactive protein concentration.

Prefix Pooling

The 47-year-old man has been diagnosed with Polyarteritis nodosa with
the following symptoms: Joint and muscle pain, diffuse abdominal pain,
diffuse tenderness, diffuse tenderness, occult blood, Fever and Elevated
circulating C-reactive protein concentration.

biobart-large

Prefix Tuning
The following symptoms indicate that the patient has Polyarteritis nodosa:
joint and muscle pain, diffuse abdominal pain, occult blood, Fever, Elevated
circulating C-reactive protein concentration and Cardiomyopathy.

Control Prefixes
The patient can be diagnosed with Polyarteritis nodosa as they are showing
the following symptoms: Abnormality of cardiovascular system morphology,
Raynaud phenomenon and Cardiomyopathy.

Prefix Pooling

The following symptoms, diffuse abdominal pain, diffuse tenderness, occult
blood, Fever, Elevated circulating C-reactive protein concentration,
Hypertension and Cardiomyopathy, which are direct symptoms of
Polyarteritis nodosa.

B.2 USMLE-Symp Human Evaluation 115

We achieve excellent performances for shorter and easier triplet sets, while the quality

drops quite low on longer “why” and “why-not” explanations. As mentioned before,

this is to be attributed to a certain degree of misalignment between the triplets and

the provided references and to the fact that we do not have many such complex inputs

in the training dataset. From Table B.14 we notice that both Control Prefixes and

Prefix Pooling improve over Prefix Tuning for model bioGPT. Indeed, they link the

symptomatology with a diagnosis, while bioGPT in Prefix Tuning setting first correctly

enumerates the patient symptoms and then wrongly states that he is also affected by

all the characterizing signs of Polyarteritis Nodosa. Similarly, Table B.12 shows that

Prefix Pooling and Prefix Tuning obtain very similar results, while Control Prefixes

using polarity as a guidance signal outperforms them both. In fact, we can see that

the verbalizations produced by biobart-large and bioGPT in Control Prefixes closely

resemble the provided gold reference.

Table B.15: Second generation example with positive polarity from the USMLE-Symp
test set.

Triplet (Galactosemia, Has_as_symptom, Delayed speech and language development)

Reference Delayed speech and language development is a symptom of Galactosemia.

bioGPT

Prefix Tuning Delayed speech and language development is a symptom of Galactosemia.

Control Prefixes People with the disease Galactosemia may show Delayed speech and language
development as a symptom.

Prefix Pooling People with the disease Galactosemia may show Delayed speech and language
development as a symptom.

biobart-large

Prefix Tuning People with the disease Galactosemia may show Delayed speech and language
development as a symptom.

Control Prefixes People with the disease Galactosemia may show Delayed speech and language
development as a symptom.

Prefix Pooling Delayed speech and language development is a symptom of Galactosemia.

Appendix C

Visualizations

We now show some interesting visualizations related to the prefix parameters in our

models. In particular, in Section C.1 we display low-dimensional representations of

both the control prefixes and the components of the prefix pool. This is done in order

to verify whether the model is actually able to capture information about the semantic

similarity between categories, which we assume when performing zero-shot learning of

control prefixes for unseen categories. We also report heatmaps of the attention weights

at the last layer of our transformer architectures in Section C.2.

C.1 T-SNE Prefixes Representation

In the following sections, we show low-dimensional representations of the category con-

trol prefixes our models learned, both for the general-purpose WebNLG dataset and the

medically-oriented USMLE-Symp data. We also display the ten prefixes that make up

the pool in Prefix Pooling setting.

t-Distributed Stochastic Neighbor Embedding (t-SNE) [47] is a dimensionality re-

duction technique that is particularly well suited for visualizing high-dimensional data.

Indeed, a dataset may have thousands of dimensions, but often not all these features

are necessary to represent the points in a faithful way, making sure that those which are

close together remain so and vice-versa. t-SNE models dimensionality reduction as an

optimization problem: it first computed the euclidean distances between any two points

of the original dataset; then, it uses these distances to generate conditional probabilities

that evaluate how likely it is for two points to be neighbors. At this point, a random

C.1 T-SNE Prefixes Representation 117

set of elements in 2 or 3 dimensions is created, and the same conditional probabilities

are computed for it as they were computed for the original data. Finally, during the

optimization phase, the two probability distributions are brought to be as close as pos-

sible one to the other. The most important hyperparameter to set for this technique is

the perplexity, which closely correlates with the expected number of neighbors: a low

value makes the algorithm focus on the closest points, while the higher it is the more

t-SNE tries to get a large-scale, big-picture of the data. All our plots are realized with

perplexity set to 6 and a maximum number of iterations of 600.

C.1.1 WebNLG Visualizations

We now show t-SNE visualizations of control prefixes and prefix pool learned by models

gpt2-large and t5-large, which achieved particularly good results on the WebNLG

dataset.

Control Prefixes Figure C.1 displays masked-self attention components of each con-

trol prefix (comprising multiple key-value pairs at each layer) for gpt2-large in two

different scenarios, with and without layer dependency. We can see that, while the

topology of the prefixes undoubtedly changes, some important similarities remain: for

instance, City is always quite close to University, Airport, and Monument. Similarly,

the models both seem to recognize a certain semantic closeness between WrittenWork

and University.

(a) Without layer dependency (b) With layer dependency

Figure C.1: Control prefixes learned for WebNLG by model gpt2-large with and
without layer dependency.

C.1 T-SNE Prefixes Representation 118

Next, Figure C.2 displays the encoder, decoder, and cross-attention components

of the prefixes for model t5-large. Notice that the first of these three components is

particularly relevant, as the category is a piece of additional information about the input,

which shall thus be incorporated in the encoder information. Indeed, we can observe

how, in Figure C.2a, classes that are semantically close like City and Monument are

located one nearby the other in the low-dimensional space.

(a) Encoder (b) Decoder (c) Cross

Figure C.2: Control prefixes learned for encoder, decoder, and cross attentions in
t5-large with layer dependency.

Prefix Pooling Here we first look at the ten prompts learned by our gpt2-large

model in Prefix Pooling setting, with and without layer dependency. Figure C.3 shows

how, despite a clear change in topology, the closeness between some components re-

mains. For instance, prefixes 2 and 5 are always quite close together and the same can

be said for 6 and 3. Analyzing the distribution of these prefixes with respect to the

(a) Without layer dependency (b) With layer dependency

Figure C.3: Prefix Pool learned for WebNLG by model gpt2-large with and without
layer dependency.

category of the validation instances, we indeed see that those with indexes 3 and 6 are

C.1 T-SNE Prefixes Representation 119

quite often used with instances of type Food or Building, thus their similarity makes

sense. Figure C.4 then shows the encoder, decoder, and cross-attention components of

the prefix pool for model t5-large. We should note that the first two are probably

the most significant components, as one should capture eventual additional information

about the input, while the other should represent new desired characteristics for the

output verbalizations.

(a) Encoder (b) Decoder (c) Cross

Figure C.4: Prefix pools learned for encoder, decoder, and cross attentions in t5-large
with layer dependency.

C.1.2 USMLE-Symp Visualizations

We now show t-SNE visualizations of control prefixes and prefix pool learned by two

models (bioGPT and bioBART-large) on the USMLE-Symp dataset. We use these two

architectures as they we able to achieve good performances with most settings in the

experiments of Chapter 6.

Control Prefixes Regarding the Control Prefixes setting, we should remember that

our experiments included three different configurations: polarity-only, category-only,

and the combination of polarity and category. We will now only focus on the last

two possibilities, as we expect no meaningful non-obvious semantic relationships to

emerge from displaying the two polarity control prefixes. Figure C.5 shows the category

prefixes learned by bioGPT when including and not including polarity as an additional

guidance signal. We can notice that, despite changes in the topological placements of

the elements, some of them remain close together: for instance, Skin, Hair and Nails

is always near to Blood and blood-forming tissues. Similarly, both models consistently

C.1 T-SNE Prefixes Representation 120

place Consitutional symptom close to Genitourinary system. Overall, examining the

produced visualizations, we notice that the similarities encoded when also taking into

account the polarity information seem to be more realistic: this would indeed be in

accordance with our results in Section 6.4, where the polarity+category setting achieved

better performances.

(a) Without polarity (b) With polarity

Figure C.5: Control prefixes learned for USMLE-Symp by model bioGPT, with and
without additional polarity information.

Next, Figure C.6 shows the encoder components of the category control prefixes for our

best configuration, that is, the one using polarity and class as two separate guidance

signals. We can immediately notice that the two similarities we pointed out before are

not as obvious here: this leads us to hypothesize that our models struggle to find actual

Figure C.6: Encoder control prefix components for biobart-large on the USMLE-
Symp dataset.

C.1 T-SNE Prefixes Representation 121

differences between the various semantic classes. Indeed we previously pointed out how

category information might be superfluous for the USMLE-Symp data, where most of

the triplets have the same structure and the same predicate, no matter their topic.

Prefix Pooling Regarding the Prefix Pooling setting, we now display the ten prompts

learned by our bioGPT model in Figure C.7, while Figure C.8 shows the encoder, decoder,

and cross attentions components of the prefix pool for model biobart-large.

Figure C.7: Prefix pools learned by bioGPT on the USMLE-Symp data.

(a) Encoder (b) Decoder (c) Cross

Figure C.8: Prefix pools learned for encoder, decoder, and cross attentions in
biobart-large on the USMLE-Symp data.

We can immediately see how some prefixes appear close together in both bioGPT and

the encoder component of biobart-large. For instance, prompt 2 is always quite close

to prompt 1, as is prompt 10. By looking at how these prompts correlate with the HPO

category associated with each input we do indeed see that those with index 1 and 2 are

often used fro classes Endocrine and/or Cardiovascular. Decoder and cross-attention

components in biobart-large are less easily interpretable.

C.2 Attention Heatmaps 122

C.2 Attention Heatmaps

In this final section, we show heatmaps representing the weights for the decoder masked

self-attention in two autoregressive models, that is, gpt2-large for the WebNLG dataset

and bioGPT for USMLE-Symp. Figure C.9 shows how these values relative to head 14 of

the last transformer layer change for Prefix Tuning, Control Prefixes, and Prefix Pooling.

Overall, it seems that the longer the prefix the less important the starting prefix tokens

start to be on the overall results. Finally, Figure C.10 shows the attention weights for

the last layer of model bioGPT; we again choose to display those related to head 14 and

compare the Prefix Tuning setting with the two dynamic prefixes approaches.

(a) Prefix Tuning (b) Control Prefixes (c) Prefix Pooling

Figure C.9: Comparisons of attention weights of head 14 of the last layer in gpt2-large
for the WebNLG dataset.

(a) Prefix Tuning (b) Control Prefixes (c) Prefix Pooling

Figure C.10: Comparisons of attention weights for head 14 of the last layer in bioGPT
for the USMLE-Symp dataset.

Acknowledgements

First, I would like to thank professor Torroni for supporting me in this journey and

helping set everything up for my internship abroad. I am also extremely grateful to

professors Cabrio and Villata from the Côte d’Azur University for giving me the possi-

bility to work on such an interesting research project and for the support they provided

through the entire experimentation and writing process. Moreover, I wish to thank the

whole Wimmics team at Inria for welcoming me with open arms during my internship.

A special mention should go to Benjamin and Santiago, for their work on the ANTI-

DOTE project and on the USMLE-Symp dataset. Without them this work might not

be here.

I am very thankful for all the great lecturers of the master in Artificial Intelligence at

the University of Bologna, and especially to professor Stefano Ferretti for encouraging

me to pursue a research career and for the amazing opportunities he offered.

I will always be very grateful to my family, my parents and sister Sara, for always

supporting my goals and giving me all the resources and encouragement needed to

reach them. Finally, a big thank you to my friends, for always being there and willing

to listen whenever I needed to walk through a problem with someone, even if they all

know next to nothing about AI.

	Introduction
	The ANTIDOTE Project
	Background
	Pre-trained Language Models
	GPT-2
	BART
	T5

	Lightweight Fine-tuning Strategies
	Adapter-tuning
	Prompting

	Text Generation
	Decoding Methods
	Evaluation Metrics

	Generating Text via Prompting
	Prefix Tuning
	A different parametrization

	Control Prefixes
	Prefix Pooling

	Datasets
	WebNLG
	USMLE-Symp

	Experiments
	Experimental Setup
	Evaluation Strategy
	Experimental Results on WebNLG
	Prefix Tuning
	Control Prefixes
	Prefix Pooling

	Experimental Results on USMLE-Symp
	Prefix Tuning
	Control Prefixes
	Prefix Polling

	Discussion
	WebNLG: Analysis of Results
	USMLE-Symp: Analysis of Results

	Conclusions
	Bibliography
	Appendices
	Hyperparameters
	Prefix Tuning
	Control Prefixes
	Prefix Pooling

	Qualitative Analysis
	WebNLG Human Evaluation
	USMLE-Symp Human Evaluation

	Visualizations
	T-SNE Prefixes Representation
	WebNLG Visualizations
	USMLE-Symp Visualizations

	Attention Heatmaps

	Acknowledgements

