
ALMA MATER STUDIORIUM  

UNIVERSITÀ DI BOLOGNA  
 

SCHOOL OF ENGINEERING AND ARCHITECTURE 

 

Department of Electrical, Electronics, and Information Engineering “Guglielmo Marconi”- 

DEI 

 

DEGREE PROGRAM 

Automation Engineering 

 
THESIS TITLE 

 

Optimization model of an electric vehicle parking lot for the 

provision of flexibility services to the distribution system 

operator 

 
 

 

 

 

Supervisor                                                                                                Presented by 

Prof. Alberto Borghetti                                                                           Jereney Johnson 

                                                                                                                 Matricola: 0000925431 

Co-supervisors 

Prof. Fabio Napolitano 

Prof. Fabio Tossani 

 

 

Academic Year- 2022/23 



2 
 

Abstract 
This thesis focuses on the optimization of a parking lot equipped with charging stations 

for electric vehicles (EVs) to provide flexibility services to the distribution system operator 

(DSO). The proposed models consider the charging and discharging of EVs, and the use of their 

batteries to provide flexibility services. The objective is to minimize the consumption of the 

energy from the grid while ensuring that the DSO's flexibility requirements are met. The models 

take into account the uncertainty in EV’s charging and discharging patterns. Four models are 

presented, and the performances are illustrated for a case study with different scenarios. The 

results show that the proposed model can effectively provide flexibility services to the DSO 

while providing maximum reduction of energy from the grid. The presence of an auxiliary 

battery is also considered to reduce the influence of the uncertainties associated with the number 

and characteristics of the parked EVs. The study provides insights into the potential benefits of 

EV parking lots in providing flexibility services to the electricity grid. 

 

Keywords: electric vehicles, EV parking lot, flexibility services, mathematical programming, 

optimization  
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Chapter 1 

Introduction 
 

General overview of the thesis topic 

There are two clear tendencies that affect or are expecting to affect the operation of 

electric power distribution systems: 

- the installation of distributed generation, i.e., generation units connect directly to the 

medium voltage (MV) or even low voltage (LV) distribution networks, which use 

renewable energy resources, mainly solar; 

- the increase adoption of electric vehicles for private mobility. 

These two tendencies make the forecasting of system operating conditions more 

difficult and require the installation of storage systems. Since these systems are expensive, a 

cheaper alternative for the distribution system operator is the procurement of flexibility services 

from the network users. 

The flexibility services consist in the stated and verified willingness of the user to 

increase or decrease active and reactive power injections considering a predefined time horizon.  

Among the users that can provide active power flexibility services are the parking lots 

equipped with several charging stations. When there are cars connected to the charging stations, 

which can be even bidirectional, the parking lot as a whole (managed by a, so called, aggregator) 

can postpone or anticipate the charging/discharging processes to reduce or increase the load 

consumption from the network, following the distribution system operator requests, using the 

energy storage provided by the vehicles’ batteries. 

 

Specific scope of the thesis 

The scope of this thesis is the development and the test of optimization procedures for 

the calculation of the flexibility margin by the parking lot aggregator. 

An optimization model for a parking lot of electric vehicles would aim to maximize the 

utilization of the available charging stations, by minimizing the energy procurement costs 

needed to satisfy the requests of the customers, i.e. the electric vehicle users. The following are 

the key components that should be included in the optimization model for the management of 

the parking lot by the aggregator: 
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1. Demand forecast: the model would need to estimate the number of electric vehicles that 

are likely to use the parking lot is all times during the day. This could be based on 

historical data, surveys, or other relevant means (e.g., booking services). 

2. Charging schedule: the model needs to optimize the charging schedule of the electric 

vehicles to ensure that all vehicles are fully charged when their owners return to the 

parking lot. This involves predicting the time that each vehicle will be parked and 

determining the optimal charging schedule based on the available charging stations. 

3. Flexibility: the model needs to calculate the maximum power reduction in each time of 

the optimization horizon that can be offered to the distribution system operator, with a 

reward. 

The thesis does not address the topic of pricing strategy, i.e., the choice of the optimal 

pricing strategy for charging services to ensure that the parking lot is profitable while also being 

competitive with other charging stations in the area. This could be based on factors such as the 

cost of electricity, the cost of maintaining the charging infrastructure, and the demand for 

charging services. In the thesis, both the price of the energy procurement and the reward rate 

for the provision of the active power reduction flexibility service are considered predefined by 

the utility or the energy authority, although they can be different in different hours of the day. 

Overall, the optimization model for a parking lot for electric vehicles would need to 

balance the needs of the customers (e.g., availability of charging stations, convenience, 

affordability) with the goals of the parking lot operator (e.g., maximizing utilization, 

profitability). 

 

Structure of the thesis 

Chapter 2 is devoted to a review of the flexibility services, with specific reference to the 

case of parking lots equipped with several charging stations. For the scope of this thesis the 

behaviour of parking lot is described with an aggregate model, neglecting the specific charging 

and discharging operation of the single changing stations. We assume that an aggregator is 

responsible for the interface with the utility network, both for the procurement of the energy 

needed to charge the vehicles, exploiting the differences of price in the various time periods, 

and for the provision of the power reduction service at the requests of the distribution system 

operator. 

Chapter 3 is devoted to the presentation of the optimization models. Four models are 

considered. The first minimizes the energy procurement costs for each considered scenario that 

describes the presence and characteristics of the parked vehicles during the next day. The 
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second model extends the analysis by including the calculation of a common profile of electric 

power consumption for the next day that can be declared to the distribution system operator as 

reference profile. The third model calculates the maximum power reduction that can be offered 

with respect to the reference profile, under the assumption of a single power request by the 

distribution system operator during the day. The fourth model considers the presence of an 

auxiliary battery storage system in the parking lot, which is used to compensate the uncertainty 

of the number and characteristics of the parked vehicles during the day. 

Chapter 4 presents the implementation of the optimization models by using Pyomo, 

which is a Python library for the description of mathematical optimization models and their 

solution by using appropriate solvers. The models considered in this thesis are quadratic in the 

objective function with linear constraints without binary or integer variables. 

Chapter 5 presents the results of some numerical tests. The numerical test includes 

checking the variation of the objective value and the variables by changing the parameter 

values. Also, for each of the models, numerical results, graphs, and comparisons among the 

models are described. 

Chapter 6 is devoted to the conclusions and to the description of the possible 

improvements of the developed models.  
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Chapter 2 

Parking lot with several charging stations as new load for 

the power network 
  

This chapter describes the operation of a parking lot with several charging stations and 

the possibility to provide flexibility services to the distribution system operator. 

 

2.1 Integration of charging stations of electric vehicles in microgrids with 

renewable power generation 
 Fig. 2.1 illustrates a microgrid that includes an integrated system of renewable 

generation (e.g., PV panels), stationary BES units, local load, and the EV parking lot. 

 
Figure 2.1 - Scheme of a microgrid with both local generation and EV charging stations. 

The integration of charging stations of electric vehicles (EVs) in microgrids with 

renewable power generation is an important step towards achieving a sustainable and reliable 

energy system. Microgrids are small-scale power grids that can operate independently or in 
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connection with the larger grid. The energy procurement cost associated with the operation of 

the considered site is minimized by a central dispatching system. 

The literature on the approaches to manage the charging of electric vehicles is quite 

large, as shown in the recent survey presented in [1]. An analysis of the advantages and 

drawbacks of different approaches to the integration of EVs is presented in [2]. It is generally 

acknowledged that a specific operating strategy is needed in order to avoid the overload of the 

network in case of many vehicles charge at the same time. The presence of fast charging stations 

with rating of several tens of kW make the problem more important, as shown, in e.g., [3] that 

presents a study of the state-of-art of fast charging stations including experimental tests. In [3] 

provides valuable insights into the practical implementation of fast charging stations and energy 

storage technologies in a smart micro grid, highlighting the importance of such technologies in 

managing the load on the grid during peak charging periods and maximizing the efficiency of 

the system. 

The integrated operation of parking facilities with renewable energy resources has been 

studied in, e.g., [4]. In general, the idea behind the integrated operation is the attempt to use the 

storage capability of parked vehicles to compensate the fluctuations of the production from 

renewable resources, with specific reference to photovoltaic (PV) generation. An evaluation of 

the integration of charging stations with PV systems, in order to cope with the fluctuation of 

solar irradiance, has been performed in [5], with the presentation of specific strategies and 

power electronic components.  

A specific characteristics of parking lots is that the presence of vehicles connected to 

the charging stations depends on the number of arrivals and departures in each period. These 

numbers are stochastic. An approach that takes into account the uncertainties of electric vehicle 

arrivals and departure, as well as the grid power price, has been presented in [6]. The scheduling 

of the electric vehicles fully exploits the production from renewable resources and the periods 

when the power price is lower.  

The case of the integration of electricity and heat generation, electrical loads, PV units 

and charging stations in an industrial microgrid is presented in [7]. Also, the benefits of the 

coordination approach, such as the ability to reduce the peak demand on the grid, improve the 

utilization of renewable energy sources. 
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2.2 Impacts of electric vehicle charging on the state of the distribution 

network and countermeasures. 
 

As mentioned, introducing a parking lot with several charging stations can have a 

significant impact on the power network, especially if the charging stations are high-capacity 

and if a large number of electric vehicles are being charged simultaneously.  

The ways in which a parking lot with charging stations affect the power network are: 

• Increased demand: each charging station draws a significant amount of power, especially 

if it is a fast charger. As a result, a parking lot with multiple charging stations can 

significantly increase the overall power demand in the area. 

• Peak demand: the charging stations are likely to be used during peak periods, such as in 

the morning or evening when people are commuting to and from work. This can create a 

peak demand on the power network, which can be challenging for utilities to manage. 

The typical countermeasures against the negative effects on the operation of the 

distribution network are: 

•   Load balancing: to manage the increased demand, utilities introduce load balancing 

measures, such as time-of-use pricing or demand response programs, which incentivize 

customers to charge their vehicles during off-peak periods. 

• Infrastructure upgrades: in some cases, the power network may require upgrades to 

support the increased demand from the charging stations. This could involve installing 

new transformers, upgrading distribution lines, or building new substations. 

• Renewable energy integration: parking lots with charging stations could be an 

opportunity to integrate more renewable energy into the power network. For example, 

solar panels could be installed on the roof of the parking lot to offset the energy 

consumption of the charging stations. 

Overall, introducing a parking lot with charging stations can have a significant impact 

on the power network. Utilities and policymakers will need to work together to manage the 

increased demand, balance the load, and ensure that the necessary infrastructure upgrades are 

made to support the growth of electric vehicles. 

 Another countermeasure is the exploitation of vehicle to grid capabilities. The charging 

stations may be made bidirectional, so there is the possibility not only to charge the vehicle 

battery but also to discharge the battery and inject back the power to the network or use it to 

charge other vehicles with more stringent requirements. 
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2.3 Vehicle to grid 
  

Another countermeasure is the exploitation of vehicle to grid (V2G) capabilities. The 

charging stations may be made bidirectional, so there is the possibility not only to charge the 

vehicle battery but also to discharge the battery and inject back the power to the network or use 

it to charge other vehicles with more stringent requirements. 

An optimization model for the assessment of the contribution of V2G systems has been 

proposed in [8]. The presented procedure allows the minimum cost management of the 

microgrid that includes both the bidirectional charging stations and the renewable energy 

production. The set of vehicles connected to the bidirectional charging stations are operated as 

a storage system, compensating the fluctuations of the renewable production.  

When the number of charging stations is large, the methods presented in the literature 

includes often a specific operator, called aggregator. The method described in [9] contemplates 

the presence of an aggregator acting as an intermediate agent between end-users and the 

distribution system operators. End users include the clusters of charging stations. 

Specific contributions refer to the use of tariffs rates designed to facilitate the 

installation of bidirectional charging stations and their use in V2G mechanisms. For example, 

a study of the feasibility of premium tariff rates for V2G services is similar to feed-in-tariff 

(FIT) programs for renewable energy generation, has been presented in [10]. 

 

2.4 Uncertainties associated with the operation of a cluster of charging 

stations 
 

To cost-effectively operate the microgrids equipped with clusters of charging stations, 

other than the renewable generation and the typical load, it is crucial to consider the 

uncertainties associated with the presence and state of the vehicles in the parking lot. 

The uncertainties are associated with: 

- number of vehicles entering the parking lot at each time; 

- number of vehicles leaving the parking lot at each time; 

- characteristics of the vehicles, such as the size of the battery; 

- initial level of the charge when the vehicle enters in the parking lot; 

- level of the charge that should be guarantee to the vehicle when it leaves the parking 

lot. 
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In order to deal with all these uncertainties, the aggregated model used in this thesis 

makes 

reference to the linear programming model presented in [11]. Different stochastic models for 

the optimal operation of electric vehicle parking lots in microgrids are those presented in [8] 

and [12]. Specific approaches have been proposed in [13] for the integration of parking lots in 

the main power system, with the coordination with the production of large wind farms and the 

unit commitment of thermal and hydro power plants.  

To achieve the objectives of the optimal operation of a microgrid, energy management 

systems implement smart charging approaches to align the charging and dispatching processes 

with the optimization objectives of the site. In [16] it is described the construction of a scenario 

tree obtained by means of the scenario reduction technique. The tree is employed by the energy 

management system to solve the day-ahead scheduling of the energy resources in the site. The 

scenario tree is built by means of a reduction technique based on k-medoids so that all the 

representative scenarios included in the tree are feasible. The operator of the parking lot 

commonly seeks an economic benefit, whilst offering the users the option of charging their 

vehicles at the lowest possible cost. The objective is the minimization of the expected daily 

procurement costs. The use of the initial energy in the electric vehicles entering the parking is 

limited. The model considers other typical constraints (such as maximum number of available 

charging stations, size of the vehicle batteries, and the power ratings of charging stations). 

Moreover, a procedure aimed at guaranteeing a feasible solution for the operation of the site is 

introduced. The day-ahead optimal scheduling of a parking lot with several bidirectional 

charging stations for plug-in electric vehicles, part of a grid-connected system, is obtained by a 

central dispatching unit that implements a multistage stochastic optimization considering the 

uncertainties of connected electric vehicles. Some of the scenarios of the tree obtained by 

applying the approach presented [16] are used in this thesis as described in Chapter 3. 

 

2.5 Capability of electric vehicle parking lots to provide flexibility services to 

the distribution system operator 
 

It is a burden on utility companies to ensure that the electricity demand is always met. 

The increasing integration of large amounts of intermittent renewable energy resources into the 

distribution grid and the increased use of electric vehicle brings some emerging economic and 

technical challenges. The intermittent and stochastic nature of most renewable generation can 
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lead to changing temporal dynamics of net demand, increasing its variability and 

unpredictability. The characteristics of the renewable generation can undermine and make 

uncertain the satisfaction of the energy demand and the maintenance of the stability of the 

power supply system, both in terms of voltage and frequency regulation. 

To counteract the negative effects of a high penetration of renewable resources and the 

load due to charging stations, it is necessary to increase the flexibility of both planning and 

operation of the power system. In fact, it is widely recognized that increased flexibility is the 

key to reliable operation of a modern electricity system. Flexibility services can be offered by 

individual providers such as: passive end users via demand response programs, active end users 

with distributed generators, energy communities and electric vehicle aggregators, which are 

available to vary the injected/absorbed powers following requests from both the distribution 

system operator (DSO) and the transmission system operator (TSO).  

Some flexibility services with specific reference to the balancing of active power and to 

voltage regulation are provided by the electric vehicle aggregators, to reduce the impact of the 

simultaneous recharging on the functioning of the distribution network. The aggregation 

functions of the operation of the charging stations of a parking lot can be incorporated into the 

framework of the energy community. 

In [14] the storage capability of electric vehicle parking lot is represented so that the 

parking lot can participate in a demand response scheme. In this scheme, price signals are 

calculated by the distribution system operator and broadcasted to all the customers. The 

customers reduce the load demand in periods of high price and recover the consumption in 

period of low price. This scheme may be effective for the case of parking lots, particularly if 

bidirectional charging stations are used, so that it is possible to reduce temporarily the load 

consumption and provide the energy needed to the vehicles leaving the parking lot by using the 

energy already stored in the other cars.  

New regulatory frameworks have been set up to increase final user participation in the 

electricity market in several parts of the world. Emerging regulations are fostering the 

participation of final users, single or aggregated collectives, in both the energy market and the 

ancillary services markets. As an example, the Italian Regulatory Authority for Energy, 

Networks and Environment (ARERA) has issued a call for projects for the provisions of local 

ancillary services (resolution August 3, 2021 352/2021/R/eel), i.e. those useful for the operation 

of distribution networks, that completes a previous resolution (May 5 2017 300/2017/R/eel) 

relevant to global ancillary services, i.e. those acquired by the transmission system operator, in 

the framework of the electricity market regulation (July 23, 2019 322/2019/R/eel).  
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As described in Chapter 3, this thesis focuses on the flexibility service that is the 

reduction of the load consumption by the parking lot as soon as a specific request is made by 

the distribution system operator. In order to provide this service, the parking lot aggregator 

needs to calculate the reference consumption profile in a future horizon (one day in this thesis) 

and to calculate the maximum power reduction that can be offered as flexibility service for all 

the periods of the day. 
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Chapter 3 

Description of the Model  
 

In this chapter, the detailed description of the proposed model is discussed. The main 

objective function and the constraints for all the models chosen is provided in detail. The input 

data for each model are also depicted. 

The models described in this section is aimed at defining the day-ahead scheduling of 

the global charging of EVs batteries connected to the charging stations in order to minimize the 

cost of energy procurement. The considered site is connected to the external utility grid and 

includes a PV unit and local loads. 

The linear programming model presented in [11] is characterized by the introduction of 

specific operating rules relevant to the initial energy available in the EVs entering the parking 

lot. In the following, the two-stage stochastic model proposed in [11] will be extended into a 

multistage stochastic programming model, following the approach of [15],[16].  

List of the models: 

 - Model A: Model with single next-day scenario 

 - Model B: Model to calculate a common profile for all the scenarios  

 - Model C: Model to calculate the maximum load reduction for the flexibility service 

 - Model D: Model for the provision of the flexibility service with an additional battery 

  

3.1 Formulation of model A: model with single scenario 
 

The stochastic optimization problem considered by the dispatching centre is represented 

by (3.1) with an optimization horizon corresponding to the next day (divided into 1-hour 

periods): 

∑ 𝜌&'()
) 𝐸*+,-)   (3.1) 

parameter 𝜌&'()  corresponds to the Time-of-Use (TOU) tariff for purchasing energy from the 

grid in period t  in [0,T] (we consider T=24, i.e., one day divided in 1h periods). Nonnegative 

variable 𝐸*+,-)  corresponds to the energy bought from the utility grid.  

The constraints that represent the behaviour of the V2G parking lot are: 

𝐸.) − 𝐸.)/0 − 𝐸12_4255) − 𝐸.6) + 𝐸./) = 0  (3.2) 

𝐸."7%) − 𝐸."7%)/0 − 𝐸12_4255) − 𝜇)	𝐸.6) + 𝐸./) − ∑ (1 − 𝜇))𝐸!"!
8,) = 0)

89:          (3.3) 
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𝜇) − 𝜇;<=) ≤ 0  (3.4) 

𝐸*+,-) − 𝑃;<=>?	𝑁@<AB)/0 	∆𝑡 ≤ 0  (3.5) 

𝐸.) − 𝐸CDEF)GH𝑁@<AB) ≤ 0  (3.6) 

𝑃@<AB) 	∆𝑡 −	𝐸*+,-) = 0  (3.7) 

𝐸*+,-) 	𝜂 − 𝐸12_4255) 	= 0                                                                                                        (3.8) 

𝑃@<AB) 		− 	𝑃@!"# ≤ 0                                                                                                               (3.9) 

Constraint (3.2) defines the energy 𝐸.) stored by the EV’s batteries at the end of period 

t.  Nonnegative parameter 𝐸.6) 	 is the initial energy inside the cars that enter in the parking lot 

at time t. Nonnegative parameter 𝐸./) 	 is the energy inside the cars that leave the parking lot at 

time t. 𝐸12_4255)  is the net energy injected in the battery from the grid, considering the reduction 

due to the losses in the charging station and the battery). The model assumes that all the cars 

enter or leave only at the end of the period.  

Constraint (3.3) limits the use of the energy initially stored in the cars that enter in the 

parking lot by using variable 𝜇) ∈ [0,1]. 𝐸!"!
8,) is the initial energy of the cars that enter in the 

parking lot at time j and leave at time t.  

Constraint (3.4) limits the maximum value of 𝜇) to be below the input data the maximum 

value of 𝜇;<=,"@I%)  . To avoid the discharge of the EV batteries below a minimum value, the 

initial charge of the cars that enter at time t (𝑁!") ) may be used only for the amount exceeding a 

predefined minimum fraction (emin) of the rated energy size : 

𝜇;<=) = min	(𝜇;<=,"@I%) , Δ𝐸.6) )	if Δ𝐸.6) ≥ 0 othewise 𝜇;<=) = 0            (3.10) 

where Δ𝐸.6) = 𝐸.6) − 𝑁!") 	𝐸CDEF)GH 	𝑒;!"	 

The model assumes that all the cars have the same  value. 

Constraints (3.5) limits the maximum energy from the grid considering the number of 

charging stations occupied 𝑁@<AB)/0  at time t-1, the maximum power of each charging station 

𝑃;<=>?	, and the duration of each period ∆𝑡.  

Constraints (3.6) limits the maximum level of stored energy in the parked cars at the 

end of period t considering the number of parked cars and the rated energy size.  

Constraints (3.7) links the energy injected in the cars from the grid and the average 

power 𝑃@<AB)  consumed by the parking lot during period t. 

Constraint (3.8) introduces the charging process efficiency 𝜂 in the link between 𝐸*+,-)  

and 𝐸12_4255) . 

Rated
EVE

Rated
EVE
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Constraint (3.9) limits the maximum power 𝑃@!"# of the connection between the parking 

lot and the distribution network. 

This scheme permits the implementation of the battery-to-battery charging strategy in a 

V2G system.  

Input data of the model have been taken from different scenarios as described in the 

next section. 

 

3.1.1 Input data of model A 
 

The input data for model A are the different parameters used to describe the model. 

They are based on the forecast of the number of cars that enter the parking lot at time t 𝑁!")   and 

the number of cars that leave at time t. From these forecasts, the number of cars parked at the 

end of each period t 𝑁@<AB)  is obtained. The initial energy inside the cars that enter in the parking 

lot  𝐸.6)  is estimated assuming for each car a positive random value obtained with a truncated 

normal distribution with mean value of 0.3 the battery capacity. The energy that leaves the 

parking lot with the cars 𝐸./) 	 is evaluated assuming that all the cars leave the parking lot fully 

charged. The parameters values for 24 hours represent, fed into excel file, include also the tariff 

for purchasing energy from the grid at time t 𝜌&'() , and 24×24 matrix with elements 𝐸!"!
8,) , each 

representing the initial energy of the cars that enter in the parking lot at time j and leave at time 

t. The figures below show the values chosen for model A for one scenario. 

  
Figure3.1- Input values of model A 
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Figure 3.2- 𝐸JKJ
8,)  of model A 

Here, the time has considered from t=1 to t=24. The price for purchasing the energy 

from grid is almost the same till 6th  hour and 23rd, 24th equals to 51.62 and shows an increase 

from 7th hour to 22nd hour. The predefined values of time period duration ∆𝑡 , rated power of 

the charging stations 𝑃;<=>?, EV battery capacity (assumed for simplicity the same for each 

car) 𝐸CDEF)GH, the minimum level of energy in the battery cars 𝑒;!", and the charging/discharging 

efficiency  𝜂 are: 

∆𝑡 = 1h  

𝑃;<=>? = 40	kW  

𝐸CDEF)GH = 40	kWh  

𝑒;!" = 0.2	pu  

𝜂 = 0.96 

𝑃@_;<= = 	100𝑃;<=>?  

The input data are repeated for 8 different scenarios, 𝜔, fed into separate excel files. 

The parameters are different for each scenario are 𝐸.6
L,) the initial energy inside the cars that 

enter in the parking lot, 𝐸./
L,)	 is the energy inside the cars that leave the parking lot, 𝑁!"

L,) the 

initial charge of the cars that enter at time t and scenario 𝜔, the number of charging stations 

occupied 𝑁@<AB
L,)  at time t and scenario 𝜔, 𝐸!"!

L,8,) is the initial energy of the cars that enter in the 

parking lot at time j and leave at time t in scenario 𝜔.  
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Figure3.3- Profiles of Nparch for all the 8 scenarios 

The above figure shows the number of parked cars at each scenario. It shows slight 

variation only to each scenarios. 

 

3.2 Formulation of Model B: common profile for all the scenarios 
 

The aim of the model is to create a common profile 𝑃@A2M)  that represent the reference 

profile that can meet the requirements of the different scenarios with the minimum mismatch 

for the next day consumption.  

The implemented model considers the eight scenarios that we defined in model A.  

For this purpose, a variation has been made in the objective function and the constraints. The 

objective function and the constraints for the common profile creation are depicted below:   

∑ [𝜌&'() 𝐸*+,-
L,) + pen_dev(𝑃@A2M) − 𝑃@<AB

L,) )N]),L                                                                       (3.11) 

The objective function considers the summation of the daily energy procurement costs 

for all the scenarios (assuming the same probability for all the scenarios) and the summation of 

the square of differences between 𝑃@A2M)   and 𝑃@<AB
L,)  in period t for each scenario 𝜔, penalized by 

the predefined parameter pen_dev. 

The constraints for the robust profile are (3.2)-(3.9), replacing 𝐸*+,-)  with 𝐸*+,-
L,) , 𝑃@<AB)  

with 𝑃@<AB
L,)  , 𝐸12_4255)  with 𝐸12_4255

L,) , 𝐸."7%)  with  𝐸."7%
L,) , 𝐸.) with  𝐸.

L,), and 

𝑃@A2M) − 𝑃@<AB
L,) ≤ tol_prof                                                                                                         (3.12) 
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𝑃@<AB
L,) − 	𝑃@A2M) ≤ 𝑡𝑜𝑙_𝑝𝑟𝑜𝑓                                                                                                          (3.13) 

Constraints (3.12) and (3.13) constraints the maximum difference between 𝑃@A2M)  and the 

profiles of each scenario by using the tolerance tol_prof.  

The value of the tolerance can be reduced by adding a battery energy storage in the 

system. With the battery, the objective function becomes:  

∑ [𝜌&'() 𝐸*+,-
L,) + pen_devU𝑃@A2M) − 𝑃@<AB

L,) VN]),L

+∑ (pen_dev(𝐸𝑆O<%%7AP
L,NQR − 𝐸𝑆JKJO<%%7AP))

N
L

                                                                       (3.14) 

The combined objective function also penalizes the difference between the auxiliary 

battery energy at the end of the next day 𝐸𝑆O<%%7AP
L,NQR  and the energy of the battery at the beginning 

of the next day 𝐸𝑆JKJO<%%7AP. For simplicity, the model does not consider the charging and 

discharging power loss in the auxiliary battery. 

The additional constraints of the model with the auxiliary battery are: 

𝐸𝑆O<%%7AP
L,) − 𝐸𝑆O<%%7AP

L,)/0 − 𝐸O<%%7AP
L,) = 0   for     t > 0                                                               (3.15) 

𝐸𝑆O<%%7AP
L,) − 𝐸𝑆JKJO<%%7AP = 0       if t=0                                                                                (3.16) 

where 𝐸O<%%7AP
L,)  is the energy that is stored (positive) or discharged (negative) by the battery. 

The energy storage in the battery is limited between a minimum and maximum level. The 

maximum corresponds to the battery size. 

Moreover, (3.5) is replaced by 

𝐸*+,-
L,) − (U𝑃;<=>?	𝑁@<AB

L,)/0V + 𝑃maxO<%%7AP)	∆𝑡 ≤ 0                                                             (3.17) 

where 𝑃maxO<%%7AP is the maximum power output of the battery. 

Constraint (3.8) is replaced by 

𝐸*+,-
L,) 	− 1/𝜂𝐸12_4255

L,) − 𝐸O<%%7AP
L,) 	= 0                                                                          (3.18) 

Constraint (3.9) is replaced by 

𝑃@<AB
L,) 		− 	𝑃@!"# −

0
∆)
𝐸O<%%7AP
L,) ≤ 0                                                                                         (3.19) 

 

3.2.1 Input data of model B 
 

For the penalization pen_dev, the rather high value of 200 has been arbitrarily chosen. 

If the tolerance is too small, the model may be infeasible. Therefore, the calculation has been 

repeated for several values of tol_prof, with a final selection of tol_prof equal to the rated value 

of a single charging station (40 kW). 
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For the case with the auxiliary battery, the data of the battery size, maximum power of 

charging and discharging of the battery are  

battery_size=1 MWh 

PmaxO<%%7AP =1MW 

The model assumes that the auxiliary battery is fully charged at time equal to zero. 

𝐸𝑆JKJO<%%7AP =battery_size 

With the presence of the battery the tolerance can be avoided, i.e., 

tol_prof=0 MW 

 

3.3 Formulation of Model C: maximum reduction for the flexibility service 
 

The objective of this model is to calculate the maximum reduction of the consumption 

of energy from the grid at each period with respect to the profile calculated by Model B, i.e., 

𝑃@A2M_A7M) , considered as the reference profile for the next day. This reduction is offered to the 

distribution system operator as flexibility service. The optimization is repeated for each period 

tflex when the reduction can be requested to the parking lot.  

The objective function for maximum reduction is described below: 

∑ [𝜌&'() 	𝐸*+,-
L,) − rewardMT7=	∆MT7=]),L                                                                                  (3.20) 

The objective function considers the summation of the daily energy procurement costs 

for all the scenarios and difference reduction term. The reduction terms is given by the product 

between the predefined reward and the maximum reduction describe by positive variable ∆MT7=. 

These two terms play a significance role in reducing the overall objective function at every 

period.  

The constraints for maximum reduction are (3.2),(3.3),(3.4),(3.5),(3.6),(3.7),(3.8),(3.9), 

replacing 𝐸*+,-)  with 𝐸*+,-
L,) , 𝑃@<AB)  with 𝑃@<AB

L,)  , 𝐸12_4255)  with 𝐸12_4255
L,) , 𝐸."7%)  with  𝐸."7%

L,) , 𝐸.) 

with  𝐸.
L,), 𝜇) with 𝜇L,), 𝜇;<=)  with 𝜇;<=

L,) . 

The model assumes that the reduction can be requested in a single period tflex during the 

day. Moreover, the parking lot can recover the energy in a period after tflex with a duration 

flex_recover. The profile that considers both the reduction and the recovery is 𝑃@A2M_MT7=) . 

Constraint (3.22) is used when either one of the conditions t < tflex or t < tflex + flex_recover is 

satisfied (i.e., before tflex and after the recovery period). 

𝑃@A2M_MT7=) − 𝑃@A2M_A7M) = 0	                                                                                                   (3.21) 
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If t = tflex 

∆MT7= + 𝑃@A2M_MT7=) − 𝑃@A2M_A7M) = 0	                                                                                       (3.22) 

During the recovery interval (i.e., t > tflex and t ≤ tflex + flex_recover) constraint (3.23) 

limits the recovery according to the maximum reduction ∆MT7= and the duration of the recovery 

interval. 

(∆MT7=/𝑓𝑙𝑒𝑥_𝑟𝑒𝑐𝑜𝑣𝑒𝑟) − 𝑃@A2M_MT7=) + 𝑃@A2M_A7M) ≥ 0                                                              (3.23) 

This model allows to get a maximum reduction on the energy procurement cost and the input 

to this model C is listed below. 

 

3.3.1 Input data of model C 
 

To get maximum reduction, two terms have been introduced: flex_recover and 

reward_flex. The input values given to these two terms are 3 and 200 respectively. Whenever 

there occurs a reduction, then within the next 3 period itself it’s got compensated. 

 

3.4 Formulation of Model D: flexibility service with additional battery 
 

Model D calculates the maximum reduction ∆MT7= considering the presence of the 

auxiliary battery already described in model B to reduce the tolerance limit and to compensate 

the uncertainties relevant to the parking lot demand. The objective function of this model is: 
∑ [𝜌&'() 	𝐸*+,-

L,) − rewardMT7=	∆MT7=]),L

+∑ (pen_dev(𝐸𝑆O<%%7AP
L,NQR − 𝐸𝑆JKJO<%%7AP))

N
L

                                                                     (3.24) 

The combined objective function includes the penalization of the difference between 

the auxiliary battery energy at the beginning and at the end of the day other than the reward for 

the provision of the flexibility service.  

The constraints for this model are the same as discussed in the model C as it considers 

the maximum reduction without the auxiliary battery. This model considers the auxiliary battery 

in the objective function. 

 

3.4.1 Input data of model D 
 

The data of this model are those already described for model B including the additional 

battery and model C.  



25 
 

Chapter 4 

Implementation of the models by using Python – Pyomo 
 

This chapter describes how the optimization models has implemented in Pyomo. A 

description about modelling, its features and detailed report of the coding used has clearly 

depicted. 

 

4.1 Mathematical Modeling 
 

Modeling is the elementary process in many aspects of scientific research, engineering, 

and business fields. It involves the formulation of a simplified representation of a real-world 

object or real system. Models are a means of understanding the problems involved in building 

something; an aid to communicate between those involved in the project, specially between the 

requirement analyst and the user; a component of the methods used in development activities 

such as the analysis and the design of artefact. It is an abstraction, which allows people to 

concentrate on the essentials of a problem by keeping out non-essential details. 

Mathematics has an important role in representing and formulating our knowledge. 

Mathematical modelling has become formally as a new framework to express complex systems. 

Mathematical modelling is the process of describing a real-world problem in mathematical 

terms, usually in the form of equations, and then using these equations both to help understand 

the problem, and to discover new features about the problem. Modelling lies at the heart of 

much of our understanding of the world, and it allows engineers to design the technology of the 

future. The following mathematical concepts are central to modern modeling activities:  

• Variables: these represent the unknown or changing parts of a model (e.g., whether to 

or not to take a decision, or the characteristic of a system outcome).  

• Parameters: these are symbolic representations for real-world data and might vary for 

different problem instances or scenarios. 

• Relations: these are equations, inequalities or other mathematical relationships defining 

how different parts of a model are related to each other. 
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4.2 Optimization Models 
 

Optimization models are mathematical models with functions representing goals or 

objectives for the system being modelled. Optimization is the central to any problem involving 

decision making, whether in engineering or in economics or in management. The task of 

decision-making entails choosing between various alternatives. This choice is governed by our 

desire to make the ‘best’ decision. The measure of goodness of alternatives is described by an 

objective function or performance index. Optimization theory and methods deal with selecting 

the best alternative from a given objective function. 

The end goal of all such decisions is either to minimize the effort required or maximize 

the desired benefit. One possible definition of optimization model is “Mathematical models 

designed to help institutions and individuals decide how to allocate scarce resources, to 

activities and to make best use of their circumstances”. 

 

4.2.1 Features of Optimization Models 

An optimization model has three main components: 

• An objective function: this is the function that needs to be optimized. 

• A collection of decision variables: the solution to the optimization problem is the set of 

values of the decision variables for which the objective function reaches its optimal 

value. 

• A collection of constraints: these are the constraint that restrict the values of decision 

variables. 

 

4.3 PYOMO – Optimization Modelling Tool 
 

To implement the above said optimization problem in chapter 3, I choose Pyomo 

(Python Optimization Modelling object), uses python scripting. Pyomo is an open-source 

Python-based modelling language and optimization tool for developing and solving large-scale 

mathematical models. It provides a flexible and intuitive way to formulate and solve a wide 

range of optimization problems, including linear programming, integer programming, nonlinear 

programming, and mixed-integer programming. 

Pyomo allows users to define optimization problems using an algebraic syntax that is 

similar to the mathematical equations used to describe the problem. This makes it easy to 
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formulate complex optimization problems and to modify the model as needed. Pyomo also 

supports a wide range of solvers, including open-source solvers like GLPK and CBC, and 

commercial solvers like Gurobi and CPLEX. This allows users to choose the solver that best 

fits their needs and to easily switch between solvers if needed. 

Key features of Pyomo include: 

• Support for a wide range of optimization problem types, including linear programming, 

integer programming, nonlinear programming, and mixed-integer programming. 

• A flexible and intuitive algebraic syntax for defining optimization models. 

• Support for a wide range of solvers, including open-source and commercial solvers. 

• Integration with Python, allowing users to easily incorporate other Python libraries and 

tools into their optimization models. 

• Support for parallel computing, allowing users to solve large-scale optimization 

problems on multiple processors or nodes. 

Overall, Pyomo is a powerful and flexible optimization tool that can be used to develop 

and solve a wide range of optimization problems. 

 

4.3.1 Overview of Modelling in PYOMO 

 

The basic steps of a modelling process are: 

• create model and declare components; 

• instantiate the model; 

• apply solver; 

• interrogate solver results. 

A Pyomo model consists of a collection of modelling components that define various 

aspects of model. It contains modelling components that are commonly used by modern AMLs: 

index sets, symbolic parameters, decision variables, objectives, and constraints. These 

modeling components are defined in Pyomo through the following python classes: Set, Param, 

Var, Objective, and Constraint. Set and Param are the set data and parameter data that is used 

to define a model instance. Var is the decision variables in a model and the expressions that are 

minimized or maximized in a model is its objective. The constraints are the expressions that 

impose restrictions on the variable values in a model. 
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4.3.2 Abstract and Concrete Models 

 

If the mathematical model can be defined using the following equations, 

min ∑ 𝑐8𝑥8K
890  

s.t  ∑ 𝑎J8𝑥8K
890 ≥ 𝑏J   ∀𝑖 = 1. . . 𝑚 

																					𝑥8 ≥ 0							∀𝑗 = 1…𝑚 

This type of models is called abstract or symbolic mathematical modelling since it relies 

unspecified parameter values. Data values can be used to specify model instance. The 

AbstractModel class gives a context for defining and initializing abstract optimization models 

in Pyomo when the data values will be supplied at the time a solution is obtained. On the other 

hand, a mathematical model can be directly defined with the data values supplied at the time of 

the model definition. These are called concrete models. For example, 

min 2𝑥0 + 3𝑥N 

s.t 3𝑥0 + 4𝑥N ≥ 1 

𝑥0, 𝑥N ≥ 0 

The ConcreteModel class is used to define concrete optimization models in Pyomo. 

 

4.3.3 Implemetation of Pyomo in Defined Models 

 

To work in Pyomo, Thonny has been used as a free Python IDE (Integrated 

Development Environment). The primary step of modeling in Pyomo is to import the Pyomo 

environment by using the command ‘from pyomo.environ import*’. This is the main step as the 

purpose is to make the symbols used by the Pyomo known to python. Then we need to import 

the required libraries needed for specific functions to operate. The libraries used here are 

pandas, numpy and matplotlib. The pandas are used for data analysis while numpy is used for 

working with arrays. Matplotlib is a data visualization and graphical plotting library where we 

can obtain the results graphically, which is easy to compare. After importing the libraries, 

import the solver factory to create the solver and then read the excel file which contains the 

case-study data by the function pd.read_excel(). Here pd stands for pandas. In order to replace 

the missing values with a specified value, use fillna() function. It allows us to specify a 

particular value to replace Nan’s, by default it takes None. The dict() function creates a 

dictionary which are used to store values that can be unordered, changeable and indexed. All 

the parameters used in this model must be implemented by using dictionary or numpy. NumPy 
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is a popular Python library used for scientific computing, including numerical operations on 

arrays and matrices. NumPy can be used in Pyomo to perform mathematical operations on 

arrays and matrices that are used in optimization models. Pyomo has a built-in NumPy interface 

that allows users to create NumPy arrays and matrices directly within Pyomo and use them in 

optimization models. 

To use NumPy in Pyomo, first there is the need to import the NumPy library in the 

Python script. By adding the following line of code at the beginning of the script: import numpy 

as np. Openpyxl is a Python library that can be used to read and write Microsoft Excel files. In 

Pyomo, Openpyxl can be used to read data from Excel files and use it to initialize Pyomo 

parameters, variables, and constraints. 

 

 
 

4.3.4 Implementation of Pyomo in Model-A 

 

a) Extraction of the data from excel file 

 

Gurobi is the solver. The link to the solver is created by using the command opt = 

solverfactory(‘gurobi’). Then defined the model-Abstract model and defined the sets needed. 

The set here is the timeslot starting 0 and ends 24. The parameters and variables that are required 

to define the optimization model are introduced by using param() and var() functions 

respectively. To read a single scenario saved in excel file, the model uses pd.read_excel(the file 

path). In Pyomo, a dictionary is a Python data structure used to store key-value pairs. 

Dictionaries are often used in Pyomo to represent parameter data or to index variables. 
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 To read other scenarios, the model collected all the excel data files under a name and 

read that name for initiating all files and obtain the objective value for all as it did for a single 

scenario. 

 
 

b) Definition of the parameters   

 
In Pyomo, a parameter is a fixed quantity used in the mathematical formulation of an 

optimization problem. It is a constant value that is set before solving the optimization problem, 

and its value does not change during the optimization process. Once a parameter is defined, it 

can be used in the mathematical formulation of the optimization problem by referencing its 

name in the objective function, constraints, or other model components. 

 
   

c) Definition of the variables 

 

In Pyomo, a variable is an unknown quantity that needs to be determined as part of an 

optimization problem. Variables are used to represent decision variables in mathematical 

models and their values are determined by the solver during the optimization process. To create 

a variable in Pyomo, its name, domain, and bounds are needed. The domain specifies the set of 

allowable values that the variable can take on, while the bounds define the range of values that 

the variable can have. 
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d) Objective function 

 

In Pyomo, the objective function is the function that needs to be optimized as part of the 

optimization problem. The objective function is a mathematical expression that depends on the 

decision variables and reflects the optimization goals. The goal is typically to maximize or 

minimize the objective function subject to constraints. 

The objective function is defined using the Objective component in Pyomo. The Objective 

component requires two arguments: a name for the objective function, and the expression that 

defines the objective function. 

 
 

e) Constraints 

 

In Pyomo, constraints are used to specify the relationships between the decision 

variables and model parameters. Constraints restrict the feasible region of the optimization 

problem by specifying allowable values for the decision variables. The constraints can be linear 

or nonlinear equations or inequalities and can involve any combination of decision variables 

and parameters. 

Constraints are defined using the Constraint component in Pyomo. The Constraint 

component requires three arguments: a name for the constraint, an index set, and the expression 

that defines the constraint. 
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4.3.5 Implementation of Pyomo in Model-B 

 

a) Extraction of the data from excel file 

 

The extraction of data from excel file is as the same explained in the model A. All the 

data are extracted under one name. the functions Numpy provides is np.zeros(), which creates 

an array of a specified shape and initializes all the elements to zero. To repeat the reading from 

excel to all the scenarios, for loop is used. The for loop is used to iterative over a sequence of 

elements in the list.    
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b) Definition of the parameters   

 

The description of parameters is the same as explained for model A. In addition to that, 

mutable=True is included as it is an argument that can be passed to certain functions in Python 

to specify that the object being passed as an argument is mutable, which means that it can be 

changed or modified. 

 
 

 

c) Definition of the variables 

 

The variables for this model are defined as depicted below. Apart from model A, two 

more variables added. 

 
 

d) Objective function 

 

The objective function for this model is shown below. It has a penalization term as 

discussed before in the description of models. 
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e) Constraints 

 

The constraints of the model C are listed below.  
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4.3.6 Implementation of Pyomo in Model-C 
 

a) Extraction of the data from the excel file 

 

 

 

 
 

b) Definition of the parameters   
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c) Definition of the variables 

 

 

 
 

d) Objective function 

 

 

 
 

e) Constraints 
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4.3.7 Implementation of Pyomo in Model-D 

 

a) Extraction of the data from the excel files 

 

The extraction of data from excel files is done as described in the model C. 
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b) Definition of the parameters   

 

 

 
 

c) Definition of the variables 
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d) Objective function 

 

 

 
 

e) Constraints 
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Chapter 5 

Test Results 
The results of all the model are illustrated in this section. The model comparison with 

different values of parameters also discussed. 

 

5.1 Results for model A  
The simulation result done in Pyomo are discussed here. Firstly, the results obtained 

from the optimization model with single data are reviewed. The objective value of the particular 

single case is OF=398.991. The graph of energy in the grid in MWhr versus time is shown 

below.  

 

 

Figure 5.1- Energy in the grid vs time ( =0) ,twµ
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Figure 5.2- Energy in the grid vs time ( ≤1) 

From these two graphs, we can infer that the energy in the grid has been adjusted without 

any change in the objective value. i.e., in both condition the same objective value. Variable 

describes the utilization of the energy initially stored in the vehicles that enters in the 

parking lot. For =0 (no utilization of the initial energy), there are two points the graph 

shows peak values, one in the beginning t=1 and in t=18 while for ≤1 (possible full 

utilization of the initial energy),, it shows high values in t=6 and t=8.  

The graph below shows the comparison of variables by considering the =0 and ≤1.  

 

Figure 5.3- Variables vs time when  =0 

,twµ

,twµ
,twµ

,twµ

,twµ ,twµ

,twµ
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Figure 5.4- Variables vs time when  ≤1 

By comparing the above two graphs we could conclude that as the value changes, 

all the other variables shows variations. The value have a significant role in providng 

changes in the variables. 

The figure below depicts the output obtained for single scenario when =0 and the objective 

values of eight scenarios.  

    
Figure 5.5 Objective values of scenarios and the output of the variables for a single scenario.   
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,twµ

,twµ

,twµ
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The graph of the output Egrid of eight different scenarios is listed below.                                                                          

 
Figure5.6 - Egrid vs time plot for 8 scenarios 

  
        Figure 5.7 - ES vs time plot                                      Figure 5.8- ESnet vs time plot 

  
        Figure 5.9- Pparking vs time plot                      Figure 5.10- ENoloss vs time plot 
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The fig. (5.7-5.10) above shows the variables versus time of eight scenarios used in model. 

 

5.2 Results for model B 

 
Figure 5.11 - Common Pprofile vs time plot 

  

 The figure above shows the common forecasted profile for the next day. The forecasted 

profile helps in reducing the consumption of energy from the grid. 

 The model created the robust profile for all the other eight scenarios also and it is shown 

in figure 5.12. 

 
                                   Figure 5.12- Pparking plot vs time for 8 scenarios 
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5.3 Results for model C 

 

 The figure below shows the results of the maximum reduction that occurs at which time 

has been obtained in a single excel file and how much reduction can be made is also expressed 

in this excel file. 

 

 
Figure5.13- Data shows the maximum reduction.  

 

 

 
       Figure 5.14- Pprofile vs time plot                      Figure 5.15- Pparking vs time plot 
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Figure 5.16- Pprofile_flex vs time at t=0               Figure 5.17- Pparking_flex vs time at t=0 

 

                
Figure 5.18- Pprofile-flex vs time at t=6             Figure 5.19- Pparking_flex vs time at t=6 

 

                    
Figure 5.20- Pprofile-flex vs time at t=8             Figure 5.21- Pparking_flex vs time at t=8 
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Figure 5.22- Pprofile-flex vs time at t=9             Figure 5.23- Pparking_flex vs time at t=9 

 

 The figure 5.14 and 5.15 shows the Pprofile and Pparking versus time plot respectively. 

The next two images 5.16 and 5.17 Pprofile_flex and Pparking_flex versus time at t=0. At this 

time there is no reduction occurs as it can be clearly seen from the figure 5.13. The figures from 

5.18 to 5.23 show that the reduction happens at specific time. 

    

 
Figure 5.24- Graph shows the max reduction.  
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 The above graph, figure 5.24, shows the maximum reduction happens at time t_flex=9, 

12 and 23. From the inference we can obtain that whenever there occurs a reduction it is 

recovered in the next 3 periods. 

  

5.4 Results for model D 
 

The data file below figure 5.25 shows the maximum reduction that occurs at each hour. 

Figure 5.26 shows the common profile data which details the reduction and recovery happens 

at every period. The forecasted profile plot and the parking plot are shown in figure 5.27 and 

figure 5.28 respectively. There is not much difference in both the plots as the parking plot 

follows exactly the common profile for all the eight scenarios. 

 

 
Figure 5.25- Data of maximum reduction with battery 

 

 
Figure 5.26- Data of profiles that contain both the reduction and recovery. 
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        Figure 5.27- Pprofile vs time plot                   Figure 5.28- Pparking vs time plot 

 

` The energy balancing of additional battery versus time is shown in figure 5.29. The 

auxiliary battery is considered fully charged at the beginning of the day. It can be seen from the 

graph that, at the end of the day, in all scenarios, the battery tries to reach fully charged 

condition. Figure 5.30 shows the maximum reduction and its recovery with auxiliary battery at 

t_flex equals to 9, 12 and 23. The reduced amount of energy is recovered in the next three 

periods.  

 
             Figure5.29- ES_battery vs time plot for 8 scenarios 
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Figure 5.30- Graph showing the maximum reduction with battery. 
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Chapter 6 

Conclusion 
 

The thesis presents a detailed study of the optimization of electric vehicle parking lot 

for the provision of flexible services. The study starts by analyzing the scheduling of charging   

the electric vehicles. To achieve this, a deterministic approach has been implemented by 

considering several scenarios. From model A, we could obtain an optimal value of procurement 

cost for single scenario and for eight other scenarios which we considered. This needs an 

approach that need robust optimization. The robust optimization framework involves 

formulating the optimization problem with a set of possible scenarios or uncertainty sets.  

The approach presented in model B is to obtain a forecasted common profile for the 

next day so that the model can work according to that specific profile and thus it tries to reduce 

the energy consumption from the grid. We also extended the generation of common profile to 

all the scenarios. 

In model C, the aim is to obtain a maximum reduction at each duration. The results show 

that the model reduces the energy consumption from grid at certain period and then started to 

compensate within the next periods. If the reduction can be requested more than one period per 

day and with a delay between consecutive requests smaller than the recovery period, a more 

complex robust approach should be implemented. 

Final model D considers reducing the tolerance and to compensate the uncertainties by 

adding an auxiliary battery. The presence of the auxiliary battery acts as a flexibility service for 

both the provider and consumer as it aids in the maximum reduction, compensating the 

uncertainties associated with the number and characteristics of the parked vehicles.  

 The optimization model for an electric vehicle parking lot to provide flexibility services 

to the distribution system operator is a useful tool for managing the integration of electric 

vehicles into the power system. The implemented models consider various factors such as 

parking lot capacity, EV charging demand, and distribution system operator’s flexibility needs. 

The models aim to minimize the operational costs of the parking lot while ensuring that 

the distribution system operator’s flexibility requirements are met. This is achieved by 

scheduling EV charging based on the parking lot's capacity, the electricity price, and the 

forecasted distribution system operator’s flexibility needs. 
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Implementing this optimization approach can lead to several benefits such as reducing 

peak demand on the electricity grid, increasing renewable energy integration, and improving 

the stability and reliability of the power system. Moreover, electric vehicle owners can benefit 

from lower charging costs and the possibility of receiving incentives for providing flexibility 

services. 

The optimization of the electric vehicle parking lot is needed for managing the 

integration of electric vehicles into the power system while also ensuring the stability and 

reliability of the grid.  
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