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Abstract

Bin packing is one of the most studied NP-Hard problem in combinatorial optimization,
but it still remains one of the hardest to solve. On the other hand, emerging quantum
technologies have proven to have the potential to provide exponential speedup over clas-
sical computing, for certain classes of problems, including combinatorial optimization
problems. In this work we present a novel heuristic QUBO formulation for the well
known bin packing problem (BPP) based on the augmented Lagrangian method and an
analytical estimation of penalty multipliers that makes the model more generalizable to
different input instances. We tested our approach on a set of bin packing instances, by
using a real quantum computer based on Quantum Annealing (QA). The experiments
demonstrate that the proposed approach is capable of finding good quality solutions for
small-sized instances of the BPP. The proposed approach is also compared with existing
classical state-of-the-art algorithms for the BPP, and we show that it strongly outper-
forms them in terms of running time. This new approach paves the way to the research
for a generalizable QUBO formulation for BPP and to the study of new QUBO formu-
lations for other combinatorial problems with inequality constraints.



1 Introduction

Bin packing is a well-known combinatorial optimization problem with a wide range of
applications in various fields, such as logistics, resource allocation, scheduling and so
on. Given a set of items of different sizes and a set of bins with a fixed capacity, the
objective is to minimize the number of bins required to pack all the items.

Although bin packing is one of the most studied NP-Hard problem in combinatorial
optimization, it still remains one of the hardest to solve. On the other hand, emerging
quantum technology have proven to have the potential to provide exponential speedup
over classical computing for certain classes of problems, including combinatorial opti-
mization problems.

Among various quantum computing paradigms, two prominent approaches are Quantum
Annealing (QA) and QuantumApproximate Optimization Algorithm (QAOA). Both ap-
proaches have been shown to provide promising results for solving combinatorial opti-
mization problems, but they have different strengths and weaknesses. A key difference
between QA and QAOA is that with QAOA you can increase the precision arbitrarily,
whereas QA will only find the solution with probability 1 as T → ∞.

Another difference is the type of quantum hardware that each approach uses. QA uses
a quantum annealer, which is a specialized quantum computer designed to solve opti-
mization problems. In contrast, QAOA uses a universal quantum computer, which can
be built using various quantum hardware platforms.

Furthermore, as per today’s technologies, QA can handle bigger problems, in terms of
the number of variables.

Overall, both QA and QAOA have shown promising results for solving combinatorial
optimization problems. The choice between these approaches depends on the size of the
problem being solved and the available quantum hardware.



Introduction 2

In this thesis, we propose a novel heuristic QUBO formulation, based on the augmented
Lagrangian method, for some classes of instances of bin packing, that is specifically
designed to be solved by quantum annealing. Our model overcomes the limitations of
existing formulations and can solve larger problem instances than any previous quantum
based approach.

One of the challenges in solving bin packing using quantum annealing is the need to map
the problem onto a quadratic unconstrained binary optimization (QUBO) formulation
that can be solved by the quantum annealer. To date, only two QUBO formulations
for bin packing have been proposed, but, as it will be discussed in chapter 4, one of
them suffers from a limitation in the size of the problem instance, due to the use of
slack variables to model the inequality constraint; while, the other one, has been derived
following a bottom-up reasoning and no evidences of its scalability, with respect the
input instance size, are given.

Moreover, we propose an analytical, heuristic, estimation of penalty multipliers, in con-
trast to the use of a recursive method, such as Alternating Direction Method of Multi-
pliers (ADMM), as it is usually done when dealing with augmented Lagrangian.

In order to demonstrate the effectiveness of our proposed method, we tested it on a real
quantum annealer fromD-Wave Inc. . The experiments prove that the proposed approach
is capable of finding good quality solutions for small-sized instances of the BPP.We also
compare our model with existing classical state-of-the-art algorithms for the BPP, and
we show that it strongly outperforms them in terms of running time.

In summary, the goal of this thesis is to propose a novel heuristic QUBO formulation
based on the augmented Lagrangian method for bin packing and to demonstrate its ef-
fectiveness in solving “small” problem instances using a real quantum annealer.

The contributions of this work can lead to new insights into the application of quan-
tum computing for combinatorial optimization problems and provide a foundation for
future research in this area. This new approach paves the way to new QUBO formula-
tions for other combinatorial problems with inequality constraints, without the need to
approximate penalty multipliers by a recursive method.
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The structure of this thesis is the following: in chapter 2 a basic introduction to quantum
mechanics, necessary to understand how quantum annealing works, is given; in chapter
3 a survey of the classical algorithms presented in literature, to solve the bin packing
problem, is presented; in chapter 4 we present our novel heuristic QUBO formulation for
the bin packing problem based on the augmented Lagrangian method, and we compare
it with the other proposed formulations currently available in literature; in chapter 5
we show experimental results of our model, when solved by a real quantum computer,
together with a comparison with the classical state-of-the-art algorithms.



2 Background theory for Quantum Computing

The exchange of ideas between physics and computer science has consistently been
beneficial to both fields. For example solid-state physics fostered the development of
semiconductor-based technologies. Similarly, mathematical models inspired by physi-
cal phenomena helped in designing advanced algorithms in several fields, such as oper-
ation research.

Quantum computation is a scientific and engineering field focused on developing in-
formation processing devices and algorithms that exploit the principles of quantum me-
chanics and its extraordinary phenomena. It is a combination of physics, mathematics,
computer science and information theory. It offers tremendous computational power
and exponential speed compared to traditional computers by manipulating the quantum
state of microscopic objects such as atoms, electrons and photons.

Besides to further advancing the theoretical and experimental foundations of this disci-
pline, new fields like quantum machine learning ([65], [8]) and quantum image process-
ing ([76]) are emerging. Quantum computing and the broader field of quantum technolo-
gies (embracing computing, communications, cryptography and sensing) are becoming
an attractive emerging branch of high-tech business.

Because of the difference in progression speed between theoretical and experimental
quantum computing, the vast majority of quantum algorithms have been designed but
not implemented on quantum hardware.

A central goal in quantum computing is the development of quantum algorithms and
quantum hardwares, on which quantum algorithms can be tested, in order to analyse
challenging scientific and engineering problems.

In this chapter, theorethical concepts from both computer science and physics are pre-
sented, in order to give a definitoin of “hard” computational problems, and to understand
how emerging quantum technologies can help in solving them.
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2.1 Theory of Computation

2.1.1 Computational complexity

In computer science, computational complexity of an algorithm refers to the amount
of resources, in terms of time and memory storage, reqiured to run it. Computational
complexity focuses on classifying problems in complexity classes and estimating the
number of elementary steps required to run an algorithm. There are many different
complexity classes ([1] comprises hundreds of them), but the most important, and the
ones of nterest here, are the P, NP, NP-complete and NP-hard classes ([52], [31], [34],
[3]).

Time complexity of an algorithm A is measured through asymptotic analysis, that es-
timates, for each input length, the largest amount of time needed by A to solve any
problem instance of that size (that is the worst-case over all inputs of size n). Because
of this, time complexity is referred to using big O notation, defined as follow:

Definition 2.1.1 (Big O notation). Let f, g : N 7→ N. It is said that f(n) = O(g(n)) iff
∃ α, n0 ∈ N such that ∀n ≥ n0 =⇒ f(n) ≤ αg(n). Then, g(n) is an asymptotic upper
bound for f(n) and f is said to be of the order of g. Informally, f(n) = O(g(n)) means
that f grows as g or slower.

Depending on g(n), an algorithm can have polynomial-time, exponential-time or factorial-
time complexity. Usually, polinomially bounded algorithms are also called tractables,
meaning that they are solvable in a reasonable amount of time (for a human being), in
contrast to exponential and factorial time complexity algorithms that are referred to as
intractables.

2.1.2 Complexity classes

The two most important complexity classes in the computatinal theory are P and NP,
where:

• a problem is in P if it is solvable in polynomial time by a DTM (Deterministic
Touring Machine);
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• a problem is in NP if a candidate solution (usually called certificate) can be veri-
fied (accepted or rejected) in polynomial time, or equivalently, if it can be solved
in polinomial time by a NTM (Non-deterministic Touring Machine) [34].

For problems in NP the following theorem holds:

Theorem 2.1.1. If decision problem A ∈ NP then there is a polynomial p(n), where
n is the size of an arbitrary input data, such that A can be solved by a deterministic
algorithm having time complexity O(2p(n)).

The other two important classes, closely related to NP are theNP-hard andNP-complete
classes. In particular:

Definition 2.1.2 (NP-hard). A problem Y is an NP-hard problem iff every problem
Bi ∈ NP is Karp-reducible to Y . Note that NP-hard problems are not required to be in
NP.

Definition 2.1.3 (NP-complete). A decision problem Y is an NP-complete problem iff
i) Y ∈ NP and ii) for each problem Bi ∈ NP there is a Karp-reduction fi : Bi 7→ Y .

The focus of this thesis is one of the most famous combinatorial optimization problem,
the bin packing problem, so it is worth to define also this class of problems.

Definition 2.1.4 (Combinatorial optimization problem). Let E be a finite set with
cardinality |E| = n, PE the power set of E (hence |PE| = 2n) and the function C :
PE 7→ R. The general setup of a combinatorial optimization problem is to find an
element P ∈ PE such that C(P ) = minPi∈PE

C(Pi).

Optimization problems are not in NP because they are not decision problems. For them
there exist two specific classes, analogous to P and NP. These are PO (P-Optimization)
and NPO (NP-Optimization), such that:

Definition 2.1.5 (NPO). An optimization algorithm P belongs to NPO if:

1. the set of instances I is recognizable in polynomial time;

2. there exist a polynomial q such that, given an instance x ∈ I , for any y ∈ SOL(x),
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|y| ≤ q(|x|) and, besides, for any y such that |y| ≤ q(|x|), it is decidable in
polynomial timewhether y ∈ SOL(x); being SOL(x) the set of feasible solutions
given the input x;

3. the objective function obj(x) is computable in polynomial time.

It holds also the following theorem (proven in [4]):

Theorem 2.1.2. For any optimization problem P in NPO, the corresponding decision
problem PD belongs to NP.

The relationship between classes NP and NPO, which holds in the case of nondeter-
ministic computations, can be translated, in the case of deterministic algorithms, by the
following definition, that introduces the class of PO problems:

Definition 2.1.6 (PO). An optimization problem P belongs to the class PO if it is in NPO
and there exists a polynomial-time computable algorithm A such that, for any instance
x ∈ I , returns an optimal solution y ∈ SOL(x)∗, together with its value obj(x)∗.

Optimization problems are usually addressed by different classes of algorithms, such as
exact methods, approximate methods, (meta-) heuristic search and enumeration meth-
ods, as it will be shown in 3.1.

One of the heuristics of interest in this work is the so called simulated annealing, de-
scribed in the next section.

2.2 Simulated Annealing

Simulated annealing is a meta-heuristic ispired by metallurgy, were one tries to bring
the metal to its lowest potential energy state by acting on its temperature. It is a meta-
heuristic employed to approximate global optimization in a large search space for an
optimization problem. It is often used when the search space is discrete (for example
the traveling salesman problem, the boolean satisfiability problem, protein structure pre-
diction and job-shop scheduling). For problems where finding an approximate global
optimum is more important than finding a precise local optimum in a fixed amount of
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time, simulated annealingmay be preferable to exact algorithms such as gradient descent
or branch and bound.

In 1983, this approach was used by Kirkpatrick, Gelatt Jr. and Vecchi [43] for a solution
of the traveling salesman problem. They also proposed the name “simulated anneal-
ing”.

Simulated annealing can be formalized as follows [37]:

given the combinatorial optimisation problem Λ(α1, α2, ..., αn) where αi ∈ {0, 1} and
D the set of all possible combinations of αi, for each element α ∈ D ∃N(α), the neigh-
borhoord of α, which consists of elements αi ∈ D that are close to α, according to a
given metric. Finally, let f : D 7→ R be a cost function that assigns a value to each
element of D. The goal is to minimise f through the procedure described in 1.

Algorithm 1 Simulated annealing
Select an initial value ω ∈ D;
Select the temperature change counter k = 0;
Select a temperature cooling schedule, tk;
Select an initial temperature T = t0 ≥ 0;
Select a repetition schedule,Mk, that defines the number of iterations executed at each
temperature tk;

while Stopping criterion is not met do
m = 0
while m! = Mk do

generate a new candidate solution ω′ ∈ N(ω);
compute ∆ = f(ω′) − f(ω);
if ∆ ≤ 0 then

ω = ω′;
else

ω = ω′ with probability exp
(

−∆
tk

)
;

end if
m = m + 1;

end while
k = k + 1;

end while

In 2.4.3 it will be shown the quantum counterpart of simulated annealing, the so called
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“quantum annealing”, but first, it is necessary to introduce some basic concepts of
quantum mechanics in order to understand the physical reasons behind quantum an-
nealing.

2.3 Quantum Mechanics

Quantum mechanics is a fundamental theory in physics that describes the behavior of
matter and energy at the atomic and subatomic level. It was developed in the early 20th

century as a way to explain phenomena that could not be explained by classical physics,
such as the observed behavior of particles like electrons.

In the following sections, after some historical elements, fundamental notions of quan-
tum mechanics, necessary to understand the aspects of interest of quantum computing
presented in this thesis, are given.

2.3.1 A Brief History of Quantum Mechanics

Quantum mechanics has a complex history that involves many scientists and theories.
In 1900, Max Planck proposed that light is emitted in small, quantized packets of energy,
called photons, that come as integral multiple of the quantity

E = hν = ℏω (2.1)

where h ≈ 6.63 · 10−34Js is the Planck’s constant, and ℏ ≡ h/2π = 1.06 · 10−34Js.
Being ν of order 1015s−1, the quant of energy hν is very small and so it appears as a
continous spectrum in classical scale applications. However, in late 19thcentury, physi-
cists had to face a new enigma: the blackbody radiation problem. The issue was that the
classical theory of radiation predicted that an infinite amount of energy was supposed to
be emitted by such an object, which of course could not be correct. By introducing the
hypothesis of quantized radiation, Planck got rid of the problem of the infinite energy
and predicted the shape of the power curve as function of the temperature, although he
did not understand that the quantization was inherent to light itself.

In 1905, Albert Einstein used this idea to explain the photoelectric effect, in which light
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causes the emission of electrons from certain materials. He was the first to state that
the quantization is in fact inherent to light and this packets of light can be interpreted as
particles, today known as photons.

In 1913, Niels Bohr proposed that electrons in atoms have wave-like properties, which
helped explaining certain observed behaviors, like quantized energy levels, of hydrogen
atoms.

In 1924, Louis de Broglie suggested that all particles are associated with waves, leading
to the concept of wave-particle duality. This proposal was a big step, because many
things that are true for photons are not true for massive (and non-relativistic) particles.
It turned out to be correct, in view of the fact that the resulting predictions agreed with
experiments.

In the 1920s, Werner Heisenberg, Erwin Schrödinger, Max Born and Paul Dirac devel-
oped the theory of quantum mechanics, which used mathematical equations known as
wave functions to describe the behavior of particles on the atomic and subatomic scale.
These equations could predict the probability of a particle’s location or energy at any
given time, but not both with the same certainty degree, leading to the Heisenberg’s
uncertainty principle.

Initially, Schrödinger thought that the wave function represented the spatial charge den-
sity. It was Born to correctly interpret Schrödinger’s wave as a probability amplitude
These probability are not the result of some degree of ignorance about some variables
of the system, but they represent truly random phenomena and there are not hidden vari-
able (as stated by the Bell’s theorem that solves the EPR paradox) that, if known, will
make a quantum phenomen not random.

Over the years, quantum mechanics has been developed and refined. It had a significant
impact on our understanding of the fundamental nature of matter and energy and on our
understanding of the universe leading to numerous practical applications, including tran-
sistors, lasers, and modern computing technologies such as quantum computers.
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2.3.2 Postulates of Quantum Mechanics

A physical system is generally described by three basic ingredients: states, observables,
and dynamics (or law of time evolution).

A quantum description consists of a Hilbert space of states, observables are self-adjoint
operators on the space of states, time evolution is given by a one-parameter group of
unitary transformations on the Hilbert space of states.

Quantum mechanics is based on the following postulates:

1. Quantum state: the state of an isolated physical system is represented, at a fixed
time t, by a state vector |Ψ〉 belonging to a Hilbert space H called the state space.

1.1. Composite system postulate (follows from the previous one): the Hilbert
space of a composite system is the Hilbert space tensor product of the state
spaces associated with the component systems. For a non-relativistic system
consisting of a finite number of distinguishable particles, the component sys-
tems are the individual particles.

2. Observables: every measurable physical quantity A is described by a Hermitian
operator A acting in the state space H. This operator is an observable, mean-
ing that its eigenvectors form a basis for H. The result of measuring a physical
quantity A must be one of the eigenvalues of the corresponding observable A.

3. Results of measurement: when the physical quantity A is measured on a system
in a normalized state |Ψ〉 , the probability of obtaining an eigenvalue (denoted an

for discrete spectra and α for continuous spectra) of the corresponding observable
A is given by the squared amplitude of the appropriate wave function (projection
onto corresponding eigenvector).

4. Collapse of the wave function: if the measurement of the physical quantity A
on the system in the state |Ψ〉 gives the result an, then the state of the system,
immediately after the measurement, is the normalized projection of |Ψ〉 onto the
eigensubspace associated with an.
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5. Time evolution of the system:

• the time evolution of the state vector |Ψ(t)〉 is governed by the Schrödinger
equation, where H(t) is the observable associated with the total energy of
the system (called the Hamiltonian):

iℏ
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉 (2.2)

or equivalently,

• the time evolution of a closed system is described by a unitary transformation
on the initial state:

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉 (2.3)

2.3.3 Wave Function Ψ

A wave function, in quantum physics, is a mathematical description of the quantum
state of an isolated quantum system. The wave function is a complex-valued probability
amplitude, and the probabilities for the possible results of measurements made on the
system can be derived from it.

According to the superposition principle of quantum mechanics, wave functions can be
added together and multiplied by complex numbers to form new wave functions and
Hilbert spaces. The inner product between two wave functions is a measure of the over-
lap between the corresponding physical states and it is used in the foundational proba-
bilistic interpretation of quantum mechanics, the Born rule, relating transition probabil-
ities to inner products.

The Schrödinger equation determines how wave functions evolve over time. They be-
have qualitatively like other waves, such aswater waves or waves on a string, because the
Schrödinger equation is mathematically a type of wave equation. This explains the name
“wave function”, and gives rise to wave-particle duality. However, the wave function in
quantum mechanics describes a kind of physical phenomenon, still open to different in-
terpretations, which fundamentally differs from that of classic mechanical waves.
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In Born’s statistical interpretation of non-relativistic quantum mechanics, the squared
modulus of the wave function, |Ψ|2, is a real number interpreted as the probability den-
sity of measuring a particle as being at a given place (or having a given momentum) at a
given time, and possibly having definite values for discrete degrees of freedom. The in-
tegral of this quantity, over all the system’s degrees of freedom, must be 1, in accordance
with the probability interpretation. This is called the normalization condition. Since the
wave function is complex-valued, only its relative phase and relative magnitude can be
measured: its value does not tell anything about the magnitudes or directions of measur-
able observables; one has to apply quantum operators, whose eigenvalues correspond
to sets of possible results of measurements, to the wave function Ψ and calculate the
statistical distributions for measurable quantities.

For example, the state of a single non relativistic particle without spin is completely
described by its wave function,

Ψ(x, t) (2.4)

where x is position and t is time. This is a complex-valued function of two real variables
x and t. For one spinless particle in one dimension, if the wave function is interpreted
as a probability amplitude, the square modulus of the wave function, the positive real
number

|Ψ(x, t)|2 = Ψ∗(x, t)Ψ(x, t) = ρ(x, t) (2.5)

is interpreted as the probability density that the particle is at x. If the particle’s position
is measured, its location cannot be determined from the wave function, but is described
by a probability distribution. In particular, the probability that its position x will be in
the interval a ≤ x ≤ b is the integral of the density over this interval:

Pa≤x≤b(t) =
∫ b

a
|Ψ(x, t)|2dx (2.6)

where t is the time at which the particle was measured. This leads to the normalization
condition: ∫ ∞

−∞
|Ψ(x, t)|2dx = 1 (2.7)

because if the particle ismeasured, there is 100%probability that it will be somewhere.
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Thanks to the interpretation of the wave function as a probability density distribution,
many, otherwise unsolvable, phenomena have been explained. The one of interest in this
thesis, for its relation with quantum annealing, is the quantum tunneling effect described
in the next section.

2.3.4 Quantum Tunneling

Quantum tunnelling is a quantummechanical phenomenon whereby a wave function can
propagate through a potential barrier higher than thewave’s (particle’s) total energy. This
phenomenon is interesting and important because it violates the principles of classical
mechanics.

The transmission through the barrier can be finite and depends exponentially on the bar-
rier height and barrier width. The wavefunction may disappear on one side and reappear
on the other. Quantum tunneling is not predicted by the laws of classical mechanics
where surmounting a potential barrier requires a total amount of energy (kinetic + po-
tential) greatr then the barrier height.

Quantum tunneling plays an essential role in several physical phenomena and is at the
basis of quantum annealing (2.4.3).

A simple mental example to understand it and envision the difference with respect to the
classical counterpart consists in thinking about a ball that tries to climb a hill. Classical
mechanics predicts that particles that do not have enough energy to classically surmount
a barrier cannot reach the other side. Thus, a ball without sufficient energy to surmount
the hill would roll back down. Another example is a ball that hit a wall: if the ball lacks
the energy to penetrate the wall it will bounce back.

In quantum mechanics, these particles can, with a small probability, tunnel to the other
side, thus crossing the barrier.

The reason for this difference comes from treating matter as having properties of both
waves and particles, and the Heisenberg uncertainty principle, which defines a limit on
how precisely the position and themomentum of a particle can be simultaneously known.
Thus, the probability of a given particle’s existence on the opposite side of an intervening
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barrier is non-zero, and such particle will appear on the other side in proportion to this
probability (see 2.1).

Figure 2.1: Quantum tunneling.

2.3.5 Hamiltonian of a Quantum System

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the
total energy of that system, including both kinetic and potential energy. Its spectrum,
the system’s energy spectrum or its set of energy eigenvalues, is the set of all possible
outcomes obtainable from a measurement of the system’s total energy. The Hamiltonian
takes different forms depending on the characteristics of the system under analysis, such
as whether there is single or several particles in the system, interaction between particles,
kind of potential energy, time varying potential or time independent one.

In general, the Hamiltonian is commonly expressed as the sum of operators correspond-
ing to the kinetic and potential energies of a system. For a system of N particles, it takes
the form:

Ĥ =
N∑

n=1
T̂n + V̂ (2.8)

where T̂i is the kinetic energy of particle i and V̂ is the potential energy of the system,
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that depends on evolution time and spatial arrangement of particles.

The Hamiltonian operator is the fundamental block for the description of a quantum
system and, from a computer science point of view, it can be used as a tool to express
optimization problems in the jargon of quantum computers (in particular quantum an-
nealers). This will be further explained in 2.4.1.

The last ingredients, necessary to understand quantum computing and in particular quan-
tum annealing are the adiabatic theorem and the concept of spin, explained in the next
paragraphs.

2.3.6 The Adiabatic Theorem

The adiabatic theorem of quantummechanicswas firstly stated byMaxBorn andVladimir
Fock in 1928 whith this words:

“A physical system remains in its instantaneous eigenstate if a given per-
turbation is acting on it slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian’s spectrum.”

In other words, a quantum mechanical system subjected to gradually changing external
conditions adapts its functional form and remains in the same eigenstate as the initial
one.

This can be mathematically formalized in the following way: given a slowly chang-
ing Hamiltonian H(t) with instantaneous eigenstates |n(t)〉 and corresponding energies
En(t), a quantum system evolves from the initial state

|Ψ(0)〉 =
∑

n

cn(0)|n(0)〉 (2.9)

to the final state
|Ψ(n)〉 =

∑
n

cn(n)|n(n)〉 (2.10)
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where
cn(t) = cn(0)eiθn(t)eiγn(t),

with θm(t) = −1
ℏ

∫ t

0
Em(t′)dt′ the dynamical phase,

and γm(t) = i
∫ t

0
〈m(t′)|ṁ(t′)〉dt′ the geometric phase.

(2.11)

In particular, |cn(t)|2 = |cn(0)|2 meaning that if the system starts in an eigenstate of
H(0) it remains in an eigenstate of H(t) during the entire evolution (it only changes its
phase).

As it will be discussed in 2.4.3, the adiabatic theorem is the theoretical basis that inspired
the Quantum Annealing algorithm.

2.3.7 Spin

At subatomic level all particles have a property called spin, that can be imagined as an
intrinsic angular momentum. Despite the name, particles do not literally spin around an
axis, indeed quantummechanical spin has no correspondence in classical physics.

As the name suggests, spin was originally conceived as the rotation of a particle around
some axis. While the question of whether elementary particles actually rotate is am-
biguous (as they appear point-like), this picture is correct insofar as spin obeys the same
mathematical laws as quantized angular momenta do; in particular, spin implies that the
particle’s phase changes with angle. On the other hand, spin has some peculiar proper-
ties that distinguish it from orbital angular momenta: i) spin quantum numbers may take
half-integer values; ii) although the direction of its spin can be changed, an elementary
particle cannot be made to spin faster or slower; iii) the spin of a charged particle is
associated with a magnetic dipole moment with a g-factor differing from 1. This could
occur classically only if the internal charge of the particle were distributed differently
from its mass.

The conventional definition of the spin quantum number is s = n
2 , where n can be any

non-negative integer.
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The quantum-mechanical operator associated with spin-1
2 observables is:

S = ℏ
2

σ (2.12)

where its cartesian components are:

Sx = ℏ
2

σx, Sy = ℏ
2

σy, Sz = ℏ
2

σz. (2.13)

For the special case of spin-1
2 particles, σx, σy and σz are the three Pauli matrices:

σx =

 0 1
1 0

 σy =

 0 −i

i 0

 σz =

 1 0
0 −1

 (2.14)

Spin is an important concept in quantummechanics because it plays a role in the behavior
of subatomic particles and the way they interact with each other and with other forms of
energy (as it will be shown in 2.4.1). It is also important in the study of the fundamental
properties of matter and the fundamental forces of nature.
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2.4 Quantum Computing

Quantum computing is a rapidly-emerging technology that harnesses the laws of quan-
tummechanics, such as superposition, interference, and entanglement to solve problems
too complex for classical computers. Although current quantum computers may be too
small to outperform classical computers for practical applications, larger realizations
are believed to be capable of solving certain computational problems, such as integer
factorization (which underlies RSA encryption), substantially faster than classical com-
puters.

There are several models of quantum computationwith themost widely used being quan-
tum circuits. Other models are: the quantum Turing machine, quantum annealing, and
adiabatic quantum computation. The majority of models are based on the quantum bit,
or “qubit”, which is somewhat analogous to the bit in classical computation. A qubit
can be in a 1 or 0 quantum state, or in a superposition of the 1 and 0 states. When it is
measured, however, its wave function collapses always into one between 0 or 1. The
probability of the outcome depends on the qubit’s quantum state immediately prior to
measurement.

Efforts towards building a physical quantum computer focus on technologies such as
transmons, ion traps and topological quantum computers, which aim to create high-
quality qubits. These qubits may be designed differently, depending on the full quantum
computer’s computing model, as to whether quantum logic gates, quantum annealing,
or adiabatic quantum computation are employed. There are currently a number of sig-
nificant obstacles that prevent to construct useful quantum computers: it is particularly
difficult to maintain qubits’ quantum states, as they suffer from quantum decoherence,
the lost of information of a quantum system due to its interaction with the environment.
Quantum computers therefore require error correction.

Any computational problem that can be solved by a classical computer can also be solved
by a quantum computer. Conversely, any problem that can be solved by a quantum com-
puter can also be solved by a classical computer, at least in principle, given enough time.
In other words, quantum computers obey the Church-Turing thesis. This means that
while quantum computers provide no additional advantages over classical computers
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in terms of computability, quantum algorithms for certain problems have significantly
lower time complexities than corresponding known classical algorithms. Notably, quan-
tum computers are believed to be able to quickly solve certain problems that no classical
computer could solve in any feasible amount of time. A feature known as “quantum
supremacy”. The study of the computational complexity of problems with respect to
quantum computers is known as quantum complexity theory.

Quantum complexity theory introduces a new complexity class, theBounded-errorQuan-
tum Polynomial time, representing the class of problems solvable in polynomial time by
an innately probabilistic quantum Turing machine. A decision problem is a member of
BQP if there exists a quantum algorithm (an algorithm that runs on a quantum com-
puter) that solves the decision problem with high probability (i.e. the probability goes
to 1 when some parameter n goes to ∞) and is guaranteed to run in polynomial time.
A run of the algorithm will correctly solve the decision problem with a probability of at
least 2/3.

As previously mentioned, adiabatic quantum computing is one of the possible models of
quantum computation. An adiabatic quantum computer, based on quantum annealing,
decomposes computation into a slow continuous transformation of an initial Hamiltonian
into a final Hamiltonian, whose ground states contain the solution. One of the possible
application is to solve the so called “Ising model”.

In the next sections, the adiabatic quantum computation and its application in solving
complex artificial intelligence problems are explained.

2.4.1 Ising Model

Meta-heuristics are mathematical models inspired by nature. The most useful models of
nature are those that can be used to represent a large number of completely different sys-
tems. Understanding how such models work then leads to understand all of the physical
systems the model can be used to represent. One of the most useful model in nature is
the Ising model from statistical mechanics.

The Ising model (or Lenz-Ising model or Ising-Lenz model), named after the physicists
Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical
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mechanics. The model consists of discrete variables that represent magnetic dipole mo-
ments of atomic spins that can be in one of two states (+1 or -1). The spins are arranged in
a graph, usually a lattice (where the local structure repeats periodically in all directions),
allowing each spin to interact with its neighbors. Neighboring spins that agree have a
lower energy than those that disagree; the system tends to the lowest energy but heat
disturbs this tendency, thus creating the possibility of different structural phases.

In mathematical terms, the Ising model is:

H(σ) = −
∑
〈i,j〉

Jijσiσj − µ
∑

j

hjσj (2.15)

where the first sum is over pairs of adjacent spins (every pair is counted once). The
notation 〈i, j〉 indicates that sites i and j are nearest neighbors. Jij is the coupling term
between spins i and j. hj is the external magnetic field interacting with the j-th spin. µ

is the magnetic moment.

Over time it was realized that 2.15 could be used to model many different physical sys-
tems. Any system that describes a set of individual elements (modeled by the spins sj)
interacting via pairwise interactions (the quadratic terms sisj) can be described in this
framework. In the period 1969 to 1997, more than 12,000 papers were published us-
ing the Ising model to describe systems in fields ranging from artificial intelligence to
zoology.

But why is the Ising model so important for computer science? It is well known that
in a system described by 2.15 the probability to observe a particular spin configuration
σ is proportional to exp

{
−H(σ)

T

}
, where T is the temperature of the system. At high

temperature, T � H(σ), all the possible configurations have the same probability, but
at low temperature, the configurations having the lowest energy are the most likely state,
with the limit of them being the only observable states at T = 0. This is a very interesting
point, because in 1982, Francisco Baharona [7], showed that finding the ground state of
an Ising model is an NP-hard problem by mapping an arbitrary SAT formula to the Ising
model and showing that the SAT formula is satisfiable if and only if the lowest energy
state of the Ising model is 0.
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Ising models corresponding to physical systems are seamlessly solved by nature, and
from here it comes the idea to exploit its computational power, by manufacturing an
hardware that follows thermodynamics and statistical mechanics laws and let it solve
Ising models.

So the high level idea behind quantum computing via quantum annealing is to map any
NP-hard problem to the Ising model, then let a physical device to solve it and read its
final configuration.

In the next section, a different formulation of Isingmodel, more suitable for optimization
problems, is presented.

2.4.2 QUBO Formulation

The Ising model can be easily rewritten as a Quadratic Unconstrained Binary Opti-
mization (QUBO) problem. Indeed, QUBOs are Ising models where the spin variables
si ∈ {−1, +1} are transformed into binary variables xi ∈ {0, 1}. This transforma-
tion is easily realized through si = 2xi − 1. If the QUBO objective is written as
H(x) =

∑
i,j

xiQi,jxj , where the linear terms arise from the diagonal elements due to

x2
i = xi for binary variables, then

H(x) = 〈x, Qx〉 = 〈x, Q̃x〉 + 〈q̃, x〉 = γ + 〈s, Js〉 + 〈h, s〉 (2.16)

where

γ = 〈1, Q̃1〉/4 + 〈1, q̃〉/2 (2.17)

J = uptr(Q̃ + Q̃>)/4 (2.18)

h = q̃/2 + 〈Q̃ + Q̃>, 1〉/4 (2.19)

Here q̃ is the vector of diagonal elements of Q, Q̃ is the matrix of off-diagonal elements
of Q (the diagonal elements are zeroed), for a square matrix A the operation uptr(A)
zeroes the lower triangular part of A, and 1 is the vector of whose all components are 1.
Thus, up to an irrelevant constant there is a simple relationship between the h, J of an
Ising model and the Q of a QUBO.
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So far it has been shown that:

1. there are NP-hard problems that Nature can solve efficiently;

2. a subset of them can be formalized with the Ising model;

3. the Ising model can be reformulated (in polynomial time) as a QUBO (and vice
versa).

So, by re-formulating a classical NP-hard problem into a QUBO, it could be possible to
exploit the efficiency of Nature to optimally solve it.

In 4 this idea will be applied to the classical computer science problem of bin pack-
ing.

But before doing this, the way how Nature is employed to solve QUBO problems must
be described. In the next section, such a technique, called quantum annealing is pre-
sented.

2.4.3 Quantum Annealing

Quantum annealing is a physical process exploited by quantum computation in order
to solve combinatorial optimization problems. Quantum annealing is a restricted form
of adiabatic quantum computation 2.3.6 but the range of problems that can be explored
using this paradigm is vast and relevant to many fields of science and technology.

The most famous and technologically advanced hardware for quantum computing is
from D-Wave Inc. [40].

The Hamiltonian of the D-Wave quantum computer can be written as:

Hising = −A(s)
2

(∑
i

σ̂(i)
x

)
︸ ︷︷ ︸

Initial Hamiltonian

+ B(s)
2

∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,jσ̂
(i)
z σ̂(j)

z


︸ ︷︷ ︸

Final Hamiltonian

(2.20)

where σ̂(i)
x,z are Pauli matrices operating on a qubit qi, and hi and Ji,j are the qubit biases

and coupling strengths.
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The Hamiltonian is the sum of two terms, the initial Hamiltonian and the final Hamilto-
nian:

• Initial Hamiltonian: the lowest-energy state of the initial Hamiltonian is when all
qubits are in a superposition state of 0 and 1. This term is also called the “tunneling
Hamiltonian”.

• Final Hamiltonian: the lowest-energy state of the final Hamiltonian is the answer
to the problem that one is trying to solve. The final state is a classical state, and
includes the qubit biases and the couplings between qubits. This term is also called
the “problem Hamiltonian”.

In quantum annealing, the system begins in the lowest-energy eigenstate of the initial
Hamiltonian. As it anneals, it introduces the problem Hamiltonian, which contains the
biases and couplers, and it reduces the influence of the initial Hamiltonian, has shown in
2.2. At the end of the anneal, it is in an eigenstate of the problem Hamiltonian. Ideally,
it has stayed in the minimum energy state throughout the quantum annealing process
(because of the adiabatic theorem 2.3.6) so that, by the end, it is in the minimum energy
state of the problem Hamiltonian and therefore has an answer to the problem that has to
be solved. By the end of the anneal, each qubit is a classical object.

Certain factors may cause the system to jump from the ground state into a higher energy
state. One of them is thermal fluctuations that exist in any physical system. Another
one is running the annealing process too quickly, violating the adiabatic assumptions.
Because no real-world computation can run in perfect isolation, quantum annealing may
be thought of as the real-world counterpart of adiabatic quantum computing 2.3.6, a
theoretical ideal.
In the next section, the classical formulation of the bin packing problemwill be described
along a survey from the literature, of some of the methods employed to solve it.
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Figure 2.2: Annealing functions A(s), B(s). Annealing begins at s = 0 with A(s) �
B(s) and ends at s = 1 with A(s) � B(s). Data shown are representative of D-Wave
2X systems.



3 The Bin Packing Problem

The bin packing problem (BPP) is a classic optimization problem in computer science
and operations research. It involves packing objects of different sizes into containers,
or bins, with a limited capacity. The goal is to minimize the number of bins needed to
pack all the objects.

A formal mathematical formulation of the bin packing problem can be expressed as
follows: given a set of n items of given integer size (or weight) wj(j = 1, . . . , n) the
goal is to pack them into the minimum number of identical bins of integer capacity
C.

Let m be any upper bound on the solution value and let introduce yi, xij two sets of
binary variables such that: yi(i = 1, . . . , m) takes the value 1 if and only if bin i is used
in the solution and xij(i = 1, . . . , m; j = 1, . . . , n) takes the value 1 if and only if item
j is packed into bin i. A possible simple Integer Linear Programming (ILP) model of
the problem is ([51]):

arg min
x,y

m∑
i=1

yi (3.1)

s.t.
m∑

i=1
xij = 1 ∀j = 1..n (3.2)

n∑
j=1

wjxij ≤ Cyi ∀i = 1..m (3.3)

xij ∈ {0, 1} ∀i = 1..m, ∀j = 1..n (3.4)

yi ∈ {0, 1} ∀i = 1..m (3.5)
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A variant of interest in practice is the so-called online bin packing: here the items of
different size are supposed to arrive sequentially, and the decision maker has to decide
whether to select and pack the currently observed item, or else to let it pass. Each deci-
sion is without recall. In contrast, offline bin packing allows rearranging the items in the
hope of achieving a better packing once additional items arrive. This of course requires
additional storage for holding the items to be rearranged.

3.1 Classical approaches to Bin Packing

In the offline bin packing all items are available from the very beginning and the goal is
to find the best arrangement in a specified number of bins or, alternatively, minimizing
their number.

Garey and Johnson [31] showed that BPP problem is strongly NP-hard, by transfor-
mation from the 3-Partition problem, while its decision formulation, i.e. the problem
of deciding whether a set of items can fit into a specified number of bins, is strongly
NP-complete.

A problem π is said to be strongly NP-complete if π ∈ NP-Complete and there exists a
polynomial p over the integers for wich πp is also NP-Complete, where πp denotes the
subproblem of π obtained by restricting it to only those instances I such that max(I) ≤
p(length(I)).

Despite its worst-case hardness, optimal solutions to very large instances of the prob-
lem can be produced with sophisticated algorithms. In addition, many approximation
algorithms exist.

The bin packing problem is among the most intensively studied problems in combina-
torial optimization: for example, the two recent surveys only, on exact methods (De-
lorme, Iori, and Martello [19]) and approximation algorithms (Coffman, Csirik, Galam-
bos, Martello, and Vigo [16]), consider in total over 230 different references.

Most solution methodologies have been tried on these problems: different kinds of ILP
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models, lower bound computations, branch-and-bound, branch-and-price, constraint pro-
gramming, approximation algorithms, heuristics, and meta-heuristics.

3.1.1 Approximate algorithms

Tomeasure the performance of an approximation algorithm there are two approximation
ratios considered in the literature. For a given list of items L the number A(L) denotes
the number of bins used when algorithm A is applied to list L, while OPT (L) denotes
the optimum number for this list. The absolute worst-case performance ratio RA for an
algorithm A is defined as

RA ≡ inf{r ≥ 1 : A(L)/OPT (L) ≤ r ∀L}.

On the other hand, the asymptotic worst-case ratio R∞
A is defined as

R∞
A ≡ inf{r ≥ 1 : ∃N > 0, A(L)/OPT (L) ≤ r ∀L : OPT (L) ≥ N}.

Equivalently, R∞
A is the smallest number such that, for some constant K, for all lists L

[16]:

A(L) ≤ R∞
A · OPT (L) + K.

Additionally, one can restrict the lists to those for which all items have a size of at most
α. For such lists, the bounded size performance ratios are denoted as RA(size ≤ α) and
R∞

A (size ≤ α).

Approximation algorithms for bin packing can be classified into two categories:

• Online heuristics, that consider the items in a given order and place them one by
one inside the bins. These heuristics are also applicable to the online version of
this problem.

• Offline heuristics, that modify the given list of items e.g. by sorting the items
by size. These algorithms are no longer applicable to the online variant of this
problem. However, they have an improved approximation guarantee while main-
taining the advantage of their small time-complexity.
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Heuristics used by both the two classes are, among others:

• Next-Fit (NF): always keeps a single open bin. When the new item does not
fit into it, it closes the current bin and opens a new bin. Its advantage is that
it is a bounded-space algorithm, since it only needs to keep a single open bin
in memory. Its disadvantage is that its asymptotic approximation ratio is 2. In
particular, NF (L) ≤ 2 · OPT (L) − 1, and for each N ∈ N there exists a list L
such that OPT (L) = N and NF (L) = 2 · OPT (L) − 2. For each algorithm A
that is an AnyFit-algorithm it holds that R∞

A (size ≤ α) ≤ R∞
NF (size ≤ α).

• First-Fit (FF): keeps all bins open, in the order in which they were opened. It
attempts to place each new item into the first bin in which it fits. Its approximation
ratio isFF (L) ≤ b1.7OPT c, and there is a family of input lists L for which
FF (L) matches this bound.

• Best-Fit (BF): keeps all bins open, but attempts to place each new item into the
bin with the maximum load in which it fits. Its approximation ratio is identical to
that of FF, that is: BF (L) ≤ b1.7OPTc, and there is a family of input lists L for
which BF (L) matches this bound.

Online Heuristics

In the online version of the bin packing problem, the items arrive one after another and
the (irreversible) decision where to place an item has to be made before knowing the
next item or even if there will be another one.

There are many simple algorithms that use the following general scheme:

• for each item in the input list:

1. If the item fits into one of the currently open bins, then put it in one of these
bins;

2. Otherwise, open a new bin and put the new item in it.

The algorithms differ in the criterion by which they choose the open bin for the new item
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in step 1.

Anyway, this thesis focuses on the offline version of the bin packing problem.

Offline Heuristics

In the offline version of bin packing, the algorithm can see all the items before starting to
place them into bins. This allows to attain improved approximation ratios. The simplest
technique used by offline algorithms is:

1. ordering the input list by descending size;

2. run an online algorithm on the ordered list.

The most famous algorithms in this family are:

• First-fit-decreasing (FFD): orders the items by descending size, then calls First-
Fit. Its approximation ratio is FFD(I) = 11

9 OPT (I) + 6
9 , and this is tight [75].

• Next-fit-decreasing (NFD): orders the items by descending size, then calls Next-
Fit. Its approximate ratio is slightly less than 1.7 in the worst case [6]. It has also
been analyzed probabilistically [17]. Next-Fit packs a list and its inverse into the
same number of bins. Therefore, Next-Fit-Increasing has the same performance
as Next-Fit-Decreasing [29].

3.1.2 Heuristics and meta-heuristics

As for most NP-hard problems, starting from the early nineties many meta-heuristic
approaches of all kinds have been proposed for the BPP, such as simulated annealing,
Tabu search, population based algorithms, evolutionary and genetic heuristics coupled
with hyper-heuristics, variable neighborhood search meta-heuristics etc. [5, 12, 24, 27,
28, 35, 36, 42, 46, 48, 49, 60, 64, 66–68, 71]

3.1.3 Pseudo-polynomial

Although model 3.1 involves a polynomial number of variables and constraints it is not
very efficient in practice as shown in [19]. The literature has consequently focused on the
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study of models with better computational performance, including pseudo-polynomial
models. The drawback of these models is that the number of variables depends not only
on the number of items but also on the bin capacity.

One of the first attempt, the so called “one-cut” formulation, was independently devel-
oped by Rao in 1976 [56] and by Dyckhof in 1981 [22]. Stadtler [69] studied the com-
binatorial structure of the one-cut model and compared it with the column generation
approach, concluding that it could tackle only a subset of real world problems, tackled
instead by the column generation approach.

Other relevant approaches are the “DP-flow” formulation by Cambazard and O’Sullivan
[13], a method that relies on dynamic programming; and the “Arc-flow” formulation by
Valério de Carvalho [15].

3.1.4 Exact methods

The first attempts to exactly solve the BPP were developed between the 50’s and 60’s
using LP relaxations and dynamic programming (see [25, 32]). Starting from the 70’s,
research in this field focused on branch-and-bound techniques and then on branch-and-
price.

Branch and bound

The branch and bound method is a mathematical optimization technique that is used to
solve optimization problems, particularly those involving combinatorial optimization.
It involves systematically exploring all possible solutions to a problem, assigning each
solution a lower and upper bound on the potential value of the solution, and then itera-
tively branching into new solutions and bounding their potential value in order to find
the optimal solution. The goal is to find the optimal solution by eliminating suboptimal
solutions, or “bounding” them, through a process of elimination.

This method is typically used for problems with large numbers of possible solutions,
such as traveling salesman or scheduling problems. The algorithm depends on efficient
estimation of the lower and upper bounds of regions/branches of the search space. If
no bounds are available, the algorithm degenerates to an exhaustive search. The root of
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the three is usually initialized using a sub-optimal solution found by any chosen heuris-
tic.

The two most famous and successful algorithms are the MTP, proposed by S.Martello
and P.Toth [51], and BISON by Scholl et al. [64].

The first one was a branch-and-bound algorithm based on a novel dominance criterion
and improved reduction procedures, later adopted by several authors. The second one,
was the combination of some of the most powerful techniques from MTP with other
emerging ones like Tabu search.

Branch and price

In applied mathematics, branch and price is a method of combinatorial optimization for
solving integer linear programming (ILP) andmixed integer linear programming (MILP)
problems with many variables. The method is a hybrid of branch-and-bound and column
generation methods, where at each node of the search tree, columns may be added to the
linear programming relaxation (LP relaxation).

The algorithm typically begins by using a reformulation, such as Dantzig-Wolfe decom-
position, to formwhat is known as theMaster Problem. The decomposition is performed
to obtain a problem formulation that gives better bounds when its relaxation is solved
rather than when the relaxation of the original formulation is solved. Unfortunately, the
decomposition usually contains many variables and so a modified version, called the Re-
stricted Master Problem, that only considers a subset of the columns is solved. Then, to
check for optimality, a subproblem called the pricing problem is solved to find columns
that can enter the basis and reduce the objective function (for a minimization problem).
This involves finding a column that has a negative reduced cost.

Note that the pricing problem itself may be difficult to solve, but, since it is not neces-
sary to find the column with the most negative reduced cost, heuristic and local search
methods can be used. The subproblem must only be solved to completion in order to
prove that an optimal solution to the Restricted Master Problem is also an optimal solu-
tion to theMaster Problem. Each time a column is found with negative reduced cost, it is
added to the Restricted Master Problem and the relaxation is reoptimized. If no columns
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can enter the basis and the solution to the relaxation is not integer, then branching oc-
curs.

Most branch and price algorithms are problem specific since the problem must be for-
mulated in such a way that effective branching rules can be formulated and, so that
the pricing problem is relatively easy to solve. If cutting planes are used to tighten LP
relaxations within a branch and price algorithm, the method is known as “branch-and-
price-and-cut”.

The most important contributions to branch-and-price method are from Gilmore and
Gomory [32], Nitsche et al. [58], Caprara and Monaci [23] and Valério de Carvalho
[14].

In the next section a different approach to the bin packing problem is presented: the idea
is to reformulate the classic bin packing problem as a QUBO and solve it exploiting the
computational power of quantum computing.



4 QUBO Formulation of Bin Packing

In this chapter, firstly, the other two QUBO formulations of the bin packing already
presented in the literature are analyzed, then, our novel approach based on the framework
of augmented Lagrangian is explained.

At the time of writing of this thesis, the only two QUBO models presented in literature,
that aim to solve the bin packing problem end to end, are [47] in 2019 and [53] in 2022.
In this work, I will refer to the first one as “Pseudo-Polynomial” formulation, and to the
second one as “Unbalanced penalization”.

There is another approach in literature, the one proposed in [2], where authors address
the BPP with an hybrid approach, using quantum annealing to solve the sub-problem of
filling a single bin. Not being an “end-to-end” approach, the latter will be ignored in
this thesis.

4.1 Related works

4.1.1 Pseudo-Polynomial formulation

The first QUBO formulation of the Bin Packing Problem appeared in [47] in 2019. In
this publication, the author corrects some wrong QUBO formulations given by Lucas
in [50] and proposed some additional mappings of NP-complete and NP-hard problems
into QUBO.

The proposed formulation is: given the variables xij, i ∈ {1, .., N}, j ∈ {1, .., K},
where xij = 1 if weight j is placed in bin i, variables yi, i ∈ {1, .., N}, where yi = 1 if
bin i is not empty, and variables zik, i ∈ {1, .., N}, k ∈ {1, .., C}, where zik = 1 if bin i

has been filled up to level k, that is, when the sum of the weights of the objects in bin i
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equals exactly k. The Hamiltonian can be written as:

HA =A
N∑

i=1

(
xi −

C∑
k=1

zik

)2

(4.1)

+A
K∑

j=1

(
1 −

N∑
i=1

xij

)2

(4.2)

+A
N∑

i=1

 C∑
k=1

kzik −
K∑

j=1
wjxij

2

(4.3)

+A
N∑

i=1
(1 − xi)

K∑
j=1

xij (4.4)

HB =B
N∑

i=1
xi (4.5)

with A > 2B > 0. The first term of HA constraints the bin to be filled up to a unique
level, while not used bins are not filled to any level at all. The second term ensures that
every item is allocated to a bin. The third term is a penalization for configurations where
bins are over filled, violating the capacity constraint, and the last term of HA ensures
that only not empty bins are counted. The term HB represents the classical objective
function, being the number of used bins.

The requirements A > 2B ensures that bins are never filled beyond their capacity in
favour of using fewer bins, as proved in [47]. Moreover, not allocating items is not
favourable because it results in a penalty of A times the number of not allocated items,
which is larger then 2B times the number of bin “saved” by non allocating items.

Although this is a correct QUBO formulation for the BPP, it has a weakness that could
dramatically impact its scalability, and so, its applicability, on near term quantum de-
vices: the first and third term of HA present the variable zik that is the one-hot encoding
of the bin capacity C. In particular, the third term of HA is a “by the book” translation
of the capacity constraint 3.3 into a penalty term.

Indeed, in combinatorial optimization problems there exist two classes of constraints:

• equality constraint, in the form Ax = B, and
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• inequality constraint, expressed as Ax ≤ B.

Whenmapping combinatorial optimization problems into QUBO, the equality constraint
is mapped into a squared penalty term of the form α(Ax - B)2, while the inequality con-
straint is firstly converted into an equality one, introducing a slack variable s such that
Ax + s = B, and then mapped into its squared form β(Ax + s - B)2 as for the previous
case. Here α and β are the penalty multipliers that must properly be defined.

The introduction of a slack variables brings into the problem a considerable amount of
additional variables: first of all, a slack variable is needed for each constraint in 3.3, and
second, it must be binary encoded in order to define a proper QUBO model.

A possible way to do this is by hot-encoding the slack and this is exactly what has been
done in [47]. It is worth to mention that there exists at least one alternative and better
approach: the log-encoding. Here a constant N is represented by M := blogNc new
variables, instead of N of the one-hot encoding.

In order to count the number of variables in this QUBO formulation, without loss of
generality, it can be assumed that given an instance of the BPP with n items, where
max(wj) ≤ C, the upper bound on the number of required bins is m = n. Let’s call
BPP (n, C) a particular instance of the BPP with n items and bins of capacity C. The
total number of variables is n(n + 1 + C). In 4.1 it is shown how this formulation scales
with respect to the number of items of a BPP istance and to bin capacity.

It can be noticed that the introduction of the slack variables, not only adds nC more
variables, but alsomakes this model a pseudo polynomial formulation, where the number
of variables depends on the particular value of one of the input, the bin capacity C.
This is a crucial observation because, as mentioned in [45], modern QPUs allow to run
only small instances due to qubits topology and connectivity and a pseudo polynomial
Hamiltonian could easily become intractable even for small instances.

4.1.2 Unbalanced penalization formulation

The second relevant QUBO model for the bin packing problem is the one presented
by Barrera et al. in 2022 [53]. They start by assuming that an inequality constraint
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g(x) = Σilixi − C ≤ 0 can be approximated by the exponential function eg(x). In order
to have a valid QUBOmodel, the exponential is expanded up to its second order Taylor’s
term, such that eg(x) ≈ 1 + g(x) + 1

2g(x)2. Thus their model resembles to:

H =obj(yi) (4.6)

+λ0

n∑
i=1

 m∑
j=1

xij − 1

2

(4.7)

+λ1

m∑
j=1

(
n∑

i=1
wixij − Cyi

)2

(4.8)

+λ2

m∑
j=1

(
n∑

i=1
wixij − Cyi

)
(4.9)

where λ0,1,2 are estimated through the Nelder-Mead optimization method.

Although this model is similar to ours, there are some important differences, from both
theretical and experimental point of view, that will be more evident in the next sec-
tion.

From the theoretical point of view, they derived their model with a bottom up approach,
by first approximating the infinite step function of the inequality constraint with the
exponential function, and then by approximating the latter with its Taylor expansion.
Instead, we chose the opposite path: we started from a general method, already known
in optimization theory, and applied it to a specific problem, thus following a top down
approach, with the advantage to be more generalizable to other COPs. Moreover, they
estimated their penalty multipliers with an optimization method, while we estimated
them analytically.

From the experimental point of view, Barrera et al. did not test their model on a real quan-
tum device: they tested it by simulating QAOA using OpenQAOA and JUQCS (Jülich
universal quantum computer simulator). Another important difference is that they chose
QAOA, as the quantum framework to solve their problems, while we used Quantum
Annealing. Quantum annealing is a more mature quantum technology with respect to
QAOA, thus it allows to run bigger problems, in terms of number of QUBO variables.
Moreover, QAOA must be “trained” before being able to solve a problem, while QA
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must not. This represents an enormous advantage of QA over QAOA in terms of gen-
eralizability and scalability. Furthermore, they did not show how their model scales on
instances with different number of items, but only on different randomly generated in-
stances with the same number of items. In contrast, we will show how our model scales
well across instances with different number of items.

In the next section, after a brief explanation of the Augmented Lagrangian method, our
Augmented Lagrangian model, and its advantage with respect to the pseudo polinomial
formulation, is presented.

4.2 Augmented Lagrangian formulation

In this section we present our novel heuristic QUBO formulation for the Bin Packing
problem based on the Augmented Lagrangian method (AL).

Augmented Lagrangian methods are a class of algorithms for solving constrained op-
timization problems. They have similarities to penalty methods, in that they replace
a constrained optimization problem by a series of unconstrained problems and add a
penalty term to the objective; the difference is that the augmented Lagrangian method
adds yet another term, designed to mimic a Lagrange multiplier. So, given the con-
strained problem:

min f(x) (4.10)

s.t. ci(x) = b ∀i ∈ D (4.11)

the augmented Lagrangian method transforms it into:

min Φ(x) = f(x) +
∑
i∈D

ρi(ci(x) − b)2 +
∑
i∈D

λi(ci(x) − b) (4.12)

Usually, in CSP and COP it is useful to introduce also redundant constraints, i.e. con-
straints that do not change the set of feasible solutions, but help the solver to converge
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faster. In the specific case of bin packing, we introduce the following redundant con-
straint:

n∑
j=1

yixij =
n∑

j=1
xij ∀i = 1..m (4.13)

meaning that if a bin i is not used, i.e. yi = 0, it can not contain any item, i.e. ∑n
j=1 xij =

0.

Inspired by augmented Lagrangian framework and the just mentioned redundant con-
straints, our proposed model is:

arg min
x,y

δ
m∑

i=1
yi (4.14)

+
m∑

i=1
λi

 n∑
j=1

wjxij − ciyi

 (4.15)

+
m∑

i=1
ρi

 n∑
j=1

wjxij − ciyi

2

(4.16)

+ θ
n∑

j=1

(
m∑

i=1
xij − 1

)2

(4.17)

+ γ
m∑

i=1
(1 − yi)

n∑
j=1

xij (4.18)

s.t. xij ∈ {0, 1} ∀i = 1..m, ∀j = 1..n (4.19)

yi ∈ {0, 1} ∀i = 1..m (4.20)

The two penalties 4.15 and 4.16 are the augmented Lagrangian expansion of 3.3 and it
can been observed that for unfeasible configurations both terms add a penalty λisi+ρis

2
i ,

while for feasible configurations the linear term is negative and so it gives a reward to
the solver. The crucial aspect is to carefully estimate λ and ρ values in order to cor-
rectly model the solution space. The same holds for θ in 4.17: this term represents a
penalization of θ, when item j is not placed and (k − 1)θ if item j is placed k times.
It is worth to notice that this penalty term is not the augmented Lagrangian expansion
of 3.2 but it is a pure squared penalty: the reason is that in this case we don’t want to
give a reward to the solver when an item is not placed at all. Finally, the last term is the
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penalty term associated to the redundant constraints 4.13. It represents a penalization of∑
j∈J xij when the set of items J is assigned to bin i without setting the corresponding

yi to 1.

It is worth to notice that in the standard AL approach, inequality constraints are first
transformed into equality ones, by introducing a slack variable, and then added to the
Lagrangian as per 4.12. Instead, the AL formulation proposed in this work does not
contain the slack variable but directly the capacity constants ci. This is an important
aspect that brings the advantage with respect to the pseudo polynomial approach and
must be taken into account during penalty estimation.

Usually, estimation of penalty multipliers is done using the so called Alternating Direc-
tion Method of Multipliers ADMM or other recursive approximation methods. In this
work we propose an analytical estimation of penalty multipliers and we will experimen-
tally show how well it works on the selected input instance.

Our claim is that this method works for the set of instances selected, but its general
applicability is still to be proven in a future work.

Penalties estimation We can now derive heuristics conditions for the penalty multi-
pliers. We chose to design our conditions based on approximate worst-case reasoning,
so that they can be expected to lead to optimal or slighly sub-optimal solutions for most
BP instances.

An abstract form for the augmented Lagrangian terms associated to a bin is given by:

λi(si − ciyi) + ρi(si − ciyi)2 (4.21)

Let’s start by considering the case where yi = 0. In this situation, using the smallest bin
usage amount should be as expensive as using the bin, i.e.:

λi(wmin − 0) + ρi(wmin − 0)2 ≥ 1 (4.22)

where wmin is the smallest item weight, i.e. wmin = min{wj}. If this condition is
satisfied, then using even more capacity can only make things worse, i.e. the solver will
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naturally choose to set yi = 1. If yi = 0 and no capacity is used, we have:

λi(0 − 0) + ρi(0 − 0)2 ≥ −1 (4.23)

which is trivially true. Let’s consider now the case where yi = 1. In this situation,
exceeding the capacity by any amount should be as expensive as using one more bin,
i.e.:

λi(ci + wmin − ci) + ρi(ci + wmin − ci)2 ≥ 1 (4.24)

which conveniently is the same condition as above. The last condition to fit the parabola
4.21 concerns the feasibility region. Unlike in the case where yi = 0, now it is possible
to satisfy the constraint with some slack. In this case, the Lagrangian termmight provide
a reward (i.e. negative cost) in case the constraint is satisfied with some slack. We need
such reward to be small enough that it does not provide an incentive for using another
bin, i.e.:

λi(−
ci

2
) + ρi(−

ci

2
)2 ≥ 0 (4.25)

Basically here we are fitting a parabola using the three conditions 4.22, 4.23 and 4.25 in
order to approximate the wall shape of the real feasibility region.

We can therefore obtain values for λ and ρ by stating all conditions for their least restric-
tive values:

wminλi + w2
minρi = 1 (4.26)

−ci

2
λi + ci

4
2
ρi = 0 (4.27)

From here we obtain:

λi = ci

wmin (2wmin + ci)
(4.28)

ρi = λi
2
ci

= 2
wmin (2wmin + ci)

(4.29)

The next step is to calibrate θj .
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The abstract Lagrangian term associated to item j is:

θj(pj − 1)2 (4.30)

where pj ∈ N being the number of times item j has been assigned to a bin. Because now
we are only talking about assignment and not capacities, we can get rid of index j and
rewrite the previous equation as:

θ(pj − 1)2 (4.31)

Moreover we want to force the solver to assign all items at maximum to one bin, so the
penalty should arise every time pj 6= 1. Indeed, in case pj = 1 we have:

θ(1 − 1)2 ≥ −1 (4.32)

which is true.
In case pj = 0, i.e. item j not assigned to any bin, the inequality boils down to:

θ ≥ 2 (4.33)

where the 2 is chosen in order to have a penalty greater then the cost of opening a new
bin. It remains to calibrate γ.
The abstract Lagrangian term associated to the γ term is:

γ(1 − yi)ki (4.34)

This term comes into play only when yi = 0 and ki 6= 0 by adding ki times the penalty
γ. We want the minimum penalty to be at least equal to the cost of opening a new bin,
thus

γ ≥ 1. (4.35)

The last parameter to be estimated is δ: although it is not properly a penalty term, being
it the multiplier of the objective function, it is useful to have it there in order to control
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all the other parameters, for example to avoid problems when dealing with too small
numbers. Another reason to use this multiplier is to correct the undesirable behaviour of
this model for certain configurations of items: sometimes it can happen that the model
prefers configurations where one or more bins are slightly overfilled because opening
a new one costs too much. Obviously this depends on the particular combination of
weights of the istance with respect the bin capacity, and their number. To correct this
behaviour we require:

δ ≤ λsmin + ρsmin (4.36)

where smin is the minimum amount of capacity that can be exceeded, so smin ≥ 1.

Model analysis In terms of number of variables this model is way smaller then its
pseudo-polynomial counterpart in [47]. In this case, given a BPP instance BPP (n, C)
the number of variables is n(n + 1), given by the number of bins plus the n2 variables
xij . We are assuming m = n as upper bound on the number of bins. This formulation
presents a double advantage: first of all the number of variables is independent on the
instance characteristics (bin capacity); secondly, the reduced number of variables let the
model be more suitable for today’s QPUs. We believe, but this must to be proven in
a future work, that independency with respect to bin capacity makes the model more
stable in terms of penalty multipliers values.

Fig. 4.1 shows a comparison of the asymptotic performace, in the number of variables,
of the two approaches. The continous dark red line at Num of variables = 180 represents
the maximum number of fully connected variables usable in D-Wave Advantage QPU
with 5640 qubits.

Contribution This work brings several contributions to the QuantumAI field, that can
be summarized as follows:

• we found a connection between QUBO models and augmented Lagrangian meth-
ods that can leverage all the work already done in these two fields, thus paving
the way for future synergies;
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Figure 4.1: Comparison of the growth of the number of variables for the Pseudo poly-
nomial and Augmented Lagrangian models with respect the number of items and bins
capacity. For the first one, three values of C are shown.

• we derived a QUBO formulation of the bin packing that scales well with instance
dimension, on a selected set of instances, in the limit of modern QPUs;

• our QUBO formulation for the bin packing problem is independent on bins capac-
ity;

• we propose an analytical method for penalties estimation, in the context of aug-
mented Lagrangian, and we show that this estimation works well for the set of
tested instances;

• we are the first in history to solve the bin packing problem, end to end, on a
real quantum device, thus letting us to experimentally compare our model per-
formances against the state of the art in the classical field;

• we are the first to solve the bin packing problem, end to end, using Quantum
Annealing.

In the next section the experimental performance analysis and comparison with respect
to the classical state of the art is presented.



5 Experimental results of QAL-BP

In this chapter we show how our model performs when solved by a real quantum device
through quantum annealing. Thenwe compare these results with the state of the art in the
classical field. Before doing this, we describe the experimental hardware and software
employed and the instances used in tests.

5.1 Experimental setup

In the following paragraphs we describe the experimental setup where performance tests
have taken place. Then we discuss the dataset used to evaluate our model and the model
parameters chosen starting from the sufficient conditions shown in 4.2.

5.1.1 Hardware and software

To determine the correcteness and performance of our model, we tested it on the most
recent quantum annealing device by D-Wave System Inc., the Advantage_system4.1. It
consists of more than 5000 qubits, allowing to run problems up to 180 fully connected
binary variables. Because of the little availability of resources, we did not fine-tuned the
QPU solving strategy, in terms of annealing time, chain strength and minor embedding;
thus, the results presented here refer to the default configuration of D-Wave QPU. This
is an important aspect to keep in mind while reading the rest of this chapter, because we
are going to show a performance comparison between our model, solved by Quantum
Annelaing with default configuration, and GUROBI, the state of the art solver for MILP.
Runtime performance of the latter instead, is evaluated by runinng it in Google COLAB
environment, on a virtual machine with 2vCPU@2.2GHz and 13GB RAM.

5.1.2 Tested instances

All the experiments are carried out on a set of eight classes of randomly generated in-
stances, ranging from 3 to 10 items, with fixed bin capacity equal to 10, although our
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model can in principle handle different capacities per bin. Item weights range between
4 and 10. The apparent small range of instances comes from technology limitations of
today’s QPUs: as mentioned before and shown in 4.1, we are restricted to 180 fully
connected binary variables, and above all, it will be shown later that the more we get
close to that limit the more the solution degradates, due to technological immaturity of
quantum hardware and absence of fine-tuning. The randomly generated instances are
tshown in 5.1.

5.1.3 Models parameters

In 4.2 we derived the sufficient domain condintions for our model penalty multipliers.
Based on those we chose:

δ = 0.15 (5.1)

λ = 0.1389 (5.2)

ρ = 0.0278 (5.3)

θ = 2 (5.4)

γ = 1 (5.5)

For what concerns the pseudo-polynomial model by [47], because the author did not es-
timated A and Bmultipliers, we tried to find them through a grid search over a parameter
space of 88 pairs, spanned by:

A ∈ [.1, .3, .5, 1, 3, 5, 10, 25, 50, 100, 1000] (5.6)

B ∈ [.01, .05, .1, .5, 1, 2, 5, 10] (5.7)

Over 3520 problems (88 parameters pairs × 40 instances), simulated annealing found
a solution for only 5 of them. This results highlights another weakness of this model:
besides being it pseudo-polynomial, using the same penalty multiplier A for each penalty
term prevents it to converge. Because of these poor results, we decided to omit thismodel
from the rest of the analysis.
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instance name bin capacity weights list num of weights w_min w_max lower bound
bpp_3_10_23 10 [4, 8, 6] 3 4 8 2
bpp_4_10_23 10 [8, 5, 4, 8] 4 4 8 3
bpp_5_10_23 10 [4, 4, 8, 8, 9] 5 4 9 3
bpp_6_10_23 10 [7, 5, 5, 5, 4, 9] 6 4 9 4
bpp_7_10_23 10 [9, 7, 8, 6, 9, 6, 7] 7 6 9 5
bpp_8_10_23 10 [4, 5, 7, 5, 6, 4, 6, 4] 8 4 7 4
bpp_9_10_23 10 [7, 6, 8, 4, 8, 4, 9, 6, 4] 9 4 9 6
bpp_10_10_23 10 [5, 8, 6, 7, 10, 9, 4, 10, 7, 4] 10 4 10 7
bpp_3_10_42 10 [4, 9, 8] 3 4 9 2
bpp_4_10_42 10 [7, 7, 10, 4] 4 4 10 3
bpp_5_10_42 10 [8, 5, 4, 7, 10] 5 4 10 4
bpp_6_10_42 10 [9, 9, 9, 9, 7, 4] 6 4 9 5
bpp_7_10_42 10 [9, 7, 7, 6, 5, 10, 9] 7 5 10 5
bpp_8_10_42 10 [8, 6, 9, 7, 7, 7, 5, 4] 8 4 9 5
bpp_9_10_42 10 [7, 10, 4, 10, 9, 5, 8, 5, 9] 9 4 10 7
bpp_10_10_42 10 [8, 6, 4, 10, 7, 10, 8, 9, 9, 5] 10 4 10 7
bpp_3_10_123 10 [4, 8, 8] 3 4 8 2
bpp_4_10_123 10 [4, 10, 5, 5] 4 4 10 3
bpp_5_10_123 10 [5, 6, 5, 6, 9] 5 5 9 3
bpp_6_10_123 10 [7, 10, 7, 5, 9, 9] 6 5 10 5
bpp_7_10_123 10 [10, 10, 4, 7, 5, 5, 5] 7 4 10 5
bpp_8_10_123 10 [9, 9, 5, 6, 9, 5, 8, 7] 8 5 9 6
bpp_9_10_123 10 [10, 9, 5, 9, 9, 5, 7, 9, 5] 9 5 10 7
bpp_10_10_123 10 [5, 5, 4, 7, 4, 8, 6, 5, 6, 4] 10 4 8 5
bpp_3_10_90 10 [8, 6, 4] 3 4 8 2
bpp_4_10_90 10 [8, 5, 7, 6] 4 5 8 3
bpp_5_10_90 10 [6, 7, 8, 7, 4] 5 4 8 3
bpp_6_10_90 10 [7, 8, 9, 9, 10, 6] 6 6 10 5
bpp_7_10_90 10 [6, 4, 4, 4, 8, 9, 6] 7 4 9 4
bpp_8_10_90 10 [7, 10, 8, 8, 8, 5, 5, 8] 8 5 10 6
bpp_9_10_90 10 [9, 6, 4, 10, 10, 5, 4, 4, 6] 9 4 10 6
bpp_10_10_90 10 [9, 6, 8, 7, 8, 10, 9, 6, 9, 10] 10 6 10 8
bpp_3_10_510 10 [5, 8, 6] 3 5 8 2
bpp_4_10_510 10 [7, 9, 5, 5] 4 5 9 3
bpp_5_10_510 10 [6, 10, 4, 9, 4] 5 4 10 3
bpp_6_10_510 10 [5, 5, 9, 10, 8, 6] 6 5 10 4
bpp_7_10_510 10 [9, 7, 9, 4, 10, 10, 8] 7 4 10 6
bpp_8_10_510 10 [9, 10, 8, 9, 4, 4, 9, 5] 8 4 10 6
bpp_9_10_510 10 [5, 9, 10, 9, 7, 8, 4, 10, 6] 9 4 10 7
bpp_10_10_510 10 [10, 5, 9, 5, 8, 9, 7, 4, 6, 9] 10 4 10 7

Table 5.1: The set of bin packing instances chosen to test all models under evaluation.
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5.2 QAL-BP performance evaluation

In order to asses QAL-BP performace we randomly generated five instances for each
of the eight classes and we solved them using Gurobi, simulated annealing, quantum
annealing and an exact solver (the latter only for instances with 3 and 4 items).

Solving a problem on a quantum annealing device consists in a complex chain of tasks
like, calling D-Wave APIs, queueing the task, solving it and so on. Some of this op-
erations, such as the annealing time, can affect the solution quality. Moreover, when
analysing QPU runtime performance, there are several time intervals involved. In order
to make a meaningful comparison with Gurobi, the correct statistic to take into account,
that represents the time to solution, is the so called “qpu_sampling_time”, as shown in
5.1.

Figure 5.1: Runtime breakdown of problem programming and sampling by a D-Wave
QPU.

A charecteristic parameter of both quantum and simulated annealing is the number of
reads, that represents the number of anneals. We chose num_reads = 1000 and, in
order to be comparable, we solved each instance 1000 times with Gurobi and then we
take the average runtime as Gurobi’s TTS. In order to get an idea of how much hard
the bin packing problem is, already at small scales, we tried to solve each instance also
using the exact solver from D-Wave library. In 5.2 and 5.3 is shown the mean time to
solution TTS across the five instances for each class and for each solver.

This astonishing result shows that our model, when solved by quantum annealing on a
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Figure 5.2: Time to solution comparison between Quantum Annealing, Simulated An-
nealing, Gurobi and an exact solver.

real quantum computer, dramatically outperforms Gurobi, the state-of-the-art solver for
MILP problems.

In 5.5, the probability of being feasible for the best found solution, for both simulated and
quantum annealing, is shown. We can observe that for “large” instances (with respect
current QPUs limitations), the solution quality degradates, but looking at how simulated
annealing performs on the same instances, in fig.5.6, allows us to say that QA bad per-
formance on “large” scales is mainly due to technology immaturity. For these instances,
QA reaches a minimum that is higher than the one reached by simulated annealing. The
fact that simulated annealing can reach a better minimum proves that the wrong answers
from quantum annealing are manily due to technology immaturity or the solver being
not fine-tuned.

In fig 5.4 we can see the minimum number of bins found by each solver (except for the
exact one) and for each instance. We can observe that Gurobi outperforms our heuristic
model, in both the annealing techniques, in only two cases: the instances bpp_8_10_23
and bpp_10_10_123. This results means, on one hand, the strength of our heuristic for-
mulation, and, on the other one, it is compatible with our formulation being a heuristic
model.
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Figure 5.3: Time to solution comparison, in logarithmic scale, between Quantum An-
nealing, Simulated Annealing, Gurobi and an exact solver.

Moreover, in 5.7 we show that, even for instances where QA fails to reach a feasible
minimum, the first feasible solution is close to the minimum, allowing to search for
the first feasible in a reasonable time (checking if a solution is feasible can be done in
polynomial time by definition of NP-Hard). Obviously, in this case the first feasible
solution will likely not be the best one.
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Figure 5.4: Comparison of the number of bins of the best solution found by Gurobi,
Simulated and Quantum annealing solvers.

Figure 5.5: Probability of being a feasible solution for the minimum found by Simulated
and Quantum Annealing.
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Figure 5.7: Energy distribution for two different instances of 9 items. The red horizontal
line represents the first feasible solution in the sample set. In fig.5.6 we see that this
energy level is always greater then the true minimum found by the simulated annealing.



6 Conclusion

In this thesis, we proposed a novel heuristic QUBO formulation, based on the aug-
mented Lagrangian method, for solving the bin packing problem using quantum an-
nealing. Moreover, we proposed an analytical estimation of model penalty terms that
allows to avoid to rely on a recursive approximation method, such as ADMM, thus mak-
ing the proposed approach more generalizable to different input instances and to other
combinatorial problems.
We demonstrated that our approach can solve larger problem instances than any previous
QUBO formulation for bin packing and can outperform state-of-the-art classical solvers,
in terms of time to solution, when solved by a quantum annealer.
Furthermore, this work represents the first attempt to solve the bin packing problem,
end to end, by a real quantum computer through quantum annealing: indeed, as pre-
viously discussed, other experimental attempts in literature addressed the bin packing
problem by simulation (QAOA) or using hybrid search strategy, like the one proposed
in [2].

Moreover, this thesis represents the first performace comparison, for the bin packing
problem, between the classical state-of-the-art (Gurobi) and the quantum state-of-the-
art (D-Wave Advantage_system4.1).

The proposed method can, in principle, be extended to other combinatorial optimiza-
tion problems that involve inequality constraints, in order to formulate them as QUBO
problems, enabling the application of quantum computing to a wider range of prob-
lems.

However, there are still some limitations and challenges that need to be addressed in
future work. First of all, the generalizability of our model, to a generic BPP instance or,
to other COP, is still to be proven. Indeed, our model works on the classes of instances
presented in this thesis, but we have not yet demonstrated its generalizability to any BPP
instance.
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Another challenge is the limited number of qubits on current quantum annealers, which
restricts the size of problem instances that can be solved. This, prevented us from testing
our model on bigger instances, and so, from assessing its scalability on a wider range of
input examples.

Another one is the presence of noise and errors in the quantum annealer, which can
affect the quality of the solution. This effect becomes stronger when dealing with large
problems or sparse QUBO matrices, as shown also by our experimental results when
compared to simulated annealing.

To overcome these challenges, future work can investigate the use of more advanced
quantum hardware, which can provide higher accuracy and higher number of qubits.
Another direction for future work is to explore hybrid approaches that combine classical
and quantum methods, in order to solve problems of size otherwise not addressable by
modern QPUs.
Other work that must to be done is to theorethically investigate our model in order to
prove whether it is applicable to all kind of bin packing instances or only to some classes
of it.
Another direction of reasearch is to study the generalizability of the proposed approach
to other combinatorial optimization problems.

Besides all the mentioned ones, of great importance would be to test our model using
QAOA, in order to check if we reached the so called quantum advantage. This term
is used when a quantum computer can perform a particular computation significantly
faster than even the best classical computer.

In conclusion, in this thesis we presented a novel heuristic QUBO formulation for some
classes of instances of the bin packing problem and we solved it using a real quan-
tum computer through quantum annealing. We showed its astonishing performace with
respect the classical state-of-the-art algorithms on small instances, meaning that this
performance gap would increase for bigger problems. This work paves the way to the
research of finding generalizable approaches for QUBO models, and at the same time,
to the establishment of a new quantum advantage record.
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