
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA  
 
 
 
 

SCUOLA DI INGEGNERIA  
                                 

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE 
 

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ENERGETICA 
 
 
 
 

TESI DI LAUREA 
 

in 
Trasporto di Particelle e di Radiazione M 

 
 

INVESTIGATION OF GUIDING-CENTER DYNAMICS IN 
TURBULENT PLASMAS 

 

 
 
 
 

CANDIDATO RELATORE: 
Filippo Arlotti Prof.Ing. Domiziano Mostacci 
  
 CORRELATORE/CORRELATORI 
 Prof. Guido Ciraolo 

Prof. Cristel Chandre 
 

 
 

 
 
 

Anno Accademico 2021/2022 
 

Sessione IV 
 



Abstract

The transport of particles inside thermonuclear magnetic fusion devices is of great interest
for the exploitation of the latter technology. The greatest limit on confinement time is in-
deed associated with the transport of particles across the plane perpendicular to magnetic
field lines, the experimental data reveal much larger values of diffusion coefficients with
respect to the expected ones. A phenomenon considered one of the main ones responsible
for this behaviour is turbulence-induced transport, the latter is associated with microin-
stabilities of the plasma but it can lead to great values of heat and particles fluxes. In this
manuscript, a guiding centre model is exploited to study the motion of particles inside a
turbulent electrostatic field in simplified slab geometry. It is showed how to obtain the
gyrokinetic Hamiltonian expression at the second order in the small parameter (related to
the amplitude of the fluctuations in the electrostatic potential) and the related governing
equations for the coordinates in the transverse plane. It is then outlined how to obtain
the same kind of governing equations for a full kinetic approach and some considerations
on re-scaling factors are made. The numerical Python code is presented in its main part
and peculiarities, and a brief description of its operation is also available. The numerical
analysis of results is made in MATLAB and starts with verifying the proper functioning
of a method that allows one to obtain the guiding centre trajectories from the full orbits of
particles. A time-step analysis of the influence of the latter parameter over the quality of
the numerical result is then presented for both the guiding centre and full orbits approach.
The main analysis of results is focused on the investigation of the influence of physical
parameters ρ and η, respectively Larmor radius and real parameter, on the dynamics of
the system, together with the investigation of an unveiled anomalous ballistic behaviour
of some particles for certain regimes of motion. The computation of rotational number
with weighted Birkhoff average leading to really interesting results is included in this last
analysis. A possible explanation for this super-diffusive regime through the existence of
meandering (twistless) invariant tori is then provided. The last part of numerical analysis
is focused on the comparison of results from the guiding centre (reduced) model with the
ones from the simple integration of the equations of motion (full kinetic), the presence of
the anomalous super-diffusive behaviour in a non-approximated and more reliable model
would mean that the phenomenon may be present in turbulent plasmas and that it is
taken into account by the considered gyrokinetic model.
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Chapter 1

Introduction

In this chapter, a little overview of the main aspects concerning nuclear fusion, magnetic
confinement, transport of particles inside nuclear fusion devices and possible numerical
approaches to the plasma dynamics investigation will be presented, the chapter itself
is mostly based on books and literature considered as a reference from the scientific
community, in particular, it is based on [Fre08], [Wes04], [Hel02], [Sta07], [Lit80], [HSK00]
and [Cha18].

1.1 Nuclear Fusion

1.1.1 Thermonuclear fusion

The growth of the world population together with the increase in the average quality of
life of people are strictly related to a rise in energy demand and consumption. Exploiting
nuclear reactions to produce large amounts of energy is particularly interesting, every
reaction is associated with an enormous release of energy. This is due to the mass deficit
between reactants and products, it is orders of magnitude larger than the one associated
with common chemical reactions. Nuclear reactions can be classified into two main cat-
egories, fission and fusion. Both processes lead to the production of nuclei characterised
by being better bounded. In order to better understand these phenomena, the concept
of nuclear binding energy should be introduced. A single nucleus is characterised by a
specific atomic mass A and it is made of a certain number of neutrons N and protons Z,
these are the so-called nucleons and they are strongly bounded to form the nucleus itself.
The energy required to break the bonds between nucleons ∆ can be calculated through
the well-known Einstein formula E = mc2, one can simply write ∆ = ∆mc2 where ∆m
is the above-mentioned mass defect, this time between nucleus and nucleons considered
as free particles while c is the light speed in vacuum. It is then possible to calculate
the average nucleon binding energy ∆/A, the larger the latter is, the more stable the
corresponding nucleus is. Nuclear reactions that lead to products characterised by higher
average nucleon binding energy are the exothermic ones, naturally, these are the ones in
which we are interested. By looking at Fig. [1.1] it is easier to distinguish the two types
of nuclear reactions we introduced previously, fission reactions move towards products
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Introduction

Figure 1.1: Average binding energy per nucleon ∆/A as a function of atomic mass number.
Extracted from [Sta07].

with a lower A while the ones towards heavier resulting products are the so-called fusion
reactions. Both the types move the system to a state characterised by a higher ∆/A,
the maximum value is obtained for Iron-56 (56Fe), the latter is the most stable nucleus.
This is the fundamental concept behind nuclear reactions for energy production purposes.
Nuclear fusion is the energy source of stars.

1.1.2 Lawson criterion

Light nuclei interact with each other and fuse together into heavier and more stable ones.
The main problem in achieving such reactions is the Coulomb repulsion: the interacting
nuclei have to overcome the potential barrier in order to arrive close enough to each
other, at that point attractive strong nuclear forces induce the fusion of the nuclei that
are interacting. Particles must collide at very high kinetic energy to allow this kind of
reaction, the incident energy has to be higher than the Coulomb barrier in principle. The
required energies are well above the average electron binding energy, therefore the matter
is fully ionized, and it reaches the state of plasma. It is necessary to obtain a sufficiently
hot and dense plasma for a considerable time in order to allow fusion reactions to occur,
this is the condition that has to be met. Thanks to a simple energy balance it is possible
to obtain the so-called Lawson criterion [Wes04], this states that the triple product of
temperature T , density n and confinement time τE needs to exceed a certain threshold
in order to achieve a net energy production:

nTτE ≥ 1021 keV s/m3 with T ≳ 20keV. (1.1)

Two main approaches to the problem are currently under investigation. The first strategy
is exploiting the so-called inertial confinement, in that case, the main goal is to produce
a very high-density plasma, it should be in the order of 1030m−3 so that the confinement
time can be low, τE ≈ 10−9s. This can be achieved by compressing fuel pellets with shock
waves generated by a great number of powerful lasers or ions beam. In this field, the
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1.1 – Nuclear Fusion

main contributions to the research come from the defence departments of some nations
since hydrogen bombs are based on this operating principle. At Lawrence Livermore
National Laboratory (LLNL) some major results have been obtained in one of the last
experimental campaigns [Bis22], this is very important for this technology in recent times
it didn’t seem to be competitive for non-military applications. The alternative approach,
magnetic confinement fusion, aims to produce a lower density plasma, n ≈ 1019m−3,
but with a greater confinement time, τE in the order of 1s to satisfy the constraints of
Lawson criterion from Eq. [1.1]. This is the technology on which we will focus more for
the purposes of my work and it will be presented and further analysed in the next section.

1.1.3 Controlled fusion reactions

Before moving on to the next section it is necessary at least to specify which are the
reactions occurring in such applications, we anticipated that we are trying to replicate
what happens inside stars, in reality, it is not possible to exploit the same reactions that
power the latter. For instance, the proton-proton chain on which energy production in the
Sun is based, involving the decay of protons into neutrons, is too slow to be exploited on
Earth. The most promising reaction for terrestrial applications is the deuterium-tritium
reaction, they are both hydrogen isotopes and their interaction leads to the production
of a nucleus of Helium and a neutron other than a massive quantity of energy:

1D2 + 1T3 ⇒ 2He4 + n + 17.6MeV. (1.2)

Figure 1.2: Nuclear structure of the basic fusion fuels. Extracted from [Fre08].

The energy of 17MeV is released in the form of kinetic energy and redistributed
between the products accordingly to their mass ratio. The choice of focusing on this
reaction is due to the fact that it is the easiest to initiate, despite the fact that currently
there are a lot of problems. The latter is associated with the fact that this reaction
produces a large number of neutrons and that it requires a supply of tritium in order to
operate continuously, tritium is radioactive with a half-life of 12.26 years, as we speak
there is no tritium on the Earth. Having made the choice of using this reaction, one
has to deal with the problems related to neutrons and to the lack of fuel. Since nuclear
fission is well known and exploited, nuclear engineers, know how to deal with activated
materials as well as radiation damage caused by high-energy neutrons, the solutions are
complicated but already established, despite the fact that usually in fission one has to deal
with neutron with the energy of 2MeV while for the concerning applications, neutrons
will reach 14MeV , it is a problem but it seems it can be solved. The most concerning
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problem is the tritium supply, nowadays the designed solution is the so-called Lithium
breeding blanket surrounding regions where D-T reactions take place. The chemical
element that is most favourable for breeding tritium is lithium:

3Li6 + n (slow) ⇒ 4
2He + T + 4.8MeV. (1.3)

3Li7 + n (slow) ⇒ 4
2He + T + n − 2.5MeV. (1.4)

Also in this case the isotopes are present in different proportions, 3Li7 is the 92.6% while
3Li6 is only the 7.4%, also, in this case, nuclear data show that 3Li6 reaction is much easier
to be initiated and that it dominates the breeding. This system hasn’t been tested and
the scientific community still doesn’t know if it will work or not, definitive answers will
be given with the operation of DEMO (DEMOnstration power plant), it will be ITER’s
successor.

1.2 Magnetic confinement

It is now time to introduce the second approach to the problem of generating a plasma
that satisfies the Lawson criterion. It is the most promising one and it is the one on
which research has focused most, from the engineering point of view many more solutions
to problems have been developed and designed for this configuration. In order to reach
the required energies for fusion reactions, it is necessary to heat a mixture of deuterium
and tritium gas to a sufficiently high temperature, in the order of 100 - 200 million K, so
that the average thermal energy is in the order of 10-20 keV (not sufficient for Lawson
criterion) but that a considerable number of particles in the tail of the corresponding
Maxwellian distribution (for both the species) have energies exceeding the Coulomb bar-
rier allowing fusion reactions to occur. This gas at very high temperatures must be
isolated, it is necessary to avoid any contact with the walls surrounding the plasma. The
rapid heat transfer and the associated heat fluxes are likely to result in structural dam-
ages as well as in an instantaneous cooling of the plasma, fusion reactions cannot occur
in this case. Since the plasma is made of charged particles and charges can interact with
any electromagnetic field E and B, the resulting motion is determined by the Lorentz
force:

m
dv

dt
= q(E + v × B). (1.5)

Magnetic confinement exploits this principle in order to confine particles inside the desired
volume, in reality, the operation of a device exploiting this kind of principle is very difficult
and the motion of confined particles is still under analysis.

1.2.1 Main drifts mechanisms

It is possible to introduce a little about how the particles move inside the above-mentioned
electromagnetic fields. Starting with the most simple case, we consider the presence only
of the magnetic field B, in this case, the particles are free to move along the field lines
but they are constrained to gyrate around them in the transverse plane (perpendicular
direction). If B is uniform and constant, the resulting particles trajectories will be helix
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1.2 – Magnetic confinement

Figure 1.3: Gyromotion of a positively charged particle, extracted from [Den90].

around the magnetic field lines, the resulting motion is known as gyromotion and it is
characterised by a couple of parameters, the gyrofrequency Ω and the so-called Larmor

radius ρ, their expression is respectively the following:

Ω =
qB

m
; ρ =

v⊥
Ω
. (1.6)

Since the dynamics of particles in the presence of only E is well known, we switch

Figure 1.4: Sketch of the gyromotion of a positively charged particle in uniform magnetic
field B together with its projection on the transverse plane, from [Mer16].

directly to the case of the presence of both B and E. When they are present at the same
time, particles are not constrained to follow the same magnetic field line, they move in
a direction that is perpendicular to both fields, and the resulting motion is the so-called
E × B drift, the resulting velocity of particles associated with this kind of drift is the
following:

vE×B =
E × B

♣B♣2 . (1.7)
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As anticipated the direction of the resulting velocity is determined by the cross-product
between the two electromagnetic fields, one has also to notice that this kind of motion is
independent of charge and mass, electrons and ions ideally follow the same path without
creating any current in the plasma. Things get tough when considering a more realistic
case, in a device for magnetic confinement B is not homogeneous and has a certain
curvature, this leads to the generation of two additional drifts in the dynamics of the
particles, we have respectively:

v∇B =
mv2

⊥
2q

∇B × B

B3
; vc =

mv2
∥

qB
(∇ × b)⊥. (1.8)

Where v∥ indicates the velocity parallel to the magnetic field B = BB. Nowadays, the
most widely used design for fusion devices is the torus-shaped one, this is the simplest
geometry that allows the magnetic field lines to be closed on themselves. Despite this,
field lines cannot be some simple rings, this is due to the two additional drifts that we just
introduced. Being charged dependent, v∇B and vc determine drifts in opposite directions
for positively charged ions and electrons. This results in a vertical charge separation
that produces an additional component to the electrical field and that leads to a radial
expulsion of the plasma consequently to the action of E×B drift, the configuration would
be intrinsically unstable. Thus, it is necessary to twist magnetic field lines into a helical
shape around the torus, this leads to the cancellation of gradient and curvature drifts
thanks to the fact that the motion of particles along the magnetic fields line is much
faster than the one in the transverse direction allowing effective confinement.

1.2.2 Promising magnetic fusion concepts

The twist in the magnetic field lines is mostly obtained in two ways: by internal currents in
tokamaks or by external coils in stellarators, they are the two most promising designs for
magnetic fusion devices and a little schematic of their configuration is shown in Fig. [1.5].
The tokamak is characterised by a strong toroidal magnetic field generated by external
coils and a poloidal magnetic field generated by the current flowing inside the torus
itself. The current in the plasma is generated using a transformer, the plasma is the
secondary winding, it is required an external current drive to power the machine. The
induced current in the machine is used to heat the plasma thanks to Ohmic dissipation,
the problem is that the resistivity of plasma decreases with temperature and additional
heating systems are required. The main problem of the tokamak is that their operation
is based on the principle of a transformer, it is not possible to operate in a steady state,
and the latter is the desired regime for energy production. The stellarator instead doesn’t
need these strong currents in the plasma for the twisting in the magnetic field lines, these
are obtained by a set of complex external coils, they are already positioned and oriented
in order to obtain the desired magnetic field shape. This means that it doesn’t need to
use a transformer and that it can operate at a steady-state regime. The main problem
of this configuration is the above-mentioned set of external coils, their positioning and
operation are very complicated.
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1.3 – Transport in confined plasmas

Figure 1.5: Schematic of basic configurations of the two most promising designs for fusion
devices, the Tokamak on the left [EF23] and the Stellarator on the right [IPP23].

1.3 Transport in confined plasmas

Even if macroscopic instabilities are stabilized, there are still some problems in reaching
and satisfying Lawson’s criterion. One of the biggest problems is associated with the
radial transport of particles and energy, this phenomenon leads to a dramatic decrease in
the confinement time τE . Transport theory’s main goal is then to investigate and control
(if possible) such phenomena. Transport processes are usually considered of diffusive
nature, the diffusion coefficient is defined through the usual formula:

D =
a2

τE
(1.9)

We assume the validity of Fick’s law so that the flux of particles can be expressed as:

Γ = −D∇n. (1.10)

Where a is the distance that particles must travel before going out of the system in the
designed confinement time τE while n is the density of particles.

1.3.1 Classical transport

In order to model these phenomena one should start from the most obvious cause for this
kind of process, a collision between particles, despite the fact that, as we will see later, this
is the mechanism that contributes less to the experimentally measured fluxes. Collisions
between particles lead to the so-called classical transport, it is essentially due to particles
moving from the magnetic field lines after having collided with each other [Hel02]. In
order to describe this process, usually a random walk model in a magnetized plasma
is used. The idea behind this is to show how a particle diffuses away from its initial
position after a series of random collisions assuming that all motion is 2 − D in the
plane perpendicular to the magnetic field. Differently from what showed in Fig. [1.6] we
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Figure 1.6: Trajectory of two particles undergoing random collisions. Note that on average
∆x = 0 while (∆x)2 /= 0, extracted from [Fre08].

have also to remember that, while considering a magnetized plasma, the orbits between
collisions are not straight lines, they are circular gyro orbits instead. This kind of model
gives us the following expression of diffusion coefficient for classical transport:

Dclass =
∆x2

∆t
≈ ρ

1/νc
. (1.11)

With ρ being the Larmor radius and νc being the Coulomb collisional frequency. For
typical fusion-relevant conditions, one finds that the diffusion coefficient is approximately
Dclass = 10−3m2/s. The actual measured total diffusion coefficient is in the order of
D = 1m2/s, one can easily understand why it was anticipated that the classical transport
is considered negligible if compared to other mechanisms.

1.3.2 Neo-classical transport

One further phenomenon associated with the additional radial motion of particles is the
so-called neo-classical transport. It is due to the toroidal geometry of fusion devices,
we know that there are drifts associated with the curvature of the magnetic field lines
as well as with the presence of ∇B. The exploited geometry causes a modification of
collisionless trajectories with a consequent extra movement of particles in the transverse
plane, actually, the excursion with respect to the magnetic field lines exceeds ρ. The
expression of the coefficients can still be calculated through the use of a modified random
walk model accounting for the mentioned mechanism, it gives us the following expression
of the particle diffusion coefficient:

Dneo = 5.2q2
(R0

r

) 3

2

Dclass. (1.12)

Where R0 is the major radius of the machine and q is... . Note that for particular values of
the parameters Dneo can be up to two orders of magnitude larger than the corresponding
classical values. Neoclassical theory is considered a useful reference point for the lower
limit on particle transport but it is still considered optimistic with respect to the oper-
ation of actual fusion devices, the experimentally measured diffusivities are still usually
larger by one or two orders of magnitude despite the fact neo-calssical transport increase
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1.3 – Transport in confined plasmas

massively the concerning coefficients. One usually refers to the additional transport as
to the anomalous one.

1.3.3 Turbulence-induced transport

At the moment, it is accepted to associate this anomalous transport to plasma turbu-
lence, it consists of instabilities on microscopic scale lengths, and one usually refers to
them as to microinstabilities. These phenomena are induced by the non-thermodynamic

(a) Turbulence inside a tokamak from numerical simulation.
(b) A detailed view of turbulence
in a torus section.

Figure 1.7: Turbulence highlighted at different levels of detail, extracted from [LPP22].

equilibrium steady state at which the plasma is maintained in order to meet conditions
necessary to allow fusion reactions. It is present a strong pressure gradient between the
core and the edge of the plasma, we have respectively ≈ 1 · 105 Pa in the first region
while 1 · 10−6 Pa in the second. This radial gradient across the plasma provides a source
of free energy which especially destabilizes small-scale plasma waves, i.e. characteristic
wavelengths perpendicular to the magnetic field lines of the order of ions and electron
Larmor radius. These micro-instabilities involve density and temperature fluctuations δn
and δT respectively but also electrostatic or electromagnetic fluctuations, δϕ and δA. As
anticipated, when the plasma is in this turbulent state, the fluctuations result in a radial
transport of particles and energy. While considering only electrostatic fluctuations δE
it is possible to calculate the related arising transport. It is also possible to attempt a
theoretical description of the mechanism through the use of random walk estimates for
turbulent transport arising from the fluctuating E × B drift velocity δv⊥. Since the po-
tential can modelled as a superimposition of various modes, one can describe fluctuations
of the latter in terms of their Fourier components, the resulting electrostatic fluctuations
can be expressed as:

δϕ =
∑

k

δϕke
jk·x. (1.13)
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Each component of the fluctuations will arise a fluctuation in the E × B drift, the global
effect on vE×B will be considered as a superimposition of various components as well:

δvk = −j k × B

B2
δϕk. (1.14)

The fluctuation δvk will persist for a certain time τk, the so-called correlation time, it
will lead to a certain displacement in space: δrk ≈ δvkτk. As anticipated, by summing
over the wave-number spectrum, it is possible to obtain an estimate of the random walk
for the turbulent diffusion:

D =
∑

k

(δrk)2

τk
=

∑

k

(k⊥δϕk

B

)2
τk. (1.15)

The correlation time is determined by the process which most rapidly limits the unidi-
rectional E × B drift. We consider that the processes involved can be:

• Time variation of the fluctuation:

τk ≈ 1/ωk.

• Time for a particle to move along a parallel wavelength of the fluctuations:

τk ≈ 1/k⊥νT .

• Time for magnetic drifts to carry particles over a perpendicular wavelength:

τk ≈ 1/ωk.

• Time for collisions to change the particle orbit:

τk ≈ 1/νeff .

• The turbulent velocity δvk carrying a particle a perpendicular wavelength:

τk = Ω−1
k .

One should consider this last option when the levels of fluctuations are very high. The
expression of Ωk can be written as the following:

Ωk = k⊥δvk =
k2

⊥δϕk

B
. (1.16)

It means that for high levels of fluctuations the diffusion coefficient becomes linear in δϕ:

D =
∑

k

δϕk

B
. (1.17)

In case these drifts are in phase with fluctuations of other quantities, density or temper-
ature for example, then a net flux of particles can be generated in the radial direction.
Despite the fact that microturbulent fluctuations are characterised by small amplitudes,
typically 10−3 in the centre of large fusion devices, the associated transport fluxes can be
sufficiently high to explain the experimental measurements. It would be very interesting
to continue to analyse these phenomena since they can be responsible for the anomalous
transport of particles that can lead to the massive decrease in confinement time.

16



1.4 – Kinetic plasma modelling and gyrokinetic models

1.4 Kinetic plasma modelling and gyrokinetic models

Plasma physics and dynamics can be investigated through the use of different approaches,
each of which is characterised by peculiarities and different approximations. Depending
on the phenomena one wants to investigate other than the temporal scale of dynamics
or the dimension of the volume under analysis one should use a different approach. The
plasma dynamics can be described at different levels, from simulating the response of
single particles inserted in an electromagnetic field through the use of simple equations
of motion to the use of distribution function together with kinetic equations and also
to consider the plasma as a quasi-neutral fluid that is capable of interacting with the
electromagnetic field. Every approach has its pro and cons, the simulation of a large
system may seem impossible for the single particle approach given the high number of
associated equations while it is a standard task for the fluid approach. On the other
hand, the study of small-scale phenomena such as the study of particles dynamics in
turbulent electromagnetic fields results to be really difficult for the latter, depending
on the situation one should choose the most efficient and suitable approach. For the
purpose of this work, only kinetic approaches will be introduced and briefly analysed
before introducing the gyrokinetic approach.

1.4.1 Equations of motion

This is the easiest approach from the theoretical point of view, we simply compute the
values of the independent variables in the 6-D phase space of the solution obtaining the
trajectories and the velocity of each particle over time. One has only to solve the initial
value problem identified by the set of Eqs. [1.18], the problem is that the number of
particles that can be simulated is limited since a great number of equations is associated
with each particle.





m
d2r(t)

dt2
= e

(
E(r, t) +

dr(t)

dt
× B(r, t)

)
,

dr(t)

dt

∣∣∣∣
t=0

= v0,

r(0) = r0.

(1.18)

Also without considering the coupling of the electromagnetic fields to Maxwell equations,
and without considering the feedback effects the particles have on the EM fields since
particles density inside a magnetic fusion device is in the order of 1019m−3 it is easy to
understand that this approach cannot be applied to simulate large systems, at least not
with nowadays technology.

1.4.2 Vlasov-Maxwell system

Kinetic theory evaluates the behaviour of plasmas in terms of particle motion as well.
Since the number of particles to be investigated is very large, a statistical approach is
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exploited, this description is carried out using the distribution function f(x,v, t). The
latter measures the probability density for a single particle in the 6-D phase space (x,v).
Each plasma species j is characterised by a specific distribution function that depends
on space, velocity and time. The evaluation of fj(x,v, t)d3xd3v provides the number of
particles which are located in the infinitesimal six-dimensional phase space d3xd3v around
the position (x,v) at which the distribution function has been evaluated time t. It is then
necessary to use a so-called kinetic equation to study the evolution of the distribution
function for each species J , one of the most famous ones is the Vlasov equation. In
addition to that, we know that electromagnetic fields must respect Maxwell’s equations,
so it is necessary to couple the Vlasov equation together with this one, the obtained set of
equations is the so-called Vlasov-Maxwell system and it is shown in Eq. [1.19], Eq. [1.20]
and Eq. [1.21]:

d

dt
fj(x,v, t) =

[
v
∂

∂x
+

qj

mj

(
E(x, t + v × B(x, t)

) ∂
∂v

]
fj(x,v, t) = C[fj(x,v, t)]. (1.19)

∇ · E =
1

ε0

∑

j

ρj ; ∇ × E = −∂B

∂t
. (1.20)

∇ · B = 0 ; ∇ × B = µ0

(∑

j

jj + ε0
∂E

∂t

)
. (1.21)

Where qj and mj are respectively the charge and the mass of the species j, C is an
operator that accounts for binary collisions, ρj is the charge density and Jj is the current
charge density, the expressions of these last two quantities are evaluated through the
integration of the distribution function:

ρj = qj

∫
fjd

3v ; jj = qj

∫
fjvd3v. (1.22)

It is possible to obtain a self-description of the plasma through the coupled solution
of Eqs. [1.19], [1.20] and [1.21]. The thing is that for a typical tokamak, the solution
would account for plasma physics involving different temporal and spatial scales varying
by several orders of magnitude. It is not possible to solve this kind of problem without
introducing a set of approximations.

1.4.3 Gyrokinetic framework

It is well known that many plasma phenomena involve processes which are slow compared
to the Larmor frequency and which vary slowly in space compared to the Larmor radius
of a generic particle. It is possible to study this kind of phenomenon without moving
from the kinetic approach, this can be done through the use of simpler and reduced
kinetic equations called gyrokinetic equations. An accurate review of this approach can
be found at [BH07]. In general, gyrokinetic theory and the related distribution functions,
deal with the dynamics of gyro-centres, they are slightly displaced with respect to the
guiding centres, and they account for the feedback effects of the electromagnetic fields
with respect to the charge of the single particle. The main advantage of such kinetics
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equations lies in the reduced dimensionality of the phase-space, an average over the Fast
Larmor motion is performed, this is called also gyro-average and it reduces the phase
space dimension by 1. The resulting independent variables are the three coordinates of
the gyrocentre rgy, the velocity component along the magnetic field lines v∥gy and the
magnetic moment of the latter µgy:

f(x,v, t) ⇒ f(rgy, v∥gy, µgy, t). (1.23)

In addition to the reduction of the order of the system, one has also to remember that the
dynamics associated with the gyrocentres is smoother with respect to the one of particles,
this means that the time discretization with which the solution is obtained can be much
larger than the used for a full kinetic approach. One doesn’t have to account for the fast
dynamics around the magnetic field lines, this simplifies a lot the investigation of the
dynamics from a numerical point of view.

1.4.4 Guiding-Center approach

The fact that one should account for the feedback effects from the electromagnetic fields
in order to study the dynamics of the gyrocentres complicates the equations and the
solution for sure. It is possible to not account for these effects and study directly the
dynamics of Guiding-centres through the use of guiding centre theory from [Lit79], [Lit80],
[Lit81], [Lit83] and [CB09]. The particles dynamics that one investigates in this way is
the dynamics of the so-called test particles, these ones are not producing any effect in
the electromagnetic fields despite the fact they have a charge. This kind of model can
still be very interesting to investigate particular regimes or phenomena happening in a
plasma. It is a simplified approach with respect to a full gyrokinetic one but it can furnish

Figure 1.8: Schematic projection of particle, guiding-centre and gyrocentre positions on
the transverse plane, extracted from [GL21].

a lot of useful information without being characterised by having a high computational
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cost. For the purpose of the work, it has been decided to not use distribution functions,
the approach is more similar to the one of the equations of motion, briefly described in
Subsec. 1.4.1, but the equations will be the ones related to guiding centre dynamics in the
gyrokinetic framework. This can be done only for a limited number of particles naturally,
since mechanical statistics is not involved, and only because we are considering only test
particles.

1.5 Scope and outline of the thesis

The purpose of my work is to investigate the transport of particles due to turbulence in
an electrostatic field, the topic has been already introduced in Sec. 1.3, and this is ex-
ploited through the use of guiding centre approach on test particles dynamics. Since we
are interested only in the motion on the transverse plane (associated with transport), a
further simplification has been introduced, the motion of particles is investigated only in
two dimensions, and the investigation of dynamics along the third dimension is not of our
interest and it is not influenced by the considered magnetic field. B is chosen as uniform
and constant along this third dimension, the system is investigated in a slab geometry as a
matter of fact. As anticipated, the motion of particles is analysed through the use of gov-

Figure 1.9: Geometry of the problem under analysis, focus on the turbulent potential.

erning equations derived in a gyrokinetic framework, the derivation of the latter is shown
in the next chapter. The considered framework can be considered as a non-usual gyroki-
netic one since the observable expressed in series, e.g. the Hamiltonian, are expressed
considering three terms of these series, up to the second order, nowadays the standard
is considering only the zeroth and first-order ones. Since the second order is usually
considered negligible and its implementation is quite complex, it has not been inserted
in the majority of gyrokinetics code. Since one of the main problems in fusion devices is
associated to transport due to turbulence, the idea is to investigate the dynamics of our
simplified system accounting for this additional term in order to analyse any resulting
regime and to evaluate the accuracy of this kind of analysis with respect to full kinetic
approach, the one exploited through the integration of standard equations of motion.
This work is mostly based on [Lit79], [Cha21] and [TC18], the model has been checked
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again and further calculations to obtain the expression of the third order of the Hamil-
tonian have been performed. The numerical results are obtained from a code developed
by Cristel Chandre, Research Professor at Centre National de la Recherche Scienitfique
(CNRS) at Institut Mathématiques de Marseille. The code is available (on request) at
github.com/cchandre/Guiding-Center/ it computes the guiding centres’ trajectories
(as well as particles themselves now) in the above-described framework while considering
a mock turbulent electrostatic potential similar to the one described in [PVM+88]. The
work has been carried out at the Institut de Recherche sur la Fusion par Confinement
Magnétique (IRFM) in the Groupe Thèorie et Simulation Numérique (GTSN) group at
CEA (Commissariat à l’Énergie Atomique et aux Énergies Alternatives) in Cadarache
(FR) under the supervision of Guido Ciraolo, who leads the research group working on
numerical simulations of plasma physics. The manuscript is structured as described in
the following bullet list:

• Chapter 2 Contains the introduction to the complete starting model, the change
of coordinates to guiding centre ones, the procedure to obtain the expression of the
Hamiltonian in the gyrokinetic framework, the procedure to obtain the governing
equations for guiding centres and particles and finally the procedure to obtain the
equations for computing the total energy of particles over time.

• Chapter 3 Includes the description of the code, starting from the explanation of
how the code works, the three .py files are deeply described so that one can easily
understand how to run the code in a proper way while fixing specific parameters
other than having understood how the equations derived in Chapter 2 are imple-
mented inside the code. It also explains how to generate certain types of plots
directly at the end of the execution other than how to store save and analyse data
from the code.

• Chapter 4 Contains the presentation of the main numerical results, the chapter
starts from the check on the proper functioning of fo2gc function, and it passes
then to the time-step analysis exploited to find the maximum value of TimeStep

parameter, this is crucial for the quality and the accuracy of the results. The main
part of this chapter is focused on the influence of physical parameters over particle
dynamics other than investigating an anomalous super-diffusive regime leading to
a ballistic behaviour of some particles. The final part of the chapter compares the
dynamics obtained from the guiding centre approach to the one that it is possible
to obtain thanks to the standard integration of the equation of motion.

• Chapter 5 Summarises the results obtained in the present work while trying to
highlight the innovative consequences of these ones. A little focus on future per-
spectives of the work is also presented.
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Chapter 2

Model description

2.1 Introduction to the model and context

As anticipated in chapter 1, the study of transport and diffusion associated with turbu-
lence in an electromagnetic field is of great interest. As we know, charged particles interact
with the fields and induce a sort of feedback effect in them, this is due to the charge of the
particles themselves. If we consider a high-density plasma, the effect of a single particle
can not be neglected, the global charge can strongly influence the electromagnetic fields
and the dynamics of the system. Through the coupling with Maxwell equations of the
desired equation for studying particles dynamics, it is possible to find a solution consid-
ering this effect. In this report, the system analysed does not account for this interaction,
not completely, the considered potential map already accounts for the presence of the
particles given that its analytical expression has been derived from a measured potential
inside a real device, the particles have already influenced the measurements. It is possible
to say that we are considering the motion of test particles, this means that there is no
feedback effect on electromagnetic fields from the particles themselves. Those particles
are non-interacting with each other, that’s the classical assumption of non-interaction
that characterizes the Vlasov equation. Despite the fact that this system is simplified, its
dynamic is of great interest for multiple applications. A simple mathematical approach
to finding a solution for this problem is solving the equations of motion:

mẍ = q(E + ẋ × B). (2.1)

ẋ = v. (2.2)

Through the integration of ẍ and ẋ it is possible to obtain the solution in the 6-dimensional
phase space considering time dependence. Those calculations have a high computational
cost since the system has 6 independent variables. In order to decrease the computational
time we would like to reduce the order of the system, meaning decrease the number of
independent variables. If it is possible that the system would be easier to study resulting
in various advantages.
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2.2 Complete model

It is now time to introduce and analyse a little the complete starting model, as anticipated,
the system is characterised by a 6D phase space, and it is possible to define vector position
x and velocity v:

x = (x, y, z)

v = (vx, vy, vz)

Some parameters of interest are q, the charge of the particles, m, the mass of the particles
and B, the amplitude of the magnetic field. It is well known the expression of the
Hamiltonian for this kind of system:

H =
1

2
mv2 + qϕ. (2.3)

knowing that ϕ is the electrostatic potential it is valid:

E = −∇ϕ

It is known also the expression of the Poisson bracket for this system:

{
F,G

}
=

1

m

(∂F
∂x

∂G

∂v

− ∂F

∂v

∂G

∂x

)
+
qB

m2

(∂F
∂v

× ∂G

∂v

)
. (2.4)

Using an identity this last expression can be written in a new form:

{
F,G

}
=

1

m

(∂F
∂x

∂G

∂v

− ∂F

∂v

∂G

∂x

)
+
∂F

∂v

·
(∂G
∂v

× qB

m2

)
. (2.5)

It is possible to study the evolution in time of a generic observable F obtaining the
expression for its derivatives in time, to do that it is just necessary to calculate the Poisson
bracket of the generic observable and the Hamiltonian itself, therefore it is generally valid
the following expression:

Ḟ =
{
F,H

}

For instance, we can test it on a generic independent variable:

{
vx, H

}
= − 1

m

(∂H
∂x

)
+




1
0
0


 ·

(∂H
∂v

× qB

m2

)

Since the Poisson brackets applied to an independent variable are giving us two contri-
butions, it is possible to conclude that the actual brackets are not canonical. It is also
possible to affirm that the system under analysis is physical, this means that I am able
to measure the velocity and the position of a particle for example. Later on, we will
see that, while referring to guiding centres, the system won’t be physical anymore. The
guiding centre doesn’t exist in reality and I can’t measure its velocity and position. Once
the reference system takes advantage of the position of the guiding centre, the system is
no more physical but we will see that its Poisson Bracket will be canonical.
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2.3 Change of coordinates

It is needed to refer to a new reference system, the one taking advantage of the position
of the guiding centre. The latter is a non-physical point around which the single particle
rotates with a radius equal to the well-known Larmor radius, it is known also as gyroradius

and its expression is:
ρ =

m

∥q∥B
√
v2

x + v2
y

It is also well known which is the frequency with which the particle rotates around the
guiding centre, it is called Cyclotron frequency and its expression is:

Ω =
qB

2πm
. (2.6)

Studying the solution of the equation of motion in a simplified case of electromagnetic
field it is possible to calculate easily the position of this point, resulting in:

χ = x − ρ = x − m

qB
ẑ × v. (2.7)

The first simplification introduced in the system is the geometry, a slab one is considered.
The magnetic field is considered uniform and constant along ẑ:

B = Bẑ

The potential is considered constant along ẑ as well, it varies only in time and in the
transverse plan:

ϕ = ϕ(x, y, t)

The particle and the guiding centre will have the same velocity along ẑ but it will remain
constant ⇒ vz = Cst. It is possible to calculate the expression of ż and v̇z like we did
before:

ż =
{
z,H

}
=

1

m

∂H

∂vz
= vz. (2.8)

v̇z =
{
vz, H

}
= − 1

m

∂H

∂z
= 0. (2.9)

In Eq. [2.8] and [2.9] it has been considered the expression of Hamiltonian of Eq. [2.3].
Knowing that z varies linearly and that vz is a constant could allow us to not study the
motion in these two independent variables, reducing the order of the system, but for now,
we maintain the terms associated with their study so that the procedure is more general.
In theory, the order of the system has already been reduced of 2 letting us have a system
of order 4. It is now necessary to perform the first change of coordinates, naturally,
this needs to be invertible in order to let us the possibility of going back once we have
obtained the results in the new reference system. Invertible transformations mean that
the function that binds two variables has to be bijective, from a value of the starting
variable I obtain only one value of the arriving variable. In theory, the transformation
should also be considered sufficiently smooth, this means that it doesn’t introduce any
singularity in the functions and in their derivatives. As it was anticipated, performing the
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first change of coordinates means moving into the system of coordinates of the guiding
center: (

x, y, z, vx, vy, vz
) ⇒ (

χ1, χ2, χ3, ρ, θ, v∥
)

It is possible to represent the global change of variables through the following relations:

x = (x1, x2, x3) ⇒ χ = x − m

qB
ẑ × v = (χ1, χ2, χ3). (2.10)

v⊥ = (vx, vy) ⇒ ρ =
m

♣q♣B
√
v2

x + v2
y . (2.11)

v⊥ = (vx, vy) ⇒ θ = tan−1
(vx

vy

)
. (2.12)

vz = v∥. (2.13)

Where χ1, χ2, and χ3 are the coordinates of the guiding centre in a Cartesian reference
system. ρ and θ are respectively the Larmor radius and the gyro-angle. Firstly it is
necessary to check that the transformation that is taking place is bijective, this is a very
important requirement, in order to do that it should be obtained the expression of all the
old variables as a function of the new ones. The procedure is quite simple, from Eq. [2.10]
it is possible to obtain:

x = χ1 + ρ cos θ. (2.14)

y = χ2 − ρ sin θ. (2.15)

From Eq. [2.11] it is possible to obtain:

√
v2

x + v2
y = ρ

♣q♣B
m

= v⊥. (2.16)

Given the considered reference system the velocity just obtained comes with a direction,
it is identifiable with:

⊥̂ = − sin θ x̂ − cos θ ŷ. (2.17)

Using Eq. [2.16] and [2.17] we can obtain x and y components of v⊥:

v⊥x = vx = −ρ ♣q♣B
m

sin θ. (2.18)

v⊥y = vy = −ρ ♣q♣B
m

cos θ. (2.19)

As anticipated from Eq. [2.13] the expression of vz as a function of v∥ is already explicit.
This with Eq. [2.14], [2.15], [2.18] and [2.19] is the confirmation that the transformation
is invertible, so it is possible to proceed with the procedure. The transformation that is
taking place is not canonical, the Poisson bracket is being modified. To calculate the new
expression of the P.B. it is necessary the use of square matrix J that accounts for the
change of coordinates, meaning that it contains the information linking the old and the
new coordinates. In particular, each element of the generalized version of J is a Poisson
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bracket that acts on the new coordinates and has the old ones as its variables. In general,
it is valid:

{
F,G

}
=

M∑

k,l=1

∂F

∂z′
k

Jkl(z
′)
∂G

∂z′
l

=
∂F

∂z′
J(z′)

( ∂G
∂z′

)T
. (2.20)

With
k, l = 1, ...,M : Jkl(z

′) =
{
z′

k, z
′
l

}
.

It is required the expression of the elements of the matrix J(z′) in order to obtain the
final expression of the PB. In general, it is valid:

k, l = 1, ...,2N : Jkl(z
′) =

{
z′

k, z
′
l

}
=

2N∑

k,l=1

∂z′
k

∂zk
Jkl(z)

∂z′
l

∂zl
=
∂z′

k

∂z
J(z)

(∂z′
l

∂z

)T
. (2.21)

As we can see from Eq. [2.21] it is required to know the matrix J(z). The general
expression of the latter is the following:

J(z) =




¶x1, x1♢ ¶x1, x2♢ ¶x1, x3♢ ¶x1, v1♢ ¶x1, v2♢ ¶x1, v3♢
¶x2, x1♢ ¶x2, x2♢ ¶x2, x3♢ ¶x2, v1♢ ¶x2, v2♢ ¶x2, v3♢
¶x3, x1♢ ¶x3, x2♢ ¶x3, x3♢ ¶x3, v1♢ ¶x3, v2♢ ¶x3, v3♢
¶v1, x1♢ ¶v1, x2♢ ¶v1, x3♢ ¶v1, v1♢ ¶v1, v2♢ ¶v1, v3♢
¶v2, x1♢ ¶v2, x2♢ ¶v2, x3♢ ¶v2, v1♢ ¶v2, v2♢ ¶v2, v3♢
¶v3, x1♢ ¶v3, x2♢ ¶v3, x3♢ ¶v3, v1♢ ¶v3, v2♢ ¶v3, v3♢




. (2.22)

As anticipated each of these elements is a Poisson bracket of which we know the expression
from Eq. [2.5]. In fact, the expression of the elements of J(z) is the same as the ones
belonging to J(z′). It is possible to write:

k, l = 1, ...,M : Jkl(z) =
{
zk, zl

}
. (2.23)

The PB is the one coming from Eq. [2.5] as anticipated. Through the computing of each
element it is possible to obtain the following matrix J(z):

J(z) =




0 0 0 1
m 0 0

0 0 0 0 1
m 0

0 0 0 0 0 1
m

− 1
m 0 0 0 B e

m2 0

0 − 1
m 0 −B e

m2 0 0
0 0 − 1

m 0 0 0




. (2.24)

Now it is time to compute the elements of the next matrix. Firstly it is necessary to
introduce the general expression of J(z′):

J(z′) =




¶χ1, χ1♢ ¶χ1, χ2♢ ¶χ1, χ3♢ ¶χ1, ρ♢ ¶χ1, θ♢ ¶χ1, v∥♢
¶χ2, χ1♢ ¶χ2, χ2♢ ¶χ2, χ3♢ ¶χ2, ρ♢ ¶χ2, θ♢ ¶χ2, v∥♢
¶χ3, χ1♢ ¶χ3, χ2♢ ¶χ3, χ3♢ ¶χ3, ρ♢ ¶χ3, θ♢ ¶χ3, v∥♢
¶ρ, χ1♢ ¶ρ, χ2♢ ¶ρ, χ3♢ ¶ρ, ρ♢ ¶ρ, θ♢ ¶ρ, v∥♢
¶θ, χ1♢ ¶θ, χ2♢ ¶θ, χ3♢ ¶θ, ρ♢ ¶θ, θ♢ ¶θ, v∥♢
¶v∥, χ1♢ ¶v∥, χ2♢ ¶v∥, χ3♢ ¶v∥, ρ♢ ¶v∥, θ♢ ¶v∥, v∥♢




. (2.25)
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Taking advantage of Eq. [2.21] and knowing the expression of all the necessary terms
from J(z) we are able to do all the necessary calculations obtaining the final expression
of J(z′) as done before:

J(z′) =




0 − 1
B e 0 0 0 0

1
B e 0 0 0 0 0
0 0 0 0 0 1

m
0 0 0 0 − e

m ♣e♣
√

vx
2+vy

2
0

0 0 0 e

m ♣e♣
√

vx
2+vy

2
0 0

0 0 − 1
m 0 0 0




. (2.26)

Now that all these elements are known, it is possible to obtain the expression of the
modified Poisson Bracket through Eq. [2.20]:

{
F,G

}
=

1

qρB

(∂F
∂θ

∂G

∂ρ
− ∂F

∂ρ

∂G

∂θ

)
− 1

qB

( ∂F
∂χ1

∂G

∂χ2
− ∂F

∂χ2

∂G

∂χ1

)
+

1

m

( ∂F
∂χ3

∂G

∂u∥
− ∂F

∂u∥

∂G

∂χ3

)
.

(2.27)
Before proceeding it would be advisable to make a change in the variables introducing the
magnetic moment µ in place of gyro-radius ρ. Giving the definition of the new variable:

µ =
mv2

⊥
2B

.

It is possible to find the link between the two variables that are being exchanged giving
that:

v2
⊥ =

ρ2♣q♣2B2

m2
⇒ µ =

m

2B

ρ2♣q♣2B2

m2
=
ρ2q2B

2m
. (2.28)

The expression of the Hamiltonian needs to be modified:

H = µB +
1

2
mv∥ + qϕ(χ1 + ρ cos θ, χ2 − ρ cos θ, τ). (2.29)

The expression of the Poisson brackets needs to be modified as well:

{
F,G

}
=

q

m

(∂F
∂θ

∂G

∂µ
− ∂F

∂µ

∂G

∂θ

)
− 1

qB

( ∂F
∂χ1

∂G

∂χ2
− ∂F

∂χ2

∂G

∂χ1

)
+

1

m

( ∂F
∂χ3

∂G

∂u∥
− ∂F

∂u∥

∂G

∂χ3

)
.

(2.30)
It is possible to check if this P.B. is canonical, as it has been done before:

θ̇ =
{
θ,H

}
=

q

m

∂H

∂µ
=

q

m
B =

qB

m
= ωcyclotron.

with ωcyclotron known also as cyclotron angular velocity. It is clear that whenever we
put an independent variable inside these P.B. only one term gives its contribute meaning
that those brackets are canonical. From now on we do not want to change the brackets
anymore, in order to do that it is necessary to perform only canonical transformations.
The goal is continuing the reduction of the order of the system, in particular, it is nec-
essary to eliminate the dependency on θ, that’s because the fast rotating dynamic isn’t
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2.4 – Autonomization of the system

interesting in order to obtain the trajectory of the guiding centre, representing the mean
trajectory of the particle. To calculate the correct trajectory of the ions ( including the
fast dynamics ) smaller time steps for the integration are required compared to what
could be used use if it has to be calculated only the guiding centre trajectory. The com-
putational time required for obtaining the same solution using a much smaller time step
is significantly higher. It is important to understand that we are not going to simply
eliminate the dependency but at the end of the process, θ won’t be a variable anymore.
It is necessary to account for the fact that the particle is rotating around the guiding
centre and that the Electromagnetic field acts precisely on the latter, the field can be
different at two different θ angles influencing the trajectory of the particle itself. What
is possible to do is to consider an average effect of the potential for every revolution of
the particle around the G.C. Consequently, the Hamiltonian becomes:

H(χ1, χ2, χ3, µ, θ, τ, v∥) = µB +
1

2
mv2

∥ + qϕ(χ1, χ2, χ3, µ, θ, v∥). (2.31)

In order to account for the contribution of θ on every revolution we simply integrate over
the latter so that we account for its influence without having its contribution at the end
of the procedure. We define the gyro-average operator as:

⟨f⟩θ =
1

2π

∫ 2π

0
f(x, θ, ...) dθ = J0(f).

As it was mentioned before the averaging over θ will be the result of a canonical trans-
formation, we mentioned that from now on the Poisson bracket shouldn’t be modified.
On the other hand, the expression of the Hamiltonian will be changed due to the trans-
formation itself.

2.4 Autonomization of the system

The first thing that is necessary to do before modifying anything in the model is the
autonomization of the system. Once we have done this procedure, the time will become
variable and the solution will be easier to find. The system will not depend explicitly on
the independent variable time, it will be called a time-invariant system. The price for
doing that will be the introduction of another variable k, the energy of the system in our
case. Overall, therefore, there is an increase of two independent variables. As anticipated,
this procedure is very useful whenever the system is characterised by a Hamiltonian with
the following expression:

H = H(z(t), t).

The main concept behind this procedure is taking advantage of:

z = f(z, t) = f(z, τ) with τ = t ⇒ τ̇ = 1.

τ is the new variable time and it depends on time as well, we cancel fictitiously the time
dependence from our function making time a variable. It is possible to reduce the latter
to:

H(z, t, k) = H(z, τ) + k. (2.32)
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The system now has two more independent variables, the system at this moment has
8 independent variables indeed. It may seem not an advantage to have increased the
order of the system but during the resolution of equations, the system will be easier to
be handled. The new system is characterised by observables that depend on the new
variable τ and k so it is necessary to modify the Poisson bracket in order to obtain a
bracket that truly describes the exact evolution of the state of the system. The extended
P.B. is slightly different from the original one:

{
F,G

}

τ
=

{
F,G

}
+

(∂F
∂t

∂G

∂k
− ∂F

∂k

∂G

∂t

)
. (2.33)

Following Eq. [2.32] and Eq. [2.33] it is possible to write the new expression of the Hamil-
tonian and of the Poisson Bracket:

H(χ1, χ2, χ3, µ, θ, τ, v∥, k) = µB +
1

2
mv2

∥ + qϕ(χ1, χ2, χ3, µ, θ, τ) + k. (2.34)

{
F,G

}

τ
=
q

m

(∂F
∂θ

∂G

∂µ
− ∂F

∂µ

∂G

∂θ

)
− 1

qB

( ∂F
∂χ1

∂G

∂χ2
− ∂F

∂χ2

∂G

∂χ1

)
+

+
1

m

( ∂F
∂χ3

∂G

∂u∥
− ∂F

∂u∥

∂G

∂χ3

)
+

(∂F
∂t

∂G

∂k
− ∂F

∂k

∂G

∂t

)
.

(2.35)

Now that the system is autonomized, it is possible to say that the energy is conserved if
the system is isolated and it is possible to establish how the latter enters or leaves the
system. As usual, it is possible to simply write:

k̇ =
{
k,H

}
= −∂H

∂t
= q

∂ϕ

∂t
. (2.36)

From this equation, it can be clearly seen that the energy can be transferred inside and
outside the system only through the potential. Now the system is autonomized and ready
to be reduced with gyro-kinetic theory.

2.5 Assumptions on the electrostatic field

Some assumptions have to be made to ensure that the procedure does not contain too
large errors, if the potential is varying too rapidly in space and time we would produce
inaccurate results as well as the potential has an excessive amplitude, the resulting as-
sumptions are the following:

• Low amplitude of the potential: → εδϕ(χ1, χ2, χ3, µ, θ, τ).

• Potential slowly varying in time: → ϕ(χ1, χ2, χ3, µ, θ, εωτ) with εω = τ
T .

• Potential slowly varying along ẑ: → ϕ(χ1, χ2, ε∥χ3, µ, θ, τ) with ε∥ = L⊥
L∥
.

Choice of ordering:
εδ = εω = ε∥.
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2.6 – Application of Lie transform

The resulting expression of the potential is the following:

εδϕ(χ1, χ2, εδχ3, µ, θ, εδτ).

Taking into account these last assumptions we obtain our final Hamiltonian formulation:

H(χ1, χ2, χ3, µ, θ, τ, v∥, k) = µB +
1

2
mv2

∥ + qεδϕ(χ1, χ2, εδχ3, µ, θ, εδτ) + k. (2.37)

2.6 Application of Lie transform

Now it is time to perform the change of coordinates in order to eliminate the θ dependence.
A summary of what Lie transform is and how to exploit this kind of transformation can
be found in Sec. A.2. In order to do that the main goal is choosing the right generating
function. It is necessary to change coordinates and the consequent definition of a specific
generating function for each order of H in which one wants to annul the dependency. It
is recalled the expression of the Hamiltonian for this system:

H(χ1, χ2, χ3, µ, θ, τ, k, v∥) = µB +
1

2
mv2

∥ + qεδϕ(χ1, χ2, εδχ3, µ, θ, εδτ) + k.

The dependence on the θ variable is contained in the potential contribution. It is needed
to recall the assumptions made on the potential:

• Low amplitude of the potential.

• Potential slowly varying in time.

• Potential slowly varying along ẑ.

It is possible to write the Hamiltonian as in the theory of perturbation:

H(χ1, χ2, χ3, µ, θ, τ) = H0(µ, v∥, k) + εδV (χ1, χ2, χ3, µ, θ, τ).

through the definition of:

• H0 = H0(µ, v∥, k) = µB + 1
2mv2

∥ + k.

• εδV = εδV (χ1, χ2, χ3, µ, θ, τ) = qεδϕ(χ1, χ2, χ3, µ, θ, τ).

Before starting the procedure to obtain the modified expression of Hamiltonian, at which
Lie transforms have been applied at the desired order, it is necessary to make some
clarifications on Poisson Brackets. They are expressed as the extended form of Eq. [2.30].
It is possible to define some sub-brackets:

•

{
F,G

}

g
=

{
F,G

}

(θ,µ)
= q

m

(
∂F
∂θ

∂G
∂µ − ∂F

∂µ
∂G
∂θ

)
.

•

{
F,G

}

⊥
=

{
F,G

}

(χ1,χ2)
= − 1

qB

(
∂F
∂χ1

∂G
∂χ2

− ∂F
∂χ2

∂G
∂χ1

)
.
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•

{
F,G

}

∥
=

{
F,G

}

(v∥,χ3)
= + 1

m

(
∂F
∂χ3

∂G
∂u∥

− ∂F
∂u∥

∂G
∂χ3

)
.

•

{
F,G

}

t
=

{
F,G

}

(τ,k)
= +

(
∂F
∂t

∂G
∂k − ∂F

∂k
∂G
∂t

)
.

When it is necessary to develop a Poisson Bracket it is possible to take advantage of the
following expression:

{
F,G

}
=

1

ε

{
F,G

}

g
+

{
F,G

}

⊥
+

{
F,G

}

∥
+

{
F,G

}

t
. (2.38)

Given that the observables to which those brackets are applied are slowly varying in
time and slowly varying along ẑ direction we expect it is possible to write the following
modified expression:

{
F,G

}
=

1

ε

{
F,G

}

g
+

{
F,G

}

⊥
+εδ

{
F,G

}

∥
+εδ

{
F,G

}

t
. (2.39)

Taking into account this, some terms will move from the first to the third order, for
example, it is very important to consider this. Another important point is to analyse
the application of the Poisson Bracket to a generic observable F and H0. Before doing
that it is necessary to calculate the derivatives of H0 with respect to all the independent
variables:

∂H0

∂µ
= B;

∂H0

∂v∥
= mv∥;

∂H0

∂k
= 1;

∂H0

∂t
/= 0;

∂H0

∂χ1
= 0;

∂H0

∂χ2
= 0;

∂H0

∂χ3
= 0.

Given the validity of these last equations, it is possible to write the expression of the
following useful relation:

{
F,H0

}
=

1

ε

{
F,H0

}

g
+εδ

{
F,H0

}

t
. (2.40)
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2.7 Gyrokinetic Hamiltonian model

In the following passages are shown the main terms obtained during the calculations of
the Lie Transform at the third order, the procedure is almost the same as the second
order but the number of terms has increased. The operator for the Lie transform has a
different expression:

e−εLs =
n=3∑

n=0

−εn
L

n
s

n!
= 1 − εLs +

ε2

2
L

2
s − ε3

6
L

3
s +O(ε4). (2.41)

It is possible to express the generating function as a series:

S(z) =
+∞∑

n=0

εn
δSn(z) =

n=3∑

n=0

εn
δSn(z) +O(ε3

δ) = S0 + εδS1 + ε2
δS2 + ε3

δS3 +O(ε4
δ).

The most complex term is coming out from L3
s applied to a generic observable F , it

becomes:
L3

s(F ) =
{
S,

{
S,

{
S, F

}}}
.

In order to obtain the expression of the modified Hamiltonian H ′ it is simply needed to
apply the operator for the Lie transform to the old version of H:

e−εLsH = H ′ = H − ε
{
S,H

}
+
ε2

2

{
S,

{
S,H

}}
−ε3

6

{
S,

{
S,

{
S,H

}}}
. (2.42)

The modified expression of the Hamiltonian will account for first, second and third-order
terms in εδ other than contributions that don’t contain the latter. It is possible to take
advantage of a useful notation:

H ′ = H0 +H(I) +H(II) +H(III). (2.43)

H has always the same expression, H = H0 + εδV , it is possible to develop the terms in
the various order in ε through the bi-linearity property of the Poisson Brackets:

−ε
{
S,H

}
= −ε

{
εδS1 + ε2

δS2 + ε3
δS3, H0 + εδV

}
=

= −ε
[
εδ

{
S1, H0

}
+ε2

δ

{
S2, H0

}
+ε3

δ

{
S3, H0

}
+ε2

δ

{
S1, V

}
+ε3

δ

{
S2, V

}
+O(ε4

δ)
]
.

It is possible to follow the same procedure for the terms in ε2 and ε3:

ε2

2

{
S,

{
S,H

}}
=
ε2

2

{
εδS1 + ε2

δS2 + ε3
δS3, εδ

{
S1, H0

}
+ε2

δ

{
S2, H0

}
+ε3

δ

{
S3, H0

}
+

+ ε2
δ

{
S1, V

}
+ε3

δ

{
S2, V

}
+O(ε4

δ)
}
.

(2.44)

While we are developing we don’t write the terms over the third order in εδ:

ε2

2

[
ε2

δ

{
S1,

{
S1, H0

}}
+ε3

δ

{
S2,

{
S1, H0

}}
+ε3

δ

{
S1,

{
S2, H0

}}
+ε3

δ

{
S1,

{
S1, V

}}]
.
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For the third order in ε it remains only one term, all the others are of the fourth order
in εδ:

−ε3

6

{
S,

{
S,

{
S,H

}}}
= −ε3

6
ε3

δ

{
S1,

{
S1,

{
S1, H0

}}}
.

The following equation is the complete expression of the modified Hamiltonian divided
in the various order of ε:

H ′ = H0 + εδV − ε
[
εδ

{
S1, H0

}
+ε2

δ

{
S2, H0

}
+ε3

δ

{
S3, H0

}
+ε2

δ

{
S1, V

}
+ε3

δ

{
S2, V

}]
+

ε2

2

[
ε2

δ

{
S1,

{
S1, H0

}}
+ε3

δ

{
S2,

{
S1, H0

}}
+ε3

δ

{
S1,

{
S2, H0

}}
+ε3

δ

{
S1,

{
S1, V

}}]
+

− ε3

6
ε3

δ

{
S1,

{
S1,

{
S1, H0

}}}
.

(2.45)

It is possible now to subdivide in the order of εδ and calculate the final expression for
each order.

2.7.1 first-order

The expression of first-order terms is:

εδ

[
V − ε

{
S1, H0

}]
. (2.46)

It is possible to write V through the theory of linear perturbation considering the gyro-
average we have already introduced:

V = ⟨V ⟩ + Ṽ ⇒ εδ

[
⟨V ⟩ + Ṽ − ε

{
S1, H0

}]
.

From the previous subsection, it is also known that for a generic observable F it is valid:
{
F,H0

}
=

1

ε

{
F,H0

}

g
+εδ

{
F,H0

}

t
.

Given that we know the dependencies of H0 that one can easily obtains:

εδ

[
⟨V ⟩θ + Ṽ −

{
S1, H0

}]
= εδ

[
⟨V ⟩θ + Ṽ − q

m

(∂S1

∂θ

∂H0

∂µ
− ∂S1

∂µ

∂H0

∂θ

)
−εεδ

(∂S1

∂t

∂H0

∂k
+

− ∂S1

∂k

∂H0

∂t

)]
= εδ

[
⟨V ⟩θ + Ṽ − qB

m

(∂S1

∂θ

)
−εεδ

(∂S1

∂t

)]
.

(2.47)

The last contribution is of third order and we will consider it later. The expression
becomes:

εδ

[
⟨V ⟩θ + Ṽ − qB

m

(∂S1

∂θ

)]
.

We are not interested in the averaged term but only in the fluctuating ones. We would
like to annul the fluctuations, one possibility is defining the generating function so that
the fluctuating terms annul each other:

Ṽ − qB

m

(∂S1

∂θ

)
= 0. (2.48)

34



2.7 – Gyrokinetic Hamiltonian model

It is now possible to find the expression of S1:

S1 =
m

qB

∫
Ṽ dθ. (2.49)

Through the definition of the generating function of Eq. [2.49], in the first-order term,
remains only one contribution, the averaged one of V , it is valid

⟨V ⟩θ =
q

2π

∫ 2π

0
ϕ(x+ ρ cos θ, y − ρ sin θ, t) dθ. (2.50)

The final expression of the term that will be implemented is:

H(I) = εδq⟨ϕ⟩θ. (2.51)

2.7.2 Second order

Now the cancellation of fluctuations in the second order of Eq. [2.45] is performed, the
procedure is very similar:

ε2
δ

[
−ε

{
S1, V

}
−ε

{
S2, H0

}
+
ε2

2

{
S1,

{
S1, H0

}}]
. (2.52)

One has to develop the terms using the relations previously introduced in order to not
make any mistakes. It is possible to develop the first term of Eq. [2.52] taking advantage
of Eq. [2.39]:

{
S1, V

}
=

1

ε

{
S1, V

}

g
+

{
S1, V

}

⊥
+εδ

{
S1, V

}

∥
+εδ

{
S1, V

}

t
. (2.53)

The last two terms of the previous Eq. are global of order εε3
δ and they are neglected from

further calculations while the second term is global of order εε2
δ and it will be considered

in third order calculations. Now it is possible to develop the second term of Eq. [2.52]:

{
S2, H0

}
=

1

ε

{
S2, H0

}

g
+εδ

{
S2, H0

}

t
. (2.54)

The last term of Eq. [2.54] is global of order εε3
δ and will be neglected from further

calculations. Finally, the last term of Eq. [2.52], requires a long procedure but it is very
similar to the previous one:

{
S1,

{
S1, H0

}}
=

{
S1,

1

ε

{
S1, H0

}

g
+εδ

{
S1, H0

}

t

}
=

1

ε

{
S1, Ṽ

}
+εδ

{
S1,

{
S1, H0

}

t

}
.

(2.55)
The last term of Eq. [2.55] is globally of order ε2ε3

δ and it is neglected from further cal-
culations. Using the equation with which we cancelled the fluctuating terms in Eq. [2.48]
we continue to develop the same equation obtaining:

1

ε

{
S1, Ṽ

}
=

1

ε2

{
S1, Ṽ

}

g
+

1

ε

{
S1, Ṽ

}

⊥
+
εδ

ε

{
S1, Ṽ

}

∥
+
εδ

ε

{
S1, Ṽ

}

t
. (2.56)

35



Model description

The last two terms of Eq. [2.56] are globally of order εε3
δ and are neglected from further

calculations while the second term is globally of order εε2
δ and it will be considered in

the third order calculations. Using the last relations we just have obtained the resulting
second order is:

ε2
δ

[
−

{
S1, V

}

g
−

{
S2, H0

}

g
+

1

2

{
S1, Ṽ

}

g

]
.

To annul the fluctuations one has to satisfy the consequent equation:

{
S1, V

}

g
+

{
S2, H0

}

g
−1

2

{
S1, Ṽ

}

g
= 0. (2.57)

As before it is possible to write V = ⟨V ⟩θ + Ṽ to obtain:

{
S1,⟨V ⟩θ

}

g
+

{
S1, Ṽ

}

g
+

{
S2, H0

}

g
−1

2

{
S1, Ṽ

}

g
=

=
{
S1, ⟨V ⟩θ

}

g
+

{
S2, H0

}

g
+

1

2

{
S1, Ṽ

}

g
.

(2.58)

It is now possible to write
{
S1, Ṽ

}

g
in average and fluctuating part:

1

2

{
S1, Ṽ

}

g
=

1

2

{
S1, Ṽ

}(0)

g
+

1

2

{
S1, Ṽ

}(∼)

g
. (2.59)

One can now indirectly define S2 in order to cancel the fluctuations from Eq. [2.58, it is
necessary to satisfy the following equation:

1

2

{
S1, Ṽ

}(∼)

g
+

{
S1, ⟨V ⟩θ

}

g
+

{
S2, H0

}

g
= 0. (2.60)

The only remaining term from the second order is: 1
2

{
S1, Ṽ

}(0)

g
. The expression of the

new Hamiltonian can be written as:

H ′ = H0 + εδ⟨V ⟩θ − ε2
δ

1

2

{
S1, Ṽ

}(0)

g
. (2.61)

The expression of the first average is known:

⟨V ⟩θ =
q

2π

∫ 2π

0
ϕ(x+ ρ cos θ, y − ρ sin θ, t) dθ.

It is necessary to derive an expression for the second-order term:

H(II) = −1

2

{
S1, Ṽ

}(0)

g
= +

1

2

{
Ṽ, S1

}(0)

g
= +

q

4πm

∫ 2π

0

(∂Ṽ
∂θ

∂S1

∂µ
− ∂S1

∂θ

∂Ṽ

∂µ

)
dθ =

= − q

4πm

∫ 2π

0

[ ∂
∂µ

(
Ṽ
∂S1

∂θ

)
− ∂

∂θ

(
Ṽ
∂S1

∂µ

)]
dθ.
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Knowing the validity of
∫ 2π

0
∂
∂θ

(
∂S1

∂µ

)
dθ = 0 and that ∂S1

∂θ = m
qB Ṽ it is possible to write:

H(II) = −1

2

{
S1, Ṽ

}(0)

g
= − q

4πm

m

qB

∫ 2π

0

∂

∂µ
Ṽ 2 dθ = − 1

2B

∂

∂µ
⟨Ṽ 2⟩θ. (2.62)

Using the definition Ṽ = qϕ it is now possible to write the final form of the new Hamil-
tonian approximated to the second order:

H ′ = H0 + εδq⟨ϕ⟩θ − ε2
δ

1

2

q

B

∂

∂µ
⟨ϕ̃2⟩θ. (2.63)

It is possible to define the so-called real parameter:

η =
m

2qB
. (2.64)

so that the equation becomes:

H ′ = H0 + εδq⟨ϕ⟩θ − ε2
δ

η q2

m

∂

∂µ
⟨ϕ̃2⟩θ.

This last equation has been also been derived using the Poisson Bracket containing ∂
∂ρ

derivatives instead of ∂
∂µ , it has been checked that the equations are analogues. In con-

clusion, θ is no more variable of the Hamiltonian although the fact it contains a term
averaged over θ itself. The number of variables is therefore reduced by one. It is necessary
to check if the evolution of other variables has been influenced by this procedure. For
instance, it is possible to study the evolution in time of µ by simply applying:

µ̇ =
{
µ,H

}
=

q

m

(∂µ
∂θ

∂H

∂µ
− 1

∂H

∂θ

)
= 0. (2.65)

The following expression is valid:

∂µ

∂θ
= 0 ;

∂H

∂θ
= 0.

In fact, the dependence on θ has just been eliminated from the Hamiltonian. If µ̇ = 0 then
it is constant and it can be fixed as a parameter. The number of independent variables
has just been further reduced by one. The resulting order of the system is 4, we recall
that considering the autonomization of the system the initial order of the system was 8,
this is the real strength of the gyro-kinetic approach. We have also to recall that for the
considered model, it is not necessary to study the motion of particles along ẑ because
of the considered geometry, this is already associated with a reduction of order 2 of the
system, the gyrokinetic framework reduces the order of system by further 2 units, the
whole total reduction of the order is not associated only to the use of the guiding centre
approach. The contribution H(II) has been derived with ρ as an independent variable,
it can be obtained with a simple change of variable, later in the procedure, it will be
very useful given that the equations implemented in the code are derived from this last

37



Model description

expression of the Hamiltonian. Therefore in the following equation, it has been reported
the above-mentioned expression of the second-order term:

H(II) = −ε2
δ

η q2

m

∂

∂µ
⟨ϕ̃2⟩θ = −ε2

δ

qη

B

1

ρ

∂

∂ρ
⟨ϕ̃2⟩θ. (2.66)

Naturally one has to remember that while turning the independent variable µ into ρ other
contributions will have a different expression in H0 but they will be constant as well, this
won’t influence at all the equations.

2.7.3 Third order

From Order 2 we have three residual terms of order εε2
δ , we should account for them in

the third order:

−εε2
δ

[{
S1, V

}

⊥
−1

2

{
S1, Ṽ

}

⊥
+

{
S1, H0

}

t

]
= −εε2

δ

[{
S1, V

}

⊥
−1

2

{
S1, Ṽ

}

⊥
+
∂S1

∂t

]
.

It is time now to develop the third order in εδ, the next equation is the full expression:

ε3
δ

[
−ε

{
S3,H0

}
−ε

{
S2, V

}
+
ε2

2

{
S2,

{
S1, H0

}}
+
ε2

2

{
S1,

{
S2, H0

}}
+

+
ε2

2

{
S1,

{
S1, V

}}
−ε3

6

{
S1,

{
S1,

{
S1, H0

}}}
+

− ε

εδ

{
S1, V

}

⊥
+

ε

2 εδ

{
S1, Ṽ

}

⊥
− ε

εδ

∂S1

∂t

]
.

(2.67)

through the usual property of H0 and given that all the Poisson Brackets can be developed
as in Eq. [2.40], a lot of terms are cancelled because they are of order εε3

δ or higher. It
is possible also to take advantage of the perturbation theory as we did in the previous
subsections obtaining:

ε3
δ

[
−

{
S3, H0

}

g
−

{
S2, ⟨V ⟩

}

g
−

{
S2, Ṽ

}

g
+

1

2

{
S2, Ṽ

}

g
+

1

2

{
S1,

{
S2, H0

}

g

}

g
+

+
1

2

{
S1,

{
S1, ⟨V ⟩

}

g

}

g
+

1

2

{
S1,

{
S1, Ṽ

}

g

}

g
−1

6

{
S1,

{
S1, Ṽ

}

g

}

g
+

− ε

εδ

{
S1, ⟨V ⟩

}

⊥
− ε

εδ

{
S1, Ṽ

}

⊥
+

ε

2 εδ

{
S1, Ṽ

}

⊥
− ε

εδ

∂S1

∂t

]
.

(2.68)

Now it has to be considered that a generic term like
{
S1, F

}
with F a non-fluctuating

term is a fluctuating term itself, therefore it will be inserted in the equation for the
indirect definition of S3 with which we will cancel all the third order fluctuating terms.
Another useful relation we have already used comes from

{
S1, G

}
with G a fluctuating

term, in fact, the latter can be written as:
{
S1, G

}
=

{
S1, G

}(0)
+

{
S1, G

}(∼)
. (2.69)

As it is known from the second order procedure also all the terms like the last one of
the previous equation will be inserted in the equation to cancel the fluctuations, this is
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2.7 – Gyrokinetic Hamiltonian model

associated with a decrease in the number of the terms, of which expression is required
to be calculated. By applying these relationships to the single PB and adding up similar
terms it is possible to obtain:

ε3
δ

[
−

{
S3, H0

}

g
−

{
S2, ⟨V ⟩

}

g
−1

2

{
S2, Ṽ

}(0)

g
−1

2

{
S2, Ṽ

}(∼)

g
+

1

2

{
S1,

{
S2, H0

}

g

}

g
+

+
1

2

{
S1,

{
S1, ⟨V ⟩

}

g

}

g
+

1

3

{
S1,

{
S1, Ṽ

}(0)

g

}

g
+

1

3

{
S1,

{
S1, Ṽ

}(∼)

g

}

g
− ε

εδ

{
S1, ⟨V ⟩

}

⊥
+

−1

2

ε

εδ

{
S1, Ṽ

}(0)

⊥
− 1

2

ε

εδ

{
S1, Ṽ

}(∼)

⊥
− ε

εδ

∂S1

∂t

]
.

(2.70)

It is necessary to write more terms with the using of the specific relation from Eq. [2.69]:

ε3
δ

[
−

{
S3, H0

}

g
−

{
S2, ⟨V ⟩

}

g
−1

2

{
S2, Ṽ

}(0)

g
−1

2

{
S2, Ṽ

}(∼)

g
+

1

2

{
S1,

{
S2, H0

}

g

}(0)

g
+

+
1

2

{
S1,

{
S2, H0

}

g

}(∼)

g
+

1

2

{
S1,

{
S1, ⟨V ⟩

}

g

}(0)

g
+

1

2

{
S1,

{
S1, ⟨V ⟩

}

g

}(∼)

g
+

1

3

{
S1,

{
S1, Ṽ

}(0)

g

}

g
+

+
1

3

{
S1,

{
S1, Ṽ

}(∼)

g

}(0)

g
+

1

3

{
S1,

{
S1, Ṽ

}(∼)

g

}(∼)

g
− ε

εδ

{
S1, ⟨V ⟩

}

⊥
+

− 1

2

ε

εδ

{
S1, Ṽ

}(0)

⊥
−1

2

ε

εδ

{
S1, Ṽ

}(∼)

⊥
− ε

εδ

∂S1

∂t

]
.

(2.71)

I can cancel the fluctuating terms with a specific definition of S3 through the following
equation:

−
{
S3, H0

}

g
−

{
S2, ⟨V ⟩

}

g
−1

2

{
S2, Ṽ

}(∼)

g
+

1

2

{
S1,

{
S2, H0

}

g

}(∼)

g
+

1

2

{
S1,

{
S1, ⟨V ⟩

}

g

}(∼)

g
+

+
1

3

{
S1,

{
S1, Ṽ

}(0)

g

}

g
+

1

3

{
S1,

{
S1, Ṽ

}(∼)

g

}(∼)

g
− ε

εδ

{
S1, ⟨V ⟩

}

⊥
+

− 1

2

ε

εδ

{
S1, Ṽ

}(∼)

⊥
− ε

εδ

∂S1

∂t
= 0.

(2.72)

In fact, as we said
{
S1, F

}
with F a non-fluctuating term is a fluctuating term itself.

The remaining terms in the εδ third order are:

ε3
δ

[
−1

2

{
S2,Ṽ

}(0)

g
+

1

2

{
S1,

{
S2, H0

}

g

}(0)

g
+

1

2

{
S1,

{
S1, ⟨V ⟩

}

g

}(0)

g
+

+
1

3

{
S1,

{
S1, Ṽ

}(∼)

g

}(0)

g
−1

2

ε

εδ

{
S1, Ṽ

}(0)

⊥

]
.

(2.73)

Like it has been done with the term of the second order it is necessary to develop those
terms, they can’t be implemented otherwise. It is possible to start developing the various
terms after putting the equation in order:

ε3
δH

(III) = ε3
δ

[
H

(III)
1 +H

(III)
2 +H

(III)
3 +H

(III)
4 +H

(III)
5

]
. (2.74)
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The first term of Eq. [2.73] we are trying to develop is H(III)
1 :

H
(III)
1 = −1

2

{
S2, Ṽ

}(0)

g
. (2.75)

Starting from the inner it is possible to simply develop the gyro-bracket, and apply the
identity that has been applied for the second order:

{
S2, Ṽ

}

g
= −

{
Ṽ, S2

}

g
= − q

m

(∂Ṽ
∂θ

∂S2

∂µ
− ∂Ṽ

∂µ

∂S2

∂θ

)
= − q

m

[ ∂
∂µ

(
Ṽ
∂S2

∂θ

)
− ∂

∂θ

(
Ṽ
∂S2

∂µ

)]
.

(2.76)

Taking advantage of the gyro-average it is possible to use
∫ ∂

∂θ

(
□

)
dθ = 0 so that it is

possible to write:

−1

2

{
S2, Ṽ

}(0)

g
=

1

2

q

m

∂

∂µ

(
Ṽ
∂S2

∂θ

)(0)
. (2.77)

The expression of ∂S2

∂θ is required, the only way to obtain it is from the Eq. [2.57] we
introduced the latter for the indirect definition of S2 while calculating the expression of
the second order term. Starting from that equation we write:

{
S2, H0

}

g
= −1

2

{
S1, Ṽ

}(∼)

g
−

{
S1, ⟨V ⟩θ

}

g
. (2.78)

Starting from the first component of the right-hand side of Eq. [2.78] it is possible to
write: {

S1, Ṽ
}(∼)

g
=

{
S1, Ṽ

}

g
−

{
S1, Ṽ

}(0)

g
. (2.79)

We already calculate the second term of the RHS of Eq. [2.79]:

{
S1, Ṽ

}(0)

g
= − 1

B

∂

∂µ
⟨Ṽ 2⟩θ. (2.80)

The other needs to be calculated with the usual procedure, developing the gyro-brackets,
and applying the same identity we used before but not having the average, in this case,
will complicate things:

{
S1, Ṽ

}

g
= −

{
Ṽ, S1

}

g
= − q

m

(∂Ṽ
∂θ

∂S1

∂µ
− ∂Ṽ

∂µ

∂S1

∂θ

)
= − q

m

[ ∂
∂µ

(
Ṽ
∂S1

∂θ

)
− ∂

∂θ

(
Ṽ
∂S1

∂µ

)]
.

(2.81)
It is known the expression of ∂S1

∂θ from Eq. [2.48] and it can be easily calculate the
expression of ∂S1

∂µ given the definition of S1 coming from Eq. [2.49]:

∂S1

∂µ
=

m

qB

∂

∂µ

∫
Ṽ dθ. (2.82)

It is then possible to calculate the first term of the RHS of Eq. [2.79]:

{
S1, Ṽ

}

g
= − 1

B

[ ∂
∂µ

(
Ṽ 2

)
− ∂

∂θ

(
Ṽ
∂

∂µ

∫
Ṽ dθ

)]
. (2.83)
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The full expression of Eq. [2.79] is:

{
S1, Ṽ

}(∼)

g
= − 1

B

[ ∂
∂µ

(
Ṽ 2

)
− ∂

∂θ

(
Ṽ
∂

∂µ

∫
Ṽ dθ

)
− ∂

∂µ
⟨Ṽ 2⟩θ

]
. (2.84)

It is now possible to develop the second component of the right-hand side of Eq. [2.78]:

{
S1, ⟨V ⟩

}

g
=

q

m

(∂S1

∂θ

∂⟨V ⟩
∂µ

− ∂S1

∂µ

∂⟨V ⟩
∂θ

)
=

q

m

(∂S1

∂θ

∂⟨V ⟩
∂µ

)
. (2.85)

Giving that ∂⟨V ⟩
∂θ = 0. It is known the expression of ∂S1

∂θ from Eq. [2.48] and it is possible
to substitute it obtaining:

{
S1, ⟨V ⟩

}

g
=

1

B
Ṽ
∂⟨V ⟩
∂µ

. (2.86)

It is possible to join the two components coming from Eq. [2.86] and from Eq. [2.84]
obtaining the expression of the RHS of Eq. [2.78]:

{
S2, H0

}

g
= −1

2

{
S1, Ṽ

}(∼)

g
−

{
S1, ⟨V ⟩θ

}

g
=

= − 1

B
Ṽ
∂⟨V ⟩
∂µ

+
1

2

1

B

[ ∂
∂µ

(
Ṽ 2

)
− ∂

∂θ

(
Ṽ
∂

∂µ

∫
Ṽ dθ

)
− ∂

∂µ
⟨Ṽ 2⟩θ

]
.

(2.87)

Now it is required to develop
{
S2, H0

}

g
itself, in fact, we are able to obtain the expression

of ∂S2

∂θ using also the Eq. [2.87]. We start with the usual development:

{
S2, H0

}

g
=

q

m

(∂S2

∂θ

∂H0

∂µ
− ∂S2

∂µ

∂H0

∂θ

)
=

q

m

(∂S2

∂θ

∂H0

∂µ

)
=
qB

m

(∂S2

∂θ

)
. (2.88)

Giving that ∂H0

∂θ = 0 and ∂H0

∂µ = B. As it has been said now we are able to obtain the

explicit expression of ∂S2

∂θ taking advantage of Eq. [2.87]:

∂S2

∂θ
=

m

qB2

[
−Ṽ ∂⟨V ⟩

∂µ
+

1

2

∂

∂µ

(
Ṽ 2

)
−1

2

∂

∂θ

(
Ṽ
∂

∂µ

∫
Ṽ dθ

)
−1

2

∂

∂µ
⟨Ṽ 2⟩θ

]
. (2.89)

Now we want to find the final expression of H(III)
1 substituting Eq. [2.89] in Eq. [2.77] and

by applying the gyro-average in order to simplify the expression by cancelling the terms
containing ∂

∂θ :

−1

2

{
S2, Ṽ

}(0)

g
=

1

2

q

m

∂

∂µ

(
Ṽ
∂S2

∂θ

)(0)
=

1

2B2

∂

∂µ

(
−Ṽ 2∂⟨V ⟩

∂µ
+

1

2
Ṽ
∂Ṽ 2

∂µ
− 1

2
Ṽ
∂⟨Ṽ 2⟩θ

∂µ

)(0)
.

(2.90)
The average on theta can enter into the derivatives in Eq. [2.90] giving us the final
expression:

H
(III)
1 =

1

2B2

∂

∂µ

(
−⟨Ṽ 2⟩∂⟨V ⟩

∂µ
+

1

2
⟨Ṽ ⟩∂⟨Ṽ 2⟩

∂µ
− 1

2
⟨Ṽ ⟩∂⟨Ṽ 2⟩

∂µ

)
. (2.91)
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It is time to develop H
(III)
2 from Eq. [2.73];

H
(III)
2 = +

1

2

{
S1,

{
S2, H0

}

g

}(0)

g
. (2.92)

It is necessary to take advantage of the Eq. [2.57] through which it has been defined
indirectly S2: {

S2, H0

}

g
= −1

2

{
S1, Ṽ

}(∼)

g
−

{
S1, ⟨V ⟩θ

}

g
.

We substitute Eq. [2.57] in Eq. [2.92] obtaining two contributions:

1

2

{
S1,

{
S2, H0

}

g

}(0)

g
= −1

4

{
S1,

{
S1, Ṽ

}(∼)

g

}(0)

g
−1

2

{
S1,

{
S1, ⟨V ⟩θ

}

g

}(0)

g
. (2.93)

We notice that the second component of the RHS of Eq. [2.93]is cancelled by the third
term of the third order equation (Eq. [2.73]). In fact we notice the expression of H(III)

3 :

H
(III)
3 = +

1

2

{
S1,

{
S1, ⟨V ⟩

}

g

}(0)

g
. (2.94)

This means that developing only the first component of the RHS of Eq. [2.93] gives us
the expression of H(III)

2 +H
(III)
3 :

H
(III)
2 +H

(III)
3 = −1

4

{
S1,

{
S1, Ṽ

}(∼)

g

}(0)

g
. (2.95)

Like we did before we try to develop Eq. [2.95] starting from the inner part:

{
S1, Ṽ

}(∼)

g
=

{
S1, Ṽ

}

g
−

{
S1, Ṽ

}(0)

g
. (2.96)

The expression of component
{
S1, Ṽ

}(0)

g
of Eq. [2.96] is known from Eq. [2.62]:

{
S1, Ṽ

}(∼)

g
=

{
S1, Ṽ

}

g
+

1

B

∂

∂µ
⟨Ṽ 2⟩. (2.97)

It is necessary to calculate the first component of the RHS of Eq. [2.97] through the usual
procedure:

{
S1, Ṽ

}

g
=

q

m

(∂S1

∂θ

∂Ṽ

∂µ
− ∂S1

∂µ

∂Ṽ

∂θ

)
= − q

m

(∂S1

∂µ

∂Ṽ

∂θ
− ∂S1

∂θ

∂Ṽ

∂µ

)
= − q

m

( ∂

∂µ

(
Ṽ
∂S1

∂θ

)
+

− ∂

∂θ

(
Ṽ
∂S1

∂µ

))
= − 1

B

∂

∂µ
Ṽ 2 +

q

m

∂

∂θ

(
Ṽ
∂S1

∂µ

)
.

(2.98)

The final expression of the Eq. [2.97] then is:

{
S1, Ṽ

}(∼)

g
=

1

B

∂

∂µ
⟨Ṽ 2⟩ − 1

B

∂

∂µ
Ṽ 2 +

q

m

∂

∂θ

(
Ṽ
∂S1

∂µ

)
. (2.99)
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It is necessary to apply the second gyro-bracket to the expression of the Eq. [2.99] in

order to calculate
{
S1,

{
S1, Ṽ

}(∼)

g

}

g
. By taking advantage of the usual identity, of the

definition of ∂S1

∂θ , of the gyro-average and the periodic boundary conditions it is possible

to obtain an intermediate expression of H(III)
2 +H

(III)
3 :

H
(III)
2 +H

(III)
3 = −1

4

{
S1,

{
S1, Ṽ

}(∼)

g

}(0)

g
=

1

2πB

∫ 2π

0

∂

∂µ

({
S1, Ṽ

}(∼)

g
Ṽ

)
dθ. (2.100)

Making explicit the term inside the integral with the substitution of Eq. [2.99] and by
applying the average it is possible to obtain:

H
(III)
2 +H

(III)
3 = − 1

B

∂

∂µ

( 1

B

∂

∂µ
⟨Ṽ 2⟩⟨Ṽ ⟩− 1

B

∂

∂µ
⟨Ṽ 2⟩⟨Ṽ ⟩+

q

2π m

∫ 2π

0

∂

∂θ

(
Ṽ 2∂S1

∂µ

)
dθ

)
= 0.

(2.101)
So the conclusion is that they don’t give any contribution to the new expression of the
Hamiltonian:

H
(III)
2 +H

(III)
3 = 0. (2.102)

The next term we are trying to develop is H(III)
4 :

H
(III)
4 =

1

3

{
S1,

{
S1, Ṽ

}(∼)

g

}(0)

g
. (2.103)

We have already developed this term following the same procedure of H(III)
2 +H

(III)
3 , the

final result is taken by Eq. [2.100] and Eq. [2.40] giving that the final result is zero:

H
(III)
4 = 0. (2.104)

Now onlyH(III)
5 is missing, this is the one of order εε2

δ , the latter is different from the others
given that it doesn’t have the gyro-brackets acting on it but only the "perpendicular-
brackets", the developing procedure will be slightly different from the previous ones. As
usual, we start with the expression of the term itself:

H
(III)
5 = −1

2

ε

εδ

{
S1, Ṽ

}(0)

⊥
. (2.105)

We develop the "perpendicular brackets" following the expression introduced in Sec.2.6:
{
F,G

}

⊥
=

{
F,G

}

(χ1,χ2)
= − 1

qB

( ∂F
∂χ1

∂G

∂χ2
− ∂F

∂χ2

∂G

∂χ1

)
. (2.106)

Using Eq. [2.106] it is possible to obtain:

{
S1, Ṽ

}

⊥
= − 1

qB

(∂S1

∂χ1

∂Ṽ

∂χ2
− ∂S1

∂χ2

∂Ṽ

∂χ1

)
. (2.107)

The expression of S1 is known from Eq. [2.49], and it is possible to calculate the various
partial derivatives:

∂S1

∂χ1
=

m

qB

∫
∂Ṽ

∂χ1
dθ ;

∂S1

∂χ2
=

m

qB

∫
∂Ṽ

∂χ2
dθ ;
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It is possible to substitute these last expressions in Eq. [2.107]:

{
S1, Ṽ

}

⊥
= − m

q2B2

( ∂Ṽ
∂χ2

∫
∂Ṽ

∂χ1
dθ − ∂Ṽ

∂χ1

∫
∂Ṽ

∂χ2
dθ

)
. (2.108)

The expression of this term then should be the following:

H
(III)
5 = −1

2

ε

εδ

{
S1, Ṽ

}(0)

⊥
=

1

2

ε

εδ

m

q2B2

〈( ∂Ṽ
∂χ2

∫
∂Ṽ

∂χ1
dθ − ∂Ṽ

∂χ1

∫
∂Ṽ

∂χ2
dθ

)〉
. (2.109)

We have to concentrate on the terms inside the average, the only way to annul this
average is:

〈 ∂Ṽ
∂χ2

∫
∂Ṽ

∂χ1
dθ

〉
=

〈 ∂Ṽ
∂χ2

∂

∂χ1

∫
Ṽ dθ

〉
. (2.110)

Now it shall be done a little recap of all the terms that have been calculated:

ε3
δH

(III) = ε3
δ

[
H

(III)
1 +H

(III)
2 +H

(III)
3 +H

(III)
4 +H

(III)
5

]
.

H
(III)
1 =

1

2B2

∂

∂µ

(
−⟨Ṽ 2⟩∂⟨V ⟩

∂µ
+

1

2
⟨Ṽ ⟩∂⟨Ṽ 2⟩

∂µ
− 1

2
⟨Ṽ ⟩∂⟨Ṽ 2⟩

∂µ

)
.

H
(III)
2 +H

(III)
3 = 0.

H
(III)
4 = 0.

H
(III)
5 =

1

2

ε

εδ

m

q2B2

(∂⟨Ṽ ⟩
∂χ2

∫
∂⟨Ṽ ⟩
∂χ1

dθ − ∂⟨Ṽ ⟩
∂χ1

∫
∂⟨Ṽ ⟩
∂χ2

dθ
)
.

The final expression of the third-order contribution to the modified expression of the
Hamiltonian is:

ε3
δH

(III) =ε3
δ

1

2B2

[ ∂
∂µ

(
−⟨Ṽ 2⟩∂⟨V ⟩

∂µ
+

1

2
⟨Ṽ ⟩∂⟨Ṽ 2⟩

∂µ
− 1

2
⟨Ṽ ⟩∂⟨Ṽ 2⟩

∂µ

)
+

+
ε

εδ

m

q2

(∂⟨Ṽ ⟩
∂χ2

∫
∂⟨Ṽ ⟩
∂χ1

dθ − ∂⟨Ṽ ⟩
∂χ1

∫
∂⟨Ṽ ⟩
∂χ2

dθ
)]
.

(2.111)

Some terms cancel each other:

ε3
δH

(III) = ε3
δ

[ 1

2B2

∂

∂µ

(
−⟨Ṽ 2⟩∂⟨V ⟩

∂µ

)
+

1

2

ε

εδ

m

q2B2

(∂⟨Ṽ ⟩
∂χ2

∫
∂⟨Ṽ ⟩
∂χ1

dθ − ∂⟨Ṽ ⟩
∂χ1

∫
∂⟨Ṽ ⟩
∂χ2

dθ
)]
.

(2.112)
This last expression of the third-order term is not that complex to implement. The first
contribution is very similar to the second order term, it is just necessary to apply it
a second time the derivative, the current version has µ as an independent variable but
when it will be implemented µ will be turned in ρ like what happened H(II). On the other
hand, the second contribution is more difficult to implement given that it is necessary
to compute the primitive of ⟨ϕ̃⟩. It is possible to make a quick recap of the final full
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expression of the modified Hamiltonian with µ as the independent variable (later will be
reported the expression in ρ), the notation helps us differentiate the origin of each term:

H ′ = H(0) +H(I) +H(II) +H(III). (2.113)

H(0) = H0 = µB +
1

2
mv2

∥ + k. (2.114)

H(I) = εδq⟨ϕ⟩θ. (2.115)

H(II) = −ε2
δ

η q2

m

∂

∂µ
⟨ϕ̃2⟩θ. (2.116)

H(III) = ε3
δ

[
− q3

2B2

∂

∂µ

(
⟨ϕ̃2⟩∂⟨ϕ⟩

∂µ

)
+

1

2

ε

εδ

m

B2

(∂⟨ϕ̃⟩
∂χ2

∫
∂⟨ϕ̃⟩
∂χ1

dθ− ∂⟨ϕ̃⟩
∂χ1

∫
∂⟨ϕ̃⟩
∂χ2

dθ
)]
. (2.117)

2.8 Guiding centres governing equations

The expression of the modified Hamiltonian, as anticipated, is used to calculate the
evolution in time of variables of great interest, for a generic observable we remember:

Ḟ =
∂F

∂t
=

{
F,H

}
. (2.118)

This generic expression can be used in order to study the evolution in time of various
quantities, and independent variables as well. Given that we are interested in the trajec-
tories of the guiding centre themselves and that χ1 and χ2 coordinates are independent
variables it is possible to obtain two differential equations in time on how the GC will
move in space once one has set the other parameters of the system. The equation will
be solved through the integration in time of the equation. Before starting the procedure
used to obtain the equation for χ1 and χ2 coordinates one has to remember that the
Poisson Bracket obtained in Eq. [2.35] is canonical, this means that by applying the PB
to one of the independent variables some contributions are zero given that if we have F
and G independent variables then we are sure that ∂F

∂G = ∂G
∂F = 0. In the previous section

the PB has been subdivided into various contributions, it is possible to recall Eq. [2.39]:

{
F,G

}
=

1

ε

{
F,G

}

g
+

{
F,G

}

⊥
+εδ

{
F,G

}

∥
+εδ

{
F,G

}

t
.

It is possible also to remind the definition of the sub-bracket of interest for obtaining
these specific equations giving that the bracket will be applied to χ1 and χ2 coordinates:

{
F,G

}

⊥
=

{
F,G

}

(χ1,χ2)
= − 1

qB

( ∂F
∂χ1

∂G

∂χ2
− ∂F

∂χ2

∂G

∂χ1

)
.

Before starting the procedure it is required to make some useful considerations, that’s to
better understand the meaning of the operations involved in the equations and to clarify
the entire procedure. There are some similarities between the starting and the modified
expression of the Hamiltonian:

H = H0 + qεδϕ(χ1, χ2, χ3, µ, θ, τ).
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H ′ = H0 + qεδψ(χ1, χ2, χ3, µ, τ).

The structure is exactly the same, ψ is a modified potential and indeed it is the potential
felt by the guiding centre, it is not the same potential felt by the particles, it is corrected.
If we imagine studying the trajectories of the particles and guiding centre in the same con-
ditions the final results should be a correspondence between the trajectories of gyro-kinetic
GC and fully-kinetic GC (calculated through the change of variable once the trajectory
of the particle itself is known). From now on ψ is defined as Guiding Center Potential.
From what we have just said it is valid:

εδψ = εδq⟨ϕ⟩θ − ε2
δ

qη

B

1

ρ

∂

∂ρ
⟨ϕ̃2⟩θ. (2.119)

The resulting potential is considering the so-called FLR effects, we imagine the guiding
centre ( non-physical object ) and the particle that rotates around it, the movement of
the system needs to follow the particle driven by the known physics and equations, the
particle is moving very quickly and it feels the potential in multiple positions ad different
instants of time, the value of the potential may be different in some of these points. The
presence of the gyro-average inside ψ is the key point, it is accounting for what ϕ a particle
feels during each rotation around the GC, it is clear that the final result is a mean value
and naturally some peak values will be flattened by this operation. The operation turns
out to be a damping, the resulting potential is a smoother version of the initial one. As
we will see the entire operation will result in multiplication by a coefficient ≤ 1. This
topic will be treated in greater detail later in the manuscript. Now it is possible to start
the procedure to obtain the equations, let’s first introduce some definitions:

A =
εδ

B
. (2.120)

Φ = Aϕ. (2.121)

Ψ = Aψ. (2.122)

It is possible to introduce A in the equations by dividing Eq. [2.119] for B, amplitude of
the magnetic field:

εδ

B
ψ =

εδ

B
q⟨ϕ⟩θ − ε2

δ

B2
qη

1

ρ

∂

∂ρ
⟨ϕ̃2⟩θ. (2.123)

We introduce the definition of A directly into the gyro averages:

Aψ = q⟨Aϕ⟩θ − qη
1

ρ

∂

∂ρ
⟨(Aϕ̃)2⟩θ. (2.124)

By using the definition introduced with Eq. [2.121] and Eq. [2.122] the resulting equation
for the guiding center potential is the following:

Ψ = q⟨Φ⟩θ − qη
1

ρ

∂

∂ρ
⟨(Φ̃)2⟩θ. (2.125)
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After having obtained this last expression for the guiding centre potential it is possible
to obtain the two governing equations for the evolution of GC coordinates, as usual, it is
necessary to apply the PB to the two independent variables:

χ̇1 =
{
χ1, H

′
}

=
{
χ1, H

′
}

⊥
=

{
χ1, H

′
}

(χ1,χ2)
= − 1

qB

(∂χ1

∂χ1

∂H ′

∂χ2
− ∂χ1

∂χ2

∂H ′

∂χ1

)
. (2.126)

χ̇2 =
{
χ2, H

′
}

=
{
χ2, H

′
}

⊥
=

{
χ2, H

′
}

(χ1,χ2)
= − 1

qB

(∂χ2

∂χ1

∂H ′

∂χ2
− ∂χ2

∂χ2

∂H ′

∂χ1

)
. (2.127)

Eq. [2.126] and Eq. [2.127] are simplified by the fact that ∂χ1

∂χ2
= ∂χ2

∂χ1
= 0, in addition to

that, the only term inside H ′ that is dependent on χ2 and χ1 is Ψ indeed, the definition
of the latter comes from the fact that the PBs are introducing the product of 1

B with
ψ (remember Eq. [2.123]), this is what we have in reality inside H ′, it is immediate to
obtain:

χ̇1 = −1

q

∂Ψ

∂χ2
. (2.128)

χ̇2 =
1

q

∂Ψ

∂χ1
. (2.129)

By applying the definition from Eq. [2.125] it is easy to obtain:

χ̇1 = − ∂

∂χ2

[
⟨Φ⟩θ − η

1

ρ

∂

∂ρ
⟨(Φ̃)2⟩θ

]
. (2.130)

χ̇2 =
∂

∂χ1

[
⟨Φ⟩θ − η

1

ρ

∂

∂ρ
⟨(Φ̃)2⟩θ

]
. (2.131)

Two further definitions are now introduced:

ΨGC1
= ⟨Φ⟩θ. (2.132)

ΨGC2
= −η 1

ρ

∂

∂ρ
⟨(Φ̃)2⟩θ. (2.133)

Together with the validity of the following obvious relation:

Ψ = q
[
ΨGC1

+ ΨGC2

]
. (2.134)

It is natural that Eq. [2.128] and Eq. [2.129] become then:

χ̇1 = −∂ΨGC1

∂χ2
− ∂ΨGC2

∂χ2
. (2.135)

χ̇2 = +
∂ΨGC1

∂χ1
+
∂ΨGC2

∂χ1
. (2.136)
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2.8.1 Non-dimensional governing equations for guiding centres

In order to implement Eq. [2.135] and Eq. [2.136] it is necessary to obtain the non-
dimensional version of these last ones. Once we have done that it will be possible to
define 3 non-dimensional parameters inside the code (Â, η̂ and ρ̂) to fix physical conditions
governing the movement of particles. We remember in fact that in this specific system, µ
is a constant and consequently also the Larmor Radius ρ (check Eq. [2.28] and Eq. [2.121]).
η is the so-called real parameter we introduced in Eq. [2.64] while A is the amplitude of
the potential we introduced in Eq. [2.120] and Eq. [2.121]. It is necessary to define the
usual non-dimensional parameters:

χ̂_ = 2π
χ_

L
; t̂ = 2π

t

T
; ϕ̂ =

ϕ

ϕ0
; ϕ0 =

L2B0

T2π
; B̂ =

B

B0
;

Â =
εδ

B̂
; ρ̂ = 2π

ρ

L
; η̂ = 2π

η

T
.

(2.137)

The starting equation are Eq. [2.135] and Eq. [2.136] in which we apply the definitions
from Eq. [2.132] and Eq. [2.133]:

χ̇1 = −∂⟨Φ⟩θ

∂χ2
− ∂

∂χ2

(
−η 1

ρ

∂

∂ρ
⟨(Φ̃)2⟩θ

)
. (2.138)

χ̇2 = +
∂⟨Φ⟩θ

∂χ1
+

∂

∂χ1

(
−η 1

ρ

∂

∂ρ
⟨(Φ̃)2⟩θ

)
. (2.139)

We introduce the definitions of the non-dimensional parameters:

L

T

∂χ̂1

∂t̂
= −2πεδϕ0

LB

∂⟨ϕ̂⟩θ

∂χ̂2
− (2π)3ε2

δTϕ
2
0

L32πB2

∂

∂χ̂2

(
−η̂ 1

ρ̂

∂

∂ρ̂
⟨( ˜̂
ϕ2)⟩θ

)
. (2.140)

L

T

∂χ̂2

∂t̂
= +

2πεδϕ0

LB

∂⟨ϕ̂⟩θ

∂χ̂1
+

(2π)3ε2
δTϕ

2
0

L32πB2

∂

∂χ̂1

(
−η̂ 1

ρ̂

∂

∂ρ̂
⟨( ˜̂
ϕ)2⟩θ

)
. (2.141)

We introduce the definition of ϕ0 and we simplify some terms:

∂χ̂1

∂t̂
= −εδB0

B

∂⟨ϕ̂⟩θ

∂χ̂2
− ε2

δB
2
0

B2

∂

∂χ̂2

(
−η̂ 1

ρ̂

∂

∂ρ̂
⟨( ˜̂
ϕ)2⟩θ

)
. (2.142)

∂χ̂2

∂t̂
= +

εδB0

B

∂⟨ϕ̂⟩θ

∂χ̂1
+
ε2

δB
2
0

B2

∂

∂χ̂1

(
−η̂ 1

ρ̂

∂

∂ρ̂
⟨( ˜̂
ϕ)2⟩θ

)
. (2.143)

It is possible to introduce the definition of B̂ and consequently of Â:

˙̂χ1 = −Â∂⟨ϕ̂⟩θ

∂χ̂2
− Â2 ∂

∂χ̂2

(
−η̂ 1

ρ̂

∂

∂ρ̂
⟨(˜̂
ϕ)2⟩θ

)
. (2.144)

˙̂χ2 = +Â
∂⟨ϕ̂⟩θ

∂χ̂1
+ Â2 ∂

∂χ̂1

(
−η̂ 1

ρ̂

∂

∂ρ̂
⟨(˜̂
ϕ)2⟩θ

)
. (2.145)
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As we did in the dimensional equations it is possible to introduce Φ̂ = Âϕ̂:

˙̂χ1 = −∂⟨Φ̂⟩θ

∂χ̂2
− ∂

∂χ̂2

(
−η̂ 1

ρ̂

∂

∂ρ̂
⟨( ˜̂

Φ)2⟩θ

)
. (2.146)

˙̂χ2 = +
∂⟨Φ̂⟩θ

∂χ̂1
+

∂

∂χ̂1

(
−η̂ 1

ρ̂

∂

∂ρ̂
⟨( ˜̂

Φ)2⟩θ

)
. (2.147)

Finally the definition of Ψ̂, it is the same of Ψ (from Eq. [2.125]) but it includes Φ̂, after
that it is necessary to introduce Ψ̂GC1

and Ψ̂GC2
from the non-dimensional version of

Eq. [2.132] and Eq. [2.133]:

˙̂χ1 = −∂Ψ̂GC1

∂χ̂2
− ∂Ψ̂GC2

∂χ̂2
. (2.148)

˙̂χ2 = +
∂Ψ̂GC1

∂χ̂1
+
∂Ψ̂GC2

∂χ̂1
. (2.149)

2.9 Full orbits governing equations

In full orbit mode, the code calculates the trajectories of the particles without any approx-
imation coming from the gyro-kinetic approach to the problem. In fact, as we anticipated
in the first section it is possible to integrate the equations of motion obtaining the solu-
tion in the 6 dimension phase space. The geometry simplification applies also in this case
so we are interested in the solution in the 4 dimension phase space. The starting point
system is the same as the complete model we introduced at the beginning:

H =
1

2
mv2 + qϕ. (2.150)

{
F,G

}
=

1

m

(∂F
∂x

∂G

∂v

− ∂F

∂v

∂G

∂x

)
+
qB

m2

(∂F
∂v

× ∂G

∂v

)
. (2.151)

Is possible to obtain the extended form of the Poisson Bracket of the system simply by
doing both the dot and the cross product:

{
F,G

}
=

1

m

(∂F
∂x

∂G

∂vx
− ∂F

∂vx

∂G

∂x

)
+

1

m

(∂F
∂y

∂G

∂vy
− ∂F

∂vy

∂G

∂y

)
+
qB

m2

( ∂F
∂vx

∂G

∂vy
− ∂F

∂vy

∂G

∂vx

)
.

(2.152)
It is necessary to study the evolution in time of the observable x, y, vx and vy by taking

advantage of Ḟ =
{
F,H

}
. through some simple calculations it is possible to obtain the

expression of the derivatives respect to the time of the observable of interest:




ẋ = vx,

ẏ = vy,

v̇x = − q
m

∂φ
∂x + qB

m vy,

v̇y = − q
m

∂φ
∂y − qB

m vx.

(2.153)
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These are the so-called equations of motion that we would like to integrate into the code
in order to obtain the desired result.

2.9.1 Non-dimensional governing equations for full orbits

To maintain the coherence to what has been done with the guiding centre it is necessary
to proceed with the non-dimensionalization of the equations of the motion. It is necessary
to define the non-dimensional quantities of interest:

x̂ =
x

L
2π ; ŷ =

y

L
2π ; t̂ =

t

T
2π ; v̂x =

vx

L
T ;

v̂y =
vy

L
T ; η̂ =

η

T
2π ; ϕ̂ =

ϕ

ϕ0
; B̂ =

B

B0
.

(2.154)

It is of great importance the definition of ϕ0 we do it using the following definition:

ϕ0 =
L2B0

2πT
.

In the equations, we have made the same assumptions on the potential so that we will
have ϕ = εδϕ. It is now possible to start to develop the equation, the procedure will be
done for the first equation but it is the same for the second one:

∂v̂x

∂t̂

L

T 2
2π = − q

m
ϕ0

2π

L

∂(εδϕ̂)

∂x̂
+
qB

m

L

T
v̂y. (2.155)

In the definition of ϕ0 it is possible to insert the definition of B0:

with B0 =
B

B̂
⇒ ϕ0 =

L2B

2πTB̂
. (2.156)

We substitute the definition of ϕ0 in the equation of interest:

∂v̂x

∂t̂

L

T 2
2π = − q

m

L2B

2πTB̂

2π

L

∂(εδϕ̂)

∂x̂
+
qB

m

L

T
v̂y. (2.157)

It is possible to simplify the equation and bring B̂ inside the partial derivative with
respect to x̂:

∂v̂x

∂t̂

2π

T
= −qB

m

∂( εδφ̂

B̂
)

∂x̂
+
qB

m
v̂y. (2.158)

Knowing that qB
m = 1

2η we introduce η in the equation, and we use it to introduce η̂:

∂v̂x

∂t̂

2π

T
= − 1

2η

∂( εδφ̂)

B̂
)

∂x̂
+

1

2η
v̂y = − 1

2η̂

2π

T

∂( εδφ̂

B̂
)

∂x̂
+

1

2η̂

2π

T
v̂y. (2.159)

The final simplified equations are the following:

∂v̂x

∂t̂
= − 1

2η̂

∂( εδφ̂

B̂
)

∂x̂
+

1

2η̂
v̂y. (2.160)
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∂v̂y

∂t̂
= − 1

2η̂

∂( εδφ̂

B̂
)

∂ŷ
− 1

2η̂
v̂x. (2.161)

It is possible to perform a re-scaling on a non-dimensional parameter in order to take
advantage of the definition of a certain parameter. Starting from the definition of the
Larmor radius we perform the non-dimensionalization:

ρ =
m

♣q♣Bv⊥ = 2♣η♣v⊥. (2.162)

With the definition of:

ρ̂ =
ρ

L
; v̂⊥ = v⊥

T

L
. (2.163)

It is easy to obtain:
ρ̂ = 2♣η̂♣v⊥. (2.164)

I divide both the equations for v̂⊥ and I take advantage of the last equation:

∂v̂x

∂t̂

1

v̂⊥
= − 1

2♣η̂♣
1

v̂⊥

∂( εδφ̂

B̂
)

∂x̂
+

1

2♣η̂♣
1

v̂⊥
v̂y. (2.165)

∂v̂y

∂t̂

1

v̂⊥
= − 1

2♣η̂♣
1

v̂⊥

∂( εδφ̂

B̂
)

∂ŷ
− 1

2♣η̂♣
1

v̂⊥
v̂x. (2.166)

In addition to the definition of the non-dimensional Larmor radius, I get an advantage
by exploiting two more definitions:

V̂x =
v̂x

v̂⊥
; V̂y =

v̂y

v̂⊥
. (2.167)

Those two last parameters are non-dimensional but they are also re-scaled on v̂⊥. This
fact must be taken into account later. To implement easily ♣η̂♣ in the code it is possible
to simply use: ♣η̂♣ = η̂sign(η̂). It is also possible to use the definition of the parameter
Â = εδ

B̂
to obtain the final expressions of the equation:

∂V̂x

∂t̂
= −sign(η̂)

Â

ρ̂

∂ϕ̂

∂x̂
+

1

2♣η̂♣ V̂y. (2.168)

∂V̂y

∂t̂
= −sign(η̂)

Â

ρ̂

∂ϕ̂

∂ŷ
− 1

2♣η̂♣ V̂x. (2.169)

As we did for Guiding centres it is possible to introduce Φ̂ = Âϕ̂ obtaining the version of
the equations that will be implemented in the code::

˙̂
Vx = −sign(η̂)

1

ρ̂

∂Φ̂

∂x̂
+

1

2♣η̂♣ V̂y. (2.170)

˙̂
Vy = −sign(η̂)

1

ρ̂

∂Φ̂

∂ŷ
− 1

2♣η̂♣ V̂x. (2.171)
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These are the equations that will be implemented together with the ones for x and y:

˙̂x =
ρ̂

2♣η̂♣ V̂x (2.172)

˙̂y =
ρ̂

2♣η̂♣ V̂y (2.173)

In our case we would like to choose the Larmor radius as a thermal Larmor radius, this
means that the v⊥ is defined as the thermal velocity:

v⊥ =

√
KBT

m
⇒ ρ =

m

♣q♣Bv⊥ =

√
mKBT

♣q♣B = ρth. (2.174)

2.9.2 Re-scaling factor

In addition to that, from the equation of velocity, it is possible to establish the re-scaling
factor for which we should account when we want to confront the velocity of the Guiding
Center and the velocity of the corresponding particle. As we have seen in fact, we are not
calculating v̂x but V̂x in the differential equations. Given that the equations have been
divided for v⊥ this is the factor in which we are interested. The relation between v̂x but
V̂x is described by the following equation:

v̂x = ˆ̇x = V̂xv̂⊥. (2.175)

The re-scaling parameter is fixed, it can’t be different for each particle. Given the validity
of Eq. [2.174] it is straightforward:

v̂⊥ =
ρ̂

2♣η̂♣ . (2.176)

In order to fix it we can easily choose it following the next definition:

v̂⊥ =
ρ̂dict

2♣η̂dict♣
. (2.177)

After having computed full orbits of particles, we would like to obtain the trajectories of
the corresponding guiding centres, once having done that, the comparison between the
results from the two different approaches can be better performed. In order to compare
the results, we have to account for the fact we are not calculating strictly v̂x and v̂y:

ρ̂ = 2♣η̂♣
√
v̂2

x + v̂2
y = 2♣η̂♣v̂⊥

√
V̂ 2

x + V̂ 2
y = ρ̂dict

√
V̂ 2

x + V̂ 2
y . (2.178)

Another point to discuss is the initialization of v̂⊥ in the code. Given the definition of
the dimensional Larmor radius and consequently, of the non-dimensional Larmor radius,
it is possible to calculate what should be the value of v̂⊥ given a couple of ρ̂ and η̂ defined
in the code:

v̂⊥ =
ρ̂

2♣η̂♣ ⇒ v̂⊥0 =
ρ̂dict

2♣η̂dict♣
. (2.179)
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2.10 – Non-dimensional potential model

This last equation has to be valid at the first instant of time otherwise the initial conditions
are wrong. It has to be reminded of the validity of Eq. [2.175] for v̂⊥. Let’s define some
additional parameters to be more clear in the next passages:

v̂⊥ real : It is the real transverse velocity that has to satisfy the condition introduced in
Eq. [2.179].

V̂⊥ calc : It is the transverse velocity calculated in the code through V̂x and V̂y, we need
to remember that those are re-scaled on the chosen v̂⊥.

v̂⊥ : It is the scaling factor of the equations, we remember it is defined as in Eq. [2.177]
through the use of ρ̂dict and η̂dict.

Taking as a reference Eq. [2.175] it is possible to write:

v̂⊥ real = V̂⊥ calcv̂⊥. (2.180)

Then the validity of the equation on initial conditions forces the value of V̂⊥ calc to 1 as
done in the code.

2.10 Non-dimensional potential model

Like anticipated the turbulent potential is modelled so that it is equipped with the main
characteristics of a real potential within a tokamak. It is not a real potential map given
that the geometry considered is idealised with respect to a possible real one. The equation
for the non-dimensional potential is the following:

ϕ̂ =
M∑

n,m=1
n2+m2≤M2

1

(n2 +m2)3/2
sin (nx̂+mŷ − φnm − t̂). (2.181)

From the previous sections, we have then the validity of:

Φ̂ =
εδ

B̂
ϕ̂. (2.182)

The latter will be the potential inserted in the equations, the one containing also the Â:

Φ̂ =
M∑

n,m=1
n2+m2≤M2

Â

(n2 +m2)3/2
sin (nx̂+mŷ − φnm − t̂). (2.183)

Given that the potential is non-dimensional and that it is periodic, the definitions of the
non-dimensional parameters introduced previously grant a periodicity in space and time
with a period of 2π. The so-defined potential is represented in a square of side 2π in the
transverse plane (x, y). The above-mentioned square will be called fundamental square

from now on. The periodicity assures that it is possible to calculate the potential in
the square to calculate the trajectories of particles also outside of it, this aspect will be
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deepened later but is very important for the implementation in the code. The expression
of the potential in Eq. [2.183] is not convenient and it is quite long, it can’t be implemented
efficiently inside the code. The idea is to write the potential in terms of a complex
potential Φ̂c in order to take advantage of the fast implementation and of its easy writing.
From the complex analysis it is well known the following formula:

Φ = Im¶Φc(x, y)e−jt♢ = Im¶Φc(x, y)♢ cos (t) − Re¶Φc(x, y)♢ sin (t). (2.184)

In the latter equation, real and imaginary parts are indicated by Re¶♢ and Im¶♢ respec-
tively. Together with this it is also possible to write the complex potential Φc in the
following way:

Φc =
M∑

n,m=1
n2+m2≤M2

Knme
j(nx+my). (2.185)

through the obvious definition of Knm:

Knm =
Aeϕnm

(n2 +m2)3/2
. (2.186)

The potential with this shape can be directly inserted inside the equations of full orbit
mode, we already have everything we need in order to run the code and calculate the
trajectories of particles in the designated potential. On the other hand, for Guiding
Center Mode we need further manipulations to the potential in order to obtain the ready-
to-implement expressions, it is necessary to proceed with the change of coordinates from
Eq. [2.14] and Eq. [2.15] in order to rewrite Eq. [2.184], Eq. [2.185] and Eq. [2.186]:

Φ(x, y, t) = Φ(χ1 + ρ cos (θ), χ2 − ρ sin (θ), t) =

=
M∑

n,m=1
n2+m2≤M2

A

(n2 +m2)3/2
sin

(
n(χ1 + ρ cos (θ)) +m(χ2 − ρ sin (θ)) − φnm − t

)
. (2.187)

Φ(x, y, t) = Φ(χ1 + ρ cos (θ), χ2 − ρ sin (θ), t) =

= Im¶Φc(χ1 + ρ cos (θ), χ2 − ρ sin (θ))♢ cos (t)+

− Re¶Φc(χ1 + ρ cos (θ), χ2 − ρ sin (θ))♢ sin (t).

(2.188)

The expression of the complex potential is:

Φc(x, y) = Φ(χ1 + ρ cos (θ), χ2 − ρ sin (θ)) =

=
M∑

n,m=1
n2+m2≤M2

Knme
j(nx+my)ej(nρcos(θ)−mρ sin (θ)). (2.189)

Now that the complex potential is available it is possible to find an alternative expression
of the guiding centre potential, using the last three equations it is possible to simplify
the expression of ΨGC1

and of ΨGC2
. The use of Φc is very useful given that we have

to deal with a gyro-average applied to the potential itself. The procedure foresees the
simplification of the two orders of the guiding centre potential separately so that the
passages are more clear.
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2.11 – First-order guiding centre potential

2.11 First-order guiding centre potential

Like what has been done with Φ, ΨGC1
can be expressed in terms of a complex guiding

centre potential ΨGC1,c
:

ΨGC1
= ΨGC1,1

= Im¶ΨGC1,c
e−jt♢. (2.190)

Given the validity of Eq. [2.132] it is possible to write:

ΨGC1,c
= ⟨Φc(χ1 + ρ cos (θ), χ2 − ρ sin (θ))⟩. (2.191)

Given the validity of Eq. [2.189] and that the average is made on θ it is possible to obtain
a simpler expression:

ΨGC1,c
=

M∑

n,m=1
n2+m2≤M2

Knme
j(nx+my)

〈
ej(nρcos(θ)−mρ sin (θ))

〉
. (2.192)

The average acts only on the exponential containing the dependency of θ, this will simplify
further calculations. It is now time to actively perform the gyro-average and look for the
final expression of the first-order guiding centre potential. The desired result should be
a sort of operator, With the application of the latter to the complex potential we should
be able to account for the effect of the average made on θ. Knowing the effect of the
FLR effects we already know what to expect from the operator, like we anticipated the
final results will be a smoother potential which means that all the peaks will be reduced,
the amplitude of each mode will be lowered, the operator will result in a coefficient lower
than 1. In order to perform the average it is necessary to introduce the Bessel function
for the first kind Jν :

Jν(s) =

∫ +π

−π
ej(s sinβ−νβ)dβ. (2.193)

Jν(s) =
∞∑

k=0

(−1)k (s/2)2k+ν

k! Γ(k + ν + 1)
. (2.194)

In these equations the following definitions are valid:

• s is a generic variable.

• ν is an integer number constituting the order of the Bessel function.

• Γ is the so-called Gamma function.

While considering the Bessel function for the first kind and of order 0 ( ν = 0 ) the
two previous equations become:

J0(s) =

∫ 2π

0
ej(s sinβ)dβ. (2.195)

J0(s) =
∞∑

k=0

(−1)k (s/2)2k+ν

(k!)2
. (2.196)
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In order to obtain Eq. [2.196] one has to take advantage of the following useful relation:

Γ(a+ 1) = a!. (2.197)

At this point it is possible to develop the gyro-average acting on Eq. [2.192]:

〈
ej(nρcos(θ)−mρ sin (θ))

〉
=

〈
e

j

√
n2+m2√
n2+m2

(nρcos(θ)−mρ sin (θ))〉
=

=
〈
exp

[
jρ

√
n2 +m2

( n√
n2 +m2

cos (θ) − m√
n2 +m2

sin (θ)
)]〉

.
. (2.198)

It is possible to express the coefficients multiplying cos (θ) and sin (θ) in terms of trigono-
metric functions as well:

cos (θnm) =
n√

n2 +m2
. (2.199)

sin (θnm) =
m√

n2 +m2
. (2.200)

At this point it is possible to apply a useful relation for the cosine of a sum:

cos (θ + θnm) = cos θ cos θnm − sin θ sin θnm. (2.201)

With the application of these last three relations Eq. [2.198] becomes:

〈
ej(nρcos(θ)−mρ sin (θ))

〉
=

〈
exp

[
jρ

√
n2 +m2

(
cos (θ + θnm)

)]〉
. (2.202)

It is known then that:
sin(β) = cos (β + π/2). (2.203)

A specific value of β has to be chosen so you can take advantage of the definition of the
Bessel function of order zero, looking at Eq.2.195 it is clear that the π

2 has to be cancelled,
in order to do that the β needs to satisfy some criteria:

β = θ + θnm − π/2. (2.204)

dβ = dθ. (2.205)

So that in the Eq. [2.195] we have:

sin β = cos (β + π/2) = cos (θ + θnm). (2.206)

By applying Eq. [2.195] and by performing these last passages Eq. [2.202] can be devel-
oped:

〈
ej(nρcos(θ)−mρ sin (θ))

〉
=

∫ 2π

0
ejρ

√
n2+m2(cos θ+θnm)dθ = J0(ρ

√
n2 +m2). (2.207)

In order to lighten the notation, it can be introduced an additional definition:

snm =
√
n2 +m2. (2.208)
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It is now possible to introduce the expression of the average inside the starting equation,
with the substitution inside Eq. [2.192] we obtain:

ΨGC1,c
=

M∑

n,m=1
n2+m2≤M2

KnmJ0(ρsnm)ej(nχ1+mχ2). (2.209)

It is important to mention that, since the gyro-average has been performed and θ has been
averaged out, then ρ has become a parameter, it is no more variable. We remember that
from Eq. [2.65], once the Lie transform has been applied as well as the order reduction
we checked that the magnetic moment or the Larmor radius would have become a
parameter, ρ is no more considered as a variable ( like χ1 and χ2 for example ). In
addition to that, we can now evaluate the global effect of the FLR effects for the first
order, it is clear that we are applying a coefficient to each mode of the potential, it is an
additional coefficient with respect to the already present Knm. Given the trend of the
Bessel function of the first kind and order zero Fig. [2.1] it is clear that whether is the
value of ρ parameter and even for modes with low snm we will have a decrease in the
amplitude of the guiding potential for every mode.

Figure 2.1: Bessel function of the first kind of order zero.

2.12 Second-order guiding center potential

It is now time to repeat the procedure for the second order term, in this case, it is more
difficult given that we have to deal with the fluctuating part of the potential. The starting
point is always the same relation, writing the potential in terms of a complex one:

ΨGC2
= Im¶ΨGC2,c

e−jt♢. (2.210)

57



Model description

In this case, however, we can not proceed directly, as anticipated we have to deal with
the fluctuating part of the potential. We recall Eq. [2.133]:

ΨGC2
= −η 1

ρ

∂

∂ρ
⟨(Φ̃)2⟩θ. (2.211)

To simplify the implementation it is possible to write Φ̃ in the following way:

⟨Φ̃2⟩ = ⟨Φ2⟩ − ⟨Φ⟩2. (2.212)

This causes us to work with two terms instead of one but it will be easier to deal with
two non-fluctuating terms instead of a single fluctuating one, the expression of the second
order guiding-center potential changes, Eq. [2.211] becomes:

ΨGC2
= −η 1

ρ

∂

∂ρ

(⟨Φ2⟩ − ⟨Φ⟩2)
= −η 1

ρ

∂

∂ρ
⟨Φ2⟩ + η

1

ρ

∂

∂ρ
⟨Φ⟩2. (2.213)

we can now introduce a new symbology, accounting for the two terms on the right-hand
side:

Ψ
(I)
GC2

= −η 1

ρ

∂

∂ρ
⟨Φ2⟩. (2.214)

Ψ
(II)
GC2

= +η
1

ρ

∂

∂ρ
⟨Φ⟩2. (2.215)

So that Eq. [2.213] becomes now:

ΨGC2
= Ψ

(I)
GC2

+ Ψ
(II)
GC2

. (2.216)

In order to better understand the following passages it is also convenient to introduce a
new definition for the product of the complex potential Φc with the exponential accounting
for the time dependence e−jt:

Ψc,τ (χ1, χ2, ρ, θ, t) = Φc,(χ1, χ2, ρ, θ)e
−jt. (2.217)

As for the Poisson Brackets, τ accounts for the time dependence. At this point, it
is possible to take advantage of useful relations coming from complex analysis, from
Eq. [2.184] we have:

Φ = Im¶Ψc,τ ♢. (2.218)

It is easy to write:

Φ =
Ψc,τ − Ψ∗

c,τ

2j
. (2.219)

And it is possible to calculate Φ2:

Φ2 =
Ψ2

c,τ + Ψ∗2
c,τ − 2Ψc,τ Ψ∗

c,τ

−4
. (2.220)

It is possible to develop the individual terms:

Ψ2
c,τ = Re¶Ψc,τ ♢2 − Im¶Ψc,τ ♢2 + 2jRe¶Ψc,τ ♢Im¶Ψc,τ ♢. (2.221)
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2.12 – Second-order guiding center potential

Ψ∗2
c,τ = Re¶Ψc,τ ♢2 + Im¶Ψc,τ ♢2 − 2jRe¶Ψc,τ ♢Im¶Ψc,τ ♢. (2.222)

Ψc,τ Ψ∗
c,τ = Re¶Ψc,τ ♢2 + Im¶Ψc,τ ♢2 + j

[
Re¶Ψc,τ ♢Im¶Ψc,τ ♢+

− Im¶Ψc,τ ♢Re¶Ψc,τ ♢]
= Re¶Ψc,τ ♢2 + Im¶Ψc,τ ♢2.

(2.223)

We put everything together so that Eq. [2.220] becomes:

Φ2 =
1

2
Im¶Ψc,τ ♢2 =

1

2
Re¶Ψc,τ ♢2 +

1

2
Im¶Ψc,τ ♢2 − 1

2
Re¶Ψc,τ ♢2 =

=
1

2
♣Ψc,τ ♣2 − 1

2
Re¶Ψ2

c,τ ♢.
(2.224)

In the case of Eq. [2.214], to obtain the expression of the desired term it is necessary to
simply apply the gyro-average to Eq. [2.224]:

⟨Φ2⟩ =
1

2
⟨♣Ψc,τ ♣2⟩ − 1

2
Re¶⟨Ψ2

c,τ ⟩♢. (2.225)

On the other hand in the case of the term inside Eq. [2.215] it is necessary to apply the
operator directly to Ψc,τ . Can be easily proven that if we repeat the calculations required
to obtain Eq. [2.224] after having applied the operator we would obtain the exact same
result but with the ⟨ ⟩ operator applied directly to Ψc,τ in the equation:

⟨Φ⟩2 =
1

2
♣⟨Ψc,τ ⟩♣2 − 1

2
Re¶⟨Ψc,τ ⟩2♢. (2.226)

it is now possible to write the new expression of Eq. [2.214] and Eq. [2.215] through
Eq. [2.225] and Eq. [2.226]:

Ψ
(I)
GC2

= − η

2ρ

∂

∂ρ

(
⟨♣Ψc,τ ♣2⟩ − Re¶⟨Ψ2

c,τ ⟩♢
)
. (2.227)

Ψ
(II)
GC2

= +
η

2ρ

∂

∂ρ

(
♣⟨Ψc,τ ⟩♣2 − Re¶⟨Ψc,τ ⟩2♢

)
. (2.228)

Eq. [2.228] can be further developed, when one has to proceed with the derivation he has
to account that he is deriving the square of a function and that ♣⟨Ψc,τ ⟩♣2 can be further
developed as well:

♣Ψc,τ ♣2 = Ψc,τ Ψ∗
c,τ ⇒ ♣⟨Ψc,τ ⟩♣2 = ⟨Ψc,τ ⟩⟨Ψ∗

c,τ ⟩. (2.229)

For this term, the rule of the derivation of a product will be followed. Before completing
any other steps it is convenient to introduce a further notation, we consider a global
operator, which includes the partial derivation with respect to ρ, directly acting on the
various potentials:

J(□) =
1

ρ

∂

∂ρ
⟨□⟩. (2.230)

With the introduction of this notation inside Eq. [2.227] and Eq. [2.228] while considering
also the new expression of ♣⟨Ψc,τ ⟩♣2 and the derivation rules we obtain:

Ψ
(I)
GC2

= −η

2

(
J
(♣Ψc,τ ♣2)−Re¶J(

Ψ2
c,τ

)♢
)
. (2.231)
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Ψ
(II)
GC2

= +
η

2

(
⟨Ψc,τ ⟩J(

Ψ∗
c,τ

)
+⟨Ψ∗

c,τ ⟩J(
Ψc,τ

)−Re¶2⟨Ψc,τ ⟩J(
Ψc,τ

)♢
)
. (2.232)

At this point we can put everything together re-writing Eq. [2.216]:

ΨGC2
= Ψ

(I)
GC2

+ Ψ
(II)
GC2

= +
η

2

(
−J

(♣Ψc,τ ♣2)
+⟨Ψc,τ ⟩J(

Ψ∗
c,τ

)
+⟨Ψ∗

c,τ ⟩J(
Ψc,τ

)
+

+ Re
{
J
(
Ψ2

c,τ

)−2⟨Ψc,τ ⟩J(
Ψc,τ

)})
.

(2.233)

Before the implementation, it can be useful to further re-label the terms of the first and
second order, to make immediate the association to the respective temporal dependence.
As we know, the following relations will be implemented in the code:

Φ = Im¶Φc(x, y)e−jt♢. (2.234)

ΨGC1
= ΨGC1,1

= Im¶ΨGC1,c
e−jt♢. (2.235)

Φ = Im¶Ψc,τ ♢. (2.236)

This last Eq. will be inserted in every term of ΨGC2
. It can be easily proven that some

of those terms won’t be time-dependent because of the multiplication for their conjugate.
It is necessary to recall Euler’s formula:

ejt = cos(t) + j sin(t). (2.237)

Consequently, we have:

e−jt = cos(−t) + j sin(−t) = cos(t) − j sin(t). (2.238)

With the use of simple trigonometric formulas. through the definition of Ψc,τ from
Eq. [2.217] we can write easily that:

Ψc,τ = Φc cos(t) − jΦc sin(t). (2.239)

In case we try to calculate its conjugate we have:

Ψ∗
c,τ = Φc cos(t) + jΦc sin(t) = Φce

jt. (2.240)

This means that in every case we have a product between Ψc,τ and its conjugate the time
dependence is cancelled. Following this simple logic, it is possible to write the global
guiding centre potential as:

Ψ = ΨGC1,1
+ ΨGC2,0

+ ΨGC2,2
. (2.241)

The first number in the subscript indicates the order of the individual terms while the
second one indicates the factor multiplying time in the exponential, we can resume the
expressions of the three terms:

ΨGC1,1
= Im¶ΨGC1,c

e−1jt♢. (2.242)

ΨGC2,0
= +

η

2

(
−J

(♣Φc♣2
)
+⟨Φc⟩J

(
Φ∗

c

)
+⟨Φ∗

c⟩J(
Φc

))
e−0jt. (2.243)
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ΨGC2,2
= +

η

2
Re

{[
J
(
Φ2

c

)−2⟨Φc⟩J
(
Φc

)]
e−2jt

}
. (2.244)

The last thing to do is obtain the expression of the operator J(□), knowing from Eq. [2.209]
the expression of ⟨ ⟩:

⟨□⟩ =
M∑

n,m=1
n2+m2≤M2

□nmJ0(ρsnm)ej(nχ1+mχ2). (2.245)

And the expression of the operator J(□) from Eq. [2.230]:

J(□) =
1

ρ

∂

∂ρ
⟨□⟩. (2.246)

Thanks to the properties of the Bessel functions it is possible to obtain the desired
expression simply deriving with respect to ρ, it is possible to use the following useful
relation:

∂J0(s)

∂s
= −J1(s). (2.247)

By applying Eq. [2.247] the expression of J(□) can be easily obtained:

J(□) = −
M∑

n,m=1
n2+m2≤M2

□nm
snm

ρ
J1(ρsnm)ej(nχ1+mχ2). (2.248)

While considering □ a generic quantity (e.g. Φc) while □nm its related coefficient (e.g.

Figure 2.2: Bessel function of the first kind of order zero and one.

Knm). Naturally, it is necessary a link between the two quantities, this can be done
through the Fast Fourier Transform algorithm in two dimensions and its inverse, this
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algorithm is very powerful and efficient with respect to a standard Fourier transform. In
case ρ = 0 a specific limit is valid, J(□) exploits this limit only in this particular case:

lim
ρ→0

J1(ρsnm) =
s2

nm

2
. (2.249)

The real equations implemented in Guiding-Center mode derive directly from Eq. [2.148]
and Eq. [2.149] but the new notation has been introduced:

χ̇1 = −∂ ΨGC1,1

∂χ2
− ∂ΨGC2,0

∂χ2
− ∂ΨGC2,2

∂χ2
. (2.250)

χ̇2 = +
∂ΨGC1,1

∂χ1
+
∂ΨGC2,0

∂χ1
+
∂ΨGC2,2

∂χ1
. (2.251)

2.13 Integration of energy

In order to understand if the computation of particles trajectory is correct, for both full
orbits and guiding centres, it is possible to study the evolution of the Hamiltonian, the
latter is invariant for the considered system and it is interesting to check if it is conserved
or not. Therefore we are interested in analysing the trend of total energy over time for
each particle. In order to do that, it is necessary to compute the trend of k over time
for each particle. While tracing the trajectories of a bunch of particles, we should see
a certain convergence in the trend of energy while reducing the value of the time step
for both the Guiding Center and the particles since the reduction of the time step is
associated with a qualitatively better computation. This kind of analysis will be the key
to the choice of time-step values for both approaches.

2.13.1 Guiding centres k equation

We consider the expression of gyrokinetic Hamiltonian containing the explicit dependence
on ρ:

H ′ = H0 + εδq⟨ϕ⟩θ − ε2
δ

ηq

B

1

ρ

∂⟨ϕ2⟩
∂ρ

. (2.252)

With

H0 = H0(ρ, v∥, k) =
q2B2

2m
ρ2 +

1

2
mv2

∥ + k.

We would like to study the evolution of k:

k̇ =
{
k,H

}
=

(∂k
∂t

∂H

∂k
− ∂k

∂k

∂H

∂t

)
= −∂H

∂t
. (2.253)

Time and energy are independent variables so the term ∂k
∂t = 0. Using the expression

of the modified Hamiltonian and knowing that H0 is time independent it is possible to
write that:

−∂H

∂t
= −εδq

∂⟨ϕ⟩
∂t

+ ε2
δ

ηq

B

1

ρ

∂

∂ρ

∂⟨ϕ2⟩
∂t

. (2.254)
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2.13 – Integration of energy

Guiding centres non-dimensional k equation

Now it is possible to start the procedure to obtain the non-dimensional equation, we
introduce the non-dimensional parameters:

t̂ = 2π
t

T
; ϕ̂ =

ϕ

ϕ0
; Ĥ =

H

H0
;

B̂ =
B

B0
; Â =

εδ

B̂
; η̂ = 2π

η

T
; ρ̂ = 2π

ρ

L
.

(2.255)

It is possible to proceed as usual:

−2πH0

T

∂Ĥ

∂t̂
= −εδ

2πqϕ0

T

∂⟨ϕ̂⟩
∂t̂

+ ε2
δ η̂
T q(2π)2ϕ2

0

2πBL2T

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.256)

By simplifying we obtain:

−H0
∂Ĥ

∂t̂
= −εδqϕ0

∂⟨ϕ̂⟩
∂t̂

+ ε2
δ η̂

2πTq

BL2
ϕ2

0

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.257)

By substituting the values of ϕ0 and H0 we have:

−mL2

T 2

∂Ĥ

∂t̂
= −εδq

L2B0

2πT

∂⟨ϕ̂⟩
∂t̂

+ ε2
δ η̂

2πqTL4B2
0

(2π)2BL2T 2

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.258)

By simplifying we obtain:

−m

T

∂Ĥ

∂t̂
= −εδq

B0

2π

∂⟨ϕ̂⟩
∂t̂

+ ε2
δ η̂
qB2

0

2πB

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.259)

I reorder the LHS:

−∂Ĥ

∂t̂
= −εδq

B0T

2πm

∂⟨ϕ̂⟩
∂t̂

+ ε2
δ η̂
qB2

0T

B2πm

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.260)

I take advantage of B0 = B
B̂

:

−∂Ĥ

∂t̂
= −εδ

B̂
q
BT

2πm

∂⟨ϕ̂⟩
∂t̂

+
ε2

δ

B̂2
η̂
qBT

2πm

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.261)

I use the definition of Â:

−∂Ĥ

∂t̂
= −Âq BT

2πm

∂⟨ϕ̂⟩
∂t̂

+ Â2η̂
qBT

2πm

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.262)

With qB
m = 1

2η :

−∂Ĥ

∂t̂
= −Â 1

2η

T

2π

∂⟨ϕ̂⟩
∂t̂

+ Â2η̂
1

2η

T

2π

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.263)

63



Model description

Taking advantage of the definition of η̂:

−∂Ĥ

∂t̂
= −Â 1

2η̂

∂⟨ϕ̂⟩
∂t̂

+ Â2η̂
1

2η̂

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.264)

The final form of the equation is:

−∂Ĥ

∂t̂
= − Â

2η̂

∂⟨ϕ̂⟩
∂t̂

+
Â2

2

1

ρ̂

∂

∂ρ̂

∂⟨ϕ̂2⟩
∂t̂

. (2.265)

This equation is very easy to implement given that we have already the expression of the
operator required for the implementation: In the code we have defined:

ψ̂ = Âϕ̂. (2.266)

The equation becomes:

−∂Ĥ

∂t̂
= − 1

2η̂

∂⟨ψ̂⟩
∂t̂

+
1

2

1

ρ̂

∂

∂ρ̂

∂⟨ψ̂2⟩
∂t̂

. (2.267)

It is known that:
⟨ψ̂⟩ = Im

{
ΨGC1,1

e−jt
}
. (2.268)

And that:
1

ρ̂

∂⟨ ˆ̃ψ2⟩
∂ρ̂

= −Re

{
ΨGC2,2

e−2jt
}1

η̂
. (2.269)

The 1
η̂ at the end is because of the definition of ΨGC2,2

in the code. We don’t multiply for
2 because, in the definition of ΨGC2,2

, we already have that, thanks to how we develop
⟨ψ̂2⟩. It is now required to calculate the expression of the derivatives:

∂⟨ψ̂⟩
∂t̂

= −Im

{
j ΨGC1,1

e−jt
}

= −Re

{
ΨGC1,1

e−jt
}
. (2.270)

∂

∂t̂

1

ρ̂

∂⟨ ˆ̃ψ2⟩
∂ρ̂

= −2Re
{
j ΨGC2,2

e−2jt
}1

η̂
= −2Re

{
j ΨGC2,2

e−2jt
}1

η̂
=

= +2 Im

{
ΨGC2,2

e−2jt
}1

η̂
.

. (2.271)

Now we have to insert the two terms inside the equation:

− 1

2η̂

∂⟨ψ̂⟩
∂t̂

= +Re

{
ΨGC1,1

e−jt
} 1

2η̂
. (2.272)

+
1

2

1

ρ̂

∂

∂ρ̂

∂⟨ψ̂2⟩
∂t̂

= Im

{
ΨGC2,2

e−2jt
}1

η̂
. (2.273)

Then the equation to implement in the code is:

ˆ̇k = +Re

{
ΨGC1,1

e−jt
} 1

2η̂
+ Im

{
ΨGC2,2

e−2jt
}1

η̂
. (2.274)
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2.13 – Integration of energy

In order to don’t have any problem with the eta at the denominator, it is possible to
re-scale the equation given that we are interested in the variation of this quantity, the
evaluation will be made on h/h0. It is possible to multiply the equation for 2η̂ so that
divergence is avoided when η̂ is close to 0 and especially when we want to evaluate the
first order through η̂ = 0.

2η̂ ˆ̇k = Re

{
ΨGC1,1

e−jt
}

+2 Im

{
ΨGC2,2

e−2jt
}
. (2.275)

2.13.2 Full orbits k equation

Passing to the equation for the full orbits the procedure is quite the same but first, it is
necessary to consider the autonomized version of the system, we start from:

H =
1

2
mv2 + qϕ. (2.276)

{
F,G

}
=

1

m

(∂F
∂x

∂G

∂v

− ∂F

∂v

∂G

∂x

)
+
qB

m2

(∂F
∂v

× ∂G

∂v

)
. (2.277)

Following the autonomization we easily obtain:

H =
1

2
mv2 + qϕ+ k. (2.278)

{
F,G

}
=

1

m

(∂F
∂x

∂G

∂v

− ∂F

∂v

∂G

∂x

)
+
qB

m2

(∂F
∂v

× ∂G

∂v

)
+

(∂F
∂t

∂G

∂k
− ∂F

∂k

∂G

∂t

)
. (2.279)

The expression of k̇ is the same as the previous case:

k̇ = −∂H

∂t
.

But as we know now the expression of H is different and simpler. It is possible to calculate
the derivative of H with respect to time but it is necessary to remember that v does not
depend on time, they are independent variables so the derivative of respect to the other
is zero, the result is simply:

−∂H

∂t
= −q∂ϕ

∂t
. (2.280)

Full orbits non-dimensional k equation

It is now possible to proceed with the non-dimensionalisation of this equation, By sub-
stituting all the non-dimensional parameters we obtain the:

−2πH0

T

∂Ĥ

∂t̂
= −qϕ0

2π

T

∂ϕ̂

∂t̂
. (2.281)

With some simplifications we obtain:

−H0
∂Ĥ

∂t̂
= −qϕ0

∂ϕ̂

∂t̂
. (2.282)
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We substitute the values of H0 and ϕ0 and we remember the assumption that give us
ϕ = εδϕ:

−mL2

T 2

∂Ĥ

∂t̂
= −qL

2B0

2πT

∂εδϕ̂

∂t̂
. (2.283)

By simplifying the equation we obtain:

−m

T

∂Ĥ

∂t̂
= −qB0

2π

∂εδϕ̂

∂t̂
. (2.284)

And then

−∂Ĥ

∂t̂
= −qB0T

2πm

∂εδϕ̂

∂t̂
. (2.285)

We take advantage of B0 = B
B̂

and of the definition of Â obtaining:

−∂Ĥ

∂t̂
= −qBT

2πm
Â
∂ϕ̂

∂t̂
. (2.286)

With qB
m = 1

2η :

−∂Ĥ

∂t̂
= − 1

2η

T

2π
Â
∂ϕ̂

∂t̂
. (2.287)

Taking advantage of the definition of η̂:

−∂Ĥ

∂t̂
= − 1

2η̂

2π

T

T

2π
Â
∂ϕ̂

∂t̂
. (2.288)

We simply obtain:

−∂Ĥ

∂t̂
= − Â

2η̂

∂ϕ̂

∂t̂
. (2.289)

Given that:
∂k

∂t
=

2πmL2

T 3

∂k̂

∂t̂
= −∂H

∂t
= −2πmL2

T 3

∂Ĥ

∂t̂
. (2.290)

The procedure to obtain the non-dimensional equation is exactly the same. Now it is
necessary to implement the equation inside the full orbit mode. In order to do that it is
necessary to remember that like before it is valid Âϕ̂ = ψ̂ so that the equation becomes:

−∂Ĥ

∂t̂
= − 1

2η̂

∂ψ̂

∂t̂
. (2.291)

In this case, we don’t have any average applied on ψ so we can take advantage of:

ψ̂ = Im

{
ϕce

−jt
}
. (2.292)

Now we look for the expression of the derivative:

∂ψ̂

∂t̂
= −Im

{
j ϕce

−jt
}

= −Re

{
ϕce

−jt
}
. (2.293)

So that the equation for k̇ in f.o. mode becomes:

k̇ = Re

{
ϕce

−jt
} 1

2η̂
. (2.294)
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2.14 – Total energy equations

2.14 Total energy equations

Once the trend of k has been obtained over time for each trajectory it is possible to
assemble it together with other contributions in order to obtain the trend over time of
the total energy (Hamiltonian) associated with each particle. This quantity should be
invariant for the system (particle), it is possible to check the accuracy of the computation
through the analysis of this trend. Since we have two modalities, with different expressions
of the Hamiltonian, it is necessary to obtain two different non-dimensional equations so
that the contributions obtained from the integration of the other equations can be inserted
in a coherent way. For Ions and GC respectively, the following are the expression of the
Hamiltonians:

H =
1

2
mv2 + qϕ+ k. (2.295)

H ′ = µB +
1

2
mv2

∥ + k + εδq⟨ϕ⟩θ − ε2
δ

η q2

m

∂

∂µ
⟨ϕ̃2⟩θ. (2.296)

2.14.1 Guiding centres H’ Equation

The reduced expression of the modified Hamiltonian is:

H ′ = k + qεδ⟨ϕ⟩ − ε2
δqη

Bρ

∂

∂ρ
⟨ϕ̃2⟩. (2.297)

As usual, we introduce non-dimensional quantities in the equation:

mL2

T 2
Ĥ =

mL2

T 2
k̂ + qεδϕ0⟨ϕ̂⟩ − ε2

δqϕ
2
0T (2π)2

B2πL2

η̂

ρ̂

∂

∂ρ
⟨ ˆ̃ϕ2⟩. (2.298)

It is possible to introduce the definition of ϕ0:

mL2

T 2
Ĥ =

mL2

T 2
k̂ + εδ

qL2B0

2πT
⟨ϕ̂⟩ − ε2

δ

qL4B2
0T2π

B(2π)2T 2L2

η̂

ρ̂

∂

∂ρ
⟨ ˆ̃ϕ2⟩. (2.299)

With some simplifications we are able to obtain:

mL2

T 2
Ĥ =

mL2

T 2
k̂ + εδ

qL2B0

2πT
⟨ϕ̂⟩ − ε2

δ

qL2B2
0

B2πT

η̂

ρ̂

∂

∂ρ
⟨ ˆ̃ϕ2⟩. (2.300)

We continue to simplify the equation:

Ĥ = k̂ + εδ
qB0T

2πm
⟨ϕ̂⟩ − ε2

δ

qB2
0T

2πBm

η̂

ρ̂

∂

∂ρ
⟨ ˆ̃ϕ2⟩. (2.301)

We take advantage of the definition of B̂:

Ĥ = k̂ +
εδ

B̂

qB

m

T

2π
⟨ϕ̂⟩ − ε2

δ

B̂2

qB

m

T

2π

η̂

ρ̂

∂

∂ρ
⟨ ˆ̃ϕ2⟩. (2.302)

Now we introduce Â and η through 1
2η = qB

m :

Ĥ = k̂ + Â
1

2η

T

2π
⟨ϕ̂⟩ − Â2 1

2η

T

2π

η̂

ρ̂

∂

∂ρ
⟨ ˆ̃ϕ2⟩. (2.303)
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And then the non-dimensional η other than ψ̂:

Ĥ = k̂ +
1

2η̂

2π

T

T

2π
⟨ψ̂⟩ − 1

2η̂

2π

T

T

2π

η̂

ρ̂

∂

∂ρ
⟨ ˆ̃ψ2⟩. (2.304)

We remember the implemented version of the two terms:

⟨ψ̂⟩ = Im

[
Ψgc11 e

−jt
]
. (2.305)

− η̂

ρ̂

∂

∂ρ
⟨ ˆ̃ψ2⟩ = Ψgc20 − Re

[
Ψgc22 e

−2jt
]
. (2.306)

Introducing these last definitions the equation becomes:

Ĥ = k̂ +
1

2η̂
Im

[
Ψgc11 e

−jt
]
+

1

2η̂
Ψgc20 − 1

2η̂
Re

[
Ψgc22 e

−2jt
]
. (2.307)

Before implementing we have to remember that our equation for k̂ has been re-scaled,
from that equation we are obtaining 2η̂k̂ indeed. We have to adapt also this equation by
multiplying it for 2η̂ so that we have:

2η̂ Ĥ = 2η̂ k̂ + Im

[
Ψgc11 e

−jt
]
+Ψgc20 − Re

[
Ψgc22 e

−2jt
]
. (2.308)

This is the equation that should be implemented in the code.

2.14.2 Full orbits H Equation

All the contributions inside the Hamiltonian expression can vary, as we said we have the
following equation:

H = k +
1

2
mv2

real + qϕ. (2.309)

Before implementing it is necessary to obtain the non-dimensional equation, it is necessary
to use the definition of the usual non-dimensional parameters as we did before, with the
introduction of these last the equation becomes:

mL2

T 2
Ĥ =

mL2

T 2
k̂ +

1

2

mL2

T 2
v̂2

real + qϕ0ϕ̂. (2.310)

By taking advantage of the definition of ϕ0 we obtain:

mL2

T 2
Ĥ =

mL2

T 2
k̂ +

1

2

mL2

T 2
v̂2

real +
qL2B0

2πT
ϕ̂. (2.311)

With some simplification it is possible to obtain:

Ĥ = k̂ +
1

2
v̂2

real +
qB0T

2πm
ϕ̂. (2.312)

We take advantage of the definition of B̂ and we remember the assumption on the po-
tential, in fact, it is necessary to use ϕ̂ = εδϕ̂ in order to obtain:

Ĥ = k̂ +
1

2
v̂2

real +
qBεδ

mB̂

T

2π
ϕ̂. (2.313)
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It is possible to use various definitions: Â = εδ

B̂
, qB

m = 1
2η and η̂ = η 2π

T :

Ĥ = k̂ +
1

2
v̂2

real +
1

2η̂

2π

T

T

2π
Âϕ̂. (2.314)

As usual we introduce ψ:

Ĥ = k̂ +
1

2
v̂2

real +
1

2η̂
ψ̂. (2.315)

Given the validity of Eq. [2.176] and Eq. [2.174] we have:

Ĥ = k̂ +
1

2

ρ̂2

4η̂2
+

1

2η̂
ψ̂. (2.316)

We have to consider the re-scaling we have done in the equations of ions, it is valid
Eq. [2.178] so that:

Ĥ = k̂ +
1

8

ρ̂2
dict

η̂2
(V̂ 2

x + V̂ 2
y ) +

1

2η̂
ψ̂. (2.317)

Considering that Vx and Vy are the variables calculated from eq ions and available after
the integration of the equations of motion.

2.15 Magnetic moment expression

After having computed the full trajectories of particles, it is possible to check if, after
having moved to the gyrokinetic framework the magnetic moment is well conserved. As
demonstrated previously in the manuscript, µ has become a parameter, it is constant for
the system in the gyrokinetic model. This is not necessarily true for the full-orbits, the
definition of the latter is:

µ =
m(v2

x + v2
y)

2B
. (2.318)

It is possible to obtain the expression of the magnetic moment in the obtained reduced
system through the application of the usual Lie Transform. From Appendix A.2 we recall
that the sign of the Lie Transform applied to one of the independent variables has to
be the opposite of one of the transformations we performed to obtain the no more θ
dependent Hamiltonian, the latter is an observable in fact. Having said that it is possible
to perform the usual procedure, this time we neglect terms of order three or higher, that
is because in the code only terms up to order 2 are currently implemented. The procedure
starts as usual:

µ′ = eεLsµ. (2.319)

With

eεLs = 1 + εLs +
ε2

2
L

2
s +O(ε3). (2.320)

And the usual definition of generating function:

S(z) = S0 + εδS1 + ε2
δS2 +O(ε3

δ). (2.321)
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we remember the expression of the Liouville operator:

L2
s(F ) =

{
S,

{
S, F

}}
. (2.322)

We obtain the first raw expression of the magnetic moment:

µ′ = e−εLsµ = µ+ ε
{
S, µ

}
+
ε2

2

{
S,

{
S, µ

}}
+O(ε3). (2.323)

We are able to develop the two concerning terms, the first gives us:

ε
{
S, µ

}
= ε

{
εδS1 + ε2

δS2, µ
}

= εδ

{
S1, µ

}

g
+ε2

δ

{
S2, µ

}

g
. (2.324)

As we can see, second order in εδ comes out from this term. Following the same logic, in
the second component of Eq.[2.323] only one term doesn’t have to be neglected:

ε2

2

{
S,

{
S, µ

}}
=
ε2

δ

2

{
S1,

{
S1, µ

}

g

}

g
. (2.325)

The expression of magnetic will be composed by the sum of different order terms like
what has been done with H ′:

µ′ = µ+ µ(I) + µ(II) +O(ε3
δ). (2.326)

We develop the first-order term:

µ(I) = εδ

{
S1, µ

}

g
. (2.327)

We recall the definition of H0 we used in the procedure of H:

H0 = H0(µ, v∥, k) = µB +
1

2
mv2

∥ + k.

We apply the definition of gyro-brackets, and only one term inside the brackets survives
since µ is an independent variable, we also notice that:

∂µ

∂µ
=

1

B

∂H0

∂µ
. (2.328)

We use the RHS of the previous equation because in the gyro-brackets appears also the
expression of the known term ∂S1

∂θ , thanks to this it is possible to substitute from Eq.[2.48]
obtaining:

µ(I) = εδ
q

B
ϕ̃ =

εδ

B
Ṽ. (2.329)

The second term can be approached in the same way:

µ(II) = ε2
δ

{
S2, µ

}

g
+
ε2

δ

2

{
S1,

{
S1, µ

}

g

}

g
. (2.330)
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While working in the brackets, we take advantage again of µ = H0

B and of the expression,
we just obtained for the first-order thanks to which we obtain:

µ(II) =
ε2

δ

B

{
S2, H0

}

g
+
ε2

δ

2B

{
S1, Ṽ

}

g
. (2.331)

The first term of the right-hand side of the previous equation can be further expanded
thanks to the use of Eq. [2.209] it is easy to obtain:

ε2
δ

B

{
S2, H0

}

g
= −ε2

δ

B

{
S1, ⟨V ⟩

}

g
− ε2

δ

2B

{
S1, Ṽ

}(∼)

g
. (2.332)

The full expression of the second-order term is the following:

µ(II) = −ε2
δ

B

{
S1, ⟨V ⟩

}

g
− ε2

δ

2B

{
S1, Ṽ

}(∼)

g
+
ε2

δ

2B

{
S1, Ṽ

}

g
. (2.333)

It is necessary to further develop this term through the use of the theory of linear per-
turbation, ( use of Eq. [2.208] ), we easily obtain:

µ(II) = −ε2
δ

B

{
S1, ⟨V ⟩

}

g
+
ε2

δ

2B

{
S1, Ṽ

}(0)

g
. (2.334)

Now it is necessary to introduce two definitions we introduced during the procedure to
obtain H ′ up to the third order, the two definitions come from Eq. [2.86] and Eq. [2.211]:

{
S1, ⟨V ⟩

}

g
=

1

B
Ṽ
∂⟨V ⟩
∂µ

.

{
S1, Ṽ

}(0)

g
=

1

B

∂

∂µ
⟨Ṽ 2⟩θ.

Thanks to these definitions the new expression of the second-order term becomes:

µ(II) = − ε2
δ

B2
Ṽ
∂⟨V ⟩
∂µ

+
ε2

δ

2B2

∂

∂µ
⟨Ṽ 2⟩θ. (2.335)

We consider V = qϕ so that we have the following final expression:

µ(II) = −ε2
δq

2

B2
ϕ̃
∂⟨ϕ⟩
∂µ

+
ε2

δq
2

2B2

∂

∂µ
⟨ϕ̃2⟩θ. (2.336)

The final expression of the magnetic moment in the gyro-kinetic framework is the follow-
ing:

µ′ =
εδ

B
Ṽ − ε2

δq
2

B2
ϕ̃
∂⟨ϕ⟩
∂µ

+
ε2

δq
2

2B2

∂

∂µ
⟨ϕ̃2⟩θ +O(ε3

δ). (2.337)

The non-dimensional expression of this equation can be obtained through the usual pro-
cedure, the definition of the non-dimensional parameters is always the same, and the
required additional definition is the one of the non-dimensional magnetic moment µ̂:

µ̂ =
m

q2B
µ. (2.338)

The non-dimensional expression of the magnetic moment in the gyro-kinetic framework
is:

µ̂′ = µ̂+ 2η̂Â ˆ̃ϕ+ 2η̂2Â2
( ∂

∂µ̂
⟨ ˆ̃ϕ2⟩ − 2 ˆ̃ϕ

∂

∂µ̂
⟨ϕ⟩

)
+O(η̂3Â3). (2.339)
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Chapter 3

Description of the code

3.1 Structure of the code

This chapter presents the three Python scripts with which it is possible to replicate
all the simulations I performed during the work. One can then analyse the results in
an output from the code with external scripts, I personally performed the post-process
of the results using MATLAB but it is possible to do the same also with Python or
C++. It is important to post-process the results after the main computation so that
the required computational time is lower. The code has been improved throughout the
internship and several modifications have been carried out. In the following pages, it will
be described only the final version of the scripts and their basic functioning. In order to
better understanding the implementation of equations and of other tools, it is required
knowledge of the basics of programming in Python. Nevertheless, the following analysis
will be quite short and readable, in addition to that one can find the description of the
built-in functions on official online documentation as [Fou23], [dev23] and [com23].

3.1.1 Operation of the code

The code can work in two modalities, Guiding-Center and full-orbit, as anticipated in the
previous chapter, the equations that will be integrated are different and also other parts
of the code are different. Once the mode is fixed it is possible to choose three categories
of simulations:

Potentials Allows one to plot the map of the potential (standard one, GC-potential,
first-order GC-potential, second-order GC-potential).

Poincare Allows one to plot directly out of the simulation the Poincaré section (temporal
evolution of particles’ position in the transverse plane).

Diffusion Allows one to plot the trend in time of some interesting quantities and the
related fittings describing how the various particles are diffusing.

One doesn’t have to choose the mode while running Potentials given that the code won’t
compute the trajectories of the particles. This is the only case in which it is not required
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to set the Modality in which the simulation needs to be carried out. The code runs by
exploiting three different scripts in Python:

gc2d_dict.py This file constitutes the interface with the user, where all the parameters
of the simulation can be set and modified as desired and necessary.

gc2d.py This is the main file, it is the one that is executed by the user, and it interacts
with both the other files. It contains the equations required to study the dynamics
of GC and particles (Potentials computation, Governing equations for GC, G.E. for
full orbit, full-orbit to GC equations, compute energy, compute magnetic moment).

gc2d_modules.py This file contains all the instructions that the computer must follow
in order to carry out the simulations, it initialises variables, calls functions as the
integrator, the latter has to integrate in time the equations in order to compute
the particles’ position evolution. It stores data and provides outputs in the form
of .mat and .txt files as well as plotting interesting trends related to the specific
category of simulation while storing pictures as .pdf or .png.

The post-process files are written in MATLAB, it has been chosen to use that language
because of its versatility, and power and especially because of the interactive mode while
working on .fig files. Except for some simple handling of vectors no computations are
performed during the execution of these scripts, all the data are extracted from the output
files of the Python code.

3.2 Description of gc2d_dict.py

As anticipated in the previous section, the user can set all the parameters value through
this file, except for particular cases this is the only file that has to be modified in order to
run a specific case. Modifications to the other scripts are required only in case one wants
to test a new feature or a modification to the code. Given that the code is available in a
GitHub repository, the folder containing all the scripts contains also README.md. In the
latter, all the parameters are briefly described, in addition to that, if a single parameter
has to be defined with some specific values it presents all the possible options so that an
inexperienced user can work efficiently as well. In the following rows, all the parameters
are briefly described:

• Potential: a string, it can be chosen as ’turbulent’ or ’KMdCN’, it determines
the set of equations that will be integrated. Concerning this work, it has always
been chosen as ’turbulent’ and never changed.

• Method: a string, this parameter set the mode and the category of the simulation,
it can be set as a combination of words:

– ’potentials’: This category of simulation can be performed only if Potential

= ’turbulent’. The simulation output is a .mat containing the previously men-
tioned potentials fields and a .gif containing the animation of the potential,
it is periodic in time, and an entire period is shown.
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3.2 – Description of gc2d_dict.py

– Method finishing with ’_gc’: set the Guiding-Center mode, the code computes
the trajectories of GC using the related set of equations.

– Method finishing with ’_fo’: set the full-orbit mode, the code firstly computes
full orbits using the related set of equations and then calculates the trajectories
of the corresponding GC, whichever category of simulation is performed only
data about GC path will be stored in the output.

– Method starting with ’diffusion’: computes the trajectories of Guiding-
centres and it calculates the related diffusion coefficients. It plots the trend
of r2 for ballistic and diffusive GC. The output is composed of a .mat and a
.txt file, in the latter only data about percentages of types of particles and
diffusion coefficients are stored.

– Method starting with ’poincare’: computes the trajectories of Guiding-centres
in the corresponding mode and it plots these in the transverse plane at the end
of each time cycle (every period of the potential). The output is composed of
a .mat file containing the trajectories data.

• FLR: a tuple of two strings, the possible values you can insert are ’all’, ’pade’

and ’none’. It can be chosen whether to take into account FLR effects or not in
addition to considering an approximation of these. In case ’none’ is set in both the
strings then the position of guiding centes is confused with one of the corresponding
particles. It is like ρ = 0 so that in the first-order one has simply J0(0) = 1 while
in the second order you use J1(0) = s2

nm/2. In case ’all’ is set the full Bessel
functions are used in the computations. In case ’pade’ is set a padé approximation
for the FLR effects is used.

• A: float or array of floats, it is the non-dimensional amplitude of the turbulent
potential, [theory: A = εδ/B]. As anticipated by the type of value that can be
assigned one can choose one or multiple values to this parameter (the same will
be valid for rho and eta). This interesting case can be exploited through the
use of numpy.linspace function. If A is an array, then running the code will
result in running multiple simulations, one for each value of A. One has also to
remember that if two or more parameters are set as arrays then the number of sub-
simulations executed accounts for all the possible combinations of all the parameters
set as arrays. This number can grow very quickly when the user decides to use
numpy.linspace function on three parameters.

• rho: float or array of floats, it is the non-dimensional Larmor radius associated
with the test particles, in case off full-orbit mode it corresponds to the thermal

Larmor radius. Its value can be set in the same way as A. If the user chose to
set rho = 0 then the code is automatically setting FLR = (′none′,′ none′) and vice
versa.

• eta: float or array of floats, it is the non-dimensional real parameter, it takes into
account the influence of the second-order of Ψ in the equations. Its value can be
set in the same way as A. Its value can be negative in order to study the motion of
negatively charged particles.
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• Ntraj: integer, it fixes the number of trajectories that has to be integrated.

• Tf: integer, it is the number of temporal cycles (potential periods) that are con-
sidered for the integration of trajectories.

• threshold: float, it is a value used to discriminate between trapped and untrapped
particles. The recommended value is 4.

• TwoStepIntegration: boolean, this parameter is used in order to reduce the com-
putational time of the simulation. If TwoStepIntegration = True then the code
computes the trajectories of all particles for the first Tmid temporal cycles, it re-
moves the trapped and continues the integration only for untrapped until the end
of the simulation. In case TwoStepIntegration = False then the code computes
all the trajectories for all Tf periods.

• Tmid: integer, it is the number of cycles for which all trajectories are computed
when TwoStepIntegration = True.

• TimeStep: float, it is the value of time-step used by the integrator of equations in
the code. Its value it’s crucial for the quality of the results, recommended values:

– 5 × 10−3 for Guiding-Center mode.

– 5 × 10−4 for full-orbit mode.

• check_energy: boolean, in case it is True the autonomous system is integrated,
the equation of energy for the corresponding mode is integrated. If SaveData =
True the .mat file contains also the trend of the total energy associated with each
trajectory.

• init: string, the possible value the user can insert are ’fixed’ and ’random’. In
the second case the position of all particles is chosen randomly while in the first
case, they are positioned on a grid, they are equally spaced one from the other. If
init = ’fixed’ the number of integrated trajectories can be slightly different, for
obvious reasons it is rounded to Ntraj = int(

√
Ntraj2).

• SaveData: boolean, the user can choose to save data in output from the simula-
tions. If it is True the results are saved in .mat file while the plots are saved as
fig_extension: files. In case Method is starting with ’diffusion’ the .txt file
is always generated.

• PlotResults: boolean, the user can choose to plot poincaré section and r2 trends
or not. It is useful when the user has to run a big number of sub-simulations or in
case the code is executed on a cluster, in this case, the graphics card may not be
available resulting in an error from the code.

• Parallelization: tuple made of a boolean and an integer, extremely useful while
running sub-simulations, if the first element of the tuple is True then the following
integer value fixes the number of processes used to solve the simulations. This
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number is equal to the number of sub-simulation performed simultaneously. In
case the second element of the tuple is set as ’all’ then the computer chose the
number as the highest possible. This number coincides with the number of logical
cores available on the computer (2 × number of physical cores).

• modulo: boolean, if it is set to True, Method is starting with ’poincare’ and
PlotResults = True then the plots are referred to the fundamental square. In case
modulo is set to False the code produces standard plots but it is always possible
to obtain the plots referred to the square while it is not necessarily true to the
contrary.

• grid: boolean, when this parameter is set to True, grid lines are showed on plots.

• darkmode: boolean, when this parameter is set to True, plots are done in dark
mode. All the plots have a black background and a different colour scheme.

• fig_extension: string, it coincides with the format of the figures to be saved when
SaveResults is set to True. Some examples of possible formats are ’.png’, ’.pdf’

and ’.svg’.

• M: integer, number of modes of the potential. default value is 25 when Potential =
’turbulent’.

• N: integer, it is the number of points on the axes of the transverse plane, and the
grid on which the potential is calculated is generated from this spatial discretization.
It is also equal to the number of Fourier coefficients associated with the numerical
implemented version of the potential. The default value is 212.

Fig. 3.1 shows the Parameter dictionary, which is available at the GitHub repository.

3.3 Description of gc2d.py

This file is the file that is executed by the user. It contains the physics of the problem,
the procedure to calculate the potentials, the governing equations integrated in order
to obtain the trajectories and other useful functions. They are all exploited in order to
complete some tasks that appear in gc2d_modules.py. In the following rows are listed
all the definitions of functions and classes that may be used during execution, the most
important parts of some of them will be briefly described in specific subsections:

• Main(): function, it is the main function of the code.

• run_case(dict): function, it determines the use of class GC2Dt in the case Potential =
’turbulent’.

• __init__(dict): function, it is the class used to compute all the potentials and
their derivatives with respect to x, y and time.

• eqn(t, y): function, it contains the governing equations for both Guiding-center
and Full-orbit mode that will be integrated by the integrator.
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Figure 3.1: Parameter dictionary contained in the README.md associated with the GitHub
repository that can be found at github.com/cchandre/Guiding-Center/
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• compute_energy(t, sol): function, it contains the equations used to compute
the total energy of each particle for both Guiding-center and Full-orbit mode.

• fo2gc(t, sol, order): function, it contains the equations for computing guiding
centre positions from corresponding particles’ position and velocity in output from
Full-orbit mode.

• compute_mu(t, sol, order): function, it computes magnetic moment trend from
particles’ trajectory and velocity in output from Full-orbit mode.

All these functions except for main() are part of the class GC2Dt.

3.3.1 Description of main() function

As obvious, the main function is the one that has to be executed to run a generic case, in
the present code, this function is also supposed to set all the parallelization options for the
execution of a generic case. As shown in Listing. (3.1) in fact, within main() function, the
number of workers with which the simulation is going to be exploited is set. This is done
firstly through the attribute of multiprocessing class pool, set as the desired number of
workers while the attribute map of the new variable pool is the command that executes
the specific case with the parameters extracted automatically from gc2d_dict.py. In
case the parallelization option is off the specific case is executed normally with a single
process.

Listing 3.1: Portion of gc2d.py. main() function brief description.

1 import multiprocessing

2 def main():

3 if Parallelization[0]:

4 if Parallelization[1] == 'all':

5 num_cores = multiprocessing.cpu_count()

6 else:

7 num_cores = min(multiprocessing.cpu_count(),

Parallelization[1])↪→

8 pool = multiprocessing.Pool(num_cores)

9 pool.map(run_case, dict_list)

10 else:

11 for dict in dict_list:

12 run_case(dict)

13 plt.show()

3.3.2 Description of __init__(dict) function

This function computes and stores the potential and the guiding centre potentials at
both orders and their derivatives. It doesn’t compute guiding centre potentials in case
Full-orbit mode is exploited.

79



Description of the code

Computation of Potential through Fourier space

Given that the potential is periodic it is possible to take advantage of the frequency
domain and Fourier Transform algorithms to calculate and make some operations such
as the derivation, in a much more efficient way numerically speaking. As it will be seen
in the code, you go from one space to another multiple times through the procedure. It
is possible to define Φc via a truncated Fourier series. This can be done with the usual
Discrete Fourier Transform but in order to make the code more efficient and faster Φc is
very well approximated through the 2D Fast Fourier Transform algorithm and its inverse.
The code shown in Listing. (3.2) starts with the definition of the grid on the physical
space. The grid is made by N×N points. The mesh on the transverse plane can be limited
only to the fundamental square thanks to the fact the potential is periodic in time but also
in space. In order to study the motion of particles outside the fundamental square it will
just be necessary to apply the modulo function in Python (indicated as %). The potential
Φ(x, y) and the guiding centres potential Ψ(χ1, χ2) depend on different variables but in
the code these variables are used interchangeably, that’s because the two potentials have
the same exponential part. From a basic knowledge of Fourier Analysis it is known that
the problem is associated with a Fourier space made of an equal number of wave numbers
and related coefficients, in this case, they are N × N . This implies that when Fourier
Transform is applied to a N ×N matrix in the physical space the matrix of the Fourier
coefficients will have the same dimension. Naturally, in order to have a great accuracy of
calculations, N should be very high. Fast Fourier Transform is exploited through the use
of a specific numpy function, numpy.fft.fft2 and its inverse numpy.fft.ifft2, these are
specific to work with 2D matrices. It is very important to remember that the potential
will have only M modes, this means that the number of coefficients related to Φc will be
equal to M2 given that we are considering 2 dimensions. The total number of coefficients
will continue to be N ×N but the one not respecting certain conditions will be annulled.
It is possible to find the expression of the Fourier coefficients starting from the known
expression of the desired potential, we recall Eq.(2.185):

Φc =
M∑

n,m=1
n2+m2≤M2

Knme
j(nx+my).

From a basic knowledge of Fourier analysis, it is possible to write the expression of generic
Fourier coefficients:

anm =
1

N2

N−1∑

k,l=0

Akle
j(kxn+lym), . (3.1)

As anticipated it is necessary to reproduce Eq.(2.185) through Eq.(3.1). The shape of the
latter can be reproduced directly inside Φc but a series of conditions must be respected
in order to grant the correct result:

Φc =
1

N2

N−1∑

n,m=0

cnme
j(nx+my). (3.2)
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the conditions to be met are:

• if (n,m) < (1, 1) ⇒ cnm = 0.

• if (n,m) > (M,M) ⇒ cnm = 0.

• if n2 +m2 ≥ ⇒ cnm = 0.

In all the other cases the value of a generic cnm is:

cnm = N2Knm. (3.3)

The definition includes the multiplication by N2 because we would like that cnm to
coincide with Knm but a term 1/N2 will come from the Fast Fourier Transform. It is
important to remember that this latter transformation has been done only in the theory,
in reality, we are defining the potential in the physical space starting from the one in the
Fourier space, this means that a generic potential has the characteristics of the one in
Eq.(3.2) and when we do the inverse transformation (numerically this time) we have to
account for the terms that are really present numerically speaking. We are multiplying
all the terms for N2 in order to let cnm coincide numerically with Knm. Before looking
at the listing it is necessary to recall the definition of Knm, in fact, the coefficients will
be defined from Eq.[2.186]:

Knm =
Aeϕnm

(n2 +m2)3/2
. (3.4)

Before looking at the code some references:

• phases: random phases of each of the 625 modes.

• nm: grid made of N ×N points.

• fft_phi: coefficients cnm not yet multiplied by N2.

• phi: complex potential Φc.

• N: corresponds to N .

• M: corresponds to M .

In Listing. (3.2) the salient parts of the function __init__(dict) defining the potential
are shown. Note also how the parameters from gc2d_dict.py are introduced.

Listing 3.2: Portion of gc2d.py.Portion of __init__(dict) which defines the potential.

1 import numpy as xp

2 from numpy.fft import fft2, ifft2, fftfreq

3 from gc2d_dict import dict_list

4

5 def __init__(self, dict):

6 for key in dict:

81



Description of the code

7 setattr(self, key, dict[key])

8 self.DictParams = dict

9 xp.random.seed(27)

10 phases = 2 * xp.pi * xp.random.random((self.M, self.M))

11 n = xp.meshgrid(xp.arange(1, self.M+1), xp.arange(1, self.M+1), indexing='ij')

12 self.xy_ = 2 * (xp.linspace(0, 2 * xp.pi, self.N+1, dtype=xp.float64),)

13 nm = xp.meshgrid(fftfreq(self.N, d=1/self.N), fftfreq(self.N, d=1/self.N),

indexing='ij')↪→

14 sqrt_nm = xp.sqrt(nm[0]**2 + nm[1]**2)

15 self.elts_nm = sqrt_nm, xp.angle(nm[0] + 1j * nm[1])

16 fft_phi = xp.zeros((self.N, self.N), dtype=xp.complex128)

17 fft_phi[1:self.M+1, 1:self.M+1] = (self.A / (n[0]**2 +

n[1]**2)**1.5).astype(xp.complex128) * xp.exp(1j * phases)↪→

18 fft_phi[sqrt_nm > self.M] = 0

19 self.phi = ifft2(fft_phi) * (self.N**2)

Computation of First-Order Guiding Center Potential through Fourier space

It is now time to implement the computation of the first-order guiding centre potential.
Before doing that it is also necessary to introduce padé approximation. The latter is
currently used in some more powerful and complex gyro-kinetic code in order to reduce
the computational time whenever the code has to be tested after a modification or a
bug correction. In these cases, accuracy is not essential and this kind of approximation
can be done. It consists in simplifying the gyro-average operator by approximating the
Bessel function through a padé expansion. Firstly, we recall the current expression of the
gyro-average operator from Eq. [2.245]:

⟨□⟩ =
M∑

n,m=1
n2+m2≤M2

□nmJ0(ρsnm)ej(nχ1+mχ2).

The advantage of this padé representation is that the code has no longer to compute the
full Bessel function, it uses a normal function. The padé expansion of the Bessel function
is the following:

Jpade(s) =
1

[1 + s2

4 ]
. (3.5)

As shown in Fig. [3.2] the trend at the very beginning is very similar to a full Bessel func-
tion of the first kind and of order 0. As it can be clearly seen the argument can’t have a
high value otherwise the approximation is not acceptable. This representation is asymp-
totically correct in the limit of ρsnm << 1 that gives us an interesting condition in which
it is valid J0(ρsnm) ≈ Jpade(ρsnm). In case of large arguments, ρsnm ⇒ ∞ then we have
an unfortunate condition in which we have J0(ρsnm) ≈ (2πρsnm)1/2 cos (ρsnm − π/4)
while Jpade(ρsnm) ≈ 4/(ρsnm)2. It can be concluded that, as a drawback, filtering of
small scales is required, the number of modes can’t be very high otherwise very little
and small structures will be overestimated and will have not realistic amplitudes, that’s
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Figure 3.2: Bessel function of the first kind of order zero padé expansion comparison with
full Bessel function.

where the unacceptable approximation affects the results. In the code, it will be shown
how to implement this tool, it has been used in order to check if also the results from the
present code can be affected by such an approximation considering the present number
of modes (25).

Going back to the numerical implementation of the full First-order guiding centre
potential, the procedure consists of accounting for the gyro-average operator as a coeffi-
cient. This coefficient is simply multiplied by fft_phi, the coefficients that represent the
normal complex potential. Before recalling the expression of the concerning term from
Eq. [2.209], it is important to note that, also in this case, we are simply defining ΨGC1,1

directly through an inverse Fast Fourier Transform, we don’t generate again the potential
from the just obtained phi, this is much more efficient.

ΨGC1,c
=

M∑

n,m=1
n2+m2≤M2

KnmJ0(ρsnm)ej(nχ1+mχ2).

All the above-mentioned features can be found in Listing. (3.3), and the imported libraries
are the same imported for Listing. (3.2).

Listing 3.3: Portion of gc2d.py.Portion of __init__(dict) which defines the First-
order guiding center potential.

1 if self.FLR[0] == 'all':

2 flr1_coeff = jv(0, self.rho * sqrt_nm)

3 elif self.FLR[0] == 'pade':

4 flr1_coeff = 1 / (1 + self.rho**2 * sqrt_nm**2 / 4)

5 else:
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6 flr1_coeff = 1

7 self.phi_gc1_1 = ifft2(flr1_coeff * fft_phi) * (self.N**2)

Computation of First-Order Guiding Center Potential through Fourier space

Like what has been done in the previous paragraph we first recall the expression of the
concerning terms from Eq. [2.243] and Eq. [2.244] other than the operator of the gyro-
average coming from Eq. [2.248]:

ΨGC2,0
= +

η

2

(
−J

(♣Φc♣2
)
+⟨Φc⟩J

(
Φ∗

c

)
+⟨Φ∗

c⟩J(
Φc

))
e−0jt.

ΨGC2,2
= +

η

2
Re

{[
J
(
Φ2

c

)−2⟨Φc⟩J
(
Φc

)]
e−2jt

}
.

J(□) = −
M∑

n,m=1
n2+m2≤M2

□nm
snm

ρ
J1(ρsnm)ej(nχ1+mχ2).

The padé expansion of the Bessel function this time is the following:

J1 pade(s) = − s2
nm/2

[1 + (ρsnm)2

8 ]
. (3.6)

The procedure in the code remarks the one for the first-order, obviously the variables this
time accounts for multiple terms containing also the first term indeed. One additional
operation is the computation of the derivatives that will be necessary for the governing
equations. Given that complex potentials have been used the computation is really simple
through the use of the function derivs. It is also important to remember that, despite
the fact the potentials are periodic, in order to take advantage of the Fourier Analysis
we wouldn’t have considered the full period, the potential produced from ifft2 function
does not account for the top and right sides of the fundamental square, that’s why we
have some pad operation inside the code. The function pad in the code is redefined in
order to add one element at the end of each row and on the top of each column, the
values of these are equal to the one on the opposite side. After this operation, we have
the full periodic potential available. In Listing. (3.4) it is showed the portion of the code
that does all the above-mentioned operations.

Listing 3.4: Portion of gc2d.py.Portion of __init__(dict) which defines the Second-
order guiding center potentials.

1 if self.FLR[1] == 'all' and (self.rho != 0):

2 flr2_coeff = -sqrt_nm * jv(1, self.rho * sqrt_nm) / self.rho

3 elif self.FLR[1] == 'pade' and (self.rho != 0):

4 flr2_coeff = -(sqrt_nm**2 / 2) / (1 + self.rho**2 * sqrt_nm**2 / 8)

5 else:

6 flr2_coeff = -sqrt_nm**2 / 2
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7 self.flr2 = lambda psi: ifft2(fft2(psi) * flr2_coeff)

8 self.phi_gc2_0 = self.eta * (2 * self.phi_gc1_1 * self.flr2(self.phi.conj()) -

self.flr2(xp.abs(self.phi)**2)).real / 2↪→

9 self.phi_gc2_2 = self.eta * (2 * self.phi_gc1_1 * self.flr2(self.phi) -

self.flr2(self.phi**2)) / 2↪→

10 stack = (*self.derivs(self.phi_gc1_1), *self.derivs(self.phi_gc2_0),

*self.derivs(self.phi_gc2_2))↪→

11 self.Dphi = xp.moveaxis(xp.stack(stack), 0, -1)

In case the code is running a simulation computing the trajectory of particles it is not
necessary to compute guiding centre potentials but only Φ, its derivatives are required,
they are calculated inside this function through the use of derivs as well.

3.3.3 Description of eqn(t, y): function

As anticipated previously this function contains the governing equations of both modal-
ities. Obviously, it uses the potential computed by the precedent function in order to
calculate how the particles will move in time. Given that the derivatives are calculated
as the derivatives of a complex potential, in order to obtain their values in all the periods
it is just needed to multiply for the corresponding exponential accounting for time depen-
dency. In the function, there is a common part, the one responsible for the unpacking of
the vector y passed to the code when the function is called and the one that applies the
modulo function on the coordinates of the trajectory in order to get advantage from the
periodicity of the fundamental square. It is also necessary to call a first interpolation in
order to know the value of the derivatives on the exact position of the particles from the
values available on the potential grid. This built-in function is crucial for the functioning
of the code but it is also kinda slow, as it will be seen later in the code, this function is
called the least number of times while giving her multiple arguments. It has been noticed
that the slowest part of the whole operation is the calling. In Listing. (3.5) it is showed
the portion of the code that does all the above-mentioned operations.

Listing 3.5: Portion of gc2d.py. Portion of eqn(t, y) common to both modes.

1 def eqn(self, t, y):

2 vars = xp.split(y, self.dim)

3 r = xp.moveaxis(xp.asarray(vars[:2]) % (2 * xp.pi), 0, -1)

4 fields = xp.moveaxis(interpn(self.xy_, self.Dphi, r), 0, 1)

5 dphidx, dphidy = fields[:2]

Implementation of the governing equations for Guiding Center mode

Firstly it is necessary to recall the equations for guiding centre mode from Eq. [2.250]
and Eq. [2.251], both obtained in Sec. 2.8:

χ̇1 = −∂ ΨGC1,1

∂χ2
− ∂ΨGC2,0

∂χ2
− ∂ΨGC2,2

∂χ2
.
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χ̇2 = +
∂ΨGC1,1

∂χ1
+
∂ΨGC2,0

∂χ1
+
∂ΨGC2,2

∂χ1
.

The values of the derivatives are already available, despite this, one has to remember
that up to now, we only computed complex potentials, it is necessary to compute the
imaginary part of these ones other than multiplying for the corresponding exponential
which introduces the temporal dependence. In case it is requested to compute the trend of
the energy k over time, it is necessary to integrate (together with the governing equations)
the equation for energy, we recall its expression from Eq. [2.274], it has been obtained in
Sec. 2.13.1:

ˆ̇k = +Re

{
ΨGC1,1

e−jt
} 1

2η̂
+ Im

{
ΨGC2,2

e−2jt
}1

η̂
.

While looking at the Listing. (3.6) it is easy to recognize all the portions of the equations.
The main difference is that the equations have been split in order to compute only required
quantities when one wants to account only for First-order terms. In case also second-order
terms need to be computed then a simple sum is performed.

Listing 3.6: Portion of gc2d.py. The portion of eqn(t, y): containing the implemented
governing equations of guiding centre mode together with the equations for energy (k).

1 if self.Method.endswith('_gc'):

2 dy_gc = xp.concatenate((-(dphidy * xp.exp(-1j * t)).imag, (dphidx * xp.exp(-1j *

t)).imag), axis=None)↪→

3 if self.GCorder == 1:

4 if not self.check_energy:

5 return dy_gc

6 phi = fields[2]

7 dk = (phi * xp.exp(-1j * t)).real

8 return xp.concatenate((dy_gc, dk), axis=None)

9 dphidx_0, dphidy_0, dphidx_2, dphidy_2 = fields[2:6]

10 dy_gc += xp.concatenate((-dphidy_0.real + (dphidy_2 * xp.exp(-2j * t)).real,

dphidx_0.real - (dphidx_2 * xp.exp(-2j * t)).real), axis=None)↪→

11 if self.GCorder == 2:

12 if not self.check_energy:

13 return dy_gc

14 phi1, phi2 = fields[6:8]

15 dk = (phi1 * xp.exp(-1j * t)).real + 2 * (phi2 * xp.exp(-2j * t)).imag

16 return xp.concatenate((dy_gc, dk), axis=None)

Implementation of the governing equations for Full-orbit mode

The governing equations for full orbits can be recovered from Eq. [2.170] and Eq. [2.171],
both obtained in Sec. 2.9:

∂V̂x

∂t̂
= −sign(η̂)

1

ρ̂

∂Φ̂

∂x̂
+

1

2♣η̂♣ V̂y.
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∂V̂y

∂t̂
= −sign(η̂)

1

ρ̂

∂Φ̂

∂ŷ
− 1

2♣η̂♣ V̂x.

As it can be clearly seen, these equations require only Φ and its partial derivatives in
space. These equations will be integrated giving us the value of Vx and Vy for each
particle for each instant of time. As we remember from Sec.2.9.2 these velocities need
to be re-scaled in order to obtain the real values. We recall the following relation from
Eq. [2.180] while it is also valid Eq. [2.177]:

v̂⊥ real = V̂⊥ calcv̂⊥ ; v̂⊥ =
ρ̂dict

2♣η̂dict♣
.

Once we apply these relations to the velocities calculated from Eq. [2.170] and Eq. [2.171]
we have the real values of velocities, obviously, these can be integrated as well in order
to obtain the coordinates of particles over time. At the end of each integration, we have
the new values of velocities on the transverse plane other than the updated position. It
is also implemented the equation for computing the energy k of each particle over time.
We recall the equation from Eq. [2.294], obtained in Sec. 2.13.2:

k̇ = Re

{
ϕce

−jt
} 1

2η̂
.

In Listing. (3.7) it is possible to observe the implemented above-mentioned equations.

Listing 3.7: Portion of gc2d.py. The portion of eqn(t, y): containing the implemented
governing equations for full orbit mode together with the equations for energy (k).

1 elif self.Method.endswith('_fo'):

2 if self.eta == 0 or self.rho == 0:

3 raise ValueError("Eta or Rho cannot be zero for full orbits")

4 vx, vy = vars[2:4]

5 dvx = -(dphidx * xp.exp(-1j * t)).imag / self.rho * xp.sign(self.eta) + vy / (2 *

self.eta)↪→

6 dvy = -(dphidy * xp.exp(-1j * t)).imag / self.rho * xp.sign(self.eta) - vx / (2 *

self.eta)↪→

7 d_ = xp.concatenate((self.rho / (2 * xp.abs(self.eta)) * vx, self.rho / (2 *

xp.abs(self.eta)) * vy, dvx, dvy), axis=None)↪→

8 if not self.check_energy:

9 return d_integr

10 phi = fields[2]

11 dk = (phi * xp.exp(-1j * t)).real / (2 * self.eta)

12 return xp.concatenate((d_, dk), axis=None)

3.3.4 Description of compute_energy(t, sol) function

The purpose of this function is to compute the total energy trend of each particle over
time. This equation doesn’t need to be integrated and it works by exploiting vectors of
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variables already calculated in the previous integration, extracted from the vector sol,
this function is called kinda late in the code. Obviously, the equations for guiding centre
and full orbit mode are different, the first accounts for terms deriving from guiding centre
potentials that obviously are not required in the second one. In Sec.2.14 we called these
equations H ′ and H equations, we are actually computing the values of the modified and
of the standard Hamiltonian for each particle over time. We recall the two equations
respectively from Eq. [2.308] and Eq. [2.317]

2η̂ Ĥ ′ = 2η̂ k̂ + Im

[
Ψgc11 e

−jt
]
+Ψgc20 − Re

[
Ψgc22 e

−2jt
]
.

Ĥ = k̂ +
1

8

ρ̂2
dict

η̂2
(V̂ 2

x + V̂ 2
y ) +

1

2η̂
ψ̂.

Also in this case, the implemented version of Eq. [2.308] is split in two, the first part
will account only for the terms coming from the First-order while the second one will
add the terms coming from the Second-order. This is done again to let the user be able
of computing only the equations for the First-Order in order to make some tests on the
influence of the second-order terms. One additional feature of the implemented version
is that this time, the interpolation is called multiple times without any problem. This
is done on purpose, the present equation won’t be integrated, this means that a single
interpolation function won’t be called hundreds of millions of times but only a single
time, it is obvious that it won’t affect the speed of the code unlike before. This time in
order to redirect the function in computing the value of h, for a mode other than the
other, as shown in Listing. (3.8), it is used the scalar dim. It has been computed inside
function __init__ and is modified according to which mode has been executed other
than if check_energy = True, the dimensions of some vectors, commonly used in both
modes, like sol, are different.

Listing 3.8: Portion of gc2d.py. Portion of compute_energy(t, sol) containing the
implemented equations for H ′ and H.

1 def compute_energy(self, t, *sol):

2 r = xp.moveaxis(xp.asarray(sol[:2]) % (2 * xp.pi), 0, -1)

3 k = sol[-1]

4 if self.dim <= 3:

5 phi_1 = interpn(self.xy_, self.pad(self.phi_gc1_1), r)

6 h = k + (phi_1 * xp.exp(-1j * t)).imag

7 if self.GCorder == 1:

8 return h

9 elif self.GCorder == 2:

10 phi_0 = interpn(self.xy_, self.pad(self.phi_gc2_0), r)

11 phi_2 = interpn(self.xy_, self.pad(self.phi_gc2_2), r)

12 h += phi_0 - (phi_2 * xp.exp(-2j * t)).real

13 return h

14 else:

15 vx, vy = sol[2:4]
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16 h = k + self.rho**2 / (8 * self.eta**2) * (vx**2 + vy**2) +

(interpn(self.xy_, self.pad(self.phi), r) * xp.exp(-1j * t)).imag / (2 *

self.eta)

↪→

↪→

17 return h

3.3.5 Description of fo2gc(t, sol, order) function

The purpose of this function is to compute the position of the correspondent guiding
centre from the one of a particle, it is necessary to know the position and the velocity (in
the transverse plane) of the starting particle over time in order to compute the trajectory
of the respective guiding centre. Again, this function doesn’t require to be integrated
but works with the data coming out from the integration of the governing equations for
full orbit mode. The equations are obtained from the change of coordinates exploited in
Sec. 2.3, we recall some useful relations from Eq. [2.11], [2.12], [2.14] and [2.15]:

ρ =
m

♣q♣B
√
v2

x + v2
y .

θ = tan−1
(vx

vy

)
.

x = χ1 + ρ cos θ.

y = χ2 − ρ sin θ.

These equations are simply implemented without any peculiarity as shown in Listing. [3.9]:

Listing 3.9: Portion of gc2d.py. Portion of fo2gc(t, sol, order) containing the im-
plemented concerning equations.

1 def fo2gc(self, t, *sol, order=1):

2 x, y, vx, vy = sol[:4]

3 v = vy + 1j * vx

4 theta, rho = xp.pi + xp.angle(v), self.rho * xp.abs(v)

5 x_gc, y_gc = x - rho * xp.cos(theta), y + rho * xp.sin(theta)

6 if order <= 1:

7 return x_gc, y_gc

3.3.6 Description of compute_mu(t, sol) function

We already obtained the expression of the magnetic moment in Sec. 2.15, the resulting
expression can be recalled from Eq. [2.339]:

µ̂′ = µ̂+ 2η̂Â ˆ̃ϕ+ 2η̂2Â2
( ∂

∂µ̂
⟨ ˆ̃ϕ2⟩ − 2 ˆ̃ϕ

∂

∂µ̂
⟨ϕ⟩

)
+O(η̂3Â3)
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Also in this case, as shown in Listing. [3.10], the implemented version of the equation is
split for the first and second order like did with compute_energy function this is done to
analyse the influence of the second order terms.

Listing 3.10: Portion of gc2d.py. The portion of compute_mu(t, sol) containing the
implemented concerning equation.

1 def compute_mu(self, t, *sol, order=1):

2 x, y, vx, vy = sol[:4]

3 r = xp.moveaxis(xp.asarray((x, y)) % (2 * xp.pi), 0, -1)

4 mu = self.rho**2 * (vx**2 + vy**2) / 2

5 if order == 0:

6 return mu

7 r_gc = xp.moveaxis(xp.asarray(self.fo2gc(t, *sol, order=1)) % (2 * xp.pi), 0, -1)

8 phi_c = interpn(self.xy_, self.pad(self.phi), r)

9 mu += 2 * self.eta * ((phi_c - interpn(self.xy_, self.pad(self.phi_gc1_1), r_gc))

* xp.exp(-1j * t)).imag↪→

10 if order == 1:

11 return mu

12 phi_gc = interpn(self.xy_, self.pad(self.flr2(self.phi)), r_gc)

13 phi_2_0 = 2 * phi_c * phi_gc.conj() - interpn(self.xy_,

self.pad(self.flr2(xp.abs(self.phi)**2)), r_gc)↪→

14 phi_2_2 = 2 * phi_c * phi_gc - interpn(self.xy_,

self.pad(self.flr2(self.phi**2)), r_gc)↪→

15 mu += self.eta**2 * (phi_2_2 * xp.exp(-2j * t) - phi_2_0).real

16 if order == 2:

17 return mu

18 raise ValueError("compute_mu not available at order {}".format(order))

3.4 Description of gc2d_modules.py

As anticipated, the present file is the one leading the simulation through all the passages
required in order to complete all the desired tasks. It contains all the instructions that
will be followed like integrating the equations, calling useful functions and producing
plots as required by the user through gc2d_dict.py.

3.4.1 Initialization of key vectors

The first important task reserved for this file is initializing vectors required for the inte-
gration of the governing equations, for both modalities. First, it is necessary to generate
the vector t_eval, it contains the value of time at the end of each cycle, and the position
of the particles is stored only at these instants, not at the end of each time-step, oth-
erwise, the memory required would be enormous. After this, the vector containing the
initial position of particles is defined, and a different procedure is followed in case the
user decides to use random initial positions other than fixing the particles on a grid. The
dimension of the vector y0 is different in case the user chose to execute full-orbit mode
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other than computing the energy for each particle. In this last case, the initial energy
of each particle is set to 0, in fact, we are not interested in the real value of the latter,
only its evolution over time and conservation. In order to study the full dynamics, each
particle requires an initial velocity on the transverse plane. We recall some important
relations from Sec.2.9.2 Specifically the Eq. [2.179], [2.180] and [2.177]:

v̂⊥0real
=

ρ̂dict

2♣η̂dict♣
; v̂⊥ real = V̂⊥ calcv̂⊥; v̂⊥ =

ρ̂dict

2♣η̂dict♣
.

It is clear that V̂⊥ calc has to be equal to 1 initially. Since the distribution of the velocity
along x and y axes is not important, in fact, it is only required that:

V̂⊥ calc =
√
V̂ 2

x + V̂ 2
y = 1.

we can simply take advantage of some random phases phi_perp while defining

Vx0
= cos (phi_perp); Vy0

= sin (phi_perp).

so that the previous equation is valid given that:
√
cos(α)2 + sin (α)2 = 1.

In Listing. [3.11] one can find the initialization of all the above-mentioned vectors that
will be further used later in the code.

Listing 3.11: Portion of gc2d_modules.py containing the initialization of some essential
vectors.

1 elif case.Method in ['poincare_gc', 'poincare_fo', 'diffusion_gc', 'diffusion_fo']:

2 t_eval = 2 * xp.pi * xp.arange(0, case.Tf + 1)

3 if case.init == 'random':

4 y0 = 2 * xp.pi * xp.random.rand(2 * case.Ntraj)

5 elif case.init == 'fixed':

6 y_vec = xp.linspace(0, 2 * xp.pi, int(xp.sqrt(case.Ntraj)), endpoint=False)

7 y_mat = xp.meshgrid(y_vec, y_vec)

8 y0 = xp.concatenate((y_mat[0], y_mat[1]), axis=None)

9 case.Ntraj = int(xp.sqrt(case.Ntraj))**2

10 if case.Method.endswith('_fo'):

11 phi_perp = 2 * xp.pi * xp.random.rand(case.Ntraj)

12 y0 = xp.concatenate((y0, xp.cos(phi_perp), xp.sin(phi_perp)), axis=None)

13 if case.check_energy:

14 y0 = xp.concatenate((y0, xp.zeros(case.Ntraj)), axis=None)

15 start = time.time()

Integration of the governing equations through scipy.integrate.solve_ivp

The integration is performed through the use of scipy.integrate.solve_ivp. The
latter is a solver for initial values problems, its functioning is pretty simple, it is necessary
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to furnish: the equation to be integrated, temporal starting and ending points, the initial
value of the solution, the instants at which we want to save data in the solution vector,
the maximum value of the time-step and other two parameters, those are supposed to
evaluate if the current time-step is too large in order to grant a good quality integration.
In the present case, these values are fixed to 1 in order to don’t let them vary the temporal
discretization, it has to be fixed over all the integration. The equation that is supposed
to be integrated in our case is eqn(t, y).

3.4.2 Trajectory class

This class is very important in the code, it establishes if a particle is considered untrapped

or trapped other than distinguishing between sub-diffusive and super-diffusive particles.
In the code, we refer to sub-diffusive particles as to diffusive while to the super-diffusive
ones as to ballistic. Trajectory class stores and computes essential quantities that
can be accessed through the attributes of the class itself, this is really convenient and
aimed at object programming. In case the category of the simulation is "diffusive" then
it computes also diffusion coefficients and some fittings other than a couple of statistical
indicators for diffusive and ballistic particles only, there is no point in doing it for
the trapped ones. Another feature is that it is also able to set the colour the particle
will have in the plots if the user decides to use it.

Function define_type description

This function’s main task is distinguishing various types of particles. The operation
provides to first identify trapped particles, immediately after that, ballistic particles are
identified. The remaining particles are considered diffusive. The identification of the first
two types is exploited through the check on some criteria. Despite this, the function can
work also in an alternate way, whose target is distinguishing between trapped and simply
untrapped. This is done through the fact that ballistic particles are untrapped as well,
the strategy is then to output ballistic and diffusive as untrapped. This alternative mode
is performed when calling the function with a specific argument, the operation always
requires that the type of particle to be distinguished is provided. In Listing. [3.12] are
shown all the possible ways of calling this function:

Listing 3.12: Portion of gc2d_modules.py containing some examples of define_type

function call.

1 Trapped = Trajectory(case, t_eval[:case.Tmid+1], sol_, 'trapped')

2 Untrapped = Trajectory(case, t_eval[:case.Tmid+1], sol_, 'untrapped')

3

4 Trapped = Trajectory(case, t_eval, sol_, 'trap')

5 Diffusive = Trajectory(case, t_eval, sol_, 'diff')

6 Ballistic = Trajectory(case, t_eval, sol_, 'ball')

7

8 class Trajectory:

9 def __init__(self, case, t, sol, type):
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10 sol_gc = sol if case.Method.endswith('_gc') else case.fo2gc(t, *sol)

11 if type in ['trap', 'diff', 'ball']:

12 type_ = define_type(case, sol_gc, output=['trap', 'diff', 'ball'])

13 elif type in ['trapped', 'untrapped']:

14 type_ = define_type(case, sol_gc, output=['trapped', 'untrapped',

'untrapped'])↪→

The first couple of calls is performed during the execution while TwoStepIntegration =
True, at the end of the first integration of governing equations. As it is possible to see,
the class redirects the call of define_type in different ways, depending on the type

argument. Obviously, it has to check on some criteria to identify the different types
of particles. In brief, first, we need information about how much a single particle has
moved during the considered interval of time. This is done simply by calculating for
each axe (x and y), the distance between the maximum and the minimum value of the
specified coordinate. We obtain a sort of aspect ratio for each trajectory. It is possible
to do this by the exploiting peaktopeak Python built-in function, it calculates, as an
attribute, the difference between the maximum and minimum inside a matrix along the
specified axe (sol.ptp(axis = axis)), naturally the choice of the axe is done so that it
performs the computation for a specific trajectory over all the instants of time considered.
Once having done that, two criteria are checked by the define_type function. Imagine
composing a rectangle (for each trajectory) whose sides are made with the .pkp attributes
of each trajectory. The resulting rectangle perfectly contains the trajectory. The function
computes the diagonal of this rectangle as well as the numerical value of the shape factor
(ratio between lengths of sides) and its inverse. These values are finally used in order
to distinguish the type of each particle associated with the corresponding trajectory. A

Figure 3.3: Sketch of the geometrical criterion used to distinguish trapped and untrapped
particles.

particle is considered trapped if the value of the diagonal previously computed is under
a certain threshold. This criterion can be considered as a geometrical one, the value of
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the threshold was discovered as a value for which the percentage of trapped particles
remains constant while varying the value of the threshold itself. This has been done
in previous work on this topic [Sta22]. A check on the numerical aspect ratio is done
for ballistic particles instead, it has been observed that ballistic particles don’t have an
isotropic behaviour while diffusing, their movement is preferably in one specific direction.
This cause to the imaginary rectangle, to be highly elongated resulting in a very high
numerical value of the shape factor. Naturally, the check is done also on the inverse of
this value, in case the main direction of ballistic particles is along the other axe. The
threshold value in this check is chosen as the squared value of the previous one. Also
for this criterion, the distinction is based on geometrical analysis. In Listing. [3.13] are
showed all the checks on various criteria resulting in distinguishing a specific type of
trajectory.

Listing 3.13: Portion of gc2d_modules.py containing define_type function.

1 def define_type(case, sol, axis=1, output=[0, 1, 2]):

2 vec = xp.repeat(output[1], sol[0][:, 0].size)

3 delta = xp.asarray([el.ptp(axis=axis) for el in sol[:2]])

4 vec[xp.sqrt(xp.sum(delta**2, axis=0)) <= case.threshold] = output[0]

5 untrapped = xp.sqrt(xp.sum(delta, axis=0)) > case.threshold

6 vec[xp.all((delta[0] / delta[1] > case.threshold * 2, untrapped), axis=0)] =

output[2]↪→

7 vec[xp.all((delta[1] / delta[0] > case.threshold * 2, untrapped), axis=0)] =

output[2]↪→

8 return vec

Computation of µ(t) and H(t)

Once a certain number of particles have been classified as a specific type some previously
introduced quantities are computed for that specific typology. In case full-orbit mode is
executed it is necessary to obtain the correspondent guiding centre trajectories through
fo2gc, just after that, also the magnetic moment of each particle over time is calculated
through compute_mu function. In case the user is interested in plotting the trend of the
total energy over time, in the form of relative error with respect to the initial value of
the energy, the concerning quantity is obtained through the call of compute_energy,
nevertheless, the code store only the trend of the relative errors over time. Immediately
after this, the colour for the specific type of particle is set. As shown in Listing. [3.14]
all the above-mentioned operations are performed in rapid succession, no integration of
the equations is carried out so the procedure is quite fast. Naturally, this portion of the
code is executed only if the class for the specific type is not empty, in case there are no
particles of a certain type, this section of the code must not be executed, the first row is
designed for this.

Listing 3.14: Portion of the definition of class Trajectory contained inside
gc2d_modules.py.
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1 if self.x.size:

2 if case.Method.endswith('_fo'):

3 self.vx, self.vy = sol_[2], sol_[3]

4 self.x_gc, self.y_gc = case.fo2gc(t, *sol_)

5 self.mu = case.compute_mu(t, *sol_)

6 if case.check_energy:

7 self.k = sol_[-1]

8 h = case.compute_energy(t, *sol_)

9 self.h = ((h.T - h[:, 0]) / h[:, 0]).T

10 if case.darkmode:

11 cs = ['k', 'w', 'c', 'm', 'r']

12 else:

13 cs = ['w', 'k', 'b', 'm', 'r']

14 self.color = {type in ['trap', 'trapped']: cs[2], type in ['diff', 'untrapped']:

cs[3], type == 'ball': cs[4]}.get(True, cs[1])↪→

Mean square displacement computation

As anticipated, if the category of the simulation is diffusion the code is gonna compute
some diffusion coefficients describing the behaviour of a particular category of parti-
cles. This is done only for "diffusive" and "ballistic" since the coefficients associated with
"trapped" particles would result in being close to 0, these particles remain confined to a
very small region of space. One useful quantity calculated in order to better understand
the behaviour of particles is mean square displacement. It is indicated as r2, (or MSD),
and it measures the portion of space being reached by particles (or entities in general) as
well as a group of them. The computation is performed through the comparison of the
position of the considered entity at current time t, with respect to a reference position
(previously occupied by the same).

r2 for a single particle

In case the position of a particle is repeatedly registered after a fixed amount of time
∆t, the computation of MSD for a specific particle is performed through an average over
multiple time intervals, the expression is the following:

r2(τ∆t) =
1

T − τ

T −τ∑

k=0

∣∣rk+τ − rk

∣∣2, τ = 0, ..., T − 1, . (3.7)

It is necessary to introduce some definitions in order to clarify some terms of Eq. [3.7]:

• The total number of time intervals available at time t is T , this means that t = T∆t.

• The total r2(t) is always evaluated on T − 1 time intervals, the last one is never
considered.

• τ is the τ -th instant of time at which the position of the entity is registered.

• ri indicates the position of the particle at the i-th instant of time.
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r2 for N particles

Assuming that multiple particles will be part of a specific class, but also that MSD is
supposed to describe the behaviour of the whole class, it is necessary to compute a single
value for each category of particles. This is simply done through a simple average over
all the values of r2(t) coming from all particles being part of the considered system, the
resulting formula is the following:

r2(τ∆t) =
1

N

N−1∑

n=0

1

(T − τ)

T −τ∑

k=0

∣∣r(n)
k+τ − r

(n)
k

∣∣2, τ = 0, ..., T − 1. (3.8)

The resulting trend of MSD is quite oscillating for the first instants of time as well as
for the last ones, since some fittings need to be performed on the resulting trend it is
necessary to cut the tails of the latter in order to obtain high-quality fittings. As shown
in Listing. [3.15] this is done considering only the central values of the vector r2 resulting
r2_win.

Listing 3.15: Portion of class Trajectory containing r2(t) computation.

1 if case.Method.startswith('diffusion') and type in ['diff', 'ball']:

2 nt = self.x[0, :].size

3 xd, yd = (self.x, self.y) if case.Method.endswith('_gc') else (self.x_gc,

self.y_gc)↪→

4 self.r2 = xp.zeros(nt)

5 for _ in range(nt):

6 self.r2[_] = ((xd[:, _:] - xd[:, :-_ if _ else None])**2 + (yd[:, _:] - yd[:,

:-_ if _ else None])**2).mean()↪→

7 self.t_win, self.r2_win = self.t[nt//8:7*nt//8], self.r2[nt//8:7*nt//8]

Curves fitting

Once MSD trend is obtained for the specific category of particles, two fittings of the curve
are performed. This is done to better characterise the behaviour of the present group of
particles. It has been chosen to perform two fittings because of the usual trend resulting
from ballistic particles. In addition to a standard linear plot, from which we obtain the
usual diffusion coefficient, a power law is carried out, the generic expressions of the two
curves are:

f1(t) = D · t. (3.9)

f2(t) = (a · t)b. (3.10)

Both the regressions are carried out whether is the category of the particles under analysis,
obviously, since the usual trend of r2(t) for diffusive is linear in time, it makes more sense
to pay greater attention to the linear regression instead of the power law. In fact, the
fitting from the power law can actually be misleading in case of diffusive particles, a value
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can be very low in case b is not close to 1. In this case one can’t interpret a as a diffusion
coefficient, it can’t be defined, we recall the definition of diffusion coefficient:

D = lim
t→∞

r2(t)

t
. (3.11)

On the other hand, for ballistics the trend is quite different, when this type of behaviour
is present (for certain combinations of parameters we don’t have this type of particles) the
trend is quadratic, and it is in this case that the power law fitting is better performing,
the typical regression presents a value of b close to 2. The criteria for distinguishing
the two types are not fully resolute, given that it is based on a fixed threshold and that
Tf can be increased indefinitely, a lot of diffusive can be accounted for as ballistic, in
this specific case one can check the value of b in order to better understand if there is a
good percentage of hiding diffusive particles inside the other category. In general, we can
classify the behaviour of the system of particles by looking only at b:

• b ≃ 0 ⇒ the system doesn’t diffuse.

• 0 < b < 1 ⇒ the system is sub-diffusive.

• b > 1 ⇒ the system is super-diffusive.

The fittings are exploited through two different methods, in the case of linear regression
it is used linregress, imported from scipy.stats. In the case of power law fitting it is
used curve_fit, imported from scipy.optimize. The latter is very powerful, the user
can specify the model function in order to use whatever function he wants, resulting in a
fully customized fit of a specific set of data.

Coefficient of determination R2

The coefficient of determination is widely used in literature to measure the quality of a
curve fitting. It is obvious that for a linear regression of a periodic (high amplitude)
oscillating function, the resulting fit is not well approximating the initial trend, the
computation of this quantity is giving us a quantitative measure of the quality of the
regression, this is very useful to screen in a fast way the results, we may choose to not
account for results with a value of R2 lower than a specific threshold. The best score
for the latter is 1, however, there is not a fixed threshold for considering bad a fitting.
This is due to the fact that fittings can be very different from one to the other, multiple
variables are involved and the systems can be very different. What has been done is
looking at multiple plots in order to look for not accurate fitting and their correspondent
R2 values, naturally this value can be different in the case of f1(t) and f2(t). It is possible
to introduce the generic expression of this quantity in order to better understand what
represents. First, we introduce some definitions, to better contextualize, there are some
references to quantity for power law fitting:

• y = (y0, ..., yT ): numerical data vector (r2_win in our case).

• ŷ = (y0, ..., yT ): associated curve fitting data (r2_fit in our case).
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• ȳ = 1
T +1

∑T
j=0 yj : mean value of y ( mean of r2_win over time in our case).

The expression of the coefficient of determination is the following:

R2(y, ŷ) = 1 −
∑T

j=0(yj − ŷj)2

∑T
j=0(yj − ȳ)2

. (3.12)

The computation of this quantity, for both fittings, is left to built-in functions, r2_score,
imported from sklearn.metrics, is used for the power law fitting, while for the linear
regression, it is used the squared value of a specific attribute associated with an output
of lineregress.

In Listing. [3.16] one can find all the implemented versions of fittings and R2 compu-
tation.

Listing 3.16: Portion of class Trajectory containing fittings computation.

1 from scipy.optimize import curve_fit

2 from scipy.stats import linregress

3 from sklearn.metrics import r2_score

4

5 res = linregress(self.t_win, self.r2_win)

6 self.diff_data = [res.slope, res.intercept, res.rvalue**2]

7 func_fit = lambda t, a, b: (a * t)**b

8 popt, pcov = curve_fit(func_fit, self.t_win, self.r2_win, bounds=((0, 0.25), (xp.inf,

3)))↪→

9 self.r2_fit = func_fit(self.t_win, *popt)

10 R2 = r2_score(self.r2_win, self.r2_fit)

11 self.interp_data = [*popt, R2]

3.4.3 Example of standard execution

Now that we know how the class works, it is possible to analyse the instructions the code
has to follow, given that we defined only one equation to be integrated (depending on the
mode the right governing equations will be integrated) and that all the computation of
useful quantities for the trajectories are executed inside the specific class (on the basis of
which parameters have been set for the simulation different instructions will be exploited)
the resulting implementation is quite simple and concise.

Listing 3.17: Portion of gc2d_modules.py that actually executes the most important
parts of the code.

1 if not case.TwoStepIntegration:

2 sol = solve_ivp(case.eqn, (0, t_eval.max()), y0, t_eval=t_eval,

max_step=case.TimeStep, atol=1, rtol=1)↪→

3 sol_ = xp.split(sol.y, case.dim)

4 Trapped = Trajectory(case, t_eval, sol_, 'trap')
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5 Diffusive = Trajectory(case, t_eval, sol_, 'diff')

6 Ballistic = Trajectory(case, t_eval, sol_, 'ball')

Once that all concerning data have been obtained, it is possible to store information
from the three classes. The variable data is a data structure, once it will be saved inside
the .mat file it will be easy to access all the information contained. For example, to
access a specific class, using a matlab script, it will be sufficient to assign to a variable
the value of data{i-th class}. They are stored in the order shown in Listing. [3.17]
so that if the user wants to access class Ballistic has to index in position 3 of the
data structure. Once that information are stored in a second variable, (but this can be
done also without storing all quantities from a class in a variable), one can access specific
values as attributes of the data. For instance, if one wants to access the trajectory of all
particles from Diffusive class it will be sufficient to exploit the following lines:

Listing 3.18: Generic MATLAB script that can be used to access to Diffusive trajecto-
ries.

1 load(dir('*.mat').name);

2 Diffusive = data{2};

3

4 x_diff = Diffusive.x;

5 y_diff = Diffusive.y;

This can be done for all the quantities computed inside the class Trajectory, it is very
efficient and quite intuitive to work with this type of data structure oriented to object-
oriented programming. Naturally, the code is quite articulated and not so easy to read
but once everything is at the right place and everything is perfectly understood every
passage and instruction turns out to be very reasonable and with a logical sense other
than being very synthetic.

3.4.4 Two-step integration

Two-step integration is a method that can be used in order to reduce the computational
time of a single execution. The user can set this option through gc2d_dict.py as always.
This functionality has been implemented because some particles, the trapped ones, follow
the same close path despite the fact the number of cycles is very high. If after 1000÷1500
cycles a particle is still considered trapped (while still following the same trajectory) then
it is convenient to not continue to integrate its trajectory, this means reducing the number
of equations integrated with an obvious reduction of the computational time. It is clear
that if there aren’t a lot of trapped particles the influence of this functionality on the
computational time is very low. The parameter Tmid is equal to the number of cycles
for which the trajectory of all Ntraj particles will be integrated. After this time cycle,
the total number of trajectories integrated will be Ntraj − xp.size(Trapped.x,0) and
it will continue without any stop until the end of the simulation. In order to do that, as
shown in Listing. [3.19], it is necessary to call the integrator two times, the first from 0 to
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t_eval[Tmid] while the second time from t_eval[Tmid] to t_eval[Tf]. Between the
two, the class Trajectory is called in order to establish which particles are considered
trapped. After that, the vector y0 is re-defined in order to furnish the integrator with
the new initial conditions. At the end of the second integration, the essential vectors for
untrapped particles are concatenated with the ones coming from the first integration. At
the end of the procedure class Trajectory is called on Untrapped in order to distinguish
diffusive particles from ballistic ones.

Listing 3.19: Portion of gc2d_modules.py containing the two-step integration procedure
implemented in the code.

1 if not case.TwoStepIntegration:

2 (...)

3 else:

4 sol = solve_ivp(case.eqn, (0, t_eval[case.Tmid]), y0,

t_eval=t_eval[:case.Tmid+1], max_step=case.TimeStep, atol=1, rtol=1)↪→

5 sol_ = xp.split(sol.y, case.dim)

6 Trapped = Trajectory(case, t_eval[:case.Tmid+1], sol_, 'trapped')

7 Untrapped = Trajectory(case, t_eval[:case.Tmid+1], sol_, 'untrapped')

8

print("\033[90m Continuing with the integration of {} untrapped particles... \033[00m".format(Untrapped

.x[:,

0].size))

↪→

↪→

↪→

9 y0 = xp.concatenate((Untrapped.x[:, -1], Untrapped.y[:, -1]), axis=None)

10 if case.Method.endswith('_fo'):

11 y0 = xp.concatenate((y0, Untrapped.vx[:, -1], Untrapped.vy[:, -1]),

axis=None)↪→

12 if case.check_energy:

13 y0 = xp.concatenate((y0, Untrapped.k[:, -1]), axis=None)

14 sol = solve_ivp(case.eqn, (t_eval[case.Tmid], t_eval.max()), y0,

t_eval=t_eval[case.Tmid:], max_step=case.TimeStep, atol=1, rtol=1)↪→

15 sol_ = xp.split(sol.y, case.dim)

16 Untrapped.x = xp.concatenate((Untrapped.x, sol_[0][:, 1:]), axis=1)

17 Untrapped.y = xp.concatenate((Untrapped.y, sol_[1][:, 1:]), axis=1)

18 vec_un = (Untrapped.x, Untrapped.y)

19 if case.Method.endswith('_fo'):

20 Untrapped.vx = xp.concatenate((Untrapped.vx, sol_[2][:, 1:]), axis=1)

21 Untrapped.vy = xp.concatenate((Untrapped.vy, sol_[3][:, 1:]), axis=1)

22 vec_un += (Untrapped.vx, Untrapped.vy)

23 if case.check_energy:

24 Untrapped.k = xp.concatenate((Untrapped.k, sol_[-1][:, 1:]), axis=1)

25 vec_un += (Untrapped.k,)

26 Diffusive = Trajectory(case, t_eval, vec_un, 'diff')

27 Ballistic = Trajectory(case, t_eval, vec_un, 'ball')

28 data = [Trapped, Diffusive, Ballistic]

29 info = 'Trapped / Diffusive / Ballistic'
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3.4.5 Standard and modular Poincaré sections

Figure 3.4: Standard Poincaré section from Guiding Center mode.

If Method starts with ’poincare’ and PlotResults = True then Poincaré section of
correspondent trajectories are plotted. Particles are moving in the transverse plane under
the influence of the turbulent potential, one has to remember that they are also moving
along z direction with a constant velocity that is equal to v∥. Since we are only interested
in the movement in the transverse plane, it is possible to store the data at the end of each
time cycle (corresponding to points with a different value of z in the 6D phase space)
but plotting all of them in the same plane, this can be done for each trajectory. The
resulting plot is called Poincaré section (or stroboscopic plot) and it is widely used in
literature to study the behaviour of particles in simple geometries like ours. The modular
version of stroboscopic plots is made by applying the modulo operator (referred to 2π)
to the trajectories, the resulting sections range only over a limited region of space, the
fundamental square indeed. Through this kind of operation particles going out of the
square from the right side will re-enter from the left side and so on. This tool is very
useful in order to study trajectories that seem to follow the exact repetitive same path
along the cycles moving away from the fundamental square, the modular plot actually
superimposes all the paths being followed during each step from side to side. In the plots,
different kinds of particles are coloured differently, as we remember the class Trajectory

set the colour as an attribute .color for each typology. The plots are generated at
the end of the execution but the figures can be stored (with a format customized by
the user through fig_extension) when SaveData = True. In case Method ends with
’_fo’ particles’ trajectory and correspondent guiding centre trajectories are both plotted.
Looking at Fig. [3.5b], the red points are points belonging to the full orbit trajectories
while the blue ones are the correspondent guiding centre positions.

3.4.6 Curves fitting plots

If Method starts with ’diffusion’ and PlotResults = True then the plot of various fitting
is being exploited. For both Diffusive and Ballistic particles, the code plots the trends
of r2(t), r2

win(t) and r2
fit(t). The latter comes from the func_fit in case of Ballistic
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(a) Modular Poincaré section from guiding cen-
ter mode.

(b) Zoom of Poincaré section from full orbit
mode.

Figure 3.5: Modular Poincaré section and zoom of a Poincaré section coming from full
orbit mode.

while from the linregress in case of Diffusive class. In the plot the dotted lines are
the two r2(t), the solid lines are r2

win(t) trend while the dashed line represents r2
fit(t)

(if the fitting is well done the last two are not distinguishable). As we anticipated in
Sec. 3.4.2 , for Diffusive linear fitting is considered while the power law is considered
for Ballistic. While looking at Fig. it is clear that this is the most reasonable choice, the
trend of these curves is quite different. Obviously, there are some conditions (combination
of parameters A, rho and eta) that don’t produce a plot like the present one, in that case,
linear regression may be helpful also when Ballistic are under analysis, their behaviour
may be quite similar to Diffusive, that’s why both fittings are performed for both types
of particles. The present one is the graph in output from the code, naturally one can
easily recover data from .mat file and re-plot other than customize the entire plot, this
is a graph produced simply to have a first quick anticipation of the results.

3.4.7 Generating animations of the potentials

If Method is equal to ’diffusion’ and PlotResults = True, the code produces a plot of
the concerning potentials. Both the standard potential and the guiding centre potential
but in addition to that, the first and second order of the latter are separately plotted
in order to give more information to the user. All the plots are referred to the same
instant of time, t = 0 to be precise. In case SaveData = True data with which these
figures have been produced are stored inside the .mat file, generated with this specific
category of simulation. As it is possible to see, the potentials are defined right inside the
fundamental square, the domain is exactly the same in which modular Poincaré sections
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Figure 3.6: Curves fitting plot, guiding center mode.

are plotted. As we know the potential is periodic in time as well, since it can be interesting
to have a little animation of how the various potentials behave through the temporal
period, it has been inserted a tool to produce .gif animations inside the code. Given
that the temporal dependence of the potentials is embodied inside the exponentials, it is
just necessary to generate a vector time with a certain number of values going from 0 to
2π (each period does last 2π) and multiplying the respective complex potential with the
respective exponential (we know that, for instance, second-order guiding centre potential
has a different time dependence), after having taken the imaginary (or the real part, it
depends on the specific case) we have the trend over time for each point (of the potential
grid). The code stores all the data and produces a .gif file showing the evolution of all
the potentials overtime during an entire period. The figures produced by the code can
be really useful whenever the user wants to change the combination of parameters, the
effect of varying A for example, can be clearly seen in the resulting figures as well as the
change in the sign of eta or the increase in the value of the latter. Another case where
this feature is very useful is the changing in the random phases seed, one can actually see
if a specific seed produced the result sought by the user.
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Figure 3.7: Potentials plots at fixed time t = 0. Standard potential at the top-left figure,
full guiding centre at the top-right, first-order g.c. at the bottom-left and second-order
g.c. at the bottom-right figure.
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Chapter 4

Numerical Analysis

4.1 Full-orbit to Guiding-Center

One of the main tasks after the model was completely derived and fully implemented
has been the check on the operation of fo2gc function. The proper functioning of the
latter also gave a lot of information about the good functioning of full-orbit mode, if
the dynamics of the guiding centres coming from the full-orbit mode were the correct
one then also the dynamics of the particle and the implemented model were correct.

Figure 4.1: Full-orbit trajectories comparison
with guiding-centre corresponding ones through
the use of fo2gc method for two super-diffusive
particles.

The main aim of the work was to
make comparable the results in out-
put from the two different modalities.
As anticipated in the Subsec. [3.3.5],
the function works simply through the
use of the equations for the change of
coordinates one has to use when he
passes from the particle framework to
the guiding centre one. First, some
Poincaré sections have been analysed
in order to see if they could have
been considered comparable. First,
we analyse the resulting dynamics of
single particles in order to understand
if the method works correctly. The
dynamics of different types of parti-
cles should be analysed, first we per-
form the analysis on a super-diffusive
one, the typical rotation of the parti-
cle around the trajectory of the guid-
ing center should be highlighted. The
trajectories have been extracted from
a simulation performed with A = 0.7,
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eta = 0.14 and rho = 0.3. This set of parameters provides a very high number of super-
diffusive particles so we extracted two of them. As shown in Fig. [4.1] the method works
perfectly, the expected dynamics is very well reproduced, particles are rotating around
the guiding centres and this behaviour is maintained until the end, here only a part of
the entire trajectory is shown to better highlight the dynamics.

Figure 4.2: Full-orbit trajectories comparison
with guiding-centre corresponding ones through
the use of fo2gc method for a trapped particle.

In order to better understand if
the method works correctly in all
circumstances it has been decided
to investigate also the behaviour of
trapped particles, some trajectories
have been extracted, from a simula-
tion performed with A = 0.7, eta =
0.10 and rho = 0.10. Also in this case,
the code seems to work correctly, as
shown in Fig. [4.2] the dynamics in ev-
idence reflects the real dynamics of a
trapped particle, the particle rotates
correctly around the guiding centre.
It is possible to conclude that fo2g

function works correctly and that it
is well implemented in the code, fol-
lowing analysis coming from full-orbit
mode will show always guiding cen-
tres, this is done to better compare the
output results from the two modes,
now we are also sure that this partic-
ular passage is reliable.

4.2 Time-step analysis

In the following pages the influence of TimeStep parameter, fixed in file gc2d_dict.py

by the user is under analysis. This parameter is very important for the quality of the
results, if the time discretization is too large then the calculated trajectory is far from
being similar to the real one. That’s why, like in every code in which the evolution in time
of quantities is calculated, this choice is fundamental. Firstly we have to remember that
choosing the GC mode or full orbit mode changes the dynamics of the system. While for
the Guiding Center approach the trajectory calculated and the real trajectory of the latter
is quite regular and smooth if analysed from an external observer the trajectory of the
corresponding particle is very chaotic. The particle rotates around the Guiding Center
position at a very high speed, the dynamics is faster and as we can imagine this affects the
choice of temporal discretization. In addition to the reduction of the order of the system,
this is another great strength of the gyro-kinetic approach to this kind of system. The
integration of one less variable reduces the computational time but being able to integrate
those remaining variables which a time step of a different order of magnitude compared
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to the previous grants a huge reduction in the time required for the calculations. This
concept is at the base of the gyro-kinetic approach and has to be clear in order to better
understand and reach the final goal. It is possible to remember the equations we are
integrating within GC_mode and Ions_mode respectively: 3.152 Tesi and:

∂V̂x

∂t̂
= −sign(η̂)

1

ρ̂

∂ψ̂

∂x̂
+

1

2♣η̂♣ V̂y. (4.1)

∂V̂y

∂t̂
= −sign(η̂)

1

ρ̂

∂ψ̂

∂ŷ
− 1

2♣η̂♣ V̂x. (4.2)

In order to choose the value of TimeStep for both modalities it is necessary to evaluate
the quality of the results while varying that specific parameter. One can be misled into
thinking he can directly compare trajectories coming from different input parameters.
In this case, only one parameter is varying, nevertheless, it is not possible to confront
the trajectory of the same particle despite the fact that it starts from the same position
and although it is driven by the same potential. That’s because the system is chaotic,
the potential is turbulent and also an insignificant difference in the position (at a certain
instant of time ) can lead to a completely different trajectory of the same particle. Having
said that, it is not possible to compare through the definition of a simple error the solution
of a certain particle taking as a reference the solution obtained with the smallest time
interval. It makes more sense to analyse the trend of the Hamiltonian observable for some
particles and evaluate how these trends vary consequently to a variation in the temporal
discretization. As it is well known the Hamiltonians of the two modes have a different
expressions, In the gyro-kinetic approach, the first two contributions are constant, given
that B = Bẑ and that is valid B = Cst, likewise, v∥ is constant as well. We are interested
in the evolution of H and H ′, these should oscillate if compared to the initial value but
should not move too much. The energy enters the system only through the potential
as we have seen in Eq. [2.36] but the latter is periodical in time and space and it is
not supposed to increase the energy of a particle indefinitely. In conclusion, the final
result of the trends should be a continuous oscillation close to the initial value for all
particles. While looking at Eq. [2.36] and [2.296] we notice that after the integration of
the equations we defined all data necessary for the computation of the variable terms to
H and H ′ are available. From the integration of energy k is available for both modes, the
values of ϕ, ⟨ϕ⟩θ and ⟨ϕ̃2⟩θ are available from the computation of the potential at each
instant of time and in full orbit mode we know the values of vx and vy for each particle at
the end of each time cycle despite the fact that we are calculating the scaled version. It
is possible to introduce an equation that computes the values of H and H ′ at the end of
each time cycle taking advantage of the availability of data already available, naturally,
this happens if the parameter check_energy = True (in gc2d_dict.py), otherwise the
computation of k and H as well is not expected. In order to implement the equations it
is necessary the non-dimensionalisation of both H and H ′.

4.2.1 Computing of absolute relative error
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Figure 4.3: Poincaré section from GC mode,
diffusive regime.

In order to better look for the desired trend
we can choose to not plot H and H ′ di-
rectly. Given that we are interested in the
deviation from the initial value, we are al-
ways interested in H − H0 with H0 de-
fined as the initial value of H. This means
we are not interested in computing fixed
terms. It is possible also to normalize the
trend on the initial value, plotting directly
a relative error in absolute value. We won’t
be able to see the oscillations from the pos-
itive to the negative value of H but the
trend can be plotted in a semi-logarithmic
graph, this will lead to a more accurate
analysis. Inside the code, some lines are
responsible for saving the desired variable
in the mat file. It is stored directly:

rel_error =
♣Ĥ − Ĥ0♣

♣Ĥ0♣
. (4.3)

This is very practical also for Guiding Center mode, it is necessary to remember that
the equation for Ĥ is re-scaled. Given that rel_error is normalized on 2η̂Ĥ0 then we
don’t care about the presence of 2η̂. This trend is required to check the solidity of the
model and of the equation implemented, anomalous results even with a very little time
step would mean that there is an error in the model. Once we check that the model is
correct it will be necessary to choose a value for TimeStep in both modes. Given that in
previous simulations it has been highlighted the presence of two main regimes, diffusive
and super-diffusive it is necessary to compare the plot of energy done with the same time-
step but different regimes in order to avoid the choosing of a certain time discretization
that gives you acceptable results in one regime while not acceptable in the other. It is
necessary to assure that the chosen value works fine whether is the regime simulated. The
two designed regimes are just a couple of combinations of parameters, naturally, they are
not representative of all the possible conditions. The following combinations have been
chosen to determine a diffusive and super-diffusive regime respectively:

A = 0.70 ; rho = 0.115 ; eta = −0.100. (4.4)

A = 0.70 ; rho = 0.250 ; eta = 0.05. (4.5)

The following pictures show the resulting Poincaré sections calculated from GC mode for
both regimes, it has been checked that the Poincaré sections coming from GC and Full
Orbit mode are in good accordance in both cases. The procedure consists in simulate this
couple combinations of parameters with both modes using different values of the time
step. In order to have a better comparison between full orbit and guiding centre mode
the series of values of TimeStep is fixed for all the simulations. It will be also analysed
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Figure 4.4: Poincaré section from GC mode, super-diffusive regime

the computational time required for each simulation, this aspect is very important given
that the choice of the value has to take into account also the time that will be required
for the calculations, it has to be a balance between accuracy (and quality) of results and
computational time. The other important parameters fixed for all the simulations are:

Ntraj = 100 ; Tf = 700 ; FLR = (True, True) ; Parallelization = (False, 1) ;

TwoStepIntegration = False ; check_energy = True ; modulo = False.

(4.6)

It has been chosen to use a small number of particles given that integrating also the
equation of energy is more expensive computationally speaking and that we don’t need
a large number of them to check what is required. The Tf has to be not that little in
order to allow the particles to stabilize and settle to their final error in oscillation. The
list of values of TimeStep has been chosen as:

TimeStep =
[
0.1, 0.05, 0.025, 0.0125, 0.006, 0.003, 0.001, 0.0005, 0.0001

]
. (4.7)

As anticipated each regime will be simulated with both modalities and all the possible
values of TimeStep included in the list. The analysis of results has been done in Matlab,
I have coded a script able of loading all data from the same type of simulation (same
physical parameters) but with different temporal discretization. The plot of the various
trend for rel_error has been done also for trapped and untrapped particles separately
other than for all particles. All this is to analyse if trapped and untrapped particles have
different behaviours. From the code, it is obtained the value of rel_error for each particle
at the end of each time cycle. It has been decided to plot the evolution in time of the
average error (average made on all the particles of the considered group) and compare the
different trends generated by different TS. It has also been decided to plot the variance
of the error considering the group of particles, it is possible to have an indication of how
many and how many particles have deviated from the average value. It is important to
remember that it is possible to have a good average value of the error while having some
particle diverging in energy, choosing a TS that determines the deviation (in energy) of
a lot of particles is not optimal, it means that the discretization is not sufficiently dense.
The variance gives us an idea of what is happening but it is possible to do more. It is
possible to fix a value of error at which a particle is considered diverging. Once this has
been done it is possible to count how many particles are reaching that threshold and
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compare that number whit the one coming from different simulations. It is also possible
to fix the second threshold on the value of the maximum average error for that specific
TimeStep, it is like fixing an error bar and counting how many particles are going out
of the desired band. After this little introduction to the various types of plots used to
complete the analysis, it is time to show the various plot. Results from the same mode
are first shown together in order to understand if there is any difference between the
two regimes and then results from different modes are compared to check that the initial
purposes and the initial forecasts were correct.

4.2.2 Time-step analysis for guiding centres dynamics

Starting from GC mode it is possible to plot the trends of rel_error from the average
made on all the particles simulated for different TimeStep values and both regimes. From
Fig. [4.5] it is clear that there is not a major difference between the error generated from
the same TimeStep value in the two regimes. This means that it is not required to vary

(a) rel_error trends from different TimeStep

value, GC mode in diffusive regime
(b) rel_error trends from different TimeStep

value, GC mode in super-diffusive regime

Figure 4.5: rel_error comparison between diffusive and super-diffusive regimes in GC
mode

the temporal discretization when we want to simulate a regime rather than another. This
is the major result of this comparison. In addition to that it is clear that the error is very
low in the majority of cases. The average error is under 10−5 if TimeStep ≤ 0.0125. As
it can be clearly seen in Fig. [4.5b], for TS ≤ 0.006 a sort of convergence is reached, the
utilisation of too low values is not worth it given that as we will see the time required
for the calculation is inversely proportional to the above-mentioned value. These were
the plot of the average error, as we anticipated this doesn’t tell us how many particles
are diverging in energy. In order to do that we plot the number of particles from each
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TS value that has a maximum rel_error above 10−4, the latter is considered as a good
threshold value in this case. The above-mentioned plot has been done for both regimes in
order to look for substantial differences. It is shown simply the number of those particles,
one has to remember that in this case, the total number of particles is 100. From Fig. [4.6]

(a) Number of particles out of the error
threshold for different TimeStep value, GC
mode in diffusive regime. Total number of
particle is 100

(b) Number of particles out of the error
threshold for different TimeStep value, GC
mode in super-diffusive regime. The total
number of particles is 100

Figure 4.6: Number of particles out of the error threshold comparison between diffusive
and super-diffusive regimes in GC mode.

it is clear that the results are in good accordance between the two modes, the number of
particles considered diverging is very low, ≤ 5% for all the TS used. It hasn’t reached
the non-divergence of all particles but it can be said that the behaviour of the system is
good. In a diffusive regime, after the TimeStep goes above 0.003 there is a little transition,
the number slightly increases but the value reached is considered small and of the same
order of magnitude as the precedent. To be cautious the choice of TimeStep will account
for that, it is necessary to avoid any anomalous behaviour. No remarkable differences
between trapped and untrapped particles have been noted in various plots comparison
for GC mode, it has been noted that trapped particles have a slightly higher error if we
compare results from the same TS but this problem will be faced later. Given all that has
been said in this subsection the proposed value of TimeStep for whatever combination of
parameters chosen by the user for a generic simulation is TimeStep = 0.005. The latter
is giving us very good values of rel_error for both regimes, it seems it can reach the
convergent value of rel_error aligning its result with the one coming from much more
expensive simulations. It would be not necessary to choose a smaller value, at the end of
the section some useful considerations on the residual error will be carried out.

4.2.3 Time step analysis for full orbits dynamics

The following plots show the correspondent trends of Fig. [4.5], they have been done with
the same script in MATLAB. The trends from GC are completely different from the one
of Fig. [4.7]. In this case in fact the errors are significantly higher if we compare them
with the correspondent trends made with the same TimeStep it cannot be denied that
there is a difference of 2 or 3 orders of magnitude in certain cases. The resulting errors
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(a) rel_error trends from different TimeStep

value, Full Orbit mode in diffusive regime
(b) rel_error trends from different TimeStep

value, Full Orbit mode in super-diffusive regime

Figure 4.7: rel_error comparison between diffusive and super-diffusive regimes in Full
Orbit mode

from a lot of the chosen values of TS are not acceptable. In order to reach the same error
order of GC mode it is required to use a TimeStep value of a smaller order of magnitude,
this was expected from the early analysis of the system we have done at the beginning of
this section. It is very important that it is verified otherwise it would have meant that
something was wrong with the model, the trajectories that the two modes are studying are
completely different in the dynamics at it is correct that they require a different temporal
discretization in order to generate results of the same quality. It is possible to say that
the chosen value of TimeStep needs to stay under 0.006 in order to obtain some decent
results, we will see how this threshold will be further reduced. Looking at Fig. [4.7], it
is possible to say that also in this case a sort of convergence is reached. In fact from
Fig. [4.7b] it’s obvious that there is no point in going under TimeStep = 0.001. What
has to be stressed while using Full Orbit mode is that not all the correct values of TS
for a regime are suitable for another set of physical parameters given that the dynamics
of the system can be completely different. The proposed approach won’t be varying the
temporal discretization in dependence of the above-mentioned parameters but on the
contrary in choosing a TS giving us good quality results whichever are the conditions
taken into account. In this case, the most unfavourable condition is the super-diffusive
regime, it is necessary to choose temporal discretization taking as a reference the results
from the super-diffusive regime in order to assure that we don’t have any problem in any
conditions. From Fig. 4.7 we should choose a value of TS that assure us of having reached
the convergence in error, like we did with GC mode, then at least 0.001. It is required to
analyse if this value matches the value suggested from the analysis on diverging particles
as well. As it can be clearly seen from Fig. 4.8 it is necessary to use a low value of TS,
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also from these plots it can be seen that the super-diffusive regime is the most penalized
one. In addition to that, with respect to GC mode, the percentage of diverging particles
for a correspondent average rel_error is higher. The average relative errors are higher in
general, particles are oscillating more and in order to reach a value of diverging particles
≤ 10% it is required to use a value of TS ≤ 0.001. Can be noticed a strong transition in
both Fig. 4.8a and Fig. 4.8b while increasing the value of TS, it is recommended to work
out of this region, the value previously proposed is borderline. Also in this comparison, it
is possible to see the difference between the two regimes, given that for 0.0125 in the first
case, we have a limited amount of diverging particles while not in the second case. As

(a) Number of particles out of the error
threshold for different TimeStep value, Full
Orbit mode in diffusive regime.

(b) Number of particles out of the error
threshold for different TimeStep value, Full
Orbit mode in diffusive regime.

Figure 4.8: rel_error comparison between diffusive and super-diffusive regimes in Full
Orbit mode

anticipated it is possible to notice that for TS = 0.0125, in the diffusive regime we reach
an acceptable error (under 10−4 at least) while in the super-diffusive regime, it goes over
10−3. This last consideration is clearly noticeable in Fig. 4.9, it is clear evidence that the

(a) Selected rel_error trends from different
TimeStep value, Full Orbit mode in diffusive
regime.

(b) Selected rel_error trends from different
TimeStep value, Full Orbit mode in super-
diffusive regime.

Figure 4.9: Selected rel_error trends comparison between diffusive and super-diffusive
regimes in Full Orbit mode.

two regimes under analysis require two different temporal discretizations in order to obtain
comparable trends of rel_error. From the comparison of Fig. 4.9 it is also noticeable that
in general, for almost every value of TS the rel_error is greater. One might wonder if
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the additional contribution to the error is given from particles characterised by a ballistic
behaviour. In order to investigate this last point, it has been set a threshold value for the
distance the particle must travel for being considered ballistic. Naturally, the latter needs
to vary with the number of cycles that it is necessary to simulate given that otherwise
some diffusive may be wrongly considered ballistic. To better clarify and get a better
picture of what we are considering it is possible to highlight those interesting particles in a
Poincaré section. This test case has been simulated for Tf = 700 and 50 has been chosen
as the threshold value. From Fig. [4.10] it is clear that only a small number of particles

Figure 4.10: Poincaré section with highlighted ballistic particles from Full Orbit mode,
super-diffusive regime

have the above-mentioned behaviour. What has been done is trying to plot the trends
of rel_error for the various TS values for only ballistic or non-ballistic particles. This is
meant to emphasize if the major contribution to the error is given by ballistic particles
that are present in greater numbers when a super-diffusive regime is simulated. From

(a) Selected rel_error trends of only ballistic
particles from different TimeStep value, Full Or-
bit mode in super-diffusive regime.

(b) Selected rel_error trends of only non-
ballistic particles from different TimeStep value,
Full Orbit mode in super-diffusive regime.

Figure 4.11: Selected rel_error trends comparison between ballistic and non-ballistic
particles, super-diffusive regime in Full Orbit mode.

Fig. [4.11] it is noticeable that on contrary to what one would have thought the ballistic
particles are characterised by a smaller error than the non-ballistic ones, this could be
counter-intuitive but diffusive particles are associated with chaotic transport, whereas
the ballistic ones are not, this cause a greater oscillation in the error of the diffusive ones.
One further plot has been introduced in order to highlight this concept, from Fig. [4.12]
it is clear the above-mentioned difference, it is really interesting to have a confirmation
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Figure 4.12: no of ballistic and non-ballistic diverging particles from different TimeStep

values

of the fact that those particles are not oscillating at all if the right TimeStep value has
been chosen. Given that the value of 0.001 is too close to the transition region it has
been chosen 0.0005 as the final value of TimeStep.

From the previous analysis, the following values are the chosen ones

TimeStep gc_mode = 0.005 ; TimeStep ions_mode = 0.0005 ;

4.2.4 Spatial siscretization influence on energy error

It has been said that those value guarantee acceptable average values of error and a
very low number of diverging particles. It is possible to wonder if there are any other
parameters that influence the quality of the solution and in particular the integration of
energy. As we remember we are comparing results from energy in order to assure that
also our resulting trajectories will be of good quality, in other words, more reliable data.
It is a good practice to fully understand what influences the error in the solution, this
error in fact can come from numerical schemes and operations done in the code that
may not directly come from the mathematical model utilised. In our specific case while
running the code there are a lot of specific operated functions from python libraries, given
that those functions are fully optimized by python developers the complete operation has
not been investigated, it would have taken a lot of time. In order to understand if
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some of those functions are generating numerical errors some tests have been done. One
of the most investigated operations has been the interpolation function, this function
is contained inside the equations of motion of the guiding centre and ions as well but
also in the equation of energy. The interpolation function is called when it is required
to know the value of the potential (or of its derivatives) on the particle position. The
potential is known only on the points of the grid that composes the fundamental square.
At each time step, during the integration of the equations, the interpolation is called
in order to determine how the particle will move and which is its value of energy given
its position in space. Like all interpolation, it produces an error while doing its main
function, naturally less dense the grid greater will be the error introduced. Having said
that it has been investigated if varying the No of points on the fundamental square grid
can influence consistently the error on energy and if it is possible to obtain results of
higher quality simply by increasing the above-mentioned number. This fact would be
very valuable, it would mean that the model is solid and that it doesn’t contain a lot of
approximations. Naturally, a higher number of points on the grid means that the memory
required for the calculations will be larger and it is necessary to make some compromises
in order to leave the code of practical use. Some tests have been done in order to verify
this, for both GC and Full Orbit mode the code has been executed while varying only
the N parameter, the latter is the No of points on each side of the fundamental square,
naturally, it is clear that:

Total No Points = N ∗N. (4.8)

The code has been executed for the couple TimeStep values chosen in the previous subsec-
tion. It is possible to plot the results in graphs like the one of Fig. 4.5 and Fig. 4.7 in order
to analyse the influence of the grid on the solution. From both the plot of Fig. 4.13 it is
possible to notice a considerable influence on the value of the error for all time cycles, the
trend and behaviour is almost the same for all the different set of data. At each doubling
of the value of N the error becomes smaller, obviously, the plot in a semi-logarithmic
graph helps in seeing the differences. Given that the quality of results improves it has
to be decided which value of N one should take, as anticipated increasing the latter de-
mands a great amount of memory while the simulation is running. While running from
a standard laptop one should stop at N = 4096 to avoid problems with memory. Given
that for these kinds of calculations usually, one uses a cluster, the availability of memory
is not a big deal, it has been tried to analyse how the spatial discretization influences
the time required for the calculations in order to see if we should make a compromise
or if it is possible to use the higher value of N . The code has been executed for both
GC and Full Orbit mode in a super-diffusive regime for various values of N , given that
the code has been executed on the servers there isn’t any problem with memory and the
computational time is not so affected by increasing the spatial discretization.

N = 4096 = 212. (4.9)

All the graphs previously shown have been simulated with this value of N to remain
consistent with the rest of the manuscript. This value guarantees a good quality of results
without interfering too much with the performance of the code and without requiring a
large memory for the simulation. In previous simulations, it has been mostly used the
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(a) rel_error trends from different total num-
ber of points on the grid, GC mode in super-
diffusive regime

(b) rel_error trends from different total num-
ber of points on the grid, Full Orbit mode in
super-diffusive regime

Figure 4.13: Influence of spatial discretization on energy error in both GC and Full Orbit
mode, super-diffusive regime

value of N = 1024, the integration of energy allowed us to understand better what value
was more correct and it was very important to make the project successful.

Figure 4.14: Time required for calculations for various value of N , GC and Full Orbit
mode, Super-Diffusive regime.
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4.3 Influence of physical parameters

Now that the results from the simulations can be considered reliable it is time to start
investigating the dynamics of the guiding centre in the turbulent potential. It is im-
portant to remember that the potential will be the same for all the simulations, it can
be changed by simply changing the seed of the random phases generator, therefore the
dynamics is strongly influenced and it is not the aim of this work, to assess the influ-
ence of a different potential on the dynamics. As anticipated the code works through
the initialization of the particles inside the fundamental square and it studies the evolu-
tion of the global system through the use of the governing equations implemented and
derived in the previous chapters. By looking at multiple Poincaré sections, generated
from multiple sets of parameters, it has been noticed that the combination of parameters
can strongly influence the dynamics and the behaviour of the system. While looking

(a) Poincaré section generated from A = 0.7,
eta = −0.20 and rho = 0.10.

(b) Poincaré section generated from A = 0.7,
eta = 0.14 and rho = 0.30.

Figure 4.15: Poincaré sections generated for a bunch of particles for a different set of
physical parameters in order to highlight the differences in the dynamics.

at Fig. [4.15] it is clear that the combination of different parameters leads to different
behaviour of the system. In addition to that, it is possible to evidence particles that have
different behaviours, this is why, within the code, it has been implemented a method
to distinguish these various types. One can clearly see the particles that are classified
as trapped, they are easily recognisable given that they orbit forming islands. One can
also distinguish some particles that are characterized by an elongated trajectory along
a preferential direction, when increasing the number of time cycles Tf this fact is even
more evident. The remaining particles (in magenta) have a more isotropic behaviour,
they appear to be characterized by more chaotic behaviour with respect to the others.
Once these three hypothetical types of particles have been identified it has been tried to
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distinguish them directly within the code through the use of some geometrical criteria as
described in Subsec. 3.4.2. After the computation of the trajectories the trend of mean
square displacement over time is obtained, this is done only for particles that diffuse,
not for trapped ones. Once the trends are obtained, as anticipated in Subsec. 3.4.6, two
different fittings are performed on the two different trends associated with the two types
of particles. We briefly recall the equations associated with the fittings:

Linear regression: fsub = D · t+ Cst

Power law: fsuper = (a · t)b

In Fig. [4.16] are shown the trends of MSD and the associated fittings for the same results
of Fig. [4.15b] (same set of parameters), it is clear that the two types of particles have
completely different behaviour, the trend for the particles associated with an elongated
trajectory is almost quadratic while in the other case, the linear regression is well ap-
proximating the trend. Given these results, it has been decided to classify the particles

Figure 4.16: MSD trends and associated fittings, power law for super-diffusive and linear-
regression for sub-diffusive.

associated with an elongated trajectory as super-diffusive particles while from now on we
will refer to the others as sub-diffusive. This, despite the fact they are not really satis-
fying some known criteria officially recognized and used to define and identify these two
types of particles by the scientific community. To briefly recap, from some early results,
it has been noticed that the dynamics of the system is strongly influenced by the physical
parameters and that whatever the combination of input parameters, different types of
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particles, associated with different behaviours are present. While looking at Fig.[4.15],
it is clear that a different percentage of super-diffusive is present in the two cases, this
is valid for trapped particles as well. One might wonder which is the influence of phys-
ical parameters on this specific aspect, which is the influence on the percentages of the
various types of particles. In order to analyse this aspect a lot of simulations have been
performed. Two of the three physical parameters (A has been fixed) have been varied
simultaneously, this has been done simply through the insertion of the following inputs
in gc2d_dict.py:

rho = xp.linspace(0, 0.3, 128)

eta = xp.linspace( − 0.2, 0.3, 128)

The insertion of these inputs results in a high number of sub-simulations, all the possible
combinations of parameters are tested, the total number is equal to the total number of
permutations between these values, 16384 to be exact, a sort of grid is created, each point
of the grid corresponds to a different combination of rho and eta and it is associated with
a specific simulation. For each simulation (point of the grid) some interesting quantities
are computed, we briefly list them:

• Trapped particles percentage.

• Sub-diffusive particles percentage.

• Super-diffusive particles percentage.

• Diffusion coefficient D associated with the linear regression performed on MSD

trend of sub-diffusive particles.

• Intercept value Cst associated with the linear regression performed on MSD trend
of sub-diffusive particles.

• Coefficient of determination R2 associated with the linear regression performed on
MSD trend of sub-diffusive particles.

• a coefficient associated with the power law fitting performed on MSD trend of
super-diffusive particles.

• b coefficient associated with the power law fitting performed on MSD trend of
super-diffusive particles.

• Coefficient of determination R2, associated with the power law fitting performed
on MSD trend of super-diffusive particles.

Results from different simulations are stored inside a .txt file that can be analysed after
all the sub-simulations have been performed. In this way, it is possible to obtain multiple
information on how the dynamics is influenced by the variation of rho and eta in a very
efficient way. The simulations were characterised by Ntraj = 1024, Tf = 5000, N = 210

and TimeStep = 0.05. The use of a larger time-step (ten times larger than the one chosen
from the Time-step analysis in the previous section) and of a lower number of points on the
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potential grid is due to the fact that following some early tests, performed to estimate the
average time required for each sub-simulation, and given the total number of CPU cores
available (50 in our case), the estimated time to complete the entire simulation using the
nominal values would have been greater than 200 days, it wouldn’t have been acceptable.
As one can check on Sec. 4.2.2, the quality of the results is however acceptable, they can be
considered reliable. Also, the influence of N doesn’t generate excessive numerical errors
as one can check in Sec. 4.2.4. Given that choice of input parameters, the simulation
took 20 days, the time required for the computation is exactly inversely proportional to
the value of TimeStep, and the occupied RAM memory was compatible with the smooth
operation of the machine over the long period on which the simulation took place. The
output .txt file has been post-processed through a MATLAB script, thanks to the latter
it is possible to produce some sort of heat maps for the interesting quantities. The plot
of some maps is not of great interest to us, the most interesting ones are the percentages
maps and the one of b, these ones are giving us a lot of information about the dynamics of
the system. Before analysing the results it is necessary also to point out that the various
maps are filtered on a minimum value of the percentage of the specific type of particles.
For instance, in case the number of super-diffusive particles is under 5% in a certain
region of the map, then the corresponding area is coloured in white, and the values in
the grid are substituted by nan. The same is done with the corresponding point in the
b map, the filter is applied on the percentage map but the effect is also applied to maps
made for that specific type of particle.

4.3.1 Effect of ρ and η on the particles percentages

As anticipated, the influence of ρ and η on the dynamics strongly influences the percent-
age of different particles. Fig. [4.17] shows the maps for every type of particle, different
palettes have been used to identify the various types, in order to distinguish between
trapped, sub-diffusive and super-diffusive cyan, magenta and red palettes have been re-
spectively used. As it is possible to notice from the colour bars, the darker the colour, the
higher the percentage. The results are quite interesting, one of the most important aspects
is the behaviour of trapped particles, since we are interested in studying the transport
of particles in this mock potential then trying to understand which regime guarantees
higher confinement is very important. While looking at the top-left plot (the one with a
cyan palette) it is clear that an increase in the value of ρ regularises the dynamics, this
means that a higher fraction of particles will be confined inside the fundamental square or
in the nearby. Since a gyro-average is performed, if the Larmor radius increases then the
average will be exploited on a wider region, given that the potential is turbulent and that
it is characterised by islands structure also at a very little scale, exploiting the average
on a wider region results in a completely smooth guiding centre potential, naturally this
affects the dynamics of particles. A smoother (guiding centre) potential will lead to a
higher percentage of particles that will be trapped, they are trapped in the sense that they
orbit on closed trajectories without the possibility of escaping. This result is expected, it
is a sign that the model works properly. It is also possible to conclude that large values
of ♣η♣ lead to a total absence of trapped, the behaviour is not totally symmetric but this
is the general trend. We now switch to the investigation of the other two plots, as it
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Figure 4.17: Percentages maps for all types of particles, specific palettes identify specific
types of particles, cyan for trapped, magenta for sub-diffusive and red for super-diffusive.

is possible to see, there is a sort of connection between the two maps. It is possible to
evidence a sort of complementary behaviour between super and sub-diffusive particles, for
ρ values higher than 0.1 regions characterised by a high percentage of the super-diffusive
ones presents also the lowest percentage of sub-diffusive and vice-versa. This behaviour
is dominant until ρ ≥ 0.25, at that point the behaviour is kinda homogeneous, this is due
also to the regularisation of the dynamics. What is sure is that the value of η strongly
influences the behaviour of the global system with ρ in the range between 0.1 and 0.25.
For values of ρ lower than 0.1 the chaotic behaviour associated with sub-diffusive particles
is dominant, since the average is performed on a very small region the forces to which
the guiding centre is subjected are almost equal to the ones the particle is feeling, the
G.C. potential the potential has not been smoothed and the presence of the turbulence
does not allow particles to orbit on closed or regular trajectories, as anticipated chaotic
behaviour is dominant in this region. It is also possible to notice how the percentage of
super-diffusive is really low for very large areas, it indicates that the mechanism leading
to this kind of behaviour is quite fragile and that it should be investigated better.

122



4.3 – Influence of physical parameters

4.3.2 Effect of ρ and η on b value

Since the chaotic transport of particles is very well investigated in the literature, as well
as the mechanism that leads to the entrapment of particles it has been decided to better
investigate the comportment of particles associated with the almost (and in some cases
proper) quadratic trend of MSD over time. As has been anticipated previously in this
section, these particles are not properly satisfying the criteria that are usually used to
classify these entities as such. We classified these entities as super-diffusive just because
they are characterised by having much higher diffusion coefficients. While looking at

Figure 4.18: Map of b for different combinations of ρ and η, we recall that this value is
associated with the exponent in the power law fitting (a · t)b performed on the trend of
MSD over time for particles classified as super-diffusive.

Fig.[4.18] some interesting aspects can be listed, the plot describes the comportment of
the system for various combinations of ρ and η, it is clear that it can be totally different
depending on the input parameters. The most important and evident fact is that starting
from ρ = 0.2, for a wide range of η, an increase in rho corresponds to a high increase
in the quadratic behaviour of the trend. This, in practice, results in particles reaching
higher r2(Tf) (for an equal chosen value of Tf), this means that some particles travel
more and more in space consequently to an increase of ρ. This fact is very interesting
and apparently, it has no specific motivation. The value of b massively increases in a very
thin region passing by an average value of 1.3 to an average of 1.78 while ρ has passed
from 0.22 to 0.24, as anticipated this is valid for a wide range of η, from −0.1 to 0.2, it
is not only present for values of η where (for lower values of ρ) the amount of particles
is considerably high. It is also evident that lowering ρ leads to the destruction of this
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mechanism, by analysing regions characterised by a lower value of b and by investigating
transition regions this should be visible. Another noticeable fact that one can observe in
Fig.[4.18] is that in the region identified by ρ ∈ [0, 0.05] and η ∈ [0.1, 0.15], the system
present an unusual average value of b. In fact, if we compare the values from this region
with the ones from the region just to the right, for ρ ≥ 0.05, we can clearly see that
the values are higher, this is unusual given that the other mechanism, leading to high
transport of particles, works in the opposite way. This region should be further analysed
in order to understand if the high values of the exponent of the power law fitting are
due to the same mechanism or not and, to understand which is the influence of η in this
scheme, we clearly see that only for η ∈ [0.1, 0.15] a considerable amount of super-diffusive
particles is guaranteed. In summary, it has been evidenced an anomalous comportment
of the system, the investigation of this specific behaviour is based on Fig.[4.18], it clearly
shows which are the areas of concern to study this phenomenon, the analysis started
by investigating concerning region characterised by high ρ values in order to understand
what is the dominant mechanism in that region.

4.4 Investigation of anomalous super-diffusive behaviour

The analysis of the region characterised by unusually high values of b started by plotting
a lot of Poincaré sections from simulations made by using high values of ρ. Fig. [4.19]
shows a couple of full Poincaré sections generated by a discrete number of particles
(Ntraj = 500) over a considerable number of time cycles (Tf = 1500) in order to highlight
the characteristic comportment of super-diffusive particles. From these figures it is pretty
clear why the trend of MSD has that particular shape, some particles (not all of them) are
moving along a preferential direction (x axe in this case, but depending on the potential
it may be the y axe) with a speed well above the average. It can be said that they have
a sort of ballistic behaviour, especially the ones going toward the right. It is true that
the input parameters are different in the two cases but by looking again at Fig. [4.18]
it is clear that they belong to the same dynamic region, this is why the final Poincaré
section is almost identical. In both cases it is possible to notice that the particles going
to the right and to the left are following a path with a different shape, despite this in
both cases is a sort of periodical motion, a repetitive path. Since the potential is periodic
in time and space this should not be considered such an unusual fact but it seems some
of them seem to not deviate at all from the initial path, the resulting one after only a
few cycles have passed. This is very interesting and it may be the key to the concerning
phenomena. In order to better analyse and understand this phenomenon it has been
decided to get advantage of Modular Poincaré sections, if the path is that repetitive
then it should be clearly evidenced in that kind of plot. Fig. [4.20] shows the modular
Poincaré sections corresponding to the ones of Fig. [4.19]. By looking at Fig. [4.20a]
and Fig. [4.20b] we can easily recognise the two preferential paths that the particles are
following. The one at the bottom is the one leading the particles to the right while the
one starting at the top-right of the figures, and that intricately pass through the figure,
is leading the particles to the left. Through the modular version of this kind of plot, it is
easier to compare and look for differences between the results of the two simulations. In
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(a) Full Poincaré section generated from A =
0.7, eta = 0.14 and rho = 0.30.

(b) Full Poincaré section generated from A =
0.7, eta = 0.12 and rho = 0.27.

Figure 4.19: Full Poincaré sections generated with Ntraj = 500 and Tf = 1500 for
different sets of physical parameters to investigate the region where anomalous super-
diffusive behaviour has been highlighted.

(a) Modular Poincaré section generated from
A = 0.7, eta = 0.14 and rho = 0.30.

(b) Modular Poincaré section generated from
A = 0.7, eta = 0.12 and rho = 0.27.

Figure 4.20: Modular Poincaré sections generated with Ntraj = 500 and Tf = 1500 for
different sets of physical parameters to investigate the region where anomalous super-
diffusive behaviour has been highlighted.
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particular, the red paths associated with the case with ρ = 0.3 are tighter with respect to
the other case, this suggests that, despite the fact that the percentage of super-diffusive
is almost the same for the two cases ( 21.5% for ρ = 0.3 and 22.5% for ρ = 0.27) these
entities are following more accurately the same periodic path, this is why the simulation
characterised by having A = 0.7, eta = 0.14 and rho = 0.30 is more interesting for
our goal. Anyway, from the analysis of these two last figures, it is even more clear that
the key point is a more accurate analysis of these preferential paths that super-diffusive
particles are strictly following. Our efforts are therefore concentrated towards these ones,
therefore, it is necessary to look for a way of efficiently analysing these regions without
computing the trajectories that are not of our interest.

4.5 Local analysis

In order to study the above-mentioned phenomena it has been decided to perform some
local analysis starting with all the particles in a small region of space inside the preferential
path at the bottom of the modular Poincaré sections. This is very useful in order to
obtain a lot of information about the particles moving along the preferential path without
the necessity of increasing enormously the initial number of particles to obtain a good
density in the interesting region. Thanks to this strategy a lot of computational time
has been saved, and feedback from simulations has been obtained much faster. Later
in this chapter, this strategy will be extremized to perform a certain type of analysis.

Figure 4.21: Isolated super-diffusive parti-
cles trajectories in the modular Poincaré sec-
tion produced through the usual set of pa-
rameters: A = 0.7, eta = 0.14 and rho =
0.30 .

As anticipated we are now interested only
in the dynamics of super-diffusive particles
following a very repetitive path along their
trajectory. The first noticeable result from
the local analysis is that, contrary to what
was thought, a lot of the particles are not
always following the same curve at each
passage in the modular Poincaré section,
it is not that different but this fact can’t
be neglected. Nevertheless, there are also a
lot of particles that follow very accurately
the same path at each passage, these are
the particles in which we are really inter-
ested. They have been extracted from the
modular Poincaré section of Fig. [4.20a],
we recall that from now on, only results
generated with A = 0.7, eta = 0.14 and
rho = 0.30 will be shown. The trajecto-
ries of interest are shown in Fig. [4.21], dif-
ferent colours have been used for different
hypothetical types of particles, they will
be explained in the following rows of this
section. While looking at Fig. [4.21] it is
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clear that except for the particles coloured in green, the behaviour we were looking for
is present even for a relatively high number of time cycles (Tf = 2000 in this case). In
order to better investigate the behaviour of the particles it is necessary to zoom in on
the figure in some interesting areas, where the trajectories seem to be more distant from
each other and consequently can be better analyzed, I chose to zoom in the following x
ranges:

x1 ∈ [2.7, 3.1]

x2 ∈ [4.7, 5.2]

In these particular ranges of x, the trajectories are kinda curving, their behaviour is better
highlighted. Fig. [4.22] shows both the investigated ranges, at this level one can better
understand the use of different colours. As anticipated, it is easy to recognise different

(a) Zoomed modular Poincaré section showing
isolated trajectories, focus on x1 range, gener-
ated from A = 0.7, eta = 0.14 and rho = 0.30.

(b) Zoomed modular Poincaré section showing
isolated trajectories, focus on x2 range, gener-
ated from A = 0.7, eta = 0.14 and rho = 0.30.

Figure 4.22: Modular Poincaré sections generated with Ntraj = 500 and Tf = 1500 for
different sets of physical parameters to investigate the region where anomalous super-
diffusive behaviour has been highlighted.

types of particles inside the zoomed versions of the Poincaré section, we can list them
while specifying also the colour thanks to which they can be recognized:

Invariant: Highlighted in red, these particles always follow the exact same path at each
passage.

Invariant forming islands: coloured in cyan, they don’t follow the exact same curve
but still, they can be considered invariant particles. Their main characteristic is
that, at each passage, they pass in a slightly displaced point with respect to the
previous passage, the resulting effect is that some chains of islands are produced,
note that each island has a characteristic size and that it is produced by a specific
particle.
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Not invariant: coloured in violet, these particles are kinda jumping on a different curve
at each passage, they cannot be considered as invariant.

Almost chaotic: Highlighted in green, their behaviour is similar to one of the violet
particles but, as it is clearly visible from the non-zoomed Poincaré section, they are
producing very different curves (relatively speaking).

The most noticeable fact coming from Fig. [4.22] is that some invariant particles are
present. In our case, invariance is the property that characterises particles that follow
exactly the same periodic path, it is easy to recognise their trajectories since they appear
as if the particle has passed only once. Another very interesting fact is the particular
chains of islands produced by the particles coloured in cyan. In literature one can find out
that this behaviour is known and deeply analysed [OC95], their presence means also that
the computation is done correctly. As anticipated these can still be considered invariant
particles. Away from the centre of the channel particles are starting to jump more from
one path to another, it seems that only particles at the centre are characterised by being
invariant. In addition to that, by looking better at Fig. [4.22], it is very interesting to
notice that green and violet particles are never crossing the border formed by the invariant
curves, this behaviour is known as well in literature [Bal98], it is really important to notice
this fact, the presence of invariant tori (trajectories) leads to the presence of a transport
barrier that doesn’t allow to be crossed perpendicularly. In summary, the main result
from the local analysis is that some invariant particles following an opened path are
present, one has also to remember that also trapped particles are actually forming some
invariant curves, the main difference is that they form a closed path. We can imagine
invariant particles as the frame of the Poincaré sections, they are kinda guiding the
dynamics of the system. Fig. [4.23] shows a filtered version of Fig. [4.20a], only invariant
particle trajectories are shown. It is very interesting to compare the latter with the non-
filtered version of the plot, it is clear that these invariant curves are also determining the
dynamics of chaotic particles.

4.6 Meandering tori

Following all the interesting results we obtained, a little comparison with what was al-
ready present in literature [MW09], [dCNGM96], has been made, this has highlighted
the presence of many points in common with a particular phenomenon, the so-called
meandering tori behaviour. The latter match with the behaviour of the particles in our
system, some invariant tori contained within a channel are separating the phase-space,
the name comes from the shape of these invariant curves, they are quite similar to the
meanders formed by rivers over the years. The meander is separating the phase space
in the sense that it forms this sort of transport barrier blocking particles by crossing the
border of the meander perpendicularly. Naturally, it doesn’t block particles going along
a trajectory that is parallel to the meander border itself. As anticipated the transport
barrier is present in our result, this is the main reason why we are trying to refer our
results to meandering tori theory. it is also interesting that we noticed the presence of
this phenomenon thanks to an increase in particles transport while this phenomenon itself
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Figure 4.23: Filtered modular Poincaré section showing trajectories of invariant particles
only, various types of particles are distinguished by the usual colours, blue for trapped,
red for super-diffusive.

is decreasing in certain sense, it is a bit counterintuitive. In reality, we still don’t have
the confirmation that the phenomenon is the same at 100%, some additional results are
required, meandering tori is always associated with the presence of a so-called twist-less
invariant torus inside the meander. This torus is also called the shear-less curve, it is
characterised by having the maximum value of rotational number (also-called winding
number) when compared to the values associated with the other tori within the meander.
In literature the presence of the transport barrier is always associated with a non-twist
invariant curve [MW09], [OC95], [Bal98], [dCNGM96]. In order to confirm its presence
it is necessary to compute and plot the values of winding numbers for particles starting
in different positions inside the meander, the trend should present a local maximum and
consequently a non-monotonous trend. In order to perform this kind of analysis, it is
necessary to change again the initialisation of the particles’ position. Now the particles
need to be started from a vertical segment that cuts the meander itself, by starting a lot
of particles on this little segment we obtain a sort of continuous trend of winding numbers
for particles starting from different positions.

4.6.1 Rotational number computation

The rotational number is usually computed for exploiting invariance analysis on systems
like the one under analysis, in literature these analyses are widely used to obtain quan-
titative information about the chaotic behaviour of particles, they are used especially to
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distinguish between chaotic and quasi-periodic dynamics [SM20]. In our case, the wind-
ing number is computed to check for the presence of the above-described shear-less curve.
First, it is necessary to introduce its expression:

ρ = lim
n⇒∞

Fn(θ) − θ

n
. (4.10)

For our system, θ is the initial x coordinate of the trajectory and Fn(θ) is the value of x
coordinate at the nth time cycle. It is giving us information on how much is the average
space that particles travel during a generic temporal period. Usually, it is computed
through the use of a weighted Birkhoff average so that a better convergence is obtained:
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Where ω is the so-called bump function. As anticipated, this is computed for each
trajectory that starts on the segment that is crossing the meander, the segment is vertical
and positioned in x = π, while the range of y is [0.575, 0.62]. Trajectories need to be very
long in order to obtain a good convergence of winding number computed with weighted
Birkhoff average, this is why it has been decided to set Tf = 7500. In addition to that,
it is also necessary to have a good discretization along y to obtain clear results, this is
why, despite the fact the segment is very short, a very high number of trajectories has
been computed, Ntraj = 1024 in fact. Since the quality of results is very important in
this case, it has been chosen to use a smaller time step with respect to the one that is
usually set, in this case, TimeStep = 0.001, it is still quite greater than the one used for
full orbit mode but it strongly affects the time required for the computation.

4.6.2 Rotational number analysis

Fig. [4.24] shows the trend of winding number for the different particles starting positions
over the segment. First, it is important to remember that the convergence is assured only
for invariant particles, this means that here we have further verification of the fact that
the trajectories under analysis are invariant curves. In case one tries to compute the
same quantity for particles starting in a region leading to chaotic behaviour, the result
is completely different, you don’t have any convergence. While looking at Fig. [4.24] one
can recognise regions characterised by different behaviours, starting from the left we have
a bell-shape curve, it is easy to recognise the local maximum that we were looking for,
and then we have a region with a constant ρ value while on the right in the figure, we
have a sort of devil staircase. Since the bell shape and the latter need a more detailed
explanation we start explaining the region at constant winding number. It is known that
this particular trend is associated with particles that are forming chains of islands, as it
is possible to see in Fig. [4.22], some islands are containing other islands characterised
by having a smaller size, each one is produced by different particles but it is known from
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Figure 4.24: Rotational number plot from the local analysis made through the initializa-
tion of particles position on a segment, generated with A = 0.7, eta = 0.14 and rho = 0.30
.

the literature [OC95] [MW09] that particles within the same island are characterised
by the same value of the rotational number. This means that particles initialised for
y ∈ [0.59, 0.60] are producing a single chain of islands. It is now time to analyse the
bell-shape curve, Fig. [4.25] is a zoomed version of Fig. [4.24], it clearly emphasizes the
presence of the local maximum together with the non-monotony of the trend. This is
the final confirmation of the presence of the twist-less invariant torus. This particular
trend is known as the bell-shape curve, it is the typical rotational number trend where
a twist-less invariant torus is found, we can consider it as a further confirmation of the
validity of meandering tori theory. Another noticeable fact is the presence of a devil
staircase, particles initialised for y ∈ [0.61, 0.62] are producing this kind of effect. A devil
staircase is a particular type of staircase where the steps are not equally spaced other
than the fact that their height can be really different. Fig. [4.26] is a zoomed version of
Fig. [4.24], the above-mentioned shape is clearly present, as anticipated previously, we
know that regions at constant ρ are part of the same islands, this means that the trend
behaviour is determined by the presence of some islands of different size, it has no bearing
on the presence of the shear-less curve but it is quite interesting to be able to highlight
and confirm the presence of particular phenomena (chains of islands) directly from this
particular trend. In summary, in this section the presence of a twist-less invariant torus
has been confirmed, this is the phenomenon associated with the anomalous increase of
transport along a preferential direction detected in the b map of Fig. [4.18]. We didn’t
understand why this is present in our case, the potential is definitely one of the causes
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Figure 4.25: Focus on the bell-shape curve in the rotational number plot, the local
maximum corresponds to the twist-less invariant torus.

outside the model but we fully characterised and analysed its presence in our results.

Figure 4.26: Focus on devil staircase in rotational number plot, regions with constant ρ
corresponds to zone within islands showed in Fig. [4.22].
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4.7 Comparison with full-orbit dynamics

The main aim of the implementation of full-orbit mode is to check on the fact that the
anomalous super-diffusive behaviour highlighted in the previous sections is not the result
of errors or bad approximations in the considered gyro-kinetic model. Since the system
is chaotic, one cannot expect a full accordance between the Poincaré sections in output
from the two different modalities but, it is important that the global behaviour is the
same. This is why, in addition to the possibility of computing the trajectories of the
particles themselves, fo2gc has been implemented. The trajectories of ions and guiding
centre are simply shifted by the Larmor radius but this can be quite evident, especially in
the modular Poincaré sections. The analysis simply consists in plotting full and modular
Poincaré sections coming from the two different modalities, naturally by using the same
set of input parameters. This has been done for different combinations but here we show
only the results coming from a single set. Fig. [4.27] shows the comparison of full Poincaré

(a) Full Poincaré section showing guiding centre
dynamics from guiding centre mode, generated
with A = 0.7, eta = 0.10 and rho = 0.10.

(b) Full Poincaré section showing guiding center
dynamics from full orbit mode and fo2gc, gen-
erated with A = 0.7, eta = 0.10 and rho = 0.10.

Figure 4.27: Comparison of guiding centre dynamics coming from different modalities in
full Poincaré sections, on the left results from guiding centre mode while on the right
results from full orbit mode.

sections between the two modes. It can be said that the global behaviour is the same for
the two dynamics, it can be clearly seen that the global behaviour is quite similar. The
super-diffusive particles are following paths with almost the same shape, the diffusion
coefficient is similar, the particles are doing the same amount of space, and the extremes
on the axes are almost the same. The amount of particles characterised by being super-
diffusive is lower in the case of full orbit, now that we know which is the mechanism leading
to this kind of behaviour this result is quite expected, the dynamics is not regularised at
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all, ions are following a much more intricate trajectory and it is easier for them to go out
of the meander leading to the ballistic behaviour. In this way, it is easier for a particle
to become a chaotic one, with a non-periodic path. The most important thing we can
conclude from Fig. [4.27] is that, in full orbit mode, there are some particles characterised
by having an average speed that is in accordance with one of the ballistic particles in
guiding centre mode, this means that the observed anomalous behaviour does not come
from an error in the model, it is the most important fact coming from this analysis, it
means the results can be considered quite reliable from the numerical point of view. It

(a) Modular Poincaré section showing guiding
centre dynamics from guiding centre mode, gen-
erated with A = 0.7, eta = 0.10 and rho = 0.10.

(b) Modular Poincaré section showing guiding
centre dynamics from full orbit mode, generated
with A = 0.7, eta = 0.10 and rho = 0.10.

Figure 4.28: Comparison of guiding centre dynamics coming from different modalities
in modular Poincaré sections, on the left results from guiding centre mode while on the
right results from full orbit mode.

is now time to switch to the modular version of the Poincaré sections, Fig. [4.28] shows
the comparison between the results. Before analysing the results it is necessary to clarify
a little thing, in the case of the results from the gyrokinetic framework, the solution is
in a 2D phase space, and the latter is fully represented in the Poincaré section. On
the contrary, the solution from full orbit mode is in a 4D phase space, by plotting the
Poincaré section in that case, we are only showing a projection of the 4D phase space
on a 2D one. The plots are comparable but actually, they are not the same thing, one
has to remember it while looking at the figures. By looking at Fig. [4.28] we can find a
good accordance between the two figures, the regions populated by chaotic particles are
the same, and this is valid for trapped particles as well. It is also possible to notice that
the super-diffusive are following the same path, as anticipated while analysing Fig. [4.27],
the behaviour is a more chaotic path but it is easy to recognise the main path where
meandering tori is leading the dynamics. This is a further confirmation of the fact that
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the increase in the transport of particles along the meander is not artificially generated by
the considered gyrokinetic model. Since trapped particle trajectories are almost covered
by the diffusive ones, it has been decided to plot these types of trajectories in the modular
Poincaré sections. By looking at the comparison between the two plots of Fig. [4.29], the

(a) Modular Poincaré section showing trapped
guiding centre dynamics from guiding centre
mode, generated with A = 0.7, eta = 0.10 and
rho = 0.10.

(b) Modular Poincaré section showing trapped
guiding centre dynamics from full orbit mode,
generated with A = 0.7, eta = 0.10 and rho =
0.10.

Figure 4.29: Comparison of trapped guiding centre dynamics coming from different
modalities in modular Poincaré sections, on the left results from guiding centre mode
while on the right results from full orbit mode.

general behaviour is quite in accordance, as anticipated, the results from full orbit mode
are more chaotic but this is expected knowing how the two models work. The islands
have the same shape in a lot of cases, the invariant behaviour is much more present in
the first case but again this is due to the regularisation of the dynamics. The fact of
having the same sort of islands in the same points of the fundamental square is assuring
us of obtaining the same kind of dynamics while considering all the types of particles, the
trajectories of the chaotic ones are kinda squeezed between these islands but we notice
also that the ballistic particle paths are kinda moving around the latter. It is possible to
conclude that also the dynamics of trapped particles is in good accordance between the
two modes, this, coupled with the fact that in both cases we obtain the anomalous super-
diffusive dynamics reassures us a lot about the quality of the results, most importantly
we are able to investigate the same type of phenomena using a reduced model. We have
to remember that the simulations for full-orbit are much more expensive with respect to
the one for the guiding centre, on average they take 10 times more time than a simulation
exploited with the gyrokinetic model. This is the real power of gyrokinetics, being able
to investigate the same dynamics in a much faster way. For instance, the three maps of
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Fig. [4.17], made by the union of data coming from 16384 different simulations, required
20 days to be generated, this while running on 50 CPU cores. If one wants to obtain
the same three figures, with the same discretization, within the same ρ and η ranges but
through the use of full-orbit mode, the total simulation would take 200 days more or less,
this would not be acceptable for our kind of code. A standard machine running non-
stop for that amount of time start to commit errors other than the fact that the results
probably are not worth the money needed to pay the energy required for the calculation.
The target of every gyrokinetic code is to reproduce the results of a full dynamics code
in the most accurate way while minimising the computational cost of the calculation.

4.8 Future perspectives

This work opens up further analysis of the concerning phenomena:

• Better study the influence of using Padé approximation instead of full Bessel func-
tions when accounting for FLR effects.

• The effect of varying random phases of the potential can be tested, this can even
lead to a massive change in the dynamics of the system but through the production
of multiple percentage maps one can look for the global behaviour of the system,
this should be done in order to generalize the results. The variation in the random
phases can be performed simply by varying numpy.random.seed.

• It should be better investigated if the range on which input parameters have been
varied makes sense if compared to the real ones, the ones associated with a plasma
generated in a magnetic fusion device. What can be already said for the Larmor

radius is that in our non-dimensional model, the macrostructures of the potential
have a characteristic dimension in the order of the unit while the value of rho

has always stayed in the order of 1/10, ten times lower. There are some regions
in a Tokamak where the plasma has these characteristics but it should be better
analysed. The same investigation should be performed for A and eta.

• It should be tried to use different turbulent potential maps, in particular, it should
be interesting to adapt some maps generated from other gyrokinetics codes in order
to investigate the dynamics of test particles in a more realistic case.

• The present model could be applied to a more realistic geometry, a curved toroidal
as well as a non-uniform magnetic field can be considered. This would lead to
different governing equations, with a greater number of independent variables (you
don’t have the reduction of order 2 as in the present case). The particles would no
longer only be subject to E × B drift but also to the ∇B or the curvature drift,
as in more realistic codes. The complexity of the code would massively increase
but, at the same time, the results would be better compared with the ones of other
gyrokinetics codes. The steps of the procedure to obtain the equations would be the
same, additional dependencies would appear in case of a more complex B naturally,
leading to more difficult and complex expressions.
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Conclusions

The present work exploits guiding centre theory to study particle dynamics inside turbu-
lent plasmas. The pre-existing 2D simplified gyrokinetic model has been checked and has
been further developed, and the expression of the gyrokinetic Hamiltonian has been ex-
panded up to the third order as reported in Sec. 2.7.3. A comparable model for the study
of particles’ full orbits has been corrected, and the fixed non-dimensional version of the
equations has been obtained and implemented, as shown in Sec. 2.9 while implementing
also a method to obtain guiding centre trajectories from the ones of the corresponding
ions (Sec. 4.1). Now it is possible to compare the dynamics coming from a full-kinetic
approach with the one resulting from the gyrokinetic model up to the second order. The
Hamiltonian is an invariant of the system, it is important to study the trend of the latter
over time for each particle, in order to check that the computation is done in the correct
way. The expression of the equation for the time evolution of k (additional independent
variable introduced with the autonomization of the system) has been derived for both
the approaches (guiding centre in Sec. 2.13.1 and full kinetic in Sec. 2.13.2) and its non-
dimensional version has been implemented in order to be integrated together with the
governing equations for particles dynamics. The expression of Hamiltonian (total energy
of a particle) has been obtained for both the reduced (in Sec. 2.14.1) and the full system
(in Sec. 2.14.2) and its non-dimensional expression has been implemented in order to
be able to plot its trend over time and check if it remains constant. Since it has been
verified that the magnetic moment (independent variable of the system) becomes a pa-
rameter (and it remains constant, as reported in Sec. 2.7.2) in the gyrokinetic framework,
its expression has been obtained through the application of Lie transform, as described
in Sec. 2.15, so that it is possible to compute its trend up to the second order from full
orbits data and check that it is well conserved. The numerical Python code is available
at github.com/cchandre/Guiding-Center/ and it has been heavily modified during the
internship, all the above-mentioned equations other than the new full kinetic approach
have been implemented together with the method to obtain guiding centres dynamics
from the ions one, this required a massive restructuring of the existing code. One of the
main features of the new version of the code is the use of class Trajectory, described
in Sec. 3.4.2, it has been inserted to distinguish various types of particles (trapped, sub-
diffusive and super-diffusive) using geometrical criteria as well as to compute interesting
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quantities for these three categories right after having obtained the full trajectories in a
very efficient way. As regards the numerical analysis of results, five main areas have been
investigated:

• Check on the correct operation of fo2gc method: As shown in Sec. 4.1, the im-
plemented fo2gc method (described in Sec. 3.3.5) works properly and it seems to
accurately estimate the guiding centre orbits since the dynamics showed in Fig. [4.1]
is pretty similar to the expected one, it can be concluded that the function is im-
plemented correctly and that it can be used to compare the dynamics from the two
different modes.

• Time-step analysis for both full kinetic and gyrokinetic approach: The time-
step analysis has been performed thanks to the exploiting of total energy compu-
tation, the same simulation executed with the use of different values of TimeStep

parameter revealed different trends of the Hamiltonian as shown in Fig. [4.5] and
Fig. [4.7] respectively from Sec. 4.2.2 and Sec. 4.2.3. In case of an excessively high
value of the time-step then the Hamiltonian is not well conserved, two different
optimal values have been chosen for the two modalities:

• 5 · 10−3 for the gyrokinetic model.

• 5 · 10−4 for full kinetic model.

It is also very important to have verified that, since the guiding centres’ dynam-
ics is much smoother with respect to particles’ one, the required time-step for the
integration can be much larger ( 1 order of magnitude) emphasizing the great ad-
vantage of a gyrokinetic approach with respect to a full kinetic one. Within this
analysis, as reported in Sec. 4.2.4, the influence of the number of points on the
grid, where the potential is evaluated, on the conservation of Hamiltonian has been
also investigated, since the computational time is not affected by this parameter
(Fig. [4.14]), and following the results showed in Fig. [4.13] when a large amount
of memory is available the use of N = 212 must be preferred, this lead to a total
number of points on the grid equal to 224.

• Influence of physical parameters ρ and η on guiding centres dynamics: The in-
fluence of rho (Larmor radius) and eta (real parameter) is principally investigated
in Sec. 4.3.1 and Sec. 4.3.2, it has not been investigated the influence of A (Am-
plitude of electrostatic field oscillations) since it was already been done in previous
work on this model [Sta22]. As shown in Fig. [4.17], the choice of input parameters
strongly influences the behaviour of the system. The expected regularisation of the
dynamics associated with an increase of ρ is clearly present while looking at the
percentage map for trapped particles, this is fundamental since it clearly reflects
the real physics of a system like this. On the other hand, Fig. [4.18] highlights the
presence of a strong super-diffusive regime for rho ≥ 0.2. What is more, is that this
particular phenomenon occurs in the same region where the percentage of trapped
is at its maximum, the novelty here is that together with a well-known effect we
have also the occurrence of an unidentified behaviour with exact opposite dynamics
with respect to trapped particles one.
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• Investigation of anomalous ballistic behaviour in certain regimes: Sec. 4.4, 4.5
and 4.6 have been dedicated to the analysis of the phenomenon discovered during
the analysis at the previous point. Through the use of local analysis as well as local
rotational number analysis, it has been confirmed that the anomalous ballistic be-
haviour is associated with meandering tori mechanism. The presence of a transport
barrier, which prevents transport along the perpendicular direction with respect to
the trajectory of invariant particles, together with the presence of a twist-less in-
variant torus, a trajectory for which the computed winding number presents a local
maximum, are the final confirmation of the presence of the well known meandering

tori mechanism. The reason that leads to the appearance of this phenomenon has
not been investigated, probably lies in the turbulent potential, the latter has only
been clearly identified.

• Comparison of dynamics of the two different kinetic approaches: The compar-
ison of results from the different modalities of the code is faced in Sec. 4.7. Despite
the obvious fact that the behaviour of guiding centres from full orbits is more chaotic
since the potential is turbulent and the particles follow large orbits. The dynamics
and the Poincaré sections for the two modalities are in good accordance, it is possi-
ble to recognise the two preferential paths that invariant guiding centres follow and
it is noteworthy that some particles have a comparable speed with the ones from the
gyrokinetic model. This means that the revealed and examined ballistic behaviour
is not artificially generated by the considered gyrokinetic model but it is present
also in a more reliable approach as the one that simply exploits the integration of
the equations of motion. It is noticeable also the fact that also the dynamics of
trapped particles is well comparable, this is very important as well.

In conclusion, the present work has ranged over various aspects, from the further devel-
opment of the theoretical gyrokinetic model to the derivation and implementation of new
methods and tools in the numerical code to the numerical analysis of results through the
use of non-conventional local analysis. A good level of novelty comes from my work on
this topic, the investigation of an anomalous super-diffusive behaviour has led to the dis-
covery of the presence of a particular mechanism that hadn’t been previously observed in
models like the considered one, this while also verifying that the results from the gyroki-
netic framework were reliable thanks to the comparison with a full kinetic approach. This
work surely opens up future investigations and research as anticipated in Sec. 4.8, it can
be exploited to better understand transport associated with the turbulence in magnetic
fusion devices.
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Appendix A

Hamiltonian systems

This appendix is based on [Cha18].

A.1 Hamilton’s equations

The variational principle ( also known as Hamilton’s principle) applies to the system
considered, this means that the system evolves in time minimizing the energy of the
system, if functional energy is defined, through the minimization of this functional in time
we would be able to know how the system evolves. This system is Hamiltonian indeed,
this property is inherited by the Vlasov-Maxwell equation system, of which our system
is a simplification. Despite the easing, the system maintains this fundamental property.
If the system wasn’t Hamiltonian the particles would have lost or increased their energy,
the dynamical system wouldn’t have been physically coherent. An example that can be
mentioned is the validity of the Ljuville theorem, if this wasn’t the case one of the most
important theorems for the study of dynamical systems composed of particles would have
lost its validity. Maintaining the characteristic of being a Hamiltonian system is crucial
for us, our manipulation and operations on the model shouldn’t drop this condition.
A Hamiltonian system is characterised by the scalar function H(x,p, t) also known as
Hamiltonian. q and p describe the state of the system r with r = (q,p). Of great interest
are the evolution equation known as Hamilton’s equations:

dp

dt
= −∂H

∂q
. (A.1)

dq

dt
= +

∂H

∂p
. (A.2)

Hamilton’s equations govern the time evolution of a dynamical system, an important
binary operation in Hamilton mechanics is the Poisson bracket, the latter is characterised
by useful multiple properties such as bilinearity, antisymmetry, Leibniz’s rule and Jacoby
identity. They are respectively summoned up in the following equations:

{
F,G+ αH

}
=

{
F,G

}
+α

{
F,H

}
. (A.3)
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{
F,G

}
= −

{
G,F

}
. (A.4)

{
FG,H

}
= F

{
G,H

}
+

{
F,H

}
G. (A.5)

{
F,

{
G,H

}}
+

{
H,

{
F,G

}}
+

{
G,

{
H,F

}}
= 0. (A.6)

In a more general sense, Poisson Bracket is used to define Poisson algebra.

A.2 Lie transform

Lie transform is a canonical transformation, a change of coordinates, very useful whenever
you need to reduce the order of the system. Also in this case we do not lose the main
characteristic of our system, being a Hamiltonian system. This coordinate change applies
as follows:

Z ′ = eεLsZ ⇐⇒ Z = e−εLsZ ′. (A.7)

With Z ′ and Z being respectively the new and old variables. The operator Ls is defined
as follows:

Ls =
{
S, ·

}

With S being the generating function associated with the contextual change of coordi-
nates. Being Ls a Poisson bracket itself, it is a linear operator. If we take his exponential
it will still be a linear operator, therefore by applying it we don’t lose linearity. It is
possible to write eεLs in a more interesting way:

eεLs =
∞∑

n=0

εn
L

n
s

n!
= 1 + εLs +

ε2
L

2
s

2
+ ...

With meaning of L
n
s being:

L
n
s =

{
S,

{
S,

{
S, ...

{
S, ·

}}}}

What is more, is that for a generic observable F the following relation is valid:

F ′(Z ′) = F (Z). (A.8)

This means that the observable expressed with the new form through the new coordinates
maintains the same value of the F expressed in the old shape with the old variables. This
is really important, if this wasn’t the case why would our Hamiltonian change his value
consequently to a change of coordinates, it wouldn’t be correct physically speaking. It is
possible to show that Eq. [A.8] comes from the validity of Leibniz Rule:

F ′(z′) = F ′(eεLsz) = eεLsF ′(z)

In fact, through a few passages, it is easy to show that:

F ′(z) = e−εLsF (z) ⇒ F ′(z′) = e−εLsF (z′) = e−εLseεLsF (z) = F (z)
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A.2 – Lie transform

Developing eεLs at the first-order means that:

F ′(eεLsz) = F ′(z + ε
{
S, z

}
). (A.9)

Using the property of bilinearity and the Jacoby identity it is possible to demonstrate
the following equation: {

eεLsF, eεLsG
}

= eεLs

{
F,G

}
. (A.10)

Eq. [A.10 implies that the Poisson bracket are not being modified by the application of
the operator eεLs , developing the operator at the first-order, as it is done in Eq. [A.9]], it
is possible to prove it:
{
eεLsF, eεLsG

}
=

{
F+ε

{
S, F

}
, G+ε

{
S,G

}}
=

{
F,G

}
+

{
ε
{
S, F

}
, G

}
+

{
F, ε

{
S,G

}}
+O(ε2)

It can be taken advantage of Jacoby’s identity:
{
F,

{
S,G

}}
(−)(−)

{
G,

{
F, S

}}
= −

{
S,

{
G,F

}}
=

{
S,

{
F,G

}}

So that we obtain:
{
eεLsF, eεLsG

}
=

{
F,G

}
+ε

{
S,

{
F,G

}
+O(ε2)

}
. (A.11)

It can be concluded that the Poisson brackets are not being modified from this operator,
during the change of coordinates this is very important for example, in fact, the following
expression is valid: {

F ′, G′
}

(z′) = eεLs

{
F,G

}
(z′)

It should be noted that both brackets are calculated in the new variables, this is very
useful, it is possible to write:

{
F,G

}
=
∂F

∂zi

{
zi, zj

}∂G
∂zj

=
∂F

∂zi
Jij(z)

∂G

∂zj

{
F ′, G′

}
=
∂F ′

∂z′
i

{
z′

i, z
′
j

}∂G′

∂z′
j

=
∂F ′

∂z′
i

Jij(z′)
∂G′

∂z′
j

As it is known the new expression of the variables can be calculated as:

z′
i = eεLszi ; z′

j = eεLszj ;

If we substitute those two last definitions we have:
{
z′

i, z
′
j

}
=

{
eεLszi, e

εLszj

}
= eεLs

{
zi, zj

}
= eεLsJij(z)

This last equation is fundamental, it is telling us that the expressions of the elements
of the matrix for the change of coordinates do not change, of course, the value of the
element will change, it is calculated in a new different variable, but the expression of the
elements won’t change consequently to the application of the Lie Transform. This is why
one wants to use a canonical transformation, that’s one of the most important advantages
of doing that.
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