
 

 

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA 

SCUOLA DI INGEGNERIA E ARCHITETTURA 

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA 

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA 

 

TESI DI LAUREA MAGISTRALE 

IN 

INFRASTRUCTURES FOR CLOUD COMPUTING AND BIG DATA M 

 

PERFORMANCE EVALUATION OF FUNCTION COMPOSITION 

IN MIDDLEWARES SUPPORTING FAAS FOR SERVERLESS 

COMPUTING 

 

Candidato 

Corrado Proietti 

Relatore 

Chiar.mo Prof. Antonio Corradi 

 Correlatore 

Dott. Andrea Sabbioni 

Anno Accademico 2021-2022 

Sessione IV 



 

 

Summary 

Introduction  

1. Cloud Computing 1 

1.1. Model of Deployment ...................................................................................... 3 

1.2. From Single to Multi Cloud ............................................................................ 5 

1.3. Models of Service ............................................................................................ 7 

2. Function-as-a-Service 13 

2.1. Serverless ...................................................................................................... 18 

2.2. Message Oriented Middleware ....................................................................... 22 

2.3. Approaches and Challenges in Function Composition ................................... 30 

3. Thesis Project 38 

3.1. High Level Components and Interaction Schema Workflow .......................... 40 

3.1.1. MapReduce Model................................................................................. 44 

3.1.2. Coordinator Implementations ................................................................ 46 

3.1.3. Invokers Implementations ..................................................................... 50 

3.2. ActiveMQ ..................................................................................................... 52 

3.2.1. Broker Interception Capabilities ............................................................ 55 

4. Experimental Setup 61 

4.1. Deployment .................................................................................................. 61 

4.2. Metrics Collection ......................................................................................... 64 

5. Experimentations and Relevant Results 67 

5.1. Stream of Incoming Requests Emitted at Steady Regime .............................. 71 

5.2. Stream of Incoming Requests Emitted at Increasing Rate ............................. 81 

6. Conclusions and Future Developments 93 

Index Of Figures 95 

Index Of Tables 100 

Index Of Listing 101 

Index Of Equations 102 

Bibliography 103 



 

 

Abstract 

The present experimental thesis entitled Performance Evaluation of Function 

Composition in Middlewares supporting FaaS for Serverless computing is the result 

of a first phase of research and literature analysis in the field of FaaS architectures 

and of a second experimental phase, in which qualitative conclusions were drawn 

about the adoption of an innovative architectural model. 

The concept of Serverless Computing is a new and exciting aspect of cloud 

computing that involves the deployment of small pieces of software applications and 

services as serverless functions. 

Serverless computing architecture enables the cloud provider to fully manage the 

execution of a server's code, eliminating the need for customers to develop and 

deploy the traditional underlying infrastructure required for running applications 

and programs.  

Even though big tech companies are extensively utilizing serverless computing in 

their products and investing billions on this novel but affirmed technology, it is 

affected by various problems still considered an open field in research. 

In fact, by definition, FaaS architectures are geographically dislocated and 

consequently subject to event propagation delays that can significantly degrade the 

overall system performance. What is generally done, is to reduce as much as possible 

cumulative delays especially if attributable to the infrastructure itself that could 

determine a greater or lesser competitiveness on the market. 

The background idea, which becomes the leit motiv throughout this work, is to 

develop and assess the performance, and thus the validity, of a Message-Oriented 

Middleware-centric serverless platform architecture promising to enable advanced 

analytics capabilities and better overall performance, without renouncing the 

essential characteristic of scalability in the context of distributed systems. 

Experiments in emulated conditions show that applying the MOM coordination co-

locality principle improves the end-to-end delay and data processing performance. 

 

 



 

 

Introduction 

The advent of the Internet and the growth of the World Wide Web at the tail 

end of the 1980s solidified the crisis of the centralized model in substitution of more 

decentralized models. The prospect of being able to take use of computer connections 

on a worldwide scale has made it possible for a multitude of companies to provide 

an ever-expanding selection of services that can be accessed and utilized through the 

Internet. The enormous increases in the amount of data that is transferred over the 

network has, however, been accompanied by the need for companies to lowering the 

adoption step curve for distributed services to better match the emerging market 

needs.  

There was a noticeable shift in preference towards solutions that offered faster 

time-to-market by implementing cloud adoption and making it more economically 

feasible. This trend was driven by the need to reduce development time and costs, 

while also delivering products and services more quickly and efficiently to meet 

customer demands. As a result, the very first solutions that would later come to be 

known as Cloud Computing started to take shape and refers to the act of making 

computer resources available to users in the form of services that may be accessed 

via the usage of the Internet. 

The first chapter introduces cloud computing as a technology that has emerged 

in the last decades, starting from a historical treatment that has justified its rapid 

development and adoption both in the business and consumer sectors. Will be also 

argued the technological context which cloud computing has taken inspiration from 

for its development and point out the motivations behind the model. Among the 

multiple advantages in terms of pricing, dependability, and scalability cloud 

computing offers, there are also some disadvantages, especially in terms of 

performance that still represent an open challenge in the academic front. 

A FaaS platform adheres to the so-called serverless computing model, hiding to 

the users the infrastructure and the management thereof, tasking the consumers only 

with the creation of the business logic functionality. Serverless computing enables 

developers to spend more time on the creation of application logic, programming, 



 

 

and writing code in terms of functions and events. This frees the cloud provider from 

the responsibility of maintaining the complexity of the underlying infrastructure. 

Subsequently, the second chapter, exposes that function chaining, from the 

performance perspective, represents one of the most relevant limitations of such 

technology with penalties and overall system responsiveness degradation. Moreover, 

starting from an in-deep literature about FaaS and the current state of function 

composition approaches, the chapter proceeds highlighting what are the open 

challenges on that. 

Even though latencies can materialize not only from a bad user-defined chaining 

logic but also from inefficient infrastructural support, the fourth chapter will 

highlight the proposed solution to such problems implementing a MOM-based 

function coordination infrastructure exploiting the so-called reflective invocation 

interaction model. 

For the aim of this thesis and in order to put this proposal into action, an 

investigation of the many options now available on the market for message-oriented 

middlewares that include message interception as a defining trait will be carried out. 

The purpose of this implementation, which can be found in chapter three, is to 

formalize a workflow proposal that will be helpful in the building of a testbed that 

is able to test the potential of this model. 

Since FaaS architectures are inherently agnostic on the execution state, but more 

significantly on the location of the deployed functions, these can be deployed both 

in single-cloud contexts, with mostly low latency times, and in multi-cloud contexts, 

where times are significantly higher. Beginning with the suggestion given in the prior 

paragraph, chapter four will proceed to discuss the two deployments that have been 

suggested in order to recreate the aforementioned situations. 

The fifth chapter will first discuss the many sorts of tests constructed, from the 

perspective of interacting actors and from the kind of workloads proposed, and then 

it will present the outcomes of the executions of these tests. This will allow for some 

definitive conclusions to be drawn about the work that was carried out. These 

findings will aid to highlight the benefits and drawbacks of the solution that has 

been offered in terms of its performance and the resources that are involved. 



 

 

Ultimately, in the sixth and last chapter, we want to draw conclusions and 

considerations on the results obtained and gives inspiration for possible future 

developments.



 

1 

 

1. Cloud Computing 

The study of distributed systems is an active area of research for more than 

seventy years. It has also played an essential part in the field of computer science, 

since it was instrumental in the development of the Internet, which is actually 

essential to all aspects of contemporary life. In addition, distributed systems have 

continued to develop as a result of a variety of changes and resulted in the creation 

of new kinds of computer systems as well as the modification of previously 

established paradigms, ranging from client-server up to what is called cloud 

computing. The essential traits and model components, on the other hand, have 

stayed generally unchanged throughout time, with the current paradigm enhancing 

(or re-engineering) technologies from earlier paradigms. 

Distributed systems have gone through a continuous evolution as a consequence 

of technical breakthroughs and the shifting roles they play in society. The effect of 

each transformation has ultimately been the establishment of a new paradigm. Each 

new distributed system paradigm, where the most prominent example of which is 

cloud computing, makes it possible for new forms of commercial value to be created, 

but it also ushers new research challenges that need to be addressed in order to 

realize and improve the operation. 

Recalling the NIST definition of Cloud Computing [1]: 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction. This cloud 

model is composed of five essential characteristics, three service models, and four 

deployment models.”, it comes up that Cloud Computing relies on a set of 

interconnected resources territorially distributed which need to communicate to 

synchronize and coordinate themselves to fulfil their aim. Hence, a reliable 

networking architecture layer is a crucial component of Cloud framework because 

users interact with services disregarding the location the request comes from. 

Cloud computing, in its broader definition, is indeed the delivery of computing 

resources over the net, adding up to easy management and access even by non-expert 



 

2 

 

users. When we store our files online in its place of our domicile computer, or utilize 

webmail or a social networking site, we are using a “cloud computing” service.  

From an historical perspective Cloud Computing, intended as the mean of 

aggregating computational and storage resources to whoever wanted them, is not a 

recent idea. 

In the 50s, mainframes represented a step toward what today is being called as 

Cloud Computing, in fact, users might access these huge room-sized computers 

through terminal in a shared fashion. One of the main drawbacks of such approach 

were that user had to reserve computational time, keeping calculus as short as 

possible, in order to free these resources for others. 

Universities and companies rented out computation time on mainframe computers 

because this was one of the available ways to access computing resources as they 

were too expensive to be owned by individuals. 

By the 60s the main underlying ideas of Cloud Computing started to come to 

light, conceptualization of computing resources as public utility and the possibility 

of a networks of computers that would allow people to access data from anywhere 

in the world. 

Using virtualization software, it became possible to execute one or more operating 

systems simultaneously in an isolated environment. Complete (virtual) computers 

could be executed inside one physical hardware which in turn can run a completely 

different operating system. Virtualization played a key role in driving technology 

forward and was a significant contributor to the advancement of communication and 

information. 

Virtualization, in fact, uses software to create an abstraction layer over computer 

hardware that allows the hardware resources of a computer, such as processors, 

memory, storage to be divided into several virtual computer or virtual machines 

(VM). Each VM runs its own operation system completely isolated with respect of 

other VMs even though it is running the same underlying hardware resources. 

Such technology was and is still a valuable offer for mid-large sized company 

because enables more efficient utilization of physical computer hardware with a 

greater return of investment. 

 



 

3 

 

1.1. Model of Deployment 

Cloud Computing has only become a mainstream reality and widely used term in 

the early 21st century with the support of major technology companies.  

The idea of Cloud Computing started to emerge when, initially, companies had 

to expose their services to the web. Indeed, with growing expansion of the Internet 

and users, companies had to give the most seamlessly experience toward such 

services but containing the cost and thus contributing the expansion of the cloud 

computing architecture. 

As it often happens in traditional software architectures, Cloud Computing could 

be categorized in different categories and since they can all provide different 

capabilities, the distinction usually falls in these three main types of cloud 

computing: Public Cloud, Private Cloud and Hybrid Cloud. 

In simple terms, a Public Cloud is a vast array of readily available to the public 

compute and software resources such as networking, memory, central processing unit 

(CPU) and storage. These resources are globally hosted, distributed into data centers 

and fully managed by vendors ready to be rent and used to build IT infrastructures. 

In short, Public Clouds are cloud environments typically created from IT 

infrastructure not owned by the end user. 

Traditional public clouds always ran off-premises meaning that the infrastructure 

is not owned by the final customer even though today public cloud providers have 

started offering cloud services on clients on-premises data centers. This has made 

location and ownership distinctions obsolete. 

Even fee costs are not necessary characteristics of public clouds anymore, since 

some cloud providers (like the Massachusetts Open Cloud) allow tenants to use their 

clouds for free. 

Accessing your resources in this type of cloud can be a simple task as using a web 

browser. 

One of the great benefits of the public cloud is that the underlying hardware and 

logic is hosted, owned, and maintained by each of those vendors. This means that 

customers have no responsibility for buying or maintaining the physical components 

that make up their public cloud IT solutions. 



 

4 

 

The pay-as-you-go model used to charge for these resources makes them a more 

cost-effective solution than owning them as you only pay for what you consume. The 

ability to scale the size of your solution up to accommodate for the peaks and troughs 

in usage saves the customer money and gives huge flexibility. 

Financially backed Service Level Agreements (SLAs) commit each vendor to a 

monthly uptime percentage and guarantee of security in line with standards. The 

public cloud vendors have invested, and continue to invest, tenths of billions of euros 

in their data centers so they can be provisioned with state-of-the-art fault tolerant 

power supplies, network paths, storage facilities and automated monitoring and 

maintenance systems to meet these SLAs. 

Private clouds, instead, are owned and used by single private or organisations. 

They have traditionally been physically located at the business own data center 

using its own hardware. 

However, a business may employ a third-party provider to host their private cloud 

on their kit. In that scenario, private cloud does have some similarities to public 

cloud in that the resources are in a remotely managed data center. However, this 

emerging trend about private clouds foresees that data centers are located off-

premises, meaning they are not situated on the organization own property. However, 

although these providers will offer administrative services, they will only be able to 

offer a tiny percentage of the global services of a public cloud. 

Basically, all clouds become private clouds when the underlying IT infrastructure 

is dedicated to a single customer with completely isolated access. 

This new approach to building private clouds eliminates the need for organizations 

to abide by traditional location and ownership rules, as they are now able to access 

and use vendor-owned data centers from any location. This provides organizations 

with more flexibility and scalability when it comes to their cloud computing needs. 

If the private cloud is being hosted in your own data center, instead, then you can 

tailor your cloud computing approach to your own preferences and internal 

processes. Some of the more stringent security and compliance legislation insists on 

certain types of data and resources being kept inside your own security boundary - 

a self-hosted private cloud is the perfect tool to enforce these policies. 



 

5 

 

Ultimately, a hybrid cloud solution offers benefits from the best of both options 

and makes cloud bursting possible. In the example of extending your private cloud 

network, this means that if you are running out of compute capacity on premise, it 

can be supplied by the public cloud. This is a cost-effective way for businesses to 

increase compute capacity on demand while still utilising the already paid for on 

premise resources. 

 

1.2. From Single to Multi Cloud 

Single and multi-cloud are two different approaches to cloud computing that 

companies can consider when deciding how to manage their IT infrastructure. Single 

cloud refers to the use of one Cloud Service Provider (CSP) for all cloud-related 

needs, whereas multi-cloud refers to the use of two or more cloud service providers. 

There are benefits to being multi-cloud, as it can provide more options and 

flexibility when it comes to cloud computing. For example, companies can take 

advantage of different CSPs strengths and capabilities, such as better high 

availability and disaster recovery, lower costs, and more diverse feature sets. Multi-

cloud can also help companies reduce to a single CSP, which can be beneficial in 

case a CSP becomes a competitor to the company or experiences an outage or other 

issues. Another benefit is that by implementing a multi-cloud strategy, enterprises 

may guarantee uninterrupted service and reserve cloud services as a crucial 

component of their disaster recovery and business continuity strategies. 

Furthermore, multi-cloud can help companies deal with capacity issues, as they 

can rely on another CSP for additional capacity and address missing features or 

products that are available on one CSP but not on another. This can be particularly 

important for regulatory or government reasons, as different CSPs may have 

different cloud regions or capabilities in specific areas. 



 

6 

 

STORAGE

CRM

EMAIL

Company is locked 
in to one cloud 
service provider

Company is more flexible 
since can rely on 

different cloud service 
providers

best pricebest price

EMAIL CRM

best price
STORAGE

MULTI-CLOUD SCENARIOSINGLE-CLOUD SCENARIO

 

Figure 1 - Single-Cloud and Multi-Cloud Strategies 

 

However, there are also downsides to multi-cloud that companies need to consider. 

One major issue is the potential for reduced performance, as moving data and 

computing between clouds can be slow and cumbersome. This is because CSPs are 

not designed to work together, and each CSP focuses on their own components, 

which can create challenges for interoperability. 

Another drawback is that multi-cloud can increase costs and require companies 

to have a more extensive skill set, as they must understand how to use multiple 

CSPs. This can create additional management overhead and administrative 

complexity, as well as increased switching costs and limited access to high-value 

services. 

Finally, multi-cloud can expose companies to increased risks and security 

concerns, as data is spread across multiple clouds instead of being consolidated in 

one place. This means companies must be vigilant about managing and securing 

their data across multiple CSPs, which can be a daunting task. 



 

7 

 

Overall, the decision to use single or multi-cloud depends on a company specific 

needs and priorities. While multi-cloud can provide benefits in terms of flexibility 

and reduced lock-in, it can also create challenges in terms of performance, costs, and 

security. As such, companies need to carefully consider their options and make an 

informed decision that aligns with their goals and objectives. 

 

1.3. Models of Service 

With the term as-a-Service, it often refers to a cloud computing service managed 

by an external provider on behalf of the user, which can effectively focus its efforts 

on business related strategy tasks. Each kind of cloud computing offers the possibility 

to delegate the management of an increasing number of components of the on-

premises infrastructure. 

On-premises IT infrastructure brings a high level of responsibility with respect of 

users and manager. In fact, when hardware and software are hosted on-site the 

upgrading, replacing, or managing of such components are company and its teams 

concerns. In this context, cloud computing, allows to delegate partially or totally to 

a third-party actor these duties. 

As the user delegates a larger set of its IT infrastructures, three kinds of cloud 

computing emerge, each one with an increasing degree of management left to the 

user: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-

as-a-Service (SaaS). 

 



 

8 

 

NETWORKING

STORAGE

SERVER

VIRTUALIZATION

OPERATING 
SYSTEM

MIDDLEWARE

RUNTIME

DATA

APPLICATION

NETWORKING

STORAGE

SERVER

VIRTUALIZATION

OPERATING 
SYSTEM

MIDDLEWARE

RUNTIME

DATA

APPLICATION

NETWORKING

STORAGE

SERVER

VIRTUALIZATION

OPERATING 
SYSTEM

MIDDLEWARE

RUNTIME

DATA

APPLICATION

NETWORKING

STORAGE

SERVER

VIRTUALIZATION

OPERATING 
SYSTEM

MIDDLEWARE

RUNTIME

DATA

APPLICATION

INFRASTRUCTURE 
AS A SERVICE

PLATFORM
AS A SERVICE

SOFTWARE
AS A SERVICEON-PREMISES

YOU MANAGE OTHER MANAGES
 

Figure 2 – Models of Service 

 

In reference of Figure 3, Infrastructure-as-a-Service, or IaaS, represents the first 

level of delegation relocating to the cloud the management of the on-premises IT 

infrastructure. It usually relies on a pay-as-you-go plan meaning that the users pay 

what resources, such as storage or virtualization, and how much time the user 

effectively consumes. 

In short, user is responsible for the operating system and data, applications, 

middleware, and runtime, while the cloud provider grants access to and management 

of network, server, virtualization, and storage. There is no need to manage or update 

the on-premises datacenter, which is done by the provider. The user has complete 

control of the infrastructure through an Application Programming Interface1 or a 

web dashboard.  

 
1 Abbreviated as API 



 

9 

 

This model offers considerable flexibility allowing the user to purchase only the 

components it needs, adding or deleting them when and how needed with the 

advantage of low fixed and no-maintenance costs. 

It is a fast and flexible way to create and then retire test and development 

environments. You can use only the infrastructure you need to create the 

development environment, grow, or shrink it, stopping once you get what you want 

and paying only for the services you use. IaaS also has some drawbacks, such as 

potential issues related to service reliability, provider security and multitenant 

systems where the provider needs to share infrastructure resources with multiple 

customers. However, these issues can be avoided by choosing a reliable and qualified 

provider with a consolidated experience and reputation. Examples of IaaS from 

public cloud providers are Amazon AWS, Microsoft Azure, and Google Cloud. 

Platform-as-a-Service, or PaaS, instead, lays another abstraction layer on top of 

the infrastructural layer adding integrated stacked solution or services. 

Mainly targeted for developers and programmers, PaaS cloud services offers a 

platform where the users could develop, execute, and manage its applications 

without taking into account all the management aspects related with the platform 

itself. 

The user is therefore focused on coding, building, and managing the application 

disregarding software updates or hardware maintenances. 

Giving an environment where to create and distribute applications, providers let 

developers build modular and integrated applications reducing the time spent in 

coding. 

At the time this work is being written, most popular PaaS providers are AWS 

Elastic Beanstalk, and Red Hat OpenShift. 

Software-as-a-Service, or SaaS, known as cloud application services, is the most 

comprehensive cloud services seen up to now, and it is about distributed business-

level applications accessed by users typically via web browser. 

The provider takes care of software updates, bug fixes, and other general software 

maintenance tasks, while the user connects to the app through an API or dashboard. 

There is no software installation on individual machines and groups access to the 

program is more streamlined and reliable. 



 

10 

 

A typical SaaS service we are all familiar with is when you have an email account 

from a web service like Outlook or Gmail since logging into your account and using 

your mail from any device, you are actually using a SaaS cloud service. SaaS is an 

optimal option for small businesses that do not have enough staff or bandwidth to 

handle software installations and updates, or for applications that require minimal 

customization or are used only sporadically. 

 

NETWORKING

STORAGE

SERVER

VIRTUALIZATION

OPERATING 
SYSTEM

MIDDLEWARE

RUNTIME

DATA

APPLICATION

NETWORKING

STORAGE

SERVER

VIRTUALIZATION

OPERATING 
SYSTEM

MIDDLEWARE

RUNTIME

DATA

APPLICATION

NETWORKING

STORAGE

SERVER

VIRTUALIZATION

OPERATING 
SYSTEM

MIDDLEWARE

RUNTIME

DATA

APPLICATION

NETWORKING

STORAGE

SERVER

VIRTUALIZATION

OPERATING 
SYSTEM

MIDDLEWARE

RUNTIME

DATA

APPLICATION

INFRASTRUCTURE 
AS A SERVICE

PLATFORM
AS A SERVICE

SOFTWARE
AS A SERVICEON-PREMISES

YOU MANAGE OTHER MANAGES

NETWORKING

STORAGE

SERVER

VIRTUALIZATION

OPERATING 
SYSTEM

MIDDLEWARE

RUNTIME

DATA

FAAS

SERVERLESS

BAAS

 

Figure 3 - FaaS Service 

 

Function-as-a-Service, or FaaS, is a cloud computing model in which the key 

elements are the functions triggered by either external or internal events. 

It sits between the PaaS and SaaS because it actually runs on dedicated 

middleware capable of managing the function lifecycle; basically a PaaS but not a 

complete business level, ready-to-use application as SaaS are. 

Such functions are typically hosted in stateless container but since these 

containers cannot contain application state (either user, session or application state) 

it is usually stored outside the boundaries of the container itself via a cloud storage 

service. 



 

11 

 

Concisely, developers need to build and execute functions bundled as application 

packages, without maintain their own infrastructure resulting in applications made 

up of several functions. 

However, when the requirement for fine-grained state sharing arises, the 

ephemeral nature of functions creates a number of problems that necessitate 

effective, scalable, and affordable storage solutions. At the same time, the opaqueness 

of functions makes it more challenging to implement efficient mechanisms for process 

coordination, such as broadcast [2], aggregation and shuffling, which are common 

communication primitives in distributed systems. 

As a consequence of FaaS deployment criteria, the resulting programming model 

is inherently stateless as there is no guarantee that subsequent invocations of the 

same function will be executed in the same environment, or that the resources 

allocated for the function execution are not reclaimed after its termination. In this 

one-to-one mapping between functions and triggering events, FaaS platforms achieve 

finer-grained scalability: at any moment, the computational resources allocated to 

handle user requests match the ingress load. 

FaaS solutions are generally available on leading public clouds whilst provision 

can be done on-premises, providing a net increase in capacity for enterprise IT 

departments involved in app development.  

Although it is typically a cloud computing platform that uses cloud computing 

services, the model is expanding to include on-premises and hybrid deployments as 

well. 

FaaS infrastructure is typically measured and used on demand by the service 

provider thus, being present when needed, it does not require server processes to run 

consistently in the background. 

Due its execution model, FaaS functions boast minimal memory footprint and 

great scalability compared to traditional distributed applications.  

There are architectural constraints in order to enable dynamic scalability, like 

time limits on the execution of a function. Function needs to be something that can 

start up and run quickly starting in milliseconds and process individual requests. As 

the demand increases and there are many simultaneous requests, the system creates 



 

12 

 

the number of copies of the function needed. As demand decreases, the application 

automatically deletes unnecessary copies.  

Dynamic scalability is an advantage of the FaaS model as providers only charge 

for the resources used and not downtime while remaining a model perfect for high-

volume transactions and sporadic workloads such as reporting, image processing, 

scheduled tasks, data processing in IoT environments and mobile or web apps. As 

for SaaS, FaaS providers let customers to interact with functions through APIs 

conceived as a form of contract, with documentation representing an agreement 

between the parties, simplifying the integration of new application components into 

existing architecture, promote systems integration. 

 

In the next chapter what is going to be examined, after a short but comprehensive 

historical framing, are the reasons why serverless computing started to come up as 

emerging technologies, which is the typical FaaS deployment scenario and how 

Message-Oriented Middleware could exploit the potentiality of such technologies. 

  



 

13 

 

2. Function-as-a-Service 

FaaS architectures, as can be guess from the previous chapter, is a type of 

technology that does not arise from a specific need, or as better to say, is born after 

a long process of improvement and optimization of existing architectures. The 

reasons that push the development of distributed technologies, as we will see, is not 

exclusively due to performance requirements, but also to economic and 

organizational needs. 

Although virtualization technology dates back to the 60s, it only became 

widespread in the early 2000s. Hypervisors were developed decades ago to provide 

multiple users with simultaneous access to computers with active batch processing. 

However, over the following decades, the problem of having multiple users on a single 

computer was addressed by choosing solutions other than virtualization such as the 

development of Time-Sharing Operating Systems.  

Around 90s, most companies used physical servers and IT stacks associated with 

a single vendor, which did not allow existing applications to run on hardware from 

other vendors (commonly known as lock-in problem). Companies then, began to 

upgrade their IT environments with less expensive equipment from various vendors. 

However, they were tied to poorly used physical hardware, since each server could 

only perform one task. Without virtualization, enterprises, would have required 

separate servers with each one with one OS and the required software. 

That is when virtualization began to spread. Server usage has been made more 

efficient, in some cases abandoned, thus reducing the costs associated with 

purchasing, configuring, cooling, and maintaining. 

Virtualization [3] brought huge improvements in business efficiency and costs 

prediction accuracy for various cloud application workload patterns. 

Virtualization technologies, to allow the efficiency of hardware infrastructures and 

therefore the installation of multiple operating systems, require a software 

component called Hypervisor. 

The Hypervisor, as shown in Figure 4, is capable to virtually abstract the 

underlying hardware and present it to the different virtual machines. In this way, 

the operating system will see this abstraction as if the hardware were exclusively 



 

14 

 

dedicated to it when, instead, the different virtual machines compete for the 

acquisition of these resources. 

 

HARDWARE

HOST OPERATING SYSTEM (OPTIONAL)

HYPERVISOR

GUEST
OPERATING
SYSTEM

LIBRARIES

APPLICATION

GUEST
OPERATING 
SYSTEM

LIBRARIES

APPLICATION

GUEST
OPERATING
SYSTEM

LIBARIES

APPLICATION

VM1 VM2 VM3

 

Figure 4 – Typical Virtualization Layers 

 

In short, virtualization brought various kinds of benefits though: 

• Resource efficiency: Before virtualization, each application server required 

its own dedicated physical resources (CPU, memory, …) and each physical 

server would be underused. As an example, a single application may use 10-

20% of processor capacity while virtualization could improve this percentage 

up to 70-80% sharing the resources among all applications. This enables 

maximum utilization of the physical hardware computing capacity. 

• Easier management: Virtualizing computers with software-defined VMs 

simplifies policy management through software, enabling the creation of 

automated IT service workflows. With tools for automated deployment and 



 

15 

 

configuration, administrators can group VMs and apps as services using 

software templates, allowing for efficient and consistent setup without manual 

errors. Virtualization security policies can enforce security configurations 

based on the VM role and even improve resource efficiency by retiring unused 

VMs to conserve space and computing power. 

• Minimal downtime: OS and application crashes can cause downtime and 

disrupt user productivity. Admins can run multiple redundant virtual 

machines alongside each other and failover between them when problems 

arise. Running multiple redundant physical servers is more expensive. 

• Faster provisioning: Buying, installing, and configuring hardware for each 

application is time-consuming. Provided that the hardware is already in place, 

provisioning virtual machines to run all your applications is significantly 

faster. It can be even automated using management software and build it into 

existing workflows.  

The broad applicability of virtualization has helped reduce vendor constraints and 

laid the foundation for cloud computing. 

However, while virtual machines on clouds give a simple method to increase 

processing capacity on demand, a cloud provider must forecast how much will be 

required because starting a virtual machine takes time. Waiting until demand peaks 

may result in lost income from unfulfilled demands, while buying excessively in 

advance results in wasted capacity and in unreturned revenues producing 

expenditures. 



 

16 

 

HARDWARE

HOST OPERATING SYSTEM (OPTIONAL)

HYPERVISOR

GUEST OPERATING SYSTEM

VM1

CONTAINER RUNTIME

CT1 CT2

A
PP
 1

CT3
A
PP
 2

A
PP
 3

A
PP
 4

A
PP
 5

A
PP
 6

A
PP
 7

A
PP
 8

A
PP
 9

GUEST OPERATING SYSTEM

VM2

CONTAINER RUNTIME

CT1 CT2

A
PP
 1

CT3

A
PP
 2

A
PP
 3

A
PP
 4

A
PP
 5

A
PP
 6

A
PP
 7

A
PP
 8

A
PP
 9

v 

Figure 5 – Typical Containerization Layers 

 

A cloud solution is specifically designed to address these issues and here where 

containerization comes in. 

Containers are a lightweight solution that maintains all the benefits of virtual 

machines, such as the segregation of users and programs in their own stack on a 

shared hardware platform, while enhancing speed and better using server resources 

under fluctuating loads. As shown in the figure below, a container packs up only an 

application and any associated software, such as libraries, it needs to run without 

requiring any OS, but it uses the OS of the underlying host for those functions. By 

losing the OS, a container is much smaller in size, and it is quicker for an instance 

to be created. 

As just said and as shown in Figure 5, all containers which run on the same 

physical server use the underlying OS. A container runtime, namely the containers 



 

17 

 

hypervisor or container runtime maintains the isolation of each container processes 

from those of others, while sharing the OS runtime. Thus, it is sometimes said that 

containerization virtualizes the OS, while virtualization virtualize the hardware.  

Given the size reduction of containers, thousands of these self-contained bits of 

code can run on a server. A bonus that emerges from this technology is that a 

container is portable from one server to another supporting that same OS allowing 

developers to create and test a containerized application on a confined environment 

and then move it to a cloud sever, when appropriate.  

A container starts faster than a virtual machine and shares the Operating System 

with other containers, thus reducing deployment unit sizes and increasing 

application density per virtual machine. 

 

1 2 3 4

Dedicated Server Virtualization Containerization Serverless
 

Figure 6 - Evolution from Virtualization to FaaS architectures 

 

To summarize up, as depicted in Figure 6, when was the case of dedicated servers 

deployments, different applications were distributed on different physical server; in 

consequence, servers were over dimensioned and used in an inefficient utilization 

rate. 

With virtualization in use, instead, the application density on bare metals was 

increased. Even though this was a huge resources improvement, time by time, 

companies became aware of the fact that virtual machine images, the minimum 

deployment unit, were very large. 

To obtain the same level of virtualization isolation and consolidation but 

pragmatically operate more than one application per virtual machine, and thus 

reducing their deployment size, containerization was the new emerging trend. 

But a container still requests a share of CPU, memory, and storage. What was 

desirable were to keep services as much resource efficient as possible. Even if the 

provided service is hardly requested, it continues to consume resources during the 



 

18 

 

inter-time between incoming requests resulting in a waste of computational 

resources. 

The FaaS runtime must ensure that services timeshare a host, in the sense that 

as long as the service is not being used, the resources bound to it are deallocated. 

This assumes that the FaaS model of deployment, follow a serverless architecture 

style. 

Initially, FaaS and serverless indicated rather similar concepts. Over time, the 

meaning of serverless has expanded to include a broader set of architectural patterns 

and practices that extensively use common services in addition to custom business 

logic coded in FaaS. Serverless can be used by microservices and traditional apps, 

as long as they are containerized matching dynamic scalability and state 

management requirements of the infrastructure itself. 

 

2.1. Serverless 

We said that typically, when developers talk about serverless, they are referring 

to the FaaS model, two concepts often mistakenly interchanged. The serverless, from 

a broader point of view, is everything related to server-side logic, possibly with state 

maintenance, built through multiple separate services, running on an infrastructure 

invisible to eyes of the developer. As for the relationship between serverless and 

FaaS, it is more correct to say that the first includes the second. 

Even with FaaS model, developers must write custom server-side code, but in this 

case that code, tipically, runs in containers that are fully managed by the cloud 

provider. 

The term serverless is also used to refer to managed services such as databases 

and messaging systems, which do not require the intervention of a developer or 

administrator because they are, in fact, managed by a cloud provider or in general 

by a third party. The combination of FaaS services and common back-end services, 

such as database, messaging, and authentication, primarily connected through an 

event-driven cloud-native architecture, is what enables serverless developers to reap 

the greatest benefits. 



 

19 

 

The ability to scale-to-zero [4] instances is one of the critical differentiators of 

serverless platforms compared with container focused PaaS, or virtual machine 

focused IaaS services. 

Scale-to-zero makes it possible to avoid being charged for always-on components, 

which eliminates the priciest cloud consumption behaviour. Cloud-native 

architecture and technologies are an approach to designing, building, and operating 

workloads built in the cloud and taking full advantage of the cloud computing model. 

As stated by Cloud Native Computing Foundation [5]: 

“Cloud-native technologies enable organizations to build and run scalable 

applications in modern, dynamic environments, such as public, private, and hybrid 

clouds. Containers, service meshes, microservices, immutable infrastructure, and 

declarative APIs exemplify this approach.”, these technologies enable weakly coupled 

systems that are resilient, manageable, and observable. Combined with reliable 

automation, they enable to make frequently and predictable high-impact changes 

with minimal fatigue. 

Although servers are still used in this model, they are abstracted from application 

development. 

In fact, the authors of the Serverless framework [6], a popular tool thanks to which 

you can build serverless applications capable of running on all leading-edge cloud 

providers, stated: 

“Just like wireless internet has wires somewhere, serverless architectures still have 

servers somewhere. What ‘serverless’ really means is that, as a developer you do not 

have to think about those servers. You just focus on code. You do not have to actively 

manage scaling for your applications. You do not have to provision servers or pay 

for resources that go unused.” 

Routine tasks for provisioning, maintaining, and scaling server infrastructure, 

instead, are handled by a cloud service provider thus relegating developers to simply 

package code into containers for deployment. 

After deployment, serverless apps respond to requests and automatically adapt to 

different scalability needs. The usage of serverless solutions offered by public cloud 

providers is typically measured on demand via an event-driven execution model, so 

serverless functions cost nothing when not in use. 



 

20 

 

In a serverless model, a cloud provider runs physical servers and dynamically 

allocates their resources on behalf of the user, who can deploy code directly to 

production. 

Serverless computing products typically fall into two categories: Backend-as-a-

Service (BaaS) and Function-as-a-Service (FaaS).   

BaaS allows developers to outsource most aspects backend of a web or mobile 

application, so that they only have to write and manage business logic. Specifically, 

vendors usually provide services reachable remotely through simple APIs, which 

cover mechanisms such as database management, user registration and 

authentication systems, encryption, updates or push notifications. Being “plug-and-

play”, the integration of these services into a company systems is much simpler and, 

sometimes, more reliable than developing them internally. 

BaaS services allow developers to tap into a variety of third-party services and 

applications. For example, a cloud provider can offer authentication services, 

additional encryption features, cloud-accessible databases, and highly reliable 

consumption data. 

Instead, as far as concern FaaS and from the definition formulated by A. P. Rajan 

[7]: 

“Serverless computing or Function-as-a-Service (FaaS) is defined as a software 

architecture where an application is decomposed into ‘triggers’ (events) and ‘actions’ 

(functions), and there is a platform that provides a seamless hosting and execution 

environment.”, fundamentally emerge peculiar architecture components, such as the 

triggers, the invokers and the platform which breaks down whole application built 

on top of the FaaS architecture.   

The trigger, usually consisting of an API Gateway backed by HTTP server, in 

the Function-as-a-Service model [8], is the component responsive to client external 

event solicitation. 

If the trigger is implemented by an API Gateway, the client should call the HTTP 

endpoint to stimulate the trigger execution. Each endpoint corresponds to the 

activation of a function typically mapped from the HTTP request to a simplified 

format such as a JSON object, and such request can be easily used as the input 

parameter of the function.  



 

21 

 

Once the request has been processed, the function will execute its stateless logic 

via the usage of an additional component, the invoker, which prepares the proper 

execution environment, executes the user-defined function and return the result to 

the same API Gateway, which will turn this output back into an HTTP response to 

be forwarded to the caller. Additionally to this basic function, the API gateway can 

perform non-functional operations such as user authentication and input validation. 

 

HTTP API 
GATEWAY

SERVERLESS PLATFORM

DISPATCHEREVENT 
QUEUE

INVOKER

INVOKER

INVOKER

INVOKER

FUNCTION

FUNCTION

FUNCTION

FUNCTION

USER

 

Figure 7 - HTTP API Gateway in a typical FaaS architecture 

 

Even though FaaS architectures are suitable for asynchronous stateless 

applications and for usage scenarios that result in sudden and unpredictable spikes 

in demand, they lack a standard way how they manage some of the most design 

challenges as when facing distributed systems, such as: 

• Cold start: The response time of a function, for which there is still no 

instance ready to respond, is one of the first limitations of serverless platforms 

and can range from a few milliseconds to several seconds. 

• Concurrency: When choosing a vendor specific architecture, need to be 

considered what the number of requests and the total number of invocations 

processed per second will be; it is a good idea to check what are the degrees 

of competition, the limits imposed by the provider, and if these can be 

increased on request. 

• Autoscaling capabilities: Not all platforms scale equally, as they take 

advantage of different automatic scaling mechanisms; using poorly optimized 



 

22 

 

autoscaling services can be a major bottleneck when the cluster receives a 

significant number of requests.  

• Runtime: Almost not all languages are supported by a single provider, which 

may affect the selection of the platform to use. 

Although research in the field of distributed systems is very active, especially in 

FaaS architectures, the resolution of the aforementioned problems is of actual 

interest and great scientific research. In fact, there is still no de facto solution that 

deals with the management and coordination, in the broad sense, of FaaS 

components. 

The solution proposed in this thesis turns out to be, as a support platform, the 

introduction of an intermediate entity between the trigger and the invokers that 

plays the role of communication mediator called Message-Oriented Middleware 

(MOM) detailed in section 2.2 below. 

 

2.2. Message Oriented Middleware  

Message-Oriented Middleware (MOM) or Message Broker, [9] is a type 

middleware that enables the communication between different applications or 

systems by providing message passing for coordination among entities. The messages 

are typically sent asynchronously, so meaning that the sender and receiver do not 

need to be active at the same time in order to exchange messages. 

MOM is typically used in distributed systems and in FaaS deployments where 

different components need to communicate with each other but may not be able to 

do so directly. For example, an application running on one server may need to send 

a message to an application running on another server, or a mobile device may need 

to send a message to a server. In these cases, MOM acts as an intermediary, allowing 

the different components to exchange messages without needing to know the specifics 

of how the other component is implemented. 

They act as intermediaries between other applications, allowing senders to output 

messages without knowing where recipients are, whether they are active or not, or 

how many there are. This facilitates the decoupling of processes and services within 

systems. 



 

23 

 

MOM systems typically provide a variety of features such as message routing, 

message persistence, and message acknowledgement. Routing allows messages to be 

directed to specific recipients based on certain criteria, such as the content of the 

message or the sender identity. Persistence allows messages to be stored for later 

delivery if the recipient is not available at the time the message is sent. 

Acknowledgement allows the sender to know if the message has been successfully 

delivered. 

MOM can be implemented in a variety of ways, such as using a message queue, 

a publish-subscribe model, or a request-response model. Each of these models has its 

own set of advantages and disadvantages, and the choice of which to use will depend 

on the specific requirements of the system. 

These systems are widely used in enterprise environments, where they are used 

to integrate different systems and applications, and to build robust and scalable 

distributed systems.  

Applications that exploit the power of a MOM create a distributed product that 

is compatible with various operating systems because messages are. In addition, 

MOM allows various software components to communicate or share data, 

synchronously or asynchronously with a store-and-forward capability [10], and in 

fact it is sometimes described as a link between front-end and back-end systems or 

as a software integration tool (Enterprise Application Integration). 

Message brokers can address a wide range of business needs across industries and 

within different enterprise computing environments. They are useful whenever and 

wherever reliable inter-application communications and guaranteed message delivery 

are required. 

To provide reliable message storage and guaranteed delivery, message brokers 

often rely on specific components, called message queue, that stores and sorts 

messages until the applications can process them. 

A message-oriented architecture has a number of additional benefits in addition 

to requiring that the systems it is applied to operate in an actual and trustworthy 

synchronous or asynchronous mode: 

• Extensibility and adaptability: The broker has the ability to handle 

numerous message types, manage multiple queues, and duplicate messages as 



 

24 

 

necessary. However, the most potent feature it offers system builders is its 

complete independence with respect to the consumer and producer processes, 

both of which may often be implemented in a wide range of programming 

languages. They can communicate with each other without any issues as long 

as they all adhere to the same protocol and message structure. There are 

many different types of producers, as well as customers. One queue of data 

can be consumed by many consumers in a manner similar to Round Robin, 

or they can perform various activities using the same input (i.e., all of them 

receive all the messages). This is a very useful feature since it enables, for 

example, real-time data replication to various data storage systems. 

• Scalability: Any number of producers can fill any number of queues, and 

any number of consumers can either consume the data simultaneously or not. 

It makes horizontal scaling fairly simple because extra backend servers can 

be set up to transmit data to the broker as more HTTP requests come in. To 

enhance the rate at which communications are consumed by customers, the 

same thing can be done. The broker can also be clustered to do out replication 

and load balancing. However, the systems (such databases and file storage 

systems) where the producers and consumers would have to communicate 

data would also become overburdened. In order to truly give an architecture 

using a messaging middleware the ability to scale up completely, they should 

be able to scale as well. 

• Fault tolerancy and resiliency: These architectures may be more resistant 

to hardware and software problems. To avoid any bugs that might cause the 

broker to fail before it could send the message, the broker can take care of 

replicating and storing the message once it has been pushed to it. The same 

is true for consumers: if they run into an issue, they can cut off their 

connection to the broker and simply cease processing messages until they are 

restarted or until another user steps in to finish the job. Consumption 

acknowledgements can be used on the consumer side to inform the broker 

when a message has been processed, allowing the broker to determine when 

to redeliver it in the event of a consumer failure. 



 

25 

 

• Burst management: On the Internet, traffic bursts frequently happen and 

may briefly overload some systems. Without altering the entire server code, 

the overall number of resources devoted to handling connections can be 

increased by relieving them of specific tasks that can wait. To serve as a 

“shock-absorber”, message-oriented middleware is built to have a very high 

throughput capacity. The system builders have more latitude on the 

consumer side thanks to this “shock-absorbing” role because multiple 

consumers can be set up to consume the same set of messages (all receive all 

messages), though perhaps not at the same rate or even at the same time. By 

allowing sufficient time for messages to arrive before sending them to a 

database, it offers a fantastic approach to convert expensive one-shot 

processes (like database insertions) into batch actions. Additionally, even if 

one process adds data to a MongoDB instance while another adds it to a 

Hadoop cluster, for example, if one is slower than the other, they will still 

work as efficiently as possible without interfering with one another. 

• Process segregation: Task separation is de facto enforced by message-

oriented architectures. It is better to handle processes outside of the primary 

application server if they are not time-sensitive, important, or require 

replication. The activities are handled independently by focused tiny 

processes, while the broker serves as a scheduling and queuing mechanism.  

• Simplified approach for maintenance, administration, and delivery: 

A message-oriented architecture is also simpler to administer in addition to 

providing process isolation and resilience. Tasks may be immediately diverted 

toward new consumers, which can be turned on and off without having an 

impact on the production application server. The broker works as a queue, 

continuing to receive and store messages from the producers while it waits for 

new consuming processes to be brought up, enabling the installation of new 

consumers while the old ones are being removed with no downtime. 

A client of a MOM system can send messages to, and receive messages from, other 

clients of the messaging system. Each client connects to one or more servers that act 

as an intermediary in the sending and receiving of messages. 



 

26 

 

MOM platforms allow flexible cohesive systems to be created; a cohesive system 

is one that allows changes in one part of a system to occur without the need for 

changes in other parts of the system. 

From the perspective of communication mechanism offered, two interaction 

models dominate message-oriented middleware environments: 

• Synchronous Communication: The caller code must block and wait (halt 

processing) when a procedure, function, or method is called using the 

synchronous interaction paradigm. Once the called code has finished running 

and returned control, the caller code is free to resume processing. Systems 

rely on the return of control from the called systems while employing the 

synchronous interaction model because they lack processing control 

independence. 

 

PROCESS A PROCESS B

call for
process B

wait for 
response from 
process B

get response 
from process B 
and continue 
execution

SYNCHRONOUS
PROCESSING

 

Figure 8 – Example of Synchronous Communication 

 

• Asynchronous Communication: The caller can maintain processing 

control thanks to the asynchronous interaction mechanism. The calling code 



 

27 

 

does not have to block and await the returning code. This approach enables 

the caller to go on processing regardless of the called procedure, function , or 

method processing status. When there is asynchronous interaction, the called 

code might not run immediately. The exchange of requests must be handled 

by an intermediate in this interaction architecture, which is typically a 

message queue. The asynchronous paradigm allows for processing 

independence for all participants despite being more complicated than the 

synchronous model. Regardless of how the other participants are doing, 

participants can carry on processing. 

 

PROCESS A PROCESS B

call for 
process B and 

continue 
execution

get response
 from process 

B

ASYNCHRONOUS
PROCESSING

 

Figure 9 – Example of Asynchronous Communication 

 

MOM-based distributed system deployments, and most importantly in FaaS 

deployments, offer a service-based approach to inter-process communication in an 

asynchronous fashion. MOM messaging is, in a sense, similar to the postal service. 

Messages are delivered to the post office; the postal service then takes responsibility 

for safe delivery of the message. 



 

28 

 

As a consequence of this, MOM decouple participants in a system granting the 

ability to link applications without having to adapt the source and target systems 

to each other, resulting in a highly cohesive, decoupled system deployment. 

Furthermore, message loss through network or system failure is usually prevented 

by the adoption of a store and forward mechanism for message persistence. This 

capability of MOM introduces a high level of reliability into the distribution 

mechanism preventing loss of messages when parts of the system are unavailable or 

busy. The specific level-of-reliability is typically configurable, but MOM messaging 

systems can guarantee that a message will be delivered, and that it will be delivered 

to each intended recipient with different semantics. 

These semantics may vary between different MOM implementation but as general 

reference they can be summarized as: 

• Exactly-Once: For each message handed to the mechanism, that message 

is delivered once or not at all; in more casual terms it means that messages 

may be lost. 

• At-Least One: For each message handed to the mechanism potentially 

multiple attempts are made at delivering it, such that at least one succeeds; 

again, in more casual terms this means that messages may be duplicated but 

not lost. 

• At-Most Once: For each message handed to the mechanism exactly one 

delivery is made to the recipient; the message can neither be lost nor 

duplicated. 

QUEUESROUTING 
PROCESS

PRODUCER(S)

CONSUMER(S)

MESSAGE-ORIENTED 
MIDDLEWARE

 

Figure 10 - Message Oriented Middleware High Level Architecture 



 

29 

 

 

At stated before, what emerges from Figure 10, the message queue is a 

fundamental concept within MOM. Queues provide the ability to store messages on 

a MOM platform and represent the mean clients are able to send and receive 

messages.  

Queues are central to the implementation of the asynchronous interaction model 

within MOM. A queue is a destination where messages may be sent to and received 

from; usually the messages contained within a queue are sorted in a particular order. 

The standard queue that can be found in a messaging system is the First-In First-

Out queue; as the name suggests, the first message sent to the queue is the first 

message to be retrieved from the queue. 

Typically, many attributes of a queue may be configured including the queue 

name, queue size, the save threshold of the queue, message-sorting algorithm, and 

so on. 

Potentially each application interacting with the middleware may have its own 

or share a queue.  

With respect to data exchange model, MOM specifically implements message 

delivery across software architecture scenarios in a point-to-point or 

publisher/subscriber messages dispatching models: 

1. Point-to-point messaging: This is the message queue distribution model 

where there is a one-to-one correspondence between the message sender and 

recipient. Each message in the queue is only ever used once and is only ever 

forwarded to one recipient. When a message needs to be acted upon only 

once, point-to-point communications is appropriate. For example, Payroll 

processing and financial transaction are two examples of use cases that fit 

this messaging style. Both senders and recipients in these systems want the 

assurance that each payment will only be transmitted once. 

2. Publish/subscribe messaging: The message producer publishes the 

messages to a topic in this “pub/sub” message distribution architecture, and 

several message consumers subscribe to the topics they want to receive 

messages from. All applications that have subscribed to a subject receive all 



 

30 

 

messages published in it. The link between the advertiser and their customers 

is one-to-many in a broadcast-style distribution strategy.  

Now that we grasp why MOMs are considered crucial in FaaS deployments, the next 

step is about to understand why, despite the enormous financial and research efforts 

on such technologies they still suffer from some, we say still “insuperable”, 

performances issue. 

 

2.3. Approaches and Challenges in Function 

Composition 

Writing functions, which are really just mappings from inputs to outputs, is the 

foundation of traditional programming. The programs are comprised of compositions 

using these function building blocks. One straightforward method for programming 

the cloud is to provide developers the ability to register functions in the cloud and 

then to construct programs out of those registered functions. This operation is known 

as function composition or chaining logic and foresees generally high delays and 

function propagation latencies. By decoupling complex problems into smaller ones, 

function chaining enables smarter management of complex tasks and processing 

pipeline capabilities. Even better, the possibility to compose functions together 

encourages their reusability, thus further reducing the development burden and 

hence the time to market. Unfortunately, current function chaining solutions exhibit 

some performance issues: response latencies can materialize, as stated in the 

introduction chaptyer, not only from a bad user-defined chaining logic but also from 

inefficient infrastructural support to function composition. Current FaaS 

architectures are indeed not optimized to handle bursts of short-lived functions, an 

inherent property of this increasingly popular approach, that can amplify the 

overhead in the function invocation path. In addition, no current production-ready 

- but in academic research [11] - platform adopts function co-locality optimizations 

that are otherwise widely employed in more traditional data processing platforms. 

This optimization does not only benefit single-host FaaS deployments but also multi-

host scenarios where one knows in advance that two or more functions belonging to 

the same function chain can be co-located in the same host. In fact, this is not an 



 

31 

 

uncommon situation, and the multi-host FaaS scheduler can be tasked to handle the 

placement. 

Before getting into what has been done up to now, it is important to consider the 

question of why serverless function composition is a relevant issue. The serverless 

functions concept is rather young and lacks adequate coordination mechanisms 

between functions. Currently, it is difficult and requires quite some effort to 

orchestrate a large set of serverless functions to create a complex application. 

Furthermore, serverless “lags behind the state-of-the-art when it comes to function 

composition” [12]. 

Serverless (and microservice) architectures are not arbitrarily derived from or 

created upon conventional application architectures since they use a less centralized 

and more distributed approach, hence requiring a cloud application architecture 

redesign. 

Furthermore, serverless functions are not necessarily conceived with the idea of 

complex compositions in mind, however, is it widely spread that such complex 

compositions are envisioned in the form of workflows.  

Amazon created their own workflow composition service that allows developers 

to chain AWS Lambda functions together to create more complex behaviours called 

AWS Step Functions [13]. This service is limited to the AWS platform and comes 

with a pricing scheme, but it demonstrates the recognized need for serverless 

composition solutions. 

Due to this growing complexity and novel architecture composition approach, it 

is important to look at what composition models are suitable for serverless 

architectures and what are “ways to express compositions of functions, and hybrid-

cloud deployment” even with the tools built so that could support the creation of 

compositions and their maintenance. [14]. 

FaaS architectures, mainly composed by ephemeral containers, are by design non-

discoverable units that must be opened deliberately to the host machine network. In 

other words, we cannot explicitly address the container with an IP address or 

endpoint. Consider the potential security difficulties this might pose. 

Thus, they offer handles for communicating with the function or entry points that 

can be triggered but lack direct network addressability. 



 

32 

 

This means that, if a developer has multiple functions that must be composed 

together to form a pipeline, rather than triggering each other internally and directly, 

the developer will have to hack around it by either triggering it via an HTTP 

endpoint if the provider permits it, or other external queueing systems they provide. 

In each of these instances, it is difficult to avoid additional latencies. 

This makes FaaS particularly inefficient for distributed computing applications 

that rely on extremely fine-grained communication between functions. 

In general, two general models for serverless composition patterns invocation can 

be identified [15]: 

1. Reflective Invocation: In this kind of composition a third-party entity -

the Coordination Function- encapsulate the logic of function chaining and it 

is in charge of invoking each function, waits for the result, forwarding it to 

the next function in the chain, until all the chain process is completed.  

To begin, we can think of reflective composition as a list of actions, which 

reflectively invokes each action in turn, moving the data from one stage of 

the pipeline to the next while depending on the presence of an external 

coordinator. This is just a first attempt at conceptualizing reflective 

composition. In this model, the controller, acts as an external scheduler in the 

sense that it is responsible for coordinating the timing of events and the flow 

of data. Since it makes use of an external reflective scheduler, the composition 

could make calling the underlying operations much more expensive. This is a 

trade-off for using the scheduler. As a matter of fact, the scheduler has to be 

kept active for at least the same amount of time that each of the sequenced 

operations needs to be kept active, as seen in Figure 11. There are economic 

repercussions that stem from a scheduler action being active simultaneously 

with its constituent parts. Every proactive activity depletes a common 

resource and, as a result, must have an associated cost. It would be preferable 

to steer clear of this overhead. This need is referred to as the double billing 

constraint, and as we will see in a moment, it is one of the issues that cannot 

be avoided when working with the function composition model. 



 

33 

 

TRIGGER

TRIGGER

BUSINNESS 
LOGIC

FUNCTION A
ENVIRONMENT

CONTROLLER

TRIGGER INVOKER

BUSINNESS 
LOGIC

FUNCTION B
ENVIRONMENT

INVOKER

 

Figure 11 - Reflective Invocation 

 

2. Continuous Passing: Composition pattern expects that invoked function is 

capable to locate, name and execute the next function piping the output 

straight into the input of the subsequent function. 

 

ENTRIGGER CONTROLLER

INVOKER

INVOKER
BUSINNESS 

LOGIC

BUSINNESS 
LOGIC

FUNCTION A

FUNCTION B

ENVIRONMENT

ENVIRONMENT

 

Figure 12 - Continuous Passing at Infrastructural Layer 

 

Both patterns could be supported either at the business level (Business Layer) or 

as an infrastructure-level capability (Infrastructural Layer). 



 

34 

 

 

ENTRIGGER CONTROLLER

INVOKER

INVOKER
BUSINNESS 

LOGIC

BUSINNESS 
LOGIC

FUNCTION A

FUNCTION B

ENVIRONMENT

ENVIRONMENT

CONTROLLERTRIGGER

 

Figure 13 - Continuous Passing at Business Layer 

 

At the business level, the infrastructure is based on an external application or 

service which will orchestrate several functions into a workflow. The service (e.g., 

AWS Step Function) exposes an API which when called will forward the request to 

the corresponding function which would be the next step in the workflow. 

Functions must have at least one trigger that is externally available through the 

public API and may be executed by other. In this case the developer is responsible 

for developing the appropriate invocation logic and protocols for the composition 

and exchange of messages amongst functions in this instance. 

The business logic is restricted to a predetermined composition strategy, which 

restricts the reusability and modularity of functions. However, this method gives 

higher expressiveness and dynamic possibilities.  

Moreover, studies demonstrated an extension of the business level composition 

with the client-focussed composition [16]. This entails moving the composition from 

the cloud to the client application. For example, a smartphone application that 

handles the orchestration of many serverless functions itself instead of relying on a 

microservice or AWS Step Functions-like service handling the orchestration. 

Obviously, this moves the complexity from the cloud to the client, which might or 

might not be desired. Think about the security implications it has. 

At the infrastructure level, instead, is up to the infrastructure the chaining logic 

of the workflow. What is obtained is that the business logic is totally decoupled from 



 

35 

 

the composition managed by the FaaS platform providing a neat separation among 

policy and mechanisms leading to better performance exploiting some optimizations 

such as function co-location, caching and optimized communication protocols.  

From a high-level perspective, what the major literatures agree at is that function 

composition consists of at least three competing and inescapable constraints [12] 

depending on the function composition implemented: 

• Invocations could be double-billed: When using reflective invocation 

composition, having a scheduler active at the same time as its components 

has economic ramifications. Any active action consumes the shared resource 

- the coordinator- and the resource associated with the function invocation 

could cause the double-billing, as shown in Figure 14;  

• Functions may not be treated as black box: Trying to mitigate the 

double-billing problem inlining the functions code inside the external 

coordinator, will violate the black box principle because it would require 

reading the functions source code invalidating the principle. This is even 

worse when functions are written in different languages, because in this case 

inlining would be not supported at all.2 

• A composition of functions could not be a function: This property 

does not hold in case of continuous passing composition because functions 

conversion with respect of asynchronous and synchronous function invocation. 

In fact, in order to avoid the double-billed issue it would be advisable to 

suspend the invoker such as it sends function invocations in a fire-and-forget 

fashion. This could lead a change of the invoked functions from a dictionary-

based to a Future<dictionary-based> return type causing 

incompatibilities in their composition. 

Understood the requirements, the FaaS architecture is appealing to have and 

seize on the constraints that would be acceptable in certain situations and on the 

ones that are not; that is the biggest challenge when dealing with distributed 

architectures as FaaS. 

 
2 Known as Polyglot Constraint 



 

36 

 

Despite the relative novelty of FaaS platforms, many solutions, both commercial 

and academic proofs-of-concepts, address the problem of function chaining. On 

the commercial front, Microsoft Azure Cloud has recently introduced Azure 

Durable Functions as an extension of Azure Functions. This extension enables 

the customer to define stateful workflows by writing special orchestration 

functions, whose state is managed by the cloud platform. Amazon with his AWS 

Step Function follows a different approach which involve the intervention of a 

particular external component, a finite state machine, controlling the execution 

of AWS Lambda functions composition. AWS Step Function allows to define a 

series of checkpoints in the chain, used to enable some mechanism of fault 

tolerance such as error handling and retry logic. 

 

f

g

billed runtime of g

billed runtime of f

double-billed execution time

 

Figure 14 - The Double-Billing problem 

 

A taxonomy [12] of potential function composition techniques in serverless 

systems, based on the formal characteristics they conform to, has been developed in 

the academic world. 



 

37 

 

All those solutions enable the execution of complicated processes on public clouds, 

but they also call for the creation of a third component that controls function 

triggering and event forwarding. 

  



 

38 

 

3. Thesis Project 

As mentioned in the previous chapter, FaaS architectures suffer from efficiency 

problems with respect to communication between functions when the controller is 

involved in each function invocation in the reflective invocation composition 

architecture. The proposal made in this thesis is about in performance evaluation 

through some adopted optimizations when implementing function composition at 

architectural level through the usage of a MOM and it is about to enables the 

execution of advanced function composition without leveraging on any external 

component but only through the MOM capability as function composition 

supporting platform. 

Furthermore, in this scenario what is going to be evaluated is the scalability of 

the system, in particular, whether it maintains such property through the usage of 

functions written in two different programming languages, JavaScript and Rust 

respectively, and in presence of multiple invokers. 

To accomplish this, taking advantage of MOM-specific capabilities of internal 

information gathering and message interception, events are generated triggering the 

execution of the next function. 

One of the most significant novelties introduced by analysing messages passing 

through the MOM and instrumenting the middleware is to generate events when a 

particular condition is met. This process can extend the number of operations 

executed natively at the infrastructural layer by the serverless platform such as the 

activation of a function every time a certain number of messages, for example, are 

passed through a specific topic.  

In particular, two components, has been integrated inside the MOM and they are 

defined as Queue Coordinator and Queue Monitor. The Queue Monitor performs 

constant monitoring of the state of the overall MOM as well as of the individual 

queues. This monitoring includes tracking the number of clients subscribing, the 

number of messages that have been processed, and the number of messages that are 

waiting in a queue. 

In terms of data and statistics that can be gathered via Queue Coordinator, the 

usage of interceptor has a broad capability in terms of kind of committed operation. 



 

39 

 

In fact, it is feasible to use an interceptor to not only inspect the status of the queue 

and the metadata associated to messages, but also the content of individual 

messages. On the other hand, since the messages processing occur synchronously in 

the broker, it is predictable that this will have some effect on the computing 

resources and performance of the MOM [17].  

The interceptor, instead, is a specific component that subscribes to one or more 

queues of the MOM and collects statistics over the message received. The interceptor 

follows the general design dictated by the interceptor design pattern [18], a version 

of the Chain of Responsibility pattern from the Gang of Four (GoF) [19]. This 

pattern improves a system adaptability and extensibility allowing functionality to 

be readily added to the system in order to dynamically modify its behaviour. This 

seamless integration of functionality may be typically achieved without the need to 

halt and recompile the system, enabling its introduction during runtime. 

 

MANAGEMENT 
API

QUEUE MONITOR QUEUE MONITOR

EVENT
SYNTETIZER

QUEUES

MESSAGE-ORIENTED 
MIDDLEWARE

 

Figure 15 - MOM Centric Architecture 

 

The metadata and information thus obtained by these two components are sent 

to the Event Synthesizer, which then produces events according to the process 



 

40 

 

specification set by the user. After that, events are directed into certain queues in 

accordance with the criteria that have been established in the workflow design, 

ultimately leading to the execution of a function being triggered by invokers 

subscribing to that particular topic. The reckoning is that, since the event source is 

in close proximity of the event generation workflow, it is expected to result in higher 

performance than the current state-of-the-art solutions, which are dependent on 

processes that are not part of the serverless architecture but external. 

 

3.1. High Level Components and Interaction Schema 

Workflow 

Herein, two setups will be shown as proof-of-concept designated to evaluate the 

effectiveness of the proposed solution. The first one, in Figure 16, represents what is 

the current widely adopted solution in function composition, where external 

coordinators collect the data and generate events based of their internal state. 

 

PLATFORM

INVOKER #1

INVOKER #2

TRIGGER

INVOKER #3

EXTERNAL
COORDINATOR

INVOKER #3
 

Figure 16 - Function composition through the usage of an External 

Coordinator component 

 

The general interaction schema foresees that, upon user interaction via the trigger 

which receives external events from heterogeneous sources via potentially different 

protocols, converts them to local events for the FaaS platform. The events generated 

by the trigger are then managed by a coordinator that, based on configuration 

parameters provided by the user, forwards them to the proper queue in the MOM. 



 

41 

 

Function represents the business logic piece of code loaded in FaaS, which 

executes when specific events occur.  

The invoker, instead, receive those events by mean of the middleware when 

particular and configured conditions are met, inject the business code deployed by 

the end-user and execute the business-logic function. 

The function is always executed inside proper execution environment conceived 

containing all needed dependencies, system libraries and environmental variables. 

All the computations performed by invokers, seen as a whole, follows the general 

structural workflow outlined by the MapReduce framework, so that each invoker 

belongs to either at the map phase or at the reduce phase. 

MESSAGE-
ORIENTED
MIDDLEWARE

INVOKER

INVOKER

STRESSER

FUNCTION
MULTIPLY

FUNCTION
ADDER

1

2

3

4
5

8
9

10
11

12
EXTERNAL

COORDINATOR

6

7

 

Figure 17 - Logical Interaction Schema. In contrast for what happens when the 

external coordination process is used, steps 6 and 7 are integrated 

inside the MOM as embedded component. 

 

Starting from the very beginning, and in reference to Figure 17, in the input phase 

(1), the stresser generates different traffic workloads toward the MOM, which will 

forward them the to the proper queue based on the topic destination labelled on the 

message header. 

The invoker(s) subscribed at that topic will read (2) and extract the message from 

the queue, inspect it, and before it performs the function invocation (3) it sets the 

proper execution environment. When the synchronous function invocation ends (4), 

the invoker replies to the result back, publishing a brand-new message, to a 

preconfigured queue (5). With this operation, these invoker(s) conclude(s) the map 

phase. 



 

42 

 

Whenever a configurable number of messages is received in such queue (8), 

another invoker(s) read them in a whole, prepare the invocation environment, 

execute(s) the reducing function (9), and write(s) the invocation result back in a 

final queue (10-11). This concludes the reducing phase. 

Between the map and the reducing phase, a coordination phase is performed (6-

7). The configurable number of messages sent to the reducing phase depends upon 

the coordinator configuration. The role of the coordinator is, in fact, to fire the 

reducing phase whenever some condition, here implemented as a simple modulo 

counting, is met. 

From an implementation point of view, the QueueCoordinator, Queue Monitor 

and the EventSynthetizer have been collapsed inside the coordinator component 

because, as infrastructural plugin, it demonstrates enough capability to produce 

relevant results during the stress test anyway. 

Depending on the tested architecture, the coordination phase would happen inside 

or outside the broker. 

In the latter architecture the coordinator is deployed outside the middleware, as 

illustrated in Figure 16 , conversely, primer one, the coordinator is completely 

embedded inside the MOM, as shown in Figure 18. 

 

PLATFORM

INVOKER #1

INVOKER #2

TRIGGER

INVOKER #3

INTERNAL
COORDINATOR

INVOKER #3
 

Figure 18 – Proposed function composition through the usage of an Internal 

Coordinator 

 

Anticipating what will be thoroughly explained in paragraph 3.2.1 below, 

exploiting the internal broker interception capability, does not reply on external 

connections. 



 

43 

 

Since almost all components have been developed using Rust, it worth spends few 

words to highlight its amazing features. 

Rust is a quite novel programming language, known for its memory safety features 

and blazing performance. It is a systems programming language developed by 

Mozilla Research designed to be fast, concurrent, and memory safe. Released in 2010, 

became a popular choice for developers building systems, web applications, and 

command-line tools. 

Rust is known for its focus on safety and performance. The language was designed 

with a strong emphasis on avoiding common programming errors, such as null 

pointers (null not allowed at compile time), buffer overflows, and data races. This is 

achieved through Rust ownership model, which ensures that each piece of data is 

used in a predictable and safe manner.  

The borrow checker [20] is an essential feature and is one of the parts that make 

Rust so unique. It forces the developer to manage ownership, i.e., it is a very efficient 

feature that helps to eliminate memory violation bugs, so problems are detected at 

compile time and rubbish collection is not necessary. It basically prevents value to 

be allocated as soon as the variable holding the value goes out of scope such as 

functions, associated functions, loop and inner scopes. 

One of the unique features of Rust is its emphasis on zero-cost abstractions. This 

means that the abstractions provided by the language do not come with a 

performance overhead at runtime. This contrasts with other programming languages, 

where abstractions often come with a runtime cost (virtual methods). In Rust, 

abstractions are implemented in such a way that they can be optimized by the 

compiler, making it possible to write high-level code that performs as well as low-

level code. 

In addition to its focus on safety and performance, Rust has several other features 

that make it appealing to developers. One of these is its strong type system. Rust 

uses static typing, which means that type information is determined at compile-time, 

rather than at runtime. This helps to catch type-related errors early in the 

development process and makes it easier to maintain code over time. 

Moreover, Rust boasts a great library supports and ecosystem porting from other 

programming languages, in fact, the interaction between client and the broker has 



 

44 

 

been made possible using PahoMQTT library, basically a Rust adapter of the well-

known PahoMQTT [21] C library. 

At its current version (0.12), PahoMQTT is compliant with the protocol v5.0, 

3.1.1 and 3.1, supports TLS/SSL as transport protocol, Message Persistence, No-

SQL adapter, High Availability, QoS 0,1,2 support and async/away operation. 

Among all the features the library offers, the stresser is configured disregarding 

all of those that could cause either additional delays or mechanism that could 

influence the results. 

As explained earlier, in order to support a minimum workable example, the 

requirement is that the proposal needs to set components up so that they follow the 

general processing archetypal MapReduce model. 

A discussion of the mechanism and motives behind MapReduce will be provided 

before moving on to the implementation sections. 

 

3.1.1. MapReduce Model 

The MapReduce is a programming model, firstly introduced by Google in 2004 

for processing large datasets in parallel across a cluster of computers. 

This model consists of two user-defined phases, the Map Phase and the Reduce 

Phase, and an implementation-specific numbers of minor phases. In a nutshell, the 

map phase takes a large dataset and divides it into smaller chunks, which are then 

processed in parallel by multiple nodes in the cluster. The reduce phase takes the 

results of the map phase and aggregates the data into a single result. 

The map phase takes a dataset and a map function as input. The map function 

takes a single item from the dataset as input and produces a set of key-value pairs 

as output. The map function is applied to each item in the dataset in parallel, 

producing a set of intermediate key-value pairs. 

The reduce phase takes the intermediate key-value pairs produced by the map 

phase and subsequent transformation phase and aggregates the data into a single 

result. The reduce phase takes a set of intermediate key-value pairs and a reduce 

function as input. The reduce function takes a key and a set of values as input and 

produces a single output value for that key. The reduce function is applied to each 



 

45 

 

unique key in the intermediate key-value pairs, producing a set of final key-value 

pairs. 

Digging deeply into the MapReduce architecture [22], it consists mainly of the 

following phases: 

1. Input Splits: In this phase, the input is split into smaller chunks of data so 

that each of them becomes the elementary piece of data the mapper deals 

with. 

2. Mapping: In the Mapping phase, the input data is analysed and separated 

into smaller segments, with the number of mappers equal to the number of 

input splits. The input splits are then subsequently transformed into key-

value pair so that each mapper applies coding logic to these key-value pairs 

and creating an output with the same structure. 

3. Shuffling: By eliminating duplicate values and arranging them, the shuffle 

phase prepares the output of the mapper phase for transmission to the 

reduction phase. In the mapper phase, the output is usually still presented as 

keys and values pairs. 

4. Sorting: Shuffling and sorting happen concurrently. The output produced by 

the mapper is merged and sorted during the Sorting phase. Before beginning 

the reduction phase, the intermediate key-value pairs are sorted by key, and 

the values may be in any order. 

5. Reducing: In the Reducing phase, the intermediate values from the shuffling 

phase are reduced to produce a single output value that summarizes the entire 

dataset. 

 



 

46 

 

INPUT SPLIT MAPPING SHUFFLING REDUCERINPUT OUTPUT

Welcome to 
Hadoop

Class Hadoop 
is

good Hadoop is

bad

Welcome, 1
To, 1

Hadoop, 1

Class, 1
Hadoop, 1

Is, 1

Good, 1
Hadoop, 1

Is, 1

Bad, 1

Good, 1

Hadoop, 1
Hadoop, 1
Hadoop, 1

Is, 1
Is, 1

To, 1

Welcome, 1

Class, 1

Bad, 1

Good, 1

Hadoop, 3

Is, 2

To, 1

Welcome, 1

Class, 1

Bad, 1

Bad 1
Class 1
Good 1
Hadoop 3
Is 2
To 1

Welcome 1

Welcome to Hadoop
Class Hadoop is

good Hadoop is bad

 

Figure 19 - MapReduce Phases 

 

In Figure 19, is represented the idiomatic architecture of the MapReduce model 

previously described whilst, in order to give a concrete idea how it works, an 

elementary but typical example of a MapReduce application is word count. 

Given a large text dataset, the goal is to count the number of occurrences of each 

word in the dataset. In the map phase, the map function takes each line of text as 

input and produces a set of intermediate key-value pairs, where each key is a word, 

and each value is a count of 1. In the reduce phase, the reduce function takes each 

word as a key and aggregates the count of occurrences for each word, producing a 

final count of occurrences for each word. 

The MapReduce model provides several benefits for processing large datasets, 

taking advantage of the processing power of multiple nodes in a cluster. Secondly, it 

provides a way to distribute data processing across a cluster, reducing the amount 

of data that needs to be processed by each node. 

 

3.1.2. Coordinator Implementations 

The coordinator, in its MOM-embedded plugin version, need to exploit the 

internal middleware APIs. It, in fact, it overrides the void afterSend(…) method 

that will be fired as soon as a client publish a message. As shown in the Listing 1, 

upon a message retrieval, it is being filtered by the broker by its destination topic. 



 

47 

 

If the number of intercepted messages (that messages which match the filtering 

criteria) is equal to the configured value, statically coded as modulo 5 operation, the 

coordinator publishes a message on another queue where the reducer is listening to. 

This simple logic has been implemented as shown: 

Listing 1 – Internal Coordinator Plugin in Java 

ThesisCoordinator.java 

@Override 

// Method overridden from the ActiveMQServerMessagePlugin 

public void afterSend(ServerSession session, Transaction tx,Message 

message, boolean direct,boolean noAutoCreateQueue, 

RoutingStatus result) throws ActiveMQException { 

 

//1. If the message has been correctly routed, hence, the message 

can eventually published, then process it 

  switch (result) { 

    case OK: 

 

//2a. If the destination queue is “prod_topic_done_int”, then it is 

the message we are interested in  

      if (message instanceof CoreMessage 

          && message.getAddress().equals("prod_topic_done_int") 

      ) { 

        CoreMessage coreMessage = (CoreMessage) message; 

 

//3. Unparse the message data buffer as JSON 

        JSONParser jsonParser = new JSONParser(); 

        ActiveMQBuffer activeMQBuffer = coreMessage 

        .getDataBuffer(); 

 

        ByteBuf buffer = activeMQBuffer.byteBuf(); 

        String messageJSONString = buffer 

        .toString(Charset.defaultCharset()); 

 

//4. If the unparsing operation has been completed, then increment 

the successful arrival messages.      

        ThesisInterceptor.counter += 1; 

//5. If the number of messages received is modulo 5, prepare for 
event triggering into dedicated MOM queue 



 

48 

 

          if (counter % CONFIG_N_TRIGGER == 0) { 

            try { 

              JSONObjectmsg = null; 

              while ( 

              !ThesisInterceptor.receivedJsonMessage.isEmpty() 

              ) { 

                msg = ThesisInterceptor.receivedJsonMessage.poll(); 

//6. Push the backed up multiplied number to the data structure 
                numbersList.add( 

                    (Double) ((JSONObject) msg 

                              .get(CONFIG_FIELD_DATA)) 

                              .get(CONFIG_FIELD_DATA_NUMBER)); 

              } 

              ThesisInterceptor.receivedJsonMessage.clear(); 

 

//7. Push last received message multiplied number to temp data 
structure 
              numbersList.add( 

                  (Double) ((JSONObject) currentObject 

                  .get(CONFIG_FIELD_DATA)) 

                  .get(CONFIG_FIELD_DATA_NUMBER)); 

//8. Create the event pushing all the multiplied number inside this 

message 

              JSONObject numbersObject = new JSONObject(); 

              numbersObject 

              .put(CONFIG_FIELD_DATA_NUMBERS, numbersList); 

              currentObject.put(CONFIG_FIELD_DATA, numbersObject); 

//9. Prepare new message. 

//Omissis 

//10. Perform the event publishing on the MOM queue 

              session.doSend(tx, msgResult, null, direct, 

              noAutoCreateQueue); 

//11. Reset messages received            

            ThesisInterceptor.counter = 0; 

 

          } else { 

//2b. Back this message up till the number of received messages is 
modulo 5.            
            ThesisInterceptor.receivedJsonMessage 

            .add(currentObject); 

          }} 



 

49 

 

 

At the same time, in order to mimic the same behaviour but as external 

component, the following listing shows the coordinator implemented in Rust: 

Listing 2 – External Coordinator in Rust 

coordinator.rs 

//1a. If the number of messages received is modulo 5, prepare for 
event triggering into dedicated MOM queue 
if counter % 5 == 0 { 
 
//2. Reset messages received 
  counter = 0; 
//3.Message parsing 
//Omissis 
//4 Push last message multiplied number to temp data structure  
  numbers.push(number); 
 
  while !message_temporary_store.is_empty() { 
      let recovered_message = message_temporary_store 
      .pop_front().unwrap(); 
 
//5. Push the other backed up multiplied number to the data 
structure 
      numbers.push(recovered_message.number()); 
  } 
 
  message_temporary_store.clear(); 
 
//6. Create the event pushing all the multiplied number inside this 
message 
  let data = MultipleInteger::new(numbers); 
  let msg = Message::new(group, creation_timestamp, &dst_topic, 0, 
  flow, data); 
 
//7. Perform the event publishing on the MOM queue 
  let msg: MQTTMessage = msg.into(); 
  if let Err(e) = cli.publish(msg) { 
      error!("error while publishing message. {}", e); 
  } 
 
} else { 
//1b. Back this message up till the number of receive messages are 
modulo 5. 
  message_temporary_store.push_back(m); 
} 
 

 

Both implementations are tasked to read incoming messages from a message 

queue and inspect their content. As far as concern the external coordinator, the 



 

50 

 

preconfigured message queue from which messages are read is the prod_topic_done, 

so before being able to receive any message it has to subscribe to that queue. 

The embedded coordinator instead, since it does not rely on preliminary queue 

subscription, since it directly intercepts the messages, it filters them using the 

destination queue header field and discards all the messages not sent toward the 

prod_topic_done_int queue. 

Conversely, since both coordinators needs to publish in the same queue, where 

the reducing invoker is subscribed, they could potentially write on the sum_topic 

queue firing the reducing event for the further processing of the data. 

Besides that, there are no other major differences among the internal and external 

implementations apart from the fact that the latter need the PahoMQTT Rust 

library to establish a connection with the broker. 

 

3.1.3. Invokers Implementations 

The last but not the least important implemented architectural components were 

the invokers. Even though different invokers were adopted, one for the map phase 

and the other for the reduce phase, their implementation were rather easy because 

they accomplished pretty the same tasks. 

As stated at the beginning of this chapter, the role of the invoker is to retrieve 

the message from the queue, read the invocation arguments from the message, the 

function name as long as the proper environment -e.g., the interpreter and 

environment variables- and execute the corresponding function. Upon function 

completion, it collects the results and publish them on the configured topic. 

Since those invokers belong to the infrastructure layer but are distributed entities, 

thus not integrated into the MOM, they were completely developed in Rust. 

The only valuable part in Listing 3 is that invoker calls the proper function as an 

external process yielding the result back via command piping. The part related to 

the command piping and the code related to the reducing phase, hence the summa, 

has been omitted for brevity. 

  



 

51 

 

Listing 3 - Rust Invoker 

invoker.rs 

//1. Multiply or Summation depending on the type of operation 

Mode::Multiply => { 

//2. Retrieve message from the underlying Paho MQTT Buffer 

 for m in &receiver { 

    match m { 

       Some(m) => { 

//3. Incoming message parsing 

//Omissis 

 

//4. Execute corresponding operation with the set programming 

language (none, rust, javascript) 

        let multiplied_number = match &command { 

//5. Executes multiplication via mock function 

         None => unexpensive_multiply_function(number), 

         Some(i) => 

          match i { 

           Interpreter::JavaScript => { 

            match 

//6. Executes multiplication via NodeJs 

            execute_command( 

              Interpreter::JavaScript,"function_prod.js",&[number] 

             ) 

            { 

//Omissis 

            } 

           } 

           Interpreter::Rust => { 

            match 

//7. Executes multiplication via Rust executable 

       execute_command(Interpreter::Rust,"function_prod",&[number]) 

            { 

//Omissis 

            }}}}; 

        let data = SingleInteger::new(multiplied_number); 

        match dst_topic { 

         Some(ref d) => { 

//8. Construct the reply message toward the MOM 



 

52 

 

with the operation result 

          let msg = Message::new( 

           group, creation_timestamp, d, 0, flow, data); 

 

          let msg: MQTTMessage = msg.into(); 

//9. Publish the newly created message to the MOM 

          if let Err(e) = cli.publish(msg) { 

           warn!( 

            "thread-{}] error publishing message. {}",job,e); 

          } 

 

At this point, as long as the internal coordinator is integrated inside the broker, 

preliminary research has been conducted to address the right MOM implementation 

to fulfil the duty. 

What will be shown, in the next section, is that MOM implementations can differ 

from many characteristics, varying from the architectural design choices taken, the 

support offered, the financial aspects among free and paid solutions, and the set of 

features they have. 

 

3.2. ActiveMQ 

There are many and many message-oriented middleware systems that have 

entered the market in the past recent years, so providing a wide range of features. 

The broad range of products available means it is tough to decide which messaging 

system is the most suitable for the specific use case. Even though is desirable 

message-oriented middleware having the most promising performance, measured as 

higher incoming and outgoing processed messages per second, it is not the only 

feature to take into account when MOM needs to be integrated into an architecture.  

The following table summarizes principal features current middleware market 

proposals have: 



 

53 

 

     Broker 

 

Feature 

ActiveMQ 
ActiveMQ 

Artemis 

HiveMQ 

[23] 

JoramMQ 

[24] 

Mosquitto 

[25] 

RabbitMQ 

[26] 

VerneMQ 

[27] 

Open source Apache 2.0 Apache 2.0 Commercial 
LGPL, 

Commercial 
EPL/EDL MPL 1.1 

Apache 

2.0 

MQTT 

version 
3.x 3.x, 5.0 3.x, 5.0 3.x 3.1.1, 5.0 3.1.1 3.x, 5.0 

Retain flag YES YES YES YES YES Partial YES 

Last will and 

testament 
YES YES YES YES YES YES YES 

Persistent 

Session 
YES YES YES YES YES YES YES 

MQTT 

Message 

Interceptor 

YES YES YES NO NO Partial YES 

QoS Level 0 YES YES YES YES YES YES YES 

QoS Level 1 YES YES YES YES YES YES YES 

QoS Level 2 YES YES YES YES YES NO YES 

Bridging Partial YES YES YES YES NO YES 

Clustering YES YES YES YES NO YES YES 

REST 

Management 

API 

YES YES YES YES NO YES YES 

Management 

CLI 
YES YES YES YES NO YES YES 

Table 1 - Message Oriented Middlewares Comparison Chart. 

 

Among all the previous alternatives, the choice fell on ActiveMQ Artemis mainly 

because it is open source, it has a very large community around the project and 

boast a nice documentation. Furthermore, it supports the most up to date MQTT 

(v.5.0) version thus giving the newest set of added functionalities [28] as long as all 

the QoS 0,1,2 levels even though not used in this work. 



 

54 

 

The most promising feature ActiveMQ Artemis has, is the native support for 

message interception, that will be explained in a while. 

For its appealing features, ActiveMQ Artemis is one of the most popular open-

source, multi-protocol, Java-based message broker which supports industry standard 

protocols so that users get the benefits of client choices across a broad range of 

languages and platforms. 

It is capable to connects clients written in Rust, JavaScript, C, C++, Python, 

.Net supporting messages exchange via AMQP, STOMP or MQTT protocols.  

ActiveMQ Artemis core is designed simply as set of Plain Old Java Objects 

(POJOs) with as few dependencies on external jars as possible. In fact, ActiveMQ 

Artemis core has only one jar dependency, netty.jar, other than the standard JDK 

classes because it uses some of the netty asynchronous communication classes 

internally. 

Netty is an NIO client server framework which enables development of network 

applications simplifying and streamlines network programming such as TCP and 

UDP socket server. 

Each ActiveMQ Artemis server is shipped with its own ultra-high performance 

persistent journal, which it uses for message and other persistence allowing the best 

persistence message performance, something not achievable when using a relational 

database for persistence. 

Additionally, clients, potentially on different physical machines, interact with the 

broker adopting two APIs for messaging: 

• Core client API: This is a simple intuitive Java API that allows the full 

set of messaging functionality without some of the complexities of JMS 

• JMS client API: The standard JMS API is available at the client side. 

If used, JMS semantics are implemented by a JMS facade layer (thin yellow layer 

between the Core Client component and the User Application) on the client side 

because, even though ActiveMQ Artemis does not speak JMS, it is designed to be 

used with multiple different protocols [29]. 

 



 

55 

 

ACTIVEMQ ARTEMIS CORE

PERSISTENCE

PAGING JDBCJOURNAL

CORE PROTOCOL

CORE CLIENT

JMS FACADE

USER APPLICATION 
A

CORE CLIENT

USER APPLICATION 
B

 

Figure 20 - ActiveMQ Artemis Architecture 

 

When a user uses the JMS API on the client side, all JMS interactions are thus 

translated into operations on the ActiveMQ Artemis Core API before being 

transferred over the wire using the ActiveMQ Artemis wire format. 

Considering all the above, at the time of this work, ActiveMQ Artemis 2.27.0 has 

been chosen as message-oriented middleware to act as message conveyor and 

supporting the coordination among all the architecture components. 

 

3.2.1. Broker Interception Capabilities 

Moving ahead for what concern the scope of this work, ActiveMQ Artemis offers 

several tools capable of intercepting messages, namely interceptors, divertors and 



 

56 

 

plugins. We will now explore their specificity, advantages, and disadvantage of those 

components and, eventually, identify the one which fits our need. 

Divertors have been immediately discarded because, even though could intercept 

messages on queue name basis, their aim is to provide a transparent mechanism to 

forward message routed to one address to some other address. Anyway, divertors 

may be useful because empower the MOM with some degree of scalability, because 

messages could be transparently routed to queues belonging to different brokers 

allocated in a different machine. 

In fact, when combined with bridges [29] can be used to create interesting and 

complex routings scenario. The set of diverts on a server can be thought of as a type 

of routing table for messages. Combining diverts and bridges permits the creation of 

a distributed network of trustworthy routing links between numerous geographically 

dispersed servers, hence enabling the creation of a global messaging mesh. 

Interceptors, conversely, allow intercepting incoming and outgoing message 

arriving or leaving the broker, they inspect packets entering and leaving the server 

and, even if interceptors are meant to run on server, they could be also exploited 

and configured to run client-side thus distributing the intercepting operation directly 

on the clients. 

Each packet that enters or leaves the server causes the incoming and outgoing 

interceptors to be called, correspondingly. This enables the execution of custom code, 

for instance, for packet inspection, filtering, or other purposes. The packets 

interceptors can alter the content of the message granting a range of possibility and 

flexibility for what concern message data manipulation but, likewise, potentially 

risky. 

Depending on which protocol the message relies on, the interceptor should be 

chosen accordingly, and these interfaces are at developers disposal in order to cover 

all the protocols supported by the broker. 

Once one of these interfaces has been implemented, the broker.xml, the broker 

main configuration file, needs to be updated with one of the following sections 

matching the direction of the intercepted message, inbound or outgoing accordingly: 

  



 

57 

 

 

Listing 4 - Interceptor Configuration 

<configuration> 

 <!--add this section for intercepting incoming messages--> 

 <remoting-incoming-interceptors> 

  <class-name> 

   org.apache.activemq.artemis.jms.example 

   .LoginInterceptor 

  </class-name> 

  <class-name> 

   org.apache.activemq.artemis.jms.example 

   .AdditionalPropertyInterceptor 

  </class-name> 

 </remoting-incoming-interceptors> 

 <!--add this section for intercepting outgoing messages--> 

 <remoting-outgoing-interceptors> 

  <class-name> 

   org.apache.activemq.artemis.jms.example. 

   LogoutInterceptor 

  </class-name> 

  <class-name> 

   org.apache.activemq.artemis.jms.example 

   .AdditionalPropertyInterceptor 

  </class-name> 

</remoting-outgoing-interceptors> 

</configuration> 

 

Since interceptors are protocol dependant, their Java implementation provides a 

clear and straightforward interface for message payload manipulation. This would 

have made interceptor the best choice for the experimentations. 

Unfortunately, the method boolean intercept(…); does not provide any 

mechanism to publish messages other than the one the message is intended for. 

The only way to achieve this purpose is to rely on a client-side JMS compliant 

capable to open a local but networked connection. Networked connections would 

have stacked another layer of abstraction, thus adding more unwanted delays. For 

this reason, interceptor have been classified as not suitable for the scope of this 

thesis. 



 

58 

 

At last, plugins, follow similarly set up as interceptor do. They require developer 

to implement ActiveMQServerPlugin interface, override the appropriate methods, 

put the *.jar archive inside the artemis/<instance_name>/lib folder and instruct 

the broker to be aware of it adding the following tag inside the broker.xml 

configuration file: 

Listing 5 - Plugin Configuration 

<configuration> 

   <broker-plugins> 

      <broker-plugin class-name="it.thesis.interceptors.Coordinator"> 

      </broker-plugin> 

   </broker-plugins> 

</configuration> 

 

ActiveMQServerPlugin interface, shown in Listing 6, is none other than a 

collection of interfaces that, in turn, have a collection of methods invoked as callback 

when some event occurs. 

 

Listing 6 - ActiveMQServer Plugin Interface 

package org.apache.activemq.artemis.core.server.plugin; 

 

public interface ActiveMQServerPlugin extends 

 ActiveMQServerBasePlugin, 

 ActiveMQServerConnectionPlugin, 

 ActiveMQServerSessionPlugin, 

 ActiveMQServerConsumerPlugin, 

 ActiveMQServerAddressPlugin, 

 ActiveMQServerQueuePlugin, 

 ActiveMQServerBindingPlugin, 

 ActiveMQServerMessagePlugin, 

 ActiveMQServerBridgePlugin, 

 ActiveMQServerCriticalPlugin, 

 ActiveMQServerFederationPlugin, 

 ActiveMQServerResourcePlugin {} 

 

The ActiveMQServerMessagePlugin, in fact, provides a broad set of methods 

hooked to different broker-related events inherited from a super set of interfaces. 



 

59 

 

Among all those interfaces the one which allows the interception of the messages is 

the ActiveMQServerMessagePlugin, endowing the developer a series of methods as 

described below: 

• void beforeSend(…): Invoked when a message is about to be sent to the 

broker; 

• void afterSend(…): This method is executed whenever a message is sent 

toward its destination queue, but before it has reached the broker; 

• void onSendException(…): When a sending operation fails, this method 

provide a convenient callback to handle this situation. 

• void beforeMessageRoute(…): Whenever a message reaches the broker a 

routing decision should be taken to point out at the correct forwarding 

queue, if existing. This method allows to add some logic before this decision 

is made. 

• void afterMessageRoute(…): Conversely from the predecessor, this 

method is fired after the routing has been performed regardless of whether it 

is successful or not; 

• void onMessageRouteException(…): Sometimes, routing could fail due to 

different reasons, and when this happens, this method is called;  

• void beforeDeliver(…): This method is executed after the routing is 

successfully performed, before the message leaves the broker this met; 

• void afterDeliver(…):Whenever the message leaves the broker, that is no 

acknowledgement should be awaited from the receiver, this method is 

executed without taking into consideration the message delivery. 

 

Recalling the main reason that led us to consider interceptors inadequate, was the 

lack of a message publishing mechanism integrated within the Artemis API. The 

methods of the ActiveMQServerMessagePlugin plugin, on the other hand, allow the 

previous interaction through the ServerSession object passed as argument. 

The SeverSession object, in Artemis, represents a JMS-compliant session, that 

is a single-threaded context for producing and consuming messages leveraging direct 

Artemis API internal interaction, flaunting the best achievable performance.  



 

60 

 

Eventually, this let us consider plugin convenient as internal coordination 

component, capable of intercept all messages passing through the broker, fulfilling 

all the coordination tasks and to publish messages into supposed topic. 

Topics are used as designated locations in which the publisher wishes to post 

messages and where subscribers may receive certain messages. A string that has one 

or more subject levels separated by a forward slash (/), from left to right, serves as 

the topic identifier. As one descends the tree, the hierarchy will become lower. 

indicating that analysis at the first subject level is given at first. 

Topic naming may be used as a wildcard to subscribe to many subjects or to filter 

among several topics names depending on the demands of the client. 

Multi-level and single-level wildcards are two separate categories of wildcards [28]: 

The plus sign (+) may be used to substitute a single-level in the whole topic name 

(e.g., “sensors/+/temperature” - subscribers can get a message from the client that 

broadcasts temperatures of all rooms). 

A multi-level wildcard may be used with the hash symbol (#) to replace numerous 

subject levels. The last character in the subject should be the multi-level wildcard. 

As an example, “sensors/room/#” subscribers may obtain a message from the client 

that publishes all measurement of the room meaning getting all messages of subjects 

that start with the pattern before the wildcard character. 

When the broker gets the first published message on the given subject, the topic 

will be automatically created if not explicitly set on configuration indicating that 

subject was not already created by the broker. This feature makes it possible for 

clients to communicate with one another even if message queues are not created thus 

permitting a more scalable environment. 

As discussed in this chapter, ActiveMQ Artemis supports several mechanisms for 

message interception. Plugin implementation, however, provides a more specific set 

of features for the intended goal than all the other alternatives explored, allowing 

for full interaction with different aspects of the MOM. 

In the next chapter, the two types of deployment adopted and how the different 

components of them interact will be illustrated. Furthermore, given the need to 

collect metrics that have the purpose of summarizing the results, the workflow for 

generating them will be shown in detail.  



 

61 

 

4. Experimental Setup 

Before going through all the results, this chapter introduces and illustrates how 

the overall architectures and deployment were conducted. Specifically, there will be 

shown how multi-cloud and single-cloud deployments were simulated and where, on 

each of them all the components took place. Subsequently to this, in order to 

introspectively step into the workflow timings will be show how data have been 

collected. 

4.1. Deployment 

As anticipated in the first chapter, adopting multi-cloud strategies can guarantee 

significant advantages. Despite this, one of the downsides when using these types of 

deployments are the response times which, in models such as FaaS, are particularly 

important and therefore determine, in the decision-making phase, which FaaS 

implementation will be chosen.  

Given these circumstances, the present thesis work aims to highlight 

improvements in response times when FaaS architectures are deployed even in multi-

cloud environments. 



 

62 

 

node #3

node #1

node #4 node #5

node #2

UNIBO CLOUD

INTRA-CLOUD INTER-NODE LATENCY  

Figure 21 - Single-cloud physical schema. The virtual nodes instantiated are 

connected through virtual links which can sustain high traffic 

volumes with negligible delays, order of magnitude lower than 

physical links. 

 

Intuitively, expectations are to obtain concretely different results in a multi-cloud 

environment, where response times are generally higher caused by the continuous 

round-trip time of exchanged messages among geographically distributed nodes. 

Even if single cloud-deployments may consist in significant latencies [30] when 

dealing with distant zones, the intra-cloud communications can leverage on 

dedicated and trusted backbone links, routing optimizations or even SLAs [31], 

which could keep latencies generally lower than in multi-cloud deployments.  

Single-cloud deployments were simulated, such as that illustrated in Figure 21, 

exploiting private UniBo datacenter were one-way intra-cloud inter-node latency 

were about 500μs. 

 In multi-cloud scenarios, certain optimizations implemented at the architectural 

level are almost non-existent due to the different technical nature, but even 

organizational and business-related ones. 



 

63 

 

As shown in Figure 22, three out of five nodes were deployed on the UniBo 

datacenter, while the remaining two nodes run on the Microsoft Azure cloud. 

 

 

node #1

node #2

node #3

INTER-CLOUD INTRA-NODE LATENCY

node #4

node #5

UNIBO CLOUD AZURE CLOUD

NON-
CLOUD 
OWNED

NETWORK

 

Figure 22 – Multi-cloud physical deployment schema. The illustrated 

infrastructures foresee the adoption of two cloud environments, 

Microsoft Azure and Unibo Datacenter respectively. 

Communications among these deployments rely on the general 

public internet connection without the adoption neither of 

leased nor proprietary links. 

 

Experimentations were conducted by means of at least five nodes which, in the two 

proposed scenarios, they differ only in their location depending on whether a single-

cloud or multi-cloud deployment is being considered. 

As a result, when in a multi-cloud scenario, resulting end-to-end inter-cloud inter-

nodes latency of 35ms ± 3ms. 

Each node is instantiated as a virtual machine with two virtual processors and 

two cores each, 8 GB of RAM, a virtual network card with 1Gb/sec of maximum 

bandwidth. running Ubuntu 20.04.  



 

64 

 

Independently from the actual deployment used, node #4 runs the Artemis 

ActiveMQ MOM, which listens on port 1883 to accept incoming connections from 

the MQTT clients.  

In two other nodes, namely node #5 and node #3, run the invokers involved 

during the mapping phase and the reducing phase respectively. Additional invokers 

instances will be spawned accordingly to the test performed, with a total of 8 invoker 

nodes, 4 for the multiplication function and 4 for the summation function 

invocations. 

On node #1 runs the traffic process generator, namely the stresser, which is 

being used in place of the trigger to simulate different load patterns. Interactions 

will therefore be directed towards the MOM, hence, not mediated by a trigger as in 

typical FaaS architectures. Although this could be seen as a limitation, it actually 

allows to better isolate what is undergo verification. Adding more components would 

have made the tests less faithful by introducing unwanted latencies and distortions. 

In the last node, so node #2, run the external coordinator that is the component 

that performs the coordination logic among the map and reduce phases. The internal 

coordinator executes the same machine where the MOM is instantiated because it is 

instantiated as ActiveMQ plugin. 

 

4.2. Metrics Collection  

To collect the experimental data generated during the test assessment, the 

architecture must be capable of gathering metrics, i.e., data and information used to 

evaluate the effectiveness of the suggested solution and the system capacity to adopt 

a strategy via the use of MOM capabilities. 

The delay between transmitting and receiving an event is of significant relevance 

and is known as the end-to-end latency. Nonetheless, with end-to-end latency 

collection, numerous metrics, such as mean, minimum, maximum, and the standard 

deviation from that RTT, may be determined. 

 



 

65 

 

MOMSTRESSER INVOKER STRESSER

MAP 
PHASE

REDUCE 
PHASE

END-TO-END LATENCY

ARRIVAL 
TIMESTAMP AT 
MAP PHASE 
INVOKER
(2)

ARRIVAL 
TIMESTAMP AT 
REDUCE PHASE 

INVOKER
(3)

REPLY 
RTT
(4)

TIMESTAMP SET 
ON

SENT MESSAGE
(1)

MOM MOM

INTERNAL
/

EXTERNAL
COORDINATOR

INVOKER

 

Figure 23 - Metrics calculation workflow. The actual physical node placement 

may vary based on the deployment used, but rather the Round-

Trip time is calculated according to this schema. 

 

End-to-end latencies generated by the internal coordination mechanism are 

predicted to be lower than those produced by the external coordinator, particularly 

when tests are run in multi-cloud deployments rather than single-cloud one. 

As a result, a monitoring service based on timestamping activities has been added 

by design at crucial points of the message flow. 

To collect such timestamps, as shown in Figure 23, when the stresser is about to 

send message toward the MOM, it appends a timestamp representing the instant in 

which the message leaves the stresser (1). 

As long as the message is being extracted from the MOM queue by an invoker, 

the one either at the mapping or at reducing phase (2-3), it is in charge of calculate 



 

66 

 

the arrival delay by subtract the message timestamp from its local-generated one. 

In this way, each invoker is responsible to generate its own delay perspective that, 

taken as a whole, will allow us to build the complete system view decomposition. 

Recalling that the MapReduce model is meant to produce result by data 

aggregation, is normal to expect that some of the message initially sent by the 

stresser will eventually be collapsed into one due to the mapping phase. To figure 

out which message timestamp need to be considered to calculate the RTT at the 

end of the workflow (5), it has been considered the subtraction among the received 

message timestamp and the message timestamp of the lowest message ID part of the 

same received message group. For group, it is denoted a set of messages whose IDs 

is included in the same range, defined as: 

 

5 ∗ 𝑛 ≤ 𝐼𝐷𝑥 ≤ 5 ∗ ( 𝑛 + 1) , ∀𝑛 ∈  𝑁 

Equation 1 - Message Group Definition 

 

This is feasible since IDs and timestamps are monotonically generated by the 

stresser, so that the subtraction always succeeds. 

The problem now is to decide which message will be sent back from the reducing 

phase. The simplest adopted solution is to record the highest IDs and, thus, its latest 

timestamp which will build the reply message up fields when the number of messages 

received modulo 5 equals to 0. 

With this set up put in place, our implementation is capable to have a simple 

metric monitoring framework to record sufficient activities log entries used to 

produce the results shown in the next chapter.  

  



 

67 

 

5. Experimentations and Relevant 

Results 

This section presents the experimentations carried out for the evaluation as a 

whole, varying the types of architectures proposed, the load in terms of messages 

sent by the stresser, as well as the evaluation through the processing capabilities 

comparison either of internal or external coordination techniques, identifying 

possible advantages but even possible drawbacks of the proposed solutions. 

As anticipated in Chapter 3, the broker configuration involves instantiating non-

durable queues so as not to add additional delays to the message flow and because 

delivery constraints are considered not valuable for the sake of this work. For the 

same purpose, client configuration foresees the sending of QoS 0 message only. In 

fact, with such setting turned on QoS 1 or QoS 2, what could be experienced at some 

time during tests execution, is the message swapping to disk even though RAM were 

not completely full. This would lead to great loss in performance, but most 

importantly, in test results spoiling. 

Tests were performed by creating unique usage scenarios combining four execution 

variables: 

1. Model of deployment used: The use of single-cloud and multi-cloud 

configurations will allow us to evaluate the eventual benefits which comes 

from two scenarios that differ, substantially, in terms of deployments 

extensiveness.  

2. Active number of listening invokers: What we want to test, in fact, is 

not only a possible performance improvement (a certainly desirable feature), 

but also the scalability of the infrastructure as the interacting components 

grows. For what concern components replication, if the invoker executes the 

multiplication function and it is firstly deployed on the UniBo datacenter, 

whenever multiple invokers assessment test is going to be performed, the 

invoker replication sticks on the same CSPs where the first replica was 

deployed; same applies to invoker executing the addition function. For this 

purpose, three configurations will be used, respectively named 1x, 2x and 4x: 



 

68 

 

a. 1x: Involves the usage of a mapper and a reducer, so the resulting 

workflow is comparable to a sequential execution. 

b. 2x: Involves the usage of two mappers in parallel and two reducers in 

parallel. 

c. 4x: Involves the usage of four mappers in parallel and four reducers in 

parallel. 

3. Representative workload: Specifically, by means of the stresser, three 

types of loads will be generated depending on the scenario to be evaluated, 

as follows: 

a. Stream of incoming requests emitted at steady regime: This 

type of load is intended to evaluate the properties of our serverless 

platform with a constant regime of incoming requests. This scenario is 

particularly valuable for assessing the responsiveness of the system in 

the stability condition, i.e., what is normally expected to be the 

average response times during usual workloads. 

b. Stream of incoming requests emitted at increasing rate: This 

scenario mimics a typical traffic pattern that occurs when a large 

number of events need to be processed at once.  

4. Programming languages used: Since serverless architectures are as 

agnostic as possible with respect to the programming language used, we opted 

for two function invocation written in as many different programming 

languages, and another case without any function invocation. 

In the primer, the languages have been chosen taking into consideration 

their average execution speed [32], so that could emerge different results 

consideration:  

a. JavaScript: High-level language and interpreted, has been selected as 

a representative of that class of languages that need an additional 

infrastructure to support their execution. 

b. Rust: Once compiled it is capable of achieve higher performance than 

the primer classes considered. 



 

69 

 

By this end, we use three different types of businness-logic invocation criteria: 

embedded in the invoker code as a Rust mock function, also referred as no function 

call, with a negligible execution time, an external function through the invocation of 

a Rust executable with execution times of about 2700μs ± 240μs and lastly through 

the invocation of a JavaScript function executed via the usage of the nodejs 

interpreter with an execution time of about 360ms ± 12ms [33]. 

For each sent message, in addition to message payload application data(not 

relevant for the test), the stresser adds the sending timestamp. This is because to 

obtain a Round-Trip Time estimation as precise as possible it is calculated as the 

difference between the message returning timestamp and the one saved inside the 

payload, hence a subtraction between local timers.  

The choice to include the timestamp within the message payload is enforced by 

the need to calculate the system decomposition as in Section 4.2 above.  

In this case, differently how worked previously, latency is calculated by measuring 

the difference between the arrival timestamp (for example in the map phase) and 

the timestamp inserted within the message payload. However, since these two 

timestamps belong to different nodes, some synchronization mechanism needed to 

be adopted to reduce the time skewness as much as possible. For this scope timers 

have been synchronized using the NTP [34] protocol, through which, as in Figure 

24, it was possible to obtain timing offsets in the order of hundreds of μs, considered 

acceptable for the overall results. 

 

 

Figure 24 - NTP estimate time synchronization 

 

Besides that, in all these scenarios, the composition length is kept constant to 2, 

representing a common option in real-world use case with just one map and one 

reduce operations. 



 

70 

 

The following results will be organized as follows: for each workload iteration, 

starting with a constant message emission rate and then as a stream of incoming 

requests at increasing rate, will be compared the results obtained from the single-

cloud and multi cloud deployment. Each iteration will be also repeated for each 

invoker function execution configuration. 

Additionally, the parallelization level of the invokers ranges from one (1x), thus 

a sequential execution, two (2x) and four (4x), as parallel executions. The 

parallelization level is meant to evaluate the scalability of the infrastructure at 

increasing number of participating entities while keeping constant all the other 

variables. 

Furthermore, at the end of each test evaluation section, will be evaluated the 

scaling capability of the proposed solution taking into consideration the CPU 

resources utilization as well as memory consumption expressed as memory allocation. 

Since the platform resource consumption could be pulled out only under the 

assumption of heavy loads, this last assessment is performed using the 4x 

configuration with no function invocation. 

Each test producibility is obtained consistent using the same input context 

condition data, computational steps, and conditions of analysis cleaning caching data 

saved inside artemis/<instance_name>/data/ folder by ActiveMQ Artemis 

broker. 

  



 

71 

 

5.1. Stream of Incoming Requests Emitted at Steady 

Regime 

In this first experiment, we would like to investigate the system behaviour under 

a steady regime, hence, the stresser issues a number of requests at a constant rate 

per second simulating a typical FaaS load scenario. 

Note that in case of excessive results gap among data series, to let clearer readings, 

the y-axis has been set in logarithmic scale. 

Each chart could be divided into 3 sections, grouped by same scaled colour, that, 

starting from the left, deal with sequential, parallelization of 2x and 4x executions 

respectively. Furthermore, each pair of charts are meant to compare tests run, but 

in single-cloud and multi cloud scenarios, keeping all the other execution variables 

fixed hopefully possible observations could be advanced. 

All tests presented in this section were carried out for a fixed time limit of 300 

seconds. 

 

Figure 25 -Bar chart representing average end-to-end latency with constant 

message flow in presence of different kind of interceptors, light 

colour for internal and dark colour for external, at increasing level 

of invokers parallelism without function call in single-cloud 

scenario. 



 

72 

 

Figure 25 illustrates the relationship between different throughput at the 

maximum admissible and sustainable constant rate when no function invocation 

occurs in single-cloud scenario. 

The tests are carried out with the constant issuing rate of 1000, 2000 and 4000 

requests per second as far as concern the parallelism considered of 1x, 2x, and 4x 

respectively. 

With parallel invoker executions the total average does not gain any relevant 

performance gain in which remain rather constant at 8ms and 5ms when 2x and 4x 

respectively. However, when it comes with sequential execution, the situation 

changes dramatically with a net improvement of 38% going from 22ms down to 16ms 

round-trip time. This behaviour is attributable to the fact that when intra-nodes 

delays are comparable with that related to the time spent executing the whole 

processing pipeline, including coordination tasks and subsequent communication 

overhead, benefits become more evident. Augmenting the infrastructure 

parallelization, however, flows processing execution time drops to a level only 

dependant to the communication overhead, hence, since single-cloud deployment 

consists of negligible inter-node delays, our solution does not provide any relevant 

results. 

Overall, from a scalability point of view, our solution, in the worst-case scenario, 

is capable to deliver the same performance as well as the solution with the external 

coordination technique. 



 

73 

 

 

Figure 26 - Bar chart representing average end-to-end latency with constant 

message flow in presence of different kind of interceptors, light 

for internal and dark for external, at increasing level of invokers 

parallelism without function call in multi-cloud scenario. 

 

In Figure 26, tests repetition consists in maintaining the same set up but 

considering a multi-cloud deployment scenario. What immediately emerges is that 

using the internal coordination component allows great timing improvement 

especially when in multi-invokers cases. Differently for what happens in a single-

cloud deployment where timings keep under the tenth of millisecond, and thus 

adopting an embedded coordination logic provide some substantial changes just in 

sequential execution model, instead, benchmarking a distributed architecture leads 

to more incisive results especially when in a parallelized architecture. 

As mentioned in the previous test, the average timings, when in a 1x setup, we 

got a 38% improvement, whilst in the latter these result keeps rather similar with 

an overall benefit in terms of 36% cut delays going from an average RTTs of 213ms 

down to 137ms. 

Conversely, 2x and 4x configurations, timings, drop from 172ms to 125ms and 

166ms to 122ms respectively with an average 28% reduction, whereas there were no 

timings improvement in the single-homed scenario. 



 

74 

 

Even in this case, our solution linearly scales as well as the solution adopted, i.e., 

with the usage of external coordinator, hence does not point out any performance 

drawbacks. 

 

 

Figure 27 – Bar chart representing average end-to-end latency with constant 

message flow in presence of different kind of interceptor, light for 

internal and dark for external, at increasing level of invokers 

parallelism with Rust function execution in single-cloud scenario. 

 

Figure 27 summarizes test results when invokers, this time, run a Rust function as 

executable.  

When tests are performed with the invocation of the Rust executable, the sending 

rate, however, have been adjusted accordingly to avoid message enqueuing caused 

by unprocessed message backlog. This led subsequent speed reduction at 500 requests 

per second for sequential processing (1x), 1000 requests per second with a parallelism 

of 2x and, ultimately, 2000 requests per second on the 4x case.  

For the same reasons, apart from overall higher execution time, the proposed 

solution shines when internal coordinator is used in sequential, single-cloud 

deployment with a humble, but somehow significative, 8% delay reduction, whilst 

the situation remains more or less unaltered as far as concern performances in multi-



 

75 

 

invoker scenarios. When the system is subjected to a 2x or 4x invoker parallelization 

the time discrepancies remain too little to be considered valuable from the 

performance point of view. 

 

Figure 28 – Bar chart representing average end-to-end latency with constant 

message flow in presence of different kind of interceptors, light 

for internal and dark for external, at increasing level of invokers 

parallelism with Rust function execution in multi-cloud 

scenario. 

 

When comparing multi-cloud and single cloud deployments, the primer 

accomplishes better results, as shown in Figure 28. Sequential execution model 

achieved an average RTT of 81ms lower in multi-cloud deployment (from 261ms to 

180ms) with a total reduction of about 31%. 

On the parallelized platform instead, when dealing with 2x setup, it achieves an 

average RTT drop from 225ms to 156ms, but despite being relatively lower than the 

previous one, 69ms against 81ms, it constantly performed a nice 32% reduction. 

The scalability trends are anyway maintained when the number of invokers, per 

phase, is incremented to 4x, in fact the usage of the external coordinator, the 

workflow RTT stabilizes at about 223ms whereas the platform with the internal 

coordination schema reaches 172ms and therefore a difference of 51ms, with a 

relative percentage reduction of 23%. 



 

76 

 

Next test series will evaluate the last case-study related to the invoked function 

and the way the system will perform in conjunction with very slow consumers. 

 

Figure 29 – Bar chart representing average end-to-end latency with constant 

message flow in presence of different classes of interceptors, light 

for internal and dark for external, at increasing level of invokers 

parallelism with JavaScript function execution in single-cloud 

scenario. 

 

On the other hand, when invoker is tasked for the JavaScript nodejs function 

execution, results tend to flatten out their differences. The cue here is that the 

average RTT difference obtained through an internal or external coordination 

mechanism represents less than 0,01% of the total execution time. This behaviour is 

due to the interpreter execution time known to be even two orders of magnitude 

slower than the Rust counterpart. 

That said, the architecture was benchmarked with a constant message emission 

rate of 2, 4 and 8 requests per second producing the following result: for a sequential 

execution the internal coordinator performed 3ms worse than the external with the 

corresponding values of 2756ms and 2759ms respectively, while in case of 2x 

concurrent invokers per phase, they get the values of 1757ms and 1756ms, hence 

with no substantial differences. The situation remains practically unchanged in the 



 

77 

 

4x scenario, where both configurations recorded average RTTs stick at the same 

1251ms value. 

The explanation behind these values could be found in the exaggeratedly high 

invocators execution time which let the platform to handle message exchange with 

minimal or no synchronization mechanism overhead, hence, invalidating the 

performance gain that could arise. 

 

Figure 30 - Bar chart representing average end-to-end latency with constant 

message flow in presence of different classes of interceptors, light 

for internal and dark for external, increasing level of invokers 

parallelism with JavaScript function execution in multi-cloud 

scenario. 

 

Differently from the previous test, as show in Figure 30, the multi-cloud setups 

take advantage of reduced message time-of-flight. In x1, with its 2914ms external 

coordination RTT is about 30ms above the internal one with 2884ms, but if 

assessments are repeated with 2x and 4x invoker parallelization, the gap increases 

from 1923ms to 1972ms in the primer and keeps increasing more consistently in the 

latter with a 1434ms drop from 1470ms, thus a saving of almost 36ms in the average 

case. 

At the end of these evaluations, we generally see that the proposed solution, either 

in case of single or multi-cloud scenarios, is capable of delivering, at least, the same 



 

78 

 

performance levels, which are highly dependent from number of coordination 

messages exchanged. 

In the case of external coordination, implementing such a simple coordination 

logic, foresees the exchange of two more coordination messages. When in an internal 

coordination architecture, these messages cut-off which results, as shown in Figure 

31, in a total average time saving of 30ms to 100ms when message arrives to the 

Reduce Phase. 

 

Figure 31 - Trend lines chart comparing 1x, 2x, 4x invoker setup, from top to 

bottom, average messages time of arrival at each processing 

pipeline stages, with constant message flow of 4k requests per 

second, in a multi-cloud scenario. Values are averages of the 

entire test execution. 

 

Note that all these tests were carried out in a multi-cloud scenario, because it 

magnifies the gaps among all execution thanks to network communication overhead, 

imperceptible otherwise. 

The next two indicators, as stated at the beginning of this chapter, will let us 

draw what are the MOM related resources utilization implications because they 

could be determinant when reasoning about the system scalability. To inspect those 

variables had been taken into account the worst-case scenario, that is the system in 



 

79 

 

subjected to the highest incoming request rates of 4000 requests per second in a 

single cloud-scenario and 4x parallel invokers per phase. 

 

Figure 32 - Trend lines chart tracking CPU usage in a 4k constant incoming 

requests per second with Rust executable invocation, 4x invoker 

parallelism and single-cloud scenario. Data resolution is of 1 

sampling per second. 

 

How can we see in Figure 32 - , when the messages started to arrive at the MOM, a 

CPU percentage utilization spike occurs for both solutions, reaching its maximum 

at around 55%. This is due to the fact all tests were executed with preliminary cache 

invalidation and temporary file deletion that leads the broker to instantiate the 

necessary data structure and temporary files once again. The CPU usage then, after 

a brief oscillatory moment tends to converge to a steady value. The difference is 

that, for most of the execution time, our solution has at least 10% constant CPU 

less utilization up to when compared with external coordination processes. This is 

because the latter, whenever the coordinator needs to get all the requested 

information, they need to be read from the appropriate queue and, from the MOM 

perspective, is a CPU-bound operation because it sees a series of state 

synchronization operation which translates to higher CPU resources utilization. 



 

80 

 

 

Figure 33 - Trend area chart tracking CPU usage in a 4k constant incoming 

requests per second with Rust executable invocation, 4x invoker 

parallelism and single-cloud scenario. Data resolution is of 1 

sampling per second. 

 

ActiveMQ Artemis delegate the memory management on the Java Virtual 

Machine and it is an important characteristic to remember because the resource 

releasing up to the underneath JVM completely. This means that at some point, not 

shown in Figure 33, the garbage collector will be not-deterministically tasked to 

release the memory causing, even though for a short time, additional resource 

consumption. 

Instead, what can be seen from Figure 33, is that our solution tends to fill the 

available memory slower and so, when in real-word scenario, to reduce the number 

of garbage collector run. 

The behaviour here let us consider our solution, in general, more memory efficient, 

more stable, and then less prone to sudden performance unwanted latencies.  

  



 

81 

 

5.2. Stream of Incoming Requests Emitted at 

Increasing Rate 

In this second series of experiments, the platform is subjected to an incremental 

burst of concurrent requests so that its behaviour can be examined. To this end, the 

stresser produces a burst of invocation requests starting from 250 to 10k requests 

per second with a step increment of 250 messages per second.  

This way, we intentionally exacerbate the queuing effect filling the queues up with 

invocation requests, as the invokers or the coordinator, will not be able to consume 

them properly. 

The tests here proposed will follow the same structure adopted in Section 5.2 

above, but additional data information has been collected and presented. 

 

 

Figure 34 – Trend lines chart comparing 1x, 2x, 4x invoker setup, from top 

to bottom, in a burst of 250 to 10k requests per second with an 

increment of 250 requests per second without function call in 

single-cloud scenario. Every message burst is reported as a single 

latency value, which represents the average of the message 

latency values of that burst.  

 



 

82 

 

The chart in Figure 34 has been splitted into three different plots with logarithmic 

scaled y-axis, based on architecture parallelism, to improve readability. In fact, what 

we are interested in is the relative performance obtained into the single group, rather 

than comparing them. 

What catches the eye is the fact that, in such single-cloud scenario, our solution 

keeps, for most of the execution timeframe, below the counterpart. Even when the 

system starts to enqueue the requests, observable by the increasing oscillating 

behaviour, our solution tends to maintain overall more consistent responses. At that 

point, in fact, the performance obtained are roughly two orders of magnitude lower. 

For example, when messages emission rate reaches 8k requests per seconds, the 

recorded values dropped from thousands down to tenth of milliseconds.  

Another desirable effect of the adoption of an internal coordinator is that, limiting 

the broker internal synchronization mechanism, it is capable to postpone the 

moment in which the MOM starts to enqueue the incoming messages. In other words, 

the oscillating behaviour is shifted onward allowing heavier workloads with the same 

computational available resources.  

  



 

83 

 

 

 

Figure 35 - Trend lines chart comparing 1x, 2x, 4x invoker setup, 

respectively from top to bottom, in a burst of 250 to 10k 

requests per second with an increment of 250 requests per 

second without function call in multi-cloud scenario. Every 

message burst is reported as a single latency value, which 

represents the average of the message latency values of that 

burst. 

 

Aside from the previously advantages, in the multi-cloud environment depicted 

in Figure 35, brought the additional delay reduction due to the MOM close proximity 

of the coordinator component. In fact, as long as rates remain far below the 

oscillatory behaviour, the platform average RTTs can boast a halved time reduction 

from about 200ms to 100ms. Furthermore, since this behaviour occurs independently 

from the grade of parallelism, it confirms the scaling capabilities even when the 

number of interacting entities increases. 

 



 

84 

 

 

Figure 36 - Trend lines chart comparing 1x, 2x, 4x invoker setup in a burst 

of 250 to 10k requests per second with an increment of 250 

requests per second with Rust function execution in single-cloud 

scenario. Every message burst is reported as a single latency 

value, which represents the average of the message latency 

values of that burst. 

 

Moving next to Rust executable invocations, Figure 37 (note the log scale in y-

axis) shows that when on single-cloud scenario the most preeminent accomplished 

results, coherently for what happens in last test, occur with the highest level of 

parallelism. With these setups in place, however, the enqueuing effect started to 

emerge at 400, 1200 and 3000 requests per second with 1x, 2x and 4x respectively. 

Interesting is the fact that, doubling the numbers of invokers, the local minimum 

shifts 3 times onward from 1x to 2x and 2,5 times onward from 2x to 4x. This 

suggests that, from a scalability perspective, the platform is capable to support 

concurrent ingress requests that does not linearly grow with the number of invokers. 

With the bottleneck effect in place, hence, in the ranges just after the local 

minimum, our solution is capable to delivering an average 20ms RTTs saving. 



 

85 

 

 

Figure 37 - Trend lines comparing 1x, 2x, 4x invoker setup in a burst of 250 

to 10k requests per second with an increment of 250 requests 

per second with Rust function execution in multi-cloud scenario. 

Every message burst is reported as a single latency value, which 

represents the average of the message latency values of that 

burst. 

 

Multi-cloud scenario, as foreseeable, has higher latencies gap among the twos 

coordinators implementations, chiefly due to the distributed location of the 

architectural components. Embedding the coordination logic inside the MOM leads 

a total reduction of about twice the average coordinator-MOM RTT pairs, that, as 

in Figure 37, of about 80ms. 

Ultimately, scaling the number of invokers up does not degrade the overall 

architecture performance. 

 



 

86 

 

 

Figure 38 – Candlestick chart comparing 1x, 2x, 4x invoker setup, respectively 

from top to bottom, in a burst of 250 to 10k requests per second 

with an increment of 250 requests per second with Rust function 

call in single-cloud scenario. Every message burst is reported as a 

single value set, which represents the average of the message values 

of that burst. Each candle encloses 4 distinct parameters: the 

minimum as bottom whisker, the maximum as top whisker, the first 

and third quartile as the upper and lower box boundaries. 

 

Until now, the principal metric taken into consideration, to compare the various 

architectures proposed and consequently determine the goodness of our solution, has 

been that of the average round trip delay. Unfortunately, the average value cannot 

be considered the only indicator, in fact having two sets whose average coincides, 

could be, actually, very different. As is well known, distributed application, are 

particularly sensitive in average value variation, therefore, a careful analysis of the 

latter could have important implications regarding the performance evaluations of 

the proposed solution. Chart in Figure 38, It shows a different view of the iteration 

in single cloud, while the data has been selected generating a discrete probability 

distribution per 1000 units. The bar charts with whiskers presented here provide 

four additional features to those seen above. The upper whisker provides the 

maximum value recorded during the session, while the lower mustache, as easy to 

expect, the minimum value. The other two indicators can be obtained respectively 



 

87 

 

from the upper and lower box edges which provide us, jointly, the values included 

in the range defined as the distance one time the standard deviation from the mean 

value. With the results obtained from the test in in Figure 36, emerge that the 

solution with internal coordination is comparable to the solution with external 

coordinator in terms of minimum and maximum average latency. In addition, even 

the sampled distribution remains unchanged, i.e., the solution we propose does not 

introduce further relevant shaping skewness on the distribution. 

 

 

Figure 39 - Trend lines comparing 1x, 2x, 4x invoker setup in a burst of 1 to 20 

requests per second with an increment of 1 request per second with 

JavaScript function execution in single-cloud scenario. Every message 

burst is reported as a single latency value, which represents the 

average of the message latency values of that burst. 

 

In the event depicted in Figure 39,  due to the extremely low nodejs execution 

and to keep tests reasonably short, we had to recalibrate stresser emission rate, so 

that, it produced a burst of messages ranging from 1 to 20 requests per second with 

a step increment of 1 message per second every 5 seconds. 

In the same manner to what happened when a stream of incoming requests are 

emitted at steady regime, the benefit compared to the average RTT is to be 



 

88 

 

considered negligible suggesting, either in single-cloud, above, than multi-cloud 

deployments below. 

 

Figure 40 - Trend lines comparing 1x, 2x, 4x invoker setup in a burst of 1 to 20 

requests per second with an increment of 1 request per second with 

JavaScript function execution in multi-cloud scenario. Every 

message burst is reported as a single latency value, which represents 

the average of the message latency values of that burst. 

 

As a general consideration, what is evident from the experimentations shown in 

trend lines charts above is that, regardless of whether in single or multi cloud, the 

parallelism adopted and the actual function invocation mechanism, they present an 

initial sustained delay time. 

The explanation behind this phenomenon, as already explained during the 

previous chapter of this thesis, it is attributable to the cold start problem. 

With subsequent incoming requests, albeit depending on factors such as the 

number of requests and the invocation function, the architecture manages to satisfy 

more requests than the incoming ones. Consequently, as requests per second factor 

increases, the average response time tends to decrease gradually until it reaches a 

local minimum. This local minimum is to be considered as the maximum number of 

requests that the setup can sustain before starting to enqueue the requests. After 

this point, normally, trend is monotonically or globally increasing indicating that 



 

89 

 

new incoming requests compete with existing ones, causing enqueuing with an 

increasing delay in response. 

As already discussed in the previous section, in Figure 41, the messages average 

time of arrival to the various stages of processing pipeline is shown. 

 

 

Figure 41 - Trend lines chart comparing 1x, 2x, 4x invoker setup, from top to 

bottom, average messages time of arrival at each processing 

pipeline stages, in a burst of 250 to 10k requests per second with 

an increment of 250 requests per second, in a multi-cloud scenario. 

Values are averages of the entire test execution. 

 

As before, the solution with internal coordination at the MOM guarantees globally, 

compared to the total execution time of the test, the best arrival time to arrive at 

the reduce phase. As you can see, the improvement is always attributable to the 

coordination phase thanks to which the Reduce phase sees messages delivered with 

a lower latency of about 50-60ms. In fact, with sequential configuration the messages 

reach the reduction phase with an average delay of 357ms against 427ms, with a 

reduction of 17%., with 2x invokers the delay is expected at 391ms against 446ms 

with an improvement of 13% and finally with   four invokers per phase there are 

294msagainst 361ms with an improvement of 19%. Even in this situation, the 



 

90 

 

platform seems to maintain the desired scalability properties by not suffering a 

degradation of performance as the number of parts in the game increases. 

 

 

Figure 42 - Trend lines tracking CPU usage in a burst of 250 to 10k requests 

per second with an increment of 250 requests per second with Rust 

executable invocation, 4x invoker parallelism and single-cloud 

scenario. Data resolution is of 1 sampling per second. 

 

When it comes to analyse the CPU utilization, instead, as shown in Figure 42 

and as it was already explained on page 79, since the internal coordinator shares and 

competes the same hardware resources with the MOM, when the first message is 

being published, the broker has to handle them and instantiate the plugin, allocating 

all the needed resources. 

However, this initial and inevitable peak represents only 5% of the CPU resources 

additionally with respect to the external coordination alternative and, due to its 

transient nature, it is intended to disappear quickly with minimal or even no real-

world performance loss, considering that it would occurs once per platform reboot 

only. 

After that moment anyway, our solution keeps pretty the same behaviour of the 

other all along the test execution. 



 

91 

 

 

Figure 43 - Trend area chart tracking RAM in a burst of 250 to 10k requests 

per second with an increment of 250 requests per second with Rust 

executable invocation, 4x invoker parallelism and single-cloud 

scenario. Data resolution is of 1 sampling per second. 

 

As far as concern the memory allocation, there is no substantial differences among 

the internal coordination strategy and the external one. In contrast for what 

happened in Figure 33, where the tests were carried out for 300 seconds, this one 

barely lasted 50 seconds and, the broker, were capable to follows a quasi-linear 

growth till the maximum occupation of 1500MB. 

In summary, we started from the evaluation of the system in the case of constant 

workloads where we wanted to ascertain the architecture capability to support a 

typical FaaS workflow when fully operational. Subsequently, we moved on to 

incremental loads to simulate an information flow that would bring the architecture 

to saturation of its computational resources. The objective in this case was not only 

to understand if the solution was able to support more load than the counterpart, 

but to evaluate its scalability in terms of occupied resources. 

At the same time, the scenarios proposed in the aforementioned configurations 

were tested in single cloud and multi-cloud deployment models in order to be able 



 

92 

 

to evaluate any improvement, in terms of average latency, compared to solutions 

that envisage an external coordination system for the composition of functions. 

By specifying the results obtained in the case of a constant flow of requests, what 

emerges is the ability of the system to provide consistent improvements in terms of 

delays especially when compared to the execution time of short-lived functions in a 

single cloud scenario with sequential execution. When, on the other hand, this 

execution is performed in parallel contexts, again in single-cloud scenarios, these 

delays are in line with the results obtainable with solutions that envisage external 

coordination. 

Our proposal, on the other hand, promises excellent performance when the 

deployment model is entrusted to a multi-cloud service where, the co-locality of the 

coordination logic with the MOM, allows a marked improvement in average response 

times, both in the scenario sequential than parallel. 

However, regarding the use of resources, the use of an internal coordination system 

showed a more linear usage, while it overperformed in constant load conditions, 

where it proved to be clearly superior in managing the memory more effectively. 

In the scenario where the trials were subjected to incremental load, however, the 

solution generally showed similar properties in terms of resource scalability in both 

single and multi-cloud scenarios. Furthermore, although highlighting a global 

improvement in response times, especially in the presence of short-lived functions, 

multi-invoker and multi-cloud, the internal coordination of the functions manages 

to manage message bursts more consistently than the externally coordinated 

solution.  

Ultimately, because its ease of implementation and for the same reasons stated 

above, we ultimately sustain the effectiveness of our proposal whenever the usage of 

a MOM-centric function composition architecture is being used to adopt a MOM-

embeddable coordination mechanism. 

  



 

93 

 

6. Conclusions and Future 

Developments 

The serverless model of cloud computing encourages a greater degree of 

abstraction. This type of cloud computing enables customers to concentrate on the 

creation of business logic while transferring all responsibility for resource 

management to the platform provider. The ability to compose functions to create 

complex processing workflows is a feature that is becoming more prevalent and 

appealing in serverless computing, meanwhile, its flexibility uplifts the modularity 

and reusability of functions. 

It is evident that serverless technology, thanks these many reasons, not least those 

of an environmental nature [35], is spreading at an exponential rate with a growing 

market demand. However, as anticipated, there is no de facto solution to the 

numerous problems afflicting serverless architectures, such as IT security and the 

level of performance currently achieved, which however, in corporate and mass scale 

scenarios are inadequate and not up to par to totally supplant current technologies. 

However, the peculiarity of these architectures, i.e., the efficiency of resources, 

both computational for CSPs and financial for customers, make them one of the 

technologies most under research and development of this millennium. 

In fact, many technologies advances have been introduced since their first 

development which, over time, have also allowed their adoption in, albeit limited, 

business scenarios for carrying out tasks with no disappointing expectation. 

What has been done with this work aimed to exploit run-time optimizations 

through the usage of a message-oriented middleware as a conveyor of messages 

among all the FaaS components while experimenting how all these behave under 

different workloads and scenarios conditions.  

Choosing the right message-oriented middleware implementation has been 

absolutely essential to fulfil all the intended objectives since ActiveMQ Artemis 

revealed to have, out-of-the-box, the required features among the commercial or non-

commercial alternative solutions in message-oriented middleware, letting us to 

implement an interceptor as a plugin. In particular, as of today, we created a specific 

plugin that counts the number of messages having a specific destination in its header 



 

94 

 

and fires a specific event when the preconfigured condition is met. The metrics here 

collected let us to consider the validity of our proposal, exposing strengths and 

weaknesses, and its ability to come up with better performance while enforcing less 

resource consumption and minimal memory footprint. 

However, multiple possible extensions could be considered. Firstly, would be 

interesting to evaluate the same proposal relying on a more complex testbed and 

execution environment, with an increasing number of invokers per phase or 

additionally increasing the pipeline stage number of mapping or reducing phases. 

Secondly, the realization of a more complex Event Synthesizer logic with enhanced 

event generation or advanced processing logic accordingly to workflow definitions. 

In fact, such definitions here implemented in a modulo counting, could be extended 

considerably introducing a new set of technologies specifically meant to describe and 

generate a super set of rules and logic implications, such as Domain-Specific 

Languages tools [36]. Those Event Synthetizes, as long as Queue Monitoring 

components could be implemented as plugins getting all the MOM potentials. 

Thirdly, the development of a valid alternative to Rust command invocation 

since, especially in case of nodejs instantiation, it demonstrated a few margins of 

improvement and responsiveness during the tests. In fact, what could be exploited 

is the adoption of accurately meant framework which avoid the instantiation of the 

whole compiler. 

Lastly, due the exceptional ActiveMQ Artemis performance and promising 

scalability features, it would be interesting to evaluate how distributed FaaS 

architecture behave in very sparse and far away nodes interacting in a multi-MOM 

scenario. For the same reason, since connectivity outage and even occasional 

networks disruption may occur during FaaS execution, it might be worthwhile to 

evaluate function composition in a MOM QoS-enabled deployment. 

With that being said, we really belief that serverless architectures would be able 

to consolidate their presence on the market once current critical issues have been 

resolved or at least mitigated, continuing to be successful in important production 

choices replacing traditional systems in different application areas with an optimized 

usage of computing resources.  

  



 

95 

 

Index Of Figures 

Figure 1 - Single-Cloud and Multi-Cloud Strategies 6 

Figure 2 – Models of Service 8 

Figure 3 - FaaS Service 10 

Figure 4 – Typical Virtualization Layers 14 

Figure 5 – Typical Containerization Layers 16 

Figure 6 - Evolution from Virtualization to FaaS architectures 17 

Figure 7 - HTTP API Gateway in a typical FaaS architecture 21 

Figure 8 – Example of Synchronous Communication 26 

Figure 9 – Example of Asynchronous Communication 27 

Figure 10 - Message Oriented Middleware High Level Architecture 28 

Figure 11 - Reflective Invocation 33 

Figure 12 - Continuous Passing at Infrastructural Layer 33 

Figure 13 - Continuous Passing at Business Layer 34 

Figure 14 - The Double-Billing problem 36 

Figure 15 - MOM Centric Architecture 39 

Figure 16 - Function composition through the usage of an External Coordinator 

component 40 

Figure 17 - Logical Interaction Schema. In contrast for what happens when the 

external coordination process is used, steps 6 and 7 are integrated 

inside the MOM as embedded component. 41 

Figure 18 – Proposed function composition through the usage of an Internal 

Coordinator 42 

Figure 19 - MapReduce Phases 46 

Figure 20 - ActiveMQ Artemis Architecture 55 

Figure 21 - Single-cloud physical schema. The virtual nodes instantiated are 

connected through virtual links which can sustain high traffic volumes 

with negligible delays, order of magnitude lower than physical links.

 62 

Figure 22 – Multi-cloud physical deployment schema. The illustrated 

infrastructures foresee the adoption of two cloud environments, 



 

96 

 

Microsoft Azure and Unibo Datacenter respectively. Communications 

among these deployments rely on the general public internet 

connection without the adoption neither of leased nor proprietary 

links. 63 

Figure 23 - Metrics calculation workflow. The actual physical node placement 

may vary based on the deployment used, but rather the Round-Trip 

time is calculated according to this schema. 65 

Figure 24 - NTP estimate time synchronization 69 

Figure 25 -Bar chart representing average end-to-end latency with constant 

message flow in presence of different kind of interceptors, light colour 

for internal and dark colour for external, at increasing level of 

invokers parallelism without function call in single-cloud scenario. 71 

Figure 26 - Bar chart representing average end-to-end latency with constant 

message flow in presence of different kind of interceptors, light for 

internal and dark for external, at increasing level of invokers 

parallelism without function call in multi-cloud scenario. 73 

Figure 27 – Bar chart representing average end-to-end latency with constant 

message flow in presence of different kind of interceptor, light for 

internal and dark for external, at increasing level of invokers 

parallelism with Rust function execution in single-cloud scenario. 74 

Figure 28 – Bar chart representing average end-to-end latency with constant 

message flow in presence of different kind of interceptors, light for 

internal and dark for external, at increasing level of invokers 

parallelism with Rust function execution in multi-cloud scenario. 75 

Figure 29 – Bar chart representing average end-to-end latency with constant 

message flow in presence of different classes of interceptors, light for 

internal and dark for external, at increasing level of invokers 

parallelism with JavaScript function execution in single-cloud 

scenario. 76 

Figure 30 - Bar chart representing average end-to-end latency with constant 

message flow in presence of different classes of interceptors, light for 



 

97 

 

internal and dark for external, increasing level of invokers parallelism 

with JavaScript function execution in multi-cloud scenario. 77 

Figure 31 - Trend lines chart comparing 1x, 2x, 4x invoker setup, from top to 

bottom, average messages time of arrival at each processing pipeline 

stages, with constant message flow of 4k requests per second, in a 

multi-cloud scenario. Values are averages of the entire test execution.

 78 

Figure 32 - Trend lines chart tracking CPU usage in a 4k constant incoming 

requests per second with Rust executable invocation, 4x invoker 

parallelism and single-cloud scenario. Data resolution is of 1 sampling 

per second. 79 

Figure 33 - Trend area chart tracking CPU usage in a 4k constant incoming 

requests per second with Rust executable invocation, 4x invoker 

parallelism and single-cloud scenario. Data resolution is of 1 sampling 

per second. 80 

Figure 34 – Trend lines chart comparing 1x, 2x, 4x invoker setup, from top to 

bottom, in a burst of 250 to 10k requests per second with an 

increment of 250 requests per second without function call in single-

cloud scenario. Every message burst is reported as a single latency 

value, which represents the average of the message latency values of 

that burst. 81 

Figure 35 - Trend lines chart comparing 1x, 2x, 4x invoker setup, respectively 

from top to bottom, in a burst of 250 to 10k requests per second with 

an increment of 250 requests per second without function call in 

multi-cloud scenario. Every message burst is reported as a single 

latency value, which represents the average of the message latency 

values of that burst. 83 

Figure 36 - Trend lines chart comparing 1x, 2x, 4x invoker setup in a burst of 250 

to 10k requests per second with an increment of 250 requests per 

second with Rust function execution in single-cloud scenario. Every 

message burst is reported as a single latency value, which represents 

the average of the message latency values of that burst. 84 



 

98 

 

Figure 37 - Trend lines comparing 1x, 2x, 4x invoker setup in a burst of 250 to 

10k requests per second with an increment of 250 requests per second 

with Rust function execution in multi-cloud scenario. Every message 

burst is reported as a single latency value, which represents the 

average of the message latency values of that burst. 85 

Figure 38 – Candlestick chart comparing 1x, 2x, 4x invoker setup, respectively 

from top to bottom, in a burst of 250 to 10k requests per second with 

an increment of 250 requests per second with Rust function call in 

single-cloud scenario. Every message burst is reported as a single 

value set, which represents the average of the message values of that 

burst. Each candle encloses 4 distinct parameters: the minimum as 

bottom whisker, the maximum as top whisker, the first and third 

quartile as the upper and lower box boundaries. 86 

Figure 39 - Trend lines comparing 1x, 2x, 4x invoker setup in a burst of 1 to 20 

requests per second with an increment of 1 request per second with 

JavaScript function execution in single-cloud scenario. Every message 

burst is reported as a single latency value, which represents the 

average of the message latency values of that burst. 87 

Figure 40 - Trend lines comparing 1x, 2x, 4x invoker setup in a burst of 1 to 20 

requests per second with an increment of 1 request per second with 

JavaScript function execution in multi-cloud scenario. Every message 

burst is reported as a single latency value, which represents the 

average of the message latency values of that burst. 88 

Figure 41 - Trend lines chart comparing 1x, 2x, 4x invoker setup, from top to 

bottom, average messages time of arrival at each processing pipeline 

stages, in a burst of 250 to 10k requests per second with an increment 

of 250 requests per second, in a multi-cloud scenario. Values are 

averages of the entire test execution. 89 

Figure 42 - Trend lines tracking CPU usage in a burst of 250 to 10k requests per 

second with an increment of 250 requests per second with Rust 

executable invocation, 4x invoker parallelism and single-cloud 

scenario. Data resolution is of 1 sampling per second. 90 



 

99 

 

Figure 43 - Trend area chart tracking RAM in a burst of 250 to 10k requests per 

second with an increment of 250 requests per second with Rust 

executable invocation, 4x invoker parallelism and single-cloud 

scenario. Data resolution is of 1 sampling per second. 91 

  



 

100 

 

Index Of Tables 

Table 1 - Message Oriented Middlewares Comparison Chart. 53 

 

  



 

101 

 

Index Of Listing 

Listing 1 – Internal Coordinator Plugin in Java 47 

Listing 2 – External Coordinator in Rust 49 

Listing 3 - Rust Invoker 51 

Listing 4 - Interceptor Configuration 57 

Listing 5 - Plugin Configuration 58 

Listing 6 - ActiveMQServer Plugin Interface 58 

  



 

102 

 

Index Of Equations 

Equation 1 - Message Group Definition 66 

 

  



 

103 

 

 

Bibliography 
 

[1]  National Institute of Standards and Technology, [Online]. Available: 

https://www.govinfo.gov/content/pkg/GOVPUB-C13-

74cdc274b1109a7e1ead7185dfec2ada/pdf/GOVPUB-C13-

74cdc274b1109a7e1ead7185dfec2ada.pdf. [Accessed 12 01 2023]. 

[2]  M. Kleppmann, “Distributed Systems,” Cambridge, 2020, pp. 34-44. 

[3]  IBM, “What is virtualization?,” [Online]. Available: 

https://www.ibm.com/topics/virtualization. [Accessed 02 12 2022]. 

[4]  OpenFaaS, “Scale-to-Zero,” [Online]. Available: 

https://docs.openfaas.com/openfaas-pro/scale-to-zero/. [Accessed 01 02 2023]. 

[5]  The Cloud Native Computing Foundation, [Online]. Available: 

https://www.cncf.io/about/who-we-are/. [Accessed 20 11 2022]. 

[6]  Serverless, Inc, “Serverless,” [Online]. Available: 

https://www.serverless.com/. [Accessed 07 02 2023]. 

[7]  P. Rajan, “Serverless Architecture - A Revolution in Cloud Computing,” 

Bengaluru, 2019. 

[8]  F. M., “Serverless Architectures,” [Online]. Available: 

https://martinfowler.com/articles/serverless.html. [Accessed 02 12 2022]. 

[9]  IBM, “What are message brokers?,” [Online]. Available: 

https://www.ibm.com/topics/message-brokers. [Accessed 20 12 2022]. 

[10]  Y. Du, W. Peng and Z. Li, “Enterprise Application Integration: an 

Overview,” in International Symposium on Intelligent Information Technology 

Application Workshops, Shenyang.  



 

104 

 

[11]  A. Corradi, A. Sabbioni, L. Rosa, A. Bujari and L. Foschini, “A Shared 

Memory Approach for Function Chaining,” 2021. [Online]. [Accessed 20 10 

2022]. 

[12]  L. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah 

and O. Tardieu, “The Serverless Trilemma - Function Composition for 

Serverless Computing,” p. 14, 2017.  

[13]  Amazon, “Step Function,” [Online]. Available: 

https://aws.amazon.com/it/step-functions/. [Accessed 05 02 2023]. 

[14]  P. Castro, P. Cheng, K. Chang, S. Vatche and L. Baldini, “Serverless 

Computing: Current Trends and Open Problems,” [Online]. Available: 

https://arxiv.org/pdf/1706.03178.pdf. [Accessed 09 01 2023]. 

[15]  A. Sabbioni, L. Rosa, A. Bujari and A. Corradi, “DIFFUSE: A DIstributed 

and decentralized platForm enabling Function,” 2022. [Online]. [Accessed 15 09 

2022]. 

[16]  N. Kratzke, “A Brief History of Cloud Application Architectures,” MDPI, 

2018. 

[17]  B. Snyder, D. Bosanac and B. Davies, ActiveMQ in action, 2008, p. 375. 

[18]  F. Buschmann, K. Henney and D. Schmidt, Pattern-Oriented Software 

Architecture, vol. IV, Wiley Series, pp. 444-446. 

[19]  E. Gamma, R. Helm, R. Johnson and J. Vissides, Design Pattern - Elements 

of Resusable Object-Oriented Software, Addison-Wesley, 1995, p. 251. 

[20]  S. Klabnik and C. Nichols, “The Rust Programming Language,” [Online]. 

Available: https://doc.rust-lang.org/book/. [Accessed 16 09 2023]. 

[21]  Icraggs, eclipse, [Online]. Available: 

https://github.com/eclipse/paho.mqtt.c. [Accessed 01 02 2023]. 

[22]  IBM, “What is MapReduce?,” [Online]. Available: 

https://www.ibm.com/topics/mapreduce. [Accessed 20 10 2022]. 



 

105 

 

[23]  HiveMQ, “Reliable Data Movement for Connected Devices,” [Online]. 

Available: https://www.hivemq.com. [Accessed 20 12 2022]. 

[24]  Scalagent Distributed Technologies, “JoramMQ,” [Online]. Available: 

http://www.scalagent.com/fr/jorammq/technologie/protocole-mqtt. [Accessed 

16 02 2023]. 

[25]  Mosquitto, “Eclipse Mosquitto An Open Source MQTT Broker,” [Online]. 

Available: https://mosquitto.org/. [Accessed 01 02 2023]. 

[26]  RabbitMQ, “RabbitMQ,” [Online]. Available: https://www.rabbitmq.com/. 

[Accessed 17 02 2023]. 

[27]  VerneMQ, “VerneMQ,” [Online]. Available: https://vernemq.com/. 

[Accessed 04 02 2023]. 

[28]  OASIS Standard, “MQTT Version 5.0,” 2019. [Online]. Available: 

http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html. [Accessed 19 01 

2023]. 

[29]  Apache Foundation, “ActiveMQ Artemis Documentation,” [Online]. 

Available: 

https://activemq.apache.org/components/artemis/documentation/latest/using-

jms. [Accessed 06 02 2023]. 

[30]  Microsoft, “Azure Network Round-Trip Latency Statistics,” 02 2023. 

[Online]. Available: https://learn.microsoft.com/en-

us/azure/networking/azure-network-latency. [Accessed 15 02 2023]. 

[31]  Microsoft, “Microsoft Global Network,” [Online]. Available: 

https://learn.microsoft.com/en-us/azure/networking/microsoft-global-network. 

[Accessed 01 02 2023]. 

[32]  N. Heer, “A Repo Which Compares The Speed Of Different Programming 

Languages.,” [Online]. Available: https://github.com/niklas-heer/speed-

comparison. [Accessed 18 01 2023]. 



 

106 

 

[33]  OpenJS Foundation, “NodeJs,” [Online]. Available: https://nodejs.org/en/. 

[Accessed 14 02 2023]. 

[34]  Network Time Foundation, “Reference Library,” [Online]. Available: 

https://www.ntp.org/reflib/. [Accessed 15 01 2023]. 

[35]  M. Aldossary, K. Djemame and I. Alzamil, “Energy-aware cost prediction 

and pricing of virtual machines in cloud computing environments,” Future 

Generation Computer Systems, 2018. 

[36]  J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, 

A. Tumanov and C. Wu, “Serverless Computing: One Step Forward, Two 

Steps Back,” Berkley. 

[37]  Apache, “Core Bridges,” [Online]. Available: 

https://activemq.apache.org/components/artemis/documentation/1.0.0/core-

bridges.html. 

[38]  OASIS Standard, “MQTT Version 3.1.1,” 2019. [Online]. Available: 

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. 

[Accessed 15 01 2023]. 

[39]  Apache Foundation, “ActiveMQ Performance,” [Online]. Available: 

https://activemq.apache.org/performance. [Accessed 09 11 2022]. 

[40]  R. Bolscher, “Leveraging Serverless Cloud Computing Architectures,” 

Twente, 2019. 

[41]  S. Ghemawat and J. Dean, “MapReduce: Simplified Data Processing on 

Large Clusters,” 2008. 

[42]  S. Klabnik and C. Nichols, The Rust Programming Language, 2018 ed., San 

Francisco: No Starch Press, 2018, p. 523. 

[43]  A. S. Gillis, “What is the internet of things (IoT)?,” [Online]. Available: 

https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT. 

[Accessed 01 02 2023]. 



 

107 

 

[44]  HTML, “Guida Node.js,” [Online]. Available: 

https://www.html.it/guide/guida-nodejs/. [Accessed 3 01 2023]. 

 

 


