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Abstract

Nell’ambito delle macchine elettriche per il controllo di forza radiale, in letteratura
sono state proposte diverse soluzioni, tutte in grado di generare simultaneamente una
distribuzione di flusso magnetico al traferro con periodicità p e p±1 necessaria per produrre
rispettivamente coppia e forza radiale. Per distinguere le diverse tipologie proposte, è
possibile suddividerle in due categorie principali in base alla disposizione degli avvolgimenti.
La prima fa uso di due gruppi di avvolgimenti separati: uno per generare la coppia e
l’altro per produrre la forza radiale. La seconda si basa su un avvolgimento combinato,
tipicamente multifase, in cui tutte le fasi contribuiscono simultaneamente alla produzione
di coppia e forza radiale. Lo studio presentato in questo elaborato di tesi è incentrato
sulle soluzioni multifase, anziché quelle con avvolgimenti separati. Le macchine elettriche
multifase presentano una migliore capacità di tolleranza ai guasti rispetto a quelle a doppio
avvolgimento, in quanto i controlli di coppia e forza possono ancora essere eseguiti in caso di
condizioni di guasto di una o più fasi dell’avvolgimento. Inoltre, lo sfruttamento dell’intero
avvolgimento per la produzione sia di coppia che di forza è ritenuto potenzialmente più
efficiente, per il maggiore sfruttamento del rame in cava, rispetto alla soluzione con due
avvoglimenti separati. Il controllo di forza della macchina elettrica è proposto al fine di
ridurre la sollecitazione dei cuscinetti. I cuscinetti sono una delle parti più critiche di
un motore elettrico in termini di probabilità di guasto. Il miglioramento della capacità
di tolleranza ai guasti delle macchine elettriche tramite il controllo della forza radiale è
dunque un argomento di ricerca promettente. Lo scopo dell’attività di tesi è ottenere un
modello meccanico del motore elettrico e incorporarlo con il modello elettromagnetico
di una macchina elettrica multifase; simulare il comportamento del motore attraverso
un modello numerico (in ambiente Matlab/Simulink); valutare un algoritmo di controllo
sufficientemente robusto e che consenta di mantenere elevate le prestazioni del motore
anche durante la produzione di forza per compensazione attiva delle vibrazioni del rotore
in corrispondenza dei cuscinetti. Il modello multifisico dell’azionamento multifase ed il
controllo del motore sono stati sviluppati sulla base dei disegni e dei dati di un prototipo
e del rispettivo banco di prova disponibile nel laboratorio del gruppo PEMC (Power
Electronics, Machines and Control) dell’Università di Nottingham, UK. Prove sperimentali
preliminari sono state eseguite per validare i modelli utilizzati, e altre sono attualmente in
corso presso il medesimo gruppo di ricerca.



Abstract

In the field of electrical machines for radial force control, several solutions have been
proposed in the literature, all of which are able to simultaneously generate a magnetic
flux distribution at the air gap with periodicity p and p ± 1 required to produce torque
and radial force, respectively. To distinguish the different types proposed, it is possible to
divide them into two main categories based on the arrangement of the windings. The first
makes use of two separate sets of windings: one to generate the torque and the other to
produce the radial force. The second is based on a combined winding, typically multiphase,
in which all phases contribute simultaneously to the production of torque and radial force.
The study presented in this thesis focuses on multiphase solutions, rather than those with
separate windings. Multiphase electrical machines have a better fault-tolerance capability
than dual-winding machines, as torque and force checks can still be performed in the
event of failure conditions of one or more winding phases. In addition, the utilization of
the entire winding for both torque and force production is considered potentially more
efficient, due to the greater utilization of the copper in the slots, than the solution with
two separate windings. Force control of the electric machine is proposed in order to reduce
bearing stress. Bearings are one of the most critical parts of an electric motor in terms of
the probability of failure. Therefore, improving the fault-tolerance capability of electric
machines through radial force control is a promising research topic. The purpose of the
thesis activity is to obtain a mechanical model of the electric motor and incorporate it
with the electromagnetic model of a multiphase electric machine; to simulate the behavior
of the motor through a numerical model (in the Matlab/Simulink environment) and to
evaluate a control algorithm that is sufficiently robust and allows the motor’s performance
to remain high even during force generation by active compensation of rotor vibration at
the bearings. The multiphysics model of the multiphase drive and the motor control were
developed based on drawings and data from a prototype and the respective test bench
available in the laboratory of the PEMC (Power Electronics, Machines and Control) group
at the University of Nottingham, UK. Preliminary experimental tests have been carried
out to validate the models used, and others are currently underway in the same research
group.
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Chapter 1

Overview of Radial Force Control
and Multiphase Machines

This chapter is the result of the literature review of the principles and the state of the
art in the field of radial force control in electrical machines. Firstly, the motivations for
investigating radial forces are presented and a general description of the strategy employed
to reduce stress on bearings and vibrations is introduced. The active control of radial
forces in electric motors is of great interest since it allows also for the production of the
suspension force of the rotor and, consequently, is an alternative technology to the use of
devices such as Active Magnetic Bearings (AMBs) in the so-called Bearingless Machines
(BMs) or in electric machines for bearing relief. Afterward, some examples of industrial
applications are described. After a brief description of the multi-phase electrical machine
and the radial force production principle, the overview of the drive and its control strategy
studied in this thesis are presented.

1.1 Introduction

Application requirements for electrical machines are very varied, however, there is a
general trend towards increasing their lifetime and their reliability as well as reducing their
maintenance and noise. Indeed, acoustic noise and mechanical vibrations are increasingly
stringent design requirements, especially for high-speed machines [1, 2]. The impact of
mechanical bearings on the reliability and maintenance of electrical machines is typically
severe [3, 4]. The active control of radial forces could lead to significant improvement
in terms of noise reduction and vibration dampening [5, 6]. This would also enable the
compensation of external forces acting on the rotating structure such as Unbalanced
Magnetic Pull (UMP) and inertial forces (like the gyroscopic effect that affects the electric
automotive and aircraft rotors and the out-of-balance force). The UMP, in particular, has
been widely investigated and its minimization is often considered from a design point of

4



view [7], especially for brushless motors with a fractional number of slots per pole and per
phase (e.g., tooth wound concentrated windings). It can be caused by the effect of the rotor
eccentricity, or by the machine’s geometric features (such as rotor and stator structures in
certain machine topologies), as well as by the combination of poles and slots number [8, 9].
Sometimes the design does not succeed in the elimination of the UMP. Furthermore, mass
unbalance is often present after the manufacturing process. This unbalance leads to a
displacement between the principal rotor axis of inertia and its geometric axis [10]. The
trend to move towards higher density machines clearly implies increasing the operational
speed that in turn increases the centrifugal unbalance forces. Therefore, vibration control
and active balancing techniques have become fundamental. They have been adopted to
achieve a longer bearing lifetime and to avoid unscheduled shut-downs. In [11], it has
been shown that active vibration control techniques have many advantages over passive
ones. In fact, despite their more complicated implementation, the former are more flexible
since they can be employed when several vibration modes are excited and can adapt to
the motor operation according to the vibration characteristics. More recently, bearingless
machines (BM) are attracting growing attention because of their more compact structure,
when compared to their Active Magnetic Bearings (AMB) counterparts. The reasons
that motivate the development of bearingless technology are mainly the high failure rate
of mechanical bearings, high rotational speed application requirements, and oil-free /
high-purity environments. To be more specific, the most targeted applications for BMs
are:

• centrifugal pumps [12, 13, 14, 15];

• artificial hearts [16, 17];

• mixers for chemical and pharmaceutical applications [18, 19] and fans[20, 21];

Furthermore, a full levitating system is particularly convenient when high and ultra-high
rotation speeds have to be achieved [22] since it allows full rotor-dynamic control on the
rotating component and provides damping effects while crossing critical frequencies [23].
It is the case of compressors [24], flywheels [23, 25], and generators, where high rotational
speed operation allows for minimizing weight, volume, and cost while maximizing the
efficiency of the whole system [26].
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1.2 Incidence of bearing failures on the failure rate
of electric machines

In general, there are many types of electrical rotating machines within various classes
of power range and duty cycles. These machines are operated under industrial or civil
conditions. Every machine can eventually fail and lead to safety risks and economical
losses. Therefore, it is necessary to evaluate failure rates and their distribution over certain
types of electrical machines and their subsystems. The failure rate of different parts of
electrical machines are considered in [3] for the following types of electrical machines:

• Turbo generators

• Electric motors

• Synchronous motors

Failure rates are calculated according to Eq. (1.1):

λ =

n∑
i=1

mi

n∑
i=1

Mi

· 100 (1.1)

where λ stands for failure rate per year in percentage, mi is the number of machines that
failed in the ith year and the Mi is the number of machines that have been in service in
the ith year.

1.2.1 Failure Rate of Turbo-generator Parts

In the turbo-generator sector, there are many data and studies available on the
reliability and failure probability of different components, while in other application areas,
the number of studies and publications is very small. Therefore, studies mainly from
this area are reported in this section. For turbo generators, the reference [27] presents a
percentage of failures related to each subsystem part. Fig. 1.1 shows that the distribution
of the failures across these subsystems is quite uniform, with a relevant percentage of
failures related to the bearings system.
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Figure 1.1: Turbo generators’ parts failure rate [3].

1.2.2 Failure Rate of Electric Motor Parts

Electric motors operate within a wide range of applications (fans, pumps and drives for
various purposes) including critical ones. The types of machines surveyed are induction
motors (both squirrel cage and wound rotor) and synchronous motors. Failures distributed
over the most general main motor parts according to [28] are shown in Fig. 1.2. As can
be seen, failures related to bearings are the most frequent and represent 41% of the total.
The following specific components failed most frequently: ground insulation (17.9 % of all
failed machines reported) followed by sleeve bearings (11.4 %) and ball bearings (5.5 %)
[28]. Bearings-related failures are for instance associated with the failure of various types
of bearings (sleeve, thrust, ball), leakages, seals or oil systems.

Figure 1.2: Electric Motors’ parts failure rate [3].
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1.2.3 Failure Rate of Synchronous Motor Parts

Synchronous motors’ failures are discussed in the introduction section of [4] and the
distribution of faulty components was presented. As it is shown, for high voltage motors
the majority of failures are reported for the stator winding (60 %) followed by rotor
winding and bearings (13 % each). The chart is shown in Fig. 1.3.

Figure 1.3: Synchronous motors’ parts failure rate [3].

1.3 Multiphase Electrical Machines

Multiphase motor drives were already adopted almost 50 years ago when, in 1969, a
five-phase voltage source inverter-fed induction motor drive was proposed [29]. Multiphase
motors received relatively little attention for the next 20 years, until the 1990s when
researchers from all over the world began to show a strong interest in their potential.
In particular, the main fields of multiphase drives application are ship propulsion [30],
aircraft sector [31], and electric traction [32]. All aforementioned uses require sizable power
converters. Therefore, by using a multiphase machine, the possibility of splitting the power
into several converters is of great interest since the cost, the size, and the stress of the
electronic components is expected to drop. Furthermore, a multiphase winding presents a
greater number of degrees of freedom than a three-phase machine which can be exploited
for different scopes:

• Independent control of Magneto-Motive Force (MMF) spatial harmonic components
that can be exploited, for example, to produce radial force in a BM or to increase
the torque density.

• Fault-tolerant capabilities of the drive can be successfully enhanced by a multiphase
winding modular architecture, as proposed in the literature on the electrification in
the aircraft and marine sectors.

8



1.4 Radial force control for Vibration Suppression

Rotating electrical machines used in bearingless applications feature the capability of
simultaneously generating controlled radial forces and torque. While the torque allows
spinning the rotor at the desired speed, the x and y radial force components are involved
in the control of the rotor’s radial position. More precisely, in the case of bearingless
levitating motors, the aim is the centering of the rotor with respect to the stator lamination.
Another application of this kind of electrical machine is the active control of the system
vibrations when the rotor is constrained by mechanical bearings, as described in [33]. In
both cases, their adoption allows operating around the critical speed which is defined by
the rotodynamic behavior of the system (rotor, mechanical bearings, and housing). Several
rotating electrical machine topologies able of producing and controlling both torque and
radial forces have been proposed in the literature and adopted in the industry to lead
to improvement in terms of noise reduction and vibration dampening [6, 34, 11]. In this
thesis, the role of radial force control for the vibration suppression of the shaft at the
bearing locations is further investigated thanks to the implementation of a rotodynamic
mechanical model.

1.4.1 Radial force production principle

It is interesting to consider the different strategies that have been chosen by researchers
around the world to generate a controllable radial force and torque. These strategies were
developed for motors with different winding structures. Conversely, the mathematical
models are always carried out by exploiting either the virtual displacement method or the
Maxwell and Lorentz equations. Some examples of key architectures are the followings:

• Separate torque and suspension windings.

• Five-phase winding with multiple orthogonal d-q planes for force and torque genera-
tion.

• Six-phase winding structure with fault-tolerant capability.

• Triple three-phase winding structure with decoupled torque and radial force control.

The machine object of study of this thesis is a triple three-phase sectored machine with
decoupled torque and radial force control. The machine consists of a Surface Permanent
Magnet (SPM) synchronous machine with three sectored three-phase windings as shown
in Fig. 1.4.

The torque demand and the force vector are generated by controlling the three cur-
rents of the phases in the synchronous reference frame, respectively. The torque–force
characteristic of the machine is derived in a generic form that can be extended to any
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Figure 1.4: Radial cross-section of the multi-sector SPM Machine

multiphase machine. The approach presented in this paper is based on the methodology
explained in [35]. Under the hypothesis of the linear magnetic behavior of the materials
and magnetic decoupling between sectors, the matrix formulation (1.2) expresses the
generalized mechanical wrench of the motor as a function of the stator phase currents:

W E = Kabc(θe)̄iabc (1.2)

where:

• W E = [Fx, Fy, T ]T is the vector of the wrench components, i.e., the x and y

mechanical forces and the torque;

• īabc = [ia1 , ib1 , ic1 , ..., ia3 , ib3 , ic3 ]T is the vector of the abc phase currents of each of
the three-phase sub windings;

• θe = pθm is the electrical angular position of the rotor magnetic axis with respect
to the a1 phase magnetic axis;

Kabc(θe) is the 3 × 3ns matrix that can be expressed as:

Kabc(θe) = [ Kabc,1(θe), ... , Kabc,ns(θe) ] (1.3)

with ns the number of sectors, and each Kabc,s(θe) of the respective sector s is a 3 × 3
matrix defined as follows:

Kabc,s(θe) =


KFx,a,s(θe) KFx,b,s(θe) KFx,c,s(θe)
KFy ,a,s(θe) KFy ,b,s(θe) KFy ,c,s(θe)
KT,a,s(θe) KT,b,s(θe) KT,c,s(θe)

 (1.4)
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It is possible to demonstrate that, as explained in [36], the mean q-axis current demand
is obtained considering the torque expression:

TE =
3∑

n=1
kT,niq,n = kT

3∑
n=1

iq,n ⇒ 1
3

3∑
n=1

iq,n = TE

3kT

(1.5)

where kT is the torque constant of the motor. Thus considering the magnetically isotropic
structure of the MSPM machine, the torque is controlled only by the mean value of the
q-axis current components of each sector.

1.4.2 Control System Overview

In the literature review presented, the active control of radial force was mainly applied
for the rotor suspension. However, radial forces can be controlled to actively suppress
vibrations in rotating machinery. In the next chapters, results will show that the radial
displacement at bearing locations presents a periodic fluctuation caused by vibration forces
acting on the rotor (out-of-balance and UMP forces are examples of these kinds of forces).
Therefore, a position control algorithm will be introduced to suppress the rotor oscillation.
Rotor vibrations typically present specific frequencies which are related to the design of
the machine and the operating condition (number of poles, number of stator and rotor
slots, rotational speed, load, eccentricity, etc.). A typical mechanical source of vibration is
the rotor mass unbalance that produces forces synchronous with the rotation frequency
[37]. The control strategy considered in this work is shown in Fig. 1.5 and aims to track
the x position, y position and ωm speed references.

Figure 1.5: Model Overview

The radial force control is employed to dampen the vibrations of the rotor and to allow
spinning of the machine at its critical speed with reduced vibrations. Starting from the
errors calculated from the x, y and ωm feedback, a PID position controller is introduced to
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obtain the Wrench references W
∗
E = [F ∗

x , F ∗
y , T ∗]T . The current references ī∗

abc required for
the motor control are obtained by applying the pseudo-inverse matrix approach, which will
be presented in the following work. The current control employs PI regulators to determine
the reference phase voltages, applied to the motor by the converter. In particular, the
instantaneous voltage set points for each machine sector are defined through a PWM
modulator and supplied by a three-phase inverter.

It is important to mention that other several position controller configurations have been
proposed to suppress the periodic disturbances using AMBs. For example, as explained in
[23] a notch filter can be implemented to eliminate synchronous disturb or resonant PID
controllers can be implemented to reject the disturbances [11].
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Chapter 2

Electromagnetic Model of the
Three-Sector SPM Synchronous
Machine

This Chapter deals with the analytical model of the multi-three-phase machine considered
in this study. The numerical model of the machine is based on the stator voltage equation
considering the back-emf calculation, the phase resistances and the inductance matrix.
Furthermore, this chapter shows the wrench mapping required to perform the radial force
control. The introduced mathematical model considers also for the cross-coupling between
the torque and the radial forces produced by the machine.

2.1 Machine Structure

The machine under consideration is a nine-phase three-sector SPM (Surface Permanents
Magnets) motor with distributed windings and 3 pole pairs (p = 3). The machine presents
three single-layer full-pitch distributed three-phase windings. These latter are located in
36 stator slots and each winding counts 2 slots per pole per phase. Each sector covers
120 mechanical degrees of the machine and counts one pole pair. The rotor features 24
surface-mounted NeFeB magnets. The magnets are arranged on the rotor with a Halbach
array layout in order to obtain 3 pole pairs as shown in fig. 2.1. More details about
this magnets’ configuration are given in the section 2.1.1. The rotor presents also a 5
mm yoke (made with the same lamination steel as the stator). The lamination of this
layer is necessary to limit the iron losses on the rotor. In fact, in order to achieve radial
force production, the magnetic field at the airgap presents a non-synchronous component
with the rotation of the rotor and this leads to high iron losses in the rotor if this is not
laminated. More details of the magnetic field at the airgap and of the current waveforms
are given further ahead. The phase currents are fed to the machine by adopting a series of
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Figure 2.1: Radial cross-section of the multi-sector SPM Machine

three conventional three-phase inverters that share the same DC bus. Also, the converters
are all managed in combination by a single control platform.

The main parameters and characteristics of the machine are described in Tab. 2.1

MACHINE PARAMETERS
Pole Number 2p 6
Rated current Imax 50 [Apk]
Rated torque Tmax 27 [Nm]
Max speed nmax 20000 [rpm]
Rated power Pnom 55 [kW]
Stator external radius Rext 82 [mm]
Rotor radius r 46.2 [mm]
Airgap length g 4 [mm]
Shaft radius rshaft 30 [mm]
Stack length L 80 [mm]
Turns per coil n 9
PM relative permeability µr 1.06360
PM coercivity Hc 849228.15 [A/m]

Table 2.1: Multi-Sector SPM Machine Parameters

2.1.1 Halbach Array Magnets configuration

A Halbach array is a special arrangement of permanent magnets that augments the
magnetic field on one side of the array while canceling the field to near zero on the other
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side. This is achieved by having a spatially rotating pattern of magnetization. Halbach
permanent magnet array was first proposed by the Physicist Klaus Halbach, in literature
[38], while at the Lawrence Berkeley National Laboratory during the 1980s, independently
invented the Halbach array to focus particle accelerator beams. It consisted of a magnetized
cylinder composed of ferromagnetic material producing (in the idealized case) an intense
magnetic field confined entirely within the cylinder, with zero field outside. The cylinders
can also be magnetized such that the magnetic field is entirely outside the cylinder, with
zero field inside. Several magnetization distributions are shown in Fig. 2.2.

Figure 2.2: A ferromagnetic cylinder showing various magnetization patterns.

SPM with Halbach array magnets layout

The Halbach motor layout has been widely developed over the years, with several
applications in aircraft [39] which is also one of the main application fields of Halbach
motor [40], automotive sector [41] and flywheel energy storage [42]. Halbach magnetized
brushless machines often present an essentially sinusoidal airgap field distribution which
leads to a sinusoidal back-emf waveform, as well as negligible cogging torque, without
employing skew. As in the considered machine (whose flux map is shown in 2.3), Halbach
machines often employ tangentially segmented magnets (made of oriented bonded NdFeB
magnets) to realize an approximate Halbach magnetization. Further axial segmentation is
also used to limit induced eddy currents.

Generally, a Halbach cylindrical layout can be manufactured:

• from pre-magnetized anisotropic magnet segments having magnetization orientations
that approximate the desired field distribution;

• molded as bonded isotropic ring magnets which are subsequently impulse magnetized
to obtain a sinusoidally distributed magnetizing field [43];

• by employing an anisotropic molding compound which can be oriented during the
compression or injection molding process to produce an anisotropic bonded Halbach
cylinder (the magnet powder is both oriented and subsequently impulse magnetized
by a sinusoidally distributed field) [44].
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Figure 2.3: Flux density produced by the Halbach array magnets in the rotor machine.

2.2 Analytical model of the machine

The analytical model of the machine is based on the stator voltage equations. The
voltage equation for a stator phase is:

vkj
= Rsikj

+
dφkj

dt
(2.1)

Where:

• j = a, b, c is the phase index;

• k = 1, 2, 3 is the sector index;

• vkj
is the voltage applied to the kj-th phase;

• Rs is the phase resistance;

• φkj
is the linked flux with the kj-th phase;

2.2.1 Inductance Matrix calculation

For a single sector of the machine (or for a three-phase machine), the relationship
between the flux linked with each phase and the phase currents can be expressed by a
3 × 3 inductance matrix as expressed in (2.2):


φa

φb

φc

 =


maa mab mac

mba mbb mbc

mca mcb mcc



ia

ib

ic

+


φP M,a

φP M,b

φP M,c

 (2.2)
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where φa, φb, φc are the total linked fluxes with the stator phases, φP M,a, φP M,b, φP M,c

are the linked fluxes with the stator phases produced by the magnets only and mkj is
mutual inductance between the k-th and the j-th phase and mkk is the self-inductance
coefficient of the phase k (with k = a, b, c ) and it results:

mkk = ll + lkk for k = a, b, c (2.3)

where ll is the phase leakage inductance coefficient and lkk is the self-inductance
coefficient net of the leakage contribution.

For the considered 9-phase machine the relation between the fluxes and the currents is
expressed in (2.4):

φ̄ = Mīabc + φ̄P M (2.4)

With:

• φ̄ = [φa1 , φb1 , φc1 , φa2 , φb2 , φc2 , φa3 , φb3 , φc3 ]T are the linked fluxes with the
stator phases;

• ī = [ia1 , ib1 , ic1 , ia2 , ib2 , ic2 , ia3 , ib3 , ic3 ]T are the phase currents;

• φ̄P M = [φP M,a1, φP M,b1, φP M,c1, φP M,a2, φP M,b2, φP M,c2, φP M,a3, φP M,b3, φP M,c3]T

are the linked fluxes with the stator phases produced by the magnets.

And:

M=



ma1a1 ma1b1 ma1c1 ma1a2 ma1b2 ma1c2 ma1a3 ma1b3 ma1c3

ma1b1 m
b1b1

mb1c1 mb1a2 mb1b2 mb1c2 mb1a3 mb1b3 mb1c3

mc1a1 mc1b1 mc1c1 mc1a2 mc1b2 mc1c2 mc1a3 mc1b3 mc1c3

ma2a1 ma2b1 ma2c1 ma2a2 ma21b2 ma2c2 ma2a3 ma2b3 ma2c3

mb2a1 mb2b1 mb2c1 mb2a2 mb2b2 mb2c2 mb2a3 mb2b3 mb2c3

mc2a1 mc2b1 mc2c1 mc2a2 mc2b2 mc2c2 mc2a3 mc2b3 mc2c3

ma3a1 ma3b1 ma3c1 ma3a2 ma3b2 ma3c2 ma3a3 ma3b3 ma3c3

mb3a1 mb3b1 mb3c1 mb3a2 mb3b2 mb3c2 mb3a3 mb3b3 mb3c3

mc3a1 mc3b1 mc3c1 mc3a2 mc3b2 mc3c2 mc3a3 mc3b3 mc3c3



(2.5)

As expected, the stator inductance matrix is symmetrical. Generally, the coefficients of
the inductance matrix are a function of the rotor position (anisotropic rotor). However, in
this case, the rotor is isotropic therefore the coefficients of the inductance matrix are not a
function of the rotor position. Thus, in order to determine the first row of the inductance
matrix by using the FE analysis, the coercivity of the magnets must be set to zero, the
phase a of sector 1 has to be supplied with a constant current and the flux in the other
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phases has to be calculated. The same is done by supplying the other phases and the
coefficients of the matrix have been calculated as explained in eq. (2.6):

mkjkj
=

φkj

ikj

∣∣∣∣ikj ̸=0
iht=0

∀h ∧ ∀t ̸= j

mkjht =
φht

ikj

∣∣∣∣ikj
̸=0

iht
=0

∀h ∧ ∀t ̸= j

(2.6)

with k = a, b, c, h = a, b, c, j = 1, 2, 3 and t = 1, 2, 3.
FEMM is the software used to perform the inductance matrix calculation. Only one

phase is supplied with a constant current of 1A and the linked flux with the other phases
is calculated as shown in fig. 2.4:

Figure 2.4: Inductance Matrix calculation (example)

The linked flux for each slot is calculated with FEMM software by solving a magneto-
static problem, performed by using the magnetic potential vector approach.

The result of the Inductance matrix calculation is expressed in (2.7):

M =



0.1804 −0.054 −0.054 −0.0173 0.0175 0.0172 −0.0173 0.0172 0.0175
−0.054 0.1804 0.0164 0.0172 −0.0173 −0.0172 0.0175 −0.0173 −0.0185
−0.054 0.0164 0.1804 0.0175 −0.0185 −0.0173 0.0172 −0.0172 −0.0173
−0.0173 0.0172 0.0175 0.1804 −0.054 −0.054 −0.0173 0.0175 0.0172
0.0175 −0.0173 −0.0185 −0.054 0.1804 0.0164 0.0172 −0.0173 −0.0172
0.0172 −0.0172 −0.0173 −0.054 0.0164 0.1804 0.0175 −0.0185 −0.0173

−0.0173 0.0175 0.0172 −0.0173 0.0172 0.0175 0.1804 −0.054 −0.054
0.0172 −0.0173 −0.0172 0.0175 −0.0173 −0.0185 −0.054 0.1804 0.0164
0.0175 −0.0185 −0.0173 0.0172 −0.0172 −0.0173 −0.054 0.0164 0.1804



[mH] (2.7)
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Predictably, the inductance matrix is symmetrical and the self-inductances are the same
for each phase. But it is not a cycling matrix, so, if the generalized Clark transformation
(9x9) is applied the result will not be a diagonal matrix. Considering the inductance
matrix formulation, the linked flux with the kj-th phase can be expressed as in (2.8)

φkj
= φP M,kj

+
∑

h=a,b,c
t=1,2,3

mhtkj
ikj

(2.8)

with φP M,kj
the linked flux with the phase kj-th produced by the permanent magnets

and mhtkj
the mutual inductance between the ht-th phase and the kj-th phase.

So the derivative with respect to the time becomes:

dφkj

dt
=

dφP M,kj

dt
+

∑
h=a,b,c
t=1,2,3

mhtkj

dikj

dt
= ejk

+
∑

h=a,b,c
t=1,2,3

mhtkj

dikj

dt
(2.9)

Where ejk
= dφP M,jk

dt
is the back-EMF (electromotive force) induced in the jk-th phase

due to the PM flux. Thus the eq. (2.1) becomes:

vkj
= Rsikj

+
∑

h=a,b,c
t=1,2,3

mhtkj

dikj

dt
+ ejk

(2.10)

The eq. (2.10) allows the implementation of the numerical model of the machine as it
will be explained further.

2.2.2 Back-emf calculation

In order to implement the stator voltage equation, it is necessary to calculate the
back-EMFs induced in the stator windings by the rotor magnets during the machine
rotation for different rotational speeds.

To calculate the back-EMFs (electromotive forces) induced by the rotor magnets in
the stator windings, the currents are set to 0 and only the magnets’ flux is present. For
each rotor position, the flux linked with the stator windings is calculated, and then the
derivative of the flux is calculated. Solving this problem will also help to calculate the
no-load torque (cogging torque). In order to calculate the back-EMFs induced in the kj-th
phase, the flux linked with the phase produced by the magnets has to be derived with
respect to the time.
To eliminate the dependence on time it is possible to reformulate the expression of the
derivative by exploiting some rules of derivation as expressed in eq. (2.11):

ekj
=

dφP M,kj
(θe(t))

dt
=

dφP M,kj
(θe(t))

dt

dθe

dt
=

dφP M,kj

dθe

ωe = p
dφP M,kj

dθe

ωm (2.11)
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With:

• φP M,kj
linked flux with the kj-th phase;

• θe = pθm rotor electrical position;

• ωm rotational mechanical speed [rad/s];

• p pole pairs;

The advantage of adopting this formulation is that once dφP M,kj

dθe
has been calculated, it

is possible to calculate the back-EMF for every mechanical speed.
Figure 2.5 shows the linked fluxes with each stator phase produced by magnets and

the back-EMFs at 3000 rpm induced in each phase.
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Figure 2.5: Magnets linked fluxes with each stator phase and back-EMF waveforms at 3000rpm

The electrical position of the rotor is shown on the x-axis but it can be converted in
time by dividing it by the mechanical speed:

θm = ωmt → t = θm

ωm

(2.12)

Due to the machine symmetry, the flux and the back-emfs are the same in the three
sectors of the machine as shown in fig. 2.5, since they are located in an equivalent electrical
position. The back-emfs are analyzed using the FFT (Fast Fourier Transform) and the
amplitude spectrum of the fluxes is reported in fig. 2.6 While the amplitude spectrum of
the back-emfs is reported in fig. 2.7.
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Figure 2.6: Fluxes amplitude spectrum
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Figure 2.7: Back-emfs amplitude spectrum

The back-emf FFT spectrum is shown also in logarithmic scale in fig. 2.8.
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Figure 2.8: Back-emfs amplitude spectrum (log scale)

The harmonic components of the fluxes and back-emf waveforms, higher than the 1st
order, present a very low amplitude. This is due to the Halbach array magnet configuration
that is able to produce a very sinusoidal and distortion-free waveform of the magnetic field
at the air gap.
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2.2.3 Wrench Mapping

The relationship between the wrench (torque and forces) acting on the rotor and the
currents in the machine can be expressed by using the matrix Kabc as explained in eq.
(1.2):

W E = Kabc(θe)iabc

Where:

• W E = [Fx, Fy, T ]T is the vector of the wrench components, i.e., the x and y mechan-
ical forces and the torque;

• īabc = [ia1 , ib1 , ic1 , ia2 , ib2 , ic2 , ia3 , ib3 , ic3 ]T is the vector of the abc phase currents of
each of the three-sector sub windings;

• Kabc(θe) is the 3 × 3ns matrix that can be expressed as shown in Eq. (2.13):

Kabc(θe) =


KFx,a1(θe) KFx,b1(θe) KFx,c1(θe) KFx,a2(θe) KFx,b2(θe) KFx,c2(θe) KFx,a3(θe) KFx,b3(θe) KFx,c3(θe)
KFy ,a1(θe) KFy ,b1(θe) KFy ,c1(θe) KFy ,a2(θe) KFy ,b2(θe) KFy ,c2(θe) KFy ,a3(θe) KFy ,b3(θe) KFy ,c3(θe)
KT,a1(θe) KT,b1(θe) KT,c1(θe) KT,a2(θe) KT,b2(θe) KT,c2(θe) KT,a3(θe) KT,b3(θe) KT,c3(θe)

 (2.13)

It is important to consider that each coefficient is in general also a function of the stator
currents. However, considering the linear behavior of the magnetic material in the main
working operation of the electrical machine, for the calculation of these coefficients the
current dependency is neglected. Highlighting the coefficient for each sector the relation
between the wrench and the stator currents can be expressed as in eq. (2.14):

W E = [Kabc,1, Kabc,2, Kabc,3] iabc (2.14)

The wrench mapping consists of the calculation of the suspension forces (along x and
y) and the torque, starting from the phases currents for each position of the rotor. Only
one phase at a time is supplied and the rotor is rotated, simulating 100 steps, by an angle
of 2π

p
. Levering on the geometrical and electromagnetic symmetries of the machine, the

wrench mapping is made only for sector 1 (only Kabc,1 is calculated by using FEMM) and
the matrices Kabc,2 and Kabc,3 are obtained by rotating the first matrix as explained in eq.
(2.15):

Kabc,2 = R2Kabc,1

Kabc,3 = R3Kabc,1
(2.15)

Where R2 and R3 are the rotational matrix for sectors 2 and 3. In general, the
rotational matrix for the k-th sector can be expressed as in eq. (2.16):

23



Rk =


cos

(
2π

p
(1 − k)

)
−sin

(
2π

p
(1 − k)

)
0

sin

(
2π

p
(1 − k)

)
cos

(
2π

p
(1 − k)

)
0

0 0 1

 k = 1, 2, 3 (2.16)

The data obtained from the wrench mapping are stored in a 3D matrix where every
layer (or page) is for a different position of the rotor as shown in fig. 2.9:

Figure 2.9: Matrix Kabc(θe) data structure

Current Amplitude selection for the Wrench mapping

To comprehend the dependency of the matrix Kabc coefficient on the current, the
wrench, for only the θe = 0◦ rotor position, is calculated for different values of current
circulating through phase a1. Indeed for θe = 0◦ the force acts only along x as shown in
fig. 2.10 and in this way it is possible to understand the dependency of the wrench over
the current.

Figure 2.10: F direction for θe = 0◦ and phase a1 supplied only
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The result taken from the FEMM analysis of the force along x for different current
amplitude is shown in fig. 2.11:

Figure 2.11: Current Amplitude Selection

The wrench mapping is performed in FEMM by setting a current of 50 A (the rated
current of the machine). The results of the Wrench mapping obtained supplying one phase
of the first sector at a time are reported in fig. 2.12:

Figure 2.12: FEA (Finite Element Analysis) wrench mapping result for sector 1
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Cogging torque mapping

In order to map the cogging torque of the machine zero current is set for each phase
and the torque on the rotor is calculated for each position. The result is shown in fig. 2.13:

0 1 2 3 4 5 6
-0.2

0

0.2

Figure 2.13: Cogging Torque

Matrix Kabc coefficients calculation

Finally, the matrix Kabc(θe) coefficients are calculated as explained in eq. (2.17)

KFx,kj
(θe) =

Fx,kj
(θe)

ikj

∣∣∣∣ikj
̸=0

iht
=0

KFy ,kj
(θe) =

Fy,kj
(θe)

ikj

∣∣∣∣ikj
̸=0

iht=0

∀h ∧ ∀t ̸= j

KT,kj
(θe) =

Tkj
(θe) − Tcogg(θe)

ikj

∣∣∣∣ikj
̸=0

iht
=0

(2.17)

In fig. 2.14 is shown the change of the nine Kabc,1(θe) coefficients with respect to the
rotor position in an electrical period obtained supplying each phase of the first sector.
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Figure 2.14: Coefficients of the Matrix Kabc,1(θe) for different rotor electrical positions given in
an electrical period.
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2.2.4 Numerical model of the machine

The numerical model of the machine is implemented in Simulink as shown in fig. 2.15.
This model implements the stator phase voltage equations and, starting from the voltages

Figure 2.15: Simulink Machine model

applied by the converter, performs the phase currents calculation. The mutual coupling of
the stator windings described by the inductance matrix is modelled by using the "Mutual
Inductance" Simulink block that allows implementing inductances with mutual coupling.

Simulink Back-emfs calculation

The back-emfs are calculated in Simulink using the FFT Fourier transform and are
applied to the machine windings by using a controlled voltage source for each stator
winding. Starting from equation (2.11), the linked fluxes produced by the magnets can be
expressed in Fourier series as shown in eq. (2.18):

φP M,kj
(θe) =

ρmax∑
ρ=0

|φP M,kj ,ρ|cos(ρθe + ϕkj ,ρ) (2.18)

Where:

• ρ is the harmonic order;

• ϕkj ,ρ = ∠ φP M,kj
is the angle of the ρ-th harmonic of the linked flux with phase

kj-th;

The main advantage of adopting the FFT formulation is that it allows the calculation
of the back-emf values for every rotor electrical position θe.

From (2.18) it is possible to calculate the derivative of the flux with respect to the
rotor electrical position as:

dφP M,kj

dθe

= −
ρmax∑
ρ=0

[
ρ|φP M,kj ,ρ|sin(ρθe + ϕkj ,ρ)

]
(2.19)
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Therefore from eq. (2.11) and eq. (2.19), the back-emfs are calculated as:

ekj
= −pωm

ρmax∑
ρ=0

[
ρ|φP M,kj ,ρ|sin(ρθe + ϕkj ,ρ)

]
(2.20)

This calculation has been implemented in a function block in Simulink and, first, tested
with a script in Matlab to compare FFT calculation with the FEA results. The comparison,
considering up to the 50th harmonic of the FFT series, is represented in fig. 2.16.

Figure 2.16: FEA and FFT Back-emfs comparison

The calculation performed using the FFT and the calculation obtained for the FEA
analysis give the same results.

Wrench Calculation

Considering the phase currents given from the machine model, is it possible to calculate
the wrench applied on the machine rotor considering Kabc as expressed in the eq. (1.2)
reported here:

W E = Kabc(θe)iabc

In order to calculate the wrench for each rotor position (and not only for the rotor
position considered during wrench mapping) the coefficients of the matrix Kabc,1 are
expressed with the FFT series as shown in eq. (2.21):

Kabc,ij(θe) =
ρmax∑
ρ=0

|Kabc,ij,ρ| cos(ρθe + ϕij,ρ)| (2.21)

Where:

• ρ is the harmonic order;

• Kabc,ij,ρ is ρth harmonic coefficient of the Fourier for the ijth element of the matrix
Kabc;
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• ϕij,ρ = ∠ Kabc,ij,ρ is the angle of the ρ-th harmonic of Kabc,ij FFT serial development;

Alternatively, it is also possible to calculate the torque produced by the kj-th phase
current of the machine as:

Tkj
= ±

ekj
ikj

ωm

(2.22)

In this way, it is possible to calculate the torque produced by each phase. The total
torque is the sum of the torque produced by each phase of each sector:

T = ±
∑

k=a,b,c
j=1,2,3

Tkj
= ± 1

ωm

∑
k=a,b,c
j=1,2,3

ekj
ikj

(2.23)

In order to verify the torque calculation in Simulink, the torque calculated, by setting
iq = 10A and id = 0A in each sector, from:

• eq. (1.2), by using the matrix Kabc

• FEA (Finite Element Analysis) performed with FEMM;

• eq. (2.23), by exploiting the product between the currents and the back-emfs

are compared on the same graph in fig. 2.17.
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T = e i T from K

abc T from FEA

Figure 2.17: Torque Calculation comparison

The mean value of the torque obtained with different calculations is almost the same
as in tab. 2.2 but the torque ripple is different.

Mean Torque
From Kabc 5.7615 Nm
T = ∑

ekik 5.7799 Nm
FEA 5.7789 Nm

Table 2.2: Mean torque comparison
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For this reason, the cogging torque has been added to the numerical calculation of the
torque performed in Simulink as shown in (2.24).

T = ± 1
ωm

∑
k=a,b,c
j=1,2,3

ekj
ikj

+ Tcogg(θe)

[Fx, Fy, T ]T = Kabc(θe)iabc + [0, 0, Tcogg(θe)]T
(2.24)

The result of this calculation is shown in fig. 2.18. Considering the cogging torque,
the torque calculated torque is the same as the torque obtained from the Finite Element
Analysis.

T (T = e i) T from K
abc T from FEA T = e i + T

Cogg
T from K

abc
 + T

Cog

Figure 2.18: Torque Calculation comparison (Cogging Torque considered)

The cogging torque has been processed with FFT in order to obtain the cogging torque
for each rotor position.
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Chapter 3

Mechanical Model

In this chapter, starting from the second law of the dynamic applied to the rotor, the
rotodynamic mechanical model of the machine is developed. The shaft is modeled as a rigid
body supported by two flexible supports. Starting from the second law of the dynamic applied
to the rotor, the equations that describe the dynamic of the rotor are obtained. Initially,
these equations are analyzed neglecting the gyroscopic effect and the elastic coupling, then
adding the elastic coupling between the two bearings and the role of the gyroscopic couples.
Finally, the damping of the bearings and the out-of-balance force is considered.

3.1 Reference System

In order to develop the rotor mechanical dynamic model is necessary to define a
stationary coordinate system, consisting of three mutually perpendicular axes, namely
x, y, and z. The three axes intersect at the geometric center of the rotor, initially assumed
as the center of the mass of the rotor, i.e., at the point O (O = [Ox, Oy, Oz]). The axis of
the rotor rotation, at equilibrium, is coincident with the axis z which is assumed to be
horizontal. Conversely, the y axis is assumed vertical as shown in fig. 3.1. The axes Ox,
Oy, and Oz, in that order, form a right-handed set, which is defined as follows:

• A rotation of a right-handed screw from Ox to Oy advances along Oz;

• A rotation of a right-handed screw from Oy to Oz advances along Ox;

• A rotation of a right-handed screw from Ox to Oz advances along Oy.

The center of mass of the rotor (or the geometric center of the rotor) is allowed to
translate along axes Ox, Oy, and Oz by u, v, and w, respectively. The rotor also may
rotate (by small amounts) around the axes Ox and Oy by θx and θy, respectively. Positive
values of θx and θy represent clockwise rotations about axes Ox and Oy, respectively
when viewed from the center of mass reference frame (O). Alternatively, it is possible to
state that the sense of the rotations is such that positive values of Ox (or Oy), cause a
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Figure 3.1: Mechanical reference system

right-hand screw to advance along Ox and Oy, respectively. The rotor rotates clockwise
about axis Oz with an angular displacement θz and an angular velocity ωm = θ̇z. Thus,
the sense of this rotation is such that positive values of θz cause a right-hand screw to
advance along axis Oz.

3.2 Gyroscopic Coupling

In the dynamic analysis of a rotor spinning at speed ωm = θ̇z, it is important to
include the effects of gyroscopic couples that arise because of the conservation of angular
momentum in the system. These moments are perpendicular to the axis of rotation and
are described in detail in [45]. Consider a uniform, circular disk spinning around the z-axis
(i.e., the axis of rotation) with a constant angular speed ωm. The angular momentum of
the rotor about Oz is Ipωm, where Ip is the polar moment of inertia of the rotor, defined
as the moment of inertia around the longitudinal (Oz) or polar axis.
Suppose that the disk now rotates about Oy with an angular velocity of ωy (ωy = θ̇y).
Over time δt, the disk will rotate by an angle of

δθy = δtθ̇y (3.1)

at the end of this time period, the angular momentum has magnitude Ipωm but its
direction is rotated by δθy, as shown in fig. 3.2.

For an infinitesimal displacement in the axis of rotation δθy, the vector change in
angular momentum has direction Ox and magnitude Mxδt, where Mx is the clockwise
moment about the x-axis. Then:

Mxδt = Ipωmδθy → Mx = Ipωm
δθy

δt
(3.2)
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Figure 3.2: Vector diagram showing the effect of a clockwise moment about Ox and Oy

Taking the limit when δt tends to zero:

Mx = Ipωm
dθy

dt
= Ipωmθ̇y (3.3)

Thus, if a moment Mx is applied about the x-axis, the rotor, while it is spinning about
the z-axis, has angular velocity ωy about the y-axis. This velocity ωy is referred to as
precession.
Alternatively, if the spinning rotor is made to precess about the y-axis with an angular
velocity ωy, then a moment Mx must exist about the x-axis in order to close the triangle
of momentum vectors and maintain equilibrium.
Consider now that the disk has a constant angular velocity of ωx about the direction Ox.
Over time δt, the disk will rotate by an angle of:

δθx = δtθ̇x (3.4)

the change in angular momentum is in the negative Oy direction, represented by the
screw vector −Myδt, in which My is the clockwise moment about the y-axis. To close the
momentum-vector diagram and maintain equilibrium (fig. 3.2), it must be:

−Myδt = Ipωmδθx → My = −Ipωm
δθx

δt
(3.5)

Taking the limit as δt tends to zero:

My = −Ipωm
dθx

dt
= −Ipωmθ̇x (3.6)

In these equations, Mx and My are moments due to all the forces acting on the rotor.
Because the disk can now rotate simultaneously about the x- and y-axes, the rate of
change of angular momentum due to the angular acceleration Idθ̈x and Idθ̈y about these
axes also needs to be added to the contribution from the disk polar moment of inertia.
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Considering the rotational dynamic equation:

Mx = Idθ̈x

My = Idθ̈y

(3.7)

Where Id is the diametral moment of inertia of the disk, defined as the moment of inertia
with respect to an axis that is a diameter of the rotor (along x- or y-axis). Hence, Equations
(3.4) and (3.6) become:

My = −Ipωmθ̇x → Idθ̈x + Ipωmθ̇y = Mx

Mx = Ipωmθ̇y → Idθ̈y − Ipωmθ̇x = My

(3.8)

So if the rotor is spinning around the Oz axis:

• a momentum Mx applied along x-axis, causes a variation of the angle θy along y and
an acceleration θ̈x along x;

• a momentum My applied along y-axis, causes a variation of the angle θx along x and
an acceleration θ̈y along y.

This is explained in figure 3.3:

Figure 3.3: Gyroscopic Couples and Vector Diagram
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3.3 Rigid Rotor on Flexible supports

The mechanical model developed in this study describes the dynamics of a rigid rotor
supported by a pair of bearings, considered flexible as shown in Fig. 3.4.

Figure 3.4: Mechanical model: Rigid Shaft supported by two flexible supports

To develop the equations of motion for this system, it is possible to use an energy
method (e.g., Lagrange’s equations) or, alternatively, directly apply Newton’s second law
of motion. It has been chosen to use the latter. To do so, the free-body diagram for
the system must be drawn as shown in Fig. 3.4. The layout with a permanent rotor is
assumed to feature a passive compensation for the translation in the direction Oz (due
to the bearings and to the passive magnetic pull of the magnets), and the control of the
currents is expected to determine the rotation around this axis. Therefore, the rotor has
four degrees of freedom because it can translate in the directions Ox and Oy and it also
can rotate about these axes. Often the translation and rotation are called bounce and
tilt motion, respectively.
The description of the rotor movement is performed in terms of the displacements of its
center of mass in the directions Ox and Oy, with the coordinates u and v, respectively,
and the clockwise rotations about Ox and Oy, θx and θy, respectively. Applying Newton’s
second law of motion to the free rotor, yields to:

Forces along x direction − fx1 − fx2 = mü

Forces along y direction − fy1 − fy2 = mv̈

Moments along x direction − afy1 + bfy2 = Idθ̈x + Ipωmθ̇y

Moments along y direction afx1 − bfx2 = Idθ̈y − Ipωmθ̇x

(3.9)
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Figure 3.5: Shaft displacement at bearings’ locations.

The expressions of the bearings’ reaction are in eq. (3.10), and obtained considering
fig. 3.5:

fx1 = kx1(u − asinθy)
fx2 = kx2(u + bsinθy)
fy1 = ky1(v + asinθx)
fy2 = ky2(v − bsinθx)

(3.10)

Let’s assume that the displacements of the rotor from the equilibrium position are small,
which is the case in practice (unless there is a catastrophic failure of our rotor-bearing
system). This assumption means that the rotations θx and θy are sufficiently small; hence,
it is possible to replace sinθx by θx and sinθy by θy. Furthermore, the spring supports are
assumed linear and the Hooke’s law applies.
Then, assuming no elastic coupling between the Ox and Oy directions, the bearing reaction
along x at the bearing 1 can be expressed as:

fx1 = kx1(u − asinθy) ≈ kx1(u − aθy) (3.11)

where u − aθy is the deflection of the spring due to the force fx1 as shown in fig. 3.5.
Applying this argument to each of the forces:

fx1 = kx1(u − aθy)
fx2 = kx2(u + bθy)
fy1 = ky1(v + aθx)
fy2 = ky2(v − bθx)

(3.12)
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Substituting these forces into equations (3.9) and rearranging gives:

mü + (kx1 + kx2)u + (−akx1 + bkx2)θy = 0
mv̈ + (ky1 + ky2)v + (aky1 − bky2)θx = 0

Idθ̈x + Ipωmθ̇y + (aky1 − bky2)v + (a2ky1 + b2ky2)θx = 0
Idθ̈x − Ipωmθ̇y + (akx1 − bkx2)u + (a2kx1 + b2kx2)θy = 0

(3.13)

Letting:
kxT

= kx1 + kx2

kxC
= −akx1 + bkx2

kxR
= a2kx1 + b2kx2

kyT
= ky1 + ky2

kyC
= −aky1 + bky2

kyR
= a2ky1 + b2ky2

(3.14)

where the subscripts T, C, and R have been chosen to indicate transnational, coupling
between displacement and rotation, and rotational stiffness coefficients. More specifically,
the coefficients kxC

and kyC
describe the coupling between the bearing reactions: the

bearing reactions are not independent, but are coupled.
Then, equation (3.13) can be written more concisely as:

mü + kxT
u + kxC

θy = 0
mv̈ + kyT

u − kyC
θx = 0

Idθ̈x + Ipωmθ̇y − kyC
v + kyR

θx = 0
Idθ̈x − Ipωmθ̇x + kxC

u + kxR
θy = 0

(3.15)

Finally, the force applied by the multi-sector machine to the rotor F = (Fx, Fy) and the
second law of the dynamic applied for the rotation around z-axis are added in equations
(3.15) as follows:

mü + kxT
u + kxC

θy = Fx

mv̈ + kyT
u − kyC

θx = Fy

Idθ̈x + Ipωmθ̇y − kyC
v + kyR

θx = 0
Idθ̈x − Ipωmθ̇x + kxC

u + kxR
θy = 0

(3.16)

The equation of the rotational dynamic along the z-axis is the well known presented below:

T − Tload = Ip
dωm

dt
(3.17)

Equations (3.16) and (3.17) are the complete set of equations that describe the lateral
response of the shaft when the force F = (Fx, Fy) is applied by the electrical machine.
The damping of the bearings in these equations is neglected.
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3.4 Rigid Rotor on Flexible Isotropic Supports

Let us assume that the flexibility of the bearing supports is the same in both of the
transverse directions (kx1 = ky1 and kx2 = ky2); that is, the bearing supports are isotropic.
Then, simplifying equation (3.16) by letting:

kxT
= kyT

= kT kxC
= kyC

= kC kxR
= kyR

= kR (3.18)

By introducing these simplifying relationships, equation (3.16) becomes:

mü + kT u + kCθy = Fx

mv̈ + kT v − kCθx = Fy

Idθ̈x + Ipωmθ̇y − kCv + kRθx = 0
Idθ̈x − Ipωmθ̇x + kCu + kRθy = 0

(3.19)

3.4.1 Neglecting Gyroscopic Effects and Elastic Coupling

The solutions of the set of equations (3.19) when gyroscopic effects can be neglected
are now considered. This is allowed when the speed of rotation is low or the polar moment
of inertia is small.
Letting:

Ipωm = 0 (3.20)

in equations (3.19) gives:

mü + kT u + kCθy = Fx

mv̈ + kT v − kCθx = Fy

Idθ̈x − kCv + kRθx = 0
Idθ̈x + kCu + kRθy = 0

(3.21)

Now let’s consider a solution for the case when

kC = 0 (3.22)

This situation arises, for example, if the shaft lengths a and b are equal and the stiffnesses
of the bearings are the same at each end of the rotor.
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Thus, (3.21) become:

mü + kT u = Fx

mv̈ + kT u = Fy

Idθ̈x + kRθx = 0
Idθ̈x + kRθy = 0

(3.23)

These differential equations are uncoupled and can be solved independently of one another.

Simulink Implementation

In order to implement the differential equations (3.23) in Simulink, the transformation
in the Laplace Domain is applied and the second-order derivative term in each equation
has been isolated as explained in eq. (3.24):

ü = Fx − kT u

m
→ L → u = 1

s2

(
Fx − kT u

m

)

v̈ = Fy − kT u

m
→ L → v = 1

s2

(
Fy − kT v

m

)

θ̈x = −kR

Id

θx → L → θx = − 1
s2

kR

Id

θx

θ̈y = −kR

Id

θy → L → θy = − 1
s2

kR

Id

θy

(3.24)

Equations (3.24) are implemented in Simulink as explained in fig. 3.6 where is also
possible to insert the initial conditions:

Figure 3.6: Differential equations implemented in Simulink

Setting the parameters in tab. 3.1, a simulation has been run giving as results the
shaft displacement at bearings’ and center of mass locations shown in fig. 3.7.
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Mechanical parameters Initial Conditions
kx1 10 MN/m u(t = 0) 10 µm

ky1 10 MN/m v(t = 0) 5 µm

kx2 10 MN/m θx(t = 0) 0 rad
ky2 10 MN/m θy(t = 0) 0 rad
a 0.1769 m u̇(t = 0) 30 µm/s

b 0.2175 m v̇(t = 0) 0 µm/s

Id 0.156502 kg m2 θ̇x(t = 0) 0 s−1

Ip 0.010468 kg m2 θ̇y(t = 0) 0 s−1

Table 3.1: Simulation parameters

Figure 3.7: x and y displacement of the shaft

From these results, if the gyroscopic effect and the elastic coupling (kC = 0) are
neglected, the tilting is zero (θx = 0 and θy = 0). It is possible to determine the shaft
displacement at the location of the bearings considering the shaft as rigid and by applying
the eq. (3.25):

x1 = u − asinθy ≈ u − aθy

x2 = u + bsinθy ≈ u + bθy

y1 = v + asinθx ≈ v + aθx

y2 = v − bsinθx ≈ v − bθx

(3.25)

3.4.2 Neglecting Gyroscopic Effects, Including Elastic Coupling

Now the elastic coupling is considered, so kC ̸= 0 and the equations that describe the
dynamic of the rotor are:

mü + kT u + kCθy = Fx

mv̈ + kT v − kCθx = Fy

Idθ̈x − kCv + kRθx = 0
Idθ̈x + kCu + kRθy = 0

(3.26)
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Simulink Implementation

In order to implement the differential equations in Simulink, the transformation in the
Laplace Domain is applied and the second-order derivative term in each equation has been
isolated as explained in eq. (3.27):

ü = Fx − kT u − kCθy

m
→ L → u = 1

s2

(
Fx − kT u − kCθy

m

)

v̈ = Fy − kT v + kCθx

m
→ L → v = 1

s2

(
Fy − kT v + kCθx

m

)

θ̈x = kCv − kRθx

Id

→ L → θx = 1
s2

(
kCv − kRθx

Id

)

θ̈y = −kCu + kRθy

Id

→ L → θy = − 1
s2

(
kCu + kRθy

Id

)
(3.27)

Equations (3.27) are implemented in Simulink as explained in fig. 3.8 where is also
possible to insert the initial conditions:

Figure 3.8: Differential equations Simulink implementation

Setting the parameters in tab. 3.1 and the rotational speed ωm = 0, a simulation has
been run giving as results the shaft displacement at bearings’ and centre of mass locations
shown in fig. 3.9.
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Figure 3.9: x and y displacement of the shaft

As it is possible to see from these results, the effect of the elastic coupling is to introduce
a tilting (θx ̸= 0 and θy ̸= 0). In particular, the effect of having θx ̸= 0 and θy ̸= 0 can lead
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to a bounce mode (also called cylindrical mode if the gyroscopic effect is acting) or to a
tilting mode (also called conical mode if the gyroscopic effect is acting) as shown in 3.10.

a b

Figure 3.10: Bounce (a) and Tilting (b) mode (the dashed line denotes zero displacement)

3.4.3 Including Gyroscopic Effect

In the previous analysis presented, the effect of gyroscopic couples is neglected. However,
in many situations such as overhung rotors or rotors spinning at high speed, it is necessary
to consider the effect of gyroscopic couples. To include gyroscopic effects in the analysis of
a rigid rotor on isotropic supports, at the beginning Equation (3.19) is considered, which
is repeated here for convenience:

mü + kT u + kCθy = Fx

mv̈ + kT u − kCθx = Fy

Idθ̈x + Ipωmθ̇y − kCv + kRθx = 0
Idθ̈x − Ipωmθ̇y + kCu + kRθy = 0

(3.28)

Plus the equation of the rotational dynamic along the z-axis:

T − Tload = Ip
dωm

dt
(3.29)

Simulink Implementation

To implement these equations in Simulink the second-order derivative are isolated and
integrated two times:

ü = Fx − kT u − kCθy

m
→ L → u = 1

s2

(
Fx − kT u − kCθy

m

)

v̈ = Fy − kT v + kCθx

m
→ L → v = 1

s2

(
Fy − kT v + kCθx

m

)

θ̈x = kCv − Ipωmθ̇y − kRθx

Id

→ L → θx = 1
s2

(
kCv − Ipωmsθy − kRθx

Id

)

θ̈y = Ipωmθ̇x − kCu − kRθy

Id

→ L → θy = 1
s2

(
Ipωmsθx − kCu − kRθy

Id

)
(3.30)
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The Simulink implementation is the same as the one shown in fig. 3.8, but now the
rotational speed ωm is set to 10000 rpm (in the previous case it was zero, so the gyroscopic
effect doesn’t affect the dynamic of the rotor).
The results of this simulation are shown in 3.11 and 3.12.

Figure 3.11: Simulation results including gyroscopic effect (x1, x2, θx and θy).

Figure 3.12: Simulation results including gyroscopic effect (x1, x2, θx and θy).

As shown in the figures 3.11 and 3.12, the gyroscopic effect makes the orbit of the shaft
at the bearing locations rotate around the z-axis.
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3.4.4 Including Damping

The effect of viscous damping in the bearings is now considered. Assuming that a
viscous damper is placed in parallel with each spring element supporting the bearing, the
bearings reaction forces fx1 , fy1 , fx2 and fy2 contain also the damping component and
they are:

fx1 = kx1(u − aθy) + cx1(u̇ − aθ̇y)
fx2 = kx2(u + bθy) + cx2(u̇ − aθ̇y)
fy1 = ky1(v + aθx) + cy1(v̇ − aθ̇x)
fy2 = ky2(v − bθx) + cy2(v̇ − aθ̇x)

(3.31)

where c is the viscous-damping coefficient and is defined as the force required to produce
a unit velocity across the damping element. Let:

cxT
= cx1 + cx2

cxC
= −acx1 + bcx2

cxR
= a2cx1 + b2cx2

cyT
= cy1 + cy2

cyC
= −acy1 + bcy2

cyR
= a2cy1 + b2cy2

(3.32)

For simplicity isotropic supports (cx1 = cy1 = c1 and cx2 = cy2 = c2) are considered so:

cT = cxT
= cyT

= c1 + c2

cC = cxC
= cyC

= −ac1 + bc2

cR = cxR
= cyR

= a2c1 + b2c2

(3.33)

Using these definitions, substituting equations (3.31) into (3.9) and rearranging these
equations gives:

mü + cT u̇ + cC θ̇y + kT u + kCθy = Fx

mv̈ + cT v̇ − cC θ̇x + kT v − kCθx = Fy

Idθ̈x + Ipωmθ̇y − cC v̇ + cRθ̇x − kCv + kRθx = 0
Idθ̈y − Ipωmθ̇x + cC u̇ + cRθ̇y + kCu + kRθy = 0

(3.34)

This is the complete set of equations that allows the description of the dynamic of the
rotor while taking into account the damping of the supports.
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Simulink Implementation

In order to implement these equations the second-order derivative in each equation is
isolated as it follows and then integrated twice in the Laplace domain as shown previously:

ü = Fx − cT u̇ − cC θ̇y − kT u − kCθy

m

v̈ = Fy − cT v̇ + cC θ̇x − kT v + kCθx

m

θ̈x = kCv + cC v̇ − cRθ̇x − Ipωmθ̇y − kRθx

Id

θ̈y = Ipωmθ̇x − cC u̇ − cRθ̇y − kCu − kRθy

Id

(3.35)

The Simulink implementation is shown in 3.13:

Figure 3.13: Simulink differential equation implementation (including damping)

in order to understand the role of the damping, a simple simulation has been run
neglecting the gyroscopic effect (ωm = 0). The results of the simulation are in figure 3.14
where cx1 = cx2 = cy1 = cy1 = 500Nm/s:

As it is possible to see, in the absence of any other forces the damping brings the shaft
displacement toward the origin.
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Figure 3.14: x and y displacement of the shaft

3.4.5 Including Out-of-Balance Forces

The most significant lateral forces and moments are usually caused by an imperfect
distribution of mass in the rotor. Due to manufacturing tolerances and other factors,
it is not possible to ensure that rotors are perfectly balanced. Although when new or
recently commissioned, a rotor is balanced so that the residual out-of-balance is minimal,
this out-of-balance may increase with the passage of time. As the rotor spins about its
equilibrium position, forces and moments are generated that are called out-of-balance
forces and moments. The direction of these forces and moments is fixed relative to the
rotor. Therefore, their direction rotates with the rotor and for this reason, they are
synchronous forces and moments.
To model the out-of-balance force acting on the rotor, the displacement of the rotor centre
of mass along axes Ox and Oy must be considered. The instantaneous position of the rotor
centerline S is described by (u, v) and the position of the mass centre of the rotor and
G is described by (uG, vG), while the centre of the references system is O. The distance
between S and G two points is |SG| = ε and the instantaneous angle between the line SG

(which represents a line on the rotor) and the Ox axis is θz as shown in fig. 3.15.

Figure 3.15: Instantaneous position of bearing centerline S and rotor mass center G
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From figure 3.15, it is shown that:

uG = u + εcosθz

vG = v + εsinθz

(3.36)

Differentiating these equations twice with respect to time, with ε constant, gives:

üG = ü + ε(−θ̇2
zcosθz − θ̈zsinθz)

v̈G = v̈ + ε(−θ̇2
zsinθz + θ̈zcosθz)

(3.37)

In deriving the previous equation, the analysis of the case of a rotor spinning with a
constant angular velocity is not restricted. If now this simplification is introduced, then at
a constant speed of rotation θ̇z = ωz = ωm, it becomes θ̈z = 0. Thus:

üG = ü − εω2
zcosθz

v̈G = v̈ − εω2
zsinθz

(3.38)

For the rotor being considered, the center of mass is offset from the shaft centerline at
equilibrium by a small quantity ε, and the displacement of the center of mass is given by
uG and vG, However, the displacements of the springs and dampers (at the bearings) are
still in terms of u and v. Thus, replacing ü by üG and v̈ by üG in (3.34):

müG + cT u̇ + cC θ̇y + kT u + kCθy = Fx

mv̈G + cT v̇ − cC θ̇x + kT v − kCθx = Fy

Idθ̈x + Ipωz θ̇y − cC v̇ + cRθ̇x − kCv + kRθx = 0
Idθ̈y − Ipωz θ̇x − cC u̇ + cRθ̇y + kCu + kRθy = 0

(3.39)

The equations of motion of this rotor, including damping at the supports and gyroscopic
effects, are given in equations (3.34). Substituting for üG and üG from equation (3.38)
and rearranging gives:

mü + cT u̇ + cC θ̇y + kT u + kCθy = Fx + mεω2
zcos(ωmt)

mv̈ + cT v̇ − cC θ̇x + kT v − kCθx = Fy + mεω2
zsin(ωmt)

Idθ̈x + Ipωmθ̇y − cC v̇ + cRθ̇x − kCv + kRθx = 0
Idθ̈y − Ipωmθ̇x + cC u̇ + cRθ̇y + kCu + kRθy = 0

(3.40)

Equation (3.40) shows that the lateral offset of the mass center from the equilibrium
position causes out-of-balance forces to act on the system. Thus, the equations of motion
for a system with a disk or rotor with an offset either can be developed by modifying the
position of the center of mass or more directly by adding forces on the right-hand side of
the equations of motion.
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Simulink Implementation

In order to implement these equations the second-order derivative in each equation is
isolated as already presented and then integrated twice in the Laplace domain as shown
previously:

ü = Fx + mεω2
zcos(ωzt) − cT u̇ − cC θ̇y − kT u − kCθy

m

v̈ = Fy + mεω2
zsin(ωzt) − cT v̇ + cC θ̇x − kT v + kCθx

m

θ̈x = kCv + cC v̇ − cRθ̇x − Ipωmθ̇y − kRθx

Id

θ̈y = Ipωmθ̇x − cC u̇ − cRθ̇y − kCu − kRθy

Id

(3.41)

The Simulink implementation is shown in figure 3.16. Considering an acceleration of

Figure 3.16: Simulink implementation of the differential equations (3.41).

the rotor from 0 rpm to 10000 rpm, the results of the simulation, with the considered
parameter in table 3.2, are shown in 3.17, 3.18 and 3.19.
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Mechanical parameters Initial Conditions

kx1 10 MN/m u(t = 0) 0 µm

ky1 10 MN/m v(t = 0) 0 µm

kx2 10 MN/m θx(t = 0) 0 rad
ky2 10 MN/m θy(t = 0) 0 rad
a 0.1769 m u̇(t = 0) 0 µm/s

b 0.2175 m v̇(t = 0) 0 µm/s

Id 0.156502 kg m2 θ̇x(t = 0) 0 s−1

Ip 0.010468 kg m2 θ̇y(t = 0) 0 s−1

m 10.9904 kg
c1 500 Nm/s
c2 500 Nm/s
ε 10 µm

Table 3.2: Simulation parameters

Figure 3.17: θx and θy displacements at bearings’ locations and θx and θy tilting angles.
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Figure 3.18: Position displacements at bearings’ locations (3D plot)

Figure 3.19: Out-of-Balance force components
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3.5 Free and Forced Lateral Response of a Rotating
Shaft

3.5.1 Natural frequencies

Natural frequency, also known as eigen frequency, is the frequency at which a mechan-
ical system tends to oscillate in the absence of any driving force. The motion pattern
of a system oscillating at its natural frequency is called the normal mode (if all parts of
the system move sinusoidally with that same frequency). Natural frequencies and mode
shapes are usually considered the most critical properties of virtually any system. In fact,
excessive vibrations in any system lead to structural and functional issues. It is possible
to determine the natural frequencies of a system analytically or by considering its free
response and determine the frequencies of its oscillations. The reason for this is that the
natural frequencies can match with a system’s vibration frequencies leading to resonances.
For example, if a time-varying force is applied to a system and a frequency equivalent
to one of the natural frequencies is included in its time waveshape, this may result in
immense amplitude vibrations which risk putting the system in jeopardy. This is why
when designing a mechanical system it is important to calculate and ensure the natural
frequencies of vibration are far enough from any possible excitation frequency that the
system is likely to encounter during normal operation. For this reason, it is appropriate to
plot a graph showing the variation (i.e., the absolute values) of natural frequencies with
shaft speed. That graph is called Natural frequency maps and it can also illustrate the
relationship between resonances and parameters other than rotational speed. It is usual
to express the natural frequencies in Hz and the speed of rotation in rpm (revolutions per
minute).
In the machine design, there are some parameters that directly affect the rotodynamic of
the machine (bearing stiffness, shaft length, the mass of the rotor, the inertia of the rotor,
etc). Bearing-support stiffness is a particularly relevant example of such variable parame-
ters. Maps of critical speed allow obtaining rapidly an impression of how the uncertainty
in one of the parameters affects the behavior of the machine. The most relevant concern
is that a parameter cannot assume a value that causes one of the machine’s critical speeds
to occur at an undesirable part of the running range of speeds.
The natural frequencies obtained from the FFT free response of the rotor machine consid-
ered in this thesis are reported in figure 3.20 (the damping has been neglected in order to
perform the FFT analysis).

For the considered mechanical system, the machine has a natural frequency of 215
Hz roughly. It has to be noticed that this system has only one natural frequency (this is
mainly due to equal bearings at both sides of the shaft) but if the bearings are different, it
is more likely that the system presents two or more natural frequencies.
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Figure 3.20: Natural frequencies

3.5.2 Critical speeds

In some cases, the rotor of a machine experiences exciting forces from external sources
that have no direct connection with its own spin speed. It is occasionally found that
fixed-frequency lateral forcing exists on an electrical machine that is modulated by a
multiple of rotational speed because of some type of asymmetry on the rotor. Other
forces acting on rotors include foundation forces that are transmitted to the rotor via the
bearings; gravity forces on large horizontal rotors; and effects of rotor bow, misaligned
couplings, and cracks. Some of these forces rotate at the rotor speed or multiples of it,
others act in a fixed direction with excitation frequencies unrelated to rotor speed.
The response of a rotor-bearing system to various types of excitation can be large. The
speeds at which such large responses occur are called critical speeds and locating them is
of the utmost importance to designers. Simply stated, a critical speed is the rotational
speed of a machine or shaft line at which the machine behaves poorly, and large vibrations
or shaft whirls occur. If a machine is run continuously at a critical speed, then damage
can occur very quickly. Often, this happens when an excitation frequency coincides with a
resonance frequency of the machine. The maximum response criterion or the coincidence
of excitation and resonance frequency may be used to estimate critical speeds for lightly
damped, simple systems. From the natural frequencies results, a critical speed around
13000 rpm (215Hz · 60 ≈ 13000rpm) is expected.
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3.5.3 Mode Shapes

In rotodynamic, mode shapes are a manifestation of eigenvectors which describe the
relative displacement of two or more elements in a mechanical system as, in this case,
the shaft displacement at the bearings locations. A mode shape is a pattern related to
a particular natural frequency and represents the relative displacement of all parts of
a structure for that particular mode. Mode shapes are strictly related to the system
parameters (bearing stiffness, mass and inertia of the shaft, length of the shaft, etc.), to
the speed of rotation, and to the forces applied to the shaft. For a rotating shaft, there
are two main mode shapes as shown in 3.21:

• Cylindrical mode shape: the x and y shaft displacement oscillates with the same
angle. The trajectory of the shaft during the motion describes a cylinder.

• Conical mode shape: the x and y shaft displacement oscillates with the same angle.
The trajectory of the shaft during the motion describes a double cone.

Figure 3.21: Conical (left) and cylindrical (right) mode shapes

Mode shapes simulation results

From simulation results, it has been proved that if the two isotropic bearings have
the same stiffness, the mode shape is cylindrical. On the other hand, if the two bearings
present significantly different stiffness (e.g., one stiffness is more than 5 times bigger than
the other) the mode shape is conical. The simulation results are shown in fig. 3.22 where
per Table 3.3.

As it is possible to see if the two bearings present different stiffness (kx1 = ky1 =
10MN/m and kx2 = ky2 = 80MN/m) the mode shape is conical. In fact, from 3.22 it is
possible to notice that x1 has the opposite phase of x2 and y1 has the opposite phase of y2.
This doesn’t happen when the two bearings are equal as shown in figure 3.17.
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Mechanical parameters Initial Conditions
kx1 10 MN/m u(t = 0) 0 µm

ky1 10 MN/m v(t = 0) 0 µm

kx2 80 MN/m θx(t = 0) 0 rad
ky2 80 MN/m θy(t = 0) 0 rad
a 0.1769 m u̇(t = 0) 0 µm/s

b 0.2175 m v̇(t = 0) 0 µm/s

Id 0.156502 kg m2 θ̇x(t = 0) 0 s−1

Ip 0.010468 kg m2 θ̇y(t = 0) 0 s−1

ε 10 µm

Table 3.3: Simulation parameters

Figure 3.22: x and y displacement at bearings locations

Figure 3.23: x and y displacement at bearings locations (3D plot)
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In addition, with different bearings, the system has two natural frequencies as shown
in fig. 3.24.
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Figure 3.24: Natural frequencies (different bearings)
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Chapter 4

Control Architecture

This Chapter deals with the radial force control implemented in this thesis in order
to control the displacement at the bearing locations. The control system consists of three
control loops: the current control loop, resulting from the wrench control set points, and
the position and speed control loop. The implementation and the criticality of these two
cascaded control loops are presented in this chapter.

4.1 Voltage modulation and converter architecture

The voltages are applied to the machine terminals by using a three-phase inverter for
each three-phase subwinding (i.e., motor sector) as shown in figure 4.1. The three inverters
share the same DC bus.

Thanks to the star connection of the motor winding in each sector, it is possible to
control the phase currents of the motor with three conventional three-phase converters
(each sector has a star connection galvanically isolated from the others).

In Simulink, the three inverters have been implemented in such a way that the user

Figure 4.1: Converter Architecture
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can select their representation with Simscape blocks (which represent the behavior of a
real inverter with good accuracy) or with ideal voltage sources for each branch voltage
(ideal inverter). In this way, it is possible to simulate the ideal and the real converter and
see the effect it has on the control of the machine. The Simulink implementation is shown
in fig. 4.2 and the set of parameters is listed in 4.1. In both real and Ideal inverters the
PWM delay due to the modulation is simulated in the PWM modulation block.

Figure 4.2: Ideal and real inverter implementation in Simulink (left) and one real inverter view
block view (right).

REAL INVERTERS PARAMETERS
Swithing frequency fs = 10 kHz

DC link Voltage VDC = 700 V
Death Time Tdeath = 1.5 µm

Forward ON Voltage (IGBT) Vf,IGBT = 0.9 V

ON Resistance (IGBT) RON,IGBT = 00.018 Ω
Forward ON Voltage (Diode) Vf,D = 0.8 V

Table 4.1: Real Inverter Parameters

4.2 Current control

The control of the currents is performed by using a classic PWM modulation which
controls each three-phase inverter. The current-voltage references are determined by a
PI controller for the d and q axes as usually done for a classic FOC (Field Orientation
Control) used for the torque control. The current references are obtained from the wrench
reference by using the Pseudo Inverse Matrix (PIM) approach as described in the 4.3.
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Figure 4.3: Current Control

The voltage references are obtained with a PI controller for each sector as the machine
was composed of three three-phase independent machines sharing the same shaft. It must
be noticed that in the current control scheme, the mutual coupling between the sectors is
neglected and each three-phase sector is controlled independently from the others (in the
machine model the mutual coupling between the sectors is considered with the inductance
matrix but not in the wrench mapping). However, there are control strategies in the
literature that also take into account the mutual coupling between sectors. For example, a
control strategy based on the space vector decomposition approach that takes into account
the inductive mutual coupling between sectors has been proposed in [46].

4.3 Wrench Control

The following section presents the technique for radial force and torque control based
on the pseudo-inverse matrix approach applied to the MSPM machine. The SPM rotor
layout and the distribution of the three-phase windings (sectors) enable, with a good
approximation, the achievement of the independent control of the x and y force and
torque contributions attributed to each sector. Based on the superposition principle, these
contributions are then added up to track the desired force and torque control.

4.3.1 Matrix K Inversion

In order to control the sectored multi-three-phase bearingless SPM motor, the current
references must be calculated to produce the desired torque and radial forces. The relation
between the wrench and the currents is expressed through the matrix as shown in eq. (4.1)
here reported:

W E = Kabc(θe)̄iabc (4.1)

The matrix K is not a square matrix so it is not possible to calculate the inverse matrix
to determine the currents that give the desired force. For this reason, the pseudo-inverse
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matrix (or Penrose inverse matrix) is calculated to determine the current references.
Furthermore, the constraint (4.2) due to the star connection must be included to impose
the sum of the currents in each sector as zero:

Sīabc = 0 (4.2)

Where S is the matrix that imposes the zero-sum in each machine sector:

S =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

 (4.3)

In this way the system of equations to be solved is:

W E = Kabcīabc

Siabc = 0
(4.4)

which can be rewritten as:
W E = Keīabc (4.5)

with:

• Ke = [Kabc, S]T

• W E = [Fx, Fy, T, 0, 0, 0]T

The resulting Ke matrix, written keeping the dependency from θe implicit is:

Ke =


KFx,a1 KFx,b1 KFx,c1 KFx,a2 KFx,b2 KFx,c2 KFx,a3 KFx,b3 KFx,c3
KFy,a1 KFy,b1 KFy,c1 KFy,a2 KFy,b2 KFy,c2 KFy,a3 KFy,b3 KFy,c3
KT,a1 KT,b1 KT,c1 KT,a2 KT,b2 KT,c2 KT,a3 KT,b3 KT,c3

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

 (4.6)

In this way, for each rotor position, it is possible to calculate the pseudoinverse and
the current references:

ī∗
abc = Ke,psiW

∗
E (4.7)

Where the pseudo inverse matrix Ke,psi is defined as it follows:

Ke,psi = KT
e [KeK

T
e ]−1 (4.8)

In Matlab, the command to calculate the Pseudo-inverse matrix is pinv().
As we can see from the calculation of the current references, the last 3 columns of

the matrix Ke,psi are unnecessary and they can be deleted (all the coefficients of these
columns are multiplied by zero since the last three elements of W ∗

E = [Fx, Fy, T, 0, 0, 0]
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are zeros). So the matrix Ke,psi (9 × 6 matrix), by eliminating the last three columns
becomes Kpsi (9 × 6 matrix):

Ke,psi → eliminating columns 4, 5, 6 → Kpsi (4.9)

Figure 4.4: Matrix Kpsi

The results of the matrix Kpsi coefficients calculation for each rotor position are shown
in fig. 4.5 and their FFT analysis in fig. 4.6.

0 1 2 3 4 5 6

-0.1

-0.05

0

0.05

0.1

K-1
Fx,iA1

K-1
Fx,iB1

K-1
Fx,iC1

0 1 2 3 4 5 6
-0.1

-0.05

0

0.05

0.1

K-1
Fx,iA2

K-1
Fx,iB2

K-1
Fx,iC2

0 1 2 3 4 5 6
-0.1

-0.05

0

0.05

0.1

K-1
Fx,iA3

K-1
Fx,iB3

K-1
Fx,iC3

0 1 2 3 4 5 6

-0.05

0

0.05

K-1
Fy,iA1

K-1
Fy,iB1

K-1
Fy,iC1

0 1 2 3 4 5 6

-0.1

-0.05

0

0.05

0.1

K-1
Fy,iA2

K-1
Fy,iB2

K-1
Fy,iC2

0 1 2 3 4 5 6

-0.1

-0.05

0

0.05

0.1

K-1
Fy,iA3

K-1
Fy,iB3

K-1
Fy,iC3

0 1 2 3 4 5 6
-2

-1

0

1

2

K-1
T,iA1

K-1
T,iB1

K-1
T,iC1

0 1 2 3 4 5 6
-2

-1

0

1

2

K-1
T,iA2

K-1
T,iB2

K-1
T,iC2

0 1 2 3 4 5 6
-2

-1

0

1

2

K-1
T,iA3

K-1
T,iB3

K-1
T,iC3

Figure 4.5: Matrix Kpsi coefficients versus rotor position (all the coefficients are expressed in
A/N for the coefficients of the forces and in A/Nm for the coefficients of the torque).
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Figure 4.6: Matrix Kpsi coefficients FFT Amplitude (all the coefficients are expressed in A/N
for the coefficients of the forces and in A/Nm for the coefficients of the torque).

Numerical Implementation

The pseudoinverse matrix coefficients must be known for each rotor position in order
to determine the current references starting from the wrench references. For this reason,
the coefficients can be calculated offline and then stored in the DSP by using a look-up
table, avoiding computing the pseudoinverse in real time. Differently, it is possible to
calculate the pseudoinverse matrix coefficients for each rotor position starting from the
FFT analysis computed offline and consequently calculate the Kpsi coefficient for the
current rotor position by using the FFT:

Kpsi,ij(θe) =
ρmax∑
ρ=0

|Kpsi,ij,ρ| cos(ρθe + ϕpsi,ij,ρ)| (4.10)

where:

• ρ is the harmonic order;

• Kpsi,ij,ρ is ρth-harmonic coefficient of the FFT serial development of ijth element of
the matrix Kpsi;

• ϕpsi,ij,ρ = ∠ Kpsi,ij,ρ is the angle of the ρ-th harmonic of the FFT series complex
coefficient Kpsi,ij;

In the Simulink model, the FFT approach has been used. To reduce the computational
load and make the control algorithm faster, it is possible to calculate the pseudo-inverse
matrix by using only the 1st harmonic (ρmax = 1). This is allowed by the Halbach array
magnets layout that has been optimized specifically for this kind of application and that
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produces really sinusoidal matrix Kabc coefficients. Differently, in order to create the motor
model (the Simulink model that allows, starting from the current, to calculate the wrench)
all the harmonics of the matrix Kabc must be considered as shown in the chapter 2.2.4.

On the Pseudo-Inverse Matrix

In mathematics, and in particular linear algebra, the Moore–Penrose inverse A+

of a matrix A is the most widely known generalization of the inverse matrix. It was
independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951, and Roger
Penrose in 1955. When referring to a matrix, the term pseudoinverse, without further
specification, is often used to indicate the Moore–Penrose inverse. The term "generalized
inverse" is sometimes used as a synonym for pseudoinverse. A common use of the
pseudoinverse is to compute a "best fit" (least squares) solution to a system of linear
equations that lacks a solution. Another use is to find the minimum (Euclidean) norm
solution to a system of linear equations with multiple solutions. The pseudoinverse
facilitates the statement and proof of results in linear algebra. The pseudoinverse is defined
and unique for all matrices whose entries are real or complex numbers.
When A has linearly independent rows (matrix AT is invertible) A+ can be computed as
a normal inverse:

A+ = AT (AAT )−1 (4.11)

This is a normal inverse matrix so AA+ = I.
The pseudoinverse provides a least squares solution to a system of linear equations. For
A ∈ K(m×n) (with K denotes one of the fields of real or complex numbers, denoted R, C
respectively), given a system of linear equations:

Ax̄ − B̄ = 0 (4.12)

In general, a vector x̄ that solves the system may not exist, or if one does exist, it may
not be unique. The pseudoinverse solves the "least-squares" problem as follows:

∀ x̄ ∈ K(m×n), ||Ax̄ − B̄||F ≥ ||Az̄ − B̄||F (4.13)

with || · ||F the Frobenius norm and B̄ ∈ Km×1, and:

z̄ = A+B̄ (4.14)

where z̄ is the "least-squares" problem solution.

Demostration
As already mentioned, the pseudoinverse provides a least squares solution to a system of
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linear equations. The least-square condition is:
min

M∑
i=1

x2
i

Ax̄ − B̄ = 0
(4.15)

The sum of the squares can be expressed as:

M∑
i=1

x2
i = x̄T x̄ (4.16)

Considering the Lagrange function, defined as:

L(x) = x̄T x̄ − λ̄T
(
Ax̄ − B̄

)
= 0 (4.17)

The minimum of the Lagrange function (i.e. the minimum of x̄T x̄ that satisfies Ax̄ − B̄

is:

∂L(x)
∂xi

= 0 ∀xi → ∂L(x)
∂xi

=
∂
[
x̄T x̄ + λ̄T

(
Ax̄ − B̄

)]
∂xi

∀i = 1, 2, 3... (4.18)

Considering that x̄T x̄ =
M∑

i=1
x2

i and:

λ
T
(
Ax̄ − B̄

)
= [λ1, ..., λi, ..., λM ]





A1,1 ... A1,i ... A1,M

... ... ... ... ...

... ... Ai,i ... ...

... ... ... ... ...

AM,1 ... AM,i ... AM,M





x1

...

xi

...

xM


+



B1

...

Bi

...

BM




(4.19)

The optimal solution x̄ = [x1, x2, . . . , xM ]T is the one that satisfies:

∂
[
x̄T x̄ + λ̄T

(
Ax̄ − B̄

)]
∂xi

= 2xi − λ
T
A(:, i) = 0 → x̄ = 1

2AT λ̄ (4.20)

Considering the expression (4.20) of x̄, and inserting it in (4.12):

1
2AAT λ̄ − B̄ = 0 (4.21)

From this:
λ̄ = 2

(
AAT

)−1
B̄ (4.22)

And the optimal solution of the system from eq. (4.20) becomes:
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x̄ = 1
2AT λ̄ = 1

2AT
[
2
(
AAT

)−1
B̄
]

= AT
(
AAT

)−1
B̄ (4.23)

where:
A+ = AT

(
AAT

)−1
B̄. (4.24)

A+ is the pseudoinverse matrix of A. So the least squares solution of the system is:

x̄ = A+B̄ (4.25)

In the case of the motor and of the wrench calculation, among the infinite solutions
to the problem, the one that minimizes the stator copper losses is considered (i.e., which
minimizes the square values of the inputs, i.e. the phase currents). The problem is
described as:

x̄ = ¯iabc

A = Kabc

B̄ = W̄E =


Fx

Fy

T


(4.26)

And the optimal solution (phase currents) of the system to track a reference wrench
W̄E is:

īabc = KpsiW̄E (4.27)

with Kpsi the reduced pseudoinverse matrix as shown in Fig. 4.4. Thus, the pseudo-inverse
matrix approach allows the minimization of the sum of the square of the stator currents
and, as consequence, the Joule losses.

4.4 Speed control

The speed control is performed by using a classical approach based on a PI controller:
starting from the speed reference, the speed error is calculated, and from this the torque
reference. The torque reference is used for the calculation of the average value of the
q-axis current of the three sectors. This calculation is directly obtained thanks to the
pseudoinverse matrix.

64



4.5 Position Control

The speed control is performed by using a PID controller for the x-position and a PID
controller for the y-position: starting from the position references (both set to zero x∗ = 0,
y∗ = 0), the position error and, from this, the force components (F ∗

x and F ∗
y ) references

are calculated. The force components references are used for the calculation of current
references for each sector thanks to the pseudoinverse matrix. The position feedback can
be chosen as:

• position feedback x1 and y1 measured at the bearing 1 location;

• position feedback x2 and y2 measured at the bearing 2 location;

• position feedback calculated as the mean of the position x = x1 + x2

2 and y = y1 + y2

2
measured at both bearings locations;

The complete control diagram is shown in fig. 4.7.

Figure 4.7: Complete control diagram and model overview

4.5.1 On the PID controllers

In order to understand radial force control and why a PID controller is required, it is
useful to understand the general principles behind a simple mono-dimensional levitation
system analyzed in [47]. Simplifying, electromagnetic force production can be easily
understood based on the principle of attraction between a magnet (or electromagnet) on a
mover.

The attractive magnetic force Fm must compensate for the weight of the mover w = mg:

Fm ≈ kmh2
0 (4.28)

Where km is proportional to the area S of the airgap and h0 is the magnetic field at
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Figure 4.8: Attraction between an electromagnet on a mover

the airgap. Assuming negligible damping of the air, the dynamic equation for the mover is:

mg − kmh2
0 = m

d2x

dt2 (4.29)

And in order to describe the system, the circulation of the field h must be considered:

Ni = Lfhf + 2xh0 ≈ 2xh0 (4.30)

where Lf and hf are the length of the circulation line and the magnetic field in the
iron respectively.
Assuming that for each position x0 there is a current i0 that keeps the system in its
equilibrium point, by producing a force Fm0 (and a corresponding field H0 in the airgap),
the stability of the system can be analyzed for an infinitesimal perturbation:

h0 = H0 + ∆h0 x = x0 + ∆x0 i = i0 + ∆i (4.31)

With the introduction of the infinitesimal variation (4.31), the equations (4.30) and
(4.29), neglecting the second order infinitesimal variations, result:

mg − kmh2
0 − 2km∆h0H0 − 2km∆h2

0 = m
d2x0

dt2 + m
d2∆x

dt2 → −2km∆h0H0 = m
d2∆x

dt2

Ni0 + N∆i = 2x0H0 + 2x0∆h0 + 2∆x0H0 + ∆x0∆h0 → N∆i = 2x0∆h0 + 2∆x0H0

(4.32)

Obtaining ∆h0 from the second of (4.32) and inserting in the first one:

kmH0N

x0
∆i = 2kmH2

0
x0

∆x − m
d2∆x

dt2 → A∆i = B∆x − C
d2∆x

dt2 (4.33)

In the Laplace Domain:
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Figure 4.9: Current Control loop based on PID controller [47]

A∆i = (B − Cs2)∆x → s = ±
√

B

C
=
√

2kmH2
0

x0
(4.34)

From eq. (4.34) the system presents two conjugate poles. This means that the levitation
system is unstable. If the current i in the coil is constant and the mover goes up, the
attraction force increases and vice-versa. For this reason, a closed-loop control that
determines the current necessary to control the position is required. A suitable controller
can be a conventional PID regulator:

The current reference is calculated by the PID controller from the position error as:

∆i(t) = Kp∆e(t) + Ki

∫
∆e(t)dt + Kd

d∆e(t)
dt

→ L → ∆I = Kp∆E + Ki

s
∆E + Kds∆E (4.35)

Considering equations (4.34), (4.35) and ∆E = ∆X∗ − ∆X, the total transfer function
of the system is:

∆E = Bs − Cs3

AKi + (AKp + B)s + AKds2 − Cs3 ∆X∗ (4.36)

The characteristic polynomial corresponding to the transfer function is:

s3 − AKd

C
s2 − (AKp + B)

C
s − AKi

C
= 0 (4.37)

And in according to the Routh Criteria, following the procedure presented in [47], the
result of the stability condition is:

Kd < 0

Kp < −B

A
− C

A

Ki

Kd

Ki < 0

(4.38)

Considering now the general expression of a third-order characteristic polynomial:

(s-s1)(s − s2)(s − s3) = 0 → s3 + (−s1 − s2 − s3)s2 + s(s1s2 + ses3 + s3s1)s − s1s2s3 = 0 (4.39)

From the comparison of the second-order term’s coefficient results in eq. (4.37) and
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(4.39), it results:

−s1 − s2 − s3 = −AKd

C
→ Kd = −C

A
(s1 + s2 + s3) (4.40)

In order to have 3 poles with a negative real part (stability condition), it’s necessary to
have the derivative term in the controller, so a PID controller is mandatory for this kind
of application. In fact, if Kd = 0 (the controller would be a PI instead of a PID) means
that s1 + s2 + s3 is equal to zero, so one of the poles has a necessarily positive real part.
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Chapter 5

System Simulations and Results

In this chapter, the simulation results are presented and analyzed. First, a simulation
with only the torque control is presented and the currents, back-EMFs, torque, and shaft
displacement are analyzed. Then, force control is introduced. First, a constant force
reference is set and the currents, back-EMFs, torque, and shaft displacements are analyzed.
After that, the position control for the vibration suppression is activated and two cases are
considered: equal bearings and different bearings at the shaft’s ends. The type of bearings
determines the mode shape of the dynamic of the rotor and the consequence performance
of the control. Finally, the performance of the control, in the case of equal bearings, for
different rotational speeds is presented.

5.1 Simulink Complete System Model

Fig. 5.1 shows the complete Simulink model used to simulate the system.

Figure 5.1: Complete Simulink model
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5.2 Speed Control Simulation (Equal Bearings)

In this section, the speed control is presented: a constant speed reference is set and the
reference torque is calculated by using the pseudo-inverse matrix approach. Subsequently,
the currents and back-emf waveforms are shown. The parameters set to carry out this
simulation are in 5.1.

Mechanical parameters Initial Conditions

kx1 10 MN/m u(t = 0) 0 µm

ky1 10 MN/m v(t = 0) 0 µm

kx2 10 MN/m θx(t = 0) 0 rad
ky2 10 MN/m θy(t = 0) 0 rad
a 0.1769 m u̇(t = 0) 0 µm/s

b 0.2175 m v̇(t = 0) 0 µm/s

Id 0.156502 kg m2 θ̇x(t = 0) 0 s−1

Ip 0.010468 kg m2 θ̇y(t = 0) 0 s−1

m 10.9904 kg
c1 500 Nm/s
c2 500 Nm/s
ε 10 µm

Table 5.1: Simulation parameters

5.2.1 Wrench results

A speed reference of ω∗
m = 10000rpm is set at t = 0.05s and the wrench and the speed

scopes are shown in fig. 5.2.
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Figure 5.2: Wrench results (constant speed, no force control)
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Even if the force reference is set to zero, there is a small force ripple attributed to the
not perfect tracking performed by the current regulator or due to the numerical error in
the Simulink model or in the FEA wrench mapping. Anyway, this force ripple is negligible
compared to the rated force of the machine (2000 N).

5.2.2 Current and Back-emf waveforms
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Figure 5.3: Currents waveforms (constant speed, no force control)

For torque control only, in each sector, the currents are three symmetrical sinusoidal
waveforms shifted by 120 electrical degrees each.
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Figure 5.4: d − q currents (constant speed, no force control)

71



As expected, even with the pseudo matrix approach, for the only torque control, the
d-axis current is zero and only the q-axis current produces torque. Furthermore, in each
sector, the q current is the same. This means that each sector contributes equally to
torque production.

Figure 5.5: Back-emf waveform (constant speed, no force control)

The back-emfs are three symmetrical sinusoidal waveforms shifted by 120 electrical
degrees each. Their amplitude is proportional to the speed and they are equal in each
sector.

5.2.3 Displacement at the bearing locations

Figure 5.6 shows the displacement of the shaft at the bearing locations and the
rotational speed of the shaft.

The shaft displacements at the bearing locations are equal and with the same phase.
This means that the mode shape is cylindrical (equal bearings simulated).

5.3 Constant Force Simulation

In this section, a constant force reference along y-axis is set. The force reference is set
as equal to the shaft weight F ∗

y = 500 N . The speed reference of ω∗
m = 10000 rpm is set

at t = 0.05s and the simulation parameters are in tab. 5.1.
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Figure 5.6: Shaft Displacement at the bearing locations
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Figure 5.7: Wrench results (constant force control)

The force along the x-axis has a mean value equal to zero with an oscillation of ±40N .
The force along the y-axis reaches the reference of 500 N with a negligible oscillation.

5.3.1 Current and Back-emf waveforms

The phase currents are shown in fig. 5.8
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Figure 5.8: Currents waveforms (constant force control)

Figure 5.9 shows the d − q currents.
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Figure 5.9: d − q currents (constant force control)

To allow the force production, the d and q references present an oscillation with a
frequency double the fundamental (nm = 10000 rpm → f = pnm/60 = 500Hz, T =
0.002 s) as it possible in the focus (the currents waveforms are considered after the
acceleration transient) in fig. 5.10.
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Figure 5.10: d − q currents (constant force control) focus

As it is possible to see, both d and q currents contribute to the force production.
In addition, the current references calculated with the pseudoinverse approach are not
constant so, the PI current controllers follow the reference with delay.
The back-emf waveforms are the same as the previous case (they are determined only by
the rotational speed), as it is possible to see in 5.11.

Figure 5.11: Back-emf waveform (constant force control)
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5.3.2 Displacement at the bearing locations

Figure 5.12 shows the displacement of the shaft at the bearing locations and the
rotational speed of the shaft.

Figure 5.12: Shaft Displacement at the bearing locations

The shaft displacements at the bearing locations are equal and with the same phase.
This means that the mode shape is cylindrical (equal bearings simulated).
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5.4 Vibration Suppression control

In this section, the vibration suppression control is activated. This means that the
displacement references are set to zero (x∗ = 0 and y∗ = 0) and the forces references are
calculated in order to suppress the vibration of the shaft. In particular, the displacement
feedback is:

• the mean of the shaft displacements x1, x2 and y1, y2 at bearing locations in the case
of equal bearings;

• the shaft displacement x1 and y1 of the less rigid bearing in the case of different
bearings.

5.4.1 Different Bearings

In this case, equal bearings are considered and the simulation parameters are in 5.2.

Mechanical parameters Initial Conditions

kx1 10 MN/m u(t = 0) 0 µm

ky1 10 MN/m v(t = 0) 0 µm

kx2 70 MN/m θx(t = 0) 0 rad
ky2 70 MN/m θy(t = 0) 0 rad
a 0.1769 m u̇(t = 0) 0 µm/s

b 0.2175 m v̇(t = 0) 0 µm/s

Id 0.156502 kg m2 θ̇x(t = 0) 0 s−1

Ip 0.010468 kg m2 θ̇y(t = 0) 0 s−1

m 10.9904 kg
c1 500 Nm/s
c2 500 Nm/s
ε 10 µm

Table 5.2: Simulation parameters

The vibration suppression control is activated at t = 0.5s when the speed has already
reached the reference of 10000 rpm and all the transients are extinct. Figure 5.13 shows
the wrench applied before and during the vibration control.
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Figure 5.13: Wrench and speed results

As it is possible to see, the force applied is zero before t = 0.5 s, and after the force,
control is activated the force applied starts to follow the references calculated by the
position control by using the shaft displacement at bearing 1 location as position feedback.

In figure 5.13, it is possible to see how the force applied by the machine is opposite
to the out-of-balance force in order to compensate for the oscillations caused by the
unbalanced rotor mass.
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Figure 5.14: Wrench details
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Currents and Back-emf waveforms

The Back-emf waveforms are the same as shown in figure 5.11 since the acceleration
transient is the same.
The phase currents are shown in fig. 5.23

Figure 5.15: Currents waveforms (constant force control)

Before the activation of the force control (at t = 0.3 s) the currents are three symmetrical
sinusoidal waveforms (only torque the torque control is working).
In fig. 5.26 is shown a focus of the phase current waveforms during the force control:

Figure 5.16: Currents waveforms focus (constant force control)
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Figure 5.25 shows the d − q currents and their references of each sector.

Figure 5.17: d − q currents (constant force control)

The focus on the d − q currents shows that the current control can follow the reference
calculated from the pseudo-inverse approach with a small delay.
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Figure 5.18: d − q currents focus (constant force control)

Displacement at the bearing locations

Figure 5.19 shows the displacement of the shaft at the bearing locations and the
rotational speed of the shaft.
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Figure 5.19: Shaft Displacement at the bearing locations

After the position control activation, the vibration of the shaft at the bearing locations
is slightly reduced (the force control is not so effective in the vibration suppression).

Figure 5.20: Shaft Displacement at the bearing locations

From figure 5.20, the mode shape remains conical after the force control activation
since the displacements at bearings locations have opposite phases.
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5.4.2 Equals Bearings

In this case, equal bearings are considered and the simulation parameters are in 5.1.
The Vibration suppression control is activated at t = 0.5s when the reference speed of
10000 rpm already reached and all the transients are ended. Figure 5.21 shows the wrench
applied before and during the vibration control.

Figure 5.21: Wrench and speed results (constant force control)

As it is possible to see, the force applied is zero before t = 0.5 s, and after the force,
control is activated the force applied starts to follow the references calculated by the
position control.

Figure 5.22: Wrench and speed results (constant force control)
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From figure 5.20, the mode shape remains conical after the force control activation
since the displacements at bearings locations have opposite phases.

Current and Back-emf waveforms

The Back-emf waveforms are the same as shown in figure 5.11 since the acceleration
transient is the same.
The phase currents are shown in fig. 5.23

Figure 5.23: Currents waveforms (constant force control)

Before the activation of the force control (at t = 0.3 s) the currents are three symmetrical
sinusoidal waveforms (only torque the torque control is working).
In fig. 5.26 is shown a focus of the current waveforms during the force control:

Figure 5.24: Currents waveforms focus (constant force control)

83



Figure 5.25 shows the d − q currents of each sector.

Figure 5.25: d − q currents (constant force control)

The focus on the d − q currents shows that the current control can follow the reference
calculated from the pseudo-inverse approach.

0.45 0.455 0.46 0.465 0.47 0.475 0.48
t [s]

-5
0
5

10

[A
]

i
d1,ref

i
d1

i
q1,ref

i
q1

0.45 0.455 0.46 0.465 0.47 0.475 0.48
t [s]

0
5

10

[A
]

i
d2,ref

i
d2

i
q2,ref

i
q2

0.45 0.455 0.46 0.465 0.47 0.475 0.48
t [s]

-10
-5
0
5

[A
]

i
d3,ref

i
d3

i
q3,ref

i
q3

Figure 5.26: d − q currents focus (constant force control)

Displacement at the bearing locations

Figure 5.27 shows the displacement of the shaft at the bearing locations and the
rotational speed of the shaft.
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Figure 5.27: Shaft Displacement at the bearing locations

As it is possible to see, after the position control activation the vibration of the shaft
at the bearing locations is reduced. Additionally, the mode shape remains cylindrical after
the force control activation since the displacements at bearings locations have the same
phases.

Figure 5.28: Shaft Displacement at the bearings locations after the force control(focus)

Additionally, from figure 5.28, the mode shape remains cylindrical after the force
control activation since the displacements at bearings locations have the same angle.
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5.5 Vibration Control at different speeds

In this section, the peak-to-peak vibration amplitude at both bearing locations is
analyzed with and without force control. At first, the system is simulated without the
motor force control. Subsequently, the force control is activated. The parameters used to
carry out these simulations are reported in the tab. 5.1, as the two bearings are considered
with equal stiffness k1 = k2 = 10 MN/m and damping c1 = c2 = 500Nm/s.
Since the two bearings are equal, the peak-to-peak amplitude of the shaft displacements
at the respective bearing locations is the same along x and y for both bearings (∆x1 =
∆x2 = ∆x and ∆y1 = ∆y2 = ∆y) and it is shown for different rotational speeds in Fig.
5.29.

Figure 5.29: Peak-to-Peak vibrations amplitude at different rotational speeds at bearings locations

From the rotor free response analysis carried out in chapter 3.5, a natural frequency of
around 215 Hz and a critical speed at roughly 13000 rpm are expected. This is confirmed
in fig. 5.29.

5.5.1 Vibration Suppression at Critical Speed (Equal Bearings)

Fig. 5.30 shows the x and y displacement at bearing locations before and after the
force control applied by the machine at 0.5 s.
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Figure 5.30: Shaft displacements at bearings locations at the critical speed.

The force control is significantly effective in reducing the vibration at the critical speed.

Figure 5.31: Wrench results at the critical speed.

From figure 5.31, it is possible to see how the force applied by the machine compensates
effectively for the out-of-balance force of the rotor.

In figure 5.32 and 5.33 the d − q and the phase currents during the vibration control
are shown.
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Figure 5.32: d − q currents during the Vibration Control

Figure 5.33: Phase Currents during the Vibration Control
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5.5.2 Vibration Suppression at High Speed (Equal Bearings)

A speed reference of 18000 rpm has been set and the simulation results are presented
in this section.
Fig. 5.34 shows the x and y displacement at bearing locations before and after the force
control applied by the machine at 0.5 s.

Vib. control ON

Figure 5.34: Shaft displacements at bearings locations at high speed (18000 rpm).

The force control is not effective in reducing the vibration at the high speed. The
vibration amplitude results larger after the vibration control activation than before.

Figure 5.35: Wrench focus at high speed (18000 rpm).

From figure 5.35, it is possible to see how the force applied by the machine doesn’t
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compensate for the out-of-balance force of the rotor. The force applied by the machine is
no anymore opposite to the out-of-balance force and it adds partially up to the unbalanced
force making the vibration larger.

In figure 5.36 and 5.37 the d − q and the phase currents during the vibration control
are shown.

Figure 5.36: d − q currents during the Vibration Control at high speed (18000 rpm).

Figure 5.37: Phase Currents during the Vibration Control at high speed (18000 rpm).
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Chapter 6

Experimental Results

In this chapter, the experimental setup and the test rig available in the PEMC (Power
Electronic, Machine and Control) group laboratory at the University of Nottingham (Not-
tingham, UK) are introduced. Furthermore, the Back-emf tests carried out during this
activity and their results are described.

6.1 Experimental Set-up

To test the radial force control a test rig is designed that can create comparable loading
to the operational conditions of the aircraft, as shown in fig. 6.1 and 6.2.

6.1.1 Test Rig

The machine is driven by an asynchronous motor with a maximum speed of 20,000
rpm. The torque transferred over the total drive train is measured by a torque transducer.
Two load units (two pneumatic cylinders capable of applying a radial force to the shaft)
are considered on both ends of the machine’s shaft, which can emulate different loading
conditions including gyroscopic moments interference forces seen during real operation.
A mechanism is considered between the load units and generator housing to move the
load units circumferentially and apply force to the generator shaft from different angular
positions with respect to the rotation axis. Using the measured radial shaft displacement,
the bearing loads can be determined indirectly based on load-displacement ratios [48]. By
decoupling the machine from the motor, the generator can be used in the motor state and
the radial force control can be tested in a further application.
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Figure 6.1: Test Rig CAD draw [33]. Figure 6.2: Test Rig photo.

6.1.2 Electric parts and sensors

The electric generator part is shown in a cross-section view with the integrated sensors
in fig. 6.3. The machine is designed in a fixed-floating arrangement, with a cylindrical
roller bearing (CRB) of the type N1008 with clearance on the driven side (input) and
a spindle bearing package (SBP) of the type 7008 with a light preload class (65 N each
bearing) on the non-driven side (output). The radial shaft displacement, which is the
input value for the radial force control is measured close to the two bearing positions using
three non-contact eddy current sensors arranged at 120° to each other on both sides. The
interference forces of the load units FRLU,i/o are compensated by an electromagnetic force
FRF C from the generator to reduce loads of the cylindrical roller bearing FCRB and the
spindle bearing package FSBP .

Figure 6.3: Machine section and force details [33].

It is important to consider that, this is the current bearing configuration of the

92



machine, however, to validate the model the two inner ball bearings will be removed, and
the mechanical model of the machine is the one described in chapter 5, with bearing 1
and 2 are the equal bearings located under the load units.

6.1.3 Control and Measurement System

The radial force control is validated using acceleration, temperature, rotational speed,
and torque signals. The sensor system to measure the operational behavior of the bearing
is part of the bearing monitoring system. Figure 6.4 shows the output side of the generator
test rig with a load unit and some of the sensors.

Figure 6.4: Load unit with sensors detail [33].

Two piezoelectric vibration sensors mounted on both sides of the bearing bushes provide
information about the dynamic behavior of the test rig and the lubrication condition in
the bearing by high-frequency measurements of the acceleration level of up to 51.2 kHz.
The electromagnetic encoder measures the speed and angular position of the generator
shaft and is the control input for the RFC (radial force control) application. The force
sensors measure the actual force applied by the load units and also provide feedback on
pneumatic cylinders’ force control. Furthermore, the bearing temperatures are measured
with resistance thermometers to determine the steady-state conditions. The cage speed of
the generator bearing is monitored by infrared sensors to validate the slip and skidding
behavior of the cylindrical roller bearing in critical operational conditions. The measured
torque on the drive train can also be a suitably measured variable for evaluating radial
force control.

The measurement data acquisition is performed by using a National Instrument
LabviewT M software specifically developed for this application.

The sensors interface cabinet is shown in figure 6.5:
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Figure 6.5: Sensors Interface Cabinet.

The sensor interfaces are mounted in a cabinet located close to the machine winding
terminal box that allows the connection with the three three-phase inverters, as shown in
fig. 6.6.

Terminal box and
 inverter connection

Figure 6.6: Sensors Interface Cabinet.
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6.1.4 Converters Setup

The experimental setup with the three three-phase converters and the oscilloscopes
that acquire the voltage at the terminals of the converters are depicted in 6.7.

Figure 6.7: Inverters and Oscilloscopes.

It is important to underline that this converter setup is a temporary solution taken
from a smaller rig since the three three-phase converters designed for this rig are not
available yet. The converters are controlled by an interface developed internally within
the PEMC group based on an FPGA architecture. The main converter parameters are in
the tab. 6.1.

CONVERTER PARAMETERS

Max Current 20 A
DC max voltage 200 V

Switching frequency 10 kHz

Table 6.1: Main three-phase converter parameters.

6.2 Experimental Tests

All the rig and sensor functionality has been tested (pneumatic load application,
converters, and their sensors functionality). Finally, the back-emf test has been performed.

6.2.1 Back-emfs Test

The back EMF test (back ElectroMotive Force) is a test to characterize the induced
electromotive forces induced in the stator winding of an electrical machine. The prime
mover runs the machine while the stator windings are opened and the electromotive forces
induced in the stator windings by the rotor magnets are measured. The main purpose of
this test is to check if the machine is symmetrical (no relevant eccentricity on the rotor)
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and if the windings are manufactured with the same number of turns. This test allows also
to validate the finite element model used to perform the simulation results. Furthermore,
with the back-emf test, it is possible to evaluate the harmonic content of the rotor magnets
and it is possible to verify if the harmonics are those expected by the machine design.

Back-emf test results

The back-EMF validation is performed by comparing the FEA and experimental results
in open-circuit conditions. The latter has been obtained by driving the machine at various
rotational speeds (within the machine operative range) by means of an external load and
measuring the voltage between consecutive phases with an oscilloscope. The following
figures present the experimental line-to-line back-EMF waveforms of the three motor
sectors at different rotational speeds (500 rpm, 1000 rpm, 3000 rpm, 4000 rpm, 5000 rpm).
For brevity’s sake, only the waveforms at 5000 rpm are shown in fig. 6.8, but the same
analysis is performed for each speed tested:

Figure 6.8: Line-to-Line experimental Back-emf waveform at 5000 rpm.

It can be noticed that the same phases in different sectors present identical back-EMF
waveforms since they are located in an equivalent electrical position. For each sector,
the FFT (Fast Fourier Transform) is performed and the experimental Back-EMF, FEA
back-EMF, and rebuilt from FFT waveforms are compared in 6.9.
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Figure 6.9: Line-to-Line Experimental and FEA Back-emf waveform comparison at 5000 rpm.

The FEA results in a good prediction if compared with respect to the experimental
values.

Figure 6.10: Line-to-Line back-emf waveform spectrum at 5000 rpm.

In Figure 6.11 the spectrum is shown in p.u. considering the FEA 1st harmonic as the
base:
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Figure 6.11: Line-to-Line Back-emf Waveform Spectrum in p.u. at 5000 rpm.

The same FFT spectra are shown in the logarithmic scale in fig. 6.11 and fig. 6.13.

3

Figure 6.12: Line-to-Line Back-emf Waveform Spectrum at 5000 rpm (log scale).
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Figure 6.13: Line-to-Line Back-emf Waveform Spectrum in p.u. at 5000 rpm (log scale).

The harmonic components of the back-EMF waveform, higher than the 1st order, are
negligible. This is due to the Halbach array magnets configuration that produces a very
sinusoidal and distortion-free waveform of the magnetic field at the airgap.

In Figure 6.14 the peak value of the line-to-line back-emf from the experimental results
and from the FEA at different speeds are compared:

Figure 6.14: Comparison between the experimental, FE, and analytical back-EMF trends against
the rotation speed. The back-EMF between phases a and b of each motor sector has been
included in the graph.

6.2.2 Back-EMF test results and conclusion

The back-EMF test has shown that the machine is manufactured with symmetrical
windings and the rotor does not present significant eccentricity. The measured waveforms
match the simulated ones. The harmonic content of the back-EMF shows that the Halbach
array layout of the magnets produces a very sinusoidal and distortion-free waveform of the
back-emf according to the design criteria.
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Chapter 7

Conclusions and Future
Developments

Especially for aerospace applications, stresses on electric machine bearings are an
important aspect to consider in reliability assessment. Typical sources of stress on bearings
are due to the rotor mass unbalance and the gyroscopic couples acting on the machine rotor
during flight maneuvers such as takeoff and landing. This work proposes a multi-physical
analysis of the dynamic behavior of a multi-sector permanent magnet synchronous motor
controlled to simultaneously produce torque, for the speed control, and radial forces,
aiming to reduce the rotor vibrations and consequently the stress on the bearings.
After a literature review on the state of the art of radial force control carried out in
Chapter 1, the electromagnetic model of the machine has been developed in Chapter 2
and it has been validated with some basic experimental tests reported in Chapter 6. The
rotodynamic model of the rotor constraint by two bearings under force control performed
by the multiphase machine is presented in Chapter 3. Chapter 4 focuses on the control
architecture and strategy for vibration suppression at bearing locations. The control is
based on the position feedback and is performed by using two PID controllers (one for
the x displacement and one for the y displacement control). In Chapter 5, the simulation
results show that it is possible to reduce the vibration amplitude at the bearing locations
thanks to the force control based on the position feedback. In particular, considering the
rotor cylindrical and conical mode shapes from the rotodynamic analysis, it has been
shown that in the case of cylindrical mode shape the force control is capable to reduce
the vibration at the bearings locations better than in the case of conical mode shape.
Figure 5.29 shows that the vibration suppression is effective at low-medium speed (up to
15000 rpm), allowing the machine operation even at critical speeds. In fact, at the critical
speed of 13000 rpm, the vibration reduction is significant and from more than 250 µm

peak-to-peak, it reaches less than 40 µm peak-to-peak amplitude. However, the control
does not perform so well at high speeds where the position control makes the vibration
larger than without the control.
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7.1 Future developments

Future developments of this research activity can be focused on the implementation of
different control algorithms and on the analysis of more motor operating scenarios. In fact,
the PID controllers are not the optimal solution for following non-constant references as
the one calculated from the position feedback. For this reason, in literature, other control
strategies for vibration suppression based on Notch Filters have been proposed [23]. Other
experimental tests can be carried out on the available test rig to validate the model and
the control developed in this thesis. Additionally, no current amplitude limits are set and
no priority to the force control over the torque has been considered in this work. For this
reason, future studies can focus on the current limitation strategies.
Lastly, the analysis of more motor operating scenarios can be investigated trying to discover
additional limits and features of the control.
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