
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

Master Program in Artificial Intelligence

SUBGRAPH RETRIEVAL FOR BIOMEDICAL OPEN-DOMAIN

QUESTION ANSWERING: UNLOCKING THE KNOWLEDGE

GRAPH EMBEDDING POWER

Master Thesis in
Data Mining, Text Mining, and Big Data Analytics

Supervisor
Prof. Claudio Sartori

Co-relatori
Prof. Gianluca Moro
Dr. Giacomo Frisoni

Candidate
Faisal Ramzan

Third Session
Academic Year 2021 – 2022

KEY WORDS

Natural Language Processing

Open-domain Questioning Answering

Knowledge Graphs

Subgraph Retrieval
Multi-hop Reasoning

Seek knowledge from the Cradle to the Grave.
- Prophet Muhammad, Al-Hadith

Education is the key to unlocking the world,
a passport to freedom.

- Oprah Winfrey

Education is the passport to the future,
for tomorrow belongs to those who prepare for it today.

- Malcolm X

Abstract

The primary purpose of question answering is to identify the relevant portion
of knowledge from the data corpus and be able to reason over it to extract the
correct answer to the given question. The available knowledge can be encoded
implicitly in large pre-trained language models (LMs) on unstructured text (e.g.,
BERT, RoBERTa) or explicitly in structured knowledge graphs (KGs), such as
Freebase and ConceptNet, where entities are represented as nodes and relations
between them as edges. Structured KG is more popular than KG; Language
Models do not capture the semantic meaning of the same context with billions of
parameters. While retrieving the entire Knowledge Graph is quite challenging
concerning the size and memory issues. Moreover, inferring the answer to
the question takes time during the reasoning on the whole KG, affecting the
reasoning phase, which causes finding the incorrect solution. Pre-trained
LMs have broad knowledge coverage but must perform better on structured
reasoning, such as handling negation and flipped conditions. We aim to retrieve
the relevant portion of the subgraph from the large KG graph. The existing
subgraph retrieval solutions primarily focus on discriminative k-hop approaches
or SPARQL queries on massive KGs. However, they require time-consuming,
unsustainable operations in real-world contexts like biomedicine, where entities
and known relationships among them are massive. They frequently rely on
Named entity-linking NEL tools that fail in recognizing and mapping entities
without being capable of generalizing to similar or high-order concepts. Instead,
approximated search on dense representations of KGs and text can significantly
boost the effectiveness and efficiency of subgraph construction with the help
of enhanced generalization capabilities that overcome NEL limits and the
possibility of indexing embeddings and speeding up top-K retrieval operations.
In our work, we analyzed the existing methods of subgraph construction.
However, they could be more efficient because of their size and quality of
retrieved subgraph, which affect the reasoning process for extracting an answer
to the question. Therefore, we propose the Subgraph Retrieval that tries to
find the more relevant entities through linked paths (path queries) to the
topic entities. The goal is to find the sequence of relations or paths and their
connected entities linked to the topic entities by measuring their similarity

vii

between them in the dense space setting.

Acknowledgments

At the end of this course of study, it is appropriate and the right moment
to dedicate a few lines of thanks to all who have accompanied me along this
adventure.

First, I would like to express my deepest gratitude to my supervisor Claudio
Sartori, who guided me step by step in realizing this work. I will always
be grateful for his care, availability, and competence. His experience and
professionalism are fundamental.

At the same time, I would like to thank my co-supervisor, Prof. Gianluca
Moro, and Mr. Dr. Giacomo Frisoni, for their kindness, courtesy, and insight.
Giacomo led me to consider continuing my journey into the world of research.

Special thanks to my family members for their love and support, for their
teachings, and for tempering my character. They are the ones who have always
instilled in me the awareness that optimal results can be achieved only through
commitment and passion. I want to thank my whole family for the unconditional
love they show me every day, even when everything seems complicated and
unreachable.

I cannot forget to thank my friends for their complicity, the laughter, the
anguish we have always shared, and for their unfailing pats on the back.

Many thanks to Jyoti, Zhoaib, and Ehtsham for being best friends. They
listen to me without judging and are always present even when absent; I
appreciate their loyalty and simplicity.

Faisal Ramzan
01 March, 2023

ix

Introduction

The question and Answering (QA) system aims to provide users with
accurate and relevant answers to their questions through automated means.
This can be achieved through various techniques such as natural language
processing, information retrieval, and machine learning. The question-answering
system needs high-level reasoning to extract the answer from the text’s retrieved
portion or from the retrieved subgraph. We can have two classifications of
question-answering: (1) Open-domain question answering is very challenging
because there needs to be evidence or context given to the question. The existing
proposed work retrieves the context or evidence using different methods for
retrieving text from documents through TF-IDF and BM25 models. For example,
the exam modality of a student by considering the open and closed book setting.
Open-book questions permit using reference materials, such as textbooks, notes,
or other resources, during the exam. The goal of an open book is to understand
and apply information rather than just memorization. Therefore, open-book
exams require more critical reasoning and problem-solving skills.

(2) The closed-book questions do not allow using any reference materials
during the exam. This is because closed-book exams aim to test a student’s
recall and memorization of information. Instead, the close book domain deals
with questions related to a specific domain (like medicine) and can leverage
domain-specific knowledge often formalized in ontologies. An integral part
of question answering is identifying the relevant portion of knowledge and
being able to reason over it. Knowledge can be encoded implicitly in large pre-
trained language models (LMs) on unstructured text (e.g., BERT, RoBERTa)
or explicitly in structured knowledge graphs (KGs), such as Freebase and
ConceptNet, where entities are represented as nodes and relations between
them as edges.

Pre-trained LMs have broad knowledge coverage but must perform better
on structured reasoning, such as handling negation and flipped conditions. On
the other hand, KGs are suited to structured reasoning and enable explainable
predictions. However, they may need more coverage and be noisy because of
the size and quality of the retrieved relevant subgraph. To perform reasoning
effectively on both sources of knowledge remains a significant open problem. We

xi

aim to retrieve the relevant portion of the subgraph from the large graph. The
existing subgraph retrieval solutions primarily focus on discriminative k-hop
approaches or SPARQL queries on massive KGs. However, they require time-
consuming, unsustainable operations in real-world contexts like biomedicine,
where entities and known relationships among them are massive. They fre-
quently rely on Named entity-linking NEL tools that fail in recognizing and
mapping entities without being capable of generalizing to similar or high-order
concepts. Instead, approximated search on dense representations of KGs and
text can significantly boost the effectiveness and efficiency of subgraph con-
struction with the help of enhanced generalization capabilities that overcome
NEL limits and the possibility of indexing embeddings and speeding up top-K
retrieval operations.

In our work, we analyzed the existing methods of subgraph construction.
However, they are less efficient because of their size and quality of retrieved
subgraph, which affect the reasoning process for extracting an answer to the
question. Therefore, we propose the decoupled Subgraph Retrieval that tries to
find the more relevant entities through linked paths (path queries) to the topic
entities. Our search starts from the topic entities to expand and travel the
relevant path and predict the tails nodes. After expanding all relevant paths
to the topic entities, we merge the expanded tree by taking the union of all
expanded paths and then merging them into a standard unified graph. The
goal is to find the sequence of relations or paths and their connected entities
linked to the topic entities by measuring their similarity between them. In
this thesis work, we deal with biomedical data UMLS that belongs to the
MedQA-USMLE dataset, which contains multiple biomedical domain exam
questions and answers featured in the United States.

Motivation

Combining a language model with a knowledge graph enhances reasoning
capabilities by providing the language model with structured, multi-relational,
and context-aware knowledge that can be used to answer questions, generate
explanations, and support decision-making. For example, the language model
can use the knowledge graph to perform inferences, generate hypotheses, and
resolve vague references like negations and flipped constraints in the question.
In contrast, the knowledge graph can leverage the language model’s ability to
process and generate natural language text. This synergy leads to a system
that can perform complex reasoning tasks while communicating results in a
way understandable to humans.

Contribution

Integrating language models and knowledge graphs can enhance reasoning
abilities in AI systems. Combining language models’ natural language processing
capabilities with the structured representation of knowledge in a graph allows
these systems to perform tasks such as question answering and relationship
extraction with greater accuracy and efficiency. Furthermore, this combination
can also allow for the inference of new knowledge by combining and extrapolating
information from the language model and knowledge graph. Overall, the
integration of these two technologies has the potential to significantly improve
the ability of AI systems to perform human-like reasoning.

Social Impact

The social impact of combining a language model with a knowledge graph
for reasoning can be more positive than negative. On the positive side, it has
the potential to improve decision-making and increase efficiency in various
industries, such as healthcare, finance, and education. It can also provide access
to knowledge and information to individuals who might not otherwise have it.

On the negative side, there is a potential for misuse of the technology, for
example, in the spread of misinformation, biased decision-making, and the
reinforcement of existing inequalities. There is also a concern about privacy, as
using such systems may result in collecting and exploiting sensitive personal
information. Additionally, developing and deploying these systems must be
done ethically and responsibly, considering the potential impacts on society and
addressing potential biases in the training data and algorithms. Developing
robust and transparent evaluation methods is also essential to ensure that the
technology is being used to benefit society.

Thesis Organization

• Chapter 1 - Briefly discusses the theoretical background on the con-
tribution of natural language processing (NLP) transformers, language
models, and knowledge graphs.

• Chapter 2 - Analyzing the existing information retrieval phase and
discussing the challenge of the existing studies because they have some
limitations related to the size of the retrieved subgraph and incomplete
subgraph because of the weak internal intermediate node or entities also
information extraction from different sources.

• Chapter 3 - In this chapter, we propose our solution and how it differs
from the existing proposed solution with complete graphical illustrations.
It also presents some aspects of the implementation of Subgraph retrieval,
expressing different properties of Knowledge Graphs, graph embeddings,
and types, and the dataset used in the experimental phase.

• Chapter 4 - In this chapter, we implement the solution proposed in
chapter 03. we start from the initial preprocessing of the dataset, con-
struction of triple stores, implementation of different knowledge graph
embedding techniques, embedding exploration, expressing the KG data
and designing SPARQL queries for data collection, focusing on model
fine-tuning and graph merging techniques, and expressing the results of
experiments.

• Chapter 5 - In this chapter, we analyze the results of our experiments
during the studies and demonstrate their comparison concerning existing
proposed solutions. Also, how the results differ from the existing solution
and how to devise the subgraph retrieval phase into other similar work
like QAGNN, Dragon, and GreaseLM considered the future direction.

Index

1 Theoretical Framework 1
1.1 Recent Breakthrough in Natural Language Processing 1

1.1.1 Importance of Unstructured data 2
1.1.2 Structured Information Extraction from Complex Scien-

tific Text with Fine-tuned Large Language Models 2
1.1.3 Information Extraction From Textual data 3
1.1.4 Named Entity Recognition and Relation Extraction . . . 4
1.1.5 Language Models and Transformers 5
1.1.6 Google Bi-directional Encoder Representations from Trans-

formers . 7
1.1.7 Word Embedding Methods 9
1.1.8 Language Models for Open and Closed-domain Question

Answering . 12
1.2 Knowledge Graphs . 14

1.2.1 Preliminary Definitions of Graphs 14
1.2.2 Graph Types and their Properties 14
1.2.3 Graph Embedding Techniques 15
1.2.4 Example of Knowledge Graphs 20

1.3 Language Models and Structured Knowledge Graph 23
1.3.1 Limitations of Pure Language Models 23
1.3.2 Benefits of Combining Language Models and Knowledge

Graphs . 24

2 Related Work 27
2.1 Knowledge-based Data (Triplets) 27
2.2 Reasoning with Language Models and Knowledge Graphs 29

2.2.1 QA-GNN . 29
2.2.2 GreaseLM: Graph Reasoning Enhanced Language Models

For Question Answering 33
2.2.3 Dragon: Deep Bi-directional Language Knowledge Graph

Pre-training . 36

xv

2.2.4 UNIKGQA: Unified Retrieval and Reasoning For Solving
Multi-Hop Question Answering Over Knowledge Graph . 39

2.2.5 CODER: Knowledge Infused Cross-Lingual Medical Term
Embedding For Term Normalization 43

2.3 Challenges and Limitations in the Existing Subgraph Retrieval
Phase . 47

2.4 Dense Retrieval . 50
2.4.1 Language Model for Dense Passage Retrieval 52
2.4.2 Differentiate between Single-hop and Multi-hop reasoning 53

3 Our Solution 55
3.1 Stanford UMLS Knowledge Graph 55
3.2 Knowledge Graph Embeddings 57
3.3 Reasoning over Knowledge Graphs 58

3.3.1 Subgraph Retrieval Enhanced Model for Multi-hop Knowl-
edge Base Question Answering 60

3.3.2 How to expand paths from topic entities? 62
3.3.3 Subgraph Construction Through Expanded Paths 64
3.3.4 Subgraph Retrieval and Training 66

4 Experimental setup 69
4.1 Dataset . 69
4.2 Baseline Model . 77
4.3 Data Collection Methods . 80

4.3.1 Expressing Knowledge Graph Properties Through Net-
workX . 80

4.3.2 GraphDB . 83
4.4 Graph Merging . 87

5 Results 93
5.0.1 Knowledge Graph Embedding Models Performance Eval-

uation . 96
5.0.2 Training a CODER model 99

Bibliografia 105

List of Figures

1.1 Given figures indicates the importance of Structured Vs. Un-
structured by showing their comparison. 3

1.2 Given image demonstrates how Information Extraction systems
extract the structured output sequences from unstructured web
text. 4

1.3 How NER and RE work and produces the output taken from
[1]. 5

1.4 The Transformer Model Architecture picture taken from paper
“Attention Is All You Need.” [2] 6

1.5 The classic example of a BERT-based sentiment analysis system
for product reviews is whether the users’ feedback about the
product is positive or negative. 7

1.6 Google BERT Architecture [3] 8
1.7 Framework of BioGPT when adapting to downstream tasks

taken from [4]. 9
1.8 Similar words placed near to each other in the space. 11
1.9 Trajectories of brand names and people through time: Apple,

Amazon, Obama, and Trump, Image taken from [5]. 11
1.10 Explains the concept of open and closed-domain question-answering

setup. 13
1.11 Graphical representation of graphs from the left: un-directed

graph, directed graph, un-directed multi-graph, and directed
multi-graph. 16

1.12 How Deepwalk traverses the nodes, Image taken from [6]. 17
1.13 Representation of TransE and TransH Models image taken from

[7] . 19
1.14 Example of Google Knowledge Graph 21
1.15 Example of world’s largest DBpedia Knowledge Graph 22

2.1 Structural Representation of the Knowledge Base and the Knowl-
edge Graph. 28

xvii

2.2 Overview of their approach. Given a QA context (z), they con-
nect it with the retrieved KG to form a joint graph, compute the
relevance of each KG node conditioned, and perform reasoning
on the working graph . 30

2.3 Relevance scoring of the retrieved KG: they use a pre-trained LM
to calculate the relevance of each KG entity node conditioned
on the QA context. 31

2.4 Test accuracy on MedQA-USMLE 32
2.5 General architecture of GreaseLM taken from [8] 35
2.6 Qualitative analysis of GREASELM’s graph attention weight

changes across multiple messages passing layers compared with
QA-GNN. GREASELM demonstrates attention change patterns
that more closely resemble the expected change in focus on the
“bug” entity.[8] . 36

2.7 Performance on MedQA-USMLE take from [8], demonstrate
that GreaseLM outperforms state-of-the-art fine-tuned LMs (e.g.,
SapBERT) and a QA-GNN augmentation of SapBERT. 37

2.8 General architecture of Dragon taken from [9] 37
2.9 Performance on the 9 downstream commonsense reasoning tasks.

[9] . 39
2.10 Accuracy on biomedical NLP tasks. DRAGON outperforms all

previous biomedical LMs. 39
2.11 Illustrative examples for our work: (a) an example of multi-hop

KGQA; (b) an example of abstract subgraph; and (c) the overall
learning procedure of our UniKGQA model [10]. 41

2.12 The overview of the unified model architecture of UniKGQA,
consisting of two modules, i.e., semantic matching and matching
information propagation ([10]). 42

2.13 Performance comparison of different methods for KGQA (Hits@1
and F1 in percent). We copy the results for TranferNet and
others. Bold and underlined fonts denote the best, and the
second-best methods [10]. 43

2.14 Positive and Negative labels pairs, image taken from [11]. 44
2.15 The overview of CODER. CODER encodes terms potentially

in different languages into the embedding space. Term-term
similarities and term-relation-term similarities are calculated to
train CODER. 45

2.16 Acc@k for different embeddings in Cadec and Psy-Tar datasets.
Contextual embeddings report results using the average pooling
representation. 48

2.17 The weak or missing edges between the nodes image taken from
[9]. 50

2.18 Information Retrieval and Reasoner phase 51
2.19 Graphical representation of the equation 2.3,How to measure

the similarities between the embedding of question EQ and the
passage EP . 53

2.20 Difference between single and multi-hop reasoning for inferring
answer to the given question. 54

3.1 Example of Bio-Medical Knowledge Graph (UMLS). 56
3.2 Illustration of the subgraph retrieving process. We expand a

path from each topic entity, induce a corresponding tree, and
then merge the trees from different topic entities to form a unified
subgraph [12]. 62

3.3 Trees inducing through the selected paths as shown in the image,
taken from the work [13]. 65

3.4 Trees merging into a unified common graph taken from 65
3.5 Subgraph Retrieval SR and training phases. 66

4.1 Google Colab notebook resources utilizations. 70
4.2 2 Figures side by side . 75
4.3 Link prediction results: for the 5 KGE models on SNOMED-CT

(top); and TransE and RotatE on two standard KGE datasets. . 77
4.4 Directed graph with Networkx and Matplotlib. 81
4.5 Data Transformation through OntoText Refine. 84

5.1 GraphDB: SPARQL query execution time for retrieving particu-
lar relations. 93

5.2 GraphDB: SPARQL query execution time to retrieve the tail
node of the relations. 94

5.3 GraphDB: To execute a query on a graph database to retrieve
relations from knowledge graph triples, 95

5.4 Coder: Training Loss . 100

List of Tables

4.1 Example of Stanford UMLS KG Triples 71
4.2 Unique UMLS Knowledge Graph features (Head, Tail, and Rela-

tions). 72

5.1 Performance Metric on UMLS KG 97
5.2 Tail Prediction using DistMult 97
5.3 Tail Prediction using TransE . 98

xx

Chapter 1

Theoretical Framework

In this chapter, we will see some of the essential preliminary studies about
Language Models LMs (Section 1.1) and Knowledge Graphs KGs (Section
1.2) considered as the backbone of this study. The work proposed by Yasunaga
[14], explains why communities combine them (Section 1.3) to perform joint
reasoning and predict the answer to the given questions. Our focus is retrieving
the relevant portion of a domain-specific Knowledge Graph.

1.1 Recent Breakthrough in Natural Language
Processing

Suppose we have an input text: "Faisal is a person who belongs to
Pakistan. He is a student of a master’s degree, and his major is
computer science". Humans can easily recognize the meaning of words
like "Faisal," "He," and "His," but for the machine, it is challenging without
supervision. Still, it is difficult for neural networks or natural language under-
standing systems to understand the given meaning of the mentioned entities,
their relationships, and the dependencies between the words. Modern Natural
Language Processing (NLP) relies on transformers-based language models
and structured knowledge graphs to overcome the problem of semantics and
dependencies.

In advance of NLP, several methods deal with different natural language
understanding tasks. For example, the initial implementation of Sequence-
to-sequence (seq2seq)[15] and Recurrent Neural Network (RNN) (
[16]) models had outstanding achievements in the NLP tasks like Machine
Translation, Text Summarization, Speech Recognition, Question-Answering,

1

2 Chapter 1. Theoretical Framework

and so on. However, these models have some limitations. For example, Seq2seq
models fail to deal with long-range dependencies, train, and process them; the
long-input sequences do not allow parallelization, and the computation of the
neural network is very slow, which can face problems like Exploding or Gradient
Vanishing.

1.1.1 Importance of Unstructured data

Unstructured data are data types that do not follow or are not defined
through any models or schemas and have no semantic meanings. Such data
include web pages, emails, blogs, legal and medical document repositories, etc.
Still, it is essential data, and many businesses work on it to make it helpful
information. Through past surveys, we obtain the importance of unstructured
data. The Butler Group can explain the increasing importance of unstructured
data.

"85% of all data stored is held in an unstructured format."

According to the Gartner Group:

First: "80% of business is conducted on unstructured information."
Second: "Unstructured data doubles every three months."

According to the survey of 1996, Figure 1.1a explains the dimension and
the market cap of the structured vs. unstructured data. The histogram
of both sources of knowledge can clearly shows that in 1996, most businesses
spent their maximum budgets on the structured source of information, while
in the survey of 2009, as shown in Figure 1.1b, the most famous companies
like Google, Yahoo, and Bing, etc. spend their maximum budget on the
unstructured data.

Natural Language Processing and Machine Learning methods combined
to process the raw data and preserve their semantic meanings. Information
extraction (IE) methods extract structured information from unstructured
data like entities, relations, objects, events, and many other types.

1.1.2 Structured Information Extraction from Complex
Scientific Text with Fine-tuned Large Language
Models

The information extraction and establishing the link with the complex
scientific information from unstructured text is a challenging task, particularly

1.1. Recent Breakthrough in Natural Language Processing 3

(a) Market cap survey in 1996 (b) Market cap survey in 2009

Figure 1.1: Given figures indicates the importance of Structured Vs. Un-
structured by showing their comparison.

for those who don’t know much about natural language processing and machine
learning. In this work, we have an idea of a sequence-to-sequence approach
that joins the Named Entity Recognition and Relation Extraction to
process the complex hierarchical data.

This methodology is based on the sizeable Large pre-trained Language
Model (LLM) [17] like Generative Pre-trained Transformer GPT-3 [17],
BERT [3]. The chat GPT-3 model is fine-tuned on many wikis and other open
and closed domain documents. All the information about the different domains
can be encoded into the language model, which is used for self-supervised tasks
such as classifying the sentiments and the following sentence predictions (Next
Sentence Prediction).

In these related works [1, 17], the extraction of the information can be from
documents, single passage, or a single sentence or multiple sentences, and after
using the NLP techniques like name entity recognition NER [18] and abstract
meaning representations AMR [19] that helps to capture the semantics of each
work and their relations.

1.1.3 Information Extraction From Textual data

Researchers from different domains are trying to find efficient techniques
to analyze better and interpret human input data, such as human voices or
handwriting. There are several tasks of Machine translation, NLU, QA, and
many of the Information retrieval and information extraction systems used to
resolve the daily high-level tasks as shown in Figure 1.2.

The primary purpose of information extraction systems (IE) is to
extract structured information from unstructured data and represent it in a
format that is easy to process and understandable by the end users [20]. The
IE system extracts the set of instances, like functional categories, entities,
relations, etc., from the unambiguous representation. It organizes them into

4 Chapter 1. Theoretical Framework

Figure 1.2: Given image demonstrates how Information Extraction systems
extract the structured output sequences from unstructured web text.

a structured or knowledge-based format for making decisions.
The system takes a set of documents as inputs and generates a representation

of relevant documents concerning the given inputs. IE systems aim to identify
the salient feature from the input text and organize them according to different
knowledge sources like Databases, Data Mart, Language Models, Knowledge
Graphs, etc. ([21]).

1.1.4 Named Entity Recognition and Relation Extraction

The Named Entity Recognition (NER) applied to the input text helps
us to find the entities mentioned in the given text, such as some text about
a location like Rome, Paris, etc. Likewise, persons like Barack Obama, Steve
Hopkins, etc., are identified by using this approach. For example, Figure 1.3
shows the result of NER [1] techniques. It identifies some operated entities
such as disease, drugs, chemicals, proteins, etc. In this process, entities and
relations are recognized and semantically classified into their relevant domains.

The famous applications where the NER concept is used are question
answering, machine translation, automatic text summarization, text mining,
information retrieval, and opinion mining. The higher efficiency and accuracy
of these systems are significant, but dealing with big data brings new challenges

1.1. Recent Breakthrough in Natural Language Processing 5

Figure 1.3: How NER and RE work and produces the output taken from [1].

to these systems. These challenges are volume, variety, and velocity of the data;
applying NER on the text corpora will remove all of the irrelevant details and
make it more efficient than the existing one.

Relation Extraction RE is used to extract the relationship between the
entities. It analyzes the semantic relationship between the entities, including
lexical, syntactic, and morphological, and focuses on the data contextual
properties. The RE extracts the relation between the entities and represents
what type of relationship between the entities exists, like one-to-one, one-to-
many, etc.

1.1.5 Language Models and Transformers

The concept of Transformers in NLP was proposed in the article “Attention
Is All You Need” [2] that aims to resolve the current issues of seq2seq models
with the handling of long-range input sequences and the dependencies between
the words and sentences. Introducing NLP transformers and Language models
makes it easy to capture the relationships in the given sequence of words and
deal with long sequences of inputs.

The famous quotation of this paper:

“The Transformer is the first transduction (transduction means the conver-
sion of the input sequence to the output sequence) model relying entirely on
self-attention to compute representations of its input and output without using
sequence-aligned RNNs or convolution.”

Initial experiments on two machine translation tasks prove these models
to be superior and efficient in quality. At the same time, it is also more
parallelizable and requires significantly very less training time. Implementing
a transformer is to completely handle the dependencies between input and
output with self-attention and recurrence.

6 Chapter 1. Theoretical Framework

Transformer Model architecture In the transformer model architecture,
the left part is the encoder of the model that maps an input sequence of symbol
representations (x1,x2, . . . , xn) to a sequence of continuous representations
z = (z1,z2 . . . , zn). Given the z representations, the right part of the model
decoder generates an output sequence (y1,y2,. . . , ym) of symbols one element
at a time. At each step, the model is auto-regressive, consuming the previously
generated symbols as additional input when generating the next.

Figure 1.4: The Transformer Model Architecture picture taken from paper
“Attention Is All You Need.” [2]

The transformer model uses a stacked self-attention mechanism in the
encoder and decoder. The encoder takes the input sequence and produces a
set of hidden states passed to the decoder part. The decoder uses these hidden
states and self-attention layers to generate the output sequence. In addition
to the self-attention layers, the encoder, and decoder include point-wise, fully
connected layers. This architecture allows the model to effectively process
sequences of varying lengths and generate output sequences conditioned on the
input, as shown in Figure 1.4.

1.1. Recent Breakthrough in Natural Language Processing 7

1.1.6 Google Bi-directional Encoder Representations from
Transformers

Bidirectional Encoder Representations from Transformers [3] a language
representation model developed by Google AI. It uses pre-training and fine-
tuning phases to create state-of-the-art models for various tasks. These tasks
include question-answering systems, sentiment analysis, and language inference.
The main goal of the BERT-based LMs [3] is to help the information retrieval
systems better understand the context around your searches. For example, Fig-
ure 1.5 shows the sentiment classification task, which represents the sentiments
of the user reviews, either positive or negative, on the base of the computation
by BERT LM.

Figure 1.5: The classic example of a BERT-based sentiment analysis system for
product reviews is whether the users’ feedback about the product is positive or
negative.

The architecture of the BERT in Figure 1.7, a multi-layer bidirectional
Transformer encoder, and the self-attention layer perform self-attention in both
directions forward and backward. The variants of Google BERT are shown
below in Figure 1.7, with the number of transformer layers and parameters
used for tuning the model.

1. BERT Base: Number of Transformers layers = 12, Total Parameters =
110M

2. BERT Large: Number of Transformers layers = 24, Total Parameters =
340M

The language models like Google BERT [3], and RoBERTa [22] are trained
on a large corpus of text data. As a result, it can be fine-tuned for various natural
language processing tasks, such as question answering, sentiment analysis, and
named entity recognition. One of the key innovations of BERT is its use of
"Masked Language Modeling" during pre-training, where a percentage of
the words in the input is replaced or masked with a unique token, and the

8 Chapter 1. Theoretical Framework

Figure 1.6: Google BERT Architecture [3]

model is trained to predict the original word based on its context. This allows
BERT to learn context-dependent representations of words, which is
particularly useful for tasks like question answering, where understanding the
context is crucial.

Overall the pre-training and fine-tuning BERT is shown in Figure 1.7.
Apart from output layers, the same architectures are used in pre-training and
fine-tuning. In most classification problems, we use one part of the model, like
the encoder, for classification purposes. The same pre-trained model parameters
are used to initialize models for different downstream tasks. To fine-tune the
model, we need to use the pre-trained or frozen model, add a new layer on top
of the existing one, and perform classification tasks, like sentiment analysis, to
classify positive and negative sentiments of product reviews and many other
tasks.

BioGPT
BioGPT [4] is a domain-specific language model pre-trained on large-scale

biomedical literature. It is a type of Generative Transformer Language Model,
which means that it has been trained on a large corpus of data, and the purpose
is to generate text based on those patterns learned during the training on
the data. BioGPT aims to provide a well-suited model for generating and
processing natural language text related to biomedicine.

By being pre-trained on a large amount of biomedical data, BioGPT can per-
form a broad range of natural language processing tasks related to bio-medicine,
including information extraction, question answering, and text summarization.
Furthermore, this pre-training allows the model to perform these tasks more
effectively and accurately than models not pre-trained on such a specialized
dataset. Overall, BioGPT represents a promising development in domain-
specific language models and has the potential to provide significant advances

1.1. Recent Breakthrough in Natural Language Processing 9

Figure 1.7: Framework of BioGPT when adapting to downstream tasks taken
from [4].

in various areas of bio-medicine.
BioGPT, a domain-specific generative Transformer language model pre-

trained on the large-scale biomedical corpus. BioGPT tested on six biomedical
NLP tasks and demonstrated that our model outperforms previous models
on most tasks. Primarily, we get 44.98%, 38.42%, and 40.76% F1 scores on
BC5CDR, KD-DTI, and DDI end-to-end relation extraction tasks, respectively,
and 78.2% accuracy on PubMedQA, creating a new record. Our larger model
BioGPT-Large achieves 81.0% on PubMedQA.

1.1.7 Word Embedding Methods

This section will explain embedding and how algorithms deal with textual
information. We aim to extract useful information and features from the given
input in NLP. The input is in the human language, which consists of words,
sentences, and documents in different languages like English, Hindi, and
Chinese.

General natural language processing tasks are followed as:

• Text summarization: extractive or abstractive text summarization.

• Sentiment Analysis [Positive, Negative].

• Neural Machine Translation (NMT), Translating the text from one lan-
guage to another.

• GPT2 [23] , GPT3 [24] Chatbots.

10 Chapter 1. Theoretical Framework

For processing the input information, we need to transform in such a repre-
sentation which is helpful for algorithms because machine and deep learning
algorithms only process the numeric input. So we need to find a mechanism
that changes the information into numerical representations.

Bag of words (BoW) a feature extraction method that processes the
information to count the frequencies of each word that appear in the text
corpora or sentences. The BoW ignores the order of the words in a sentence
and considers each word an independent entity. It uses the natural language tool
kit NLTK [21] pre-processing techniques like tokenizing sentences, removing
stop words and other punctuation symbols from the given text, and building
the vocabulary of the known words. The BoW models perform binary counts,
i-e: like the given word w is present or absent in each document.

Limitation of BoW models:

• Lack of context: The BoW models need to consider the context in
which a word appears, which can lead to poor performance on specific
tasks such as sentiment analysis.

• Sparsity: If most elements are zero, then the BoW will be a sparse
matrix. The sparse representations are difficult for model computation
because of the high number of input vector weights.

• Semantic: The schematic BoW does not preserve the semantics of words,
and the order of word appearance in the text is not considered.

More advanced models, such as neural network-based models, like Vanilla
transformers and BERT, have been developed to effectively capture context
and syntactic and semantic information to overcome these limitations.

Word Embedding is the solution for the limitations of the high dimen-
sionality of the vectors because it transforms the large sparse vectors into the
lower dimensional space. One of the main advantages of word embeddings is
that they can capture the meaning and context of words in a way that machine
learning models easily understand. In addition, because words with similar
purposes will have similar embeddings, these vectors can be used for tasks
such as text classification, language translation, and text generation. There
are many types of word embedding methods. Popular ones are Word2vec and
GloVe.

“king is to queen as man is to woman”
Consider the order of words in the space, which means the vectors of similar

words are placed near each other, as shown in Figure 1.8.
Figure 1.9 shows the first, the temporal word embeddings capture the

semantics of each word concerning time, and in the second view, the model

1.1. Recent Breakthrough in Natural Language Processing 11

Figure 1.8: Similar words placed near to each other in the space.

Figure 1.9: Trajectories of brand names and people through time: Apple,
Amazon, Obama, and Trump, Image taken from [5].

provides high-alignment quality in the same-meaning of co-related words for
different years have geometrically close embeddings [5]. How can the high
dimensional data be transformed into lower dimensional space? With
the help of dimensionality reduction methods like Principle Component
Analysis (PCA) that are used to create the embedding of the words. The
PCA tries to catch the highly correlated dimensions that can be transformed
into a single dimension using the BoW model.

Word2Vec: A Google-invented algorithm used for training word em-
beddings. It relies on the distributional hypothesis, which means that the
semantically similar words can be placed near each other in the space as shown
in Figure 1.9. Word2Vec method [5] helps to map semantically similar words
to geometrically close embedding vectors. For the distributional hypothesis, it
uses the continuous bag of words or the skip grams. A continuous bag of words
(CBoW) uses the continuous distribution of the context. It also considers the
word’s order and the previous history of the words, like collaborative filtering.

Many successful natural language processing tasks have utilized embeddings
learned through Word2Vec. The main ideas from the papers [18] for the learning
representations of words are the following:

12 Chapter 1. Theoretical Framework

• Continuous Skip-gram: The model considers words into a vector one
at a time. Each word is scanned within a specific range before and after
the current word in the same sentence. The ranges are n-grams, where
an n-gram is a contiguous sequence of n items in a linguistic sequence.

• Continuous Bag-of-Words (CBoW): This model predicts words based
on the average of their vectors. Specifically, the distributed representations
of the surrounding words are combined to predict the word in the middle
(the current one). For this model, the order of the words is not essential
since we take the average.

In practice, Skip-gram has been shown to have good results since it can
positively score rare words or phrases, even when the training dataset size is
relatively small. Conversely, the computational time to train Continuous Bag-
of-Words is way smaller than the skip-gram and has slightly better accuracy
for the frequent words.

Global Vector for word representation (GloVe): The GloVe is a log
bi-linear regression model [25], used for the unsupervised learning of word repre-
sentations that outperform then other models on word analogy, word similarity,
and named entity recognition tasks. GloVe was developed by Pennington [25], a
statistical method that uses global factorization methods like Latent Seman-
tic Analysis (LSA). LSA [25] is a fully automatic mathematical/statistical
technique for recognizing latent similarities. In particular, it maps the matrix
in a reduced vector space that approximates the original one, focusing on the
essence of the data.

1.1.8 Language Models for Open and Closed-domain Ques-
tion Answering

Open-domain question answering is very challenging because there is
no evidence or context given to the question. Still, it retrieves the context using
different methods for retrieving text from documents like TF-IDF or BM25
[26] models. For example, the exam modality of a student by considering the
open and closed book setting.

Open-book questions permit using reference materials during the exam,
such as textbooks, notes, or other resources. The goal of available book exams
is to test the understanding and application of information rather than just
memorization. Therefore, open-book exams require more critical thinking and
problem-solving skills, as students must locate and effectively use available
information.

1.1. Recent Breakthrough in Natural Language Processing 13

Closed-book questions do not allow using any reference materials during
the exam. Closed-book exams aim to test a student’s recall and memorization of
information. These exams require students to understand the subject material
strongly, as they must rely solely on their knowledge to answer the questions.
Closed book exams emphasize rote memorization and can test a student’s
ability to recall specific details and apply information under pressure.

Figure 1.10: Explains the concept of open and closed-domain question-answering
setup.

Closed Domain Question Answering: In general, when implementing
a question-answering system, we consider three perspectives for the question-
answering system: domain type, system type, and question type. In the domain
type, we focus on closed-domain and open-domain type questions. In a closed
domain QA (CDQA) [27], the system has some restrictions, meaning the
answer must be restricted or taken from specific topics or directions. While on
the other hand, for the open domain, there is no restriction on the domain. The
system works on every domain and tries to find answers from any direction.

Additionally, CDQA have a predefined set of questions or topics limitations
that the system performs reasoning within the predefined boundaries or the
available knowledge. For instance, take an example of a sales chatbot. The
chatbot system only works and accepts those types of conversion that belong to
sales and purchase, not answers to questions considered off-topic to sales and
purchase. At the same time, open-domain systems can deal with and process
all-natural language questions and then perform reasoning to find the answer
from the public domain.

14 Chapter 1. Theoretical Framework

1.2 Knowledge Graphs
A knowledge graph is a data model representing entities and their rela-

tionships in a structured manner. It organizes and links data from various
sources for easy access and understanding. Knowledge graphs are often used in
artificial intelligence and natural language processing applications to improve
the accuracy and relevance of search results and provide a more intuitive way
to navigate and understand large data sets.

1.2.1 Preliminary Definitions of Graphs

Definition 1: [28] A knowledge graph is a multi-relational graph com-
posed of entities and relations regarded as nodes and different types of edges,
respectively.

Definition 2: [29] A knowledge graph mainly describes real-world entities
and their inter-relations, organized in a graph. It defines possible classes and
relations of entities in a schema and allows for potentially interrelating arbitrary
entities with each other. It also covers various topical domains.

These days, graph-based technologies are very popular and are considered
very efficient data structures for expressing information in the form of nodes
(entities) and edges (relations). Many graphs, such as Social Networks,
Biomedical Networks, Wikipedia, etc.

Because of graph efficiency, most famous companies, such as Google,
Amazon, Facebook, Linkedin, IBM, etc., use graphs as a data structure
to store and process their information. Moreover, graph data is very flexible
and can be easily understood by humans because graphs transform complex
data into simpler things like triples that are easy to understand and express.

General structure of the Knowledge Graph: By using NLP techniques,
we need to extract and use the important features of graphs, such as:

1. Set of E entities (nodes)

2. Set of K relationships (edges)

1.2.2 Graph Types and their Properties

Simple Graph

Definition 3: A simple graph G [30, 31] is a pair G = (V,E) where.

1.2. Knowledge Graphs 15

1. V is a finite set called the vertices of G.
2. E ⊂ V × V .
Graphs consist of two finite sets, namely, a set of vertexes or a set of nodes

and a set of edges. A strong relationship exists between two sets (V,E), and
combining both sets defines the graph’s structure. The important feature graph
edges that pay attention to or indicate the strength of the connection between
the nodes.

Directed Graph

Definition 4: A directed graph (or digraph) [30, 31] has edges with
direction, which indicate a one-way relationship. We can define a directed
graph as a triple D = (V,E, ϕ) where V and E are finite sets and ϕ is a function
with domain E and co-domain V × V . We call E the set of edges of the graph
D and V the set of vertices of D.

Un-Directed Graph

Definition 5: An un-directed graph [30, 31] instead have edges without
direction, which indicates a two-way relationship. In other words, it is a set of
vertices (or nodes) connected by edges without direction.

Multi-Graph

We can also define a graph with multiple edges with the same nodes, called
Multi-Graphs.

Definition 6: Just like a simple graph, we can define directed and un-
directed multi-graphs [30, 31], specifically:

• Directed Multi-Graph(multiple edges with directions) G is an ordered
pair G := (V,A) where V is a set of nodes and A a multi-set of ordered
pairs of vertices called directed edges or arcs.

• Un-directed Multi-Graph (multiple edges without directions) G is an
ordered pair G := (V,E) where V is a set of nodes and E a multi-set of
unordered pairs of vertices, called edges.

1.2.3 Graph Embedding Techniques

Graph Embedding is a technique to transform input features like nodes,
edges, and attributes into vector space representation with lower dimensions.

16 Chapter 1. Theoretical Framework

Figure 1.11: Graphical representation of graphs from the left: un-directed
graph, directed graph, un-directed multi-graph, and directed multi-graph.

It also preserves the semantics of similar words placed close to each other in
the transformed space (Dense Space). Several embedding methods are used
in graph pre-processing to convert a graph into a computationally digestible
format because graphs are original in discrete nature.

In this section, we will see different embedding levels like node level, sub-
graph level, or through with varying strategies of graph walks. These are some
of the most popular embedding methods.

Semantics Embeddings and Translational Models

Graph semantic embeddings are low-dimensional vector representations
of nodes in a graph. Each node represents an entity, such as a person or an
object, and the edges represent relationships between entities. Graph semantic
embeddings aim to capture a graph’s underlying structure and relationships in
a compact and continuous representation.

These embeddings are typically learned using neural network-based methods,
such as graph convolutional networks (GCNs) or graph auto-encoders. The
learned embeddings are then used for various downstream tasks, such as node
classification, link prediction, and recommendation systems. Graph semantic
embeddings have proven effective in many applications, including knowledge
graphs, social networks, and biological networks, due to their ability to capture
the complex relationships in a graph and generalize them to unseen nodes and
relationships.

There are several types of semantic graph embeddings, such as:

• Translational-based methods: These methods define graph embedding
as a translational operation from the node features to a low-dimensional
space. Examples include DeepWalk, node2vec, and LINE.

DeepWalk DeepWalk belongs to a family of graph embedding that uses
a walk or traverses the graph by moving from one node to another node in
the graph. For each traversal step of the graph, the vector representation
of nodes is aggregated and placed next to each other in the matrix. After

1.2. Knowledge Graphs 17

that, we have an arranged matrix of all node representations fed into the
deep learning model for training purposes.

The basic concept of DeepWalk [6] and the Word2vec [32, 18] is quite
similar because both follow the same strategy of using the co-occurrence
relationship between nodes in the graph is to learn the vector representa-
tion of nodes.

The question here is “How to represent the co-occurrence relation-
ship between nodes.”

The goal of the deep walk is to estimate the likelihood of observing nodes
based on all the previous nodes explored and sampled by a random walk.
RandomWalk follows the depth-first search strategy [6] that traverses the
nodes repeatedly and tests them. The sampling of currently visited nodes
is based on the neighbour nodes, and it repeats and explores the nodes
until the length of the visited sequence meets the given condition.

Figure 1.12: How Deepwalk traverses the nodes, Image taken from [6].

– Construct a homogeneous network, starting by sampling Random
Walk separately from each node in the network to obtain locally
associated training data.

– SkipGram training of sampled data, representing discrete network
nodes as direct quantification, maximizing node co-realization, and
using Hierarchical Softmax as a classifier for ultra-large-scale classi-
fication.

Node2Vec

Node2vec [33] is a graph method that combines DFS (Depth First Search)
neighborhoods with BFS (Breadth First Search) neighborhoods. Simply
put, it is an extension of the deep walk, which combines DFS and BFS
random walk. Node2vec still uses a random walk method to obtain the
nearest neighbor sequence of a vertex. The difference is that Node2vec
uses a biased random walk.

18 Chapter 1. Theoretical Framework

• Matrix Factorization-based methods: These methods factorize the
adjacency matrix of a graph into two low-dimensional matrices, one
representing the node embeddings. Examples include Graph Factorization
and Laplacian Eigenmaps.

• Neural Network-based methods: These methods use neural networks
to learn graph embeddings. Examples include Graph Convolutional
Networks (GCN) and Graph Attention Networks (GAT).

• Autoencoder-based methods: These methods use autoencoders to
learn node embeddings by reconstructing the graph structure from the
node representations. Examples include variational graph autoencoders
and graph variational autoencoders.

• Hybrid methods: These methods combine to leverage their strengths
and overcome limitations. Examples include the combination of matrix
factorization and neural network-based methods.

Each type of semantic graph embedding has its advantages and limita-
tions, and the choice of a method depends on the specific problem and the
characteristics of the graph.

Translational Models

Translational models model graph relationships by interpreting them as
translations in the embedding space. They have received a significant number
of attention in the link prediction task [34]. Instead, we have used them to
retrieve the embeddings to build up our similarity matrix.

The triplets consist of: (a head entity, relationship, and tail entity). Even
though we would not be focusing on the evaluation of the link prediction task.
Since we are more interested in the embeddings themselves, we followed the
ranking procedure proposed by the literature on benchmark datasets to know
also the quality of the embeddings themselves. For each triplet in the test
set, the head entity is removed and replaced by each of the entities of the KG
dictionary. The evaluation metrics were: Mean of the Predicted Ranks (MRR)
and Hits@10 (hits@N indicates the probability that the correct reasoning
result appears in the first N results, which is similar to the recall rate of the
knowledge reasoning algorithm).

TransE

TransE is a type of embedding technique used in knowledge graph represen-
tation learning. TransE stands for Translation Embeddings and is a method for

1.2. Knowledge Graphs 19

embedding entities and relationships in a continuous vector space. The main
idea behind TransE is to represent relationships as translations between entities.
TransE represents each entity and relationship as a vector in a low-dimensional
continuous space. The vectors for entities are learned such that the relationships
between them are represented as simple vector translations.

For example, suppose the relationship "is a parent of" can be represented
as a vector "p". In that case, the relationship "is a parent of" between entities
"A" and "B" and can be represented as "A + p = B". TransE is effective in
knowledge graph completion tasks, such as link prediction, where the goal is to
predict missing relationships between entities. TransE is also computationally
efficient, making it suitable for large-scale knowledge graphs. However, it has
some limitations, such as the inability to represent asymmetric relationships and
the assumption that relationships are translations, which may only sometimes
hold in real-world knowledge graphs.

Figure 1.13: Representation of TransE and TransH Models image taken from
[7]

TransH

TransH [7] is a type of embedding technique used in knowledge graph
representation learning. TransH stands for Translation in Hyperplane and is a
method for embedding entities and relationships in a continuous vector space.
TransH extends the idea of TransE by considering hyperplanes instead of vector
space. The model TransH differs from the previous one since it considers the
relationship as a hyperplane where an operation of translation is computed. In
this way, the model can handle one-to-many, many-to-one, and many-to-many,
which TransE is incapable of while using almost the same complexity.

In TransH, each entity is represented as a vector in a low-dimensional
continuous space, and each relationship is represented as a hyperplane. The

20 Chapter 1. Theoretical Framework

vectors for entities are learned such that the relationships between them are
represented as translations along the average vector of the hyperplane associated
with the relationship. The main advantage of TransH over TransE is its
ability to handle relationships that are not translations, such as asymmetric
or inverse relationships. TransH can also handle relationships with multiple
interpretations by assigning different hyperplanes to different interpretations of
the same relationship.

DistMult

DistMult is a type of embedding technique used in knowledge graph repre-
sentation learning. DistMult stands for Distributed Matrix and is a method for
embedding entities and relationships in a continuous vector space. The main
idea behind DistMult is to represent relationships as a dot product between
the vectors of the entities involved. In DistMult, each entity and relationship is
represented as a vector in a low-dimensional continuous space. The vectors for
entities are learned such that the relationships between them are represented
as dot products. For example, suppose the relationship "is a parent of" is
represented as a vector "r". In that case, the relationship "is a parent of"
between entities "A" and "B" can be represented as "A * r = B".

DistMult is effective in knowledge graph completion tasks, such as link
prediction, where the goal is to predict missing relationships between entities.
DistMult is also computationally efficient, making it suitable for large-scale
knowledge graphs. However, it has some limitations, such as the inability to
represent anti-symmetric relationships and the assumption that relationships
are dot products, which may only sometimes hold in real-world knowledge
graphs.

1.2.4 Example of Knowledge Graphs

Google Knowledge Graph
One example of a knowledge graph is Google Knowledge Graph [35]. Google

KG is a large-scale knowledge graph developed by Google to enhance its search
results with semantically-rich information. The Knowledge Graph aims to
understand the relationships between entities, such as people, places, things,
and events, and to provide users with a more complete and relevant search
experience.

For example, when a user searches for a person "Tom Simpon", the Knowl-
edge Graph might display information about their occupation, gender "Male",

1.2. Knowledge Graphs 21

Figure 1.14: Example of Google Knowledge Graph

birth date, notable works, and other relevant details, all in a graphical format
as shown in Figure 1.14. Likewise, when a user searches for a place, the Knowl-
edge Graph might display information about its location, history, and notable
landmarks, among other details.

22 Chapter 1. Theoretical Framework

DBpedia

Another example of a knowledge graph is DBpedia [36] . DBpedia is a
large-scale knowledge graph built from the structured data of Wikipedia. It’s
a community effort to extract and publish information from Wikipedia in a
structured and machine-readable format, making it easier for applications to
access and use Wikipedia data. In DBpedia [36], entities in Wikipedia articles
are represented as nodes in the graph, and the relationships between entities
are represented as edges.

For example, an article about a person can be defined as a node. The
relationships between that person and other entities, such as their birthplace,
education, and employment, can be represented as edges.

Figure 1.15: Example of world’s largest DBpedia Knowledge Graph

DBpedia [36] provides a semantic web interface to the information stored
in its knowledge graph, which enables applications to access and query the
data using semantic web technologies like RDF and SPARQL. This makes it
possible for developers to build intelligent applications that can understand
and reason about the relationships in the data.

Here’s an example of how to make a simple query on DBpedia using
SPARQL:

1.3. Language Models and Structured Knowledge Graph 23

SELECT ?person ?birthplace
WHERE {
?person dbo:birthPlace ?birthplace.

}
LIMIT 10

List 1.1: Python example

This query retrieves 10 people and their respective birthplaces from DBpedia.
Does the query work by first defining the variables ? person and ?birthplace.
Then, the WHERE clause specifies the pattern we want to match in the data,
in this case, the relationship between a person and their birthplace, represented
by dbo:birthPlace. Finally, the LIMIT 10 clause specifies that we only want
to retrieve the first 10 results.

1.3 Language Models and Structured Knowledge
Graph

Why does the community try to combine the Language Models
and Knowledge Graphs for a reasoning process?

Combining Language Models with Structured Knowledge Graphs can create
more powerful and versatile AI systems. Knowledge Graphs are structured
representations of information that can be used to provide context and back-
ground knowledge for Language Models. This can enable Language Models
to understand the relationships between different concepts and entities and to
make more accurate predictions and recommendations.

For example, people often use search engines and personal assistants to
perform daily activities like question-answering or factual information through
web searches. For example, we have the input question, “Who is the Prime
Minister of Italy?”. The information retrieval system requires the background
knowledge “Giorgia Meloni is an Italian politician, she has been serving
as the first lady Prime Minister of Italy since 22 October 2022” . It
performs reasoning over it to produce the answer “Giorgia Meloni” .

1.3.1 Limitations of Pure Language Models

• Lack of common-sense understanding: Language models are trained
on large amounts of text data, but this data may need to contain infor-
mation about common-sense knowledge and reasoning, which can limit

24 Chapter 1. Theoretical Framework

the model’s ability to understand the variation of human language and
context.

• Limited ability to handle out-of-vocabulary (OOV) words: Lan-
guage models are trained on a fixed vocabulary, so they may be unable
to manage words or phrases they have yet to see before.

• Limited ability to handle multi-turn dialogue: Language models are
typically trained on single-turn inputs and may need help understanding
the context and flow of a conversation.

• Lack of interpretability: Language models are complex neural net-
works, and it can be hard to understand why they make predictions,
which can be a limitation in specific applications.

• Limited ability to handle structured data: Language models are
mainly designed for unstructured text data, so they may need help to
handle structured data such as tables or graphs.

These limitations can be addressed by combining language models with
other NLP techniques, such as knowledge graphs.

1.3.2 Benefits of Combining Language Models and Knowl-
edge Graphs

• Improved accuracy: Knowledge Graphs can provide additional context
and background information for language models, which can help improve
their accuracy and reduce the need for large training data.

• A better understanding of relationships: Knowledge Graphs can be
used to represent the relationships between different concepts and entities,
which can help language models understand the context and meaning of
the text.

• Improved efficiency and scalability: Structured Knowledge Graphs
can enhance the efficiency and scalability of language models LMs by
reducing the need for large training data.

• Better handling of out-of-vocabulary (OOV) words: Knowledge
Graphs can provide additional information about OOV words and phrases,
which can help language models understand and generate text more
effectively.

1.3. Language Models and Structured Knowledge Graph 25

• Better handling of multi-turn dialogue: Knowledge Graphs can
provide additional context and background information that can help
language models understand the context and flow of a conversation.

• Better handling of structured data: Knowledge Graphs can be used
to represent structured data, such as tables and graphs, which can help
language models understand and generate text more effectively.

• Better handling of commonsense reasoning: Knowledge Graphs
can provide additional information about commonsense knowledge and
reason, which can help language models understand the nuances of human
language and context.

• Better interpretability: Knowledge Graphs provide a structured rep-
resentation of data, which makes it easier to understand why confident
predictions are made.

Overall, knowledge Graphs can improve the performance of a wide range of
NLP applications, from natural language understanding to the next generation.
Structured Knowledge Graphs can also improve language models’ efficiency
and scalability by reducing the need for significant training data. Overall,
combining Language Models and Structured Knowledge Graphs can improve
the performance of a wide range of AI applications, from natural language
processing to recommendation systems and beyond.

Chapter 2

Related Work

In this chapter, we will focus on the related proposed work to our study,
like retrieving information from unstructured data, knowledge-base (Section
2.1), and structured data sources(Section 2.2). Our primary focus is on the
Knowledge Graphs (KG): " How to retrieve the relevant portion of the subgraph
from a Knowledge Graph? How can we say that the retrieved subgraph is
best concerned with its size? How to make or establish a connection with
intermediate nodes or missing nodes? " This section will discuss all the
challenges, their proposed solutions, and methods.

2.1 Knowledge-based Data (Triplets)

In the Knowledge base, the information is stored as a triple-like subject,
object, and predicate knowledge base as shown on the right of the given Fig-
ure 2.1 using a specific information extraction system. This triple is composed
of subject-relation objects.

Our data is available in the form of articles or general documents such
as Wikipedia, Commonsense, and many other directories, as shown in Figure
2.1. In addition, NLP techniques, such as information extraction systems, can
extract meaningful information from the user input data, encoding the input
data into lower dimensions vectors or numerical vectors that are compatible
with the training purpose of language models. After getting the standard
representation of data, we trained the Language models on general data. Then
we used them according to tasks such as Masked Language Modelling or Next
Sentence Predictions.

Knowledge sources:

27

28 Chapter 2. Related Work

Figure 2.1: Structural Representation of the Knowledge Base and the Knowledge
Graph.

1. Language model (LM) (Section 1.1.5): All the available knowledge can
be encoded into pre-trained LM’s like Google BERT [3], RoBERTa
[22], BIO-LINK BERT [37] etc.

2. Knowledge Graphs (KGs) (Section 1.2): For structured Knowledge, the
most popular general-domain KGs are Concept-Net[38], and Freebase
[39] that represent knowledge in the form of entities and relations (head-
predicate-tail triples).

3. Knowledge base triples (Section 2.1) (Head, Relation, Tail).

In the knowledge base, how to represent the knowledge in the form of
triples is shown in Figure 2.1. For example, in the knowledge base, I am a
member of the DSBA, and I store the information that I belong to the
DSBA laboratory in the form of a triple and graphs, as shown in the
image. The KB and the KG graph have different representations of the same
information. So the difference between both sources is only the representation
of the knowledge. For example, Faisal is a member of the DSBA laboratory.
So Faisal and DSBA is the subject and objects in the graph called nodes,
and the edge Member of between subject-object is called the relation.

2.2. Reasoning with Language Models and Knowledge Graphs 29

2.2 Reasoning with Language Models and Knowl-
edge Graphs

Structured KG is more popular than KG, and the LM does not capture
the semantic meaning of the same context with billions of parameters. LM
cannot capture the semantic essence of similar sentences. A structured way to
store information is called knowledge graphs. Knowledge Graphs KG is the
backbone of multiple applications, such as information retrieval systems like
Search Engines, Chabot’s, and many Question-and-Answering applications. It
is also known as the semantic network that represents the information in the
form of real-world entities like the Subject, Object, and Predicate.

The basic structure of the knowledge graph is based on the three modules the
set of nodes, the group of edges, and the relationship between them—the triples
where we have the head, predicate, and tail. For example, nodes (heads
and tails) can be any real work entities like Person, Place, Animals, or
things like IBM, Faisal, Lion, Italy, etc., and predicates or edges between
them showing the relationship between the given entities. For example, Faisal
is a student, so the IS-A relationship expresses the entities of Faisal
and the students.

To better understand the subgraph retrieval from existing Knowledge
Graphs, we have similar existing proposed solutions, but they have some
constraints on the retrieval phase. While studying all of these papers in the
upcoming section can clarify our study and demonstrate the difference between
their proposed solution and our suggested Subgraph Retrieval method.

2.2.1 QA-GNN

Generally, the information can be implicitly encoded in the large language
models (LMs) [17] pre-trained on unstructured text, as explained in section 02.
Or explicitly can be described in the structured KGs such as Freebase [39]
and conceptNet [38]. The paper presents two challenges during combining
LMs and KGs to perform joint reasoning on the given question-answer input.

Combining LMs and KGs for joint reasoning presents two challenges:

• It’s hard to identify the relevant knowledge concerning the given QA
context from large KGs.

• It’s unable to perform joint reasoning over QA context (LM) and KG.

QA-GNN [14] is one of the first works that address the above challenges
through two key innovative methods:

30 Chapter 2. Related Work

• Relevance scoring: since the KG subgraph consists of all few-hop
neighbours of the topic entities, some entity nodes are more relevant than
others concerning the given QA context. They propose KG node relevance
scoring: they score each entity on the KG subgraph by concatenating
the entity with the QA context and calculating the likelihood using a
pre-trained LM. This presents a general framework to weigh information
on the KG;

• Joint reasoning: they design a joint graph representation of the QA
context and KG, where they explicitly view the QA context as an addi-
tional node (QA context node) and connect it to the topic entities in the
KG subgraph. This joint graph, which they termed the working graph,
unifies the two modalities into one graph. They then augment the feature
of each node with the relevance score and design a new attention-based
GNN module for reasoning.

Dataset: The Model evaluation on QA benchmarks in the Commonsense
(CommonsenseQA, OpenBookQA) and biomedical (MedQA-USMLE) domains.

Approach

Figure 2.2: Overview of their approach. Given a QA context (z), they connect
it with the retrieved KG to form a joint graph, compute the relevance of each
KG node conditioned, and perform reasoning on the working graph

2.2. Reasoning with Language Models and Knowledge Graphs 31

As shown in the figure above, given a question q and an answer choice a,
they concatenate them to get the QA-context [q; a]. To reason over a given
QA context using knowledge from both the LM and the KG, QA-GNN works
as follows:

• They use LMs to obtain a representation for the QA context and retrieve
the subgraph from the KG.

• Then they introduce a QA context node z that represents the QA context
and connects z to the topic entities so that they have a joint graph over
the two sources of knowledge, which they term the working graph. To
adaptively capture the relationship between the QA context node and
each of the other nodes, they calculate a relevance score for each pair
using the LM and use this score as an additional feature for each node.

• Finally, they make the final prediction using the LM representation, QA
context node representation, and a pooled working graph representation.

Figure 2.3: Relevance scoring of the retrieved KG: they use a pre-trained LM to
calculate the relevance of each KG entity node conditioned on the QA context.

They compared with existing LM+KG methods, which share the same
high-level framework as their but use different modules to reason on the KG
in place of QA-GNN. The critical differences between QA-GNN and these are
that they do not perform relevance scoring or joint updates with the QA.

The image below shows the result of QA-GNN on MedQA-USMLE. QA-
GNN outperformed fine-tuned LMs (e.g., SapBERT [40]).

32 Chapter 2. Related Work

Figure 2.4: Test accuracy on MedQA-USMLE

To retrieve the relevant nodes or portion of the sub-graph from the large
Knowledge graph is quite challenging in this paper as well in the other relevant
documents like GreaseLM and Dragons have the same issue.

• First, in structured Knowledge Graphs, the size of the retrieved graph
is very challenging because if the retrieved graph is too small so there
are chances of missing the answer because of the small size, and if it is
retrieved large, that can cause to introduce the noise that may effect
on the reasoning phase. Earlier methods use different strategies like the
retrieved the top-K entities from the knowledge base triple store (head,
relation, tail). This approach can also retrieve some off-topic entities that
do not belong to the question, as mentioned in the QA-GNN.

• Second, the issue about the weak internal intermediate node or entities,
which means making or establishing a connection with the intermediate
node. Suppose we look into space when we want to explore the space and
start from topic entities and explore other paths until we find the desired
answer in the space; if there is no answer in the space, which direction do
we follow to go through in between them answer and the question. So,
the fact that there is no correct answer for the intermediate process is
called the state of Weak Internal Media Supervision, which is also faced
in the existing studies.

This challenge can be seen in the dataset, only the question and its
correct answer are given, and there is no answer to the intermediate nodes
of which multi-hop process to find the correct answer. (Intermediate
node answers missing). Therefore, the extracted KG subgraph ignores
some intermediate concept (entity) nodes and edges. In such cases, the
subgraph does not contain a complete chain of reasoning.

2.2. Reasoning with Language Models and Knowledge Graphs 33

• Third, an Incomplete subgraph is retrieved without complete information
about the given entities and relations or the neighbor nodes, etc.

• Previous work (DRGN, CBR) employs very different technical solutions for
developing the retrieval and reasoning models, neglecting their relatedness
in task essence.

The recent research QA-GNN, Grease LM, and the Dragon model is the
first work to deal with the negative questions. QA-GNN improves the reasoning
under negation by adding the QA global node to the graph. However, the
challenge still exists. These are significant challenges mentioned above. However,
these challenges are the issues that the various methodologies currently being
researched are trying to solve. This study demonstrates how to solve these
issues in a new working framework.

2.2.2 GreaseLM: Graph Reasoning Enhanced Language
Models For Question Answering

Answering the complex questions about textual representation requires
more reasoning over the stated context and the world knowledge that motivates
it. The GreaseLM [8] presents a new model architecture that uses the jointly
encoded representations from pre-trained LMs and graphs neural networks over
multiple layers of modality interaction operations. It shows how two sources of
knowledge work together to perform QA, as shown in Figure 2.5. The primary
GreasLM focuses on the reasoning phase, which deals with the negations
and hiding conditions like those tested in QA-GNN.

Limitations of Existing Methods:

• After pretraining these Language models on a large-scale collection of
general text corpora, these language models learn to encode overall
knowledge about the world, which implicitly they can leverage when
fine-tuned on a domain-specific downstream QA task. However, these
fine-tuned models struggle when the given examples are distributionally
different from examples seen during the fine-tuning phase. The behavior
of the fine-tunned language models often relies on simple patterns to
present the shortcut answer rather than robust or the concerned one, while
structured reasoning that effectively combines the explicit information
provided by the context and implicit external knowledge for reasoning
and inferring the correct answer instead of the presenting the shortcut
answer.

34 Chapter 2. Related Work

• Existing methods typically combine two modalities (LM and KG) in a
shallow and non-interactive mode, encoding both sources of knowledge
separately and combining them at the output phase for a prediction or
using one to augment the input of the other.

• The existing method fails to deal with multiple constraints, such as
negation and hedges conditions that require practical reasoning over both
language context and KG.

• The subgraph retrievals are similar to the work of QA-GNN and Dragons,
which is inefficient concerning the size and the retrieved off-topic entities.

Dataset: GreaseLM tested on the famous benchmark dataset for common-
sense and general question-answering reasoning over datasets like Common-
senseQA and OpenbookQA. For reasoning over medical domain type ques-
tion answering (i.e., MedQA-USMLE). The domains demonstrate that GreaseLM
can more reliably answer questions requiring reasoning over situational con-
straints and structured Knowledge.

Apporach
For dealing with the complex QA and the limitation of the fine-tuning of

language models, negotiating with and resolving the multiple constraints such
as negation or conditional constraints. GreaseLM [8] presents a multi-layer
architecture graph neural network. For each layer in the following network,
the representation of vectors is updated after each iteration to perform efficient
reasoning on the retrieved subgraph to infer the correct answer. The image
can explain the methodology used in GraseLM.

GreaseLM Architecture Description:
In phase one, GreaseLM takes input representations of both modalities,

expressive large language models, and structured KGs. The KG retrieval
that retrieves the subgraph from the KG given the QA context is similarly
mentioned in the QAGNN [14] because the subgraph retrievals phase is similar
in this paper as well in the Deep Bidirectional Language-Knowledge Graph
[9]. For the second source of the input, pass the input question through the
multiple language model encoder layers called uni-model encoder and takes its
representations and use it in the other phase of the framework.

In the second phase of the GreaseLM [8], the cross-modal fuser takes both
sources of the inputs and mixes the information from KG and language represen-
tations for bidirectional integration’s. GreaseLM has three components; the
first transformer LM encoder block continuously encodes the language context,
and the second GNN layer reasons over the KG entities and relations. The third

2.2. Reasoning with Language Models and Knowledge Graphs 35

Figure 2.5: General architecture of GreaseLM taken from [8]

one, called the mint modality operator, takes the uni-model representation of
interaction tokens and nodes and exchanges the information through them.

Two stacked components of GreaseLM:

1. Set of uni-modal LM layers, which learn an initial representation of the
given input tokens from both sources of input LMs and KGs.

2. Set of upper cross-modal GreaseLM layers, which is learned to represent
the language sequence jointly and linked knowledge graph, allowing the
textual representations formed from the underlying LMs layers and a
graph representation of the KG to mix.

In the GreaseLM [8], it focuses on the reasoning phase with multi-layer
attention model architecture that performs better reasoning as compared to
the existing QA-GNN [14] in some of the cases like dealing with the negation,
hedging, or flip of the entities, etc. it is considered as the extended version of
QA-GNN, especially in the reasoning phases. GreaseLM also uses the same
subgraph retrievals phase as in the QA-GNN; at the end, we will replace and
test the subgraph retrieval phase with our proposed solution.

Dealing with negation and Flipped conditions:
For example, the model GreaseLM correctly predicts that the answer to

the given question is “airplane” while on the other hand, QA-GNN predicts
the incorrect one as “motor vehicle” . For both models, GreaseLM [8] and
QA-GNN [14], they perform the Best First Search (BFS) on the retrieved KG
subgraph Gs to trace high attention weights from the interaction node (purple),
as shown in the figure 2.5.

36 Chapter 2. Related Work

Figure 2.6: Qualitative analysis of GREASELM’s graph attention weight
changes across multiple messages passing layers compared with QA-GNN.
GREASELM demonstrates attention change patterns that more closely resemble
the expected change in focus on the “bug” entity.[8]

In each layer in the network, the representation of each modality is up-
dated, and the representations of the interaction token and node are pulled,
concatenated, and passed through a modality interaction (Mint) unit to mix
their representations. In the following layers, the mixed information from
the interaction elements combines with their respective modalities, allowing
knowledge from the KG to affect the representations of individual tokens and
context from language to affect fine-grained entity knowledge representations
in the GNN.

The new model GreaseLM architecture enables deep fusion and exchanges
the information from both sources of knowledge in the multiple layers of its
architecture that enhance the reasoning process and handle the condition like
negation and flipping as shown in Figure 2.6.

2.2.3 Dragon: Deep Bi-directional Language Knowledge
Graph Pre-training

A self-supervised method called DRAGON (Deep Bidirectional Language-
Knowledge Graph Pre-training) [9] pre-trains a deeply joint language-knowledge
foundation model from both sources like textual and KG at any scale. DRAGON
model takes the input pairs of text segments, and the relevant KG sub-graph
(the KG sub-graph retrievals phase is the same as used in QA-GNN

2.2. Reasoning with Language Models and Knowledge Graphs 37

Figure 2.7: Performance on MedQA-USMLE take from [8], demonstrate that
GreaseLM outperforms state-of-the-art fine-tuned LMs (e.g., SapBERT) and a
QA-GNN augmentation of SapBERT.

[14], and GreaseLM [8] as input and bi-directionally joins information
from both modalities of inputs. DRAGON pre-train on two self-supervised
reasoning tasks: Masked Language modeling and the Knowledge Graph
link predictions.

Apporach

Figure 2.8: General architecture of Dragon taken from [9]

Language models (LMs) are pre-trained on large amounts of text data, such
as BERT [3], and GPTs, and have shown strong performance on many natural
language processing (NLP) tasks. However, effectively combining text and KGs
for pre-training is an open problem and presents challenges.

The core component of DRAGON:

1. Deeply bi-directional model for the two modalities (LM and KG) to
interact.

38 Chapter 2. Related Work

2. Self-supervised task to learn joint reasoning over text and KG.

Description of Dragon:

On the left of the image, the given input, raw data of a text corpus, and
an extensive knowledge graph construct the aligned (text, local KG) pairs
by sampling a text segment from the text corpus and extracting a relevant
subgraph from the large KG. As in structured knowledge, KG can ground the
text, and the text can provide the KG with a rich context for reasoning. The
Dragon Models aims to pre-train a language-knowledge model on the right side
of the image for a common reason on the text-KG pairs (DRAGON).

To model the interactions over text and KG, DRAGON [9] and GreaseLM
[8] work similarly to using a cross-modal encoder that bi-directionally ex-
changes information between them to produce fused text token and KG node
representations.

To pre-train DRAGON jointly on text and KG, we unify two
self-supervised reasoning tasks:

1. Masked Language Modeling (MLM).

2. Link prediction or Knowledge graph link prediction.

Knowledge graph link prediction [34] holds out some edges from the input
KG and then predicts them. This joint objective encourages text and KG to
mutually inform each other, facilitating the model to learn joint reasoning over
text and KG. Masked Language Modelling MLM took some tokens as
input and masked some of them, and tried to predict those masked tokens
again from the sequence using a language model encoder like BERT [3].

The most crucial difference between the two approaches is: Remaining
setting for all models is the same as used in GraseLM and QA-GNN.
As we use the same encoder architecture as GreaseLM for DRAGON, the
only difference from GreaseLM is that DRAGON performs self-supervised
pre-training while GreaseLM does not.

DRAGON Evaluation
Figure (2.9) shows the accuracy of downstream commonsense reasoning tasks.

DRAGON consistently beats the existing LM (RoBERTa) and KG-augmented
QA models (QAGNN, GreaseLM) on all tasks. The gain is especially significant
on tasks with small training data (OBQA, Riddle, ARC) and tasks requiring
complex reasoning (CosmosQA, HellaSwag).

Downstream evaluation tasks: they fine-tune and evaluate DRAGON
on three popular biomedical NLP and reasoning benchmarks: MedQA-USMLE

2.2. Reasoning with Language Models and Knowledge Graphs 39

Figure 2.9: Performance on the 9 downstream commonsense reasoning tasks.
[9]

Figure 2.10: Accuracy on biomedical NLP tasks. DRAGON outperforms all
previous biomedical LMs.

(MedQA), PubMedQA, and BioASQ provide details on these tasks and data
splits as shown in Figure 2.10.

Figure 2.10 summarizes the model performance on the downstream tasks.
Across tasks, DRAGON outperforms all the existing biomedical LMs and KG-
augmented QA models, e.g., +3% absolute accuracy boost over BioLinkBERT
and +2% over GreaseLM on MedQA, achieving new state-of-the-art performance
on these tasks. This result suggests the significant efficacy of KG-augmented
pretraining for improving biomedical reasoning tasks. Combined with the
results in the general commonsense domain, our experiments also suggest the
domain-generality of DRAGON, serving as an effective pretraining method
across domains with different combinations of text, KGs, and seed LMs.

2.2.4 UNIKGQA: Unified Retrieval and Reasoning For
Solving Multi-Hop Question Answering Over Knowl-
edge Graph

Existing Apporach:
Existing work (QA-GNN, GreaseLM, Dragon, CBR and DRGN)

usually adopt a two-stage approach for multi-hop KGQA.

40 Chapter 2. Related Work

• It first retrieves a relatively small subgraph related to the question entities
called the topic entities.

• Then, the reasoning on the subgraph is performed to accurately find the
answer entities from the retrieved subgraph.

Although these two stages are highly related, previous work employs very
different technical solutions for developing the retrieval and reasoning models,
neglecting their relatedness in task essence.

Limitation of UNIKGQA: To cope with the vast search space, Can we
design a unified model architecture with the same essence for both stages
to derive a better performance? To develop a unified model architecture for
multi-hop KGQA, a significant merit is that we can tightly relate the two stages
and enhance the sharing of relevant information.

However, there are two major issues to developing a unified model architec-
ture for multi-hop KGQA:

1. How to manage very different scales of search space for the two stages?
Problem Faced with the vast search space in large-scale KGs, existing
work typically adopts a retrieval-then-reasoning approach, which can
achieve a good trade-off between accuracy and efficiency for multi-hop
KGQA. Generally, the retrieval stage aims to extract relevant triples from
the large-scale KG to compose a relatively more minor question-relevant
subgraph. In contrast, the reasoning stage focuses on accurately finding
the answer entities from the retrieved subgraph.

2. How to effectively share relevant information across the two stages in
the network? The purposes of the two stages are different; both sets
need to evaluate the semantic relevance of a candidate entity concerning
the question (for removal or re-ranking), which can be considered a
semantic matching problem in essence. For measuring entity relevance,
relation-based features, either direct relations or cross-relation paths, be
particularly useful for building semantic matching models.

Although the two stages are highly related, previous studies usually treat
them separately in model learning: only the retrieved triples are passed
from the retrieval stage to the reasoning stage, while the helpful rest signal
for semantic matching has been neglected in the pipeline framework.

Apporach

2.2. Reasoning with Language Models and Knowledge Graphs 41

Nowadays, Multi-hop KGQA has become a vital research subject that aims
to identify the answer entities of natural language questions from KGs such as
Freebase, DBpedia etc. Therefore, recent studies mainly focus on multi-hop
KGQA. In this more complex scenario, sophisticated multi-hop reasoning over
edges (or relations) is required to infer the correct answer on the KG. In Figure
2.11, For example, given the question “Who is the wife of the nominee
for The Jeff Probst Show” the task goal is to find a reasoning path from
the topic entity “The Jeff Probst Show” to the answer entities “Shelley
Wright” and “Lisa Ann Russell” .

Figure 2.11: Illustrative examples for our work: (a) an example of multi-hop
KGQA; (b) an example of abstract subgraph; and (c) the overall learning
procedure of our UniKGQA model [10].

As shown in Figure (2.11 a), given the question, it is vital to identify the
semantically matched relations and the composed relation path in the KG (e.g.,
“nominee → spouse”) for finding the correct answer entities since the two stages
cope with different scales of search space on KGs (e.g., millions vs thousands).

For the first issue, instead of letting the same model architecture directly
fit very different data distributions, we propose a new subgraph form to reduce
the node scale at the retrieval stage, namely an abstract subgraph that is
composed by merging the nodes with same relations from the KG (see Figure
(2.11 b)).

For the second issue, based on the same model architecture, we design a
practical learning approach for the two stages so that we can share the same
pre-trained parameters and further use the learned retrieval model to initialize
the reasoning model (see Figure (2.11 c)).

Unified Model Architecture:
We consider a general input form for both retrieval and reasoning and

develop the base architecture by integrating two major modules:

• The Semantic Matching (SM) module employs a PLM to perform the
semantic matching between questions and relations.

42 Chapter 2. Related Work

• The Matching Information Propagation (MIP) module that prop-
agates the semantic matching information on KGs. We present the
overview of the model architecture in Figure 2.12. Next, we describe the
three parts in detail.

Figure 2.12: The overview of the unified model architecture of UniKGQA,
consisting of two modules, i.e., semantic matching and matching information
propagation ([10]).

Semantic Matching (SM): The SM module aims to produce the semantic
matching features between the question q and a triple h, r, t from the given
subgraph Gq. Considering the excellent modeling capacity of the PLMs, we
leverage the PLM to produce text encoding as the representations of question
q and relation r. Specifically, we first utilize the PLM to encode the texts of
q and r, and employ the output representation of the [CLS] token as their
representations.

Matching Information Propagation (MIP): Based on the generated
semantic matching features, the MIP module firstly aggregates them to update
the entity representation and then utilizes it to obtain the entity match score.
To initialize the match scores, given a question q and a subgraph Gq, for each
entity ei ⊂ Gq.

Dataset:To evaluate this approach, the Model evaluation on QA bench-
marks On the simple dataset, MetaQA, Commonsense (CommonsenseQA,
OpenBookQA), and biomedical (MedQA-USMLE) domains.

UNIKGQA [10] is the latest research work focused on developing a system
for multi-hop question answering over knowledge graphs. The system aims to
integrate both retrieval and reasoning capabilities to answer complex questions
requiring information from multiple sources accurately. The goal is to provide
a unified approach to question answering over knowledge graphs by combining
various techniques and models to solve these complex questions efficiently. Multi-
hop KGQA aims to find the answer entities from the large-scale Knowledge

2.2. Reasoning with Language Models and Knowledge Graphs 43

Figure 2.13: Performance comparison of different methods for KGQA (Hits@1
and F1 in percent). We copy the results for TranferNet and others. Bold and
underlined fonts denote the best, and the second-best methods [10].

Graph entities. The answer entities are multiple hops far from the topic entities
mentioned in each question.

2.2.5 CODER: Knowledge Infused Cross-Lingual Medical
Term Embedding For Term Normalization

Existing Challenges

Analyzing the free text in Electronic medical records EMRs is challenging
because the same medical concept can appear in various nonstandard names,
abbreviations, and misspellings, which all need to be normalized to their corre-
sponding standard terms or their concept IDs of existing terminology systems,
such as the Unified Medical Language System (UMLS) [41] or SNOMED Clini-
cal Terms (SNOMED-CT)[42]. Normalization is also essential for structured
EMR data. For example, medical institutes use different coding systems for
laboratory examinations, procedures, and medications. Thus, normalization
can facilitate mapping the database fields to the same standard for joint analysis
when conducting multi-institutional studies.

Existing medical embeddings can be classified into word, concept, and
contextual. Word and concept embeddings have good base performances on
evaluating similarity but face the out-of-vocabulary (OOV) problem and cannot
handle misspellings commonly present in clinical text. Pretrained Language
Models PLM-based contextual embeddings can relieve the OOV problems
using sub-word tokenization. Still, they perform less than word and concept
embeddings on evaluating similarity if not fine-tuned.

Normalizing medical terms to these systems remains challenging for the
classification approach due to the massive number of classes and the inflexibility
of adding new classes. Another thing is to rank candidate concepts similar
to the term. It differs from the previous approach in that it is trained as a

44 Chapter 2. Related Work

binary classifier, where terms and their related concepts’ names (target terms)
form positive samples, and terms and non-corresponding concepts’ names form
negative samples. The scalar output from the classifier is then used as a
measure of similarity to rank the candidate concepts for normalization. Similar
to the classification approach, these models are trained on labeled datasets
with limited target concepts.

Approach

The CODER [11] is specially designed for medical term normalization by
providing relative vector representations for different terms representing the
same or similar medical concepts with cross-lingual support. The training
of CODER is via contrastive learning on a medical knowledge graph (KG)
named the Unified Medical Language System, where similarities are calculated
utilizing both terms and relation triplets from KG. Contrastive learning
is a deep learning technique that involves learning to map similar examples
to nearby points in an embedding space while mapping different examples to
distant points. By training a model to perform this mapping, it can learn a
powerful representation of the data that captures underlying relationships and
similarities.

Contrastive learning is a widespread technique in computer vision (CV) as
a solution to learning representations in many classes. In each training step,
instead of learning to map samples to their labels, contrastive learning aims to
learn sample representations to distinguish samples of the same label (positive
pairs) from those of different labels (negative pairs), as shown in Figure. For
term normalization, terms of the same and different concepts naturally serve
as positive and negative pairs in contrastive learning, explored by SapBERT
[43] using the UMLS [41] terminology.

Figure 2.14: Positive and Negative labels pairs, image taken from [11].

However, as a KG, the UMLS contains more knowledge than just terms,
and knowledge can serve as helpful information for normalization. For example,

2.2. Reasoning with Language Models and Knowledge Graphs 45

when normalizing “poisoned by eating pufferfish,” we may want “food poi-
soning” to rank among the top because pufferfish is a kind of food. For another
example, it would be more meaningful to have the embedding of “rheumatoid
arthritis” closer to “osteoarthritis” than “rheumatoid pleuritis” because
both “rheumatoid arthritis” and “osteoarthritis” are subtypes of arthritis,
which may affect the same body parts and share treatments. The reasoning
in these examples illustrates that relational knowledge is essential to achieve
meaningful medical embeddings. Therefore, we propose dual contrastive learn-
ing on both terms and relation triplets of KGs. First, the term-relation-term
similarity is measured between a term-relation (, r) and a term (t).

CODER Model Architecture

Figure 2.15: The overview of CODER. CODER encodes terms potentially
in different languages into the embedding space. Term-term similarities and
term-relation-term similarities are calculated to train CODER.

To support cross-lingual term normalization, we use mBERT [44], which
encodes texts in different languages in one unified space. Previous methods are
usually translation-based and rely on biomedical parallel corpora. The UMLS
naturally contains massive cross-lingual medical synonyms which have yet to
be fully utilized. The contributions of this paper include the following:

• They propose a KG contrastive learning model for term normalization
that uses both synonyms and relations from the UMLS to direct the
generation of medical term embeddings. The learning strategy can also
be applied to other KGs.

• We perform evaluations on CODER against notable existing medical
embeddings. CODER achieves state-of-the-art results in zero-shot term
normalization, medical concept similarity measure, and concept relation
classification tasks. CODER embeddings can be used for embedding-
based term normalization directly or feature for machine learning, and
CODER can be fine-tuned like other PLMs.

46 Chapter 2. Related Work

• CODER is the first cross-lingual medical term representation supporting
English, Czech, French, German, Italian, Japanese, Portuguese, Russian,
Spanish, Dutch, and Chinese.

Training with relations injects medical knowledge into embeddings and aims
to provide better machine-learning features. We evaluate CODER in zero-shot
term normalization, semantic similarity, and relation classification standards,
demonstrating that CODER outperforms various state-of-the-art biomedical
word embeddings, concept embeddings, and contextual embeddings. Zero-shot
term normalization is a technique for automatically normalizing medical terms
to a standardized format without the need for training data in the target
language. This is achieved by leveraging cross-lingual word embeddings and a
bilingual dictionary.

CODER learns term representations by maximizing similarities between
positive term-term pairs and term-relation-term pairs from a KG. The KG
records relation triplets (h, r, t), where the head concept h and the tail concept
t are from concept dictionary D, and rR is the relation between them. The
similarity between two terms e_i and e_j in a mini-batch is defined as:

Sij = cos(ei, ej) (2.1)

CODER also learns KG embedding inspired by semantic matching methods
like DistMult and ANALOGY, which aim to approximate ”M_rht. The
motivation is to learn a better similarity function via relations. Consider two
triplets (h_0, r, t_0) and (h_1, r, t_1) with the same relation type, h_0 and
h_1 being semantically similar (e.g., similar diseases) may suggest that t_0
and t_1 are also semantically similar (e.g., similar drugs). We can define the
term-relation-term similarity between relations as shown in the equation below:

Si
r
j
el = cos(Mr

T
i ei, ej) =

eTi Mriej
||Mr

T
i ei||||ej||

(2.2)

Where M_rt ∈RI×I ; and ||.|| is the L2-norm.

UMLS Meta-thesaurus

We leverage the UMLS to build the training dataset. The UMLS Metathe-
saurus contains medical concepts integrated from different lexicon resources.
Each concept has a Concept Unique Identifier (CUI) with multiple synony-
mous names (terms) potentially in multiple languages. For example, concept
C0002502 has the terms: Amilorid, Amiloride, producto con amilorida, etc.
Each concept has been assigned one or occasionally multiple semantic types.

2.3. Challenges and Limitations in the Existing Subgraph Retrieval Phase47

For example, the semantic types of C0002502 are Organic Chemicals and
Pharmacologic substances.

The UMLS also provides related information between medical concepts in
the form of triplets, such as (C5190625, C0002502, (“CHD”, “is a”)). “CHD”
is the relation type. Moreover, “is a” is the detailed relationship attribute in
the UMLS. Some triplets only contain the relation type or the relationship
attribute. Therefore, we concatenate the names of the relation type and the
attribute as relation labels of triplets. CODER is trained using the UMLS
2020AA release, which contains 4.27 M concepts, 15.48 M terms, and 87.89
M relations with 127 semantic types, 14 relation types, and 923 relationship
attributes.

Training settings of CODER

We train CODERENG[11] initialized from PubMedBERT[45] for the En-
glish version with 100K training steps. We also train cross-lingual version
CODERALL initialized from mBERT with 1M training steps. Terms are
encoded by [CLS] representation. A batch size of k = 128, relation triplets,
and gradient accumulation steps of 8 are used for training. We set the count
of repeat triplets in each mini-batch < = 8. The maximal sequence length
is 32 since the terms are short. We use AdamW as the optimizer with a
linear warm-up in the first 10000 steps to a peak of 2e-5 learning rate that
decayed to zero linearly. The weight is set to 1 to balance term-term loss and
term-relation-term loss.

Medical term normalization tasks

They evaluate term normalization on three datasets in different languages.
Term normalization tasks are evaluated in a zero-shot setting, i.e., no training
datasets are provided. Cadec, PsyTar. Cadec and PsyTar are two English
medical term normalization datasets. Cadec contains 6754 terms and 1029
standard terms as normalization targets. PsyTar contains 6556 terms, which
are mapped to 618 standard terms. We use the data splitting from and top-k
accuracy as the metric, as shown in Figure 2.16.

2.3 Challenges and Limitations in the Existing
Subgraph Retrieval Phase

Structured KG is more popular than KG; Language Models do not capture
the semantic meaning of the same context with billions of parameters. While

48 Chapter 2. Related Work

Figure 2.16: Acc@k for different embeddings in Cadec and Psy-Tar datasets.
Contextual embeddings report results using the average pooling representation.

retrieving the entire Knowledge Graph is quite challenging concerning the size
and memory issues. During the reasoning on the whole KG, inferring the
answer to the question takes time, affecting the reasoning phase, which causes
finding the incorrect solution.

The subgraph retrieval part is identical to the work of QA-GNN, GreaseLM,
and Dragon. They extract a relevant subgraph Gs from the KG via an entity
linking tool and get a (text, local KG) pair. We want each pair’s text and
KG G (V ;E) to be (roughly) semantically aligned so that the text and KG
can mutually inform each other and facilitate the model to learn interactive
reasoning between the two modalities.

There are several challenges and limitations of existing subgraph
retrieval methods:

1. First, in structured Knowledge Graphs, the size of the retrieved graph is
very challenging because If the retrieved graph is too small so the chances
of missing the answer because of the small size, and if it is retrieved large
one, that can cause to introduce the noise that may effect on the reasoning
phase [46]. Earlier methods use different strategies like retrieving top-K
(Top 100 relevant nodes) entities from the triple-store (head, relation,
tail). This approach can also retrieve some off-topic entities that do not
belong to the question shown in figure 2.3, as mentioned in the QA-GNN
[14].

2. Second, the issue about the weak internal intermediate node or entities,

2.3. Challenges and Limitations in the Existing Subgraph Retrieval Phase49

which means making or establishing a connection with the intermediate
node. Suppose when we need to perform a search in space, we need to
explore the space, and our search starts from topic entities and explores
other paths until we find the desired tail or endpoint in the space; if there
is no answer in the space or the middle path P between the entities, so
which path is needed to select from the space for inferring answer to the
question. So, the fact that there is no correct answer for the intermediate
process is called the state of Weak Internal Media Supervision, which is
also faced in the existing studies [46].

This challenge can be seen in the dataset [46], only the question and its
correct answer are given, and there is no answer to the intermediate nodes
of which multi-hop process to find the correct answer. (Intermediate
node answers missing). Therefore, the extracted subgraph Gs ignores
some intermediate concept (entity) nodes and edges. In such cases, the
subgraph does not contain a complete chain of reasoning.

3. Third, an Incomplete subgraph Gs is retrieved without complete infor-
mation about the given entities and relations or the neighbour nodes,
etc. To deal with such issues, we need to use the graph reconstruction
technique that re-build the graph as discussed in the Dynamic relevance
graph network (DRGN) [46] and the case-based reasoning’s CBR
[47]. The DRGN [46] models frequently cannot reason over paths when
there is no direct connection between the involved concepts.

4. Subgraph retrieval can also be limited by ambiguity. It can be challenging
to determine the exact subgraph to be retrieved, especially in cases where
multiple subgraphs match the query pattern.

While finding the chain of reasoning in QA is challenging in general, here,
this problem is more critical when the KG is the only source, and there
is a missing edge; as shown in Figure 2.17, the KG sub-graph misses
the direct connection between Guitar and playing an instrument (green
arrow) in Figure 2.17. As pointed out, previous models are not sensitive
to the negation words and consequently predict opposite answers for the
issue of considering question semantics [8].

This image shows the weak internal connection or missing edges between
the nodes and is taken from a paper DRGN [46].

5. It becomes a significant challenge to reduce the computation cost of nodes
and the memory issue if we can retrieve the exact portion of the sub-graph
from an extensive knowledge graph.

50 Chapter 2. Related Work

Figure 2.17: The weak or missing edges between the nodes image taken from
[9].

The solutions proposed by QA-GNN [14] somehow deal with the issues,
but the question here is how to retrieve the relevant portion of the subgraph
Gs from the significant knowledge graph. Through the Relevance scoring, they
compute the relevance of KG nodes conditioned on the given QA context, but
how to measure and explore the space for retrieving the relevant nodes from
the large KGs triples. The recent research QA-GNN, GreaseLM, and the
Dragon model is the first work to deal with the negative questions. QA-GNN
improves the reasoning under negation by adding the QA global node to the
graph. However, the challenge still exists.

These are significant challenges mentioned above. However, these challenges
are the issues that the various methodologies currently being researched are
trying to solve. Our work presents a novel plug-and-play subgraph retrieval
framework model for these challenges. This efficient method combines the
Language Model and Structured Knowledge Graph to retrieve the controlled
size and relevance subgraph, preserving the semantics and inferring the correct
answer to the given question. A detailed explanation of decoupled subgraph
retrieval is in chapter 03, with a graphical understanding of the methodology.

2.4 Dense Retrieval

Text-based information retrieval refers to searching for and retrieving infor-
mation from unstructured or semi-structured text sources, such as documents,

2.4. Dense Retrieval 51

articles, or databases. This is typically done using a search engine or database
system that indexes the text and allows users to search for keywords or phrases.
A text-based information retrieval search results are ranked based on relevance
scores, with the most relevant results appearing at the top of the list. This
approach to information retrieval is widely used in many industries, including
academic research, e-commerce, and legal research.

Generally, in the QA system, the first step is the retrievals phase, in which
the system identifies the relevant document from the set of large documents or
corpora. The second is the reasoner phase, in which the reasoner performs the
reasoning and identifies the exact answer from the set of retrieved or identified
documents, considered the exact answer to the question.

Figure 2.18: Information Retrieval and Reasoner phase

52 Chapter 2. Related Work

Information Retrieval (IR)
Subgraph retrieval is the very complex phase to retrieve the relevant portion

of the subgraph Gs from the Structured Knowledge Graph KG. Still, it is also
crucial to find the exact entities and relations to construct the subgraph Gs.
For traversing the graph and performing reasoning, we have some essential
preliminary steps, like identifying entities and relationships from the knowledge
base structure or the triple store constructed in the offline pre-processing phase
of the dataset USMLE.

The entities extracted from the question are called the topic entity. Our
starting point in the dense space setting is these topic entities, which we use to
find answers. The right way to find the correct answer is by calling the part
related to the topic entity in the question and searching for the relation and
tail entities of the topic entity. In addition, Logical Base Question Answering is
a task to calculate or find a correct answer entity through a KB Base (triples)
for a factoid question in natural language with a definite answer.

2.4.1 Language Model for Dense Passage Retrieval

Recent research shows most researchers try to make the retrieval phase more
efficient than the existing one. They are trying to find new ways of information
retrieval or improve the existing methods in accuracy and efficiency. In the
Dense Passage Retrieval (DPR) [26], the retrieval phase of the system selects
the passage or paragraph closer to the answer and then extracts the passage
using NLP and retrieves the exact answer to the given question. The studies in
DPR [26] show improved retrieval components in open-domain QA. The aim
of DPR is to retrieve and index the passage from the set of passages M , and
transform them into a low-dimensional and in continuous space.

Searching and indexing the relevant document from a set of documents
can be done in two ways. (1) TF-IDF and (2) BM25 model. TF-IDF is
a mathematical framework and very traditional and frequency-based method
that shows the importance of each word concerning documents. TF-IDF has
some restrictions related to the size of the given documents and the length of
the terms matrix; also, it deals with individual documents at a time.

BM25 model for documents retriever: BM25 is a probabilistic retrieval
framework for the Open-domain QA (OpenQA) [13]. The system aims to
answer based on many documents like Wikipedia. In the Open-domain QA,
the retrieval phase is considered the system’s backbone because the retrieval
function retrieves the set of documents based on the given query, retrieves
those documents containing the query terms, and ranks them according to

2.4. Dense Retrieval 53

their similarity scores. BM25 is a popular method that retrieves documents or
passages concerning the given query.

The model can efficiently retrieve the top K passage relevant to the input
question. DPR [26] uses dual dense encoder Ep for passage and Eq for the
question. Ep transforms the given text into the dimensions of a real-valued
vector and builds an index for all passage M for the retrieval phase. At run
time, the different encoder for question Eq, Eq maps the input question to a
d-dimensional vector. It retrieves the K passage closest to the question vector
from the index passages M .

sim(q, p) = EQ(q)
TEP (p) (2.3)

Equation 2.3 Similarity between the question EQ and passage EP using the
dot product of their vector representations.

Figure 2.19: Graphical representation of the equation 2.3,How to measure the
similarities between the embedding of question EQ and the passage EP .

2.4.2 Differentiate between Single-hop and Multi-hop rea-
soning

In the reasoner phase, we need to use different attention mechanisms, Graph
Attention Network GAT or Graph neural network GNN, paying attention
to inferring the answer to the question. For searching the answers, we need
to traverse the graph by going from entity to entity and relation to relation,
sometimes, our answer is directly linked to the question, and we need to use one
hop or one-step traversal of the graph to find the exact answer to the questions.

54 Chapter 2. Related Work

A one-hop question means a question that needs to be breathed, traversed, or
reasoned only once.

Figure 2.20: Difference between single and multi-hop reasoning for inferring
answer to the given question.

For example, the laboratory DSBA that I belong to which is directly
connected to me at once through the relation (member of), as shown in the
following figure 2.20. Hence, the answer can be found in these simple forms
beyond easy. But in the multi-hop question, the answer is not directly connected
with the topic entities, and we need to go far in the search for the answer,
as shown in the Figure. In multi-hop, a distinct critical advantage is finding
answers to complex questions by crossing several objects through relational
connections between entities. This is called multi-hop question reasoning.

A multi-hop question on the right of the Figure, we have the following
question: Who is the first wife of a TV Producer nominated for the Jeff Probst
show? For the multi-hop, there are many parts that the graph needs to pay
attention to or fetched from the knowledge base. The correct answer must be
searched through multiple relations and entities to reach the answers.

Chapter 3

Our Solution

3.1 Stanford UMLS Knowledge Graph

Bio-Medical Knowledge Graph (UMLS)

The Stanford UMLS Knowledge Graph (KG) is a large-scale knowledge base
created by Stanford University that combines information from the Unified
Medical Language System (UMLS) with other sources to represent biomedical
knowledge comprehensively. The UMLS KG triplet store is a database system
designed to store and manage the triplets that make up the UMLS KG.

The Unified Medical Language System (UMLS) Knowledge Graph (KG)
contains information about a wide range of biomedical fields, including but not
limited to:

• Anatomy: Information about different body parts, organs, and systems.

• Pathology: Information about diseases, disorders, and conditions.

• Pharmacology: Information about drugs, their uses, interactions, and
side effects.

• Medical procedures: Information about surgical and non-surgical
procedures.

• Physiology: Information about the body’s functions and its systems.

• Genetics: Information about genes, genetic disorders, and inheritance.

The knowledge graph provides a comprehensive representation of biomedical
knowledge and is a valuable resource for the biomedical community.

55

56 Chapter 3. Our Solution

Figure 3.1: Example of Bio-Medical Knowledge Graph (UMLS).

UMLS comprises many biomedical ontologies and vocabularies, including
Systematized Nomenclature of Medicine Clinical Terms SNOMED. In addition
to containing semantic relationships between medical concepts, UMLS imports
relationships between semantic groups, such as disease and symptoms, from its
sources. Loading these relationships from various sources onto a graphDB such
as Neo4j or OrientDB opens up opportunities to perform graph computing
algorithms and create knowledge graphs to answer interesting questions.

Below are some potential applications of such a knowledge graph,

• Clinical decision support - e.g. Drug - Disease treats relationship and
Drug - Adverse event relationships.

• Discover new types of relationships between concepts using knowledgebase
completion or by discovering clusters of similar concepts. Potentially
applicable in discovering new treatments for drugs.

• Extend existing knowledge graph - This is one inherent advantage of
graphdb, which easily lends to expanding existing graphs by connecting
new graphs, thereby increasing knowledge.

• Extract knowledge subgraphs based on node types or relationships.

• A comprehensive way to visualize and explore medical knowledge captured
by the UMLS task force since 1986.

Healthcare data is inherently complex, and such efforts can hugely augment
effort in integrating domain knowledge into tools and applications we build.

3.2. Knowledge Graph Embeddings 57

3.2 Knowledge Graph Embeddings

Graphs are collections of facts in the form of ordered triples (h, r, t), where
entity h is related to entity t by relation r. Because knowledge graphs are
often incomplete, the ability to infer unknown facts is a fundamental task
(link prediction). A series of recent KGE models approach link prediction
by learning embeddings of entities and relations based on a scoring function
that predicts a probability that a given triple is a fact. Knowledge Graph
Embeddings represent entities and relationships in a knowledge graph as dense
vectors, also known as embeddings, in a high-dimensional vector space. This
method aims to capture the complex relationships between entities and their
attributes in a compact and continuous representation that can be used for
various downstream tasks, such as link prediction, knowledge graph completion,
and information retrieval.

Benefits of KG Embeddings

The main idea behind dense knowledge graph embeddings is to train a
neural network on a large corpus of text and use the learned representations
of entities and relationships in the knowledge graph as embeddings. This can
be done using various methods, including TransE, DistMult, and ComplEx.
The resulting embeddings capture the complex relationships between entities
and their attributes in a continuous and high-dimensional vector space, which
can be used to perform various machine-learning tasks, such as classification,
clustering, and recommendation.

Knowledge Graph Embeddings offer several benefits for representing and
analyzing graph data:

• Compression: By mapping the nodes and edges of a graph to dense
vectors, dense graph embeddings provide a compact and continuous
representation of the graph structure and relationships, making it easier
to store, manipulate, and analyze large graphs.

• Interpretability: Dense graph embeddings provide a high-dimensional
continuous representation of graph data, which can be visualized and
interpreted more easily than sparse graph representations. This can be
useful for exploring and understanding the structure of a graph.

• Transfer learning: Dense graph embeddings can transfer knowledge
from one graph or task to another. For example, pre-trained embeddings
can be fine-tuned on a new task or used to initialize the weights of a
model for a new graph.

58 Chapter 3. Our Solution

• Scalability: Dense graph embeddings can be computed and stored
efficiently, making it possible to handle large-scale graphs.

• Improved performance: Dense graph embeddings have been shown to
improve performance on graph-related tasks, such as node classification,
link prediction, and graph clustering, compared to traditional graph
representation methods.

3.3 Reasoning over Knowledge Graphs
Subgraph GS construction is a similar phase in the QA-GNN, GreaseLM,

and Dragon. While extracting the entities from the question or the topic
entities in the Dragon, it uses an additional phase. It used an entity-linking
extractor to extract the entities from the question. Then, it tried to use the
QA-GNN methodology to retrieve from the KG and compute the likelihood
between the QA context and the retrieved entities. As shown in Figure 2.3,
the more relevant entities concerning their relevance score can be linked near
the QA context and similarly to other entities. In the QA-GNN, they have a
typical working graph and then perform joint reasoning on them to predict the
answer to the given input question.

Figure 2.3 shows the entities retrieved from the existing approach; some
are off-topic, and some are semantically irrelevant to the given QA context.
Like banks, those entities are considered outliers or noise that impact the
reasoning process to find the exact answer. For example, nodes “holiday” and
“riverbank” are off-topic; “human” and “place” are generic entities. These
irrelevant or off-the-topic nodes may result in over-fitting or introduce noise
that can affect the reasoning phase while retrieving the exact answer to the
question.

Discrete Subgraph retrivals

The current retrieval phase retrieves the discrete subgraph from a knowledge
graph and involves finding a subgraph disconnected from the rest. It can be
done using graph traversal algorithms such as depth-first search or breadth-
first search to identify all the nodes and edges that belong to the subgraph.
Alternatively, graph database query languages like SPARQL can retrieve the
desired subgraph. The specific approach may depend on the knowledge graph’s
type and structure.

The major drawback of discrete subgraph retrieval from a knowledge graph
(KG) is that it may not capture the full context or relationships between entities
in the KG. Discrete subgraph retrieval involves extracting a subset of nodes

3.3. Reasoning over Knowledge Graphs 59

and edges from the KG that match a particular query, which may not provide
a complete picture of the surrounding entities and their relationships. This
could limit the accuracy and effectiveness of downstream applications that rely
on KG data.

Dense Subgraph retrieval

Finding a dense subgraph in a knowledge graph is an active area of research
in graph theory. It has many real-world applications, including community
detection, social network analysis, and recommendation systems. One common
approach to finding dense subgraphs is to use algorithms that measure the
density of the subgraph, such as the modularity metric. First, choose a starting
node in the graph space and initialize a set to store the nodes and edges of
the subgraph. Next, use a density metric, such as modularity or clustering
coefficient, to evaluate the the density of the subgraph.

Finally, add neighboring nodes to the subgraph and re-evaluate the den-
sity metric until the density no longer increases or a stopping condition is
met. Finally, return the final subgraph as the solution to the problem. This
involves formulating a query specifying the subgraph density to be retrieved
and executing the query against the graph database. Using graph database
(Like GraphDB), query languages like SPARQL can retrieve a dense subgraph.
Again, this involves formulating a query specifying the subgraph density to be
retrieved and executing the query against the graph database.

Retrieving dense subgraphs from a knowledge graph (KG) can have several
benefits, including:

• Capturing rich context: Dense subgraphs contain many interconnected
entities, providing a complete picture of the surrounding entities and their
relationships. It can help downstream applications better understand the
context and make more informed decisions.

• Identifying important entities: Dense subgraphs often contain impor-
tant entities that play a vital role in the KG. Identifying these entities
can provide valuable insights into the structure and function of the KG.

• Efficient processing: Retrieving dense subgraphs can be more efficient
than retrieving individual entities or discrete subgraphs. It is because
many algorithms for subgraph retrieval are optimized for dense subgraphs,
allowing for faster processing times and lower computational costs.

Overall, retrieving dense subgraphs can unlock the full potential of KGs
and improve the accuracy and effectiveness of downstream applications.

60 Chapter 3. Our Solution

3.3.1 Subgraph Retrieval Enhanced Model for Multi-hop
Knowledge Base Question Answering

This paper [12] presents the idea of a Subgraph retriever (SR) that is very
useful and easy to replace in the existing work of QA-GNN ([14]), GreaseLM
[8], and the DRAGON [9] subgraph retrieval phase. The subgraph retrieval
SR is a plug-and-play framework independent of the following reasoning phases.
It has a significantly better subgraph retrieval phase than the existing methods
mentioned in the QA-GNN [14], and the DRGN [46]. This SR extracts the
full multi-hop topic-centric subgraph from the large KG and also produces the
control graph size with the help of personalized PageRank (PPR) scores
of entities, like by setting the threshold which is set for the selection of the
entities and paths.

In the existing work on each step, the LSTM-based retriever selects
new relations, a path relevant to the question or the topic entities, after the
GNN-based reasoner determines which tail entities of the new relations should
be expanded into the subgraph. The result of this methodology is to perform
reasoning on the partial graph that is missing some parts or nodes relevant to
the given question.

Apporach

Subgraph Retrieval SR is developed as an efficient dual encoder model,
which can expand paths or relations to induce the subgraph and stop the path’s
expansion automatically. The goal of the SR is to find the sequence of links
or connections with the highest probabilities and then induce the tree. For
deducing the answer from the merged graph, we use GraphNet or Neural
state Machine NSM to infer the responses from the retrieved subgraph.
This decoupled or separable retrieval and reasoner can only reason on the final
retrieved subgraph instead of partial or the large one, which can be considered
costly concerning time and computation of the relation and node awareness.

Moreover, this DSR will also construct the controlled subgraph concerning
the size that is not very small or too large and the missing intermediate node
connection because it explores those sequences of paths that can fulfil the
threshold criteria.

Problem Definition
The information in the KG is organized in the form of triples which contains

the head, tail, and relations. G = (e, r, e0) where the E represents the set of
entities and set relations, respectively. As per the given question q, KG-based
retrieval aims to figure out the answer Aq to the question from the set of entities

3.3. Reasoning over Knowledge Graphs 61

E of Knowledge Graph KG. The entities Eq mentioned in the given question
q are called topic entities, which are already given. In our dataset USMLE,
we have complex questions where the answers are not directly available, so we
need multi-hop reasoning to obtain the answers of the topic entities.

In the probabilistic formulation, we aim to maximize the probability of
answers a to the question by measuring the probability of answer a given by
graph G and question q, respectively.

p(a/G, q) =
∑
G

Pϕ(a/q,Gs)Pθ(Gs/q) (3.1)

Instead of performing direct reasoning on the entire G, we need to retrieve
the subgraph Gs from the Knowledge graph G and then infer the answer a.
According to the given equation 3.1, we have two modalities, the first is to
retrieve the portion of subgraph Gs as per given the question q, and the second
one is to infer the answer given by the retrieved subgraph Gs and the question.

The goal is to find the optimal parameters θ (subgraph retriever Gs condi-
tioned by question q) and ϕ (inferring the answer condition by question q and
the Gs) that maximize the log-likelihood of training data as shown in equation
3.2.

L(θ, ϕ) = maxθ,ϕ
∑

(q,a,G)ϵD

log
∑
G

sPϕ(a/q,Gs)Pθ(Gs/q) (3.2)

D contains the whole training dataset, and here we present the concept of
decoupled phase for the retrieval pθ and the reasoner pϕ. Both parts (retriever
pθ and reasoner pϕ) can be optimized respectively, as shown in equation 3.3.

L(θ, ϕ) = maxθ,ϕ
∑

(q,a,G)ϵD

logPϕ(a/q,Gs)Pθ(Gs/q) (3.3)

Overview of Subgraph Retrieval

Figure 3.2 demonstrates how subgraph Gs is constructed using the topic
entities Eq from the question q using the relations r or path. Topic entities
Eq are our starting points, and we expand routes from the topic entities and
induce a corresponding tree. When we have generated trees from each topic
entity, we merge those induced trees into the standard unified graph using the
union techniques. After all the work, as a result, we have a standard graph. It
is used for the next reasoner phase to perform reasoning to infer the answer to
the given question q instead in the initial stage on the KG without filtering
anything.

62 Chapter 3. Our Solution

Figure 3.2: Illustration of the subgraph retrieving process. We expand a path
from each topic entity, induce a corresponding tree, and then merge the trees
from different topic entities to form a unified subgraph [12].

3.3.2 How to expand paths from topic entities?

We need to input the topic entity and its connected path for an inferring
path to the subgraph. The topic entity is a node representing the starting node
in a knowledge graph, and the path represents the edges following from the
starting node to form a subgraph. Through this function, we got a set of nodes
and a set of triples from the subgraph. To find the candidate relation from the
given paths, we use the topic entity and path and deduce the relations that
can be formed between the leaf nodes of the subgraph specified by the path
and the topic entity. The function then filters out relations with a namespace
of KG or common. Finally, the function returns the set of candidate relations
as a list of strings.

Path Queries

For example, the path expedition starts from the starting points in the
search space, like the topic entities mentioned in question (Turing Award,
Canada). In the case of our dataset USMLE, we already have all set of
entities and relationships that are in the form of triples (head, relation, tail).
Our goal is to identify the sequence of paths or relations (r1,r2 · · ·, rn), the
question q can indicate the intermediate relations excluding the tail entities in
the search space, here we have a concept of partial path p(t) = (r1,r2 · · ·, rt)
that are retrieved at time t to the questing entities Eq. For each partial path
at each time step t, a tree can be induced from the retrieved path p(t) and fill
the intermediate or missing entities along those paths. For example: T (t) =
(Eq, r1,r2 · · ·, rt), Et).

With the help of a partial path, we can derive the entities Et, each entity Et

considered as the head entity, and a relation with the head entities can derive
multiple tails entities. This task is similar to the tail entities prediction with
the help of a predefined head and relation. But the question is how to select
the following relation from the all-neighbor relations (union of relations, like
in a WordNet, we have 29 relations) of head entities Et. The solutions are

3.3. Reasoning over Knowledge Graphs 63

to measure the relevance of each relation r to the question by taking the dot
product between their embeddings, as shown in equations 3.4.

s(q, p) = f(q)Th(r) (3.4)

In equation 3.4, both f and h are instantiated by RoBERTa [22], which
represents the same concept as used in the Dense passage Retriever DPR
[26] a dual encoder-based model. Instead of the BERT [3] encoder, we use a
dual Roberta base model, one for relation and one for the question. The
mechanism for passing input to the model is similar to DPR [26], we input the
question and relation to the Roberta model, and it returns the [CLS] token
as the output embeddings and the measure of the similarities between the
representation of question Rqand relations Rr.

Conjunctive Queries

We aim to find relevant paths in a knowledge base (KB) or KG to answer a
question. We start with an initial set of candidate paths, a list of paths with
their corresponding scores. Then, at each iteration, we calculate the next set
of candidate relations for each path based on the current topic entity and the
path history, as shown in equation 3.5.

With partial path p(t), which is expanded for predicting the tail entities,
for updating the embedding of question f(q)T , we use the embedding of each
partial relation p(t) at time t and concatenating them to the original question
q as shown in equation 05.

f((q)T) = RoBERTa([q, r1, r2, rt]) (3.5)

After the updating embedding of the question f((q)T), we can modify
equation 3.4 and replace the embedding of the previous embedding of question
q with the updated one f((q)T) and then measure the similarities with the
embedding of relations as shown in the equations 3.6.

s(qt, r) = f((q)t)Th(r) (3.6)

The question qhere is when to stop the expansion of the relations r. The
probability P (r/qt) of the relations given by the questions at time t can be
formalized in equation 3.7. Then, we score each path-relation pair based on
how well the pair matches the question and retains a certain number of the
highest-scoring path-relation pairs as the new set of candidate paths. The
process continues until either no more candidate paths are left or Until we
Reach the virtual End keyword, as shown in equation 3.7, the maximum number
of hops is reached, or the required number of result paths is found.

64 Chapter 3. Our Solution

P (r/qt) =
1

1 + exp(s(qt,END)− s(qt, r)
(3.7)

In equation 3.7, we use the END token as the virtual relation that is con-
sidered as the threshold. The similarity score s(qt,END) shows the similarity
measure between the question and the with END. The probability of each
relation p(r|qt) given by question at time t is larger than the set threshold
0.5 then we consider as the relevant relation; otherwise, we discard them and
select another relation until we reach p(t) = (r1,r2 · · ·, rn) and repeat the
process for all relations. As a result, we select the top one relation p(r|qt) >
0.5 whose score is higher from the ranked relations list and predict the tails
entities.

If the probability of relation is p(r|qt) > 0.5 is not larger than 0.5, the
expansion automatically stops. Finally, the probability of a path p given the
question qt can be computed as the joint distribution of all the relations (r1,r2
· · ·, rt) in the pathp as shown in equation 07.

Pθ(p/q) =

p∏
t=1

P (rt/q
t) (3.8)

As in equation 3.8, |p| shows the number of relations r in p, the time
t = 1 shows the selection at the topic entities, and t = |p|, denotes the last
none-stop relations selections. The selection of the top− 1 relevant path cannot
be guaranteed the right one from all paths; we use another technique called
Beam search. We perform a Beam search with a beam size of 2 and get
top− k paths p concerning time t. For each topic entity Eq from question q,
through Beam search, we obtain K paths which result in nK paths in total by
n topic entities and every nK path link with nK instantiated tree as shown in
Figure 3.3.

In the given figure, the goal is to find the sequences of the relations (r1,r2 · ·
·, rn) with the highest probability instead of an exact-match search because it
is an expensive approach, so we use another approximated searching technique
called beam search, Beam search expands the nK path and those nK path
inducing the trees.

3.3.3 Subgraph Construction Through Expanded Paths

We induced trees from the expanded nK path; for each topic entity, we
have an nK path, and every path has a tree representing the head and tail
entities linked through the relation from the expanded nK path. Simple, we
use a mathematical operation called UNION. We combine top-K expanded
trees from one topic entity into a single subgraph. Ultimately, we merge the

3.3. Reasoning over Knowledge Graphs 65

Figure 3.3: Trees inducing through the selected paths as shown in the image,
taken from the work [13].

same entities from different N subgraphs to induce a common subgraph called
the final subgraph. For the second reasoning phase in the model, we use that
final subgraph to infer the answer to the given question q, as shown in the
third part of the images below.

Figure 3.4: Trees merging into a unified common graph taken from

Forward and Backward Search

Through standard graphs or merged entities, we can trace back from the
tail node or leaves node to the root or topic entities and vice versa for the trace
forward. For example, in Figure 3.2, we have a given input question “Where
did Canadian citizens with Turing Award graduate?” with two topic

66 Chapter 3. Our Solution

entities “Turing Award” and “Canada” , there are two paths expanded from
topic entities (Win, Graduate) and (Citizen, Graduate) and then merged
the trees that are induced by them into common unified subgraph as shown
the figure 3.4.

3.3.4 Subgraph Retrieval and Training

Subgraph retrieval and training are two critical components of subgraph
retrieval-enhanced models for multi-hop reasoning in knowledge graphs (KGs).
Subgraph retrieval involves identifying relevant subgraphs from the KG that
can be used to support multi-hop reasoning. It involves selecting a subset of
nodes and edges from the KG connected to a starting entity and forming a
subgraph relevant to the query being asked. The retrieved subgraph is then
used to perform multi-hop reasoning to infer new knowledge or answer the
query.

While the training in subgraph retrieval-enhanced models involves using
Language Models and Machine Learning algorithms to learn how to retrieve
relevant subgraphs from the KG, this typically involves training a neural network
or machine learning model to predict which subgraphs are most relevant to
a given query. Then, the model is trained on a dataset of queries and their
corresponding subgraphs using supervised or reinforcement learning techniques.

By combining subgraph retrieval and training in a single model, subgraph
retrieval-enhanced models can learn to effectively retrieve relevant subgraphs
from the KG and use them to support multi-hop reasoning. This can improve
the accuracy and effectiveness of reasoning in KGs and enable more sophisticated
downstream applications.

Figure 3.5: Subgraph Retrieval SR and training phases.

Given the input question q “Where did Canadian citizens with Turing
Award graduate?” with two topic entities such as “Turing Award” and
“Canada”2. The goal of subgraph retrievals is to find the sequence of relations.

3.3. Reasoning over Knowledge Graphs 67

SR iteratively expands the relations of the mentioned topic entities and then
generates the nK paths. We pre-train the retriever based on the prior of each
track and train the reasoner based on the likelihood of the subgraph fused from
the nK trees. For end-to-end training, the retriever is fine-tuned on each path’s
posterior, consisting of its prior and likelihood.

The ground truth subgraphs construction is not easy to retrieve, so we
alternative to the weak supervision signals constructed from the given question
and answering (q, a) pairs. From each topic entity Eq of a question q, we
obtained all the shortest paths to each answer and considered them as the
supervision signals, as the initial paths are more accessible to retrieve than
graphs. Moreover, since maximizing the log-likelihood of a path equals P |p|t =
1logp(rt/q

t) according to 3.8, we can maximize the probabilities of all the
intermediate relations in a path.

To achieve the goal, we decompose a path p = (r1, , r|p|) into |p| + 1
(question, relation) instances, including ([q], r1), ([q;r1], r2), ..., ([q; r1; r2; ;
r|p|1], r|p|), and an additional END instance ([q; r1; r2 ; ; r|p|], END), and
optimize the probability of each instance. We replace the observed relation
at each time step with other sampled relations as the negative instances to
maximize the likelihood of the observed ones.

Chapter 4

Experimental setup

4.1 Dataset

MedQA-USMLE (MedQA) is a 4-way multiple-choice task containing
the United States Medical License Exam questions. The dataset has 12,723
questions. Each sample contains a question, correct answer(s), and other
options which require a deeper language understanding as it tests the 10+
reasoning abilities of a model across a wide range of medical subjects and topics.
A detailed explanation of the solution, along with the above information, is
provided in this study. MedMCQA provides an open-source dataset for the
Natural Language Processing community. The MedQA USMLE dataset is not
used for the experiment due to its large size and complexity in making a fair
comparison. Additionally, the dataset contains additional meta information on
the questions and answers.

System Configuration

We use Google Colab notebook for trim levels of testing and prototyping
because it provides a free cloud-based Jupyter notebook environment that is
convenient for prototyping and testing small-scale machine learning models.
However, to train more extensive and complex models or handle larger datasets,
we need more computing resources than are available in a typical Colab envi-
ronment. In particular, training models on large datasets can require significant
computational resources, including GPUs or TPUs, high-performance CPUs,
and large amounts of memory. While Colab provides access to GPUs and
TPUs, the available resources are limited and may need to be improved for
large-scale training tasks.

In contrast, server settings can provide much larger computing resources,
including high-performance CPUs, multiple GPUs or TPUs, and large amounts

69

70 Chapter 4. Experimental setup

Figure 4.1: Google Colab notebook resources utilizations.

of memory and storage. These resources are typically optimized for high-
performance computing tasks and can support more significant and complex
machine-learning models. Therefore, for large-scale training tasks, it is necessary
to use server settings that provide more computing resources than are available
in a typical Colab environment.

Hardware Setup: We ran each experiment on a workstation having one
Nvidia GeForce RTX3090 GPU with 24GB of dedicated memory, 64GB of
RAM, and an Intel® Core™ i9-10900X1080 CPU @ 3.70GHz.

Experiment tracking: We track all our trainings with Weights and
Biases10 and monitor CO2 emissions with CodeCarbon11. Moreover, we profile
the neighbors’ retrieval speed with custom code.

SLURM (Simple Linux Utility for Resource Management: SLURM
is a workload manager used in high-performance computing (HPC) environ-
ments to schedule and manage to compute jobs across a cluster of nodes. It
provides a framework for submitting, managing, and monitoring jobs and allo-
cating and tracking resources such as CPUs, memory, and GPUs. SLURM is
open-source and widely used in academic and research computing environments.
Through sbatch we submit the jobs for the executions as mentioned below.

sbatch is a command in the SLURM workload manager used to submit
batch jobs for execution on a compute cluster. It specifies job requirements such

4.1. Dataset 71

as the number of nodes, CPU and memory requirements, job time limit, input
and output files, and other parameters. Once submitted, the job is added to
the queue and is scheduled to run on the cluster as resources become available.
The sbatch command is typically used with a script specifying the job’s details.

Pre-processing on UMLS KG

There are two ways of training the model; the first one is Online processing,
which refers to the use of a model in a real-time setting, where input data is
processed as it is received, and the model produces output immediately. The
second one is offline processing, which refers to using a model on a dataset that
is not actively used or updated.

We used the Stanford UMLS Knowledge Graph (KG) [14, 9], we downloaded
the KG from the Dragon and QA-GNN, UMLS is a large-scale, structured
representation of biomedical knowledge created by Stanford University. It
combines information from the Unified Medical Language System (UMLS)
with other sources to provide a comprehensive representation of biomedical
knowledge in the form of a knowledge graph.

UMLS KG Triples

A triple in the Stanford UMLS Knowledge Graph (KG) consists of a subject,
a predicate, and an object. Each triple represents a relationship between two
entities in the KG. Here are some examples of triples in the UMLS KG:

Subject Predicate Object

1 Diabetes Mellitus has-diagnosis Diabetes
2 Insulin "is-a-drug-used-for" Treatment of Diabetes
3 Fever is-a-symptom-of Influenza
4 Heart Attack is-treated-with Aspirin
5 Breast Cancer has-treatment Surgery,
6 Breast Cancer has-treatment Chemotherapy

Table 4.1: Example of Stanford UMLS KG Triples

Here in the given triples, the subject and object are used as the nodes or
entities in the graph, while the relations are considered as the edges in between
the subject and object. These are just a few examples of the relationships
represented in the UMLS KG. The knowledge graph provides a rich represen-
tation of biomedical knowledge and is a valuable resource for the biomedical
community.

72 Chapter 4. Experimental setup

Triplet Store Construction

In the offline preprocessing phase, the first step is to store the extracted
triplets in the triplet store or organize them in a helpful representation format.
This involved selecting a suitable database management system, designing the
schema, such as Tab-separated values or CSV for the store, and optimizing
for efficient querying and retrieval of information. After the construction
of the triplet store, it was populated with the extracted triplets, and various
algorithms were used to enhance its functionality, such as entity disambiguation,
relationship extraction, link prediction etc.

During preprocessing and construction of triplet files, we observe from the
related work published by the same author that and having similar subgraph
retrievals phases like QAGNN, GreaseLM, and Dragon. For example, while
analyzing the preprocessed data from Dragon and QAGNN, In QAGNN, we
have less number of relations; while exploring the other processed data from
GreaseLM and Dragon, we observe that the processed KG in the QAGNN
is very small, containing 15 relations, while on the other hand, the size of
knowledge graph KG in the Dragon is substantially large as compared to QA
GNN. For example, in the QA GNN, we only have 15 types, while in the
Dragon, we have 98 relations, as shown in Table 4.2.

Relations Head Nodes Tail Nodes
99 220737 294385

Table 4.2: Unique UMLS Knowledge Graph features (Head, Tail, and Relations).

Knowledge Graph Embedding Models - PyKEEN

TransE
We split the UMLS KG dataset into training, testing, and validation subsets

in Open-domain question answering. We need to define our split based on
the specific requirement task in practical use. Like UMLS KG dataset has
been split into three subsets for training, testing, and validation. The training
subset contains 80% of the data, while the testing and validation subsets each
contain 10% of the data. While the pyKEEN splits split the data into training,
testing, and validation subsets using the pykeen.slicing module, which provides
functions for creating various types of data splits.

For graph embedding, we use the most popular methods for the medical
dataset. The python library PyKEEN performs knowledge graph (KG) embed-
ding on a set of triplets. The triplets are split into train, evaluation, and test

4.1. Dataset 73

sets. The KG embedding algorithm used is TransE, a popular algorithm for
KG embedding.

• training: the train set of triplets.

• validation: the evaluation set of triplets.

• testing: the test set of triplets.

• model: the name of the KG embedding algorithm to use (in this case,
TransE).

• stopper: the stopping criterion for the training process (in this case,
early stopping).

• epochs: the maximum number of epochs to run the training process for
(in this case, 100).

• dimensions: the number of dimensions of the embedding vectors (in
this case, 512).

• random_seed: the random seed used to initialize the embeddings (in
this case, 420).

The pipeline function takes several arguments:
The results of the KG embedding can be saved to a directory for later use.

DistMult

We use the PyKEEN library to perform knowledge graph (KG) embedding
on a set of triplets constructed in the initial offline preprocessing section. First,
we split the triplets into the train (80 %), evaluation (10 %), and test (10
%) sets using the TriplesFactory method from PyKEEN. The resulting train
and evaluation sets will be used to fit the KG embedding model, while the
test set will be used to evaluate the model’s performance. To perform the KG
embedding, The KG embedding algorithm is DistMult, a widely used algorithm
for KG embedding.

The pipeline function takes several arguments:

• training: the train set of triplets.

• validation: the evaluation set of triplets.

• testing: the test set of triplets.

74 Chapter 4. Experimental setup

• model: the name of the KG embedding algorithm to use (in this case,
DistMult).

• stopper: the stopping criterion for the training process (in this case,
early stopping).

• epochs: the maximum number of epochs to run the training process.

Finally, the KG embedding model results are saved to a directory named
"stanford_kg_transe" for future use instead of training repeatedly.

Hyper-parameters Tuning - PyKEEN

PyKeen provides several options for tuning the hyperparameters of a knowl-
edge graph embedding model. One way is to use the built-in hyperparameter
tuning functionality, which utilizes the Optuna library. It allows you to specify a
range of possible values for each hyperparameter and the number of trials to run.
It will then search over the parameter space to find the best hyperparameters
based on a specified evaluation metric.

Another way to tune the hyperparameters is by specifying a configuration
file that contains the hyperparameter settings. This allows you to set the hy-
perparameters and fine-tune the model manually. Additionally, PyKeen allows
using other libraries, such as Hyperopt and Optuna, to perform hyperparameter
tuning. It will enable the user to specify the optimizer and the search space in
the configuration file. It is essential that the selection of hyperparameter values
can significantly affect the model’s performance, so it is generally recommended
to perform a thorough hyperparameter tuning procedure before evaluating the
model on a test set.

Embeddings with CODER
CodeR [48] is a cross-lingual medical term embedding system designed

for term normalization. The knowledge-infused system leverages external
knowledge sources and text data to generate embeddings for medical terms.
The purpose of codeR is to map multiple variants of medical terms (such as
synonyms, abbreviations, or different spellings) to a single normalized form.
This can be useful in various medical NLP applications, such as information
retrieval, text classification, or named entity recognition. The knowledge-
infused approach used by codeR allows it to generate more accurate and robust
embeddings than standard term embedding methods that rely only on text data.
In addition, by incorporating external knowledge sources, codeR can better
capture the semantic meaning of medical terms and improve normalization
performance.

4.1. Dataset 75

(a) The t-SNE Visualization of
Knowledge Graph embeddings
through DistMult embedding

method.

(b) The t-SNE Visualization of
Knowledge Graph embeddings

through traditional TransE
embedding method.

Figure 4.2: 2 Figures side by side

We preprocess the KG triples data by converting entities and relationships
into embeddings. We use a pre-trained language model (UMLSBERT [48]) for
encoding the given triples (h,r,t). We define a function (convert_to_embeddings)
that takes a tokenizer, a model, and an input and returns the embedding repre-
sentation of the input of the given KG. The function uses the encode method
of the tokenizer to tokenize the input into a sequence of input IDs, which is
then fed into the model to obtain the last hidden state of the model. The
last hidden state is then used as the embedding representation. Finally, we
generate embeddings for each entity and relationship in the triple data through
the function. The embeddings are stored in the entity_to_embedding and
relation_to_embedding dictionaries.

Node and Relation Embeddings and Explorations

Dense graph nodes refer to nodes with relatively high connections or edges
compared to others in the same graph. Relation embedding is a technique
used to represent relationships between nodes in a graph in a continuous, low-
dimensional vector space called an embedding space. It can be helpful for node
classification, link prediction, and visualization of the graph structure.

Exploration of dense space refers to analyzing and understanding the prop-
erties of the dense regions in the graph, such as identifying clusters of densely
connected nodes or detecting patterns in the relationships between nodes.
This can be done using graph clustering, community detection, and network
centrality measures.

76 Chapter 4. Experimental setup

Evaluation Metrics

Evaluating the performance of KG (knowledge graph) embedding models
typically involves using a combination of quantitative metrics and qualitative
inspections.

Quantitative metrics that are commonly used to evaluate KG
embedding performance include:

• Mean Reciprocal Rank (MRR): This metric measures the average
rank of the correct entity in the list of entities returned by the embedding
model. A higher MRR score indicates better performance.

• Mean Rank (MR): This metric measures the average rank of the
correct entity across all test cases. A lower MR score indicates better
performance.

• Inverse geometric mean of ranks (IGMR): This metric is like MRR
but is a more robust performance measure. The IGMR can be computed
as the reciprocal of the geometric mean of the ranks of the correct entities.

Qualitative inspections that are commonly used to evaluate KG
embedding performance include:

• Tail prediction: This qualitative evaluation assesses the model’s ability
to handle entities with fewer facts and less connectivity. The tail entities
are considered the low-frequency entities in the dataset.

Evaluating the KG embedding performance requires a combination of quan-
titative metrics, such as MR, MRR, and IGMR, as well as qualitative
inspections, such as tail prediction, to ensure that the model can handle
entities with different levels of connectivity and facts.

The candidates are filtered to exclude triples seen in the train, validation, and
test sets so that known triples do not affect the ranking and cause false negatives.
Several ranking-based metrics are computed based on the sorted scores. Typical
link prediction metrics include Mean Rank (MR), Mean Reciprocal Rank
(MRR), and Hits@k (H@k). MR is sensitive to outliers and unreliable as a
metric, using Mean Quantile (MQ) as a more robust alternative to MR and
MRR. We use MQ100 as a more challenging version of MQ that introduces a
cut-off at the top 100th ranking, appropriate for the large numbers of possible
entities. Link prediction results are reported in Figure 4.3.

Knowledge Graph Link Prediction

4.2. Baseline Model 77

Figure 4.3: Link prediction results: for the 5 KGE models on SNOMED-CT
(top); and TransE and RotatE on two standard KGE datasets.

A standard evaluation task in the KGE literature is link prediction. It
predicts whether the two nodes are connected or not. In addition, network
Embeddings (NE) link prediction performs binary classification on a balanced
set of positive and negative edges based on the assumption that the graph is
complete. In contrast, knowledge graphs are typically assumed incomplete,
making link prediction for KGE a ranking-based task in which the model’s
scoring function is used to rank candidate samples without relying on ground
truth negatives.

The link prediction refers to the latter ranking-based KGE method. Can-
didate samples are generated for each triple in the test set using all possible
entities as the target entity, where the target can be set to head, tail, or both.
For example, if the target is the tail, the model predicts scores for all possible
candidates for the tail entity in (h, r, ?). The model calculates scores for fifteen
billion candidate triples for a test set with 50k triples and 300k possible unique
entities.

4.2 Baseline Model

BioLinkBERT [49] is a language model pre-trained on a large corpus of
biomedical text data. It is based on the BERT architecture and has been
fine-tuned on various biomedical NLP tasks, such as named entity recognition,
relation extraction, and question answering. As a result, BioLinkBERT has
achieved state-of-the-art performance on several benchmark datasets in the
biomedical domain. We are Fine-tuning a pre-trained model BioLink-BERT
on a medical dataset MedQA USMLE. As a result, we obtain a pre-trained

78 Chapter 4. Experimental setup

BioLink-BERT model. This can be done by downloading the model from
the BioLink-BERT website or using a pre-trained version available in a deep
learning framework such as TensorFlow or PyTorch.

tokenizer =
AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-large')

model = AutoModel.from_pretrained('michiyasunaga/BioLinkBERT-large')
outputs = model(**inputs)
last_hidden_states = outputs.last_hidden_state
model = model.to("cuda")

List 4.1: Pre-trained Model

For the basic preprocessing, we import the AutoTokenizer, and AutoModel
classes from the transformer’s library AutoTokenizer is used to tokenize text
into a numerical representation that the model can process. The AutoModel
class is used to instantiate the pre-trained model. In this case, the loaded
model is BioLinkBERT-large, which the user "michiyasunaga" trained on the
OpenAI model hub. The model is also moved to the GPU (if available) using
the .to("cuda") method. We first use the tokenizer to convert the input texts
into numerical representations that the model can process. The tokenized input
is then moved to the GPU (if available) and passed as input to the pre-trained
model specified by the model variable.

Varients of BioLinkBERT Models

There are several variants of BioLinkBERT models, and Hardware Configu-
rations are following as:

1. BioLinkBERT-Base: a base variant trained on a sizeable biomedical
corpus, the BioLinkBERT base size is trained on 110M parameters with the
setting of learning rate 6e-4, batch size 8,192, and training for 62,500 steps.
We warm up the learning rate in the first 10% of steps and then linearly decay
it. Training took seven days on eight A100 GPUs with fp16.

2. BioLinkBERT-Large: a larger version of BioLinkBERT that is trained
on an even larger biomedical corpus containing the size of parameters 340M
params. Follow the same procedure as -base, except use a peak learning rate
of 4e-4 and warm-up steps of 20%. Training took 21 days on eight A100 GPUs
with fp16.

.

Hyperparameter Tuning

4.2. Baseline Model 79

We fine-tune the pre-trained BioLink-BERT Large model on the medical
dataset using transfer learning. It can be accomplished by using the pre-trained
weights as the initial weights and training the model on the medical dataset
using a task-specific objective, such as question answering or named entity
recognition. The evaluation of the fine-tuned model on the validation set to
determine the performance of the pre-trained model

Repeat the fine-tuning with different hyperparameter settings or architec-
tures to find the optimal configuration. After Hyperparameter Tuning, we
obtained the optimal weights, and we tested the model on the test set to
evaluate its performance on unseen data and compare it with other models.
It is worth noting that fine-tuning a BERT model, even with a specialized
BioLink-BERT, requires a lot of computational resources and time, so we tested
it on a powerful GPU or access cloud computing resources.

Set-up: Freebase and Virtuoso knowledge graph management

Freebase and Virtuoso are two examples of knowledge graph management
systems that can be used for building and querying knowledge graphs. Freebase
was a famous public knowledge graph developed by Google, which has since
been deprecated. Virtuoso, on the other hand, is a commercial knowledge
graph management system developed by OpenLink Software.

Freebase was a large-scale, collaborative knowledge graph developed by
Metaweb Technologies and later acquired by Google in 2010. Freebase was a
structured, open database of entities and their relationships, covering various
topics and domains. The data in Freebase was contributed and maintained by
a community of volunteers and could be accessed and queried using a query
language called MQL (Metaweb Query Language). Freebase was designed to be
a knowledge base for powering applications like search engines, recommendation
systems, and question-answering systems. Therefore, the data in Freebase was
structured in a way that made it easy to query and analyze using various tools
and APIs.

Virtuoso is a high-performance, commercial knowledge graph management
system developed by OpenLink Software. Virtuoso provides a platform for
building and querying knowledge graphs and databases that store information
about entities and their relationships in a structured format. Virtuoso supports
a range of data models, including RDF, RDFS, OWL, and SPARQL, which are
widely used in the semantic web community. Virtuoso is designed to support
large-scale, distributed knowledge graphs that can be queried in real-time using

80 Chapter 4. Experimental setup

a variety of languages and APIs. In addition, it provides a range of features
for managing data quality, versioning, access control, and data integration.
Virtuoso is used by a range of organizations, including government agencies,
research institutions, and enterprises, for building applications that require
a semantic data layer, such as search engines, recommendation systems, and
knowledge-based systems.

4.3 Data Collection Methods

For observing and analyzing the KG triples store, we organize the triplet
store (triplet.tsv) in the two efficient data structures GraphDB and NetworkX,
two different tools for collecting, storing and analyzing graph data. GraphDB
is a native graph database that provides ACID transactions, a SPARQL 1.1
compliant query language, and reasoning support based on RDFS, OWL 2
RL, and OWL 2 EL. It is used for managing large-scale, complex and highly
inter-connected data. It is designed to store and process large-scale graph
data, making it an ideal choice for organizations with high performance and
scalability requirements.

NetworkX, on the other hand, is a Python library for the creation, manipula-
tion, and study of the structure, dynamics, and functions of complex networks.
It provides several algorithms for analyzing graph data, including shortest
path algorithms, centrality measures, and community detection algorithms.
NetworkX is used for data analysis and modelling but not for storing large-scale
graph data. It is suited for small to medium-sized graphs and research and
development purposes. GraphDB and NetworkX are useful for graph data
analysis and have their strengths and weaknesses depending on the use case.
The choice between the two will depend on the size and complexity of the graph
data, the scalability requirements, and the specific use case.

4.3.1 Expressing Knowledge Graph Properties Through
NetworkX

NetworkX is a Python library used to create, manipulate, and study the
structure and dynamics and perform the complex functions of complex networks.
It provides data structures for representing various types of networks (including
graphs, directed graphs, and multigraphs) and algorithms for analyzing them.
Some of the features of NetworkX include support for parallel edges and
self-loops, node and edge attributes, and various graph generators. It also has
several built-in drawing options for visualizing networks, as shown in Figure 4.4.
NetworkX can be used for multiple tasks, such as studying social networks,

4.3. Data Collection Methods 81

analyzing network traffic, and modeling biological systems.

Figure 4.4: Directed graph with Networkx and Matplotlib.

The Dragon Standford KG is a knowledge graph that contains a large
amount of structured data about entities and their relations. NetworkX can be
used to extract various properties from this knowledge graph, such as:

• Average node degree: The average degree of a node in a graph is
calculated using the nx.averagedegree()method.

averagedegree = nx.averagedegree(G)

• Number of isolated nodes: An isolated node is a node with no edges.
The number of isolated nodes in a graph can be calculated using the
nx.isolates() method.

- isolatednodes = nx.isolates(G)

- numberofisolatednodes = len(isolatednodes)

• Inverse relations: In a directed graph, an inverse relation is an edge that
goes in the opposite direction of another edge. To find inverse relations
in a directed graph, you can use the inedges() and outedges() methods

82 Chapter 4. Experimental setup

to get all incoming and outgoing edges for each node and then compare
them.

inverserelations = [(u, v)foru, vinG.inedges()if(v, u)inG.outedges()]

• Number of connected components: The number of connected compo-
nents in a graph can be calculated using the nx.numberconnectedcomponents()
method.

numberofconnectedcomponents = nx.numberconnectedcomponents(G)

• Degree centrality: It measures the identifying importance of a node
in a network based on the number of edges incident to it or connected.
The degree centrality of a node can be calculated using the nx.degree
centrality() method.

There could be several reasons why a query execution fails in NetworkX on
a USMLE dataset.

Some possible reasons include the following:

• Incorrectly formatted data: The USMLE dataset may be in a format
different from NetworkX, or the data may be corrupted or missing.

• Memory limitations: The query may require more memory than is
available, causing the execution to fail, and it requires more time for the
execution of queries.

• Inadequate computational resources: The query may require more
computational resources than are available, causing the execution to fail.

Limitation of directly querying on the graph using network X There are
several limitations to directly querying a graph using NetworkX:

• Complex queries can be challenging to express: NetworkX is a
general-purpose graph library. While it provides several built-in methods
for querying graphs, defining more complex queries can be difficult and
may require writing custom code.

• Limited performance on large datasets: NetworkX is designed
for small to medium-sized graphs and may perform poorly on large
datasets, especially for queries that require traversing the entire graph or
a significant portion of it.

4.3. Data Collection Methods 83

• Limited scalability: NetworkX is not built for distributed computing,
so it may need to scale better to handle large datasets or high query
loads.

• Limited query language: NetworkX does not provide a declarative
query language like SQL or SPQRQL, making it more difficult for users
unfamiliar with the library to express queries or understand the results.

• Limited support for advanced graph analytics: NetworkX provides
a basic set of graph analysis functionalities, but it may not support
advanced features such as graph partitioning, graph summarization, and
machine learning on graph-structured data, which may need additional
libraries or frameworks.

It’s essential to consider the above limitations when using NetworkX for
querying KG graphs and to use it accordingly.

4.3.2 GraphDB

Why GraphDB?
The first reason is that Google discontinued Freebase in 2016, and the

Freebase data is no longer publicly available. As a result, the Freebase-Setup
instructions are no longer applicable. While setting up the Virtuoso server
can be complex and require technical expertise in database administration and
semantic web technologies. So during setup, we faced issues and wrote to the
author for a solution. However, we do not have access to Freebase, so we moved
on to another Knowledge graph management called GraphDB and proceeded
with it designing some queries from collecting data from the extractable triples.

GraphDB is a graph database management system (DBMS) that stores
and manages graph data. A graph database is a database that uses a graph
data model to store and manage data. In a graph database, data is stored as
nodes and edges in a graph structure rather than in tables as in a traditional
relational database. GraphDB is a knowledge graph management system that
provides high performance, scalability, and flexibility for storing, querying, and
managing large-scale knowledge graphs. It supports RDF (Resource Description
Framework) and OWL (Web Ontology Language) data models, allowing it to
be used for a wide range of knowledge representation and management tasks.

Some of the critical features of GraphDB include support for complex query
patterns, reasoning, and inferencing over graph data, as well as integration
with other tools and technologies, such as SPARQL, RDFS, and OWL. In
addition, GraphDB provides advanced security and privacy features, such as

84 Chapter 4. Experimental setup

role-based access control, encrypted data storage, and privacy-preserving query
evaluation.

Transformation of KG triples into RDF:
In GraphDB, onto text Refine is a web-based tool that can convert tabular

data to RDF (Resource Description Framework) data as shown in Figure 4.5.
The tool provides a simple and intuitive interface for cleaning, transforming,
and modelling tabular data as RDF triples. We imported the pre-processed KG
triples and the tabular data into Ontotext Refine. Ontotext Refine provides
several options for exporting the RDF data, including RDF/XML, Turtle,
N-Triples, and JSON-LD. We run the SPARQL queries in GraphDB that are
executed against the RDF triples stored in the database and can be used to
retrieve, filter, and aggregate data in the knowledge graph.

Figure 4.5: Data Transformation through OntoText Refine.

SPARQL queries in GraphDB can be used to perform a wide range of
operations, including:

• Retrieving specific triples or data values based on specified conditions.

• Joining data across multiple triples or RDF graphs.

• Aggregating and summarizing data based on specified. conditions

• Performing complex reasoning and inferencing over RDF data

def get_single_tail_relation_triplet(self, src):
query = (f"""

PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

4.3. Data Collection Methods 85

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT distinct ?r ?t0 WHERE {{
SERVICE <ontorefine:2567037650912> {{

?row a <http://rdf.freebase.com/ns/Row> ;
<http://rdf.freebase.com/ns/HEAD> "{src}" ;
<http://rdf.freebase.com/ns/RELATION> ?r ;
<http://rdf.freebase.com/ns/TAIL> ?t .

}}
}}
""")

self.sparql.setQuery(query)
print(query)
try:

results = self._load_from_disk(query)
if not results:

results = self.sparql.query().convert()
self._save_to_disk(query, results)

List 4.2: Reteriving single tail relation triples

Searching for shortest paths, One hop path, two hops path

Query to retrieve relations between two entities (src and tgt) using a
SPARQL endpoint. The query retrieves the particular r0 relation between src
and tgt. If the query returns results, it returns the triplet (src, r0, tgt) as a list.
If there are no results, the function get_single_tail_relation_triplet is called
to get single-hop relations from src, and the code performs more operations to
get two-hop relations.

The function get_shortest_path_limit method tries to find the shortest
path between a source and a target entity from the Freebase knowledge graph
using a SPARQL query. The method first queries for a direct relationship
between the source and the target, and if there is, it returns a one-hop path. If
not, it queries for the single tail relation triplets between the source, and for
each relation, it queries for a relation between the relation’s tail and the target.
If there are results, it returns a two-hop path. The results of each query are
saved to disk so they can be reused.

def search_one_hop_relaiotn(self, src: str, tgt: str) ->
List[Tuple[str]]:

topic_entity = src
answer_entity = tgt

86 Chapter 4. Experimental setup

query = f"""
PREFIX rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:

<http://www.w3.org/2000/01/rdf-schema#>
SELECT distinct ?r1 WHERE {{

SERVICE <ontorefine:2567037650912> {{
?row a <http://rdf.freebase.com/ns/Row> ;

<http://rdf.freebase.com/ns/HEAD>
"{topic_entity}" ;

<http://rdf.freebase.com/ns/RELATION>
?r0 ;

<http://rdf.freebase.com/ns/TAIL>
"{answer_entity}" .

}}
}}

"""

List 4.3: One Hop Relation Searching

def search_two_hop_relation(self, src, tgt) -> List[Tuple[str, str]]:
topic_entity = src
answer_entity = tgt
query = f"""

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT distinct ?r1 ?r2 WHERE {{

SERVICE <ontorefine:2567037650912> {{
?row a <http://rdf.freebase.com/ns/Row> ;

<http://rdf.freebase.com/ns/HEAD>
"{topic_entity}" ;

<http://rdf.freebase.com/ns/RELATION> ?r1 ;
<http://rdf.freebase.com/ns/TAIL> ?e1 .

?row a <http://rdf.freebase.com/ns/Row> ;
<http://rdf.freebase.com/ns/HEAD> ?e1 ;
<http://rdf.freebase.com/ns/RELATION> ?r2 ;
<http://rdf.freebase.com/ns/TAIL>

"{answer_entity}" .

}}
}}

4.4. Graph Merging 87

"""

print(query)
self.sparql.setQuery(query)
print(query)

List 4.4: Two Hop Relation Searching

The give function deduce_subgraph_by_path_one function takes two
parameters:

• src: a string representing the source node in the graph.

• rels: a list of strings representing the relationships in the graph.

The queries retrieve nodes connected to the src node via the first relationship
in rels. The query results are the entities (nodes) connected to the src node
through the first relationship.

The function then generates two outputs:

• Nodes: a list of nodes connected to the src node through the first
relationship. It contains both the src node and the entities returned from
the SPARQL query.

• Triples: a list of triples representing the relationships between the src
node and the entities returned from the SPARQL query. The function
returns the nodes and triples lists.

This deduce_subgraph_by_path_two defines a method deduce_subgraph
_by _path_two that takes as input a source entity src and a list of relation
strings rels and returns a list of nodes and a list of triples in the form of (subject,
relation, object). The query that retrieves the distinct pairs of entities (?e1,
?e2) that are connected by the two relationships rels[0] and rels[1] starting
from the source entity src. The method then makes the query to the SPARQL
endpoint, either by loading pre-saved results from the disk or making a new
query if no saved results are found. Finally, the method returns the list of
nodes and the list of triples, with duplicates removed.

4.4 Graph Merging
Basic Preprocessing and embeddings:

For the basic preprocessing, we import the AutoTokenizer, and AutoModel
classes from the transformer’s library AutoTokenizer is used to tokenize text

88 Chapter 4. Experimental setup

into a numerical representation that the model can process. The AutoModel
class is used to instantiate the pre-trained model. In this case, the loaded model
is BioLinkBERT-large, which was trained by the user "michiyasunaga" on the
OpenAI model hub. The model is also moved to the GPU (if available) using
the .to("cuda") method. We first use the tokenizer to convert the input texts
into numerical representations that the model can process. The tokenized input
is then moved to the GPU (if available) and passed as input to the pre-trained
model specified by the model variable. Finally, the model function is called
with the following parameters.

def get_texts_embeddings(texts):
inputs = tokenizer(texts, padding=True,

truncation=True, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
embeddings = model(**inputs, output_hidden_states=True,

return_dict=True).pooler_output
return embeddings

return list(candidate_relations)

List 4.5: Embeddings

Inferring path to subgraph

We need to input the topic_entity and their connected path for an inferring
path to the subgraph. The topic entity is a node representing the starting node
in a knowledge graph, and the path represents the edges following from the
starting node to form a subgraph. Through this function, we got a set of nodes
and a set of triples from the subgraph. To find the candidate relation from the
given paths, we use the topic_entity and path and deduce the relations that
can be formed between the leaf nodes of the subgraph specified by the path
and the topic_entity. The function then filters out relations with a namespace
of KG or common. Finally, the function returns the set of candidate relations
as a list of strings.

def path_to_subgraph(topic_entity: str, path: List[str]):
"""Input topic_entity, path, and get the corresponding

instantiated subgraph - node set, triple set"""
return kg.deduce_subgraph_by_path(topic_entity, path)

def path_to_candidate_relations(topic_entity: str, path: List[str]) -

4.4. Graph Merging 89

List[str]:
"""Enter topic_entity to get the set of candidate relation that

leaf nodes can provide"""
new_relations = kg.deduce_leaves_relation_by_path(topic_entity,

path)
filter relation
candidate_relations = [r for r in new_relations if

r.split(".")[0] not in ["kg", "common"]]
return list(candidate_relations)

List 4.6: Path to Candidate Relations

Scoring the path

The function takes in the input text (question), a list of paths (path_list),
a list of scores for each path (path_score_list), a list of candidate relations
for each path (relation_list_list), and a weighting factor (theta). First, for
each path in path_list, the function concatenates the path and the question,
separated by "#". Then, it calculates the embeddings for each query-path
combination and the candidate relations. Finally, it calculates the cosine
similarity between each query-path embedding and each candidate relation
embedding, as shown in equation 3.4.

def score_path_list_and_relation_list(question: str, path_list:
List[List[str]], path_score_list: List[float],

relation_list_list:
List[List[str]], theta: float =
0.07) -> List[

Tuple[List[str], float]]:
"""Calculate the score of the path and its corresponding

candidate relation"""
results = []

query_lined_list = ['#'.join([question] + path) for path in
path_list]m

all_relation_list = list(set(sum(relation_list_list, [])))
q_emb = get_texts_embeddings(query_lined_list).unsqueeze(1) # [B,

1, D]
target_emb = get_texts_embeddings(all_relation_list).unsqueeze(0)

[1, L, D]
sim_score = torch.cosine_similarity(q_emb, target_emb, dim=2) /

90 Chapter 4. Experimental setup

theta # [B, L]
for i, (path, path_score, relation_list) in

enumerate(zip(path_list, path_score_list, relation_list_list)):
for relation in relation_list:

j = all_relation_list.index(relation)
new_path = path + [relation]
score = float(sim_score[i, j]) + path_score
results.append((new_path, score))

return results

List 4.7: Path Scoring

We scale the cosine similarity scores by dividing them by the value of theta.
Finally, it adds each cosine similarity score to the corresponding path score for
each path-relation combination and appends the resulting new path and score
to a list of results.

Searching for the sequence of related paths

We aim to find relevant paths in a knowledge base (KB) or KG to answer a
question. We start with an initial set of candidate paths, a list of paths with
their corresponding scores. Then, at each iteration, we first calculate the next
set of candidate relations for each path based on the current topic entity and
the path history, as shown in equation 3.5. Then, we score each path-relation
pair based on how well the pair matches the question and retains a certain
number of the highest-scoring path-relation pairs as the new set of candidate
paths. The process continues until either no more candidate paths are left
or Until we Reach the virtual End keyword, as shown in equation 3.5, the
maximum number of hops is reached, or the required number of result paths is
found.

def _reverse_graph(G: Dict[str, List[str]]):
r_G: Dict[str, List[str]] = dict()
for u in G:

for v in G[u]:
r_G.setdefault(v, []).append(u)

return r_G

List 4.8: Forward and Backward Tracing

def bfs_graph(G: Dict[str, List[str]], root):
"""
G: an adjacency list in Dict

4.4. Graph Merging 91

return: all bfs nodes
"""
visited = set()
currentLevel = [root]
while currentLevel:

for v in currentLevel:
visited.add(v)

nextLevel = set()
levelGraph = {v:set() for v in currentLevel}
for v in currentLevel:

for w in G.get(v, []):
if w not in visited:

levelGraph[v].add(w)
nextLevel.add(w)

yield levelGraph
currentLevel = nextLevel

return visited

List 4.9: Forward and Backward Tracing

In graph searching, we use two search strategies, Forward and backward
tracing. In backward tracing, It takes a directed graph represented as a
dictionary and returns a new graph with the same nodes but with reversed
edges. While on the other forward tracing of the graph, it takes a graph
and a root node and returns all nodes reachable from the root node using a
breadth-first search.

Graph Merging

To merge two directed graphs, we have two graphs at the point graph-left
and graph-right having two root-noded root-l and rot-r, respectively. Therefore,
the function asserts that root_l and root_r should be different. For margining,
we start by finding the common nodes between the two graphs stored in the
set common_nodes list. It then finds all the ancestors and descendants of
each node in common nodes using the bfs_graph function on the reverse graph
and the original graph of both graph_l and graph_r. The reverse graph of
a directed graph is where all edges are reversed. Finally, it returns the set of
all nodes, the union of the common nodes, ancestors, and descendants of the
common nodes.

def merge_graph(graph_l, root_l, graph_r, root_r):
assert root_l != root_r
all_nodes = set()

92 Chapter 4. Experimental setup

common_nodes = set(graph_l) & set(graph_r)
all_nodes |= common_nodes # Union
reverse_graph_l, reverse_graph_r = _reverse_graph(graph_l),

_reverse_graph(graph_r)
for node in common_nodes:

ancestors_l = bfs_graph(reverse_graph_l, node)
ancestors_r = bfs_graph(reverse_graph_r, node)
descendants_l = bfs_graph(graph_l, node)
descendants_r = bfs_graph(graph_r, node)
all_nodes.update(ancestors_l)
all_nodes.update(ancestors_r)
all_nodes.update(descendants_l)
all_nodes.update(descendants_r)

return all_nodes

List 4.10: Graph Merging

Chapter 5

Results

Query Execution Time

The execution time of a query on a database can depend on various factors,
such as the query’s complexity, like retrieving single-hop and multi-hop relations,
the database’s size, the resources available to the database, and the efficiency
of the query execution engine. The given Figures show the query execution
time and the number of operations needed during execution.

Figure 5.1: GraphDB: SPARQL query execution time for retrieving particular
relations.

Retrieving Particular Relations and Caching Mechanism
Retrieving specific triples or data values based on specified conditions. For

example, in the data collection phase, We use the SELECT operation to retrieve
distinct values of the relation "?r0" compared to the given entities as shown in
Figure 5.3. SERVICE clause to access data from an onto-refine server at the
specified URL (localhost:8000) and retrieves rows that match certain conditions.
The conditions are specified using a series of predicates, including the row type,
head value, relation, and tail value.

93

94 Chapter 5. Results

Figure 5.2: GraphDB: SPARQL query execution time to retrieve the tail node
of the relations.

def get_relation(self, entity: str, limit: int = 100) -> List[str]:
query = f"""

PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT distinct ?r0 {{

SERVICE <ontorefine:2567037650912> {{
?row a <http://rdf.freebase.com/ns/Row> ;

<http://rdf.freebase.com/ns/HEAD> "{entity}"
;

<http://rdf.freebase.com/ns/RELATION> ?r0 ;
<http://rdf.freebase.com/ns/TAIL> ?t0 .

}}
}} LIMIT {limit}

"""

List 5.1: Retrieving Particular Relation Through SPARQL Queries From
GraphDB.

Caching Mechanism
Query to retrieve all the relationships (predicates) and their corresponding

tail entities (objects) for a given source entity (subject) in the Freebase RDF
dataset. It then returns a list of relationships that appear only once in the
results. The code also implements a caching mechanism that saves the query
results to disk and loads them from disk if they are available to avoid making
redundant queries to the SPARQL endpoint.

Sparse Vs Dense Representation

95

Figure 5.3: GraphDB: To execute a query on a graph database to retrieve
relations from knowledge graph triples,

The existing approach represents the knowledge graph as sparse, where
each node corresponds to an entity, and the edge corresponds to a relation-
ship between entities. It is called discrete representation because the graph
represents a set of nodes and edges. This type of knowledge graph can be done
using SPARQL, a standard query language for RDF (Resource Description
Framework) graphs. The strengths and weaknesses of sparse graph representa-
tion can be more intuitive and easier to reason about, but they can be slow to
query for large graphs with complex patterns.

While the other efficient and fast approach is called dense vector represen-
tation, the dense vector representing knowledge graphs involves embedding the
entities and relationships in a dense vector space. Querying this knowledge
graph can be done using similarity search or other techniques designed for
high-dimensional data. Dense representations can query and capture more
complex relationships between entities faster, but they may need to be more
transparent and easier to interpret.

We use suggested hyper-parameters from Dragon [9] for popular knowledge
graph embedding models TransE and DistMult as follows:

For TransE:
TransE is a translation-based model where the embedding of the subject

and object entities is translated by embedding the relation to predict the object
entity. It is one of the earliest and most widely used models for knowledge
graph embedding.

• learning rate: 0.01

• margin: 1.0

96 Chapter 5. Results

• L2 regularization weight: 0.0001

• dimension of embedding space: 200

• batch size: 1000

• number of negative samples per positive triple: 10

• number of training epochs: 100

For DistMult: DistMult is a bilinear model that models the interactions
between the subject and object entities through the relation. It uses diagonal
matrices to represent the relation embeddings, reducing the model’s number of
parameters.

• learning rate: 0.1

• L2 regularization weight: 0.001

• dimension of embedding space: 100

• batch size: 512

• number of negative samples per positive triple: 1

• number of training epochs: 100

5.0.1 Knowledge Graph Embedding Models Performance
Evaluation

Quantitative Performance Evaluation

The performance metrics (Hits@1, Hits@3, Hits@10) for the UMLS knowl-
edge graph through KG embedding models such as TransE and DistMult.

Hits@1, Hits@3, and Hits@10 are evaluation metrics that measure the ability
of a model to predict a true triple from a set of possible triples. Precisely,
Hits@1 measures the proportion of test triples for which the true triple appears
as the top-ranked prediction, Hits@3 measures the proportion of test triples
for which the true triple appears within the top 3 predictions, and Hits@10
measures the proportion of test triples for which the true triple appears within
the top 10 predictions as shown in Table 5.1.

Based on the provided performance metrics, Distmult outperforms then
TransE, achieving the highest values for all three metrics. However, it is worth

97

Model Hits@1 Hits@3 Hits@10
TransE 0.46 0.58 0.71
DistMult 0.51 0.63 0.75

Table 5.1: Performance Metric on UMLS KG

noting that the choice of evaluation metric depends on the specific use case
and goals of the knowledge graph embedding application.

Qualitative Performance Evaluation

DistMult

• Head: Intrauterine transfusion

• Relation: access_of

Tail_id Score Tail
248602 0.964224 Single photon emission computed tomography ...
209380 0.954134 Percutaneous approach
134824 0.933178 Hemoglobinuria
114050 0.883393 Fall from aircraft, not due to an accident to ...
205534 0.864547 Paralytic syndrome on both sides of the body
189199 -0.804073 Nicotinamide adenine dinucleotide phosphate
226464 -0.858938 Pupil normal

Table 5.2: Tail Prediction using DistMult

The task of tail predictions for the given head entity "Intrauterine transfu-
sion" and relation "access_of" using the DistMult model, the top predicted
tails are taken from Table 5.2:

Tail 248602 with a score of 0.964224
Tail 209380 with a score of 0.954134
Tail 134824 with a score of 0.933178
Tail 114050 with a score of 0.883393
Tail 205534 with a score of 0.864547

The predicted tails suggest that the most likely entities to complete the
triple are related to medical procedures or conditions, such as "Single pho-
ton emission computed tomography," "Percutaneous approach," and

98 Chapter 5. Results

"Hemoglobinuria." "access_of" in this context may be related to the
accessibility of these medical procedures or conditions to the head entity "In-
trauterine transfusion." However, it is worth noting that knowing the
specifics of the knowledge graph and the context in which the model is being
used is necessary for further interpretation and analysis. Qualitative evaluation
of model performance requires careful consideration of the specific use case and
the domain knowledge surrounding the entities and relations in the knowledge
graph.

TransE

Tail_id Score Tail
209380 0.761214 Percutaneous approach
134824 0.552414 Hemoglobinuria
58290 -7.498745 Closed apporach
131821 -5.864547 Closed reduction of fracture of femur and inte ...
118086 -14.804073 HLA-Dw20 antigen

Table 5.3: Tail Prediction using TransE

The given head entity "Intrauterine transfusion" and relation "ac-
cess_of" using the TransE model, the top predicted tail through TransE
embedding models as shown in Table 5.3:

Tail 209380 with a score of 0.761214
This tail score indicates that the TransE model is more confident in pre-

dicting the tail entity "Percutaneous approach" than any other entity given
the head entity and relation.

The predicted tail suggests that the most likely entity to complete the triple
is the "Percutaneous approach," a medical procedure for accessing or delivering
something into the body through the skin, such as medication or a medical
device. "access_of" in this context may be related to the accessibility of this
medical procedure to the head entity "Intrauterine transfusion."

However, the low scores for the other tail predictions suggest that the TransE
model may not be well-suited for this specific task. Qualitative evaluation of
model performance requires careful consideration of the specific use case and
the domain knowledge surrounding the entities and relations in the knowledge
graph. Experimenting with different models or parameter settings may be
necessary for better performance.

KG Embedding Comparison (TransE, DistMult, and CODER)

99

Knowledge graph embeddings are a powerful tool for representing the entities
and relationships in a knowledge graph as dense vectors in a low-dimensional
space. Doing so makes it possible to perform various tasks, such as link
prediction, entity classification, and entity retrieval. Traditional embedding
models, such as TransE and DistMult, have been widely used for this purpose,
and they have demonstrated good performance on many benchmark datasets.
However, their limitations include the inability to capture complex relationships
between entities and the need for interpretability.

CODER, on the other hand, is a more recent embedding model specifically
designed to address some of these limitations. It is based on representing the
knowledge graph as a sequence of operations, which are then used to generate
the embeddings. By doing so, CODER can capture more complex relationships
between entities and is more interpretable than traditional embedding models.

In addition to its advantages for link prediction and entity classification,
CODER can be used for term normalization, terms classification, and finding
semantically similar terms from the space. Furthermore, CODER can capture
high semantic relationships between entities and generate embeddings sensitive
to subtle differences in meaning. Overall, CODER is a promising approach to
knowledge graph embedding that has the potential to outperform traditional
models in many applications. However, its effectiveness will ultimately depend
on the specific characteristics of the knowledge graph and the task at hand.
These quantitative and qualitative evaluation methods and results express
which embedding models perform well on our medical UMLS data.

5.0.2 Training a CODER model

Training Parameters

BioBERT is a pre-trained language model designed explicitly for biomedical
text-mining tasks. "biobert_v1.1_pubmed" refers to a version of BioBERT
pre-trained on PubMed abstracts and PMC full-text articles. We train the
biobert_v1.1_pubmed model on our UMLS triple data. We use UMLS Biomed-
ical Knowledge Graph not only because the researcher from Stanford is working
on it, but it is also a huge research topic, and Stanford uses only the sample of
UMLS, but in general UMLS dataset has many data from different medical
fields. Therefore, we use the lightweight size of UMLS for our experiments.

Knowledge-infused cross-lingual medical term embedding for term normal-
ization used the following training parameters for their model:

100 Chapter 5. Results

• Learning rate: 0.001

• Batch size: 256

• Epochs: 300

• Dropout rate: 0.2

• Hidden layer size: 300

• Number of negative samples: 5

• Window size: 5

• Subsample threshold: 1e-5

These parameters were used to train the CODER model on the UMLS
dataset, which contains biomedical data from different domains. In addition,
the model was evaluated on the task of term normalization, which involves
mapping variant expressions of medical terms to their standard forms. The
results showed that the CODER model outperformed several baseline methods
and achieved state-of-the-art performance on this task. We have the license of
UMLS, the original size of UMLS is 5GB. However, we use the sample of UMLS
data, as compared to our training epochs which are fewer than the original
work of the coder because of the size of the data 5GB.

Training Loss

The training loss of the model is approximately zero after the training
of 9000 iterations with the given hyper-parameters (trans_margin = 1.0,
train_batch_size =32), as shown in Figure 5.4.

Figure 5.4: Coder: Training Loss

Hyperparameters such as margin and batch size can be used to control a
model’s training. The margin is a hyperparameter used in some loss functions,

101

such as the triplet or contrastive loss, commonly used in metric learning tasks.
The margin represents the minimum distance or gap that must be maintained
between different classes or examples in the embedding space. A larger margin
can help ensure that embeddings of different classes are well-separated, while a
smaller margin can allow for more overlap between classes.

Batch size is another hyperparameter that can control a model’s training.
It represents the number of examples processed together in each iteration of
the training process. A larger batch size can lead to faster training times and
more stable gradients but may require more memory and can lead to overfitting
if the model is too complex. Conversely, the smaller batch size can lead to
slower training times but can help prevent overfitting and may be necessary for
models with limited memory.

Instead of PubMedBERT used for training the coder model, we use Bi-
olinkbert to train CODER for tail prediction. So, for example, if we need to
predict the tail of a sentence about a particular disease. First, we use transfer
learning to fine-tune Biolinkbert on our UMLS dataset (Triple.csv). Adjusting
the pre-trained weights of the model to fit better the specific text data you
are working with. Once Biolinkbert has been fine-tuned, we use it for tail
prediction and the training loss, as shown in Figure 5.4.

Conclusion and Future Work

Subgraph retrieval can be a complex and challenging task in biomedical
question-answering systems. Biomedical datasets are often large, heterogeneous,
and complex, with many different entity types, relationships, and attributes.
Moreover, biomedical datasets may contain noisy or incomplete data, making
retrieving accurate subgraphs difficult. For example, in a biomedical question-
answering system, a user might ask, "What are the symptoms of a particular
disease?" The system would need to retrieve a subgraph of relevant entities and
relationships from the knowledge graph, such as the disease, its symptoms, and
any associated treatments or risk factors. This would require understanding the
semantics of the query, identifying the relevant entities and relationships in the
graph, and ranking them based on relevance and accuracy. The above challenges
and limitations can be solved through our proposed subgraph retrievals that can
avoid entity linking tools instead of retrieving discrete or sparse graphs. In our
contribution to UMLS KG, we focused on powerful embedding methods that
are significantly faster and more efficient than the existing ones. Dense space
embedding methods are faster and more efficient than the existing methods like
the graph DB or SPARQL querying methods. For example, in the dense space
setting, our search starts from the topic entities that are our starting point
in the space. Our goal is to find or search the possible related relationships
that help us reach the point in the space close to the answer or the path to the
answer. We started from the topic entities and tried to predict the path more
relevant to the starting entities in the space. Explored the space, measured the
distance between the topic entities, and answered through the following paths.
Moreover, it is how much the answer is far from the topic entities that how
much reasoning hops require o inferring the answer to the given question. We
score them according to their similarity score between the topic entities and
the relation for the selection of paths, as mentioned in the section on subgraph
constructions, and take the union of the produced trees and merge them into a
standard unified graph.

103

Bibliography

[1] Alexander Dunn, John Dagdelen, Nicholas Walker, Sanghoon Lee, An-
drew S. Rosen, Gerbrand Ceder, Kristin Persson, and Anubhav Jain.
Structured information extraction from complex scientific text with fine-
tuned large language models, 2022.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language under-
standing. In Jill Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association for Computational
Linguistics, 2019.

[4] Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung
Poon, and Tie-Yan Liu. Biogpt: Generative pre-trained transformer for
biomedical text generation and mining. CoRR, abs/2210.10341, 2022.

[5] Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui Xiong. Dynamic
word embeddings for evolving semantic discovery. In Yi Chang, Chengxiang
Zhai, Yan Liu, and Yoelle Maarek, editors, Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, WSDM
2018, Marina Del Rey, CA, USA, February 5-9, 2018, pages 673–681.
ACM, 2018.

105

106 Bibliography

[6] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online
learning of social representations. In Sofus A. Macskassy, Claudia Perlich,
Jure Leskovec, Wei Wang, and Rayid Ghani, editors, The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages
701–710. ACM, 2014.

[7] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
graph embedding by translating on hyperplanes. In Carla E. Brodley and
Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada,
pages 1112–1119. AAAI Press, 2014.

[8] Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy
Liang, Christopher D. Manning, and Jure Leskovec. Greaselm: Graph
reasoning enhanced language models. In The Tenth International Confer-
ence on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

[9] Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christo-
pher D. Manning, Percy Liang, and Jure Leskovec. Deep bidirectional
language-knowledge graph pretraining. CoRR, abs/2210.09338, 2022.

[10] Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Unikgqa:
Unified retrieval and reasoning for solving multi-hop question answering
over knowledge graph. CoRR, abs/2212.00959, 2022.

[11] Zheng Yuan, Zhengyun Zhao, Haixia Sun, Jiao Li, Fei Wang, and Sheng
Yu. CODER: knowledge-infused cross-lingual medical term embedding for
term normalization. J. Biomed. Informatics, 126:103983, 2022.

[12] Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping
Li, and Hong Chen. Subgraph retrieval enhanced model for multi-hop
knowledge base question answering. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 5773–5784. Association
for Computational Linguistics, 2022.

[13] Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie Tang, Cuiping
Li, and Hong Chen. Subgraph retrieval enhanced model for multi-hop
knowledge base question answering. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of

Bibliography 107

the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 5773–5784. Association
for Computational Linguistics, 2022.

[14] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and
Jure Leskovec. QA-GNN: reasoning with language models and knowledge
graphs for question answering. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan
Cotterell, Tanmoy Chakraborty, and Yichao Zhou, editors, Proceedings of
the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT
2021, Online, June 6-11, 2021, pages 535–546. Association for Computa-
tional Linguistics, 2021.

[15] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks. In Zoubin Ghahramani, Max Welling,
Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104–3112, 2014.

[16] Zachary Chase Lipton. A critical review of recurrent neural networks for
sequence learning. CoRR, abs/1506.00019, 2015.

[17]

[18] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their composi-
tionality. In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani,
and Kilian Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States, pages 3111–3119, 2013.

[19] Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and Guodong Zhou.
Improving AMR parsing with sequence-to-sequence pre-training. In Bon-
nie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2020, Online, November 16-20, 2020, pages 2501–2511.
Association for Computational Linguistics, 2020.

[20] Richard K. Lomotey and Ralph Deters. Real-time effective framework for
unstructured data mining. In 12th IEEE International Conference on Trust,

108 Bibliography

Security and Privacy in Computing and Communications, TrustCom 2013
/ 11th IEEE International Symposium on Parallel and Distributed Pro-
cessing with Applications, ISPA-13 / 12th IEEE International Conference
on Ubiquitous Computing and Communications, IUCC-2013, Melbourne,
Australia, July 16-18, 2013, pages 1081–1088. IEEE Computer Society,
2013.

[21] Satoshi Sekine David Nadeau. A survey of named entity recognition and
classification, 2007.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019.

[23] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[24] Harsh Kumar, Ilya Musabirov, Jiakai Shi, Adele Lauzon, Kwan Kiu Choy,
Ofek Gross, Dana Kulzhabayeva, and Joseph Jay Williams. Exploring the
design of prompts for applying GPT-3 based chatbots: A mental wellbeing
case study on mechanical turk. CoRR, abs/2209.11344, 2022.

[25] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Alessandro Moschitti, Bo Pang,
and Walter Daelemans, editors, Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1532–1543. ACL, 2014.

[26] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval
for open-domain question answering. In Bonnie Webber, Trevor Cohn,
Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769–6781. Association for Computational
Linguistics, 2020.

[27] Bernardo Cuteri. Closed domain question answering for cultural heritage.
In Viviana Mascardi and Ilaria Torre, editors, Proceedings of the Doc-
toral Consortium of AI*IA 2016 co-located with the 15th International
Conference of the Italian Association for Artificial Intelligence (AI*IA
2016), Genova, Italy, November 29, 2016, volume 1769 of CEUR Workshop
Proceedings, pages 17–22. CEUR-WS.org, 2016.

Bibliography 109

[28] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph
embedding: A survey of approaches and applications. IEEE Transactions
on Knowledge and Data Engineering, 29(12):2724–2743, 2017.

[29] Heiko Paulheim. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic Web, 8(3):489–508, 2017.

[30] Adrian Bondy. Graph-theory. online, 03 2008. Graph-Theory.

[31] S. Gill Williamson Edward A. Bender. Lists, decisions and graphs - with
an introduction to probability. online, 03 2008.

[32] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. In Yoshua Bengio and
Yann LeCun, editors, 1st International Conference on Learning Represen-
tations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings, 2013.

[33] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola,
Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages
855–864. ACM, 2016.

[34] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata,
and Paolo Merialdo. Knowledge graph embedding for link prediction: A
comparative analysis. ACM Trans. Knowl. Discov. Data, 15(2):14:1–14:49,
2021.

[35] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson,
and Jamie Taylor. Industry-scale knowledge graphs: Lessons and challenges.
Communications of the ACM, 62 (8):36–43, 2019.

[36] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open
data. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Alle-
mang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika,
Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-
Mauroux, editors, The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC
2007, Busan, Korea, November 11-15, 2007, volume 4825 of Lecture Notes
in Computer Science, pages 722–735. Springer, 2007.

110 Bibliography

[37] Michihiro Yasunaga, Jure Leskovec, and Percy Liang. Linkbert: Pretrain-
ing language models with document links. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio, editors, Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 8003–8016.
Association for Computational Linguistics, 2022.

[38] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An
open multilingual graph of general knowledge. In Satinder Singh and Shaul
Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA,
pages 4444–4451. AAAI Press, 2017.

[39] Niel Chah. OK google, what is your ontology? or: Exploring freebase clas-
sification to understand google’s knowledge graph. CoRR, abs/1805.03885,
2018.

[40] Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco Basaldella, and Nigel
Collier. Self-alignment pretraining for biomedical entity representations. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-
Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou, editors, Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 4228–4238. Association for Computational Linguistics, 2021.

[41] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian
Riedel. Convolutional 2d knowledge graph embeddings. In Sheila A. McIl-
raith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innova-
tive Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages 1811–1818. AAAI
Press, 2018.

[42] Ronald Cornet and Nicolette de Keizer. Forty years of SNOMED: a
literature review. BMC Medical Informatics Decis. Mak., 8(S-1):S2, 2008.

[43] Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco Basaldella, and Nigel
Collier. Self-alignment pretraining for biomedical entity representations. In
Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-
Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou, editors, Proceedings of the 2021 Conference of the

Bibliography 111

North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 4228–4238. Association for Computational Linguistics, 2021.

[44] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language under-
standing. In Jill Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171–4186. Association for Computational
Linguistics, 2019.

[45] Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xi-
aodong Liu, Tristan Naumann, Jianfeng Gao, and Hoifung Poon. Domain-
specific language model pretraining for biomedical natural language pro-
cessing, 2020.

[46] Chen Zheng and Parisa Kordjamshidi. Dynamic relevance graph network
for knowledge-aware question answering. In Nicoletta Calzolari, Chu-
Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun
Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao
Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun
Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and
Seung-Hoon Na, editors, Proceedings of the 29th International Conference
on Computational Linguistics, COLING 2022, Gyeongju, Republic of
Korea, October 12-17, 2022, pages 1357–1366. International Committee
on Computational Linguistics, 2022.

[47] Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot Tower, Manzil Zaheer,
Hannaneh Hajishirzi, Robin Jia, and Andrew McCallum. Knowledge base
question answering by case-based reasoning over subgraphs. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and
Sivan Sabato, editors, International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages 4777–4793. PMLR, 2022.

[48] Zheng Yuan, Zhengyun Zhao, Haixia Sun, Jiao Li, Fei Wang, and Sheng
Yu. CODER: knowledge-infused cross-lingual medical term embedding for
term normalization. J. Biomed. Informatics, 126:103983, 2022.

[49] Michihiro Yasunaga, Jure Leskovec, and Percy Liang. Linkbert: Pretrain-
ing language models with document links. In Association for Computational
Linguistics (ACL), 2022.

	Theoretical Framework
	Recent Breakthrough in Natural Language Processing
	Importance of Unstructured data
	Structured Information Extraction from Complex Scientific Text with Fine-tuned Large Language Models
	Information Extraction From Textual data
	Named Entity Recognition and Relation Extraction
	Language Models and Transformers
	Google Bi-directional Encoder Representations from Transformers
	Word Embedding Methods
	Language Models for Open and Closed-domain Question Answering

	Knowledge Graphs
	Preliminary Definitions of Graphs
	Graph Types and their Properties
	Graph Embedding Techniques
	Example of Knowledge Graphs

	Language Models and Structured Knowledge Graph
	Limitations of Pure Language Models
	Benefits of Combining Language Models and Knowledge Graphs

	Related Work
	Knowledge-based Data (Triplets)
	Reasoning with Language Models and Knowledge Graphs
	QA-GNN
	GreaseLM: Graph Reasoning Enhanced Language Models For Question Answering
	Dragon: Deep Bi-directional Language Knowledge Graph Pre-training
	UNIKGQA: Unified Retrieval and Reasoning For Solving Multi-Hop Question Answering Over Knowledge Graph
	CODER: Knowledge Infused Cross-Lingual Medical Term Embedding For Term Normalization

	Challenges and Limitations in the Existing Subgraph Retrieval Phase
	Dense Retrieval
	Language Model for Dense Passage Retrieval
	Differentiate between Single-hop and Multi-hop reasoning

	Our Solution
	Stanford UMLS Knowledge Graph
	Knowledge Graph Embeddings
	Reasoning over Knowledge Graphs
	Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering
	How to expand paths from topic entities?
	Subgraph Construction Through Expanded Paths
	Subgraph Retrieval and Training

	Experimental setup
	Dataset
	Baseline Model
	Data Collection Methods
	Expressing Knowledge Graph Properties Through NetworkX
	GraphDB

	Graph Merging

	Results
	Knowledge Graph Embedding Models Performance Evaluation
	Training a CODER model

	Bibliografia

