
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

Sensorworker:

An Integrated Crowdsensing

Platform

Relatore:

Dott.

FEDERICO MONTORI

Presentata da:

FABIO MIRZA

Sessione IV

Anno Accademico 2021/2022

To Claudia . . .

Abstract

Sensorworker is an innovative Mobile Crowdsensing platform

integrated with the services offered by the popular

Crowdsourcing portal Microworkers. The platform allows for

the creation and management of Crowdsensing campaigns

using the workers available on Microworkers in order to

address a critical issue in crowdsensing systems, namely the

high participation requirement. The thesis clarifies the meaning

of Crowdsourcing, Mobile Crowdsensing, and how

Sensorworker solves various critical issues. The system

architecture, sensors used, and database structure are

examined. Subsequently, an analysis of the interaction between

different users and the platform itself is carried out. Finally,

the structure of the back-end server and the results of the

platform tests are presented.

Introduction

We are surrounded by intelligent devices, capable of connecting to wide

networks through which fast and reliable information transfer is possible.

Furthermore, such devices are often times equipped with powerful and pre-

cise sensors, embedded into their hardware in order to provide interesting

and novel features to the user. These conditions have created a perfect envi-

ronment for the rise of a specific technology, known as Mobile Crowdsensing

(MSC), defined as the paradigm in which a community leverages mobile de-

vices with sensing and computing capabilities to collectively share data and

extract intelligence in order to study and measure phenomena of common

interest [7].

As the name implies, MSC is composed of three core concepts

Mobile : the participators and the devices used for the sensing activity

must be on moving status.

Crowd : the participators must form a large group of individuals, each

equipped with sensing capabilities. Different preferences of the partic-

ipators might lead to an uneven distribution of data [8].

Sensing : the participators are required to perform some simple sensing

task without massive computation.

Sensorworker have been developed to perform MSC activities in a con-

troller and integrated environment in order to harness the wide user base of

micro-job platforms such as Microworkers, which provide a convenient and

i

ii Introduction

centralized location to channel their workers into MSC activities. Sensor-

worker allows the creation of configurable MSC campaigns, which are trans-

parently forwarded into Microworkers, leaving the so-called Crowdsourcer

with the only task of rating the work performed by the workers. In this pa-

per, we will explore the architectural needs and complexities required for the

development of Sensorworker and its integration with other platforms. We

will review the user interactions and the requirements to effectively store and

retrieve the sensory data produced by the workers. We will conclude with

some interesting tests on the platform in order to understand the benefits

and challenges of Sensorworker.

Contents

Introduction i

1 State of Art 1

1.1 Crowdsourcing . 1

1.1.1 Microworkers.com . 3

1.2 Mobile Crowdsensing . 3

1.3 Sensorworker . 5

2 System Architecture 6

2.1 Technologies and MVC . 6

2.2 ER Model and Database . 8

2.2.1 Crowdsourcer . 9

2.2.2 Campaign . 10

2.2.3 Job . 12

2.2.4 Sensor Data . 13

2.3 Sensors . 13

2.3.1 Basic Sensors . 14

2.3.2 Other Sensors . 16

3 Interactions Flow and Client Implementation 17

3.1 Crowdsourcer Interactions . 17

3.2 Worker Interactions . 22

3.2.1 Accessing Sensorworker 23

iii

iv CONTENTS

4 Back-end Implementation 30

4.1 Controllers . 30

4.2 Routers . 35

4.3 Services . 35

5 Testing 37

5.1 Results . 38

Conclusions 41

Bibliography 42

List of Figures

2.1 Model-View-Controller pattern for Sensorworker 7

2.2 Sensorworker pseudo E-R model 9

3.1 Registering page for the crowdsourcer 18

3.2 Campaign creation form . 19

3.3 Crowdsourcer Dashboard . 21

3.4 Rating panel . 22

3.5 Slot status transitions . 23

3.6 Preview iframe . 25

3.7 Non-preview iframe . 26

3.8 SensorCollectQR page . 27

3.9 Worker interaction flowchart 28

3.10 SensorCollect page . 28

5.1 Testers confidence level on technological know-how 38

5.2 Expected payment for Campaign 1 39

v

Listings

4.1 Base controller . 30

4.2 getFilteredCampaigns function 31

4.3 getCampaings function . 32

4.4 getActiveJobs function . 33

4.5 postReading function . 33

4.6 guard function . 34

4.7 Router for the crowdsourcer controller 35

4.8 Guard on the Crowdsourcer router 35

vii

Chapter 1

State of Art

In order to explain the functionality and purpose of Sensorworker, we first

need to introduce a few concepts and their critical issues.

1.1 Crowdsourcing

Today, we live in a society where connectivity between individuals is so

ubiquitous that it feels transparent and natural. With the dramatic rise in

communication, especially after the advent of the so-called Web 2.0, user-

generated content and the ”Power of The Crowd”[11] have contributed to

the creation of an immense pool of data. Different methods have been de-

veloped to harness this collective knowledge. One of these methods, named

crowdsourcing, represents the act of a company or institution taking a

function once performed by employees and outsourcing it to an undefined

(and generally large) network of people in the form of an open call where

the incentive to participate can be monetary and/or non-monetary in nature

[4]. Crowdsourcing has also been defined as the application of Open Source

principles to fields outside of software [6].

However, these two definitions often fail to describe some other critical

aspects that crowdsourcing activities usually require. Specifically, it is possi-

ble to define models for crowdsourcing based on how the crowd is gathered,

1

2 1. State of Art

what it is asked to do, and how it is asked [12]:

Collective intelligence Following this model, a crowd is gathered and con-

ditions are created for that crowd to share their knowledge [6]. Exam-

ples can extend from a company that uses an employee suggestion box

to a worldwide internet-enabled brainstorming session.

Crowd creation Often confused with the previous model, crowd creation

happens when a company turns to it is users to create, or co-create,

a product or service [6]. A notable example is Threadless.com, where

users are asked to create designs for t-shirts and other print prod-

ucts for the crowd who then evaluates the creative work. The design

that successfully complete this process are then produced and sold by

Threadless.com [4].

Crowd voting This model uses the crowd’s judgment to organize a vast

quantity of information. It is usually applied together with collective

intelligence and crowd creation to quickly parse the vast amount of

contributions that can take place. Companies such as HP employ this

model for market predictions [12].

Crowdfunding Internet has allowed people to participate in micro-lending:

the lending of small sums to help in the creation of a product or service.

This can range from helping a band fund its first CD to financing new

and exciting tech products [12].

As mentioned above, participation in crowdsourcing activities is usually

encouraged through incentives of different kinds. Their nature can be intrin-

sic to the potential crowdsourcees (e.g., for fun or for willingness to help),

or extrinsic, where the activity is purely a means to an end (e.g., to gain

benefits such as money or reputation) [4].

Thus, crowdsourcing is accepted as an innovative form of value creation

used by firms to tap into an enormous potential of competence and knowledge

1.2 Mobile Crowdsensing 3

[4]. However, the implementation of this disruptive method comes with it is

drawbacks [4], notably

• Difficulties in calculating project costs

• Uncertainty of crowd structure

• Consideration of legal framework conditions

• Creation of a motivating incentive structure

We will now see a platform that can partially offset these disadvantages.

1.1.1 Microworkers.com

Microworkers.com is a framework to access the crowd where potential

crowdsourcers can submit crowdsourcing campaigns and individual tasks [5].

Specifically, Microworkers.com’s most interesting feature is the wide and di-

verse user base it offers to crowdsourcers, with emphasis on the location of

the worker, the individual member of the crowd. Campaigns can be built

and published by the crowdsourcer, with different constraints such as time

limits or region locks. The tasks performed by the workers can range from

search engine optimization to content creation to product surveys [5]. Once

the task is performed and evaluated, the worker is rewarded a sum of money

defined by the crowdsourcer during the creation of the campaign.

This guided framework allows the crowdsourcer to specifically select which

kind of worker it is wanted for which campaigns, as well as know the cost of

the activity beforehand. Most of the complexity regarding the management

and logistics of crowdsourcing is delegated to Microworkers.com, leaving the

benefits of such methods to the issuer of the campaign.

1.2 Mobile Crowdsensing

Another consequence of the pervasive integration of the Web within our

lives is the evolution of an embedded internet, better known as the Internet

4 1. State of Art

of Things (IoT), which aims at sensing and interconnecting various physical

objects and their surroundings in the real world more comprehensively and

on a larger scale [9]. These objects can occur as smartphones, wearable smart

devices, sensor-embedded gaming systems, or in-vehicle sensing devices [2].

Especially smartphones and wearables have become essential for our daily

activities, from business to entertainment [1]. Replicating the sensing capa-

bilities of an IoT network comprised of these devices using traditional sensor

networks for large-scale and fine-grained sensing would require the deploy-

ment and maintenance of a large number of sensor nodes, which is logistically

and economically undesirable [9]. For example, let’s consider the CitySee

project: 100 sensor nodes and 1096 relay nodes need to be deployed for CO2

monitoring of 1 km2 [10]. To implement this system in a large urban space,

such as the city of Rome with an area of about 1200 km2, it would require

120,000 sensor nodes and around 1,300,000 relay nodes to reach full coverage

and communication connectivity.

The paradigm that allows ordinary people to contribute data sensed or

generated from IoT devices, aggregates and fuses the data in the cloud for

crowd intelligence extraction and people-centric service delivery is known as

Mobile Crowdsensing (MSC) [3]. MSC is suggested as a more flexible and

efficient data acquisition, analysis, and application model compared to fixed

wireless sensor networks [8].

MSC has many similarities to other research areas. In particular, inspired

by the crowdsourcing model detailed in the previous section, crowdsensing

specifically aims at the sensing targets, harnessing the highly-distributed

mobile devices from ordinary users that can be served as the sensors to

collect and upload data [8].

Building a sustainable MSC system requires many solutions to different

types of challenges, especially how to recruit enough participators or how to

achieve optimal distribution and data quality under budget [8].

1.3 Sensorworker 5

1.3 Sensorworker

Sensorworker proposes a Mobile Crowdsensing platform that resolves

the issues presented in the previous section by integrating with Microworkers,

the micro-task platform detailed above. Microworkers allows developers to

build programmatic software in order to create and manage crowdsourcing

campaigns, specifying requirements for the workers and allowing a limited

budget to be utilized to the greatest extent possible by reviewing in advance

the costs of the services and paying only for the crowdsourcer-approved sens-

ing data. Sensorworker integrates within the Microworkers campaigns in

a seamless way, providing a web-based interface that does not require any

installation or plugin in order to let the worker focus on the tasks at hand.

Chapter 2

System Architecture

In this chapter, we will explore the high-level system designs applied

during the development of Sensorworker, starting from the technologies em-

ployed.

2.1 Technologies and MVC

As previously mentioned, Sensorworker is a web application comprised

of a front-end which communicates with a back-end that stores and re-

trieves data from a database. These elements are implemented following

a Model-View-Controller (MVC) architectural pattern, based on the prin-

ciple of ”separation of concerns” which builds a clear division between the

software’s business logic and the display.

The main technologies used in each of these components are listed below

and will be further explored in the rest of the paper:

• React: The front-end framework used for the development of the

client. It is component-based and equipped with built-in state manage-

ment as well as being expandable with many open-source libraries such

as React Router for client-side routing or Material UI for ready-made

user interfaces. React uses a syntax extension known as JSX, which

6

2.1 Technologies and MVC 7

is then compiled to pure Javascript, HTML, and CSS in order to be

understandable for browsers.

• Node.js: The back-end framework adopted for the development of the

server. It is one of the most popular javascript framework for back-end

development and its use is made easier with libraries such as Express for

route handling and Mongoose to interact with a MongoDB database.

• MongoDB: A source-available NoSQL database that uses JSON doc-

uments and collections to store information instead of classic SQL

records ad tables. Following the project’s requirement, different doc-

ument Schemas have been defined in order to store specific kinds of

information (e.g. data about workers, about crowdsourcers).

Figure 2.1: Model-View-Controller pattern for Sensorworker

As mentioned before, Sensorworker follows an MVC architectural pat-

tern, where the model is embodied by the Mongoose models that define the

collections stored in the Database and through which the data can be manip-

ulated. Controllers use these models to fulfill the requests from the front end

8 2. System Architecture

which are intercepted by the Express routers. Based on the kinds of requests

the controller receives, it can respond with views or with HTTP response.

2.2 ER Model and Database

Before going any further, we will explore the entities that interact with

Sensorworker and the relationships that occur between them.

There are mainly four actors:

• Crowdsourcer: The crowdsourcer is the user of the platform, who

issues the campaigns, with the appropriate constraints, for the workers

on Microworkers to perform. They are also responsible for viewing

and rating the data submitted by the workers who take part in their

campaigns.

• Campaign: The campaigns are connected to and defined by the crowd-

sourcers. Sensorworker Campaigns are different from the Microworkers

campaigns. Each crowdsourcer can have multiple Sensorworker Cam-

paigns. Below we will look more into the relations between Sensor-

worker’s campaigns and Microworkers’s campaigns

• Job: Jobs are the entity that represents the work done by the Mi-

croworker’s worker. Understandably, multiple jobs can relate to the

same campaign since they usually require the participation of more

than one worker. Jobs are the link between the Microworker’s worker

and the work performed by them within Sensorworker.

• Sensor Data: The actual data generated by the worker are held as

sensor data. These entities are related to jobs and based on the cam-

paign requirements, multiple sensor data can be related to the same

job.

Despite the fact that the database is NoSQL, it is possible to summarize

the entities and the relations described so far with the pseudo E-R model

2.2 ER Model and Database 9

Figure 2.2: Sensorworker pseudo E-R model

shown in Figure 2.2. How and when these entities are created will be explored

in the chapter about the flow of execution. Every field for each entity is

explained below

2.2.1 Crowdsourcer

Within the database, the crowdsourcer collection holds information about

the crowdsourcers who create an account in Sensorworker.

• name: the attribute containing the name of the crowdsourcer.

• surname: string holding the surname of the crowdsourcer.

• username: the username defined by the crowdsourcer during the regis-

tration process, it is one of the attributes that can uniquely identify a

crowdsourcer.

• password: password used by the crowdsourcer to login into Sensor-

worker.

• apiKey: this string is provided by the crowdsourcer during the account

creation process. It is the key used to interact with Microworker’s API

10 2. System Architecture

endpoint on behalf of the crowdsourcer in order to create a Microwork-

ers campaign and to update the number of available positions for it.

• pricePerPosition: it is the price that the crowdsourcer is willing to

pay to add new positions to the Microworkers campaign. It must be

noted that Microworkers adds a 10% charge for each position, and this

is taken into account when setting this value.

• campaignIDMW: This attribute contains the ID of the Microworkers

campaign associated with the crowdsourcer. Specifically, Sensorworker

automatically creates a new Microworkers campaign whenever a new

crowdsourcer registers on the platform, and the former’s id is stored

in this field. From then on, every Sensorworker campaign created by

that crowdsourcer will be related to that Microworkers campaign. That

means that there is a one-to-many relationship between Microworkers

campaigns and Sensorworker campaigns. As a matter of fact, when-

ever a worker takes part in a Microworkers campaign created by Sen-

sorworker, it must then select between the Sensorworker campaigns of

the specific crowdsourcer who is the owner of that Microworkers cam-

paign. Similar to the username, this attribute can be used to uniquely

identify a crowdsourcer since there is a one-to-one relationship between

the crowdsourcer and its related Microworkers campaign.

• campaignCount: the number of Sensorworker campaigns created by

this crowdsourcer.

2.2.2 Campaign

This collection contains all the information required to define a Sensor-

worker campaign.

• _id: it is the Id that uniquely identifies every Sensorworker campaign.

it is automatically generated by the database.

2.2 ER Model and Database 11

• campaignIDMW: the value of this field determines which crowdsourcer is

the owner of the Sensorworker campaign. This is because, as previously

explained, the campaignIDMW attribute in the crowdsourcer entity can

be used to uniquely identify a crowdsourcer. This way, a crowdsourcer

can be the owner of many different Sensorworker campaigns.

• geojson: This field describes the geographical area in which the worker

must be located in order to be able to send sensory data for the cam-

paign. It is basically an array of coordinates, which specify a polygon

as the boundary of the area.

• totalJobs: a number that indicates how many jobs must be allocated

for this campaign. It is used to add positions to the Microworkers

campaign whenever a new campaign is created.

• timeToComplete: this field suggests how much time is available to the

worker when they perform a job for this campaign.

• begin: the date in which this campaign can be taken part into. Specif-

ically, it is the date from which this campaign can be listed when a

worker starts the Microworkers campaign associated with the crowd-

sourcer.

• end: similar to the previous field, this attribute holds the date at which

this Sensorworker campaign should not be available anymore.

• buffer: a number that indicates how distant the worker is allowed to

be from the geojson in order to still be eligible to take part in this

campaign. The buffer is expressed in kilometers, and it is used as one

of the criteria when choosing which campaigns are available for which

worker. Once they take part in the Sensorworker campaign, they have

to be within the polygon defined by the geojson to perform the actual

sensing work.

• title: the title of the campaign.

12 2. System Architecture

• description: a string containing the description of the campaign.

• running: a boolean value that indicates whether the campaign is run-

ning or not. This value is computed when querying a campaign and it

is not actually saved within the database.

• crowdsourcer: The id of the crowdsourcer that’s the owner of this

Sensorworker campaign. When required, it is populated with the actual

information about the crowdsourcer (username, apikey, etc).

2.2.3 Job

Every Sensorworker campaign has a totlaJobs field, which indicates how

many jobs must be performed for it. The job collection within the database

keeps the information about the work performed by the Microworkers worker,

joining their id with a particular slot.

• _id: the id that uniquely identifies a job. Similar to the campaign’s

id, it is generated by the database when a job is created.

• slotIDMW: when a worker takes part in a Microworkers campaign, it is

assigned a slot. The slot’s id is saved in this field. The reason for this

requirement is explained in the chapter about the flow of interaction.

• workerIDMW: as the name suggests, this field saves the id of the worker

who performed this job. It is useful to check if the worker has some

other active job for the Sensorworker campaign related to this job.

• campaignID: the id of the Sensorworker campaign for which the worker

is performing the job.

• active: as mentioned before, this field is a boolean value that tells

whether the job is actively being worked on by the worker.

• readyToRate: This field is similar to the previous one. it is a boolean

value which indicates whether the job is ready to be rated.

2.3 Sensors 13

• failed: boolean value that tells whether the job has failed. The chap-

ter about the flow of interaction will explain the situations in which

this field is used.

• failReason: when the previous field is set as true, this field must be

non-null. It explains why the job has failed.

• status: similar to the running field of the campaign entity, this field

is not actually saved in the database. Instead, this field is computed

based on the value of active, readyToRate, and failed fields.

2.2.4 Sensor Data

As previously anticipated, this entity, with some exceptions, holds the

actual data sent by the Microworkers’ workers. Every job must have some

Sensor Data related to it, based on the requirements of the Sensorworker

campaign. For every sensor required in the sensors field of the campaign,

each job must have corresponding Sensor Data.

• _id: a string that uniquely identifies each Sensor Data.

• name: the name of the sensor of which this Sensor Data keeps the

readings.

• jobId: this field relates the Sensor Data to a specific Job.

• data: this field is especially important since it saves the readings of

the sensors, as well as the timestamp and the location from which the

reading originates. The exact structure of this field will be explained

in the next section.

2.3 Sensors

Sensors are a vital part of the Sensorworker platform. They provide the

sensing data required by the crowdsourcers and are the main value con-

14 2. System Architecture

tributed by the workers.

As Sensorworker is a web application, it is limited to the sensors available

to a web browser. These sensors and their interfaces are defined through a

specific API, the Sensor API. Sensorworker employs Sensor API in order to

interact with a group of sensors, internally called Basic sensors, as opposed

to the other group of sensors defined as Audiovideo sensors.

2.3.1 Basic Sensors

Sensor API exposes the sensors to the web app through a simple, practi-

cal, and uniform interface. Within these sensors, it is possible to distinguish

2 categories: physical sensors and virtual sensors, where the latter is algo-

rithmically computed on the former.

Below we list the physical sensors:

• Gyroscope: This interface provides on each reading the angular ve-

locity of the device along all three axes, as well as the timestamp.

• Accelerometer: the accelerometer provides on each reading the ac-

celeration applied to the device along all three axes, together with the

timestamp.

• Magnetometer: this interface provides, on each reading, information

about the magnetic field as detected by the device’s primary magne-

tometer sensor, followed by its timestamp. Similar to the previous two

interfaces, the readings are defined along the three axes.

• Ambient Light Sensor: this interface returns an integer representing

the current light level or illuminance of the ambient light around the

hosting device, as well as the timestamp of the reading.

We can see that three out of the four physical sensors share the same

structure for their readings. This will be exploited when the interactions

with the sensors will be defined.

The following are the virtual sensors:

2.3 Sensors 15

• Absolute Orientation: this sensor’s readings describe the device’s

physical orientation in relation to the Earth’s reference coordinate sys-

tem. They are expressed as Hamilton’s quaternions and they are based

on the values of the Accelerometer and Gyroscope.

• Relative orientation: this sensor’s readings describe the device’s

physical orientation without regard to the Earth’s reference coordinate

system. As the previous sensor, it is expressed in quaternions and is

based on the Accelerometer and Gyroscope.

• Linear Acceleration: as the name suggests, this sensor is based on

the Accelerometer and, as a consequence, it is readings are structured

as tridimensional values. The difference between Linear Acceleration

and the Accelerometer lies in the fact that the former excludes the

contribution of gravitational acceleration from the acceleration applied

to the device.

• Gravity: This sensor provides the same value as the Accelerometer.

it is existence is due to the fact that it is logically separated from

Linear Acceleration, and it represents a sensor that only expresses the

gravitational acceleration applied to the device.

With the virtual sensors as well, it is possible to differentiate two classes

based on the structure of their readings. the first two sensors provide readings

structured as quaternions and the last two express their readings as three-

dimensional data.

Permissions

So far we have discussed which sensors are available to a web browser

through Sensor API. However, since web browsers are available on a mul-

titude of devices, not all of them equipped with the described sensors, it is

not possible to take their presence for granted. Therefore, Sensorworker is re-

quired to check their existence, with the added complexity that some browser

16 2. System Architecture

reports their availability even when it is not really present. Lastly, even when

the sensor is actually present, the owner of the device can still disable it is

access to the web browser. In order to tackle all the cases, Sensorworker

performs these three checks for every Basic Sensor

1. Verify that the worker has allowed access to the sensors.

2. Verify that the sensor actually exists.

3. Access the sensor and check whether it actually sends any readings.

These checks must be performed before letting the worker send any data

through Sensorworker.

2.3.2 Other Sensors

The sensors explained so far are either real or virtual sensors, used through

the interface made available by Sensor API. In this section, we will discuss

some features that mobile devices are usually equipped with but don’t ex-

actly represent a conventional sensor. These features are the videocamera,

capable of shooting images and recording videos, and the microphone, ca-

pable of recording audio files. Combining these two it is possible to shoot

audiovideo files.

The permissions regarding the video camera and the microphone are han-

dled similarly as the Basic sensors, with the added complexity that the worker

can not only deny access to the web browser but also the specific web appli-

cation, which in our case is Sensorworker.

Finally, we mention a different sensor, the GPS, which is not considered

stand-alone sensory data, but it is read at every reading of every other sensor

that has been described so far. This is a requirement of the system since the

position of every worker must be checked against the goejson defined in the

campaign in which the worker who’s sending the data is taking part into.

Chapter 3

Interactions Flow and Client

Implementation

In this chapter, we will finally discuss the flow of interaction, both from

the crowdsourcer’s and the worker’s point of view. Sensorworker’s primary

users are the crowdsourcers, thus they must interact only with the interfaces

made available to them by Sensorworker. On the other hand, the workers

who want to take part in a Sensorworker campaign are required to do it

through Microworkers. As a consequence, the interaction between the worker

and Sensorworker is vastly more complex compared to the crowdsourcer’s,

since in the former’s case the web app must be woven together with the user

interface and the navigation system of Microworkers.

3.1 Crowdsourcer Interactions

Since the crowdsourcers are the primary user of the platform, they are

confined to the web pages available to them. This makes the handling of their

interaction rather manageable. As previously mentioned, a crowdsourcer

that wants to register on Sensorworker must already have an account on

Microworkers in order to harness its userbase.

17

18 3. Interactions Flow and Client Implementation

Crowdsourcer registration

Figure 3.1: Registering page for the crowdsourcer

When a crowdsourcer registers, it is asked for a number of details. Specif-

ically, the username is checked for duplicates in the database, in which case

the crowdsourcer is notified and the registration process becomes unavail-

able. If every field is properly filled, a final check is performed on the apiKey

in order to ensure that it is actually a key associated with a Microworkers

account. If this checkup is successful, Sensorworker create a new Microwork-

ers campaign equipped with an external template that is used to direct the

potential workers to the list of Sensorworker campaigns that will be made

by this Crowdsourcer, where they can choose which one to take part in. Fi-

nally, a new crowdsourcer document will be created in the database with the

campaignIDMW field set as the id of the newly created Microworkers campaign.

Figure 3.1 shows the registration form presented upon connecting.

3.1 Crowdsourcer Interactions 19

Campaign creation

Figure 3.2: Campaign creation form

Once registered, the crowdsourcer can create Sensorworker campaigns.

The crowdsourcer must provide enough information to build a new Cam-

paign document in the database. This document will be associated with the

crowdsourcer by storing in the campaign’s campaignIDMW field the id of the

Microworkers campaign that has been created during the crowdsourcer’s reg-

istration. Figure 3.2 shows some relevant fields required during the campaign

creation process, in particular

20 3. Interactions Flow and Client Implementation

• Geolocation bounds: the crowdsourcer can select a polygon to spec-

ify the area in which a worker must be to perform the sensing work.

The bounds are stored in the geojson field of the campaign document

and it consists of an array of coordinates, also known as a Multipoint

geometry object.

• Buffer: as previously explained, the buffer indicates how far the worker

can be from the geojson polygon to be able to take part to the cam-

paign, but not perform the sensing required. To do the latter, they

must be within the polygon. This implementation has been chosen

once considered that the location provided by the IP address might

be approximate and, as it will be explained in the worker’s client im-

plementation when they are in the process of choosing a Sensorworker

campaign, the platform does not have access to the worker’s GPS posi-

tion. To alleviate the chances of a false negative, that is to say, a worker

who is within the geojson bounds but with an IP address reporting a

position outside it, the buffer system has been implemented.

• Sensors: As shown in Figure 3.2, every sensor listed in the sensors

field of the Campaign document must have three constraints:

1. The number of readings for that sensor.

2. How many seconds must elapse between readings.

3. How many meters of distance must be between one reading and

its previous.

The section about the worker’s client implementation will explain how

these constraints are enforced.

• Number of Positions: another field to note is the number of po-

sitions to add for this campaign. These new positions will be added

to the Microworkers campaign related to the Sensorworker campaign.

Before creating the campaign, the cost of adding these positions will

be computed and shown to the crowdsourcer.

3.1 Crowdsourcer Interactions 21

Crowdsourcer dashboard

Figure 3.3: Crowdsourcer Dashboard

Once the crowdsourcer has created some campaigns, they can be accessed

through the dashboard, which shows at a glance some statistics for each

Sensorworker campaign. The only editable data for the campaigns are the

title and the description.

It must be noted that the number of failed jobs can exceed the total

number of positions available for the campaign since they will not be taken

into account when computing how many free positions are still available for

each campaign. The calculation process that returns the number of free

positions will be explained in the worker’s client implementation.

22 3. Interactions Flow and Client Implementation

Figure 3.4: Rating panel

Jobs rating

When a job has been completed, it must be then rated by the crowd-

sourcer. The crowdsourcer can assess the data provided by any job in the

REVIEW panel of each Sensorworker campaign. Using these data, the

crowdsourcer can give two types of ratings: OK and NOK. If they give

an OK rating, the job will be moved to the COMPLETED panel and the

worker will be compensated for their service, On the other hand, if the crowd-

sourcers gives a NOK rating, the job will be moved into the FAILED panel

and the worker won’t be paid, but instead will be notified about the errors

on Microworkers. Another way through which a job can end up in the failed

tab happens when a worker doesn’t complete the job within the amount of

time stored in the timeToComplete field of every campaign. At the end of

the next chapter, we will explain how this delayed check is performed.

3.2 Worker Interactions

So far we have discussed the interaction that a crowdsourcer can have

with the Sensorworker platform. However, these interactions are simple when

compared to the interactions that the worker has to have with the platform,

3.2 Worker Interactions 23

especially when considering how they access it.

3.2.1 Accessing Sensorworker

We first need to discuss how the worker can access the Sensorworker plat-

form through Microworkers. As explained in the previous section, whenever

a crowdsourcer registers on the platform, a new Microworkers campaign is

created on their behalf using their apiKey. This new campaign is set with

an External Template, which is a URL that links to a web page where

the worker should perform the tasks for that Microworkers campaign. This

URL is shown to the worker through an iframe, to which are passed 3 URL

parameters

Figure 3.5: Slot status transitions

• campaignId: the id of the Microworkers campaign.

• workerId: the id assigned to the worker within Microworkers.

24 3. Interactions Flow and Client Implementation

• slotId: the id of the slot. Slots are similar to positions, but they

are used to keep track of how many workers are actively working on

a certain campaign. Slots can have different statuses, and can also

transition between them. Some are shown in Figure 3.5. In the next

section, we will discuss how the slot’s statuses are employed within

Sensorworker.

The iframe is shown in two situations, each with different values for the

parameters

As preview : this iframe is shown as a preview before the worker has ac-

tually taken part in the Microworkers campaign. In this case, the

workerId and the slotId are set as dummy values.

As non-preview : in this case, the worker has actually taken part in the

Microworkers campaign, and the workerId and slotId hold real values.

This distinction will allow Sensorworker to adopt a different behavior in

each case.

Taking part in a campaign

When a worker opens a Sensorworker-generated Microworkers campaign,

they are presented with something similar to Figure 3.6, where the iframe

has been directed to a web page within the Sensorworker platform called

CampaignList. CampaignList shows a list of Sensorworker campaigns as

well as their main details such as title, description, required sensors, and time

to complete. Since the worker has not pressed the ”Accept and Start” button

on the bottom-left, the iframe is shown in preview mode and CampaignList is

provided with the dummy values. In this case, since CampaignList is being

viewed through an iframe and does not have access to the GPS sensor, it

uses the IP address of the worker to compute an approximate location that

sends to the back end in order to find which Sensorworker campaigns are

available based on that location, as well as how many jobs have already been

3.2 Worker Interactions 25

Figure 3.6: Preview iframe

completed. Once it receives a response, CampaignList shows the list of the

available campaigns but keeps the ”Take Part” button disabled since the

worker has not actually started the job. At this moment in the interaction,

no slot has been assigned to the worker

When the worker starts the Microworkers campaign, the iframe transi-

tions from preview to non-preview and, as a consequence, CampaignList is

provided with the actual workerId and slotId. This also means that a slot

has been taken by this worker and the ”Take Part” buttons have been en-

abled for every worker. At this point, the worker has 10 minutes available to

choose and take part in one of the Sensorworker campaigns.

Once the worker has chosen, the iframe is redirected to a web page called

SensorCollectQR, shown in Figure 3.8, which holds a QR code for the web

page within the Sensorworker platform that actually has the capabilities to

collect and send sensory data from the browser. The choice to present a QR

code is due to the fact that in order to access the sensors, the worker must

be moved outside an iframe. It is also not possible to assume that the worker

26 3. Interactions Flow and Client Implementation

Figure 3.7: Non-preview iframe

is already on a mobile device, and the QR code is a convenient method to

transition to a smartphone.

When a worker chooses a Sensorworker campaign, they also create a Job

document in the database with the required data and submit the proof of

their work to Microworkers, as to say they ”conclude” they transition their

lock from Locked to NotRated. This does not mean that their work is actually

over, and they still have to follow the QR code and send the required data.

This implementation has been done to mitigate the case in which all the

available slots for a Microworkers campaign, which represents a group of

Sensorworker campaigns, get locked with workers who do not go forward

with the selection. This prevents other workers from taking part in the

Microworkers campaign.

Giving only 10 minutes to choose from the Sensorworker campaign and

submitting the proof once the worker chooses the campaign is a way to decou-

ple the slotting system of Microworkers from jobs that need to be performed

for the Sensorworker campaigns.

3.2 Worker Interactions 27

Figure 3.8: SensorCollectQR page

It must be noted that CampaignSelect performs another check if it detects

that it is being run in a non-preview iframe. This check uses the workerId

to verify if there are any active jobs, that are jobs with the active field set

to true, in which case it directly transitions to SensorCollectQR, blocking

them from submitting the proof for this new slot that they have taken.

This implementation allows for each worker and each group of Sensor-

worker campaigns from the same crowdsourcer, to have only one active job

at a time.

Figure 3.9 shows a summary of the worker interaction described so far,

starting from when they land on the preview iframe to when they move onto

SensorCollectQR.

28 3. Interactions Flow and Client Implementation

Figure 3.9: Worker interaction flowchart

Collecting Data

The transition from Microworkers to Sensorworker is the most complex

and delicate of the interactions. Once the worker has access to the QR,

they can transition onto SensorCollect, the web page where all the sensor

permissions detailed in the previous chapter are checked and from where the

worker can send the sensory data.

Figure 3.10: SensorCollect page

3.2 Worker Interactions 29

Figure 3.10 shows how the SensorCollect page could be structured for a

Sensorworker campaign that requires only the Gyroscope and the Accelerom-

eter sensors.

Chapter 4

Back-end Implementation

During chapter 3, we have gone through the interaction and the imple-

mentation of the client, paying particular attention to the transition of the

worker from Microworkers to Sensorworker. In this chapter, we will focus

on the back-end implementation that manages the data and responds to the

various API calls.

Following the MVC architecture detailed in chapter 2, we will now explore

the implementation of three different components of the back-end architec-

ture: Controllers, Routes, and services

4.1 Controllers

Base controller

Since controllers are required to respond using HTTP responses, all the

controllers extend a specific base.controller. This controller is equipped

with a series of functions to provide different HTTP responses.

export default class BaseController {
...

public static ok<T>(res: express.Response , data?: T) {
if (!! data) {

res.type(" application/json");
return res.status (200).json(data);

} else {
return res.sendStatus (200);

}
}

...

30

4.1 Controllers 31

public static badRequest(res: express.Response , message ?: string) {
return BaseController.jsonResponse(

res ,
400,
message ? message : "Bad request"

);
}
...

}

Listing 4.1: Base controller

For example, listing 4.1 shows that the ok function is responsible for

returning the HTTP response 200 together with optional data, and the

badRequest function, when called by the other controllers, responds to the

request with the code 400 and an error string, which defaults to ”Bad Re-

quest”.

Campaign controller

This controller extends the base controllers and is concerned with every-

thing regarding Sensorworker Campaigns. In particular, it implements the

getFilteredCampaigns function shown in listing 4.2. This function returns

the filtered campaigns based on the current date and the position provided

through the request parameter. Specifically, it searches for all the campaigns

whose begin date field is in the past and the end date field is in the fu-

ture. Once returned, it further filters the campaigns, keeping only those

that contain the worker’s position also considering the amount of buffer the

campaign provides. In order to do this, the original polygon selected by the

crowdsourcer is ”enlarged” using the turf library, and the position of the

worker is compared against it. It must be noted that the function ends by

calling a method in the base controller.

static async getFilteredCampaigns(
req: Request ,
res: Response ,
next: NextFunction

) {
const campaigns = await Campaign.find({

campaignIDMW: req.query.campaignIDMW ,
begin: { $lt: new Date() },
end: { $gt: new Date() },

})
.populate (" sensors completedJobs activeJobs readyToRateJobs failedJobs ")
.exec();

const point = turf.point([Number(req.query.lat), Number(req.query.lng)]);

32 4. Back-end Implementation

const filteredCampaigns = campaigns.filter ((campaign) => {
if (

campaign.totalJobs ==
campaign.completedJobs + campaign.activeJobs + campaign.readyToRateJobs

) {
return false;

}

const points = [
[... campaign.geojson.coordinates , campaign.geojson.coordinates [0]],

];
const polygon = turf.buffer(turf.polygon(points), campaign.buffer);

return turf.booleanPointInPolygon(point , polygon);
});
super.ok(res , filteredCampaigns);

}

Listing 4.2: getFilteredCampaigns function

Crowdsourcer controller

This controller handles all the API calls from the crowdsourcer client,

including the creation of Sensorworkers campaigns, fetching the campaign’s

data, rating the jobs, and creating the session when the crowdsourcer logs

in. It must be noted that the route that uses this controller is protected,

which means that to access them the crowdsourcer must be logged in to the

platform.

static async getCampaigns(req: Request , res: Response , next: NextFunction) {
try {

const crowdsourcer = await CrowdSourcer.findOne ({
apiKey: req.session.apiKey ,

})
.select (" campaignIDMW ")
.exec();

const campaigns = await Campaign.find({
campaignIDMW: crowdsourcer ?. campaignIDMW ,

})
.populate (" sensors completedJobs activeJobs readyToRateJobs failedJobs ")
.lean()
.exec();

super.ok(res , campaigns);
} catch (err: any) {

super.fail(res , err);
}

}

Listing 4.3: getCampaings function

Listing 4.3 shows how the Sensorworker campaigns are fetched from the

database, and the function ends with the usual calls to the base controller’s

methods both in case of success and in case of failure.

4.1 Controllers 33

Job controller

As the name suggests, this controller is concerned with API calls related

to the Jobs. These methods are mainly called by the worker’s client.

static async getActiveJobs(req: Request , res: Response , next: NextFunction) {
try {

const campaigns = await Campaign.find({
campaignIDMW: req.query.campaignIDMW ,

}).select ({ id: 1 });

const jobs = await Job.find({
campaignID: { $in: campaigns },
workerIDMW: req.query.workerId ,
active: true ,

});
if (jobs.length > 1) {

throw new Error(" multiple active for same MW campaign ");
}
super.ok(res , jobs [0]);

} catch (err: any) {
super.fail(res , err);

}
}

Listing 4.4: getActiveJobs function

Listing 4.4 shows one of the methods in this controller, which is used

by the CampaignList page to perform the check detailed in chapter 3.

This function searches for all the Sensorworker campaigns that are associated

with the Microworkers campaign provided with the req parameter. These

campaigns are then used as the filter in order to search for any active jobs.

If one is found, it is sent to the client in order to enforce its completion to

the worker who started it.

Sensor Data controller

This controller is used only by the worker’s client. It stores the method

that handles the API calls from the SensorCollect web page, which sends

and fetches the sensory data of a worker.

static async postReading(req: Request , res: Response , next: NextFunction) {
if (req.headers ["content -type "]?. includes (" multipart/form -data")) {

next();
} else {

const doc = await SensorData.findOneAndUpdate(
{

name: req.body.name ,
jobId: req.body.jobId ,

},
{

$push: { data: req.body.state },

34 4. Back-end Implementation

},
{ upsert: true , new: true }

).exec();
super.ok(res , doc);

}
}

Listing 4.5: postReading function

Listing 4.5 shows an example of a function in this controller. postReading

is called whenever the worker presses ”SEND” on a sensor, where the first

if statement checks whether the sent data is a multipart stream of data,

which represents a photo, video, or audio file. In this case, the method calls

the ”next” function in the router, which is a function with the sole objective

of storing this special kind of data in the database. We will discuss how this

is done in the section about services. On the other hand, if the sent data

is from one of the other sensors, it is pushed inside the data field of the

SensorData document of that sensor for this job.

Session controller

This controller has the only task of guarding the Crowdsourcer’s route

and has only one method

public static async guard(req: Request , res: Response , next: NextFunction) {
if (!req.session.apiKey) {

super.unauthorized(res);
} else {

next();
}

}

Listing 4.6: guard function

This function is responsible for checking if the calling client has an active

session, that is to say, the crowdsourcer is logged in. If this check fails, the

controller redirects the client to the login page by signaling that they are not

authorized.

4.2 Routers 35

4.2 Routers

Every controller has an associated router. The routers are responsible for

routing the execution toward the correct Controller’s method.

router.get ("/ getInfo", CrowdSourcerController.getInfo);

router.post ("/ createCampaign", CrowdSourcerController.createCampaign);

router.get ("/ getCampaigns", CrowdSourcerController.getCampaigns);

router.post ("/ editCampaign", CrowdSourcerController.editCampaign);

router.get ("/ getJobs", CrowdSourcerController.getJobs);

router.get ("/ getSensorData", CrowdSourcerController.getSensorData);

Listing 4.7: Router for the crowdsourcer controller

Listing 4.7 shows some of the routing paths that direct to the crowd-

sourcer’s controller. It must be noted that the guard on the crowdsourcer

routes is set with the following function call

app.use ("/ api/crowdsourcer", SessionController.guard ,
crowdsourcerRouter);

Listing 4.8: Guard on the Crowdsourcer router

This means that only when the SessionController.guardmethod shown

in figure 4.6 invokes the next() function, the execution can progress into the

crowdsourcer’s router.

4.3 Services

The back-end architecture uses three different services in order to imple-

ment some critical functionalities

GrifFS Service : Since the database used to store the readings of the sen-

sors is a document-based NoSQL server, it isn’t fit to save files with

arbitrary dimensions like photos, video, and audio recordings. In order

to do so using MongoDB, the GridFS service has been employed. This

36 4. Back-end Implementation

service takes a stream of data sent from the client, selects a ”Bucket”

into which it stores chunks of the streamed data, and finally creates

a special document that points to the first chunk of the data required

to restore the initial file. Specifically, the GridFS service uses three

buckets: photos, videos, and audio recordings. When a file is requested

from the client, it is sent as a stream.

Microworkers API service : During the interactions with Sensorworker,

there are many times that require some Microworkers API calls. For ex-

ample, when a crowdsourcer registers into the platform, a Microworkers

campaign must be created on their behalf. Only the backend is allowed

to directly interact with the Microworkers APIs, and in order to ease

this interaction, the Microworkers API Service has been employed. This

service has been created through a process of code generation based on

the swagger file of the Mircoworkers APIs, and it essentially turns the

API calls into function calls, providing an easy-to-use class that takes

the required parameters in order to invoke the API.

AgendaJS service : As anticipated in chapter 3, if a worker doesn’t com-

plete a job within the amount of time detailed in the timeToComplete

field in the Sensorworker campaign document, the job is marked as

failed and the slot is rated as NOK. This check must be performed

when the timeToComplete expires, and in order to do so the AgendaJS

library has been used. This library allows the creation of something

similar to CRONJOBS, that is to say, a function that is run on a spe-

cific moment in the future. Using this service, a function that checks

the completion of the job is set to run at the timeToComplete every

time a job is created. Thanks to this, the job can be automatically

rated as failed when the function runs and verifies that the job has not

been completely fulfilled.

Chapter 5

Testing

In order to test the Sensorworker platform, three different campaigns

with varying degrees of requirements have been administered to the same

group of 10 testers, all based in the city of Bologna with different traveling

routes around the city. All testers have been given a general idea of the

functionalities of the Sensorworker platform and have been guided through

creating an account on Microworkers in order to take part in the tests. All

the testing campaigns require 5 readings from every required sensor, and they

have been structured as follows

• Campaign 1: The geographical bounds of this campaign are limited

to the city center, with the least amount of buffer (100km). Only the

Basic sensors have been required (accelerometer, gyroscope, etc) and

there are no temporal or spatial requirements imposed on them

• Campaign 2: This campaign is geographically bound to a specific

part of the suburbs, which is around 15 km away from the city center.

The buffer has been extended to 300 km and all the sensors (both Basic

and Audiovideo) are required to perform this task, asking the testers

to take photos, videos, and audio recordings of specific things detailed

in the description of the campaign (photos of street signs, videos of

trees, an audio recording of a car passing by). No temporal or spatial

constraints have been put in place.

37

38 5. Testing

• Campaign 3: For this campaign, the geographical bounds are once

again put within the city center, which has been reported as the most

frequented place by the testers. The buffer has been set to 500 km

and all the sensors are required, once again asking for the same specific

audio and video readings for Campaign 2. For every sensor, a temporal

constraint between 10 to 30 seconds and a spacial constraint between

1 to 5 meters have been set.

5.1 Results

First, before considering the feedback provided by the testers, we must

look into the tester group demographic.

Figure 5.1: Testers confidence level on technological know-how

As we can see in Figure 5.1, most consider themselves to be fairly confi-

dent, with 7 out of 10 testers placing in the upper categories. Seeing these

first results, it seems reasonable to expect a low failure rate.

The age of the tester group ranges from 16 to 65, with most of them

concentrated between 20 to 30 years of age.

Only 3 out of 10 testers are in possession of a personal vehicle (exclud-

ing bicycles), so most of them are limited in their transportation method,

especially when it comes to working on Campaign 2.

5.1 Results 39

All testers reported frequently visiting the two locations required in the

campaigns.

Finally, for the purpose of the test, a job is considered successful as long

as all the readings of all the required sensors are fulfilled, without considering

the quality of the sensory data.

Campaign 1

This first campaign is structured to be the easiest and most approachable

for inexperienced workers. The success rate has been 80%, as most of the

testers have successfully sent the data while being within the geographical

confines. One of the testers whose task failed reported that it wasn’t clear

that their job was not completed yet. The other tester reported difficulties

with providing access to the sensors on their smartphone.

In regard to the data, it must be noted that each successful tester sent the

readings from a single location, in the span of a few seconds. This suggests

that having no temporal or spatial constraints on the sensors can have poor

data significance as consequence.

Figure 5.2: Expected payment for Campaign 1

Figure 5.2 shows how much compensation the testers would expect after

performing Campaign 1, with an average range between 2.1e and 3.1e.

40 5. Testing

Campaign 2

Campaign 2 has been designed to test how the difference in the location

might impact the performance of the campaign, as well as the added dif-

ficulties in the sensing task due to the audio and video sensors being now

required.

The success rate for Campaign 2 has been 60%. Of the 4 failed jobs, 3

testers reported difficulties with interacting with the wide amount of sensors.

Especially the audio Sensor has been singled out as a cause of confusion since

the testers were not able to clearly hear the recordings due to poor quality

and did not send the readings as they considered them inadequate.

When considering the data, the basic sensors reading suffer from the same

condition as in Campaign 1, that is to say, each worker sent the reading from

the same location. It must be noted that the photos and the videos sent

mostly follow the instructions provided in the description of the campaign,

with only one tester seemingly not noticing the instructions.

When it comes to compensation, many testers have asked more due to

the added complexity of the audio and video sensors, with an average range

between 2.3e and 3.3e.

Campaign 3

This final campaign has been designed to study the impact of temporal

and spatial constraints on the sensors.

The success rate for this campaign has been 40%, with many of the testers

who failed their job reporting that the spacial constraints have been the most

impactful factor for their missing readings. When queried about the situation

in which they performed the job, they reported that they were stationary and

in a single location, and were not willing to move in order to meet the spacial

constraints required after the first reading.

In regards to the compensations, the testers reported that they would per-

form this kind of job for higher pay compared to the previous two campaigns,

with an average between 3.2e and 4.2e.

Conclusions

From these tests, we can infer some tendencies that start to emerge.

More specifically, the most costly requirement is the temporal and spatial

constraints, which if not adequately incentivized, leads to a high failure rate.

During the development of Sensorworker, different technologies, and method-

ologies have been employed in interesting and innovative ways, especially in

order to integrate with the Microworkers platform.

The crowdsensing system offered by Sensorworker still suffers from no-

table and open issues which afflict many MSC platforms, some of which are:

• Problems concerning anonymization and the privacy of the user data.

Despite the abstraction offered by Microworkers, Sensorworker still de-

pends on the data sent by the browsers of the workers’ mobile devices,

which can potentially be an attack surface for malicious actors.

• Sensor accessibility is highly dependent on third-party browser devel-

opers (e.g. Google, Firefox), which can limit or expand the potential

sensing capabilities of the platform. In this case, running on a browser

is a trade-off between ease of use and platform features

These concerns aside, the MSC platform itself can be improved in re-

gard to User experience and can greatly benefit from a robust and efficient

deployment system through the use of multiple container instances.

The tests performed in the final chapter highlight how the most costly

requirement for crowdsensing campaigns are the spatial and temporal con-

straints which, if poorly compensated, lead to a high failure rate. The geo-

41

42 Conclusions

graphical conditions are met as long as it intercepts the usual routes of the

potential worker.

Everything considered, Sensorworker offers a convenient and user-friendly

platform to perform and gather crowdsensing data leveraging an existing and

reliable user base, which addresses one of the primary concerns in relation to

MSC systems and more general crowdsourcing requirements.

Bibliography

[1] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth

Kandula, and Deborah Estrin. A first look at traffic on smartphones. In

Proceedings of the 10th ACM SIGCOMM conference on Internet mea-

surement, pages 281–287, 2010.

[2] Raghu K Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: current state

and future challenges. IEEE communications Magazine, 49(11):32–39,

2011.

[3] Bin Guo, Zhiwen Yu, Xingshe Zhou, and Daqing Zhang. From partici-

patory sensing to mobile crowd sensing. In 2014 IEEE International

Conference on Pervasive Computing and Communication Workshops

(PERCOM WORKSHOPS), pages 593–598. IEEE, 2014.

[4] Larissa Hammon and Hajo Hippner. Crowdsourcing. Business & Infor-

mation systems engineering, 4:163–166, 2012.

[5] Matthias Hirth, Tobias Hoßfeld, and Phuoc Tran-Gia. Anatomy of a

crowdsourcing platform-using the example of microworkers. com. In

2011 Fifth international conference on innovative mobile and internet

services in ubiquitous computing, pages 322–329. IEEE, 2011.

[6] Jeff Howe et al. The rise of crowdsourcing. Wired magazine, 14(6):1–4,

2006.

[7] Robin Kraft, Winfried Schlee, Michael Stach, Manfred Reichert,

Berthold Langguth, Harald Baumeister, Thomas Probst, Ronny Han-

43

44 Conclusions

nemann, and RÃ¼diger Pryss. Combining mobile crowdsensing and eco-

logical momentary assessments in the healthcare domain. Frontiers in

Neuroscience, 14, 2020.

[8] Yutong Liu, Linghe Kong, and Guihai Chen. Data-oriented mobile

crowdsensing: A comprehensive survey. IEEE Communications Surveys

& Tutorials, 21(3):2849–2885, 2019.

[9] Huadong Ma, Dong Zhao, and Peiyan Yuan. Opportunities in mobile

crowd sensing. IEEE Communications Magazine, 52(8):29–35, 2014.

[10] Xufei Mao, Xin Miao, Yuan He, Xiang-Yang Li, and Yunhao Liu. City-

see: Urban co 2 monitoring with sensors. In 2012 Proceedings IEEE

INFOCOM, pages 1611–1619. IEEE, 2012.

[11] Keshab Nath, Sourish Dhar, and Subhash Basishtha. Web 1.0 to web

3.0-evolution of the web and its various challenges. In 2014 Interna-

tional Conference on Reliability Optimization and Information Technol-

ogy (ICROIT), pages 86–89. IEEE, 2014.

[12] Paul Sloane. A guide to open innovation and crowdsourcing: Advice

from leading experts in the field. Kogan Page Publishers, 2011.

Acknowledgements

I would like to take this opportunity to express my gratitude to all those

who have supported and encouraged me throughout my academic journey.

Firstly, I would like to thank my parents for their support, love, and encour-

agement throughout my academic career. Their constant belief in me has

been the driving force behind my success. I would also like to thank Claudia

and her family for their endless support and understanding throughout my

university career. They have always been there for me, providing me with

encouragement and advice. I would like to extend my appreciation to my

thesis supervisor, Dott. Federico Montori, for his guidance, expertise, and

patience throughout my research. His willingness to share his knowledge and

introduce me to new and interesting technologies has been invaluable.

Thank you all for your invaluable contributions to my academic journey.

