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Abstract

The challenges faced by developers when dealing with large-scale, distributed sys-
tems call for high level abstractions in order to manage their growing complexity.
In this context, aggregate computing is an emerging paradigm that allows to declar-
atively specify the behavior of these types of systems, by viewing the system as a
whole, rather than focussing on the interactions of individual devices. This new
way of reasoning about the behavior of aggregates of devices is based on a formal
calculus that describes programs as the functional composition of computational
fields that evolve through time, called “field calculus”. As it currently stands,
though, this formal model does not provide native ways to fine-tune the timing
and the evolution dynamics of fields, which is desirable to avoid wasteful usage of
processing resources.

In this paper we propose to combine aggregate computing with the functional
reactive programming to develop an evolution of the current model proposed by
field calculus that allows to effectively specify aggregate computations as reactions
to changes in the environment. A small prototype has been developed to assess
the applicability of the proposed model and to verify that some of the properties
of the original model remain observable in the new one. Ultimately, this project
aims to contribute towards the vision of functional reactive self-organization.
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Chapter 1

Introduction

The complexities that developers face nowadays when dealing with large-scale,
distributed systems have grown to a point that imposes the adoption of new tech-
niques to manage those complexities and to help reasoning about distributed soft-
ware at high levels of abstraction. Typically, systems of this nature fall under the
category of Collective Adaptive Systems, in which a large number of devices pursues
a global goal by means of strongly decentralized interactions, while adapting their
behavior to the constantly changing environment. New paradigms should allow
to declaratively specify the behavior of such types of system, while also providing
composable and reusable building blocks.

One of the most promising approaches in this matter is aggregate computing
[12], which focuses on the definition of behaviors of aggregates of devices, rather
than thinking in terms of single entities. This leads to the idea of self-organization
[11], thanks to which global coordination behavior emerges from local coordination
abstractions. Its foundation is given by field calculus, a formal calculus that defines
aggregate programs as the functional composition of computational fields.

A set of frameworks and languages based on this paradigm already exist, both
as internal or external Domain Specific Languages, like ScaFi or Protelis. However,
these frameworks – and field calculus as well – propose a proactive model based on
computation rounds, which lacks abstractions that naturally model the behavior
of a system as a reaction to relevant events in the surrounding environment. This
means that it is not currently possible to fine-tune the overall dynamics and the
timing of computations, resulting in wasteful usage of the processing resources.

The objective of this thesis is to explore the potential problems connected
with the current proactive model of field calculus, proposing a new one based on
reactivity to environmental changes, leveraging the principles of functional reactive
programming [2] to keep the compositionality aspects intact and to improve on
some of the current shortcomings. On top of that, a small, but functional prototype
will be developed for said model, both to assess its feasibility and to be aware
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2 CHAPTER 1. INTRODUCTION

of some of the caveats that a production-ready implementation should tackle.
Ultimately, the vision of the whole project is to take a step towards functional
reactive self-organization.

Thesis structure The remainder of this thesis is organized as follows. Chapter 2
introduces the essential background on all the subjects upon which all the work is
based, presenting concepts of functional programming, the new features of Scala
3, the basics of aggregate computing and field calculus, and finally an overview
of the functional reactive programming paradigm. On this foundation, Chapter 3
analyzes the current state of aggregate computing, in particular with the ScaFi
framework, and proposes a specification for a reactive model that . Subsequently,
Chapter 4 goes into the details of how the prototype for the specification was
implemented with Scala 3. Chapter 5 shows the process that was adopted in
order to evaluate both the model and the implementation, through unit tests and
empirical tests. Finally, Chapter 6 gives some final thoughts on the contribution
of the thesis and paves the way for future work.



Chapter 2

Background

This chapter gives an high level overview of the concepts, paradigms, and frame-
works that were used as references throughout the development of this thesis.

2.1 Functional programming

Functional Programming is a programming paradigm in which computation is
expressed as a transformation of inputs into outputs using functions and function
composition. Here, functions are to be intended in the mathematical sense of
the term, meaning that they are just mappings from elements of their domain to
elements of their co-domain.

2.1.1 Functional programming concepts

This section illustrates some of the key concepts on which functional programming
is based upon and that are key when working in a functional style.

Purity The mathematical definition of a function can be adapted to the context
of computer programming, in which mathematical functions are referred to as
pure functions. To be pure, a function must satisfy the following properties:

• given the same arguments, it always returns the same value, or in other
words, its output depends solely on its arguments;

• it must produce no observable side effects (e.g., mutate global shared state,
send data over output streams, etc).

3



4 CHAPTER 2. BACKGROUND

Referential transparency A sub-expression (i.e., the application of a function)
is said to be referentially transparent if it can be safely substituted with its final
value without changing the overall semantics of the complete expression that con-
tains it. This is a direct consequence of function purity, since a pure function’s
only observable effect is the value it returns for its given arguments and that value
is consistent over time. Due to this fact, referential transparency and purity are of-
ten used (erroneously) as synonyms. While it is true that purity implies referential
transparency, the opposite is not, in general.

Evaluation order strategies Functional languages typically support different
ways to evaluate arguments as they are passed to functions. There are three main
approaches:

• call-by-value: arguments are evaluated before the function application;

• call-by-name: arguments are evaluated each time they’re value is required
inside the body of the function;

• call-by-need : also referred to as lazy evaluation, arguments are evaluated
once the first time their value is needed inside the body of the function.

Immutability One of the consequences of purity when writing code in a func-
tional style is that programs are not allowed to have any global state that is shared
among their sub-components. This also means that the data structures to be used
must be designed accordingly and should therefore be immutable, allowing state
changes only via creating new versions of the same data structure. This is typi-
cally not a problem, since complex data structures (e.g., collections like lists, sets,
maps, . . . ) are optimized to reuse as much as possible when creating copies of
themselves.

Higher order functions Functional programming proposes the idea of func-
tions as first-class citizens, indicating that functions can also be considered values
and be passed around just like traditional values. Therefore a function can take
functions as arguments or return functions as outputs, in which case is called an
higher order function.

2.2 Scala 3

Scala is a programming language built on top of the Java Virtual Machine (JVM),
with support for both the object-oriented and the functional paradigms [6], effec-
tively making it a multi-paradigm language. It is a pure object-oriented language,
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in fact everything is an object and objects are defined through classes and traits.
It is a functional language, because it supports the idea of functions as values and
allows higher order functions to be defined [9].

The main features of Scala are:

• support for both OOP and FP;

• seamless integration with the Java ecosystem and the JVM;

• powerful static type system;

• flexible syntax that makes it a scalable language;

The most recent version of Scala (at the time of writing) is Scala 3 [10], which
is the version that has been used during development. Scala 3 introduces several
new constructs and improvements over its predecessor [5], that were considered to
be necessary to streamline the development process and allow for a concise and
conveying syntax. The most relevant that were also used for this project can be
summarized as follows:

• optional braces introduce the ability to use a python-like syntax that con-
trols scopes through indentation;

• enumerations improve on the traditional way of defining algebraic data
types (see Section 2.2.1) that required the use of sealed traits;

• improved contextual abstractions replace the use of the old implicits
with new constructs that better convey the developer’s intent, in particular:

– using clauses allow methods to abstract over information that is avail-
able in the calling context and that should be passed implicitly (see
Section 2.2.2);

– given instances define canonical values for types that can be passed
implicitly (see Section 2.2.2) and are typically used to define type class
instances ;

– extension methods allow developers to attach methods to types after
their definition (see Section 2.2.3);

– implicit conversions let the compiler view a type as another and perform
conversions without explicit casting;

– context functions define types of functions that only take context pa-
rameters (see Section 2.2.4);

The following sections give more details on these constructs.
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2.2.1 Enumerations and algebraic data types

An algebraic data type (ADT) is a structured type defined as a composition of
other types, which can in turn be other ADTs or atomic types. ADTs can belong
to one of these categories:

• Product Types (also known as records): defined as the cartesian product
of its composing types;

• Sum Types (also known as discriminated unions): defined as the union of
its composing types.

As an example, let’s consider modeling a binary tree. A binary tree can be rep-
resented as an ADT through a sum type Tree, which is a discriminated union of
these product types:

• Leaf(x), where x is the value contained in the leaf itself;

• Node(x, left, right) where x is the value contained in the node itself,
and left and right are respectively the left and right subtrees.

This ADT indicates that a binary tree is either a leaf, in which case it only stores
the value it contains, or a node, in which case it stores its value a the left and right
subtrees. Note that this is a recursive definition, since left and right are also of
type Tree.

In Scala 2, an ADT could be defined using sealed traits (to represent sum
types) in combination with case classes (modeling product types). Note the use
of the sealed keyword, which guarantees that a trait decorated with this modifier
will not be extended in other source files other than the one where the trait is
declared. This is fundamental, since a discriminated union should not be open
to extension and allow only its composing types to be used. In addition, case

classes are a perfect candidate to represent product types due to their structure
(resembling that of records) and can be used seamlessly with pattern matching.

In Scala 2, the binary tree example would be implemented as follows:�
1 sealed trait Tree[T]

2 case class Leaf[T](x: T) extends Tree[T]

3 case class Node[T](x: T, left: Tree[T], right: Tree[T]) extends Tree[T]� �
Scala 3 takes an approach to ADTs that better conveys the intent of the devel-

oper, offering a structure that is specifically designed to represent discriminated
unions. The new version introduces the enum keyword, which smooths out the
process of defining discriminated unions. The Scala 3 version of the binary tree
example becomes
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�
1 enum Tree[T]:

2 case Leaf(x: T)

3 case Node(x: T, left: Tree[T], right: Tree[T])� �
which is more succinct and avoids the boilerplate required by its predecessor.

Finally, both approaches are well suited to be used with pattern matching
(although only Scala 3 is shown here). This example show the implementation of
a method that converts a binary tree to a string, by using preorder traversal.�

1 import Tree._

2

3 def stringify[T](tree: Tree[T]): String = tree match

4 case Leaf(x) => x.toString

5 case Node(x, l, r) => s"$x[${stringify(l)},${stringify(r)}]"
6

7 val aTree = Node(

8 1,

9 Node(

10 2,

11 Leaf (3),

12 Leaf (4)

13 ),

14 Leaf (5)

15 )

16

17 println(stringify(aTree)) // 1[2[3 ,4] ,5]� �
2.2.2 Using clauses and given instances

The using and given keywords were introduced in Scala 3 as a replacement for the
implicit keyword when passing context parameters and when defining canonical
values. Before Scala 3, in fact, the implicit mechanism lacked on clarity of intent,
since the keyword was also used to define extension methods (see Section 2.2.3)
and implicit conversions.

The following snippet shows how implicits worked before Scala 3. First, a
developer would need a method accepting a parameter implicitly. Here, the
printBoth() method accepts a printer argument that should be inferred from
the caller context and not be passed explicitly.�

1 trait Printer {

2 def print(x: Any): Unit

3 }

4

5 def printBoth(x: Any , y: Any)(implicit printer: Printer): Unit = {

6 printer.print(x)

7 printer.print(y)

8 }� �
Next, when calling the printBoth() method, Scala tries to synthesize an ap-

propriate value of type Printer that is marked as implicit in the calling scope:
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�
1 implicit val printer: Printer = x => println(x)

2

3 // The following lines are equivalent.

4 printBoth("A", "B")

5 printBoth("A", "B")(printer)� �
Note that the printer value is declared using the implicit keyword, marking it
as suitable to be passed implicitly.

As stated at the beginning of this section, Scala 3 replaces the implicit key-
word with using and given. Other than that, not much changes in the structure
of the previous code:�

1 trait Printer:

2 def print(x: Any): Unit

3

4 def printBoth(x: Any , y: Any)(using printer: Printer): Unit =

5 printer.print(x)

6 printer.print(y)

7

8 ...

9

10 given printer: Printer = x => println(x)

11

12 // The following lines are equivalent.

13 printBoth("A", "B")

14 printBoth("A", "B")(using printer)� �
Note that, just like implicit parameters, using parameters are available as

givens inside the scope of the method or function they are declared in. This makes
the following snippet valid Scala code:�

1 def nPrintBoth(x: Any , y: Any)(n: Int)(using Printer): Unit =

2 (1 to n).foreach(_ => printBoth(x, y))� �
Also note that Scala 3 lets the developer omit using parameters names, since most
of the times they are in turn passed downstream implicitly. In those cases, they
are accessible through the summon[T] method, which finds the given instance of
type T available in the current context.

2.2.3 Extension methods

Scala 3 introduced extension methods following the same principles that inspired
the given/using keywords, that is the overloaded meaning of the implicit key-
word. In fact, prior to this version, extension methods were also written using that
keyword, in particular by using implicit classes. The following listing shows
how it was done:�

1 object Extensions {

2 implicit class RichInt(x: Int) {

3 def isDivisibleBy(other: Int): Boolean = x % other == 0

4 }
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5 }

6

7 import Extensions._

8 println (10. isDivisibleBy (5))� �
Other than the use of an overloaded keyword, this approach had the disadvantage
of having to come up with a name for the implicit class, that would however never
be referenced again afterwards.

Scala 3 solved this issue by adding the extension keyword. The previous code,
re-written in Scala 3, would be as follows:�

1 object Extensions:

2 extension (x: Int)

3 def isDivisibleBy(other: Int): Boolean = x % other == 0

4

5 import Extensions._

6 println (10. isDivisibleBy (5))� �
2.2.4 Context functions

Context functions are a completely new feature of Scala 3, allowing developers to
create function types that only accept context parameters.

A context function type is written as

(T1, ..., Tn) ?=> U

which represents a function accepting n context arguments with types (T1, ...,

Tn) and returning a value of type U. Context functions can be used just as nor-
mal functions, but they have special syntax for passing and getting arguments
implicitly.

Consider the following snippet:�
1 given world: String = "World"

2

3 def greet(how: String ?=> String): Unit = println(how)

4 // def greet(how: String ?=> String): Unit = println(how(using world))

5

6 // The following lines are equivalent.

7 greet(s"Hello ${summon[String ]}")
8 greet(who ?=> s"Hello $who")� �

Here greet() is a method accepting a context function whose context parameter
is of type String and also returns a String. Note that the implementation of
greet() invokes how by letting the compiler synthesize its argument implicitly,
using the given String declared at the top of the snippet. Moreover, both in-
vocations of greet() are equivalent since Scala expands the first expression to a
context function literal behind the scenes.

In general, if an expression E is expected to have a context function type (T1,

..., Tn) ?=> U and it is not already a context function literal, it is re-written
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as (x1: T1, ..., xn: Tn) ?=> E automatically by the compiler. Also, while
type-checking E, its arguments are available as givens, which means that they are
accessible using summon[T].

2.3 Aggregate computing

Aggregate computing is an emerging approach to the engineering of complex coor-
dination for distributed systems, in particular Collective Adaptive Systems [12]. It
is mostly based on the idea that it is simpler to view system interactions in terms
of information propagating through collectives of devices, rather than in terms of
individual devices and their interaction with their peers and environment.

Aggregate computing fits particularly well when the nature of the problem
requires to deal with a network of devices with these features:

• openness, meaning that the environment in which devices are immersed can
exhibit unexpected changes and faults;

• large scale, with a possibly huge number of devices/agents that need to
coordinate and require good abstractions to be managed;

• intrinsic adaptiveness, that is, the ability to react to relevant events in
order to guarantee overall system resilience.

These concerns call for an approach based on self-organization, where global and
robust coordination behavior emerges from local coordination abstractions.

Another goal of aggregate computing is to give developers a way to describe
the behavior of distributed systems with the features described above in a com-
posable and declarative fashion, in order to scale well with the complexity of the
domain. This is possible thanks to the mathematical core of aggregate computing,
that is based on computational fields (see Section 2.3.1) and field calculus (see
Section 2.3.2).

2.3.1 Basic abstractions

Aggregate computing models a distributed system as a set D of devices, ranged
over by δ. On top of that, a reflexive 1 neighboring relation indicates the devices
with which one can communicate (which is application-dependent, and can be used
to describe logical or physical proximity). In addition, each device has a set of
sensors that enable the perception of the environment.

1each device is a neighbor of itself.
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The primary abstraction introduced by aggregate computing is the computa-
tional field (or simply field), which is a function φ : D 7→ L mapping each device
δ ∈ D to a local value l ∈ L [11]. A field evolution is a dynamically changing
field, and a field computation takes field evolutions as inputs and produces field
evolutions as outputs. These outputs are defined in such a way that they change
tracking input changes.

The key idea of aggregate computing is that any field computation (global in-
terpretation) can be mapped to a single-device behavior that is iteratively executed
by all the devices in the network (local interpretation). Each iteration executed
by a device is called a computation round and can be subdivided in three steps:

• sense: the device gathers information coming from its neighbors and local
sensors, which are collected to create its local context (or local state) for the
current round;

• eval: the computation defined by the behavior is evaluated against the local
context, producing an export ;

• broadcast: the export is broadcast to all the device’s neighbors, which in
turn collect and use this information in their own future rounds.

2.3.2 Field calculus

Field calculus represents a simple language that can be used to describe computa-
tions acting on fields. While its syntax, typing, and semantics are deeply discussed
in [12] and are omitted here for simplicity, a brief description of its elements is pre-
sented below:

• a field calculus program P consists of a sequence of function declarations F̄

followed by the main expression e;

• an expression e can be:

– a variable x (e.g., function parameters, . . . );

– a local value l (e.g., booleans, numbers, strings, tuples, . . . );

– a neighboring field value φ, i.e., a (per-device) mapping from the de-
vices’s neighbors to local values;

– a function call f(ē) to a user-declared function or a built-in function
(e.g., maths or boolean operators, sensors, . . . );

– a branching expression if(e1){e2}{e3} which splits computation into
isolated sub-regions, resulting in e2 where and when e1 evaluates to
true, and in e3 otherwise;
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– a nbr(e) construct, which creates a neighboring field value that maps
each neighbor to the latest result of evaluating e;

– a rep(e1){(x)⇒ e2} construct, which models state evolution over time.

To work properly, the semantics of nbr and rep require a way to access, respec-
tively, the last registered state of each neighbor and the last registered output of
the device itself. In addition, this process should be made in such a way that differ-
ent instances of rep and nbr cannot inadvertently “swap” their respective value.
This process is called alignment, and it has the consequence that two branches
of an if expression execute in isolation, meaning that two devices that execute
different branches cannot communicate with each other inside their branches. In
practice, this process is done by carefully constructing the export of an expression
as an evaluation tree that represents the aggregate computation. The complete
semantics of export construction and alignment can be found in Appendix C of
[11].

2.4 Functional reactive programming

Functional Reactive Programming (FRP) is a style of programming that unifies
the approaches of Reactive Programming (RP) and Functional Programming (FP,
see Section 2.1) to tame the complexity of event-driven interactive applications.

The following sections describe the conceptual evolution of the paradigms used
to deal with event-driven scenarios, starting from the traditional observer pattern
and evolving into FRP. The discussion is primarily based on the book [2] and
on the Sodium library written by the authors of the book (see Section 2.4.3 for
further details).

2.4.1 Limitations of the observer pattern

The observer pattern is a way to define event-driven logic by registering callbacks
(or listeners) to the sources of events, creating a one-to-many dependency from
the producer of events to its consumers. This is the traditional (and mainstream)
approach to dealing with stateful, event-driven logic, which is typically associated
with applications like GUIs or games.

Typically, the observer pattern is associated to some state machine that im-
plements the domain logic while encapsulating the application state. This model
can be described as follows:

• an event gets pushed to the listener;
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• the listener activates the logic based on the input event and on the current
state;

• the logic updates the current state;

• the logic may produce some output that is not fed back into the state.

While the observer pattern can be pretty straightforward for simple enough
scenarios, the growing complexity of modern event-driven applications brings to
light some of its shortcomings, which are called by the book “the six plagues of
listeners”:

• unpredictable order : since listeners are typically notified in the order they are
registered in, keeping track of the temporal dependencies between listeners
can become infeasible and lead to unpredictable behavior;

• missed first event : it can be difficult to guarantee that listeners are registered
before the first event is sent;

• messy state: traditional state machines are hard to reason about and tend
to quickly grow in complexity;

• threading issues : using locks inside listeners to guarantee thread safety can
lead to deadlocks which are difficult to track down;

• leaking callbacks : forgetting to unregister a listener can cause memory leaks;

• accidental recursion: the order in which state is updated and listeners are
notified is crucial and needs careful attention.

2.4.2 FRP paradigm

In order to overcome the limitations of the observer pattern, FRP proposes a
paradigm shift built around the notion of continuous time-varying values and
propagation of change [1]. This shift allows for a more declarative way of writing
programs, since developers only have to describe them in terms of what they do and
let the underlying execution model manage when changes should be propagated.
In fact, RP promotes the idea of a dependency graph of values and computation,
that dictates the flow of data and the propagation of changes occurring to each
node of the graph.

According to the terminology used in Sodium (see Section 2.4.3), the depen-
dency graph is composed of:

• cells, representing values that change over time (possibly in a continuous
fashion);
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• streams, representing sequences of discrete events.

Cells are typically used to represent state and its evolution over time, while streams
encode the occurrence of events of interest upon which state should change or
actions should be taken.

FRP provides operators to transform and combine cells and streams and obtain
new ones, mainly by mapping, filtering, merging or converting one into the other.
Since there is no standard specification of what these operators should be, they are
best explained by referring to Sodium’s API and underlying model in Section 2.4.3.
These operators are generally used upon startup to construct the dependency
graph. This is known as the initialization stage. After initialization, the FRP
engine takes care of taking inputs and converting it into outputs that act upon
external consumers (running stage).

2.4.3 FRP in Sodium

Sodium 2 is a library designed to work with FRP and written by the authors of
[2]. Despite being mainly developed for Java, it also has a variety of adaptations
for other languages, including C#, F# and Scala. However, these adaptations do
not always implement all the features that are included in the Java version. For
this reason, the remainder of this section presents code snippets that are written
in Java.

As stated before, Sodium is primarily based on two types:

• Cell<T> represents a value of type T that changes over time;

• Stream<T> represents a sequence of emissions of events, each holding data
of type T.

In addition, Sodium implements a series of primitives that can be used to perform
transformations on cells and streams, ultimately defining the domain logic.

The following sections give an overview of the most relevant features of Sodium.

Core Primitives

Sodium is based on a set of ten primitives that form its conceptual core. These
primitives are where the functional part of FRP comes in. To guarantee the com-
positionality 3 of FRP, all functions passed to the primitives must be referentially
transparent.

The ten primitives are described in more detail in the following paragraphs.

2https://github.com/SodiumFRP/sodium
3The property stating that the meaning of an expression is determined by the meanings of

its parts and the rules used to combine them. More practically, compositionality gives some
guarantees that working subparts will still work when combined together.

https://github.com/SodiumFRP/sodium
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Never Produces a stream that will never emit any events.�
1 Stream <String > never = new Stream <>();� �

Sodium does not provide a specific never method, but uses the empty constructor
of the Stream<T> class as a way to create the never stream.

Constant Produces a constant cell that will always have the given value.�
1 Cell <String > helloWorld = new Cell <>("Hello World!");� �

Just like never, there is no method named constant, but the constructor of Cell<T>
accepting a T creates a constant cell.

Map (stream) Produces a stream emitting the events emitted by the source
stream after applying a mapping function.�

1 Stream <Integer > source = ...;

2 Stream <String > out = source.map(x -> Integer.toString(x));� �
Map (cell) Produces a cell whose value is taken from the source cell by applying
a mapping function.�

1 Cell <Integer > source = ...;

2 Cell <String > out = source.map(x -> Integer.toString(x));� �
Merge Combines two streams of the same type together, returning a stream
that emits events from either input. Since Sodium supports simultaneous events
(see Section 2.4.3 for more details), if both input streams happen to emit at the
same time the given combining function will be used to produce the final output
event.�

1 Stream <Integer > left = ...;

2 Stream <Integer > right = ...;

3 Stream <Integer > merged = left.merge(right , (l, r) -> l + r);� �
Hold Converts a stream into a cell in such a way that the cell’s value is that of
the most recent event received. The initial value for the cell (before the first event
is emitted by the stream) is the argument passed to hold().�

1 Stream <Integer > events = ...;

2 Cell <Integer > hold = events.hold (0);� �
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Snapshot Captures the value of the given cell whenever the source stream fires.
Produces a stream firing at the same time as the source stream and emitting
combinations of the values from the stream and the cell using the supplied function.�

1 Stream <String > trigger = ...;

2 Cell <Integer > state = ...;

3 Stream <String > out = trigger.snapshot(state , (t, s) -> t + s);� �
Filter Produces a stream that emits the events from the source stream only if
the pass the given predicate.�

1 Stream <Integer > events = ...;

2 Stream <Integer > out = events.filter(x -> x > 0);� �
Lift Combines two or more cells into one by combining the values of all input
cells using a combining function.�

1 Cell <Integer > left = ...;

2 Cell <Integer > right = ...;

3 Cell <Integer > out = left.lift(right , (l, r) -> l + r);� �
Sample Returns the current value of the cell it is invoked on.�

1 Cell <String > state = ...;

2 String currentState = state.sample ();� �
Switch (stream) Flattens a cell of streams into a single stream that emits
whenever the active stream for the cell emits.�

1 Cell <Stream <Integer >> source = ...;

2 Stream <Integer > out = Cell.switchS(source);� �
Switch (cell) Flattens a cell of cells into a single cell whose value is the value
of the active cell of the wrapper cell.�

1 Cell <Cell <Integer >> source = ...;

2 Cell <Integer > out = Cell.switchC(source);� �
External interfacing

The pure core of Sodium is not enough to deal with all the requirements of an
event-driven application. In fact, these requirements include I/O (e.g., network
communication, interfacing with the file system, . . . ), GUIs, and other concerns
that are typically not integrated with Sodium. This requires a way for developers
to interface the pure core with the impure nature of external concerns, namely:
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• pushing events into streams and cells ;

• listening to events from streams and cells.

These somewhat resemble the mechanisms used by the observer pattern (recall
Section 2.4.1), but they have special constraints and rules to keep compositionality
intact, especially when working with transactions (see Section 2.4.3).

Pushing events into streams and cells Sodium comes with subclasses of
Stream<T> and Cell<T> that expose a send() method allowing events and values
to be pushed into the FRP logic. These are, respectively, StreamSink<T> and
CellSink<T>. The idea is that a module that deals with an external concern
would use these sinks internally to push data into the FRP logic, and only expose
those as their “pure” counterparts.

The following listing shows an example of how to turn a Swing JButton into a
stream of its clicks.�

1 public Stream <Unit > clicks(JButton button) {

2 StreamSink <Unit > clicksSink = new StreamSink <>();

3 button.addActionListener(e -> clicksSink.send(Unit.UNIT));

4 return clicksSink;

5 }� �
Listening to events from streams and cells The values of streams and cells
can be made available to the rest of the application by listening to their updates.
To do this, Stream<T> and Cell<T> have a listen() method to register a listener
that gets notified whenever that stream fires or the value of the cell is updated.�

1 public <X> void printAll(Stream <X> stream) {

2 stream.listen(x -> System.out.println("Emitted: " + x));

3 }� �
Transactions

Most FRP systems support the idea that multiple events can be simultaneous. This
can be done by defining a boundary (which is called a transaction in Sodium) in
which every event is considered to be happening at the same time. Naturally,
FRP primitive should be designed to take this aspect into account, and provide a
way to handle simultaneous events correctly (recall the merge primitive for exam-
ple). All Sodium primitives are automatically run inside transactions, but devel-
opers can manually define transactions using Transaction.run(() -> ...) or
Transaction.runVoid(() -> ...).

Transactions can be used primarily for two reasons:
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• wrapping the construction of the dependency graph in a single instance to
avoid the missed first event plague;

• using Sinks to send multiple events that should be considered simultaneous.

Looping streams and cells

In FRP there’s often the need to have the definition of a cell or of a stream
depend on itself. Since programming languages (like Java in this case) do not
typically allow references to variables before their declaration, Sodium provides
a mechanism that simulates forward references 4. These are CellLoop<T> and
StreamLoop<T>. The idea is that these classes are, respectively, subclasses of
Cell<T> and Stream<T> that can act as placeholders for cells and streams before
their initialization, and that can be freely used as their counterparts. After all
the dependencies have been setup and the real value for the placeholders can be
initialized, this can be done by calling the loop() method.

An example where looping is necessary could be an accumulator, which consists
of a cell whose value is the sum over time of values emitted by a stream.�

1 public Cell <Integer > accumulate(Stream <Integer > deltas) {

2 return Transaction.run (() -> {

3 CellLoop <Integer > output = new CellLoop <>();

4 Stream <Integer > updates = deltas.snapshot(output , (c, d) -> c + d);

5 output.loop(updates.hold (0));

6 return output;

7 });

8 }� �
It is worth noting that looping will fail with an exception if it is not wrapped inside
a transaction, in order to avoid updates coming before the call to loop().

4Referencing an identifier that has not been declared yet.



Chapter 3

Analysis and Design

Leveraging the notions coming from Chapter 2, this chapter inspects the current
state of aggregate computing, identifying some of the missing features of the cur-
rent model as proposed by field calculus (Section 3.1). Subsequently, Section 3.2
describes a prototype of a reactive model for aggregate computing, introducing the
objectives and giving a preliminary analysis of how the proposed model is expected
to fulfill them. Finally, Section 3.3 presents the major design choices that were
taken prior to implementation.

3.1 Analysis of the state of the art of aggregate

computing

In order to have a comprehensive view on the subject, this section provides a
brief analysis of the current state of aggregate computing, first by describing the
proactive model and identifying its limitations, then by introducing ScaFi [3].

3.1.1 Proactive model

At the current stage, field calculus and aggregate computing are based on a model
where each device of the network repeatedly executes its computation in rounds of
sense-eval-broadcast. In particular, referring to the model discussed in [11], each
sense-eval-broadcast round of a device is alternated with some sleeping time during
which it collects information from neighboring devices. This way of managing
computation can be thought of as a proactive model, since its the device that
decides when computation should occur based on its internal scheduler.

The proactive model has some shortcomings. On the one hand, there is no
way to granularly control the timing and the dynamics of computation rounds
using the main operators of field calculus alone. In fact, there is often the need to

19
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Listing 3.1: The constructs of the core API of ScaFi.�
1 trait Constructs {

2 def nbr[A](expr: => A): A

3 def rep[A](init: =>A)(fun: (A) => A): A

4 def foldhood[A](init: => A)(aggr: (A, A) => A)(expr: => A): A

5 def aggregate[A](f: => A): A

6 def align[K,V](key: K)(comp: K => V): V

7

8 def mid(): ID

9 def sense[A](name: CNAME): A

10 def nbrvar[A](name: CNAME): A

11 }
� �
perform computation upon the occurrence of particular events, for example when
a sensor changes its value, or when a message is received from a neighbor. On the
other hand, computations are carried out regardless of the existence of significant
changes in the environment or in the knowledge of the neighborhood. In turn, this
implies that the broadcast step is also carried out even if there is no change in the
generated export, resulting in wasteful message exchange.

The shortcomings of the proactive model call for a more reactive approach,
where taking actions only upon significant changes is a pivotal concern and should
be taken into account as first class in the supporting model. A prototype for this
is presented in Section 3.2.

3.1.2 ScaFi

This section presents a brief introduction to ScaFi, a Scala-based library and
framework for aggregate programming [8]. In particular, the API and the core of
ScaFi will be analyzed in order to facilitate both the design and implementation
stages, since they can be used as references to guide the whole process.

ScaFi’s API is heavily inspired by the field calculus’ language and consists
of a trait defining the main constructs that can be used to describe aggregate
computations (Listing 3.1) Some notes to keep in mind about ScaFi’s API are:

• an expression written using the API is evaluated by each device once per
computation round;

• fields are represented as atomic values (i.e., they have no particular wrapper
around them) and they indicate the value of the field at the device performing
that computation;

• sense evaluates the sensor with the given name, effectively producing a field
of the requested sensor value;
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Listing 3.2: Implementation of a gradient using ScaFi�
1 def gradient(src: Boolean): Double =

2 rep(Double.PositiveInfinity) { distance =>

3 mux(src) {

4 0.0

5 } {

6 minHoodPlus(nbr(distance) + nbrRange)

7 }

8 }
� �
• nbrvar is a mechanism to perform a query against a neighboring sensor with

a given name;

• the concept of neighboring field from field calculus is not “reified”, meaning
that there is no actual data structure representing it; spatial computation
(i.e., the nbr and nbrvar constructs) is only available inside a special scope,
given by the foldhood construct;

• foldhood acts in such a way that the expr parameter is evaluated for each
aligned neighbor (internally constructing the neighboring field) and the final
output is obtained by folding all neighboring values using init and aggr;

• the export for each iteration is constructed by the engine of ScaFi, by apply-
ing side-effects to an internal data structure as these constructs get invoked,
therefore constructing the evaluation tree.

This API can be used to implement an idiomatic building block of aggregate
computing, which is known as gradient. A gradient is a numerical field that ex-
presses the minimum distance from any device to source devices (Figure 3.1). The
implementation of a gradient using ScaFi is presented in Listing 3.2. Some notes
about the implementation:

• src is an input field of source devices;

• the mux operator acts like an if statement where both branches get evaluated
and end up in the export (unlike the branch construct, that only evaluates
the side selected by the condition); this means that both source and non-
source nodes will be aligned regardless of the chosen branch;

• minHoodPlus is an operator implemented in terms of foldhood, finding the
minimum value for the given expression among neighbors;

• the Plus suffix of minHood indicates that the device itself is not considered
during the calculation of the minimum, which for the gradient has the effect
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Figure 3.1: A graphical representation of a gradient after stabilization. Each device
of the network is labelled with its distance from the source (in parenthesis) and
its ID. The source device is the one with ID 1. Note that devices that are not
connected to the source are considered to be at an infinite distance from it.
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of preventing devices from getting stuck on low values after a source gets
deactivated;

• nbrRange is a built-in neighboring sensor (implemented in terms of nbrvar)
returning the estimated distance to the neighbor against which it is evalu-
ated;

• source devices are at distance 0 from themselves, therefore the “then” branch
of mux returns 0.0;

• at each device the gradient is calculated by repeatedly minimizing, for ev-
ery neighbor, the sum of its currently estimated distance from the source
(nbr(distance)) and the distance between the device and the neighbor
(nbrRange).

3.2 Reactive model proposal

As stated before, in order to overcome the limitations of the proactive model this
thesis proposes an approach based on reactivity, leveraging the power of FRP
(Section 2.4) to deal with the complexity of the approach. The sections below
illustrate the objectives that are expected to be fulfilled by the final implementation
and a high level description of the proposed reactive model.

3.2.1 Objectives

The high level goal of this thesis is to provide a model that is expressive enough to
allow developers to declaratively describe self-organizing aggregate computations,
while treating the dynamics and timing of relevant events as first class citizens.
This vision can be in fact summarized with functional reactive self-organization.

The main objectives to be pursued in order to accomplish the goal are:

• Compute only upon relevant changes: computations should occur re-
actively only when something changes in the environment, in order to avoid
wasteful resources usage;

• Broadcast messages only upon relevant changes: each device should
avoid broadcasting an export that did not change since the last one, with
the direct consequence that no further message exchange should be required
if a computation reaches a stable configuration;

• Avoid re-evaluation of unaffected sub-computations: if a portion of
the computation depends on data that did not change, it should not be
re-evaluated.
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3.2.2 Differences from the proactive model

The main difference between the model proposed by this thesis and the one pro-
posed by field calculus is the absence of computation rounds. This is dictated by
the fact that one of the objectives is to have computation run only upon relevant
changes in the environment, namely:

• a new device enters the neighborhood;

• a device leaves the neighborhood;

• an export coming from a neighbor is received;

• the value of a sensor changes;

• the value of a neighboring sensor changes.

Previously, these sources of events were all handled in the sense stage of a com-
putation round, and were all collected together in order to construct the context
for the round itself. However, this was not done in a reactive fashion, since all
these events were queued up while the device was sleeping and handled all at
once at the start of the sense phase. This meant that, if no event was received
between two rounds, the computation would still happen. The reactive model,
instead, handles events as soon as they are received by the device (and only in
that occasion), and only broadcasts the corresponding export if it is different than
the previous, effectively fulfilling the “compute only upon relevant changes” and
“broadcast messages only upon changes” objectives.

For what concerns the last objective (i.e., avoiding re-evaluating unaffected
sub-computations), the optimized propagation of changes will be delegated to the
correct use of the FRP engine.

3.3 Specification of the reactive model

This section analyzes the key elements of the prototypal design for the reactive
model. Note that at this stage, the discussion is not tied to any particular tech-
nology, framework o programming language and should therefore be considered
a specification rather than a mirror of the actual code. A deeper view on how
this specification was translated into code can be found in Chapter 4. There is,
however, a reference to Scala’s data structures (e.g., Maps, Options) and syntax
for generics, which should not be considered as an enforcement on the usage of the
Scala language.

Figure 3.2 shows a holistic picture of the proposed design, formalized as a
UML class diagram. The diagram does not show definitions for the types named
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DeviceId, LocalSensorId and NeighborSensorId. This is a deliberate choice,
since the specification does not depend on what those types really are. Their only
constraint is that it must be possible to tell if any two values of those types are
equal with each other.

The core of the specification starts from the definition of the Context, which
is a way to express the environment where a device is immersed, and to provide
handles for environmental changes to the computation. In fact, this is done by
expressing values that are subject to changes throughout the lifecycle of the system
as cells. In particular, sources of changes are:

• local sensors

• neighbor devices information, which is expressed as a time-varying map from
device identifiers to the last registered NeighborState, namely:

– the value for each neighboring sensor;

– the last export that was received.

On top of that, the context is tied to the device identifier with which it is associated.

The Export that can be emitted by each device is represented as a tree where
each child of a node is associated to a Slot that is unique among its siblings.
Being modeled this way, each sub-tree of the export is identified by a path (i.e., a
sequence of Slots) starting from the root (an empty path) and traversing the tree
down to the node where it is rooted. An example of this is shown in Figure 3.3,
which depicts the export of the following expression:�

1 branch(

2 sensor[Boolean ]( SomeSensor),

3 mux(

4 sensor[Boolean ]( AnotherSensor),

5 constant (1),

6 constant (2)

7 ),

8 constant (0)

9 )� �
in a situation where SomeSensor evaluates to true and AnotherSensor evaluates
to false. Note that, for now, the semantics that lead to this particular shape of
export are not relevant, as they will be discussed in detail in Section 3.3.1. It
is sufficient to know that each syntactic element of the expression above (with
the exception of constant(0) which is excluded due to branching) corresponds to
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NeighborField
T

neighborValues(): Map[DeviceId, T]
fold(seed: T, combine: (T, T) => T): T
lift[A, B, C](a: NeighborField[A], b: NeighborField[B], f: (A, B) => C): NeighborField[C]

Flow
T

run(path: Seq[Slot], context: Context): Cell[Export[T]]

Export
T

root(): T
children(): Map[Slot, Export[Any]]
followPath(path: Seq[Slot]): Option[Export[Any]]

Language

mid(): Flow[DeviceId]
constant[A](a: A): Flow[A]
sensor[A](id: LocalSensorId): Flow[A]
branch[A](cond: Flow[Boolean], th: Flow[A], el: Flow[A]): Flow[A]
mux[A](cond: Flow[Boolean], th: Flow[A], el: Flow[A]): Flow[A]
loop[A](init: A, f: Flow[A] => Flow[A]): Flow[A]
nbr[A](a: Flow[A]): Flow[NeighborField[A]]
nbrSensor[A](id: NeighborSensorId): Flow[NeighborField[A]]
lift[A, B, C](a: Flow[A], b: Flow[B], f: (A, B) => C): Flow[C]

NeighborState

sensor[A](id: NeighborSensorId): A
exported(): Export[Any]

Context

selfId(): DeviceId
neighbors(): Cell[Map[DeviceId, NeighborState]]
sensor[A](id: LocalSensorId): Cell[A]

Slot

Operand(index: Int)
Condition
Then
Else
Nbr
Key[T](value: T)

produces

produces

emits uses

Figure 3.2: A class diagram of the specification of the reactive model.
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2

2

false

Condition Else

1

Then

true

2

Condition Then

Figure 3.3: An example of an export. Circles represent nodes, while rectangles
represent slots.

some path inside the tree, as follows:

[]⇔ branch(...)

[Condition]⇔ sensor[Boolean](SomeSensor)

[Then]⇔ mux(...)

[Then / Condition]⇔ sensor[Boolean](AnotherSensor)

[Then / Then]⇔ constant(1)

[Then / Else]⇔ constant(2)

This representation of an export is essential to perform the alignment process. In
fact, two exports are aligned at a certain path if and only if that path exists in
both exports.

All the constructs of the Language deal with Flows, a type which is designed
to encapsulate aggregate (sub-)computations as a dependency graph (in a way
that’s closely related to the dependency graph of an FRP engine). A Flow, in
fact, is essentially a function that takes a path and a Context and returns a cell of
Exports, possibly depending on the exports of other Flows recursively. The path
represents the point in the evaluation tree where that Flow is placed, while the
Context places the computation inside some device. Notice that this design of a
Flow has some consequences:

• since the context is passed to it after its construction and the output is a cell,
a Flow effectively represents an entire aggregate computation, independent
of space and time;
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• since exports are returned as a cell, all (sub-)computations are automatically
updated when the original sources of events are updated by the context;

• due to the fact that the path is also passed when requesting the cell of
exports, the same instance of a Flow can be used multiple times in different
points of the same computation, making it referentially transparent;

• since FRP is used under the hood, the requirement of functions passed to
operators of the language being referentially transparent still exists;

• the main expression of an aggregate program should be evaluated from the
empty path.

An important difference from the model used by ScaFi is the presence of a reified
NeighborField type, that is used as the returned type of operators that deal with
the neighborhood, i.e., nbr and nbrSensor. A NeighborField is essentially a
wrapper around a map from neighbor identifiers to local values, which can be
folded over in order to collapse all local values into a single one.

3.3.1 Constructs semantics

This section presents the semantics of the constructs belonging to the Language

interface. Here, the term semantics is used to refer to the way the flow generated
by each construct produces its exports from its inputs, depicted in a visual fashion.
Note that these rules are to be interpreted as snapshots, and thus they should be
re-applied on each new evaluation of the corresponding cell.

Some graphical notations are:

• expressions may use variables to capture arguments that are passed;

• a variable typed as a Flow may be used in a graph as the current export for
that flow at the path where it is rooted;

• sub-exports may be represented as triangles when their content is not rele-
vant;

• r( ) expresses the value contained in the root of an export;

• N( ) expresses the collection of all the given expressions for each aligned
neighbor (graphically shown with arrows);

• E( ) denotes an atomic export whose root is the given argument;

• ctx.xyz corresponds to member xyz of the Context on which the flow is
run;
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x

(a) constant(x)

ctx.selfId()

(b) mid()

ctx.sensor(s)

(c) sensor(s)

Figure 3.4: Semantics of the atomic constructs.

• nbr.xyz refers to member xyz of the current neighbor being evaluated inside
of N( ).

The simplest constructs of the language are those that are local and atomic
(i.e., they work without knowledge of neighbors and they do not depend on other
flows). These are described in Figure 3.4. Being atomic, their corresponding trees
only contain a root node with the final value of the expression:

• constant defines a constant flow and always evaluates to the argument that
has been passed;

• mid is a constant flow of device identifiers always evaluates to the selfId

returned by the Context;

• sensor implements the sensing abilities of each device uses the cell returned
by the Context for the given sensor identifier;

The branch construct (Figure 3.5) corresponds to the if construct of field
calculus and works in such a way that, for a given expression branch(c, t, e),
only the export selected by c is included in the final output. In cases where the
condition is true, t is included under the Then slot and its root is used as the global
root, otherwise e is included under the Else slot and its root is used instead. In
both cases, c is inserted under the Condition slot. With this semantics, any sub-
computation under t or e will not align with any neighbor executing the opposite
branch, due to the fact that their paths will differ at the Then/Else slot.

The mux operator (Figure 3.6) is an alternative to branch that introduces
conditional behavior without resulting in partitions in the device network. That
is, devices running sub-computations in t or e will always align with each other
since both exports will be included in the final one, respectively under the Then

and Else slots.
Neighboring constructs, i.e., nbr and nbrSensor, require knowing which neigh-

bors are aligned when they get evaluated, as shown in Figure 3.7. This means that,
if this constructs are used at a certain path p, the engine should filter out all neigh-
bors whose known export does not contain p. Furthermore, only the sub-exports
rooted at p of each neighbor need to be considered. The nbr(a) constructs works
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true

r(t)

r(t)

ThenCondition

c t

(a) true condition.

r(e)

r(e)

Else

false

Condition

c e

(b) false condition.

Figure 3.5: Semantics of branch(c, t, e).

true

r(t)

r(t)

ThenCondition

c t

r(e)

Else

e

(a) true condition.

false

r(e)

r(t)

ThenCondition

c t

r(e)

Else

e

(b) false condition.

Figure 3.6: Semantics of mux(c, t, e).
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r(a)

Nbr

a

N(r(nbr.a))

Aligned neighbors

r(a)

Nbr

a

r(a)

Nbr

a

r(a)

Nbr

a

(a) nbr(a)

N(nbr.sensor(s))
Aligned neighbors

(b) nbrSensor(s)

Figure 3.7: Semantics of neighboring constructs.

by collecting all neighboring values of a, which can be found at p / Nbr for each
neighbor. Since every device is a neighbor of itself, this process should also take
care of replacing the value produced by the previous evaluation with the new value
coming from a. This is shown in Figure 3.7a by the isolated arrow going from r(a)

in the current device to the root of the export. For what concerns nbrSensor, the
engine just uses the current NeighborState of each aligned neighbor to evaluate
the sensor with the specified identifier.

The language also defines a lift construct. Lifting is a well-known concept
of functional programming that allows a function working with atomic values to
be applied to wrapped versions of those values, for some wrapper type. In this
case, the wrapper type is the Flow type, and lifting a function to the Flow world
means producing another Flow obtained by applying that function to the roots of
those flows, and having the original exports as children of the resulting one. This
is shown in Figure 3.8, which depicts the case where f is a binary function (the
generalization to n-ary functions is in fact trivial).

As a side note, the specification also defines a lift operation on instances
of NeighborFields. It has the effect of evaluating the given function on pairs
of values associated with the same device and returning the outputs as another
NeighborField.

The final construct is loop. This is designed to be an adaptation of rep

as defined by field calculus to the reactive model. This change was necessary
due to the fact that rep is based on the underlying execution model structured
in computation rounds, but that’s not the case in the reactive model. Instead
of using proactive and repeated application of a function, loop manages field
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r(a)

Operand(0)

a

r(b)

Operand(1)

b

f(r(a),r(b))

Figure 3.8: Semantics of lift(a, b, f).

evolution over time as a reaction to changes in the previous state. Other than the
initial state, loop accepts a function transforming a Flow into another Flow of the
same type. These Flows shall be interpreted as the input always being “one step
behind” the output. The specification states that the “off-by-one” Flow should
be constructed by aligning with the previous state of the same device, which can
be read from the context leveraging the fact that the every device is a neighbor
of itself (Figure 3.9b). In cases where alignment is not possible (i.e., on the first
evaluation or after a switch of branch), the first argument of loop should be used
to construct a new export (Figure 3.9a). The implementation should take care of
the following caveats arising from the intrinsic self-dependency of loop:

• infinite recursion: since computations are triggered by themselves changing
in the past, loop should not cause stack overflows and therefore should use
some sort of rate-limiting strategy (e.g., throttling);

• indefinite export growth: a flow defined in terms of itself might cause the
export tree to grow on each update, since exports are are repeatedly wrapped
in other exports; the implementation should take care of passing an atomic
flow as an input to the subsequent computation, in order to avoid indefinite
growth.
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f(E(i))

Aligned self

(a) Not aligned with previous state

f(E(x))

Aligned self

x

(b) Aligned with previous state

Figure 3.9: Semantics of loop(i, f).
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Chapter 4

Implementation

This chapter discusses the implementation of a proof of concept concretizing the
specification introduced in Chapter 3.

The language of choice was Scala, primarily for the following reasons:

• its advanced features (e.g., mixins, family polymorphism, higher kinded
types, etc) and flexible syntax make it a really powerful language to express
DSLs (Domain Specific Languages) with a few lines of code;

• Scala 3’s new features, in particular context functions and extension methods,
allow for an even more concise syntax;

• ScaFi could be used as a guide throughout the development process, so it
was possible to mimic its internal structure using similar constructs offered
by the language.

4.1 Architecture

The project is structured into layers following the diagram shown in Figure 4.1.
Their responsibilities can be summarized as follows:

• the FRP layer is the one exposing the FRP engine (as described in Sec-
tion 2.4, using the Sodium library), also adding some extensions on top of
that;

• the Core layer is the beating heart of the library, modeling and implementing
the specification of Section 3.3;

• the Simulation layer provides a basic simulator capable of running aggregate
programs for a network of devices.

35
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core frp

simulation
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RichLanguage Semantics
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FrpEngineFrpExtensions

AggregateProgramSimulator

Environment

Figure 4.1: High level architecture, corresponding in part to the package structure.
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Each layer, along with its sub-components, is described in greater detail in the
sections below.

4.2 FRP layer

The FRP layer deals with cells and streams in order to provide expressive building
blocks to the core layer. As stated before, this layer was implemented by leveraging
the Sodium library and adding some extension methods and utilities to be used
while defining the behavior of the aggregate constructs.

Some of these extensions include:

• calming : a way to create a cell whose listeners are only notified of an update
if the previous value is different from the new one, for performance reasons;

• buffering : refers to a mechanism by which events of a stream are collected
for a certain amount of time before being emitted all at once, using some
combination of the events that were buffered;

• throttling : a particular way of buffering which combines element of the buffer
by returning the last one that was received.

4.3 Core layer

The core layer follows an organization that is highly inspired to the core of ScaFi.
In fact, it models the entire specification as being broken down into components,
each providing a narrow set of features that can be combined together. A way to
model component-based structures using Scala is through mixins and self-types,
which were used extensively during the development of the core layer. These
features, along with Scala’s abstract type members, enable the use of family poly-
morphism [4] to model complex domains. In particular, the structure of the model
presented in the specification was re-adapted in order to fit in the idiomatic prac-
tices of Scala and to be implemented via family polymorphism. This guarantees a
greater flexibility when introducing changes to the specification and allows exten-
sions of the language to be introduced with little or no work at all.

4.3.1 Core

The root of the domain is given by the Core trait (Listing 4.1). It defines the main
concepts of an aggregate computation, namely:
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Listing 4.1: The Core trait, the root of the family polymorphism.�
1 trait Core:

2 type context

3 type Export [+_]

4 type Path

5

6 trait Flow[A]:

7 def run(path: Path)(using Context): Cell[Export[A]]
� �
• an abstract Context type, since the specific way to interact with the envi-

ronment is unknown at this point;

• an abstract Export[+ ] type, representing the output of a device with a
covariant root type;

• an abstract Path type, denoting paths that can be looked up inside an
Export;

• the Flow[A] trait, defined in terms of the abstract types above in a way
that is almost identical to the one defined in the specification, with the only
difference being that the Context is passed implicitly.

This is the minimum required information that is used to perform an aggregate
computation.

4.3.2 Language

Below Core, the Language trait introduces the constructs when mixed in with
a Core object, from which the basic abstract types of aggregate computing are
imported. This is done via self-types, to avoid creating a strong inheritance hier-
archy. The Language trait is shown in Listing 4.2 It introduces new abstract types
that are specific to the constructs, in particular:

• DeviceId denotes an identifier for devices participating in the aggregate
computation;

• LocalSensorId and NeighborSensorId identify sensors that can be queried
locally or from any neighbor, respectively;

• NeighborField[+ ] represents a mapping from DeviceIds to neighboring
values of the given type.

A notable difference in how the language supports lifting operations (recall Sec-
tion 3.3.1) is the fact that it is supported via a type class and ad-hoc polymorphism.
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Listing 4.2: The Language trait, introducing the main API of aggregate computing.�
1 trait Language:

2 self: Core =>

3

4 type DeviceId

5 type NeighborField [+_]

6 type LocalSensorId

7 type NeighborSensorId

8

9 val flowLiftable: Liftable[Flow]

10 val neighborFieldLiftable: Liftable[NeighborField]

11 given Liftable[Flow] = flowLiftable

12 given Liftable[NeighborField] = neighborFieldLiftable

13

14 def mid: Flow[DeviceId]

15 def constant[A](a: A): Flow[A]

16 def sensor[A](id: LocalSensorId): Flow[A]

17 def branch[A](cond: Flow[Boolean ])(th: Flow[A])(el: Flow[A]): Flow[A]

18 def mux[A](cond: Flow[Boolean ])(th: Flow[A])(el: Flow[A]): Flow[A]

19 def loop[A](init: A)(f: Flow[A] => Flow[A]): Flow[A]

20 def nbr[A](a: Flow[A]): Flow[NeighborField[A]]

21 def nbrSensor[A](id: NeighborSensorId): Flow[NeighborField[A]]

22

23 extension[A] (field: NeighborField[A])

24 def foldLeft[T](seed: T)(combine: (T, A) => T): T

25 def withNeighbor(id: DeviceId , value: A): NeighborField[A]

26 def withoutNeighbor(id: DeviceId): NeighborField[A]

27

28 trait Liftable[F[_]]:

29 extension[A] (a: F[A]) def map[B](f: A => B): F[B]

30 def lift[A, B, C](a: F[A], b: F[B])(f: (A, B) => C): F[C]

31 def lift[A, B, C, D](a: F[A], b: F[B], c: F[C])(f: (A, B, C) => D): F[D]
� �
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This was done by defining a Liftable[F[ ]] trait defining that a wrapper type
F[ ], generic in the type it encloses, supports lifting operations. As stated before,
lifting is a way for a function operating on atomic values to be applied to wrapped
versions of those values, and this can be generalized to any function regardless
of the number of parameters. Liftable[F[ ]] supports lifting for functions that
take up to three parameters. However, lifting a unary function is more often map,
and it is idiomatically more familiar when called as a method of the wrapper to
be mapped, rather than as a top-level function. This is why map is defined as an
extension method while the binary and ternary versions are not.

The next lines of the Language trait declare the constructs of the language,
maintaining the same API as defined by the specification. In addition, since
NeighborField is declared as an abstract type without any bounds, the language
includes some of the operations that are needed, in particular by the RichLanguage
trait. In fact, RichLanguage introduces utilities that are built on top of the main
API, which are primarily common folding operations on flows of neighbor fields,
like min or toSet.

4.3.3 Semantics

The Semantics trait starts reifying the concepts that are defined by the Core and
by the Language, giving an implementation of the constructs that corresponds
to the one proposed in Section 3.3.1. A portion of this trait can be found in
Listing 4.3, where some of the abstract types that were still unbound up to this
point get reified, in particular:

• NeighborField[+A] is reified as a Map from DeviceIds to As;

• Export[+A] and Path are reified respectively as an ExportTree[A] and as
a Seq[Slot], for which the implementation is also included in the listing;

• Context gets bound to be a subclass of BasicContext, a new trait defined
inside Semantics.

In addition, Semantics introduces a new abstract type NeighborState that is
bounded to be a subclass of BasicNeighborState. This way of dealing with
Context and NeighborState, i.e., by only giving upper bounds, allows for greater
flexibility and type safety when implementing classes inheriting from Semantics,
while still enforcing some constraints that are needed at this abstraction level.

The alignment process is implemented in the alignWithNeighbors method. In
practice, this corresponds to the construction of a cell of maps that hold a certain
value for all neighbors aligned at a given path. Each value is extracted using a
function that takes the sub-export at which the alignment happened with that
neighbor and the current NeighborState.
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Listing 4.3: A portion of the Semantics trait reifying some of the domain’s abstract
types.�

1 trait Semantics:

2 self: Core with Language =>

3

4 type NeighborState <: BasicNeighborState

5 override type Context <: BasicContext

6 override type NeighborField [+A] = Map[DeviceId , A]

7 override type Export [+A] = ExportTree[A]

8 override type Path = Seq[Slot]

9

10 trait BasicNeighborState:

11 def sensor[A](id: NeighborSensorId): A

12 def exported: Export[Any]

13

14 trait BasicContext:

15 def selfId: DeviceId

16 def sensor[A](id: LocalSensorId): Cell[A]

17 def neighbors: Cell[Map[DeviceId , NeighborState ]]

18

19 ...

20

21 case class ExportTree [+A](root: A, children: Map[Slot , ExportTree[Any]]):

22 def followPath(path: Seq[Slot]): Option[ExportTree[Any]] = path match

23 case h :: t => children.get(h).flatMap(_.followPath(t))

24 case _ => Some(this)

25

26 enum Slot:

27 case Operand(index: Int)

28 case Nbr

29 case Condition

30 case Then

31 case Else

32 case Key[T](value: T)
� �
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Listing 4.4: Implementation of the nbr construct.�
1 object Flows:

2 def of[A](f: Context ?=> Path => Cell[Export[A]]): Flow[A] = new Flow[A]:

3 override def run(path: Path)(using Context): Cell[Export[A]] = f(path).calm

4 ...

5

6 override def nbr[A](a: Flow[A]): Flow[NeighborField[A]] =

7 Flows.of { path =>

8 val alignmentPath = path :+ Nbr

9 val neighboringValues = alignWithNeighbors(

10 alignmentPath ,

11 (e, _) => e.root.asInstanceOf[A]

12 )

13 lift(a.run(alignmentPath), neighboringValues){ (exp , n) =>

14 val neighborField = n + (ctx.selfId -> exp.root)

15 ExportTree(neighborField , Nbr -> exp)

16 }

17 }
� �
As an example of the usage of alignWithNeighbors, the implementation of

the nbr construct is presented in Listing 4.4, which gathers the neighboring values
located at path + Nbr, where path is the location where nbr is being evaluated.
Subsequently, it replaces the old value computed at the previous evaluation with
the new one exported by a before wrapping everything in a new export, following
the semantics of nbr. Notice the adoption of a Flows factory to create the final
result of nbr, in particular through the of method. This factory encapsulates the
logic that constructs Flow instances, and it is used extensively while implementing
all the constructs of the language to guarantee a consistent creation of flows. Also
notice the use of calm in Flows.of, effectively avoiding the emission of the same
export twice in a row. This is a key implementation choice that has a strong effect
on the overall behavior and performance of the library, especially in relation to
the objectives outlined in Section 3.2.1. The consequences of this choice will be
examined deeply in Chapter 5.

4.3.4 Incarnation

An Incarnation represents the final concretion in the core layer, defining a unified
composition of all the traits that have been described up until this point. Con-
ceptually, it is a way to abstract away the details of a particular platform that
is able to host an aggregate computation. Practically, this is done by providing
a factory that creates instances of the Context given some device identifier. Its
code is shown in Listing 4.5.

Note that, even at this level, some of the abstract types defined by Language

are not bound to any type yet, in particular DeviceId, LocalSensorId and
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Listing 4.5: The Incarnation trait.�
1 trait Incarnation extends Core , RichLanguage , Semantics:

2 def context(selfId: DeviceId): Context
� �
NeighborSensorId. The nature of those types is in fact platform specific, thus it
is up to the specific implementation of Incarnation to decide what those should
be concretely.

4.4 Simulation layer

This layer introduces a way to test the behavior of an aggregate program by run-
ning it in a simulated environment. A simulation can in fact be carried out by
creating in-memory versions of the Incarnation and the Context, using synthe-
sized data to replace sensors.

4.4.1 Simulation incarnation

The incarnation implemented for the testing purposes of this thesis is based on
a certain network topology defined by an Environment object. Simply put, an
environment determines the number, the position and the neighboring relation of
a device network in 2D space, assuming device identifiers are progressive integers.

In order to create a concrete Incarnation to be used in the simulator, several
mixins were introduced to favor modularity and composition. These mixins provide
vertical slices of independent features, each of which can be plugged in to build a
complex domain out of simple components. In particular:

• the IncarnationWithEnvironment mixin provides the concept of an incar-
nation being situated in an Environment, while fixing the device identifiers
to be integers;

• the TestLocalSensors mixin specifies that local sensors exist that can detect
if a device is a source or an obstacle;

• the TestNeighborSensors mixin specifies the existence of a neighboring
sensor that estimates distances.

These traits are all mixed in to compose the SimulationIncarnation and pre-
sented in Listing 4.6. The most relevant part of this incarnation in order to
understand the simulator is the definition of the SimulationContext, in par-
ticular the strategy by which the context exposes the current neighbors’ states
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Listing 4.6: The SimulationIncarnation class.�
1 class SimulationIncarnation(environment: Environment ,

2 sources: Cell[Set[Int]] = new Cell(Set.empty),

3 obstacles: Cell[Set[Int]] = new Cell(Set.empty))

4 extends Incarnation

5 with IncarnationWithEnvironment(environment)

6 with TestLocalSensors

7 with TestNeighborSensors:

8 ...

9 class SimulationContext(val selfId: DeviceId) extends BasicContext:

10 private val neighborsSink =

11 IncrementalCellSink[Map[DeviceId , NeighborState ]](

12 Map.empty ,

13 calm = true

14 )

15

16 def receiveExport(neighborId: DeviceId , exported: Export[Any]): Unit =

17 val newState = SimulationNeighborState(selfId , neighborId , exported)

18 neighborsSink.update(_ + (neighborId -> newState))

19

20 override def neighbors: Cell[Map[DeviceId , NeighborState ]] =

21 neighborsSink.Cell

22 ...
� �
to the core. Internally, the context uses a wrapper of Sodium’s CellSink (i.e.,
IncrementalCellSink) that is able to perform incremental updates by applying
a function to the current state. This is used to apply incremental updates to the
state of neighbors as exports are received during program execution. By calling
receiveExport when a new export is received from one of the neighbors of the
device, the context can be informed of a new neighbor state that can be registered
in the sink, triggering all computations that depend on that state.

4.4.2 Simulator

The final step towards simulating an aggregate computation is the simulator itself.
The phases of a simulation can be summarized as follows:

1. spawn contexts: for each device participating in the computation, create
a Context instance via the incarnation;

2. run the flow: run the Flow that is being simulated on all the context
instances, producing a cell of Exports for each device;

3. listen to export updates: upon changes of any cell that was produced,
broadcast that export to the contexts of neighboring devices.

Listing 4.7 shows the implementation of the Simulator class. Its construc-
tor takes as inputs an instance of SimulationIncarnation, that will be used to
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Listing 4.7: The Simulator class.�
1 class Simulator(val incarnation: SimulationIncarnation ,

2 executor: ExecutorService = Executors.newSingleThreadExecutor):

3

4 import incarnation._

5

6 def run[A](flow: Flow[A]): Unit =

7 val contexts = (0 until incarnation.environment.nDevices).map(context)

8 Transaction.runVoid (() => {

9 val exports = contexts.map { ctx =>

10 (ctx.selfId , flow.run(Seq.empty)(using ctx))

11 }

12 exports.foreach ((id, exp) => exp.listen(e => {

13 println(s"Device $id exported :\n$e")
14 incarnation.environment.neighbors(id).foreach { n =>

15 executor.execute (() => contexts(n).receiveExport(id, e))

16 }

17 }))

18 })
� �
spawn context and to access the types defined by the model, and an optional
ExecutorService, that is instead used to schedule notifications of export emis-
sions in the background. This is useful for performance and concurrency reasons,
but most importantly it is required since Sodium does not allow listeners to call
send() on CellSinks (which is called internally by the receiveExport method).
By scheduling these tasks on another control flow, this does not pose an issue.

Notice that steps 2 and 3 are wrapped inside a transaction. Other than guar-
anteeing that no “first events” are missed, wrapping both steps ensures that all
flows start at the same logical instant, in a consistent fashion.
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Chapter 5

Evaluation

This chapter discusses the strategies that were adopted in order to assess the
fulfillment of the objectives defined in Section 3.2.1 and how they were satisfied
by the implemented solution. Primarily, the chosen techniques were:

• unit tests, that verify the functional aspects of the project and define a
formalization of the expectations about the semantics;

• empirical tests, which consist of sample programs run via simulation, in
order to assess qualitative properties of the prototype.

5.1 Unit testing

In order to certify the correctness of the code written during development, the
project was equipped with a suite of unit tests of the implementation of the se-
mantics. Not only did this allow refactoring with greater confidence, but it also
constituted a formalization of the expectations about the API of the language that
is verifiable and reproducible.

In practice, unit tests were written using the ScalaTest 1 framework, one of the
de facto standards for automated testing in Scala. Out of the many testing styles
that it offers, the chosen one was the FlatSpec, due to its simple structure that
promotes a behavior-driven approach to writing tests.

The most relevant tests that are included in the project are written for the
Semantics trait. The starting point of the process was to implement a mocked ver-
sion of the incarnation and the related context, in order to both have access to the
constructs of the language and to be able to manually trigger state changes for the
flows to react to. Being based on the same ideas as the SimulationIncarnation,

1https://www.scalatest.org/
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the source code for the MockIncarnation is omitted. As an example of the princi-
ples that guided this process, Listing 5.1 shows a portion of the SemanticsTests

class that includes tests for the lift construct.

Listing 5.1: A portion of the SemanticsTests class including tests for the lift

construct.�
1 class SemanticsTests extends AnyFlatSpec with should.Matchers with

BeforeAndAfterEach:

2 private val SELF_ID = 1

3 private val PATH = Seq.empty

4 ...

5

6 object SemanticsTestsIncarnation extends MockIncarnation:

7 ...

8

9 import SemanticsTestsIncarnation._

10 import SemanticsTestsIncarnation.given

11

12 private given ctx: Context = context(SELF_ID)

13

14 override def beforeEach (): Unit = ctx.reset()

15

16 "lift" should "combine two flows by nesting them" in {

17 val left = "LEFT"

18 val right = "RIGHT"

19 val flow = lift(constant(left), constant(right))(_ + _)

20 flow.run(PATH).sample () should be (ExportTree(

21 left + right ,

22 Operand (0) -> ExportTree(left),

23 Operand (1) -> ExportTree(right),

24 ))

25 }

26

27 it should "react to changes in either its inputs" in {

28 val stringOp = new CellSink("A")

29 val intOp = new CellSink (2)

30 val flow = lift(Flows.fromCell(stringOp), Flows.fromCell(intOp))(_ * _)

31 val exports = flow.run(PATH)

32 exports.sample ().root should be ("AA")

33 stringOp.send("B")

34 exports.sample ().root should be ("BB")

35 intOp.send (3)

36 exports.sample ().root should be ("BBB")

37 }
� �

Typically, unit tests are implemented by constructing a flow that includes the
primitive that is being tested, running it with an empty path using the given
context implicitly, and then sampling the exports, possibly after notifying some
state change. The results of sampling are then asserted against some condition to
verify that exports behave as expected.
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5.2 Sample programs

While unit tests ensure the correctness of the semantics from a purely functional
standpoint, they are not enough evaluate the overall behavior of the library and
the complete fulfillment of the objectives. To this purpose, a series of sample
aggregate programs, for which the expected outcome is known in advance, was
developed.

Listing 5.2 shows the implementation of a comprehensive sample that showcases
almost every feature of the language, i.e., a gradient with obstacles.

Listing 5.2: A sample aggregate program computing a gradient with obstacles.�
1 def runGradientSimulation(environment: Environment ,

2 sources: Cell[Set[Int]],

3 obstacles: Cell[Set[Int]]): Unit =

4 val incarnation = SimulationIncarnation(environment , sources , obstacles)

5 val simulator = Simulator(incarnation)

6

7 import simulator.incarnation._

8 import simulator.incarnation.given

9

10 def gradient(src: Flow[Boolean ]): Flow[Double] =

11 loop(Double.PositiveInfinity) { distance =>

12 mux(src) {

13 constant (0.0)

14 } {

15 liftTwice(nbrRange , nbr(distance))(_ + _).withoutSelf.min

16 }

17 }

18

19 simulator.run {

20 branch(obstacle) {

21 constant (-1.0)

22 } {

23 gradient(source)

24 }

25 }

26

27 @main def gradientSample (): Unit =

28 val sourcesSink = IncrementalCellSink(Set (0))

29 val obstaclesSink = IncrementalCellSink(Set(2, 7, 12))

30 val environment = Environment.manhattanGrid (5, 5)

31 runGradientSimulation(environment , sourcesSink.cell , obstaclesSink.cell)
� �
The environment used by this sample is a 5x5 grid, where each device is a neighbor
of the nearest device in each horizontal and vertical direction (Figure 5.1). In
addition, the device with ID 0 is a source node, while devices 2, 7, and 12 are
obstacles.

The gradient with obstacles sample can be built starting from a simple gradient,
thanks to the compositionality of aggregate computing. The implementation of
the gradient itself is just an adaptation of the one that is already known in the
literature and from field calculus to the new API. On top of that, obstacles are
introduced by branching using the obstacle sensor provided by the incarnation,
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Figure 5.1: The reference environment for the gradient with obstacles.

using a default constant flow with value −1 where and when the sensor evaluates
to true.

Notice that, when the sample is run, the application stops logging after a
certain amount of time, indicating that no more exports are being generated. This
demonstrates that the objective of “broadcasting messages only upon relevant
changes” (recall Section 3.2.1) was fulfilled. In addition, by looking at the last
export of each device, the global field that is produced is shown in Figure 5.2,
which is the expected result.

To prove that also the “compute only upon relevant changes” objective was
satisfied, a small addition to the sample was introduced. In fact, by placing these
lines at the end of the gradientSample() method�

1 Thread.sleep (5000)

2 sourcesSink.set(Set(4))

3 Thread.sleep (5000)

4 obstaclesSink.update(_ + 17)� �
the following behavior is exhibited:

• initially, the gradient is computed normally, and it self-stabilizes in less than
5 seconds, with the same output as the previous configuration;

• after 5 seconds from the start of the simulation, the aggregate of devices
recognizes a change in the source field and re-adapts itself in a reactive way;
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Figure 5.2: The output field of the gradient with obstacles sample, after stabiliza-
tion.

• after 10 seconds, a new obstacle is detected by the network and the gradient
adapts yet again.

Notice that, in this last scenario, updates do not reach portions of the network
that are not influenced by the gradient change, implying that only computations
that are strictly required are actually carried out.

For what concerns the last objective, i.e., “avoid re-evaluation of unaffected
sub-computations”, another sample was created from scratch (Listing 5.3). This
program starts a simulation on a single device with a flow that branches on the
source sensor, where the “then” branch performs some intense computation on
a constant flow. Subsequently, it changes the value of the source sensor back
and forth in order to switch the selected branch alternatively. In ScaFi, the
intense computation would be re-evaluated on each round where the value of
source was true. To verify that this is not the case for this implementation,
someIntenseComputation performs a side effect that prints to the console some
text. This is, indeed, a violation of the principles of referential transparency of
functions passed to the constructs of the language, but it serves the purpose of
counting the number of calls that are made to that method. In fact, running
this program results in “Doing some intense computation...” being printed only
once, while the device broadcasts messages five times instead, demonstrating that
sub-computations that are not affected by changes in the environment are not
re-evaluated.



52 CHAPTER 5. EVALUATION

Listing 5.3: A sample aggregate program verifying that sub-computations do not
get re-evaluated if their dependencies do not change.�

1 @main def testReEvaluation (): Unit =

2 val sourcesSink = IncrementalCellSink(Set.empty)

3 val environment = Environment.singleNode

4 val incarnation = SimulationIncarnation(environment , sources = sourcesSink.cell)

5 val simulator = Simulator(incarnation)

6

7 import simulator.incarnation._

8 import simulator.incarnation.given

9

10 def someIntenseComputation(input: String): String =

11 println("Doing some intense computation ...")

12 input

13

14 simulator.run {

15 branch(source) {

16 constant("I’m a source device").map(someIntenseComputation)

17 } {

18 constant("I’m not a source device")

19 }

20 }

21

22 sourcesSink.update(_ + 0)

23 sourcesSink.update(_ - 0)

24 sourcesSink.update(_ + 0)

25 sourcesSink.update(_ - 0)
� �
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Conclusions

This thesis was meant to be an exploratory study of the applicability of FRP
to the aggregate computing paradigm. All the objectives that were identified
were achieved and the implemented library was verified to be compliant with the
specifications, so the overall result can be considered a success.

Being a prototype, what has been implemented is far from being a complete
and reliable solution for reactive aggregate programs. Nonetheless, this goes a
long way in showing that a functional reactive approach to aggregate computing
is certainly possible and that the benefits that it brings to the table are really
valuable, therefore the following paragraphs include topics where future efforts
might be directed in this regard.

Support for real world distributed platforms At the current stage, the
library only supports being run on a simple simulator with very little features.
Since the hope is that this prototype can one day evolve into a solution for large-
scale distributed system, one of the future developments would certainly need to
introduce support for real-world platforms in order to make deployments on real
devices possible.

Core API improvements At a first glance, the new API introduces some noise
to the overall structure, due to the fact that, differently from ScaFi, it operates
on flows instead of local values. This in fact requires normal operators to be
constantly lifted in order to be applicable to flows, introducing boilerplate code
that makes programs less transparent. In the future, some efforts could be put
into researching a better API to deal with lifting operators in a more scalable and
user-friendly way.
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Support for the Alchemist simulator The simulator that was developed to
showcase the library at work is nowhere near an adequate solution to test systems
with complex rules and behavior. Since Alchemist [7] already constitutes a solution
to the necessity of a feature-rich simulator, a future version of the library might
integrate with it and provide a simple way to test aggregate programs against
complex simulations.

Improved timing control At the moment, the granularity with which the tim-
ing of computation can be configured allows no more than reactions to standard
events coming from the context. It would be nice if the framework supported addi-
tional strategies for scheduling and rate limiting other than calming and throttling,
maybe configurable per construct.
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