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Abstract

Nowadays, more and more disciplines adhere to Agent-Oriented Programming
paradigm to break down complex problems. Various methodologies have been
formalized over the years to model the behaviour of an agent, one of them is the
well-known BDI (Beliefs, Desires, Intentions) model [11]. This model, after receiv-
ing great interest from researchers, was formalized into an abstract language called
AgentSpeak(L), and later implemented in Jason [1]. Jason let users express multi-
agent system (MAS) specification via an ad-hoc language and a clear concurrency
model.

In this work we propose a novel interpreter for AgentSpeak(L) — namely, Ja-
cop — supporting both concurrency model pluggability, and interoperability with
mainstream programming languages — namely, the JVM-based ones —, via a Kotlin-
based domain specific language (DSL).

On the one hand, concurrency model pluggability let users choose the best
concurrency model for their applications. In this way, the same MAS specification
can run on resource-constrained devices, as well as on parallel, distributed, and
simulated architectures.

On the other hand, our DSL aims at specifying BDI agents directly in Kotlin.
In this way, users can easily develop MAS without having to learn a new syntax,
and, therefore, smoothly blend BDI agents into other projects.

To demonstrate the functionality of our contribution we test Jacop over sev-
eral MAS specifications, aimed at assessing if and to what extent: (i) the Jacop
interpreter covers AgentSpeak(L) semantics, (i) the Jacop DSL covers Jason syn-
tax, (i) the same MAS specification can run on different concurrency models. A
qualitative analysis of the result code snippets and their execution shows that all
such features are satisfied.
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Chapter 1

Introduction

Computer systems became more complex and more powerful over the years. The
more the complexity of the system grows, the more sophisticated techniques —
such as decomposition and abstraction — are useful. However, the construction of
reliable, maintainable and extensible systems requires design methodologies and
technologies to manage their inherent complexity.

Agents. Agents are a form of abstraction for complex systems, they can perform
tasks and interact with each other. Agents are also relevant in the field of artificial
intelligence (AI), where they are used to model intelligent behaviour. Each one of
them has an explicit representation of the world that depends on the environment
in which are situated and deliberate about the best course of action to take to
achieve their goals.

Multi-Agent System (MAS). A MAS is a society composed of multiple Agents
that interact with each other in order to achieve common goals. Multi-Agent Sys-
tems play a key role in the field of artificial intelligence, where agents are used as
an abstraction to model complex systems. Agents’ behaviour is strictly coupled
with the environment in which they live, this means that the environment is also
an essential entity of a Multi-Agent System.

Recent fields of Al, such as XAI (eXplainable AI), show that the use of sub-
symbolic techniques is at the core of many successful agent-based models and
technologies. XAl is a research field that aims to “open the black box” of neural
networks and turn them into transparent systems [7], possibly by leveraging sym-
bolic Al techniques—e.g., computational logic [4]. A thorough literature review of
MAS solutions involving logic-based technologies is reported in [3]. There, MAS
have the potential to bridge the two branches of Al (symbolic and sub-symbolic)
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2 CHAPTER 1. INTRODUCTION
under a coherent, unified conceptual framework.

BDI model and AgentSpeak(L). Many researchers proposed different design
methodologies and languages to model agents and multi-agent systems. One of the
most popular and successful frameworks to develop agents is the Beliefs, Desires,
Intentions (BDI) model [12]. Rao and Georgeff proposed a way to design agents
specifying three main components: beliefs, desires and intentions. Using these
three pieces of information, agents can reason about the best course of action
to take to achieve their goals. However, the BDI model is not a programming
language, but an agent theory to explain complex behaviours. For this reason, Rao
proposed AgentSpeak(L) [10], a logic-based programming language specification
that provides an alternative formalization of BDI agents.

Jason. AgentSpeak(L) only defines an abstract language: to adopt the BDI
model on real systems applications a concrete implementation was necessary. One
well-established technology is Jason [I], that in 2007 concretely implemented the
abstract definition. Jason provides a language that supports the development of
agents that reason, plan, and interact with each other and with the environment
in which they are situated.

Currently, developers need to follow the Jason language to develop BDI agents.
This means that they can not use the programming language of their own choice,
because it could not be compatible to work with it. This bought us to believe that
a more flexible approach could be useful to let developers design (and run) agents
on-the-fly inside their applications.

Moreover, the Jason interpreter comes with its own concurrency models—i.e.,
the interpreter is in charge of allocating agents on threads. While this choice
makes perfectly sense in most scenarios, we argue that there may be cases where
developers might want to have more control over the execution model of their
agents. Along this line, users should be able to adopt — and possibly realise — their
preferred execution strategy, hence controlling agents’ scheduling in a fine-grained
way.

Jacop. This work proposes Jacop (Jason-like Agents where COncurrency is
Pluggable): a library to develop a Multi-Agent Systems (MAS) inspired by Ja-
son’s syntax, that separates the framework into different abstraction layers, which
developers may plug and replace according to their needs. The library supports
both concurrency model pluggability, and interoperability with mainstream pro-
gramming languages — namely, the JVM-based ones —, via a Kotlin-based domain
specific language (DSL).



Jacop separates the execution model from the domain specification, this means
that developers can plug, and also customize, the execution model that better fits
their needs. This implies a complete decoupling among the multi-agent system
specification and the architecture on which it is executed, as well as parallel,
distributed and simulated ones.

This library provides also a Kotlin-based DSL to define MAS and its compo-
nents, which can be used as an elegant way to inject MAS into other systems.
Moreover, our DSL aims at specifying BDI agents directly in Kotlin. In this way,
users can easily develop MAS without having to learn a new syntax, and, therefore,
smoothly blend BDI agents into other projects.

To demonstrate the functionality of our contribution we test Jacop over several
MAS specifications, aimed at assessing if and to what extent: (i) the Jacop inter-
preter covers AgentSpeak(L) semantics, (i) the Jacop DSL covers Jason syntax,
(777) the same MAS specification can run on different concurrency models. Finally,
a qualitative analysis of the result code snippets and their execution shows that
all such features are satisfied.

The following chapters are organized as follows. Chapter [2|discusses the State of
the Art of the concept analyzed within this thesis, including references to previous
works and technologies. Chapter [3| summarizes the requirements that the pro-
posed solution satisfies and discusses the design of the library and its components.
Chapter [4] describes the implementation of relevant aspects of Jacop. Chapter
portray tests and usages of the proposed solution. Finally, Chapter [6] concludes
this thesis by summarising its main contribution and future works.






Chapter 2

State of the Art

This chapter provides an overview of the scientific literature which led to the
definition of Jacop language. It starts describing Multi-Agent Systems and their
usefulness to solve complex systems. Then it discusses the BDI model, one of the
best-known approaches to represent agents’ capabilities and then it describes the
contribution given by AgentSpeak(L) language to actually adopt them. Finally,
it describes Jason language, the most acknowledged language that implements
AgentSpeak(L) definitions, and discusses the main differences between the two of
them.

2.1 Multi-Agent Systems

The Agent-Oriented Paradigm (AOP) was introduced by Shoham in 1993 [13].
The AOP framework was introduced to be a specialization of the Object-Oriented
Programming (OOP) framework. The main difference between the two of them is
that while OOP let users define generic modules that can communicate with each
other, AOP constrains the state — or mental state — of those modules, transforming
them into agents.

The agent concept was first introduced in fields related to Distributed Artificial
Intelligence (DAI) to simplify complex distributed systems. However, each specific
field of study involved with agents gave its nuance for the entity definition, even
if the notion of agent is more generic. A shared and generalized definition for an
Agent is the following [6]:

An agent is an entity which is placed in an environment and senses dif-
ferent parameters that are used to make a decision based on the goal of
the entity. The entity performs the necessary action on the environment
based on this decision.
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Agents are placed within a shared environment, they observe changes in its
state in order to perform decision-making operations. However, these entities can
not perceive any nuance of such a complex state, indeed they only sense specific
types of data, that are their parameters. The environment parameter they observe
strictly depends on the purpose of each agent. After the decision-making process,
agents could decide to execute actions to operate on the environment state in which
they are inserted. The goal of each agent is to solve tasks for which is developed,
respecting some constraints that it senses from the environment.

For Wooldridge [15], an agent is considered intelligent when it flexibly performs
its choices, and agents compliant with these features are considered to have the
capabilities to solve complex tasks [6]. A flexible agent satisfies these features:

e Sociability: Agents are capable of interacting with each other in order to
share their knowledge.

o Autonomy: Each agent can take decisions and actions, without human in-
tervention, during their execution.

e Reactiviy: Agents perceive the environment and undertake actions, based on
its changes, in order to satisfy their goals.

e Proactivity: Each agent exhibits a goal-directed behaviour, indeed they take
the initiative to choose the actions to take based on their knowledge.

The case in which only one agent exists in the environment does not require
complex techniques to manage their knowledge representation. The real benefit of
this technology is exploited when they work collaboratively. Multiple agents that
collaborate to solve a complex task are known as Multi-Agent Systems (MAS).

Multi-agent systems (MAS) represent a means to solve complex problems by
subdividing them into smaller tasks. Each agent can solve the allocated task with
any level of knowledge, introducing high flexibility.

2.2 BDI model

BDI is a model for rational agents that is based on the idea that agents can be
modeled through Beliefs, Desires and Intentions. Bratman in 1987 [2] argued for
the first time the role played by intentions and plans in the design of rational
agents, to shape their behaviour and decisions. He stated that intentions play a
significant role in practical reasoning, indeed they represent the commitment of an
agent to perform a course of actions to fulfill its goals.

This idea was well recognized in the Al literature so, later on, Rao and Georgeft
[TT][12] formalized a semantics for the theorized BDI model. Authors observe that
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agents, at a certain time during their execution, will select a course of action
to perform to reach their goals, depending on what is their perception of the
environment. However, the environment is mutable over time, so an agent must
keep a memory of its past decisions that it is going to follow. This commitment
is represented by an agent’s intention. In addition, agents can carry out multiple
intentions at the same time alternating their action execution, this shows that an
agent does not carry a single intention over its execution but a set of them.

The BDI model described by Rao and Georgeff in [12] brings a way to describe
a system composed of multiple agents, that act over a shared environment to
achieve their goals. The environment is the entity where agents live and act, so it
is composed of information that agents can perceive and, possibly, modify. Agents
might act over the environment to change its state, to do so they have to select
which actions to execute from various plans of actions available. The system can
achieve its primary objectives by selecting the appropriate actions to perform,
given the characteristics of the environment in which agents are situated.

The following sections describe the main concepts of the BDI model: beliefs,
desires and intentions.

Beliefs

To take decisions, agents need to have a representation of the world in which
they live. Given that an environment is an extremely mutable entity, agents who
perceive it must have a component that let them keep track of the changes that
occur over time. This knowledge perceived by agents is called Belief, the latter
enables them to describe the environment’s state that agents can collect. An agent
can store multiple perceptions in its memory, this set of beliefs is called Belief Base.

In [8] authors define the Belief model as follows:

A Belief Model describes the information about the environment and in-
ternal state that an agent of that class may hold, and the actions it may
perform. The possible beliefs [...] are described by a belief set. In addition,
one or more belief states — particular instances of the belief set — may be
defined and used to specify an agent’s initial mental state.

The authors’ idea is that an agent has a mental state that changes over time
performing actions and perceiving back consequent environment’s changes. The
mental state is made up of beliefs states, which represents an instance of the belief
set held by the agent.



8 CHAPTER 2. STATE OF THE ART

Desires

The system’s primary objectives are called Desires, they represent the motivational
state of the system. Agents are provided with a set of plans that they can use to
achieve their goals, each plan is composed of a set of actions that the agent must
execute to contribute to the achievement of its goals. From the user’s viewpoint,
the most suitable plan choice is based on two factors: the agent’s and the environ-
ment’s actual state. The whole process for the plan selection is declared Selection
Function, which specific design is a field of decision theories.

Intentions

After a single plan selection, or also during action execution, the environment in
which the agent is situated could change. This means that the system tracks what
actions are committed to execution, and also it must keep track of the progress
of each one of them. This is the main purpose of the Intentions set: they capture
the deliberative component of the system.

2.3 AgentSpeak(L)

After the BDI model was formalized, under both the theoretical and the design per-
spective, and after the raise of interest from the researcher, Rao proposed AgentS-
peak(L) [10] as a semantic language for the BDI model application. This language
enables developers to describe agents in horn-clause logic similar to programs.

AgentSpeak(L) mainly follows the BDI model, indeed representing agents with
a set of beliefs, desires and intentions as its three primary mental attitudes. The
current state of the agent, that is the model of itself, the environment and other
agents, can be viewed as its current belief base. States that the agent wants to
bring the system are represented as its desires, and the actions that the agent
is committed to performing to reach its desires are its intentions. However, the
language also investigates other notions such as commitment, capabilities, know-
how and others, resulting in a more refined syntax.

Another feature brought by AgentSpeak(L) is the introduction of the operational
semantics of the language. Authors explain that a run-time agent can be described
with a unique tuple of elements, this is described in the following sections.

2.3.1 Language definition

An AgentSpeak(L) agent is described using five components: beliefs, goals, events,
actions and plans.
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Listing 2.1: Horn Clause example for belief representation

L[grandmother(x, Z) :- mother (X, Y), parent(Y, Z). J

Beliefs. Agent’s beliefs semantics follows the description given in the BDI model
[12]. They are represented as Horn Clauses, where the predication in the head of
the rule represents the belief’s name.

The Listing is a representation of a Horn Clause, where X, Y and Z are
variables that can be instantiated with any value. Predicates mother and parent
assert statements from the domain of the discourse, which can be true or false.
Following the example, grandmother belief is true only if X is the mother of some
Y and the same Y is the parent of Z.

Horn Clauses can be represented as rules, like in Listing and as facts.
The difference between these two notations is that a rule can be true only if its
head and all of its body predicates are true, while a fact is always true in the
domain concerned by the agent. A peculiar instance of fact is a predicate with no
arguments, this denotes a statement that holds in the agent’s domain.

Goals. Goals are the state of the system that the agent wants to reach. In
AgentSpeak(L) there is a slight difference from the BDI definition, indeed it intro-
duces goals as the agent’s adopted desires. There are two types of goals that an
agent can manage: achievement goals and test goals. Achievement goals represent
the state of the world that the agent wants to achieve, which eventually will hold
by its belief base. Test goals state that the agent wants to know if a certain belief
is true or not.

Events. When an agent gets a new goal to achieve or when it notices some
changes in the environment, it may generate an addition (or deletion) from its
goals or beliefs. These occurrences are called triggering events. There are six
types of triggering events accordingly:

1. Addition of a belief

2. Deletion of a belief

3. Achievement of an achievement goal
4. Deletion of an achievement goal

5. Achievement of a test goal

6. Deletion of a test goal
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Listing 2.2: Plan definition compliant with AgentSpeak(L) syntax

((

+location(waste, X) : location(robot, X) &
location(bin, Y)
<- pick(waste);
llocation(robot, Y);
drop (waste) .

Actions. The purpose of an agent is to execute some actions in order to reach
its goals. Actions are the primitive operations that the agent can perform.

Plans. An agent is provided with a set of plans, each one of them is composed of
actions that the agent may execute to contribute to the achievement of its goals.
Plans consist of a head and a body, the head is composed itself by a triggering
event and a context, while the body is a sequence of goals. The plan’s context
specifies the beliefs that should hold in the agent’s belief base when the plan is
triggered, to execute it.

An example of AgentSpeak(L) plan syntax is shown in Listing 2.2} it describes
a robot agent that performs the waste collection operation. The highlighted plan
is triggered when waste appears in a particular position in the environment, and
its body actions can be executed only if the robot is at the same location. The
agent then can act as picking up the waste, followed by the action of reaching the
bin location and finally executes the action of dropping the waste inside of it. Of
course, the described robot must also have appropriate plans to make it able to
reach the desired position in the environment.

2.3.2 Operational semantics

The state of an agent, during its whole lifecycle, can be described by a tuple of
elements:

<E,B,P,[,A,SE,SO,S[>

where E represents the set of events, B is the set of beliefs, P is the set of plans,
I is the set of intentions, A is the set of actions, Sg is the selection function that
selects from the FE set, Sp is the selection function that selects the applicable plans,
and Sy is the selection function that selects an intention from /.
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The agent execution is ruled by events that occur during its lifecycle. An event
can be generated during the execution of a plan by another agent’s request, or
triggered by a change in the environment’s state. There are two types of events:
internal events and external ones. The difference between the two of them is found
in the source of the event: internal events are generated by the agent itself, while
external events are generated by the environment or other agents. At any moment,
an agent may have multiple events to manage: selection function Sg is used to
choose the next event to be processed.

Once an event is selected, the agent uses it to unify with the triggering events
of the plans in its set P, the ones that unify are called relevant plans. The relevant
unifier is then applied to the context condition of the plan, if the computed context
is a logical consequence of the agent’s belief base, the plan is considered applicable.
For each event managed by the agent, there could be many applicable plans to
adopt, for this reason, the selection function Sy is used to select which plan to
execute between the applicable ones. Once a plan is selected, the agent associates
it with an intention to execute it, indeed each intention is essentially a stack of
partially instantiated plans. If the selected triggering event is an external one this
will generate a new intention, otherwise, the plan will be added to the top of the
intention that generated the internal event.

Lastly, an agent must select which intention to execute, this job is done by
the selection function S;. When an intention is selected for execution only the
first goal (or action) on the top of the intention is executed by the agent. Goal
execution may trigger new events, and then the whole cycle is repeated.

2.4 Jason

Jason is the most used and acknowledged language that implements AgentS-
peak(L), a logic-based agent-oriented programming language, proposed by Jomi
F. Hiibner and Rafael Bordini in 2007 [I]. Agents in Jason are developed following
the BDI definition, which is a model that is based on the idea that agents can be
modeled through Beliefs, Desires and Intentions. The language not only adheres
at the AgentSpeak(L) notion of an agent but also provides extensions to make the
language more expressive and powerful for multi-agent systems’ definition.

The framework introduces annotations to use wherever an atomic formula was
allowed in the original language, enclosed in square brackets immediately following
the formula. This information inside the belief base can be used, for example, to
specify the source of the belief, the time when it was acquired and others. In
other components, such as plans, annotations can be used to adopt sophisticated
selection functions, such as the one that selects the plan with the highest confidence
level.
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Moreover, Jason introduces events for handling plan failure. Agent’s actions
can fail, or there could not be any applicable plan to execute related to it, in this
case, the agent can generate a failure event. Actually, the deletion of a goal is
not an interesting event to model within an agent, in fact, this triggering event
represents the failure that occurred during the goal execution.

Lastly, the language discerns the action concept in two different ones: internal
actions and external actions. The first ones are directed to query (or modify) the
agent itself, while the second ones operate over the environment. There are several
implementations provided by the framework for internal and external actions, but
developers can create their custom ones using Java language.



Chapter 3

Design

The Jacop library provides a tool to develop agents who perceive and act within a
shared environment and communicate with each other through a form of message-
passing communication.

The library brings a framework to build a Multi-Agent System composed of
agents compliant with the BDI model and inspired by Jason implementation. A
Multi-Agent System is composed of two fundamental entities:

e Agents: the agent is the main entity of the library.

e Fnvironment: the environment is the entity where agents live.

MAS agents observe the environment state during their execution and they
choose independently to act, depending on which information they perceive. Their
actions may affect the environment’s state, and the change will be percept by all
other agents that operate over it. Indeed, agents are provided with goals they are
committed to achieve, which together bring the entire Multi-Agent System’s goal
achievement. Regarding the environment entity, a user can:

e (Create an environment
e Add capabilities to the environment, such as:

— Definition of actions that agents within the environment can use.

— Definition of the environment’s state, as the set of information that
agents inside can perceive and, possibly, modify.

o Add and remove agents from the environment

13
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Furthermore, agents situated in the same environment can communicate through
messages. Messages enable agents to share some information about their state, or
also share a goal completion, this feature makes the Multi-Agent System a truly
society of agents. Regarding the agent entity, a user can:

e ('reate agents and customize their behaviour, following the BDI model.

e Add actions that one single agent can perform. For example, users can define
agent-specific operations that they can perform with their sensors that do
not affect the environment state, such as the movement of a robot arm.

o (Customize agents’ behaviour during their execution, for example, providing
them with Artificial Intelligence algorithms that change their deliberative
operations.

The library let users define how their BDI agents will run. This means that
the same agents can be executed both in a single thread or between multiple of
them, in an almost completely transparent way. To enable the MAS to it, users
must define its execution model, i.e. how its agents are executed. This execution
model must be pluggable because it enables the dynamic choice of which type of
execution users want to adopt within the library.

To make it possible for users to customize how the system is executed, it is
necessary to define an abstraction layer that governs its iterations, separating
them from the physical machine on which is executed. Indeed, an agent is an
active entity that has its own life cycle, which transits through different states
before reaching its completion. These operations together denote a state machine
that regulates the entire execution of each entity in the system.

Finally, an abstraction layer is required above the definition of domain entities,
which guides users during their definition. This abstraction is represented by a
Domain Specific Language (DSL) which let users define only the essential concepts
necessary for the system execution, making it more intuitive to understand.

This chapter describes the design choices adopted for the proposed library com-
ponents. It first describes the domain entities of the library in Section [3.1] then
it discusses the library’s design choices made before the implementation phase

Section B.2]

3.1 Domain Model

The purpose of Jacop is to provide a flexible framework, inspired by Jason, that let
developers run multi-agent systems (MAS) on different execution models. Three
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Figure 3.1: Agent representation through perceptions and effectors

Agent

entities compose a MAS: agents, environments and execution strategy.

3.1.1 Agents

An agent is an entity that can perceive the environment, reason about changes
that happens in it, plan and act.

Agents can be imagined as in Figure [3.1} they can be reactive thanks to their
perceptions, indeed, they are used to elaborate the appropriate effectors — the
Agent’s Actions that act over the environment — to adopt in order to reach the
desired state of the environment.

Agents share an environment and interact with each other to achieve their
goals. Jacop agents comply with the Jason extension of AgentSpeak(L), indeed
they are developed using the BDI framework and a similar first-order logic syntax.

Following the AgentSpeak(L) definition in Section [2.3.2 agents can be de-
scribed using the following elements: Events, Beliefs, Plans, Intentions, Actions,
Event Selection Function, Plan Selection Function and Intention Selection Func-
tion.

Events

Agents, during their execution, decide which operations to perform depending on
which events occur. Events can be generated from a change in the environment
observed by the agent, from other agent actions or from the execution of a previ-
ously scheduled plan. Two different types of events can be discerned accordingly:
internal events and external ones.

One of the goals the agent could encounter can be the achievement of another
goal, in this case, the agent must execute all the steps that satisfy the other
goal before continuing the previous intention execution. What happens is that an
internal event for the new goal is generated, because the agent must reason over
the most suitable plan to adopt to achieve that goal, but it also needs to keep track
of the previously interrupted intention to continue its execution after the new goal
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is reached. Other event sources are pretty similar, they ask the agent to react to
something that happened outside of its context, and these are external events.
The difference between the two types of events is simply the presence of the
intention that generated it, needed to let the agent resume its execution.
Events can also be classified from the trigger that generated them, indeed they
could be generated from:

1. An addition inside of the belief base
2. A deletion from the belief base

3. A test goal invocation

4. A test goal failure

5. An achievement goal invocation

6. An achievement goal failure

Beliefs

Apart from the ability to perceive the environment, an agent could have some
prior knowledge. Each piece of knowledge is represented by a belief, which together
compose the agent’s belief base. Beliefs are defined as Horn Clauses, in particular,
there could be two different types of them: rules and facts. A rule belief can hold
only if its head and all of its body predicates are true, while a fact belief always
holds.

Developers can see beliefs as a logic theory that the agent will use — during its
execution — to adopt the most suitable plan of action. Moreover, beliefs represent
the agent’s knowledge about the environment, in fact, an addition (or deletion) of
them generates triggering events, that eventually will perform a suitable course of
action. This language detail enables modeling agents that adapt their behaviour
to environmental changes.

As in Jason, agents’ beliefs have another detail: they also are provided with a
list of annotations that let users distinguish knowledge based on some properties.
We decided to provide a similar feature, although the initial design of this property
is simple: instead of a list of them, beliefs are provided with only one annotation,
that stores the source of the piece of knowledge.

Plans

Agents are provided with goals that they want to achieve, these goals could also
enable other goals to be satisfied, however, the main objective of the agent is to
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satisfy them all. Plans represent the capabilities of the agent, indeed the only way
to make them able to perform actions is through a plan’s body.

AgentSpeak(L) provided an excellent description of what a BDI-compliant plan
should be composed of, which is the one on which we made our design choices.
Plans are composed of three components: triggering event, a context and a body.
The first element let agents determine which plans are relevant against an event
selected from the event set. After determining relevant plans, agents select only
applicable plans from relevant ones. A certain plan is applicable only if its context
is a logical consequence of the agent’s belief base. The context is important for plan
definition because a plan should not only rely on triggering events happening, but
also on the actual knowledge of the agent. Lastly, the body of the plan is a list of
operations that the agent must perform to reach its main goals. These operations
are modeled as goals, indeed they represent tasks the agent must perform to satisfy
the overall plan execution.

Once an applicable plan is selected, the agent can commit itself to its execution
associating it with an intention. If the plan was triggered by an internal event,
the agent will recover the previous intention that generated it and add the new
plan’s goals on top of its execution stack, otherwise, an empty intention will be
filled with those goals.

One plan succeeds only if all its goals are executed with success. If a failure
occurs during plan execution, a failure event should be raised and also there should
be a plan to manage the occurrence. This is useful for developers because they
can provide agents with capabilities to recover themself after some errors appear.

In the framework there are six kinds of goals:

1. Belief addition: which execution adds a new belief inside the agent’s belief
base. The goal execution will then trigger a new belief base addition internal
event.

2. Belief deletion: that deletes the specified belief from the agent’s belief base.
The goal execution will then trigger a new belief base removal internal event.

3. Belief update: that modifies a current belief value into a new one.

4. Achievement goal invocation: which execution will generate an achievement
goal internal event. The execution of the current intention does not con-
tinue until the plan goals, assigned to satisfy the new event, are executed
successfully.

5. Spawn goal invocation: the same as an achievement goal invocation, but the
execution of the current intention and the new one is concurrent.
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6. Test goal invocation: it checks whether a belief is believed by the agent’s
knowledge. It is typically used to retrieve values from the belief base.

7. External action execution: runs an action that potentially changes the envi-
ronment’s state.

8. Internal action execution: runs an action that potentially changes the agent’s
state.

Intentions

Intentions are the core aspect related to the BDI agent’s execution, indeed they
represent the commitment of an agent to perform some goals. Intentions’ goals can
also trigger new events that need to be satisfied before continuing their execution.
Each element of the Agent’s Intention set represent a different Focus of Attention,
which means that all of them are competing for the Agent’s attention, but only
one of them is managed at a time. We can imagine that an intention is composed
of a stack of partially instantiated plans, the latter are queues of goals provided
by a previously selected plan. We call them Activation Records, they represent
the execution state of the intention. At each step of the agent’s execution, it will
perform a single goal, this one will be the next goal in the activation record at
the top of the intention stack. A graphic example of this description is shown
in Figure [3.2] where we can see a sample snapshot of an intention. An intention
can be viewed as a stack that grows upwards, this happens when a goal requires
another plan execution to reach success. Indeed, we can notice from Figure
that the agent, at some time during its execution, encountered the execution of
the goal bl. But to satisfy the latter, goal al, a2, a3, a4 and a5 must be executed.
This results in the addition of a new queue on the top of the stack that will contain
the required goals, respectively. In the example is also shown that the next goal
that the agent will execute is al because is the next one in the queue on the top
of the stack of the executed intention.

After a single goal is executed with success, the behaviour of the agent is to
drop that goal. A more sophisticated design could save those dropped goals, this
would lead to agent memory of which operation it has performed, enabling users to
perform advanced queries. For example, we could query: “Did the agent perform
X in the past”. The main drawback which led to not preferring the introduction
of this feature is the huge amount of memory that a single agent could require to
save that information.
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Figure 3.2: Intention stack graphic representation

Actions

Actions represent the operative capabilities of agents. Through action definition,
users can build agent capabilities to operate on a wide range of scenarios. This is
the main reason that led us to model a sufficiently generic entity for an Action.
Just like Jason, there are two types of actions: internal actions and external ones.

Internal actions are visible only from the agent’s perspective, indeed they can
alter the agent’s state through their execution, for example, they can model a
dynamic plan provisioning for the agent. External actions are visible at the en-
vironment level, this means that all the agents situated in the same environment
can use them. The latter type of action is used to operate over the environment
state, for example, external actions can be used to add dynamically another agent
into the same environment.

Actions definition in Jacop is a little more strict than Jason’s one, indeed the
latter applies all the changes performed to the agent (or environment) state during
the action execution, instead Jacop provide a limited set of changes that can be
performed during action execution (a sort of side effect) and other alterations are
not considered. Developers must explicitly indicate wherever a change should be
applied, then the actual change is performed by the Jacop framework.

Selection Functions

AgentSpeak(L) introduces the concept of selection functions, there are three types
of them:

e Fuvent Selection Function. The selection of which event the agent will manage
is a duty of the event selection function. The latter takes the agent’s set of
events as a parameter and returns the one that the agent is going to satisfy.
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e Plan Selection Function. Once the agent has computed all the applicable
plans over an event that needs to be satisfied, only one of them can be
committed for execution at each entity iteration. This selection is performed
by the plan selection function.

o [ntention Selection Function. Fach agent must select one intention for exe-
cution, this choice is made by the intention selection function. Indeed, every
agent could have multiple intentions that need to be executed at the same
time and this algorithm could change completely the behaviour of the entity.

The three of them let users refine the reasoning behaviour of agents. Although
there is a default implementation of each one of them, users should be free to
customize them as they need, at the agent’s definition time. Indeed, a simple
change in one selection function could drastically change the course of action taken
by the agent.

3.1.2 Environment

A multi-agent system has many agents that work together in a shared environment.
The environment is the entity on which agents act and observe changes, this means
that its design should be as generic as possible to let users shape it following the
domain they want to represent. Indeed, an environment could be simulated or
connected to real-world scenarios, both scenarios should be representable easily by
users through this entity.

These motivations brought us to model the environment with an entity that is
not operating directly on the MAS but is a shared object between agents. However,
the framework must also support users’ decision to turn the environment into an
active entity. The latter is the reason why there’s also a third component on Jacop
MAS definition: the execution strategy.

The environment is also responsible for the management of agents’ messages,
indeed, agents are capable of communicating with each other thanks to this shared
entity between them. There will be a queue of messages associated with each agent
living in the environment, and the environment manages all of them.

Lastly, as a shared entity between agents, the environment is also the place
where external actions are located. Whenever an agent wants to use an external
action, it will query environment actions to check if there’s an applicable operation.

3.1.3 Execution Strategy

The flexibility of Jacop framework to shape each scenario users want to create
is also attributed to the execution strategy. This entity separates the concept of
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model definition and its execution, making it possible to customize the machinery
on which the framework is actually executed.

With the separation of these two notions, users can potentially run the same
multi-agent system both on physical machinery using single-threads and also multi-
threads. This will result in a fully customizable framework that enables users to
adopt BDI agents on every machinery they have.

3.1.4 Agent State Machine

To manage agents’ execution in a shared common way, between different execution
strategies, an execution control layer is provided. This let users build an execution
strategy flexibly because the execution of the framework becomes only the decision
on when to start the execution of an agent.

We wanted to explicitly associate each agent with its life cycle, which passes
through different states until it ends. We have chosen to call this component Agent
State Machine (Agent SM).

Conceptually, any activity that must be performed — in our case the agent —
will pass through an initial state in which it will perform a series of configuration
operations, which are typically performed only once before the actual execution.
An activity lifecycle finally ends when it reaches its final state. We can model this
machine behaviour with a state diagram where all the state transitions are ruled
by explicit routines invocations.

Figure |3.3|shows the graphical representation of the state machine of an entity.
There are five reachable states during an activity lifecycle: Created, Started,
Paused, Paused and Stopped. All the activities start from the created state, then
they transit into started after a constant amount of time e. After the transition
is triggered, and the routine onBegin is invoked, the activity starts its concrete
execution with onRun execution reaching the running state. Running the state
where the activity belongs most of the time, as shown on Figure[3.3] because this is
the state that each activity reaches without performing changing-state operations.

Four operations can trigger a change over an activity state: restart, pause,
resume, stop. Apart from the first one, each one of the others can be called by
the activity only if is currently in a specific state: pause and stop are invocable
from paused and running state and resume is only invocable from paused state.
Intuitively, paused state enables an activity to stop its execution and then resume
it, while the stopped state precedes the end of the lifecycle. As for the startup of
the activity, there’s also a routing for the end of it called onEnd. The latter is run
once before the end of the loop and after its invocation the execution ends.

This design for agents executions is quite generic to enable execution on a wide
range of machinery. The key concept is that there are three callbacks that rule
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Figure 3.3: Agent State Machine graphic representation
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Figure 3.4: Mudules decomposition of Jacop library

the whole execution of agents: onBegin, onRun and onEnd. Each activity mod-
eled using the three of them could be completely independent from the concrete
execution paradigm.

3.2 Implementation design

This section explores the design choices made for the main components of Jacop
framework described in Section [3.11

In order to develop a clear framework and simple to debug, we decided to
implement it with an immutable structure. An object is immutable if its state
doesn’t change once the object has been created. The immutable pattern increases
the robustness of objects that share references to the same object and reduces the
overhead of concurrent access to them.

As it results after the Domain Model section, each module of the library is de-
signed to be completely independent from others. This distinction is highlighted
from the project decomposition, as shown in Figure From the users’ per-
spective, modules mean that each one of them could be completely changed —
following the interface definition — and the framework still works using the new
implementation.

From the graphical representation, there are four modules that compose the
Jacop framework: Agent DSL, Agent BDI, Agent SM and 2P-kt.



24 CHAPTER 3. DESIGN

The first one is the layer built over the model definition that defines the lan-
guage users can use to facilitate their development using the library. This language
is defined using Domain Specific Language (DSL) technology, which exposes only
the main domain information that agents need to be specified to work properly.
A DSL is also useful because it can be easier to understand for people that do not
know how to use the language on which the library is implemented and it is also
interchangeable within mainstream language files.

Agent BDI is the core module of the library, it contains the definition of Jacop
interfaces and their implementations. This module implements all the BDI model
entities described in Section and contains the whole engine that enables the
execution of the Multi-Agents System.

The Agent SM model contains entities that enable transparency between the
model execution and the underlying infrastructure. These entities indeed are a
form of abstraction for the technology used to execute the framework, enabling it
to be executable in a single-thread, multi-threaded or simulated physical environ-
ment.

The last module is the one represented outside the Jacop jurisdiction, indeed, is
the only external dependency of the library. The 2P-kt module is a well-established
library that implements a Prolog logic language syntax.

The following sections describe the main choices made for entities definition
and also the relationships between them, together with a detailed description of
their expected behaviour.

3.2.1 Agent SM module

The state machine (Figure is the engine that rules the state transitions that
could happen during an entity’s lifetime, in our case the entity is an agent. As
described in Section [3.1.4] there are three ingredients needed to model it: a state,
the transitions trigger and the routines.

Depending on which state is currently the agent and also depending on which
course of transitions the entity selected, a different routine is run. Inside routines
there is the definition of the whole behaviour of the entity, there are three of them:
onBegin(), onRun() and onEnd(). As represented in Figure [3.3] the first is run
once when the agent starts its execution, the second one is run repeatedly when
the agent is running and the last one is also run once right after the agent stops
its execution. FEach entity modeled with these three routines is called Activity.
As visible in the graphical representation, some state transitions are ruled by
explicit operations run by the activity, that are: restart(), pause(), resume()
and stop(). We modeled them as activity’s Controller. The latter is the entity
that gives, to users that define an entity, the ability to control state transitions.
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@ Runner

O activity: Activity
o state: State?

Promise<void> run()
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void onEnd(Controller controller) .
void stop() STOPPED

Figure 3.5: UML diagram of Agent SM main interfaces

An activity is only a formal description of entities’ behaviour, to enable them
to run on whatsoever machinery another component is essential: the Runner.
A Runner embeds all the necessary code to model state transitions over all the
possible scenarios, which makes it possible to completely abstract execution from
entity definition. Runners manage the execution technology, the actual state, the
routine execution and the change of state. This layer of abstraction is fundamental
to make it possible to map an activity execution over any underlying machinery
desired.

Figure shows the interaction between the main entities inside Agent SM
module, as described above. Firstly, to execute these entities, a user needs to
define the expected behaviour of the activity, dividing it into the three routines
that describes ad Activity, then he needs to choose which Runner will execute it,
choosing between one of the available runners, or also implementing a new one by
itself. As shown in the UML, after associating the activity to the chosen Runner,
the latter exposes the method that must be called by users to finally run the entity.

3.2.2 2P-kt module

Jason’s implementation is provided with an internal logic language engine that let
users use this syntax within the agents’ definition. Since a reliable implementation
of this system component would require a large effort, we have decided to rely on
the stable 2P-kt [5] library, which is flexible enough to be adapted to the library’s
needs. However, it is not possible to use it directly as the logical engine for the
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library, because, even if AgentSpeak(L)’s agents definition is inspired by the horn
clauses, the syntax is slightly different.

2P-kt’s programs are called theories, which are lists of Horn Clauses. A Clause
in prolog can be Rule, Fact or Directive.

A Rule is a predicate that holds true only if a number of other predicates also
hold true. A Fact is a predicate that is known to hold in the domain concerned
and a Directive is the goal of the logic program, which is the predicate that must
be proven over a Prolog theory.

The syntax of a Rule is the following:

<HEAD> :- <BODY>.

Where <HEAD> is a single Predicate and <BODY> is a sequence of them. Predicates
represent statements that can be true or not in the domain of the discourse.

Both rules and theories can be exploited to represent the agent’s beliefs and
belief base, respectively. Indeed, as described in the following sections, a belief is
represented through a clause, in case it states something that the agent knows, and
rules, that let the agent infer knowledge over multiple predicates that must hold
in the domain concerned by the agent itself. Usually, the agent stores complex
knowledge composed of a list of beliefs: this representation can is done using a
2P-kt theory entity.

3.2.3 Agent BDI module

The definition of all BDI model entities resides in the Agent BDI module. The
latter is responsible for providing users with all the components needed to build a
multi-agent system.

As shown in Figure [3.6)a MAS consists of three essential elements: An Ezecu-
tion Strategy, an Environment and a set of Agents. The main model decisions of
the three of them are described below.

Agent

Within a MAS there is a set of agents, who cooperate to achieve a common goal,
possibly by changing the state of the environment in which they live. Agents are
the essential entities operating within the Multi-Agent System’s environment. As
described in Section , AgentSpeak(L) agents are composed of five elements:
beliefs, goals, events, plans, and actions.

The execution of an agent is described by a static and a dynamic part, the latter
is the one defined by users. The static part is part of Jacop’s implementation and
contains all the logic related to the entity execution, as well as the Agent Lifecycle.
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@ mas

o environment: Environment
o agents: Iterable<Agent>
o executionStrategy: ExecutionStrategy

o start(): Unit

@ Enviornment @ ExecutionStrategy @Agent

Figure 3.6: UML diagram of Jacop main interfaces

Users can specify agent behaviour in terms of BDI notions such as Beliefs, Plans
and Goals, but they can also specify the three selection functions, as described
in AgentSpeak(L) agent definition. Despite these functions have a trivial default
implementation, users can refine them to obtain the desired Agent behaviour.

Beliefs. The first Beliefs modeling was thought of as 2P-kt Clause. The problem
associated with this choice was that such an entity can be of three types: a fact,
a rule or a goal/directive. Since a belief does not represent a goal that users want
to verify, but statements of the domain known to the agent, the entity was then
modeled as an extension of the Rule interface. This choice is optimal because
it is possible to represent both a Rule and a Fact through the same entity; in
fact, a Rule is nothing more than a Fact that is always verified in the domain
concerned by the agent. As with Jason’s implementation, a Belief can also contain
within it a list of annotations. These annotations are useful to distinguish essential
information about each piece of information believed by the agent.

Jacop’s implementation introduced a simplified concept of annotation: they
are used to distinguish the source of a belief using a single Struct, instead of a list
of them as in Jason.

An agent does not store a single belief, but a set of them, so a data structure is
needed to store this information within it in an optimal way. The data structure
used for this task is the 2P-kt MultiClauseSet, however, this implementation — as
all 2P-kt specific ones — is completely hidden inside BeliefBase implementation. A
graphical representation of the interaction between these interfaces is reported in

Figure [3.7]
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Figure 3.7: UML diagram of Agent’s BeliefBase and Belief

Goals.  Agent goals represent their capabilities, more specifically, all the oper-
ations they can perform within a Multi-Agent System. Indeed, each Agent’s Plan
contains a list of Goals that must be met to lead to the success of the overall Plan.
Eight possible goals can be specified: Belief Addition Goal, Belief Removal Goal,
Belief Update Goal, Achievement Goal Invocation, Test Goal Invocation, Spawn
Goal Invocation, External Action Goal Invocation and Internal Action Goal Invo-
cation.

The first three of them are all Goals that eventually modify the BeliefBase of
the agent; respectively, they are the addition of a new belief, its deletion and the
update of an existing one.

Achievement Goals are the ones that enable the agent’s composite plans, indeed
they generate a new event for the achievement of that goal that the agent will
eventually satisfy. The Plan selected by the agent to meet the Achievement Goal
will itself have a list of Goals to be met; the Agent will have to execute all of them
before it can continue execution of those belonging to the initial plan. A different
behaviour is instead provided by Spawn Goals, in fact, these latter create a new
event to find the plan to be adopted to satisfy the Spawn Goal — in the same way
as Achievement Goals — but the previously running Plan does not wait for the
completion of all the Goals of the new Plan to continue its execution: these two
will execute concurrently.

Test Goals can be adopted by users who need to retrieve information from the
agent’s BeliefBase, they fail if there is not any Belief that is a logical consequence
of the goal’s logic structure.

The Action goal invocation triggers the execution of an action from the agent.
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Figure 3.8: UML diagram of Goals interfaces decomposition

Actions group the ability of agents to operate; in fact, users can provide Multi-
Agent System’s entities with all sorts of capabilities through the definition of Ac-
tions. Actions can be of two types, internal or external; the differences between
the two will be detailed in the next sections, but the goal distinction is necessary
to discern from which set of Actions the one to be performed should be found by
the Agent’s execution engine.

The Figure [3.8 shows the decomposition of all the Goal types described above,
it also shows the entity through which the goal will be met: a 2P-kt Struct. During
the execution of a Goal, the agent will try to apply that structure according to
the Goal it wants to satisfy: in the case of BeliefGoal sub-types and Test types
it will search for an existing logical consequence of the Goal value in the agent’s
BeliefBase, for Achieve and Spawn the agent will look for an existing plan which
trigger is unified with the Goal value and lastly, if it is an ActionGoal sub-type,
it will search for an Action to execute which name is equal to the predicate of the
Goal value.

Events. Events rule the occurrence of an Agent’s Actions; in fact, only after
an Event is raised then one Plan is selected to satisfy it. There are two types
of Events: internal and external. Internal Events are generated by the Agent
itself while executing one of its Intentions. This type of event keeps track of the
Intention that triggered it since the latter cannot continue its execution until the
event is satisfied (unless it is a Spawn Goal type that runs it concurrently). Six
types of events can be generated during an agent’s lifetime: BeliefBase Addition,
BeliefBase Removal, Test Goal Invocation, Test Goal Failure, Achievement Goal
Invocation and Achievement Goal Failure.

Intuitively, BeliefBase addition and removal are triggered when a Belief is re-
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@ Event

o trigger: Trigger
o intention: Intention?

Q

@ g @Intention
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Figure 3.9: UML diagram of Event interface
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Figure 3.10: UML diagram of Trigger implementations

spectively added or removed from the Agent’s set. These two Events are useful
because enable the agent to a reactive behaviour because, for example, an Agent
can react to a change in the Environment state with an appropriate Plan designed
for it.

Figure [3.9/shows how an Event is defined: it could be an internal or an external
one depending on the presence of the Intention, as explained above. The Trigger
interface is the entity that identifies the trigger type that generates an event, which
decomposition is represented in Figure [3.10]

Plans. Plans represent an agent’s cognitive capabilities; in fact, they describe
which actions agents are capable of executing based on the event that has occurred.
As described in Section [3.1.1] a plan consists of three elements: a triggering event,
a context and a sequence of goals.
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@ Plan

o trigger: Trigger
o guard: Struct
o goals: List<Goals>

o isApplicable(event: Event, beliefBase: BeliefBase): Boolean
o isRelevant(event: Event): Boolean

[\

@ Trigger @ Goal

Figure 3.11: UML diagram for Plan interface

As visible in Figure [3.11] a triggering event is the same interface that describes
the trigger of an Event. This is because Event triggers will be applied, during
agent execution, to the plan’s triggering event to determine its relevance. Once
all relevant Plans are highlighted, their applicability is evaluated based on the
knowledge the Agent has about the Environment at that particular time. This last
check is made with the context of a plan, which determines if a Plan is applicable
if its context is a logical consequence of the BeliefBase.

Once the set of applicable Plans is selected, the agent’s engine will choose
which one to apply, this means that its goals will be appropriately placed within
an Intention, chosen based on the nature of the event: if the event is external it
will be a new Intention, otherwise the one that generated the internal event will
be retrieved and properly updated. The new Goals inserted within the Intention
are partially instantiated plans, this means that all the variables contained within
them — that were present in the triggering event and inside the plan’s context —
will be replaced with their value, while instead all others will be replaced during
the execution of the goals.

Plan’s context is represented as a single 2P-kt Struct as visible in Figure [3.11],
this means that this component is a predicate that could hold or not in the domain
concerned by the agent. A Struct is flexible because, with a single entity, it can
model complex conditions with also logic operators such as and, or or not.

Intentions. Intentions represent the mental state of the agent, as described by
the BDI model (Section . Intentions are not managed directly by users during
the agent definition but are totally controlled by the agent’s internal engine. An
intention is created when a Plan is chosen to satisfy an external Action. Within an
Intention, there is a set of partially instantiated Goals, indeed, variables contained
inside Plans’ body are substituted during the operation of evaluating the Plan
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Figure 3.12: UML diagram for Intention interface

applicability, while variables for which a value could not be associated will be
appropriately replaced during the execution of the Intention. The agent’s lifecycle
executes only one goal per intention; the Intention Selection Function is in charge to
select the Intention — from the Intention Set — for which to continue the execution.

An intention, as visible in Figure is composed of a stack of Activation
Records. The stack is used to keep track of all the subgoals generated during the
Intention execution; so that the agent is always able to know what is the next goal
that it needs to manage in order to continue its execution. The motivation behind
this data structure is intuitive: as soon as the agent encounters a new subgoal
to satisfy, all of its Goals are inserted into a new Activation Record situated at
the top of the stack. Consequently, an Activation Record is nothing more than
a queue of partially instantiated Goals, derived from the application of the plan
that was chosen by the Agent.

At each iteration of the agent lifecycle one goal is executed, taken from the first
queued event in the Activation Record at the top of the record stack of the selected
Intention; if the chosen one is an Achievement Goal then another Activation Record
will be added to the top of the stack, otherwise, the chosen goal will be managed
by the agent and removed from the queue.

Actions. Actions represent agents’ capabilities, indeed, a user can simply extend
what the agent is capable to do through the definition of customized Actions. Also,
Actions are divided into two categories: internal and external. Internal Actions
can only see the Agent’s state which is executing them, and possibly modify it.
To ensure that such changes do not break the agent’s execution, users are only
provided with a defense copy of the agent’s state so that no changes are considered
by the Agent engine. However, state modification is not forbidden, this can still be
done through appropriate methods that can be invoked explicitly by users within
the action. These methods will then be executed by the Agent engine, ensuring
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Figure 3.13: UML diagram for Action interface. Arrows represent assignments
constraints on generic variables

that the change is safe as well as successful.

External actions follow the same reasoning, but instead of operating on the
state of the agent, they only see the state of the Environment. A user, within an
internal action, cannot view the internal status of the agent who is performing it,
but can only know its reference. External actions are defined at the Environment
level and, as it is shared, can be performed by all the agents located inside it.

As shown in Figure [3.13] an Action is designed to be strictly defined by three
elements: SideFEffect, ActionRequest and ActionResponse.

SideEffect is the interface that denotes the types of changes that can be applied
by the Action, this entity enables the control over state changes described above.
Figure [3.14] shows that SideEffect types follow the definition of the two types of ac-
tions, indeed, there is EnviornmentChange that enables to perform some changes
over the environment and AgentChange that possibly modify the Agent’s state.
The changes that can be performed over the environment are: (i) addition of a
new agent, (i) removal of an existing agent, (i) send a message and (iv) broad-
cast a message. The changes that can be performed over the agent’s state are:
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Figure 3.14: UML diagram for SideEffect interface

(1) addition/removal of a belief, (ii) addition/removal of an intention, (i) ad-
dition/removal of an event, (iv) addition/removal of a plan, (v) stop the agent
execution, (vi) pause the agent execution, (vii) pause the agent execution for a
number of milliseconds. Beyond the previous description, there is another dis-
tinction inside AgentChange interface: InternalChange and ActivityChange. The
first one represents changes over the Agent’s BDI model state, such as its events,
beliefs, plans and other elements. The latter denotes changes over the Agent SM’s
Activity that is currently running the entity, this enables users to modify the cur-
rent running Activity execution through the Action implementation, for example,
users can stop and resume the Agent’s lifecycle.

The Action UML representation shows that the interface provides the execute
method, which takes an ActionRequest and returns an ActionResponse: this
method will execute the operations specified by users. Another detail captured
by Figure is that a Jacop Action definition strictly depends on which Side-
Effect is used because it also defines uniquely the ActionResponse, which in turn
defines uniquely the ActionRequest. This means that users cannot define, for ex-
ample, internal Actions provoking changes in the Environment (and vice versa),
as shown in Figure |3.15]

During Agent Goals execution, Actions are invoked by users using a logic Pred-
icate as if it is a function call, indeed, the predication — the name that defines the
Predicate — represents the Action’s name to be searched, while the arguments are
themselves the arguments of the Action. This design requires that each Action
stores the name to which it can be called and the number of arguments it expects
as input: in fact, this information is saved within the signature field, which has
the purpose of storing precisely these information.

The ActionResponse (Figure is the type of data that is returned after the
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C: Sidekffect,

@Action i Res: ActionResponse<C>,
iReq: ActionRequest<C, Res> |

o signature: Signature

o execute(req: Request): Response

C=AgentChange C =EnvironmentChange
Res =InternalResponse Res = ExternalResponse
Req =InternalRequest Req =InternalRequest

@InternalAction @ ExternalAction

Figure 3.15: UML diagram that describes InternalAction and ExternalAction

@ActionResponse ----------------- '

o substitution: Substitution
o effects: Iterable<C>

C=AgentChange \C = EnvironmentChange

@ InternalResponse @ ExternalResponse

Figure 3.16: UML diagram for ActionResponse interfaces decomposition

invocation of the Action’s execute method, indeed, an Action Response contains
two elements: a 2P-kt substitution and a sequence of SideEffects. The substitution
represents the result of the Action execution which can be true or false; it can also
contain some mappings between variables and their associated value, that will be
appropriately replaced in the subsequent Goals variables of the Intention. This
means that the substitution field is useful for both to know if the Action was
completed successfully and to retrieve possible execution results.

The effects, on the other hand, represent all the changes that the user wants
to perform after the execution of the Action on the state of the Agent, in the case
an Internal Response is being created, or on the state of the Environment, in the
case of an External Response. This field is then used by the engine in charge of
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) : C: SideEffect,
@ActlonRequeSt iRes: ActionResponse<C> |

o arguments: List<Term>

= AgentChange C=EnvironmentChange
Res InternalResponse Res = ExternalResponse

@Interna/Request @ ExternalRequest

Figure 3.17: UML diagram for ActionRequest interfaces decomposition

running the agent to apply those desired changes.

Finally, once the type of SideEffect has been fixed, ActionResponse is uniquely
defined and consequently also the type of the request. The ActionRequest rep-
resents the input passed to the method that performs the Action, consequently,
it will contain a reference to the parameters that are passed by users during the
Action invocation, as visible in Figure [3.17]

Agent Lifecycle. An Agent Lifecycle is nothing more than the engine that
takes care of the entity execution. Indeed, at each iteration of the latter, a series
of operations must be performed to guarantee the functioning of its BDI model.

The first operation that the agent must perform, at each iteration of its life
cycle, is to observe whether any changes have occurred within the environment.
Indeed, to make the agent as responsive as possible to these changes, before it
decides which operations to perform, it must observe the current state of the
Environment. Once the Agent knows the new state of the Environment, it must
update its knowledge base, i.e. the BeliefBase, with the new information retrieved.
This step is carried out by a Belief Update Function, which has the task of opti-
mizing this procedure. In order to react to changes in the Environment state, and
therefore to be a reactive entity, the agent must generate events. These events
are determined by evaluating differences between its knowledge base and the new
perception of the state around itself. Events can be of two types: addition or
deletion of a Belief.

Another event that the agent must respond to is the receipt of a new message.
Messages are the component that agents can use to communicate with each other
within the Environment. This means that, at each iteration of the lifecycle, the
Agent has to check if there are any new messages that it needs to handle. Messages
can trigger two different scenarios related to their type, indeed, there could be
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Achieve Messages that trigger a new Achievement Goal invocation Event or also
Tell Messages that are handled exactly like adding a new Belief, the only difference
with a generic one of them is given by the annotation, because it refers to the sender
of that message. As with the perception phase, the latter type of Message also
generate a Belief addition Event.

After checking all the Event sources that have occurred, the Agent selects one
Event to handle. The latter is selected using the Event Selection Function defined
within the Agent. If there is an Event to handle, then it is removed from the
Agent’s Event set and a suitable Plan is searched to fulfill it.

The Plan selection phase follows three steps. First, the Plans which have
a triggering event that unifies with the selected Event are filtered among Plans
available to the Agent, these are the Relevant Plans Then the applicable ones are
selected, this is done by verifying that the Plan’s context is a logical consequence of
the agent’s BeliefBase. Of the remaining Plans, the one actually applied is chosen
using the Plan Selection Function. If it was possible to outline a plan that satisfies
all these three steps, then this is assigned to an Intention.

If the Event that triggered the Plan application was external, then a new
Intention, with the partially instantiated Goals of that Plan’s body, is added to the
Intention set. Otherwise, if the Event was an internal one, the Lifecycle retrieves
the related Intention and adds another ActivationRecord, with those Goals inside
of it, on the top of its stack.

Lastly, the Agent executes one Intention Goal. The Intention to execute is
selected with the Agent’s Intention Selection Function, and if there’s at least one
of them to execute then it’s scheduled for execution.

The execution phase is where the agent could potentially perform changes
over its state or on the Environment’s one. However, Agent Lifecycle does not
operate directly over the Environment state, as for Action’s SideEffect, the whole
reasoning procedure described above returns a list of EnvironmentChanges, which
application will be managed by the Multi-Agent System ExecutionStrategy.

Environment

The Environment is the entity in which agents live, its state is changed by agents to
achieve their goals. In the initial model definition of the library, the Environment is
not foreseen as an active entity, which means that it does not have its own control
flow, unlike the agents, but this entity is generic enough that users could choose to
implement custom behaviour for it. Although its behaviour can be manipulated
by users, this entity has only the goal of agents’ synchronization, this means that
the update of its state must be managed appropriately by users in multi-threaded
systems, although immutable modeling helps to avoid critical runs.

The Environment encapsulates four important pieces of information: a set of
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Figure 3.18: Representation of Execution Strategy behaviour

agents living within the Environment, Agent’s mailboxes on which the others can
send messages, the set of external Actions visible at Environment level and, finally,
the component that returns the current state of the Environment itself, in terms
of Belief.

Execution Strategy

The Execution Strategy is the element that builds the entities needed to execute
the MAS, indeed, this entity is seen as the connection layer between Agent BDI
module and Agent SM one. It also represents the synchronization point between
the agents and the environment. Furthermore, while the Agent state machine
implementation provides the abstraction of the physical machine on which the
agent will be executed, the Execution Strategy has the task of establishing how
and when to execute the agents inside it other.

The implementation of this entity is in charge of managing the update of the
Environment state in the most appropriate way, indeed, the execution of the Agent
Lifecycle does not modify it directly, following the philosophy of the immutable
design. This means that without an explicit update management, the Environment
would never percept the changes desired by the Agents.

The importance of this entity is visible in Figure[3.18] indeed, this is the entity
that encapsulates all the Multi-Agent System’s Agents to their Agent Lifecycle
instance, and then deploy them on the proper Activity. The example in the figure
represents an Execution Strategy implementation where Agents are running over
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the same Activity and the Environment is shared between them. Although the
Environment has been designed as a synchronization entity, in reality within an
Execution Strategy a user can specify a different behaviour for this entity, indeed,
it is possible to carry out an implementation in which the Environment is itself an
active entity of the domain executed, for example, on a different Activity among
Agents.

3.2.4 Agent DSL module

The entity definition described above is not intuitive enough to program BDI
agents because it requires, in addition to some specific knowledge of the language
used to implement it, advanced knowledge of the treated domain interfaces. For
this reason, we decided to define a layer of abstraction that simplifies the Jacop
adoption by users, i.e. a Domain Specific Language (DSL) inspired by the Jason
syntax.

The DSL is built through the concept of scopes, the latter is nothing more
than a builder of a certain object of the domain. Nested scopes let users create
more complex objects transparently, enabling them to specify only the essential
concepts.

As described in Section [3.2.3] a Jacop MAS is composed of three elements: an
environment, a set of agents and an execution strategy.

Environment. Inside the environment entity, users can specify the external ac-
tions that can be executed by all the agents living within it. An external action can
query the environment state and, possibly, change it through explicit side effects,
that can be explicitly invoked during action execution. The environment state can
not be directly modified by agents, this ensures that all changes are made safely
without breaking the MAS execution.

Accordingly, an action response — i.e. the result produced by the action execu-
tion — contains the list of all the side effects that users want to perform over the
environment. The list of these changes is then managed by the execution strategy
implementation.

Inside an external action, users can perform side effects over the environment
using the syntax described in Listing Certainly, not only side effects can be
performed inside of the action, the instructions specified in the Listing can be
alternated with standard Kotlin statements. Moreover, the figure shows that an
action needs two additional pieces of information for its definition: a name and
an arity. The name represents the string with which the action will be invoked by
agents, the arity represents the number of parameters that the action expects in
input.
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Listing 3.1: External action side effects

r

environment {
actions {

action("name", /* arity =*/) {
addAgent (agent) // adds a new agent in the env.
removeAgent ("agent") // removes "agent" from the env.
sendMessage ("receiver", message) // sends a message to "receiver"
broadcastMessage (message) // sends a message to all agents
}
}
}
S

Listing 3.2: Multiple external actions definition

environment {
actions {
action("first_action", /* arity x/) {
/* possibly contains a side effect x/

}
action("second_action", /* arity */) {
/* possibly contains a side effect */
}
}
}
S

Users can also describe more than a single external action inside the environ-
ment, this can be performed adding another action scope inside of the environ-
ment’s actions, as shown in Listing [3.2]

Agent. An agent is described by at least two elements: initial goals and plans.
The initial goals represent their purpose, agents are going to search for the most
suitable plans to satisfy them. Initial goals can be of two types, achievement and
test, and they can be described through the DSL as shown in Listing (3.3

Plans describe all the capabilities that an agent can do, they present a triggering
event, a context and a body of goals. The latter is a list of goals that the agent
must execute to satisfy the overall plan, they can be described in the DSL as shown
in Listing [3.4]

Plans’ context represents the condition that must hold in order to execute the
plan’s body. This information is not mandatory, indeed, users can specify the iff
block containing it or not, as visible in Listing [3.6] If they omit the context, it is
simply treated as an always true predicate. Plans context is the information on
which agents can discern applicable plans over relevant ones.

The trigger of a plan represents the event to which the plan responds, they can




oA W N e

19

3.2. IMPLEMENTATION DESIGN 41

Listing 3.3: Initial goals definition

goals {
achieve ("f") // achievement goal invocation with "f" event trigger
achieve("f" (X)) // achievement goal invocation with "f"(X) event trigger
test ("f") // test goal invocation with "f" event trigger
test ("f" (X)) // test goal invocation with "f"(X) event trigger
}
Listing 3.4: Plan body definition
plans {

+ achieve ("f" (X)) then {
achieve("g" (X)) // achievement goal invocation with "g"(X) event trigger

achieve("g") // achievement goal invocation with "g" event trigger
test ("g" (X)) // test goal invocation with "g"(X) event trigger
test("g") // test goal invocation with "g" event trigger

spawn ("g" (X)) // spawn goal invocation with "g"(X) event trigger
spawn("g") // spawn goal invocation with "g" event trigger

+ "g"(X) // belief base addition of "g"(X)

add ("g" (X)) // belief base addition of "g"(X)

- "g"(X) // belief base removal of "g"(X)

remove ("g" (X)) // belief base removal of "g"(X)
update("g" (X)) // belief base update of "g"(X)

act("g") // execution of external action "g
act("g" (X)) // ... with one parameter X
act("g"(X, Y, ...)) // ... with many parameters
iact("g") // execution of internal action "g"
iact ("g" (X)) // ... with one parameter X
iact("g"(X, Y, ...)) // ... with one parameter X

be defined using + or - depending on if the user wants to intercept the achieve-
ment of the failure of a certain event, all the possible combinations are shown in

Listing [3.5]

Then, there are agents’ pieces of information that can be added to its definition
but are not mandatory, such as the initial belief base and the internal actions. The
agent’s beliefs can be specified both as rules and clauses, as shown in Listing [3.7]
Agents can be customized with the addition of internal actions, these can be listed
in the same way as the environment’s actions scope, but the state changed by
internal actions is the agent one. The side effects that internal actions can perform
over the agent’s state are listed in Listing |3.8

Lastly, an agent can be composed of the elements described above as in List-

ing 3.9
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Listing 3.5: Different plan’s triggers types

1 || plans {
2 // achievement goal invocation triggered by "f"(X)
3 + achieve ("f" (X)) then { /% plan’s body */ }
4 // achievement goal invocation triggered by "f"
5 + achieve("f") then { /* plan’s body */ }
6 // achievement goal failure triggered by "f£f"(X)
7 - achieve("f" (X)) then { /% plan’s body */ }
8 // achievement goal failure triggered by "f"
9 - achieve("f") then { /* plan’s body =/ }
10
11 // test goal invocation triggered by "f"(X)
12 + test("f"(X)) then { /* plan’s body */ }
13 // test goal invocation triggered by "f"
14 + test("f") then { /* plan’s body */ }
15 // test goal failure triggered by "f"(X)
16 - test("f"(X)) then { /* plan’s body */ }
17 // test goal failure triggered by "f"
18 - test("f") then { /% plan’s body */ }
19
20 // plan triggered by belief base addition of "belief"
21 + "belief" then { /* plan’s body */ }
22 // plan triggered by belief base removal of "belief"
23 - "belief" then { /* plan’s body */ }
24 || }
Listing 3.6: Plan context definition
1| plans {
2 + achieve ("f" (X)) then {
3 /* plan’s body */
4 }
5
6 + achieve ("f" (X)) iff {
(N lowerThan M) and (S ‘is‘ (N + 1)) // plan’s context
8 } then {
9 /* plan’s body */
10 }
1}
Listing 3.7: Initial belief base definition
1| beliefs {
2 fact { "weather"("snowing") } // a fact belief definition
3 fact { "started" } // a fact belief without parameters
4 rule { "s"("nat" (X)) impliedBy "s"(X) } // a clause belief definition
5
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Listing 3.8: Internal action definition

actions {

action("name", /* arity =*/) {
addBelief (belief)
removeBelief (belief)
addIntention(intention)
removeIntention(intention)
addEvent (event)
removeEvent (event)
addPlan(plan)
removePlan (plan)
stopAgent ()
sleepAgent (millis)
pauseAgent ()

adds belief into the belief base

removes belief from the belief base

adds intention into the intentions set
removes intention from the intentions set
adds event into the events set

removes event from the events set

adds plan into the plan library

removes plan from the plan library

stops agent activity execution

pause the agent’s execution for millis ms
pauses the agent’s execution

Listing 3.9: Agent definition

agent ("name") {
beliefs {
/* beliefs definition */
}
goals {
/* goals definition */
}
plans {
/* plans definition x*/
}
actions {
/* actions definition */

}
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Listing 3.10: Execution strategy definition

r

executionStrategy {
// executes each agent on a different thread
ExecutionStrategy.oneThreadPerAgent ()
// executes all the agents over the same thread
ExecutionStrategy.oneThreadPerMas ()
// executes the multi-agent system in a discrete event simulation
ExecutionStrategy.discreteEventExecution ()
// executes the multi-agent system in a discrete time simulation
ExecutionStrategy.discreteTimeExecution ()

}
&
Listing 3.11: Time distribution description for the agent

agent {

timeDistribution {

Time.continuous ((it as SimulatedTime) .value + 5.0)

}

}

Execution Strategy. The execution strategy represents how the multi-agent
system is executed because maps agents’ execution to their runners. In the ac-
tual version of Jacop framework, users are provided with four implementations
of execution strategy, but they can also define a custom implementation of them
following their needs. In both cases, users can specify with execution strategy to
adopt inside their multi-agent system using the DSL, as shown in Listing |3.10]

If users want to run the MAS using the discrete event simulation execution
strategy they also need to specify another piece of information: the agent’s time
distribution. The latter can be implemented inside agents as in the Listing [3.11
in this case, the actual time is simply added to a constant number.

MAS. After the description of all the single components of a multi-agent system,
its definition is made as in Listing [3.12]

Thanks to the DSL, users can freely define a Multi-Agent System in its entirety
or compose it of its individual parts, indeed, all the information can also be defined
within variables and inserted transparently within the mas scope.
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Listing 3.12: Multi-Agent system definition
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mas {
environment {
/* environment definition x*/
}
agent ("agentl1") {
/* agent definition x/
}
agent ("agent2") {
/* agent definition */
}
executionStrategy {
/* execution strategy definition x*/

}







Chapter 4

Implementation

This chapter describes the development phase of the library, in particular, it focuses
on the implementation of some of the main components of the system. This
chapter also describes the most relevant implementation choices made during the
development of the framework.

During the definition of a totally abstract execution model from the physical
entity that executes it, we noticed that it could be abstract in its entirety. This
enables the framework to be used within simulation tools transparently. In this
way, a user can define a Multi-Agent System independently from the physical
entity that runs it, dynamically deciding whether to run it in production or over
a simulated environment. There are various opportunities for simulating Multi-
Agent Systems, precisely because they can be applied in a wide range of application
domains.

The reference language for the implementation of Jacop is Kotlin, the choice is
made not only because nowadays it is a mainstream language, but also because it
can be integrated into projects written in more popular languages such as Java,
thanks to the underlying JVM. Another reason that led to this choice is the sim-
plicity that this language enables for the definition of a Domain Specific Language.
Thanks to the DSL, also users that are not confident with Kotlin development can
still decide to integrate a Multi-Agent System within their project without using
language-specific features.

4.1 Agent State Machine

The first implemented system module is the state machine to manage the execution
of a generic Activity. This implementation is essential to abstract between the

47
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@ Activity @ Runner

o activity: Activity
o state: State?

void onBegin(Controller controller) —<
void onRun(Controller controller)
void onEnd(Controller controller) Promise<void> run()

1

@AbstractRunner

Pl N

@SyncRunner @ThreadRunner @SimulatedTimeRunner

Figure 4.1: Agent Final State Machine implementations

entity definition and the physical machine on which it is actually executing.

At this abstraction layer, users define an agent through an Activity, i.e. using
the three designed routines: onBegin(), onRun() and onEnd (). To run an Activ-
ity, users must associate it with a Runner. A Runner implementation contains all
the low-level implementations necessary to let the entity be executed as desired
by the user.

This module is designed in such a way that the user can, according to his needs,
use an already implemented Runner, through static factory methods, or define a
customized one following the definition of its interface.

The library provides three basic implementations of the runner interface, as
shown in Figure The first, SyncRunner, runs the Activity on the current
thread and manages time as the same of the physical machine’s one on which it
is running. ThreadRunner, on the other hand, is developed to run the Activity
on a separate thread and manages time like the previous one. The last one,
Stmulated TimeRunner, also runs on the current thread but abstracts the concept
of time, stmulating it.

The notion of time within the state machine is also abstracted: this enables
agents to know which is the current time perceived by them during actions execu-
tion, whether it is real or simulated.

Figure[4.2|shows Time definitions inside Agent’s Runner, there are two types of
time, EpochTime and Simulated Time, respectively to describe it as the one seen by
the physical machine and as the one simulated. This is also visible from the value
stored by those entities: EpochTime wraps a value with Long type, which is the
standard used to represent the current timestamp in milliseconds for computing
machines, and SimulatedTime stores a Double value and its meaning depends on
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@Time
@ EpochTime @SimulatedTime

o value: Long o value: Double

Figure 4.2: Time abstraction inside the Agent’s Runner

the chosen simulated execution strategy.

If the three implementations provided differ from the user’s requirements he
can extend the AbstractRunner, the abstract class will guide him in the implemen-
tation of a customized Runner that can be used within the Multi-Agent System.

4.2 BDI Agents

Once the implementation of the state machine was consolidated, we started the
implementation of the core module of the library. This module is the one that
took the longest to define clearly, in fact, it has been conveniently improved several
times.

The package organization within the module tries to hide the implementation
details as much as possible, showing users only the interfaces that they can query
to better understand the entities. However, users can still use those implemen-
tations thanks to static factory methods suitably inserted within the interfaces.
The implementation of these objects was bottom-up, which means that the indi-
vidual components of the Multi-Agent System were first implemented and then
subsequently integrated to let users define and execute them.

To make the definition of an agent more clear to the user we decided to sepa-
rate its behaviour definition from its state. A user observing the Agent interface
(Figure notices that it is made up of an AgentContext, which is its BDI state
representation.

The Figure [4.3| shows that an agent is also an extension of the 2P-kt Taggable
interface, this is useful because enables Agent entities to store key-value informa-
tion transparently.

Lastly, an Agent needs the definition of its behaviour through the definition
of the three selection functions. The Event Selection Function is specified with
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@ Taggable LT

?=Agent

@ Agent @ AgentContext

o beliefBase: BeliefBase

<H o events: EventQueue

o planLibrary: PlanLibrary

o selectEvent(events: EventQueue): Event? o intentions: IntentionPool

o selectApplicablePlan(plans: Iterable<Plan>): Plan? o internalActions: Map<String, InternalAction>
o schedulelntention(intentions: IntentionPool): SchedulingResult

o agentID: AgentID
o name: String
o context: AgentContext

Figure 4.3: Agent representation through Agent and AgentContext interfaces

@Action
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@ InternalAction @AbstractAct/on @ ExternalAction
@Abstract[ nternalAction @AbstractExternalAction

Figure 4.4: Actions implementation overview class diagram

selectEvent method, Plan Selection Function with selectApplicablePlan and
Intention Selection Function with scheduleIntention. Jacop proposes a default
implementation of the Agent interface, that implements the selection functions
trivially: they simply return the first element in the list.

From what concerns Agent actions, their implementation required a lot of effort
to be able to guarantee that a user can create them following his needs but without
breaking the constraints defined by the type of Actions. Internal Actions cannot
operate on the state of the Environment and, otherwise, external Actions cannot
interact with the Agent’s AgentContext. The design phase has, indeed, made sure
that the types used to define an action are consistent with each other, leading to
the class decomposition figured in Figure [4.4]

To define an Action, a user must extend the appropriate abstract class, this
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Figure 4.5: Actions implementation detailed class diagram

means that if he wants to implement an InternalAction he will have to extend an
AbstractInternal Action, and vice versa. The reason to extend abstract implemen-
tations is that they provide the methods that the user can use to change the state
of the referenced entity. This means that changing the state inside the action im-
plementation is not enough to propagate it, users must specify such changes with
the provided methods invocation, otherwise, they will be ignored by the Agent
Lifecycle.

The Action performs the operations specified within the abstract action method,
which is the only one that the user must implement when extending an abstract
action. The detailed Figure 4.5| also shows the constraints over Action execution
side effects, they differ a lot depending on the entity on which they operate.

During the implementation phase, it was decided to not equip Agents with
a large number of predefined Actions, indeed, only five simple internal Actions
are provided to let users test the library and no external Action is implemented
by default. These actions are useful for testing purposes because enable users to
understand how Jacop agents works, and are: print, fail, stop, pause and sleep.

This choice makes it possible to have a totally generic purpose framework,
while still making its complex implementation transparent, which can be useful
for a lot of different scenarios. The result of what is described above is visible in
Listing [4.1] where only the essential information are specified by users, such as the
name of the action, its arity —i.e. the number of parameters it expects in input —
and lastly its body.

As regards the ExecutionStrategy entity, this component represents the meeting
point between the BDI domain interfaces and those of the state machine. As for
the Actions, only a few implementations are provided for this entity, they can be
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Listing 4.1: Example of an ExternalAction implementation using the library

g
object : AbstractExternalAction("name", 0) {
override fun action(request: ExternalRequest) {
println("External Action body")

\S

® ExecutionStrategy
o dispatch(mas: Mas): Unit
©OneThreadPerMasImpI ©OneThreadPerAgentImpI ©DiscreteTimeExecutionImpI ©DiscreteEventExecutionImpI

Figure 4.6: Execution Strategy implementations

suitably extended according to the needs of the users.

Jacop is provided with four Execution Strategy implementations. The first
one executes all the agents over the same Activity, so it means that executes
them on the same thread. The second one executes each agent over a different
Activity, enabling the MAS concurrent execution. The Discrete Time Execution
and Discrete Event Execution implementations enable the framework to run on
simulated scenarios. The last two of them are described in the following section.

4.2.1 About simulation-oriented execution strategies

A computer simulation is a program that is a computer program that executes step-
by-step a mathematical model to explore its approximate behaviour [14]. The most
relevant aspect of the simulation is the modeling of time, indeed, the simulation
tools can be divided into two categories [9]:

o Time-driven simulations: In these simulations, time is simulated through
discrete time slots where at every tick the model is updated to the new
state.

o Fvent-driven simulations: During these simulations, each event is executed
one by one and after the execution of each one of them the time is shifted
forward. An event is an instantaneous change in the value of one or more
state variables, performed during a bounded procedure.
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In order to enable the user to choose the most appropriate simulation technol-
ogy for his use-case, we decided to totally abstract the concept of time perceived
by the running agent. Indeed, as visible in Figure [£.2] time is discerned in two
types inside the agent SM Activity: EpochTime and SimulatedTime. While the
former represents an instant of time as seen by the physical machine, the latter
represents the time value managed during the simulation execution.

This abstraction let users decide freely which type of simulation to adopt for
their MAS execution: in the first one events depend on the passage of time, while
in the second one, the time value depends on events occurrences.

For this scope, two additional execution strategy implementations are provided
in Jacop: Discrete Time Execution and Discrete Event Execution. Both of them
run the entire Multi-Agent System on the same thread and they also abstract the
concept of time, instantiating it appropriately within the Activity’s Simulated-
Time structure. In discrete time execution, the time is simply a counter that is
incremented each time the Activity has executed a single step of all the agents’
lifecycles. The discrete event execution, instead, calculates what is the next time
value depending on which agent is executed. This means that, when running the
latter, it is necessary to specify — in each agent — what is the probability distribu-
tion that the next iteration will occur. Time distribution is nothing more than
a function that takes an instant of time as input and returns the time when the
next event will occur. Users can specify this information on agents, enabling the
execution strategy to determine which are the next agents to be executed in the
next iteration of the Activity.

4.3 Domain Specific Language

The last concept developed is the Domain Specific Language. Kotlin, thanks
to its functional tendency, enables the DSL definition by exploiting higher-order
functions and operator overloading.

We can see each domain entity as a different scope, indeed, each object needs a
different number of elements required to define them. The user is helped to describe
correctly object behaviour, because each scope shows him the information that can
be specified inside of it. These scopes are nothing more than object Builders, in
fact, each one of them exposes a set of methods to describe the object behaviour
and then the build method is invoked, the latter returns an instance of the object
customized with the user’s preferences.

For example, a MAS consists of three elements: Environment, ExecutionStrat-
egy and the Agents’ list. We can imagine a MAS as a scope in which the builders
of Environments, Agents and ExecutionStrategy can be invoked. Those builders
are different scopes themself because, for example, an Agent can in turn contain
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Beliefs, Goals, Plans, etc. and so on. This scope hierarchy leads to the generation
of a Multi-Agent System using the described DSL.

The result obtained from language implementation differs slightly from the
initial idea thought during the design phase. This is due to the language chosen
for the implementation which enable overloading only for a subset of operators, in
which there are not some that were intended to be used within the library. The
next chapter describes how to use the language that has been produced.



Chapter 5

Validation

During the definition of the domain entities, we implemented unit tests through
the Kotest library, which let us determine whether the entities’ behaviour was
working as expected. These tests also ensure that all new feature introductions do
not compromise the functioning of the previously defined domain entities.

However, once the library reached a certain maturity, we chose to test its func-
tionality (and execution) with several Jacop MAS definitions, inspired from Jason
examples. These applications, in addition to verifying the integration of the various
components, provide the end user with an example of how the language features
can be exploited to build a MAS. These examples are also useful because they can
represent a starting point for the development of more complex applications.

The following sections describe three different MAS descriptions through the
Jacop DSL syntax, in order they describe a multi-agent system that: (i) performs a
plan’s recursion, (7i) exploits external actions to perform the ping-pong scenario,
(i7i) exploits the simulated execution strategy, (iv) exploits the multi-threaded
execution strategy.

5.1 Agent’s plan recursion

To develop an Agent it is necessary to describe at least one Goal and a Plan that
can satisfy it. This can be done using the syntax shown in Listing using the
Jacop DSL.

This first application shows a trivial use case of the library, that is a print of
values from 0 to 10, however, it let us clearly understand many details of the Jacop
language. In fact, agent Alice is described with a single goal and two plans that
can achieve it. The designated goal is of the type achieve, meaning that she will try
to fulfill it through the application of one or more plans, based on those provided
by the user. In the agent description, two plans are described: the first is triggered

25
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when the two parameters of the start predicate — specified within her goal — have
the same value, and the second one is when they differ. Therefore, in the first
iteration of her lifecycle, the only relevant plan is the second one, because the
triggering event match with her goal. Then, the agent looks at whether the plan
is also applicable, checking if its context is a logical consequence of its knowledge
and, since it is, then the plan is scheduled for execution.

The plan’s context in this application shows that it works just like a standard
Prolog theory, but it also concatenates predicates using the and construct. The
execution of that plan contains two goals, the invocation of an internal action and
the achievement of another goal. The internal action executes one of the agent’s
built-in actions that perform a print over the console, this is helpful for testing
scenarios — like the one in consideration. After printing the actual value of the
variable N, the achievement of the next goal is triggered. We can notice, from the
plan’s context in Listing that the value adopted for the next goal invocation is
incremented by one unit, provoking the plan invocation that prints the incremented
value, and so on. The last plan invocation happens when S variable reaches value
10, this will trigger the first plan that does not generate any other events, ending
the Agent execution.

5.2 Ping-Pong multi-agent system

A complete application that also shows the interaction between the agents living
in the environment is the Ping-Pong MAS. This multi-agent system contains two
agents, described in Listing and Listing [5.4] who exchange a message within
the environment (Listing in which they live.

Listing shows that the environment scope is now specified within the Ping-
Pong multi-agent system, when in the previous example it was not necessary.
The entity definition is now necessary because specifies an external action that let
agents communicate with each other. Indeed, without the presence of the Environ-
ment, the exchange of messages between agents would be impossible, because they
are delivered and queued within this entity. For this reason, an action with the
name send is defined within the environment and expects two input arguments:
the receiver’s name and the message content. These arguments can be manipulated
within the action body by calling the arguments method, as shown in Listing
Then, to carry out the effective delivery of the message inside an agent’s queue, it
is necessary to use one of the SideEffects described in Section to be able to
modify its state, in this case sendMessage is used.

Within the Ping-Pong MAS definition two agents are defined, the first one is
named pinger (Listing , while the other is named ponger (Listing .

Pinger knows only two pieces of information: it knows who should execute at
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Listing 5.1: Finitely recursive agent MAS definition using Jacop

o7

r

mas o
agent ("alice") {
goals {
achieve("start" (0, 10))
}
plans {
+ achieve("start"(N, N)) then {
iact("print" ("Hello World!",
}
+ achieve("start" (N, M)
(N lowerThan M) and (S
} then {
iact("print"("Hello World!",
achieve("start" (S,
}
}
}
+

) iff {

M))

4

is

4

N))

(N + 1))

N))
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Listing 5.2: Environment definition for Ping-Pong MAS using Jacop language

r

environment {
actions {
action("send", 2) {
val receiver: Atom = argument (0)
val message: Struct = argument (1)
sendMessage (
receiver .value,
Message (this.sender, Tell, message)

a given moment and it knows the name of the other agent existing within the
environment. This agent contains a single goal, which is to send the ping, that
tries to satisfy it using the plans that the agent is provided with. In order, the first
plan is executed, which in turn will trigger the execution of the third, which finally
sends the message to the other agent. When Pinger receives the reply from ponger,
it will print a string on the console acknowledging its receipt. An interesting thing
that can be seen from this implementation is that the receipt of the message is
seen as the addition of a new belief within the knowledge base of the agent, this
is highlighted by the plan that manages its reception, which is triggered from an
event of new belief addition.

Finally, Listing shows the ponger agent, which definition looks a like the
pinger’s one but is slightly different. In fact, the latter does not have a goal that
must be satisfied, but it only reacts to a message receipt with a confirmation
printed on the console.

As can be seen from the examples above, none of them highlight the type of
execution strategy that the multi-agent system must adopt. This is because, by
default, all multi-agent systems are defined following the strategy that allocates
the same thread for all agents defined within the system.

5.3 Simulated execution strategy

Users might want to modify multi-agent system execution, perhaps choosing a
simulated one. Jacop enables to change easily the way agents run, as visible in

Listing [5.7]
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Listing 5.3: Pinger Agent definition for Ping-Pong MAS using Jacop DSL

(agent("pinger") {
beliefs {
fact ("turn"("me"))
fact("other" ("ponger"))
}
goals {
achieve ("send_ping")
}
plans {

+ achieve("send_ping") iff {

"turn" ("source" ("self"), "me") and "other"("source"("self"), R)

} then {
update ("turn" ("source"("self"), "other"))
achieve ("sendMessageTo" ("ball", R))

}

+ "ball"("source"(R)) iff {

"turn" ("source"("self"), "other") and "other"("source"("self"), R)

} then {
update ("turn" ("source" ("self"), "me"))
iact ("print" ("Received ball from ", R))
-"ball"("source" (R))
iact ("print" ("Pinger hasDone"))

}

+ achieve("sendMessageTo" (M, R)) then {
iact("print"("Sending message ", M))
act("send" (R, M))

}

}
}

(S
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Listing 5.4: Ponger Agent definition for Ping-Pong MAS using Jacop DSL

p
agent ("ponger") {

beliefs {
fact("turn"("other"))
fact("other" ("pinger"))

}
plans {

+ "ball"("source"(S)) iff {

"turn" ("source" ("self"), "other") and "other"("source"("self"), S)

} then {
update ("turn" ("source" ("self"), "me"))
-"ball"("source" (S))
achieve ("sendMessageTo" ("ball", S))
achieve ("handle_ping")

}

+ achieve("handle_ping") then {
update ("turn" ("source"("self"), "other"))
iact("print" ("Ponger has Done"))

}

+ achieve("sendMessageTo" (M, R)) then {
iact("print"("Sending message ", M))
act("send" (R, M))

}

}
}

We can highlight this with an additional example: Listing describes a MAS
where the agent named Alice recursively prints on the console the current time
perceived during the action’s execution. This agent is running using the default
implementation for the execution strategy — i.e. one thread for all the mas agents
— that in this example is made explicit to appreciate the pluggability of the DSL.

If we run the Listing |5.5( we get an infinite list of time values — in milliseconds —
taken from the machine that is executing the agent. Indeed, the output obtained
from this mas execution is shown in Listing |5.6} it shows that each time is of type
EpochTime with a long value, that represents the timestamp.

If the execution strategy is changed, as in Listing the output of the MAS
execution is different. Indeed, the latter example modifies only how the MAS is
executed, but the entity definition is the same as Listing|5.5| The execution of this
multi-agent system will obtain Listing [5.8| as result, which shows that the agent
percept time differently than the previous one, but in a transparent way. This
output is actually showing that its time is of type SimulatedTime, with a value
that represents the time computed inside the execution strategy implementation.

A detail captured from the latter output is that the simulated time value per-
ceived by the agent is not sequential, indeed, it prints it every two iterations. This
happens because the agent’s lifecycle executes only a single intention’s goal at ev-
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Listing 5.5: One thread per multi-agent system execution using Jacop DSL

61

1 || mas {
2 agent ("alice") {
goals {

| achieve("time")

5 }

6 actions {

7 action("time", 0) {

8 println("time: ${this.requestTimestampl}")
9 }

10 }

11 plans {

12 + achieve("time") then {
13 iact("time")

14 achieve ("time")

15 }

16 }

17 }

18 executionStrategy {

19 ExecutionStrategy.oneTreadPerMas ()
20 }
21 || }

S

Listing 5.6: Execution output of Listing

|| time: EpochTime(value=1678287490881)
o time: EpochTime(value=1678287490939)
time: EpochTime(value=1678287490976)
time: EpochTime(value=1678287491008)
time: EpochTime(value=1678287491040)

%. ..
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Listing 5.7: Discrete time execution using Jacop DSL
(mas {
agent ("alice") {
goals {
achieve("time")
¥
actions {
action("time", 0) {
println("time: ${this.requestTimestamp}")
}
}
plans {
+ achieve("time") then {
iact("time")
achieve ("time")
}
}
executionStrategy {
ExecutionStrategy.discreteTimeExecution ()
}
}
\. J
Listing 5.8: Execution output of Listing
time: SimulatedTime (value=0.0)
time: SimulatedTime (value=2.0)
time: SimulatedTime(value=4.0)
time: SimulatedTime (value=6.0)
time: SimulatedTime (value=8.0)
%.

ery iteration. As visible in Listing [5.7], indeed, the plan’s body contains two goals:
the first one executes the internal action, and the second one generates the event
for the achievement of another goal, managed in the next iteration of the lifecycle.

The main difference between simulated executions and others is, as shown from
the results, the abstraction of time. Users can choose which execution strategy
adopt in their multi-agent system transparently, but the semantics of time value is
different. EpochTime will always be a different number, even after restarting the
MAS execution, but SimulatedTime value starts from zero each time the execution
is restarted. This is because the first one represents a timestamp, while the second
is a value that is relevant only during the system’s execution.
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5.4 Multi-threaded execution strategy

Another interesting application that shows the execution strategy pluggability of
Jacop is the dynamic decision wether to adopt a single-threaded execution strategy
or a multi-threaded one.

We discern two examples that show this feature: a multi-agent system com-
posed of two agents — named alice and bob — that print their current thread during
an external action execution named thread.

The only difference between Listing and Listing is that they run, re-
spectively, on a single-threaded and a multi-threaded environment, as visible in
their execution strategy specification. It is interesting that, without changing
the way on which these agents are described, they can be executed transpar-
ently over many architectures. This is visible from the result of their execution:
the output of the execution over the same thread — reported in Listing =
shows that both agents are running over the same thread, while the output of the
oneThreadPerAgent execution strategy — visible in Listing — shows that the
two agents are running on different threads, as well as expected.
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Listing 5.9: MAS definition running on a single thread and printing its agents’
thread name

1 || mas {

2 environment {

3 actions {

4 action("thread", 0) {

5 println("${this.sender} thread: ${Thread.currentThread().name}")
6 }

7 }

8 }

9 agent ("alice") {

10 goals {

11 achieve("my_thread")

12 }

13 plans {

14 + achieve("my_thread") then {
15 act("thread")

16 }

17 }

18 }

19 agent ("bob") {

20 goals {

21 achieve ("print_thread")

22 }

23 plans {

24 + achieve("print_thread") then {
25 act ("thread")

26 }

27 }

28 }

29 executionStrategy {
30 ExecutionStrategy.oneThreadPerMas ()
31 ¥
32 (| }

\. J

Listing 5.10: Listing [5.9| execution result

1|lalice thread: Thread-0
2|l bob thread: Thread-0
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Listing 5.11: MAS definition where each agent is mapped to a different thread and
prints its thread name

NN NN

NN

W oW oW NN N

1 || mas {

2 environment {

3 actions {

| action("thread", 0) {

5 println("${this.sender} thread: ${Thread.currentThread().name}")
6 }

7 }

8 }

9 agent ("alice") {
10 goals {
11 achieve ("my_thread")
12 }
13 plans {
14 + achieve("my_thread") then {
15 act("thread")
16 }
17 }

18 }
19 agent ("bob") {

0 goals {

1 achieve("print_thread")

2 }

3 plans {

1 + achieve("print_thread") then {
5 act ("thread")

6 }

7 }

8 }

9 executionStrategy {

0 ExecutionStrategy.oneThreadPerAgent ()
1 }

2}

s

Listing 5.12: Listing [5.11] execution result

1||bob thread: Thread-1
>|lalice thread: Thread-0
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Conclusions

This work led to the development of a framework for developing a Multi-Agent
System following the BDI modeling and the abstract syntax proposed in AgentS-
peak(L). The detailed design has contributed to obtaining a highly customizable
and pluggable result, in order to contain an easy adoption in all areas in which
agent-based modeling can be exploited to solve a problem of a complex nature.

The developed framework let users customize and plug each component, to be
able to adapt it efficiently to any execution model needed by them, in addition to
those already provided by the library. Thanks to Jacop, users can define a Multi-
Agent System composed of agents and environments, together with a description
of how they should be run.

The abstraction of the various components that make up the framework has
enabled the language to be applied both in physical environments, in which it
reflects real behaviour, or equivalently in a simulation, where the entities simulate
their conduct with respect to what would happen in reality.

Finally, the potential of the framework can be exploited thanks to a Domain
Specific Language. Indeed, the defined language simplifies users to adopt agent
modeling avoiding knowing all the detailed implementations. This language can
be used both inside of a single file or moduled in more of them transparently,
simplifying the decomposition of the various elements with which the Multi-Agent
System is composed.

We hope that our contribution will involve other research groups besides ours
and that, in the future, it can be expanded to meet completely the needs of Multi-
Agent Systems developers.
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6.1 Future Works

Jacop implementation represents a way to be able to efficiently separate the execu-
tion of the Multi-Agent System and its association on a physical machine, through
a simple DSL provided by the library. However, some details have been simplified
in order to concentrate the design on the key aspects concerning the modeling of
the library.

As introduced in the previous sections, some concepts could be engineered more
subtly to exploit MAS features as efficiently as possible by its users to represent
real situations. This also comprehends the Beliefs’ annotations, that in the current
implementation is possible to represent only one of them, constrained to the source
of the piece of knowledge. Users may want to insert additional information over
this entity, for example, an evaluation of the reliability of the belief, the latter
enables users to describe more sophisticated conditions to execute plans.

Another interesting feature with which the framework could be extended is the
ability to keep track of the operations performed by agents. This addition would
let users carry out conditions that are much more complex and that come closer
to modeling a real behaviour, for example, the agent could be queried if it has
performed a certain action in the past. However, we decided not to implement
this feature because it would burden the execution of the MAS framework, in fact,
each agent would require a large amount of memory to be able to memorize its
current and past execution statuses.

Lastly, the actions’ execution could be improved because, at the moment, every
step of the agent’s execution runs all the code specified in the body of the actions.
This implementation could be optimal only if it is guaranteed that the user never
puts too heavy computations inside of an agent action, or that it even never ends.
However, there is no guarantee that users will comply with this convention, which
could lead to a loss of the MAS’s performance during its execution. For this reason,
users could model a feature that let them perform actions asynchronously for Jacop
agents, they would be invoked to perform heavy workload without damaging the
performances of the whole system execution. The design of these actions is not
trivial, because developers have to consider that they never have the awareness, at
the action level, that the action is running on single-threaded or multi-threaded
machinery. For this reason, it must be properly engineered.

These are just some of the things that could be added to the library. They were
drawn from external opinions regarding the MAS execution, which at the time of
the design we decided not to consider.
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