
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS OF CESENA

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT
Second Cycle Degree in Computer Science and Engineering

VISUAL PROGRAMMING PARADIGM FOR
ORGANIZATIONS IN MULTI-AGENT

SYSTEMS

Thesis in

PERVASIVE COMPUTING

Supervisor

Prof. ALESSANDRO RICCI

Co-supervisors

Prof. SIMON MAYER
Dott. SAMUELE BURATTINI

Presented by

ALESSANDRO
MARCANTONI

Academic Year 2021 – 2022

KEYWORDS

Multi-Agent Systems

Multi-Agent Oriented Programming

Visual Programming

Organization

To the ones who have always believed in me

Index

Introduction ix

1 Context, Motivations and Research Proposal 1
1.1 The IntellIoT Project . 2

1.1.1 Mission . 2
1.1.2 Use Cases . 4

1.2 Domain-Expert Programming 5
1.3 Agent-Oriented Visual Programming 6
1.4 Proposing a Visual Programming Paradigm for Organizations . 7

2 Background 11
2.1 Multi-Agent Systems . 11

2.1.1 What is an Agent? . 11
2.1.2 From the Individual to the Collective 12

2.2 Multi-Agent Oriented Programming 13
2.2.1 Environment in Multi-Agent Systems 14
2.2.2 Organization in Multi-Agent Systems 15
2.2.3 The JaCaMo Platform 17

2.3 Hypermedia Multi-Agent Systems 21
2.3.1 The World Wide Web 21
2.3.2 The Web of Things . 22
2.3.3 Web-based Multi-Agent Systems 22
2.3.4 The Bridge between the Web and Multi-Agent Systems . 23

3 Requirements 25
3.1 MOISE Features . 25

3.1.1 Structural Dimension . 26
3.1.2 Functional Dimension 27
3.1.3 Normative Dimension . 28
3.1.4 Organization Execution 28

3.2 Functional Requirements . 29
3.3 Non-Functional Requirements 30

vii

viii INDEX

4 Design 31
4.1 A Visual Language for Organizations 31

4.1.1 The Visual Paradigm . 32
4.1.2 Reference Language . 32
4.1.3 Focus Group . 35

4.2 Visual Language Design . 36
4.2.1 Structure of the Organization 37
4.2.2 Behavior of the Organization 40

4.3 Main Components and Architecture 43
4.3.1 Web-based IDE . 43
4.3.2 Storage & Backend . 44
4.3.3 Runtime Environment 44

5 Development 47
5.1 Web-based IDE . 47

5.1.1 Web User Interface . 48
5.1.2 Technologies . 49
5.1.3 Code Generation . 51

5.2 Storage & Backend . 53
5.2.1 Storage . 53
5.2.2 Backend . 54

5.3 Running Organization Entities 55
5.3.1 Runtime Environment 55
5.3.2 Running Agents . 55
5.3.3 Artifacts Creation . 56
5.3.4 Organizations’ Deployment 57

6 Evaluation 59
6.1 Case Study . 59

6.1.1 Smart-Farming Scenario 59
6.1.2 Use-Case Analysis . 60

6.2 Solution with the Visual Language 63
6.3 Users’ Test . 66

6.3.1 Test Description . 66
6.3.2 Results . 66

Conclusions 69

Acknowledgments 73

Introduction

In the context of a Pan-Europen project focused on defining the next gener-
ation of IoT with a human-in-the-loop approach, this thesis aims at expanding
the vision for an accessible Integrated Development Environment that mixes
Multi-Agent Oriented Programming and Hypermedia in a seamless interface
for both humans and machines.

The thesis work was carried out while being hosted by the University of St.
Gallen at the Interaction- and Communication-based Systems research group
that is currently exploring the field of engineering autonomous systems.

The idea comes from the need to keep up with the fast digitalization of
business activities and to provide a user-friendly tool that can be used to create
and configure complex systems with low or no code. Indeed, some efforts have
already been made in this direction with the development of a block-based
programming language for software agents.

However, the current state of the art does not provide a complete solution
for the development of complex systems. As a matter of fact, dealing with
interactions and coordination between agents directly within them does not
represent a scalable approach as the design complexity exponentially increases.

All Multi-Agent Systems possess some form of organization, although it
may be implicit and informal. With the increasing complexity of scenarios
and the need to deal with a large number of agents, the need for an explicit
specification of the organization at design time became more and more evident.
Nowadays, the organization is considered one of the first-class abstractions in
the design of Multi-Agent Systems.

Therefore, this thesis aims at providing a solution that allows users to easily
impose an organization on top of the agents. Since ease of use and intuitiveness
remain the key points for this project, users will be able to define organizations
through the use of visual language and an intuitive development environment.

Chapter 1 goes more in-depth into the motivations that brought the def-
inition of this research proposal while Chapter 2 provides a brief overview of
the current state of the art for Multi-Agent Systems, Multi-Agent Oriented
Programming, and Hypermedia Multi-Agent Systems.

In chapters 3, 4, and 5 the development process is presented, focusing on

ix

x INTRODUCTION

the analysis of the problem and the reference technology, the design of the
solution, and the implementation of the prototype.

Finally, Chapter 6 describes the evaluation of the prototype that consisted
of a test carried out with a group of users to gain qualitative feedback on the
usability of the tool and to identify possible future improvements.

Chapter 1

Context, Motivations and
Research Proposal

This project was born thanks to the collaboration between the Perva-
sive Software Lab1 of the University of Bologna and the Interaction- and
Communication-based Systems2 research group of the University of St. Gallen,
in Switzerland.

Since both groups are interested and involved in similar research topics,
such as the interactions among devices and people in ubiquitous computing
environments, a highly enriching opportunity for an internship abroad arose.

Moreover, the research group in St. Gallen is contributing to a European
project named IntellIoT 3, which stands for “Intelligent IoT” and whose aim
is, together with its partners, to develop a reference architecture to enable
IoT solutions for applications where autonomy, intelligence, and the Human-
in-the-Loop strategy are key requirements. Hence, the concurring perspective
of the two research groups and the St. Gallen group’s participation in such a
visionary initiative made it easy to shape the requirements of the thesis work.

The following sections will present the main objectives of the IntellIoT
project to describe the context in which the thesis was conducted.

1https://apice.unibo.it/xwiki/bin/view/PSLab/
2https://ics.unisg.ch/chair-interactions-mayer/
3https://intelliot.eu/

1

https://apice.unibo.it/xwiki/bin/view/PSLab/
https://ics.unisg.ch/chair-interactions-mayer/
https://intelliot.eu/

2
CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH

PROPOSAL

1.1 The IntellIoT Project

IntellIoT is a Pan-European project that focuses on developing integrated,
distributed, human-centered and trustworthy IoT frameworks, with particular
attention to sectors like agriculture, healthcare, manufacturing, energy, con-
struction, and smart cities.

To achieve the latter goals, IntellIoT explores and exploits new enabling
technologies such as 5G connectivity, distributed technology, Augmented Re-
ality, Artificial Intelligence, and tactile internet. Of course, this is possible
thanks to the project’s partners which are spread across ten countries and
form a competitive ecosystem.

Among them, the University of St. Gallen is currently focusing on inte-
grating physical things into the Web, increasing the autonomy of Web-enabled
devices, and making interactions of connected devices intelligible for people
using Hypermedia Multi-Agent Systems. Indeed, the primary objective
of this thesis is to explore how humans can effectively define the organization
of the software agents that control such systems.

1.1.1 Mission

Smart technologies play a significant role in our life and work. However, the
traditional approach based on cloud technologies has limitations, such as unre-
liable connectivity, limited bandwidth, long reaction times, lack of autonomy,
and trust concerns. Therefore, the goal of IntellIoT is to tackle these issues
and create a framework enabling next-generation IoT solutions. Specifically,
these issues are addressed by focusing on the following three pillars, which are
the central research topics of the project.

Collaborative IoT

Various semi-autonomous entities should cooperate to achieve the system’s
overall goal. Hence, self-awareness and knowledge of the task to perform and
the environment where they are located are vital abilities to seek. Entities can
acquire knowledge either by interacting with the environment via sensors or by
communicating with each other. However, since providing complete knowledge
to entities in open and continuously changing environments is practically in-
feasible, Artificial Intelligence and Machine Learning algorithms are exploited.

Human-in-the-Loop

Since IoT applications cannot be completely autonomous in how they de-
cide and act, humans need to be involved in controlling and optimizing the Ma-

CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH
PROPOSAL 3

chine Learning Systems the devices are endowed with. Indeed, the interaction
between humans and intelligent systems can expand the latter’s knowledge
about the environment or the application by exploiting the former’s experi-
ence. In fact, by applying Machine Learning algorithms, the devices can learn
new features and information about the overall process so that they will have
enough knowledge to react to similar scenarios in the future automatically.

Moreover, end users should be involved more in the design process of the
system, as they are the ones who know the application domain best. Their
contribution can be indeed crucial, moving from just defining the requirements
of the application to the actual development and configuration. Therefore, a
user-friendly and intuitive environment is needed to enable non-expert users
to easily define the system’s behavior.

Trustworthiness

As beneficial as IoT devices are, they present some major security concerns.
The Mirai botnet exploiting embedded devices to perform DDoS attacks [2],
possibly hackable cardiac devices, and Stuxnet sabotaging Iranian nuclear fa-
cilities [3] are only a few examples of critical breaches. Thus, security, privacy,
and trust are vital for IoT systems and applications and their broader accep-
tance. Therefore, these concepts must be considered early in the design process
and regard computation and communication infrastructure.

Figure 1.1: The three pillars of IntellIoT.

4
CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH

PROPOSAL

1.1.2 Use Cases

The above three key component areas are supported by IntellIoT ’s dy-
namically managed network and computation infrastructure that, combined,
provide resource and edge management, orchestration capabilities, and net-
work choreography, exploiting cutting-edge technologies like 5G. Moreover, for
the pillars to not remain only abstract concepts, various use cases that aim to
address real-life problems in three core sectors were developed:

• Agriculture: the application of IoT in agriculture could be a life-
changer for humanity as we now witness how extreme weather, deterio-
rating soil, dry lands, and collapsing ecosystems make food production
more and more complicated and expensive, not to mention the popula-
tion growth that increases the demand for resources.

Although “smart farming” is already quite popular, IntellIoT aims to
bring it to the next level thanks to autonomous devices such as self-
driving tractors and drones endowed with sensors and actuators. How-
ever, even though machines perform potentially dangerous, tiring, and
repetitive tasks for humans, the latter still play a crucial role in manag-
ing the farm. Indeed, they can remote control the devices in uncertain
situations, refining the Artificial Intelligence models. Additionally, hu-
man operators are in charge of defining the goals of the farming system,
leveraging their experience and knowledge about the domain.

• Healthcare: IoT is revolutionizing the healthcare industry, mainly due
to remote patient monitoring. Indeed, being endowed with specific sen-
sors, devices can track the latter’s vital signs and other health metrics
and send the collected data to healthcare providers. Some examples of
such devices are Continuous Glucose Monitoring [14] and Dissolvable
Brain Swelling [27] sensors or ordinary smartwatches. This process im-
proves the patient’s quality of life, which does not need to be limited
to their home or the hospital and can thus carry on with their regular
everyday activities.

Moreover, continuous monitoring and real-time data sharing allow timely
interventions when necessary, and automatic data collection can drasti-
cally decrease the time and effort required to retrieve and manage in-
formation about the patient. Not to mention the opportunities for data
analysis and possible Machine Learning models that would support clini-
cians in being more efficient. However, this workflow potentially exposes
patients’ sensitive information; therefore, we find privacy, security, and
trust assurance among the main focuses of IntellIoT regarding this use
case.

CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH
PROPOSAL 5

• Manufacturing: IoT is one of the core driving forces behind Industry
4.0, which aims to digitalize and automate operational processes count-
ing on as little support as possible from human operators, from the order
submission to the delivery of the product. Leveraging AI and Machine
Learning, robotics, and data analysis, IntellIoT envisions a future with
shared manufacturing plants and multiple customers utilizing manufac-
turing as-a-service.

According to the latter scenario, an intelligent IoT environment would
derive a production plan from data received from a customer. Subse-
quently, the software agents that control the machines would organize ac-
cording to their role, which is adopted taking into account the machine’s
capabilities, making it possible to complete the planned steps. However,
whenever AI is not sufficiently confident about a step, a human-in-the-
loop can take over control remotely, providing information that will be
learned by the Machine Learning algorithm thanks to continual learning.

1.2 Domain-Expert Programming

As seen in the mission of the IntellIoT project, the crucial role of end-users
in the definition of autonomous systems, the importance of their intervention in
case of need, and their expertise are utterly unmatched by Artificial Intelligence
algorithms and probably will be for a long time.

On top of that, the gap between programmers and end-users regarding do-
main comprehension is a well-acknowledged issue concerning software develop-
ment. Indeed, developers’ poor understanding of the domain often results in
projects missing their schedules or exceeding their budget, poor-quality soft-
ware, or even wrong functionalities [13]. To address this critical issue, several
techniques have been developed. For instance, one of the core aspects of Do-
main Driven Design is knowledge crunching, which aims to extract domain
knowledge from the experts to reflect it in the code during the subsequent
development phases.

On the other hand, a different approach might be taken directly involv-
ing domain experts in the programming process. This kind of user can be
defined as professionals in some domain different from computer science who
need to use computers in their daily work and often have real needs to per-
form some programming activities that result in the creation or modification
of software artifacts [12]. Given the latter definition and the premise sug-
gesting the importance of domain expertise, providing domain experts with
tools, such as domain-specific languages (DSL) or more user-friendly visual
tools, that allow them to “code” or configure parts of complex systems feels

6
CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH

PROPOSAL

very natural. Therefore the need for an intuitive development environment in
which users with no proper computer science background can naturally and
seamlessly transform their domain knowledge into specifications with low-code
(or possibly no-code).

1.3 Agent-Oriented Visual Programming

Multi-Agent Systems is one of the core enabling technologies of the infras-
tructure of IntellIoT. MAS fit IoT because they tackle the complexity and
handle the decentralization of the IoT ecosystem by providing a framework for
coordinating the actions of a large number of devices, allowing the latter to
communicate and make decisions toward the achievement of a common goal.
Another critical advantage of MAS is their ability to deal with partial knowl-
edge, incomplete and imperfect information, and adapt and reason in real-time,
which is crucial in dynamic, uncertain, open, and distributed networks.

However, the high-level expertise required to program agent-based systems
hinders the large-scale adoption of MAS. Therefore, to facilitate the spread
of this technology, efforts have been made to eliminate the entry barrier to
MAS development. One example of such endeavor is the development of an
agent-oriented programming paradigm [31][8], which enables individuals with-
out coding experience, but with knowledge of specific target domains, to design
and (re)configure autonomous software.

This proposal makes the development of software agents easier in two ways:

• Use of human-oriented abstractions: the application of the BDI
(Belief-Desire-Intention) model, which makes use of concepts such as
goals, plans, beliefs, and intentions, allows defining the agent’s behavior
more naturally, as this paradigm matches more closely people’s everyday
experience.

• Use of visual programming techniques: this project makes use of
block-based programming, which is a visual programming paradigm that
uses blocks to represent the program’s instructions. The adoption of a no-
code environment allows non-technical users to easily create and modify
agents.

CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH
PROPOSAL 7

Figure 1.2: Example of a “ping” agent implemented with the block language.
Adopted from [8].

An example of this work can be found in fig. 1.2, which shows a simple
“ping” agent. When started, the agent has a belief that the wait time is 2
seconds, and it has to achieve the goal ping. In addition, the agent is given
instructions on how to achieve the goal through a plan. The latter states
that when the agent decides to achieve the goal ping and knows what the
wait time is, it should first wait for the time specified in its belief, then send
a message to the agent pong.

1.4 Proposing a Visual Programming Paradigm

for Organizations

Although the above block-based visual development environment is suitable
for defining single entities, a level of abstraction to handle the relations among
and coordination of the latter is still missing.

When dealing with multiple agents in a MAS, the complexity of the sys-
tem increases dramatically and the coordination of and interaction among the
agents’ becomes more and more challenging. Even though these aspects could
be technically represented and managed directly in the mind of the agents,

8
CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH

PROPOSAL

the adoption of adequate abstractions makes the solution dramatically more
straightforward and elegant. [4]

Indeed, multiple approaches to organization in MAS have been reported in
the literature. However, all of them require significant coding skills and deep
knowledge of the underlying concepts and technologies to be implemented.
Thus, none of these approaches is easy enough to be used by non-technical
users such as domain experts.

Therefore, the idea is to design and implement a visual language and a
supportive development environment for MAS organizations, which is a novelty
to our knowledge. The core thesis work will be based on studying the existing
organization models, with particular attention to the MOISE+ model [23], and
developing an appropriate representation that could provide a suitable tradeoff
between the expressiveness of code-based specifications and the ease of use of
graphic programming interfaces.

Such a tool would allow domain experts to easily define the organization of
a MAS, without the need to write code. From the IntellIoT project’s perspec-
tive, this would allow addressing more complex scenarios, therefore expanding
the range of applications of the IoT framework it aims to create. Indeed, for
the time being, the applications mainly concern the programming of single
agents, which reduces the potential of the technology because of the limited
interaction and coordination capabilities that this approach allows.

Moreover, the adoption of a visual language would provide a valuable tool
to monitor and debug the system, learn the concepts behind the technology,
and hopefully bring new users to the field of MAS.

The thesis project will end with the implementation of a prototype that
allows users to define the organization of a MAS by using the developed visual
language. In particular, the aspects of the organization that will be covered,
and thus the users will be able to specify, are:

• Structure: This part is responsible to define how agents should be
organized in the system, i.e., how they should be grouped and how they
should interact with each other;

• Behavior: This aspect regards the definition of the common goals that
the agents have to achieve, and how agents should coordinate their ac-
tions to achieve them;

• Norms: This concept concerns the rules that regulate the agents’ be-
havior. In particular, they represent what agents are and are not allowed
to do, or what they are obliged to do.

To evaluate the developed tool, a qualitative evaluation is planned to re-
ceive feedback for the developed language and development environment and

CHAPTER 1. CONTEXT, MOTIVATIONS AND RESEARCH
PROPOSAL 9

to study how non-technical users solve problems by exploiting the visual lan-
guage. Moreover, the visual language will be used and tested with a real-world
scenario to evaluate the correctness of the resulting MAS. This twofold evalu-
ation will allow assessing the user-friendliness of the developed tool on the one
hand, and its expressivity and potential on the other.

Before proceeding with the technical description of the designed language
and the implemented prototype, the following chapter provides an introduction
to the background of the main technologies and research topics explored in the
thesis project.

Chapter 2

Background

To better understand this thesis work, a brief excursus of the existing
literature about the main concepts the project relies on is presented. The
aim is to provide some basic knowledge of the topics to understand what is
considered state-of-the-art and to introduce some of the technologies exploited
to develop the project.

2.1 Multi-Agent Systems

Multi-Agent Systems are considered a promising engineering style for de-
veloping adaptive software systems able to handle the continuous increase in
their complexity. Moreover, they allow the design and implementation of soft-
ware systems using the same ideas and concepts that are the very founding of
human societies and habits.

In this section, a brief overview of the main concepts and characteristics of
MAS is provided, as well as the main approaches to their design.

2.1.1 What is an Agent?

The concept of a software agent can be traced back to the early days of re-
search into Distributed AI in the 1970s when Carl Hewitt proposed the concur-
rent Actor model. In his paper, he introduced the concept of a self-contained,
interactive, and concurrently-executing object which he termed “actor”. The
latter is a computational agent with a mail address and behavior. Actors can
communicate by message-passing and carry out their actions concurrently. [19]

Software agents strongly rely on many of the concepts introduced by the
Actor model, such as the idea of a self-contained entity endowed with its control
flow that can interact with other entities and the use of message-passing for
communication. On top of that, agents bring in autonomous and proactive

11

12 CHAPTER 2. BACKGROUND

behavior as researchers were interested in the development of systems made
up of entities with human-like skills such as reasoning, problem-solving, and
decision-making.

The term “agent” quickly spread to heterogeneous research fields; therefore,
there is no commonly agreed definition for it. However, a generally accepted
description of what an agent is is the following by Wooldridge [25]:

An agent is a self-contained program capable of controlling its own
decision-making and acting, based on its perception of its environ-
ment, in pursuit of one or more objectives.

To sum up, a set of features that an agent should possess can be identified [25]:

• Autonomy: agents should be able to perform most of their tasks with-
out the direct intervention of humans or other agents, and they should
encapsulate control over their actions and internal state

• Social ability: agents should be able to interact with each other and
possibly humans to complete their tasks.

• Responsiveness (situatedness): agents should perceive their environ-
ment and respond to changes in it.

• Proactiveness: agents should exhibit opportunistic, goal-directed be-
havior and take the initiative when appropriate.

Since the first years, the research concentrated on interaction and commu-
nication among agents, decomposition and distribution of tasks, and coordina-
tion and cooperation. The goal was to specify, analyze, design, and integrate
systems containing multiple collaborative agents.

2.1.2 From the Individual to the Collective

Multi-Agent Systems (MAS) have been studied as a per se field since the
1980s and gained widespread recognition in the 1990s. Since then, interna-
tional interest in the topic has grown enormously as agents are considered an
appropriate paradigm to exploit the possibilities presented by massive open
distributed systems. Moreover, MAS seem to be a natural metaphor for un-
derstanding and building a wide range of what might be called artificial social
systems. [37]

According to the Alan Turing Institute [24]

A Multi-Agent System consists of multiple decision-making agents
which interact in a shared environment to achieve common or con-
flicting goals.

CHAPTER 2. BACKGROUND 13

Figure 2.1: A representation of Multi-Agent Systems. [26]

Therefore, as it can also be noticed in fig. 2.1, MAS are composed of an
environment and agents existing within it that are bonded by relations.

2.2 Multi-Agent Oriented Programming

In principle, there is no constraint on the programming technologies that
can be used to implement MAS. However, the risk is to have an agent-centered
interpretation of the system in which the environment and/or the organization
contexts are represented and managed in the mind of the agents. Therefore,
the adoption of programming languages and paradigms that directly support
first-class abstractions for these contexts highly simplifies the task of designing
and implementing MAS and makes it possible to keep the level of abstraction
coherent from design time to development time and finally also at runtime.

Multi-Agent Oriented Programming (MAOP) is an approach to program-
ming MAS that promotes the use of first-class programming abstractions that
concern three main dimensions that characterize these systems: [4]

• Agent dimension: it concerns the concepts and programming abstrac-
tions for the definition of the agents that participate in the system.
Specifically, it allows the definition of software entities with their log-
ical thread of control, which can autonomously and proactively achieve
their goals, and interact with the environment, other agents, and the
organization that regulates the system.

14 CHAPTER 2. BACKGROUND

• Environment dimension: it offers concepts and abstractions to define
the distributed resources and connections to the world shared among
the agents. Thus, the environment abstraction is what makes the agents
situated and provides them with tools that help them achieve their goals.

• Organization dimension: it collects all the concepts regarding the def-
inition of relations, shared tasks, and policies among agents (inter)acting
in a shared environment. In open systems, the organization is fundamen-
tal for coordination and regulation among agents.

Since agents have already been discussed, the following sections provide a
description of the latter two dimensions, with a particular focus on the one
regarding the organization, as it is the core of this thesis work.

2.2.1 Environment in Multi-Agent Systems

The environment in MAS plays a dual role [36]:

• The “external world”: agents become aware of the context they are im-
mersed in and its dynamics by perceiving the environment through sen-
sors. Moreover, they pursue their goals through actions performed by
actuators that aim at modifying the environment, eventually reaching
the latter’s desired state.

• A medium for coordination: agents exploit the environment to share
information and coordinate their behavior. Each agent follows simple
behavioral rules, resulting in a collective behavior that is more complex
than the sum of the individual behavior; this pattern resembles stig-
mergic systems in which agents coordinate their behavior through the
manipulation of marks.

The environment not only enables the agents to interact with the deployment
context, which they can access through sensors and actuators but also provides
them with external resources that they can exploit to achieve their goal.

The Agents & Artifacts (A&A) conceptual framework [30] argues that,
just like in human society, MAS environments should contain different kinds
of objects, tools, and artifacts in general that agents can use to support their
activities. This vision also constitutes a revolution from an engineering per-
spective as it encourages system designers to model the environment as a set
of artifacts, each of which encapsulates its intended purpose and exposes its
observable state. Moreover, the A&A meta-model provides an effective ab-
straction level that shields low-level details of the deployment context, so that
designers can focus on the agents’ behavior.

CHAPTER 2. BACKGROUND 15

2.2.2 Organization in Multi-Agent Systems

An agent organization can be defined as a social entity composed of a spe-
cific number of agents that accomplish several common tasks or goals and that
are structured following some specific topology and communication interrela-
tionships to achieve the main aim of the organization. All MAS possess some
form of organization, although it may be implicit and informal.

Approaches to Organization in MAS

There are two approaches to organizing agents in a MAS. [1] The first
one regards agent-centered MAS, in which the focus is given to individual
agents. According to this viewpoint, the designer should concern about the
local behavior of the agents and their interactions without worrying about
the global structure and goal of the system as the latter should emerge as a
result of the lower-level individual interactions in a bottom-up fashion. The
key issues of this approach are unpredictability and uncertainty since it could
lead to undesirable emergent behaviors. As Weyns [35] stated, giving the
responsibility of system organization implicitly to individual agents is highly
complex and not suitable for real-world large-scale scenarios.

The second approach is organization-centered MAS, in which the struc-
ture of the system is given greater attention. The developer designs the entire
organization and coordination patterns on the one hand, and the agents’ lo-
cal behavior on the other. This can be seen as a top-down approach as the
organization abstractions impose constraints on the agents and regulate their
interactions, simplifying the design of complex and scalable systems and allow-
ing more accurate modeling of the problems being tackled. On top of that, the
organization-centered approach avoids the emergence of undesirable behaviors
such as divergence. Indeed, larger MAS bring a higher risk of divergence,
therefore the need for explicit organizational regulation.

Organizational Paradigms

Although no two organizational instances are likely to be identical, there are
identifiable classes of organizations, that emerged from research and real-world
applications, which share common characteristics. These classes are called
organizational paradigms and cover particularly common, useful, or interesting
structures that can be described in some general form. Here is provided a brief
overview of the most common paradigms [20]:

• Hierarchies: agents are conceptually arranged in a tree-like structure,
where agents higher in the tree have a more global view than those below

16 CHAPTER 2. BACKGROUND

them. Interactions only take place between connected entities; data pro-
duced by lower-level agents in a hierarchy typically travels upwards to
provide a broader view, while control flows downwards as the higher-level
agents provide directions to those below.

• Holarchies: agents are organized in holons. The term holon comes
from the Greek words holos, meaning “whole”, and on, meaning “part”.
Therefore, a holon is a self-contained entity that can be considered both
as a part of a larger entity and as a whole in itself, and that has a
character derived but distinct from the entities that make it up and
at the same time it contributes to the properties of a greater whole.
Examples showed how holarchies can be used to effectively model the
division of labor in MAS, where capabilities and tasks were imparted to
holons instead of single agents. This results in a layer of abstraction that
allows other entities to interact with a group as a single functional unit.

• Coalitions: they are formed by agents that share a common goal and
that are willing to cooperate to achieve it and are generally short-lived as
they are formed with a purpose in mind and dissolved when that need no
longer exists. Although there may be a distinguished “leading agent”,
within a coalition the structure is typically flat. However, since once
formed coalitions may be treated as a single entity, it is possible to form
a hierarchical structure by nesting coalitions.

• Teams: they consist of several cooperative agents that agreed to work
together towards a common goal. Unlike coalitions, teams attempt to
maximize the performance of the group as a whole, rather than the per-
formance of individual agents. This is usually achieved by assigning roles
to the agents, which become responsible for specific tasks, and by pro-
viding the agents with representations of the shared goals, knowledge,
and plans.

• Congregations: although similar to the latter two structures, they dif-
ferentiate because they are assumed to be long-lived and are not nec-
essarily formed with a specific goal in mind. Indeed, congregations are
formed among agents with similar o complementary characteristics to
facilitate the process of finding partners for collaborations.

• Societies: they are open systems where agents of different kinds may
come and go at will while the society persists, acting as an environment
through which the participants meet and interact. Societies impose on
agents a set of constraints which are known as social laws, norms, or

CHAPTER 2. BACKGROUND 17

conventions. These represent rules by which agents must act and pro-
vide a level of consistency in behavior that facilitates the coexistence of
possibly heterogeneous agents.

• Federations: they are groups of agents which have ceded some amount
of autonomy to a single delegate who represents the group. The members
of the group interact only with the delegate, who accepts skills and needs
descriptions from them, which are then used to match with requests from
delegates representing other groups.

• Markets: buying agents may request or place bids for a common set
of items, such as shared resources, tasks, services, or goods, or even
supply items to the markets to be sold. On the other hand, sellers are
responsible for processing bids and determining the winner.

• Matrix: they can be seen as a relaxation of the one-agent, one-manager
restriction in hierarchical organizations, that permit many managers to
influence the activities of an agent.

All of the above structures come with their benefits and drawbacks and it is
generally agreed that there is no single type of organization that is suitable for
all situations. Indeed, sometimes two or more organizational paradigms may
be combined to form a compound organization, exploiting features of each of
the component organizations.

2.2.3 The JaCaMo Platform

Regarding the engineering and implementation of MAS, one of the refer-
ence technologies is the JaCaMo platform [5], which supports practical pro-
gramming based on the first-class abstractions introduced before to develop
organized agents situated in a shared environment. Therefore, the platform
gives convenient tools to program agents, their environment, and the organiza-
tions they belong to. JaCaMo is built on top of three other existing platforms:

• Jason : provides a programming language to code autonomous intelli-
gent agents based on the BDI (Belief, Desire, Intention) architecture [6][7].

• CArtAgO: as the way to define the environment in which agents will be
situated, following the A&A metamodel [29].

• MOISE: based on theMOISE+ model [23], it allows the explicit definition
and management of organizations within the systems [22].

18 CHAPTER 2. BACKGROUND

(a) Hierarchiy (b) Holarchy (c) Coalitions

(d) Team (e) Congregations (f) Society

(g) Federations
(h) Markets

(i) Matrix

Figure 2.2: Visual representation of the organizational paradigms.

CHAPTER 2. BACKGROUND 19

Since the JaCaMo platform was chosen as the enabling tool supporting the
instantiation of the organizations built with the visual language developed, the
latter takes inspiration from the MOISE+ model and its concepts, which are
briefly described in the following section.

The MOISE+ Model

Just like the MOISE model [18], which it extends, the MOISE+ model aims
at providing a way to cope with both the agent-centered and organization-
centered approaches to the design of MAS. This way, the ability to manage
the complexity taken from the organization-centered approach, and the flex-
ibility taken from the agent-centered approach, can be combined to face the
constantly growing complexity of MAS applications. Indeed, the MAS designer
can specify an organization specification (OS), which defines an “a priori” set
of constraints and cooperation patterns imposed on the agents; on the other
hand, agents themselves can reason about and modify the organization entity
(OE), which is the actual instantiation of the organization on the agents.

In addition, the MOISE+ model proposes an organizational modeling lan-
guage that explicitly decomposes the specification of organizations into struc-
tural, functional, and deontic dimensions [22][23].

The structural dimension specifies the roles, groups, and links of the orga-
nization. The definition of roles states that when agents decide to play a role,
they are accepting some behavioral constraints related to the role.

The functional dimension specifies how the global collective goals should
be achieved. Specifically, how these goals are decomposed in plans, grouped
in coherent sets by missions, and how are distributed to the agents. The
decomposition of global goals results in a goal tree, called scheme, where the
leaf goals can be achieved directly by the agents.

Finally, the deontic dimension serves as a binding between the structural
and functional dimensions, specifying the roles’ permissions and obligations
for missions.

The infrastructure adopted by JaCaMo for the MOISE+ model is called
ORA4MAS (Organizational Artifacts for Multi-Agent Systems) [21] which con-
ceives organizational agents that control, manage and adapt the organization
operating on organizational artifacts, thus adhering to the A&A metamodel,
such as OrgBoard, GroupBoard, SchemeBoard, and NormativeBoard.

The next section illustrates how the above artifacts can be used in the
deployment of an organization.

20 CHAPTER 2. BACKGROUND

Figure 2.3: Organizational artifacts in ORA4MAS with their interface including
operations, observable properties, and link interfaces. Adopted from [21].

ORA4MAS in Action

When a set of agents wants to coordinate their actions to achieve a common
goal, they can do it, for instance, through the following steps:

1. One of the agents, which is also an organizational agent, creates an Org-
Board artifact based on a specification.

2. The organizational agent creates a GroupBoard artifact for each group
of agents that will be part of the organization. Once the GroupBoard is
created, the artifact registers itself in the OrgBoard exploiting the latter’s
link interface.

3. All the other agents get notified about the new artifacts and therefore
may decide to adopt a role in one of the groups. They can do so using
the adoptRole operation of the GroupBoard artifact.

4. The organizational agent can now create a SchemeBoard artifact to start
the organization’s collective goals. As for the GroupBoard, the Scheme-
Board artifact registers itself in the OrgBoard. As every SchemeBoard has
one NormativeBoard, the latter is created automatically and linked to the
former.

5. Once the SchemeBoard is created, obligations and permissions are com-
puted and verified by the NormativeBoard. Agents can now commit to
their missions according to the NormativeBoard rules.

6. Once the scheme is well formed, the goals of the scheme can be achieved
by the agents.

CHAPTER 2. BACKGROUND 21

2.3 Hypermedia Multi-Agent Systems

The current technological landscape brings new challenges to the engineer-
ing of MAS such as the support of large-scale open systems, and the support
of heterogeneous agents and humans in the loop.

2.3.1 The World Wide Web

The Web has had remarkable success as a worldwide and long-lived system
of people, providing them with a distributed hypermedia environment, com-
posed of interrelated Web pages, that they can navigate and use in pursuit of
their goals.

No doubt REST (REpresentational State Transfer), the architectural style
of the Web [15], is one of the enabling factors of the above characteristics.
REST consists of a set of architectural constraints, such as client-server and
stateless interaction, and uniform interface [16]. The latter principle is funda-
mental for RESTful systems, as it simplifies and decouples the Web architec-
ture, and it is achieved through four constraints:

• Identification of resources : each Web-based concept is modeled as a re-
source identified by a URI.

• Manipulation of resources through representations : clients manipulate
representations of resources. The same resource can be represented in
different ways, e.g. as HTML, XML, or JSON. The key point is that
the representation is a way to interact with a resource but it is not the
resource itself.

• Self-descriptive messages : each message includes enough information to
describe how to process the message.

• Hypermedia as the engine of application state (HATEOAS): the represen-
tation of a resource includes links that the client can use to dynamically
discover other resources, therefore enabling hypermedia-driven interac-
tion [32].

According to HATEOAS, a typical Web application, which is composed of
multiple hyperlinked Web pages, can be seen as a finite state machine where
each page represents a state and hyperlinks between pages represent transitions
between states. Indeed, given the URI of a page, a client can dereference the
URI to retrieve an HTML representation of that page. This action triggers a
transition to a new application state which provides the client with a new set
of reachable states in the form of hyperlinks to other Web pages. Similarly,

22 CHAPTER 2. BACKGROUND

the client can send a request to the server to update a resource, thus triggering
a transition to a new state.

The key point is that both the next reachable states and the knowledge
required to transition to those states are conveyed to the client through hyper-
media. Therefore, a client should be able to discover new resources and how
to use them at runtime, allowing components to be deployed independently
from one another.

2.3.2 The Web of Things

The Web of Things (WoT) [33], first introduced in 2007 [17], is a set of
W3C standards that aim to improve the interoperability and usability of the
Internet of Things (IoT). The idea is to apply the architectural principles and
standardized technologies of the Web to integrate the different technological
stacks used by the current IoT things.

One of the fundamental building blocks of the WoT is the Thing Description
(TD) [34] that acts as a machine-readable manual for the interaction with the
thing it describes. The TD is based on the concept of interaction affordances
which refer to the perceived and actual properties of the thing that determine
how the latter can be used. The three types of affordances are:

1. Properties: they represent the state of the thing that can be read
and/or written.

2. Actions: they allow the invocation of a function of the thing which
manipulates its state or triggers a process.

3. Events: they describe an event source that asynchronously pushes event
data to the observers.

The affordances of a thing are intended in the hypermedia perspective of pre-
senting information and control, suggesting to the clients the possible choices
for interaction and how to use them in the form of hyperlinks.

2.3.3 Web-based Multi-Agent Systems

There has been extensive research on using the Web as an infrastructure for
distributed MAS. The early approaches usually fall into one of the following
two categories:

• The Web as a Transport Layer: these systems use HTTP as a trans-
port layer for the communication between agents; thus, they make lim-
ited use of the architectural properties of the Web.

CHAPTER 2. BACKGROUND 23

Figure 2.4: Hypermedia MAS. Adopted from [11].

• The Web as a non-Hypermedia Application Layer: agent services
are translated into Web services, which expose REST-like interfaces.
Even tho these systems typically respect the first three uniform interface
constraints, they do not support HATEOAS and therefore hypermedia-
driven interaction, making clients and servers tightly coupled to one an-
other, which is an important limitation when engineering large-scale,
open systems.

The premature development of these approaches, not completely adhering
to the Web architectural style, and the lack of crucial initiatives such as the
Web of Things, together with the shortage of real-world applications, have
hindered their widespread acceptance.

2.3.4 The Bridge between the Web and Multi-Agent
Systems

Integrating the environment in multi-agent systems with the Web archi-
tecture helps bridge the gap that previously existed between MAS and the
Web [11]. Hypermedia MAS are systems composed of both people and au-
tonomous agents situated in a shared hypermedia environment that is dis-
tributed across the Web and thus becomes an hypermedia application [10].
According to this approach, all the entities, both agents and artifacts, are
Web resources and their representations can be related by hyperlinks.

In contrast to typical environments, a hypermedia environment uses hyper-
media to drive interaction in the MAS: agents navigate and crawl the environ-
ment at runtime to discover other entities in the MAS, as well as the means
to interact with them, in an analogous approach to the one used in the Web

24 CHAPTER 2. BACKGROUND

of Things through the Thing Description. This reduces coupling and enhances
the scalability and evolvability of the systems.

The three key design principles meant to ensure the proper use of hyperme-
dia as a general mechanism for uniform interaction in MAS are the following [9]:

1. Uniform resource space: all entities in a hypermedia MAS and rela-
tions among them should be represented in the hypermedia environment
in a uniform, resource-oriented manner. For instance, one agent could
send a message to another by writing an RDF representation of the mes-
sage in the hypermedia. To receive messages, an agent could observe a
resource that represents its mailbox in the hypermedia. To turn on a
light, an agent could manipulate the state of a resource that represents
the light bulb in the hypermedia. Anyways, interactions between agents
and resources in their hypermedia environment should conform to the
REST constraints.

2. Single entry point: given a single entry point into the environment of
a hypermedia MAS, an agent should be able to discover the knowledge
required to participate in the system by navigating the hypermedia. The
core idea is to minimize coupling by enabling system-wide discoverability
as agents can crawl the hypermedia to discover what other agents, tools,
or entities in the system can help them achieve their goals. Equally
important, agents can also discover in the hypermedia how to interact
with entities through their affordances.

3. Observability: in a hypermedia MAS, any resource in the hypermedia
environment that could be of interest to agents should be observable.
While the first two principles ensure the dynamic discovery of a hyper-
media MAS via crawling, the latter promotes the use of mechanisms that
allow agents to selectively observe entities of interest. This is important
to improve the scalability and handle larger environments.

Engineers can choose to ignore one or more of these principles, but the MAS
would most likely make limited use of the hypermedia and would not achieve
uniform interaction, hindering the scalability and openness of the system.

After having introduced the main concepts this thesis work is based on,
the next chapter goes into more detail about the MOISE framework and its
abstraction that will help shape the requirements for the proposed solution.

Chapter 3

Requirements

As stated in chapter 1, the formulated proposal was to first design a user-
friendly visual programming paradigm that domain experts could use to specify
MAS organizations and then implement a prototype web-based integrated de-
velopment environment (IDE) that would allow users to exploit the proposed
paradigm and enforce the resulting organizations on the agents.

When designing the requirements for the proposed platform, some assump-
tions were made and constraints were imposed.

The platform will be used by domain experts, who have no or very little
knowledge of programming and software development. However, they are ex-
pected to have a deep understanding of the domain they are working in, which
means that they can specify the requirements of the organization they want
to implement.

The platform needs to be web-based to provide continuity and coherence
and allow seamless integration with the already existing platform for the de-
velopment of agents.

Finally, but most importantly, the platform needs to be compliant with the
MOISE+ model, as the JaCaMo framework is currently exploited by some of
the participants of the IntellIoT project, among them the University of St.
Gallen. Since the MOISE component of JaCaMo is of crucial importance for
the project and to better understand this project’s requirements, its features
are hereby presented and explained in more detail.

3.1 MOISE Features

Organizing a MAS is a process that starts with a definition phase, carried
out by the designer during the development of the system, followed by an ex-
ecution phase, in which the agents behave under the constraints imposed by
the organization. It is worth mentioning that this process may also include

25

26 CHAPTER 3. REQUIREMENTS

iterative interleaving of the former phases undertaken by the agents through
reasoning on their collective behavior, indeed producing a self-organization
phase. However, considering the two main phases, MOISE distinguishes be-
tween the organization specification (OS) and the organization entity (OE).

The OS is a declarative description of the organization that answers the
what questions, such as what are the roles?, what are the collective goals?, etc.,
and defines the expected behavior to be produced by the agents.

On the other hand, the OE corresponds to the enactment of the OS by
the agents and describes the evolving state of their coordinated and regulated
behavior.

The definition of an organization may cover several aspects of the collective
activity of the MAS. Below is an explanation of the dimensions that can be
specified in a MOISE organization.

3.1.1 Structural Dimension

Here are presented the main structural abstractions that allow the defini-
tion of the structure of an organization.

A role represents the position that an agent can occupy in the organization
and it is identified by a unique label. An inheritance relation is also supported,
enabling the reuse of properties attached to the inherited role similar to what
happens in object-oriented programming.

A group represents a possible community of agents. They are also identified
with a unique label and can be nested to form a hierarchy of groups. Each
group is composed of roles, links between those roles, possibly other subgroups,
and a set of formation constraints. The group-formation constraints define
expected properties such as:

• role compatibility : it is a directed relation that enables an agent to adopt
the target role while already playing the source role.

• role cardinality : defines upper and lower bounds on the number of agents
that can play a given role in the group.

• group cardinality : defines upper and lower bounds on the number of
subgroups entities that can be instantiated from the subgroup defined
within the group.

Finally, a link represents the type of interaction that can take place among
agents in a group when playing a role. The current version of MOISE supports
communication, authority, and acquaintance links which, namely, state who
can communicate with whom, who has authority over whom, and who can
represent and access information from whom.

CHAPTER 3. REQUIREMENTS 27

Figure 3.1: Goal life cycle.

3.1.2 Functional Dimension

As for the structural abstractions, here are presented the concepts that
allow the definition of the behavior of the agents within an organization.

An organizational goal abstracts a state that has to be satisfied by one or
several agents. Goals are denoted by an identifier and are arranged in a tree
structure called goal decomposition tree where the root is a global goal and
the leaves are goals that can be satisfied by the agents. During the execution
phase, the goals can be in one of the following states:

• waiting : the goal cannot be pursued yet because it depends on the sat-
isfaction of other goals;

• enabled : the goal can be pursued by the responsible agents;

• achieved : the agents responsible for the goal have been able to achieve
it;

• impossibile: the agents responsible for the goal concluded that they will
not be able to achieve it.

Each non-leaf goal is decomposed into subgoals by plans using three oper-
ators:

• sequence: the plan g1 = g2, g3 means that the goal g1 is satisfied if and
only if g2 and subsequently g3 are satisfied;

• choice: the plan g1 = g2|g3 means that the goal g1 is satisfied if one and
only one of g2 or g3 is satisfied;

• parallel : the plan g1 = g2 ∥ g3 means that the goal g1 is satisfied if both
g2 and g3 are satisfied, and they can be pursued in parallel.

Therefore, a social plan denotes a structure of interrelated organizational goals
to be satisfied by multiple agents that have to coordinate to handle dependen-
cies between goals.

28 CHAPTER 3. REQUIREMENTS

Goals can be gathered together in missions, meaning that they should be
achieved under the responsibility of a single agent. When an agent participates
in the organization, it commits to missions, meaning that it will try to achieve
the goals contained in them.

All of the above concepts regarding functional abstractions make up a social
scheme, which denotes the collective and coordinated behavior that is expected
to be produced by a group of agents in the organization.

3.1.3 Normative Dimension

Whereas structural abstractions address the structuring of the agents in the
system and functional abstractions target the coordination of their behavior,
normative abstractions are concerned with the regulation of agents’ behavior
in the organization

The main concept is the norm, which defines the rights and duties of
agents by connecting the structural and the normative dimensions with de-
ontic modalities such as obligation, permission. Specifically, a norm refers to
a role and a mission, thus obliging or permitting the agent playing the role to
commit to the mission. Moreover, a norm can be associated with an activation
condition that must be satisfied in order for the norm to be active, and a time
constraint that defines a deadline by which the norm must be satisfied.

3.1.4 Organization Execution

As introduced in section 3.1, the organization entity is a representation of
the state of the organization at runtime which is distributed into three types
of entities. The concept is similar to the one of classes and objects in object-
oriented programming.

The group entity is related to a group defined in the structural specification
and its state contains:

• the owner of the group;

• the links to children and parent groups;

• the set of role-player agents with their links.

The scheme entity is related to a social scheme defined in the functional
specification, including:

• the owner of the scheme;

• the groups responsible for the scheme;

CHAPTER 3. REQUIREMENTS 29

• the commitments of the agents to the missions;

• the state of each goal.

Finally, the normative entity is related to group and social scheme entities.
It is created every time a group entity becomes responsible for a scheme entity
and it contains the status of a set of norms build from the abstract norms of
the normative specification.

3.2 Functional Requirements

Since the platform needs to be compatible with MOISE, its features should
be available in the new platform as well.

Structure Users should be able to define the structure of the organization.
In particular, the abstractions that allow its definition are the roles that agents
can play, the groups that can contain roles and possibly nest other subgroups,
and the links between roles. As far as the links are concerned, the core subset
of MOISE should be supported, i.e. extension and compatibility.

Behavior Users should be able to define the expected behavior of the agents.
Specifically, they will be provided with a way to define the collective goals
that agents should achieve and the dependencies among them. The type of
dependencies supported is finish-to-start, meaning that the target goal cannot
be pursued until the source goal is achieved.

Goal Assignment Users should be able to assign collective goals to roles,
thus connecting the structure and the behavior of the organization. Either
one, more, or no role can be assigned to a goal and the assignment may have
a obligation or permission deontic modality.

Persistence Users should be able to save and load the organizations they
create for future editing. Indeed, the platform will provide a way to edit
organizations previously created since defining one usually requires multiple
iterations and changes.

Deployment Users should be able to enforce the organization they create
on running agents. In particular, they will choose the agents that will be part
of the organization and the roles they will play.

30 CHAPTER 3. REQUIREMENTS

3.3 Non-Functional Requirements

Given the target user of this platform, i.e. domain experts, the main non-
functional requirement is the ease of use and user-friendliness. In particular,
the interface should be as intuitive as possible, conveying the possibility of
designing agent organizations in a way that typical users are expected to easily
understand.

What is more, the system should be easily accessible. Therefore, the most
suitable technologies for its development are web-based ones, which allow the
user to access the platform from any device with an internet connection. Al-
though, a mobile version is not required since it will mainly be used on wide
screens.

The above functional and non-functional requirements, that arose from the
IntellIoT project and the need to address a higher level of abstraction for the
definition of organization-centered MAS by domain experts, will be therefore
fulfilled through the development of a visual programming language and a
web-based integrated development environment that exploits it.

Chapter 4

Design

The following chapter describes the details concerning the design process
of the system.

The whole process was carried out with a step-by-step approach, starting
from the design of the visual language and early prototypes of the development
environment, proceeding with the storage backend, and finally concluding with
the integration with the execution backend.

Specifically, the design of the visual language and the development of the
web-based IDE prototypes were carried out iteratively, in order to adopt a
PDCA (Plan-Do-Check-Act) approach. The latter allowed receiving realis-
tic feedback straight away, thus intercepting potential problems early on and
speeding up the entire process.

Due to the hard time constraint of the internship and to obtain ease of use,
although sometimes trading off with expressivity, only a core subset of MOISE

features were implemented. This also implies that the system was not designed
as a complete replacement of MOISE, but rather as a tool to facilitate the use
of this technology also by users with no programming skills.

Moreover, as some parts of the system were designed knowing that they
might need a full project focused only on them, this project leaves space for
future improvements and integrations, such as the implementation of the re-
maining features and the exploitation of different technologies.

4.1 A Visual Language for Organizations

The main challenge in this project is surely the design of a visual language
that, on one hand, is expressive enough to represent the organizational struc-
ture and the goals of an organization, and, on the other hand, is easy to use
and understand by non-technical users.

31

32 CHAPTER 4. DESIGN

Since the visual abstractions are the main artifact of the system, the design
of the language was the first step of the project and has gone through several
iterations, possibly even evolving further in the future thanks to feedback from
real users.

4.1.1 The Visual Paradigm

The choice of the most suitable visual paradigm was the first step of the
design process since it is crucial to define the overall look and feel of the
language. Indeed, it is of fundamental importance to choose a paradigm that
is easy to use, allows the users to easily understand the meaning of the visual
abstractions, is coherent with the concepts to represent, and can be easily
translated into the actual specification.

Comparing the existing paradigms for visual programming, the most nat-
ural choice was the diagram-based paradigm. Other approaches, even though
already proven to be effective in many fields, were not perfectly suitable for
this purpose. For instance, flow-based programming better fits the modeling
of the way data must flow during the execution of the program, while block-
based programming is more suitable to describe instructions to be executed in
an imperative programming style.

On the other hand, the diagram-based paradigm is appropriate to specify
the characteristics of a system in a declarative programming fashion, therefore
being highly convenient for the definition of an organizational specification.

4.1.2 Reference Language

To facilitate the design of the visual language, it was necessary to study
and understand the organization specification language in order to identify the
“building blocks” that could be used to represent the organizational structure
and the goals of an organization. Since, as already mentioned, the system has
MOISE as a strong constraint and reference, as the organization specifications
created should be compliant with it, the MOISE language was chosen as a
reference.

The analysis of the concepts and the syntax of the reference language,
to be ported as visual elements, first involved looking at the MOISE XML
metamodel that defines the rules for the organization specification syntax. A
few examples of the main constructs are shown in listing 4.11.

As can be observed, a role definition requires the specification of an at-
tribute id, that is the name of the role, and it may specify some roles it

1The entire metamodel can be found at https://github.com/moise-lang/moise/blob/
master/src/main/resources/xml/os.xsd

https://github.com/moise-lang/moise/blob/master/src/main/resources/xml/os.xsd
https://github.com/moise-lang/moise/blob/master/src/main/resources/xml/os.xsd

CHAPTER 4. DESIGN 33

extends from through extends children elements. On the other hand, a goal
definition requires the specification of the attributes id, that is the name of
the goal, ds, that is the description, etc. and it may specify arguments, depen-
dencies from other goals, and plans, with argument, depends-on, and plan

children elements, respectively.

1 <xsd:complexType name="roleDefType">

2 <xsd:sequence>

3 <xsd:element maxOccurs="1" minOccurs="0" name="properties"

type="moise:propertiesType"/>

4 <xsd:element maxOccurs="unbounded" minOccurs="0"

name="extends">

5 <xsd:complexType>

6 <xsd:attribute name="role" type="xsd:string"/>

7 </xsd:complexType>

8 </xsd:element>

9 </xsd:sequence>

10 <xsd:attribute name="id" type="xsd:string" use="required"/>

11 </xsd:complexType>

12

13 <xsd:complexType name="goalDefType">

14 <xsd:sequence>

15 <xsd:element maxOccurs="unbounded" minOccurs="0"

name="argument" type="moise:argumentType"/>

16 <xsd:element maxOccurs="unbounded" minOccurs="0"

name="depends-on" type="moise:dependOnType"/>

17 <xsd:element maxOccurs="1" minOccurs="0" name="plan"

type="moise:planType"/>

18 </xsd:sequence>

19 <xsd:attribute name="id" type="xsd:string" use="required"/>

20 <xsd:attribute name="min" type="xsd:nonNegativeInteger"

use="optional"/>

21 <xsd:attribute name="ds" type="xsd:string" use="optional"/>

22 <xsd:attribute name="type" type="moise:goalType"/>

23 <xsd:attribute name="ttf" type="xsd:string" use="optional"/>

24 <xsd:attribute name="location" type="xsd:string" use="optional"/>

25 </xsd:complexType>

Listing 4.1: MOISE syntax rules for the XML specification of roles and goals.

The actual syntax used in the XML organization specification for roles and
goals definition can be found in listing 4.2. As can be observed, there are two
roles defined, role1 and role2, with the latter extending from the former. As

34 CHAPTER 4. DESIGN

far as the goals are concerned, there are four of them in total; the goal goal2
has a description, the argument arg1, depends on the goal goal1 and has a
plan that consists of the sequence of the two goals goal3 and goal4, that is
g2 = g3, g4.

1 <role id="role1" />

2 <role id="role2">

3 <exends role="role1" />

4 </role>

5

6 <goal id="goal1" />

7 <goal id="goal2" ds="description for goal2">

8 <argument id="arg1" />

9 <depends-on goal="goal1" />

10 <plan operator="sequence">

11 <goal id="goal3" />

12 <goal id="goal4" />

13 </plan>

14 </goal>

Listing 4.2: MOISE actual syntax for the XML specification of roles and goals.

Moreover, since a graphical representation of some of theMOISE constructs
is already available, it was possible to use them as a reference and starting point
for the design of the visual language.

(a) Structural specification
(b) Functional specification

Figure 4.1: Visual representation of the structural and functional specification
in MOISE. Adopted from [21].

CHAPTER 4. DESIGN 35

The scenario described in fig. 4.1 considers agents that aim at writing a
paper and therefore have to collaborate.

As shown in fig. 4.1a, the structure of the organization has only one group,
that is the wpgroup represented by a folder, with two roles defined, writer and
editor represented by rounded rectangles, that extend, and therefore inherit
the properties of, the author role. The relations and links among roles and
groups are represented by arrows, with the pattern of the line and the different
harrow heads indicating the type of relation. Indeed, a solid line with an empty
diamond head indicates that the role is a member of a group, i.e. writer and
editor are members of the wpgroup group. On the other hand, a solid line
with an empty harrow head indicates that the source role extends the target
role, i.e. writer and editor extend the author role. Moreover, a dashed line
with a round head indicates that the source role can communicate with the
target role, i.e. author can communicate with author, which in this scenario
means that every agent can communicate with every other agent. Finally, a
dashed line with a filled harrow head indicates that the source has authority
on the target, i.e. editor has authority on writer.

As far as the functional specification shown in fig. 4.1b is concerned, the
goals of the organization are represented in a tree-like structure, thus following
the goal decomposition tree abstraction, with the root goal being the write

a paper goal. The latter is decomposed into two subgoals, fdv (first draft
version) and sv (submission version), through a sequence plan. What is more,
the fdv and sv goals are decomposed through sequence plans into three sub-
goals each, that are wtitle, wabs, and wsectitles and wsec, wcon, and wref,
respectively. Therefore, the plans can be formalized as:

write a paper = fdv, sv

fdv = wtitle, wabs, wsectitles

sv = wsec, wcon, wref

4.1.3 Focus Group

To better understand how people perceive an organization from a visual
point of view, a focus group was organized. The latter was composed of 5
people, all members of the research group in St. Gallen and therefore with a
background in computer science.

However, four of them were not familiar with the MOISE tool since they
had never used it, while one of them uses it on a nearly daily basis. This choice
was thought to be the most appropriate since it allowed having most of the
feedback from non-biased users and one from an experienced and knowledgable
user of MAS organizations.

36 CHAPTER 4. DESIGN

The members of the focus group were asked to perform a task that involved
formalizing an organization for a smart-farming scenario that was presented
to them and that will be described in detail in chapter 6.

In particular, they were asked to first identify the core concepts of the
organization such as the roles, the groups, and the tasks that the scenario
suggested. Then, they were asked to give a visual representation of the core
concepts and the relations among them, such as the membership of a role in a
group, the dependencies among tasks, the assignation of tasks to roles, etc.

The members carried out the task individually for multiple reasons:

• they could freely express their thoughts and ideas;

• they would not be influenced by the ideas of the other members;

• their mental process could be observed and analyzed.

Indeed, one of the main goals of the focus group was to understand how people
reason when they have to formalize an organization so that the Web IDE could
be designed accordingly to provide a natural workflow. Therefore, the members
were asked to think aloud while they were performing the task so that their
mental processes could be clearly understood.

After the experiment, the results were analyzed and the main common
grounds were identified.

The totality of the members of the focus group managed to identify most of
the core concepts of the organization, particularly excelling in the identification
of the tasks.

As far as the roles are concerned, the members were able to identify them
but with different strategies. Indeed, some of them identified the roles based
on the function that they perform, while others identified them based on the
characteristics of the agents that are supposed to play them.

Even though the identification of the groups was not as straightforward as
expected, once done the members were able to correctly identify the relations
among the roles and the groups.

Finally, what the members struggled the most with was the identification
of the relations among the tasks. In particular, they had difficulties expressing
the latter’s dependencies because they were mostly focused on a sequential
execution of the tasks, which is not always the case in the smart-farming
scenario they were presented.

4.2 Visual Language Design

Once the main concepts were extrapolated both from a syntactical and se-
mantic point of view, their visual representation was analyzed, and the results

CHAPTER 4. DESIGN 37

from the focus group were reviewed, the design process of the visual language
started.

One of the first crucial decisions was to keep the structure and the behavior
of the organization separate, as it is done in MOISE. This choice was made
because it allows the user to focus on one aspect at a time, thus making them
feel not overwhelmed by the complexity of the tool. Moreover, it allows re-
using some visual building blocks in both the structural and the functional
specification with a different meaning, thus reducing the number of elements
that the user has to learn.

Thereafter, the main components of the core concepts of the visual language
were defined. As already mentioned, their design followed an iterative design
process that made them more and more refined thanks to the feedback from
the user tests.

4.2.1 Structure of the Organization

In this section, the visual representation of the main concepts regarding
the structure of the organization are described. As already mentioned, the
structure and the behavior of the organization are modeled separately using
two different diagrams, therefore the following visual elements will be used in
the structural specification diagram.

Roles

The roles of the organization are represented by circles, with the name of
the role written above them. As can be seen in fig. 4.2, the concrete roles are
represented by a solid circle, while the abstract roles are represented by an
empty circle.

(a) Representation of a concrete role. (b) Representation of an abstract role.

Figure 4.2: Roles representation in the visual language.

The introduction of the abstract roles was made to allow the user to define
a role that is not directly played by an agent or part of a group, but that can
be extended by other roles. This is useful and powerful when the user wants to
define some common properties that are shared by more roles, thus avoiding

38 CHAPTER 4. DESIGN

the repetition of the same properties in the different roles. For instance, such
roles could be assigned goals, links, constraints, etc. that are then inherited by
the roles that extend them, in a similar way to the abstract classes inheritance
in object-oriented programming. Moreover, the visual diversification between
concrete and abstract roles emphasizes the difference between the two concepts,
thus making the language more intuitive and suggesting the user this feature.

Groups

The groups of the organization are represented by rounded rectangles, with
the name of the group written above them as shown in fig. 4.3. This container-
like shape was chosen to suggest to the user that elements such as roles and
other groups can be placed inside it. Therefore, the visual semantics of an
element placed inside a group is that of membership, i.e. the element is a
member of the group.

Figure 4.3: Representation of a group.

The elements that can be placed inside a group, and therefore be part of
it, are the roles and other groups.

The choice to allow groups to be members of other groups was made to
allow the user to define a hierarchy of groups, thus allowing them to define
a more complex structure of the organization. This is particularly powerful
when a group is composed of multiple instances with the same structure, as
it allows the user to define the subgroup structure only once, using it as a
template to check the well-formedness of the instances.

As far as the roles are concerned, only the concrete roles can be members of
a group, since, as already mentioned, the abstract roles are not directly played
by an agent and therefore not part of a group.

In fig. 4.4 it is possible to see an example of a simple structure that exploits
group hierarchies and the role membership concept. In particular, the group
g1 is composed of the role r1 and the group g2, which is composed of the role
r2. This shows how exploiting only two visual elements, i.e. the groups and
the roles, it is possible to define rather complex structures.

CHAPTER 4. DESIGN 39

Figure 4.4: Example of a structure that exploits group hierarchies and the role
membership concept.

Relations

The relations between the roles of the organization are represented by ar-
rows, with the style of the arrow giving information about the type of relation.
Only a subset of the relations defined in MOISE is currently represented and
supported by the visual language since the others are either not used in prac-
tice or there is no way to enforce them in the current version of the JaCaMo
framework. Therefore, the core relations were identified and chosen, giving
space to future work to extend the visual language to support the remaining
relations.

(a) Extension relation among roles. (b) Compatibility relation among roles.

Figure 4.5: Visual representation of the implemented relations.

As shown in fig. 4.5, the subset of relations that are currently supported
by the visual language are the extension and the compatibility relations.

The extension relation, visible in fig. 4.5a, is represented by an arrow with a
dashed line, an empty harrow head, a slightly dimmed color, and the extends
label on it. In particular, the source role, i.e. r1, extends the target role, i.e.
r2, meaning that the source role is a specialization of the target role.

On the other hand, the compatibility relation, depicted in fig. 4.5b, is
represented by an arrow with a solid line, a filled diamond on the target end,

40 CHAPTER 4. DESIGN

a dark color, and the compatibility label on it. In this scenario, the source
role, i.e. r1, is compatible with the target role, i.e. r2, meaning that the target
role can be played by an agent that is already playing the source role.

4.2.2 Behavior of the Organization

After describing the visual components of the organization structure, the
next step is to present the visual abstractions that allow the user to define
the behavior of the organization. The following elements will be used in the
functional specification diagram, therefore separated from the one regarding
the structure.

Goals

The goals of the organization are represented by rectangles with rounded
corners, with the name of the goal written inside them as shown in fig. 4.6.

Figure 4.6: Representation of a goal.

Unlike the groups, the choice to place the label inside the rectangle was
made to suggest to the user that the goal can be a complete element by itself.

Even though according to theMOISEmodel a goal can be composed of mul-
tiple subgoals, representing them inside the supergoal rectangle would make
the diagram too complex and hard to read, not to talk about the scalability
issues that would arise. Indeed, when defining complex scenarios, several levels
of decomposition can be reached, and the multiple nesting of subgoals would
make the diagram not understandable at first glance.

To address this issue, the choice was made to also represent the subgoals of
a goal as top-level elements. In this way, the user can still easily identify the
subgoals of a goal, while the diagram stays readable and easy to understand.

Therefore, the decision was to diverge from theMOISE model and represent
the goals not as a goal decomposition tree but as a dependency graph, where
the nodes are the goals and the edges are the dependencies between them.

CHAPTER 4. DESIGN 41

Dependencies

The dependencies between the goals of the organization are represented by
arrows that connect goals, with the style of the arrow giving information about
the type of dependency, as shown in fig. 4.7.

(a) Dependency between goals with AND

semantics.
(b) Dependency between goals with OR se-
mantics.

Figure 4.7: Visual representation of the dependencies among goals.

It is possible to define two types of dependencies between goals with dif-
ferent semantics.

The first type of dependency is the AND dependency, visible in fig. 4.7a,
which is represented by an arrow with a solid line and a harrow head on the
target end. In this scenario, the target goal g3 depends on the source goals
g1 and g2. The AND semantics means that the target goal can be achieved
only if all the source goals are achieved, with similar behavior to the plan with
parallel operator in MOISE.

g3 = g1 ∧ g2

On the other hand, the second type of dependency is the OR dependency,
depicted in fig. 4.7b, which is represented by an arrow with a dashed line and
a harrow head on the target end. In this scenario, the target goal g3 depends
on the source goals g1 and g2. The OR semantics means that the target goal
can be achieved if at least one of the source goals is achieved, with similar
behavior to the plan with choice operator in MOISE.

g3 = g1 ∨ g2

Finally, the sequence operator is achieved through the concept of depen-
dency itself, since dependencies have a finish-to-start relationship, meaning
that the target goal can be achieved only after the source goals are achieved.

The dependency graph closely resembles the concept of a Program Evalu-
ation and Review Technique (PERT) diagram [28], which is a statistical tool

42 CHAPTER 4. DESIGN

used in project management designed to analyze and represent the tasks in-
volved in completing a given project. However, unlike the latter which is
usually made up of a single connected component, the dependency graph here
described explicitly allows the user to define multiple connected components
to represent groups of goals that can be achieved independently.

Goals Allocation

Although goals allocation inMOISE is handled through norms in a separate
dimension from the structural and functional one, the visual language allows
the user to define the allocation of goals to roles directly in the functional
specification diagram. Indeed, having a third diagram to accomplish this task
would make the process of defining the organization unnecessarily complex.
Therefore, being the drawbacks in terms of customization negligible, the choice
was made to exploit the functional specification diagram.

This choice also abstracts from the concept of mission that is no longer
needed to define the allocation of goals to roles. While in MOISE goals can
be grouped to form missions, which are then assigned to roles, in the visual
language the goals are directly assigned to roles without the need for an inter-
mediate step. Again, the ease of use and the simplicity of the diagram were
preferred over the possibility of customization, which is acceptable in most
actual use cases.

The role responsible for achieving a goal is represented by a circle with the
initials of the role’s name written inside it. To represent that a role is respon-
sible for achieving a goal, its circle is placed inside the rectangle representing
the goal, as shown in fig. 4.8.

Figure 4.8: Representation of a goal allocation.

The visual representation of the rectangle corresponding to the goal slightly
changes when a role is responsible for achieving it. Indeed, the goal name is
moved from inside the rectangle to the top of it to make room for the roles.

There are two ways in which a goal can be assigned to a role and they come
with different semantics, corresponding to the deontic modalities of MOISE’s
normative dimension:

CHAPTER 4. DESIGN 43

• Obligation: the goal is assigned to the role with the obligation modal-
ity, meaning that the agent playing that role is obliged to achieve the
goal.

• Permission: the goal is assigned to the role with the permissionmodal-
ity, meaning that the agent playing that role is allowed to achieve the
goal if it wants to.

As far as the cardinality of goal allocation is concerned, multiple scenarios
are possible. A goal can be assigned to one, multiple, or no roles.

When the goal is assigned to no roles, it means that no specific agent will
actively achieve it, but the goal will be considered as achieved as soon as the
goals it depends on are achieved. This is particularly useful when representing
dummy goals that are used to represent the completion of a task. Indeed, they
improve the readability and understandability of the diagram but do not affect
the actual behavior of the organization.

Moreover, the type of role that the goal is assigned to slightly changes the
semantics. If the goal is assigned to a concrete role, then the goal is assigned
to that specific role. On the other hand, if the goal is assigned to an abstract
role, then the goal can be assigned to all the roles that are instances of, i.e.
extend from, that abstract role.

4.3 Main Components and Architecture

During the design process, it was also necessary to identify all the software
components that would be needed to address the requirements of the system.
The choice of the components was made trying to optimize the separation of re-
sponsibilities and to minimize the coupling between the different components,
thus obtaining a clean and expandable architecture.

4.3.1 Web-based IDE

This component represents the front end and it is the main interface through
which the user interacts with the system.

As already mentioned, the Web-based IDE allows the users to create and
edit the organization specifications through a user-friendly and intuitive graph-
ical interface. Specifically, since the designed visual language includes two dia-
grams, the IDE provides the user with two different views to edit the structural
and functional diagrams, respectively.

What is more, the IDE is also responsible for the translation of the or-
ganization specifications from the visual language to a format that can be

44 CHAPTER 4. DESIGN

understood by the JaCaMo platform. In particular, the translation happens
from and to the XML format, which is the format used to represent the or-
ganization specification in MOISE. This allows the user to easily import and
export the specifications.

Finally, the IDE provides the user with the possibility to run the organi-
zation created and enforce it on the agents currently running in the runtime
environment. Therefore, the component includes an additional view that al-
lows the user to directly interact with the agents.

4.3.2 Storage & Backend

Since the user should be able to save the organization specifications and
load them later, the system needs a component that is responsible for the
persistence of the data. This component should therefore provide basic CRUD
functionalities for the organization specifications.

Since the data to be stored is not very complex and structured, but rather
consists of strings representing the XML files, the choice was made to use
a NoSQL database. In particular, the choice fell on a document-oriented
database because of its simplicity and the fact that it is possible to define
flexible schemas that allow for the data model to evolve as applications need
change.

Together with the storage component, the system also includes a backend.
The latter has a twofold purpose:

• It serves as a proxy between the Web-based IDE and the storage com-
ponent, thus hiding the details of the storage mechanism from the IDE.

• It provides an URL to the runtime environment through which the latter
can retrieve the organizations’ files.

To achieve the above goals, the backend component exposes an HTTP API.
This approach allows the Web-based IDE to perform operations on the stored
data in a REST-like fashion and the runtime environment to retrieve orga-
nization specifications treated as resources, therefore adhering to the Web
architecture.

4.3.3 Runtime Environment

This component is responsible for the execution of a MAS and therefore
hosts the agents that are currently running. Thus, it will be also in charge
of keeping track of the runtime information about the organizations and mak-
ing the agents aware of them. In order for the organization to be enforced

CHAPTER 4. DESIGN 45

Figure 4.9: Overall architecture of the system.

on the agents, the Web-based IDE needs to communicate with the runtime
environment and send the organization entities to it.

What is more, the Web-based IDE also needs to be able to retrieve in-
formation about the running agents so that users can directly assign roles to
them when specifying the organization entities.

Finally, the runtime environment should communicate with the backend
component in order to retrieve the organization specifications files using URLs.
URLs are provided by the Web-based IDE when the latter sends an organiza-
tion entity to the runtime environment.

Chapter 5

Development

In the following chapter, the development process that followed the design
phase and brought to the creation of the prototype of the whole system is
described.

Some technological constraints were imposed from the requirements and
the design phase. In particular, the need for a lightweight Web application
that didn’t have to be installed on the user’s machine and, from the MAS
infrastructure point of view, the need to make the solution compatible with
the JaCaMo platform, therefore to produce XML MOISE specifications.

The development process was divided into three main parts. First, the Web
IDE was implemented to get continuous and fast feedback about the visual
language. Second, the backend and the specifications storage were developed
to provide persistence to the organizations created by users. Finally, the Web
IDE was integrated with the runtime environment to allow the user to access
information about the running agents and deploy the organizations.

The important details and choices about the implementation of the main
component of the systems are described in the following sections.

5.1 Web-based IDE

Given that the main goal of the project is to provide non-technical users
with an easy and intuitive tool to create and run organizations, the Web IDE
is probably the most important component of the system together with the
visual language. When users are confronted with the UI of the IDE they should
be able to clearly understand what each component of the interface means and
how to use it without any detailed explanation.

47

48 CHAPTER 5. DEVELOPMENT

Figure 5.1: Typical workflow of a user utilizing the Web-based IDE.

5.1.1 Web User Interface

As a starting point for the design of the UI, the typical workflow of a user
that wants to create an organization is considered.

As shown in fig. 5.1, the user starts by either creating a new organization
or selecting an existing one.

Then, the user can define or edit the organization specification by using
the designed visual language. In particular, the user specifies the structure
and the expected behavior of the organization in an iterative way. Indeed, it
is important to avoid sequentiality in the process as the user should feel free
to easily navigate through the two separate diagrams and continuously modify
them as the organization evolves.

Once the specification is ready, the user can define the organization entity
by assigning the roles to the running agents. Finally, the organization can be
deployed on the runtime environment and enforced on the agents.

Therefore, the final UI of the Web IDE consists of four main pages:

• Home Page where the user can specify the name of the organization
and create it or select an existing one.

• Structural Diagram where the user can define the structure of the
organization, thus creating a structural specification.

• Functional Diagram where the user can define the expected behavior
of the organization that includes the functional and normative specifica-
tions.

• Entity Definition where the user can assign the roles to the running
agents and deploy the organization.

In fig. 5.2 the UI of the Structural Diagram is shown. As can be seen,
the left panel contains the available elements that can be used to create the
organization structure. Indeed, the user can create new roles choosing whether
they are concrete or abstract, and new groups. Once a component has been

CHAPTER 5. DEVELOPMENT 49

Figure 5.2: Structural Diagram of the Web IDE.

created, it can be moved around the diagram and modified by clicking on it.
The click on a component opens a side menu that allows the user to edit the
properties of the selected component. In particular, fig. 5.3 shows the side
menu for the role r1. Here the user can specify which role, if any, the selected
role extends from, which group it belongs to, and the cardinality of the role
in the group, i.e. the minimum and maximum number of agents that can be
assigned to the role.

5.1.2 Technologies

The following section describes the main technologies used to implement
the Web IDE.

Since the component is based on Web technologies, the main two languages
available for the implementation of the client-side logic are JavaScript 1 and
TypeScript 2. The latter was created to address problems coming with develop-
ing large-scale applications, introducing static typing and object-oriented fea-
tures, thus extending the object-based features already present in JavaScript.
Typescript’s type-checking makes it easier to find and fix bugs, therefore, it
was chosen as the language for the implementation of the Web IDE.

Moreover, a client-side framework was used to implement the Web-based

1https://developer.mozilla.org/en-US/docs/Web/javascript
2https://www.typescriptlang.org/

https://developer.mozilla.org/en-US/docs/Web/javascript
https://www.typescriptlang.org/

50 CHAPTER 5. DEVELOPMENT

Figure 5.3: Detail showing the side menu in the Structural Diagram of the
Web IDE.

IDE. The main reason for this choice is that frameworks provide a set of tools
that simplify the development of interactive Web applications. They allow
the developer to create reusable components that encapsulate the logic and
the UI of a specific part of the application, therefore helping to divide the
latter into smaller and more manageable parts and keeping the code clean and
organized. The one chosen for this project is React 3. Although there is no
strong motivation for why it was preferred over others, React is probably the
most popular, therefore, possible new contributors to the project will be more
likely to be familiar with it.

To further facilitate the development of the UI, the Material-UI 4 library
was used. It implements Google’s Material Design and it provides a set of
tested prebuilt components that are ready to be used in the application.

Finally, to make the implementation of the diagrams easier, the Cytoscape 5

library was used. It is a modular graph library that provides a set of tools to
create and manipulate graphs and diagrams. Using the library, together with
a few extensions, made it possible to provide a simple and intuitive way to
create and edit the diagrams.

3https://reactjs.org/
4https://mui.com/
5https://js.cytoscape.org/

https://reactjs.org/
https://mui.com/
https://js.cytoscape.org/

CHAPTER 5. DEVELOPMENT 51

(a) Structural Diagram Core Domain.

(b) Functional Diagram
Core Domain.

Figure 5.4: UML class diagrams of the core domain.

5.1.3 Code Generation

Since the specifications created by the user with the Web IDE have to be
compatible with the JaCaMo platform, and in particular, with MOISE, the
diagrams have to be translated into XML files. Equally important, actual
MOISE XML specification files have to be correctly parsed and translated into
the corresponding visual representations.

Once the design phase of the different components of the visual language
was in an advanced stage, the actual implementation of the code generation
started.

The decision was to first implement the components that are present in
both the Structural and Functional Diagrams. This allowed for having a core
domain that is unlikely to change in the future and that could be used as a
starting point for both the translation into the visual components and XML
tags. In particular, the core domain consists of the components shown in
fig. 5.4.

Specifically, the system keeps track of the components of the diagrams and
the relations between them in a list. The latter is then taken as input by a
serialize function that transforms the list into an XML string. On the other
hand, an analogous process is performed when loading an XML specification.
The deserialize function takes the XML string as input and transforms it
into a list of components. In listing 5.1 and listing 5.2 are shown the functions
for the code generation and parsing of the roles inside a group, respectively.

52 CHAPTER 5. DEVELOPMENT

1 export const roles: (roles: Set<ConcreteRole>) => string = roles =>

2 "<roles>\n" +

3 Array.from(roles).map(r =>

4 ‘<role id="role_${r.name}" ${r.min === 0 ? "" :

‘min="${r.min}"‘} ${
5 r.max === Number.MAX_VALUE ? "" : ‘max="${r.max}"‘
6 }/>‘).join("\n") +

7 "</roles>"

Listing 5.1: Code generation for the roles inside a group.

1 const role: (element: XMLElement) => Role = element =>

2 new ConcreteRole(

3 element.attributes["id"],

4 roleTopography

5 .find(rt => rt.name === element.attributes["id"])

6 .map((rt: Role) => rt.extends).getOrElse(undefined),

7 option(parseInt(element.attributes["min"])).getOrElse(0),

8 option(parseInt(element.attributes["max"]))

9 .getOrElse(Number.MAX_VALUE)

10)

Listing 5.2: Parsing of the XML specification of a role inside a group

As far as the goal dependencies are concerned, a one-to-one mapping was
not possible since the visual language’s semantics differs from the one used
by MOISE. Specifically, the visual language does not allow for the creation
of plans and subgoals that are not associated with a specific goal with a plan
operator. In order to overcome this incompatibility, the depends-on concept
of MOISE was used. Although it is usually not directly used in the XML
specifications, depends-on is a fundamental concept of MOISE which plans
and subgoals are built upon.

Therefore, this concept is used as a mapping between the visual language
and the XML syntax. In particular, when expressing the and dependency, a
simple depends-on tag is created between the two goals. On the other hand,
when expressing the or dependency, an intermediate goal is created with a
choice plan.

For instance, in listing 5.3 is shown the XML translation of an and depen-
dency between the goals g1, g2 and g3 of the type:

g3 = g1 ∧ g2

CHAPTER 5. DEVELOPMENT 53

1 <goal id="g1" />

2 <goal id="g2" />

3 <goal id="g3">

4 <depends-on goal="g1" />

5 <depends-on goal="g2" />

6 </goal>

Listing 5.3: XML translation of an and dependency.

1 <goal id="g1" />

2 <goal id="g2" />

3 <goal id="or_g3">

4 <plan operator="choice">

5 <goal id="g1" />

6 <goal id="g2" />

7 </plan>

8 </goal>

9 <goal id="g3">

10 <depends-on goal="or_g3" />

11 </goal>

Listing 5.4: XML translation of an or dependency.

whereas in listing 5.4 is shown the XML translation of an or dependency
between the goals g1, g2 and g3 of the type:

g3 = g1 ∨ g2

5.2 Storage & Backend

Organizations can be saved persistently to be later recovered and edited.
This feature is fundamental for the Web IDE since writing a specification is
commonly an iterative process that may require the domain expert to edit
some parts of an organization either for bug-fixing or to add new features.

5.2.1 Storage

Since the visual programming environment is based on Web technologies,
centralized server-side storage was the most natural choice. Looking at the

54 CHAPTER 5. DEVELOPMENT

system architecture in fig. 4.9, the Specifications’ Storage component is
responsible for this functionality.

The storage uses a MongoDB 6 database to store the generated XML spec-
ifications. For the time being, the database does not store the information
about the diagrams, such as the position of the components that would make
it easier to load the organization in the same state as it was saved.

Moreover, there is no separation between the specifications created by dif-
ferent users, therefore, in a production environment some form of authentica-
tion would be necessary.

Finally, a further improvement of the storage component would be to also
allow the user to save organization entities, keeping track of which specific
configurations of the organization in different scenarios.

5.2.2 Backend

Since, as already mentioned, the Web IDE is based on Web technologies, a
backend seemed the most natural choice to make the frontend and the storage
communicate.

The backend was implemented using the Kotlin 7 programming language
and the Vert.x 8 framework. The latter is a reactive library that allows the
developer to write asynchronous code and build Web servers quickly. It was
chosen because the research group in St. Gallen already had some experience
with it, therefore, it would be easier to maintain for other developers. In
particular, the projects built by the team use Java 9 as the programming
language, therefore, the choice of Kotlin was a fair tradeoff that allowed using
a language that is similar to Java but with a more modern and concise syntax.

The backend exposes an HTTP API that allows the frontend to communi-
cate with the storage. The API that is currently implemented is here described:

• GET /organizations/:name: returns the XML specification of the or-
ganization with the given name.

• POST /organizations/:name: saves the XML specification present in
the body to the storage.

• PUT /organizations/:name: updates the organization with the given
name, substituting it with the XML specification present in the body.

6https://mongodb.com/
7https://kotlinlang.org/
8https://vertx.io/
9https://java.com/

https://mongodb.com/
https://kotlinlang.org/
https://vertx.io/
https://java.com/

CHAPTER 5. DEVELOPMENT 55

Since the GET route returns the XML specification, the runtime environment
can also use it as a way to retrieve the specification in a resource-oriented
fashion.

5.3 Running Organization Entities

In order for users to be able to run the organizations they create, the Web
IDE has to be able to communicate with the runtime environment. Specifically,
it needs information about the running agents to assign them to the correct
roles and, subsequently, it needs to enforce the organization on said agents.

5.3.1 Runtime Environment

As already mentioned, the runtime environment, which is based on the
JaCaMo platform, contains all the running agents and the deployed artifacts.

This component is currently being developed by the research group in St.
Gallen. The name of the platform is Yggdrasil 10, which comes from the
world tree in the Norse mythology, and it aims at providing uniform interac-
tion among heterogeneous agents thanks to Hypermedia MAS. The idea is to
model an environment based on the Agents & Artifacts metamodel through
hypermedia and Web technologies, achieving scalability and uniform access to
resources.

Yggdrasil exposes a REST-like API that allows users and agents to nav-
igate the environment and the existing workspaces where artifacts and their
operations are described with the Thing Description standard since the model
fits the Agents & Artifacts metamodel. Moreover, the platform’s API also
allows the user to run agents and create and deploy artifacts.

The format used by Yggdrasil to describe the resources in the environment
is the Turtle 11 format. The latter is a textual syntax for RDF that allows a
knowledge graph to be represented in a compact and natural text form.

5.3.2 Running Agents

Agents in Yggdrasil, just like artifacts, are contained in workspaces. There-
fore, to get the list of agents that are currently running, the Web IDE has to
operate on a workspace and retrieve the list of resources that are contained in
it.

10https://github.com/Interactions-HSG/yggdrasil
11https://w3.org/TR/turtle/

https://github.com/Interactions-HSG/yggdrasil
https://w3.org/TR/turtle/

56 CHAPTER 5. DEVELOPMENT

1 <workspaces/102> rdf:type eve:WorkspaceArtifact ,

2 <Workspace> ,

3 td:Thing ;

4 <directlyContains> <hypermedia_body_1> ,

5 <hypermedia_body_2> ;

6 td:hasActionAffordance [

7 ...

8];

9 ...

Listing 5.5: Detail of the Turtle representation of a workspace.

By performing a GET request to the /workspaces endpoint, specifying the
workspace name in the URL, the Web IDE can retrieve a Turtle representation
of the workspace; a short example of the response is shown in listing 5.5. As
can be seen, the workspace, which is the subject of all the triples, directlyCon-
tains hypermedia body 1 and hypermedia body 2 which represent two agents
currently running.

Therefore, the Web IDE can parse the Turtle representation and extract
the list of agents that are currently running, filtering them from all the other
resources that are contained in the workspace. Since this list is composed of
URIs, GET requests to them can be performed to retrieve the Turtle represen-
tation of the agents. The response of the GET request to the agents provide
useful information for the user such as the name of the agents that can be used
to recognize them and assign them to the correct roles.

5.3.3 Artifacts Creation

Artifacts in Yggdrasil can be created by performing a POST request to the
workspace/:workspaceName/artifacts/ endpoint, specifying all the neces-
sary information in the body of the request. For instance, the body should
contain the type of artifact that is being created, the name of the artifact, and
possible initial parameters that the artifact may need.

As far as the organizational artifacts are concerned, the types of artifacts
available are the same as the ones described in ORA4MAS, therefore OrgBoard,
GroupBoard, SchemeBoard, and NormativeBoard. Once the OrgBoard artifact
is created, the most correct way to generate the other artifacts is through
an action exposed by it. In particular, the OrgBoard artifact exposes the
createGroup and createScheme actions that can be used to create the other
artifacts. A NormativeBoard, on the other hand, is automatically generated
when a SchemeBoard is linked to a GroupBoard.

CHAPTER 5. DEVELOPMENT 57

Figure 5.5: Sequence UML diagram of the deployment of an organization. The
responses are omitted to improve the readability.

Therefore, to correctly instantiate the organizational artifacts and have
them refer to the same organization, the Web IDE has to perform a POST re-
quest to the workspace/:workspaceName/artifacts/ endpoint to create the
OrgBoard artifact, and then, once the latter is created, perform a POST request
to the workspace/:workspaceName/artifacts/:orgName/create* endpoints
to create the other artifacts.

5.3.4 Organizations’ Deployment

Deploying an organization is a process that includes the creation of the cor-
rect organizational artifacts and the adhesion of the agents to the organization,
i.e. playing the established roles in the prescribed groups.

In fig. 5.5 the typical deployment process of a simple organization is shown.

1. The Web IDE first sends a request to Yggdrasil to create the OrgBoard

artifact, which is the artifact that represents the organization.

2. Once the artifact is ready, the Web IDE creates the groups specified in
the organization entity. For each group, a createGroup request is sent

58 CHAPTER 5. DEVELOPMENT

to the OrgBoard artifact, which creates the GroupBoard artifact that
represents the group.

3. The next step involves telling the agents to play the roles specified in the
organization entity inside the groups. To do so, the Web IDE sends
a message to the agents, which know how to send a request to the
GroupBoard artifact to play the role.

4. Subsequently, the Web IDE sends a request to create the scheme of the
organization. This request is sent to the OrgBoard artifact, which creates
the SchemeBoard artifact that represents the scheme.

5. Finally, the Web IDE sends a request to add the scheme to the groups.
This request creates a link between the SchemeBoard artifact and the
GroupBoard artifacts and a NormativeBoard is automatically generated.

6. Since the agents are listening to events generated by the GroupBoard

artifacts, they will receive a notification telling them to achieve the goals
specified in the scheme.

7. If the agents are obliged to achieve the goals, they will proceed to do so.
On the other hand, if the agents are permitted to achieve the goals they
will do so only if they have an interest in it.

Chapter 6

Evaluation

After developing a working prototype of the whole system, the next step
was to prove that the solution satisfies the requirements.

This chapter describes the evaluation of the developed system. In particu-
lar, the evaluation is divided into two parts:

1. the first part involves the use of the developed system to solve a real-
world problem;

2. the second part is a qualitative evaluation of the developed visual lan-
guage and development environment by users;

As already mentioned, this twofold evaluation approach allows for assessing
the user-friendliness of the development environment and the effectiveness of
the visual language on one hand, and the expressivity and correctness of the
latter on the other.

6.1 Case Study

In order for users to have a real-world problem to solve, both during the
design phase with the focus group and during the evaluation phase with the
end users, a use-case scenario was developed.

6.1.1 Smart-Farming Scenario

Since the IntellIoT project already defines three sectors of application,
namely Agriculture, Healthcare and Manufacturing, the most natural choice
was to use one of them to frame the case study. The Agriculture sector was
chosen because it involves concepts that are easy to understand even for non-
experts and it is possibly the most diverse.

59

60 CHAPTER 6. EVALUATION

Therefore, the case study was developed around the Smart Farming sce-
nario where the aim is to define an organization for a typical farm that adopts
IoT technologies. Here is reported the text of the scenario:

Thanks to his investments, the farmer obtained the most cutting-
edge technology machines to make his life easier. After obtaining
this technology, the farmer wants to organize the management of
the daily chores of his “smart farm” by exploiting the machinery
he possesses, which includes a self-driving tractor, multiple drones,
an automatic irrigation system, and devices to take care of the
animals.

With the acquired machinery, the farmer must irrigate the fields,
which is highly demanding. Therefore, the farmer purchased drones
to improve the process of checking the soil and gathering informa-
tion such as temperature and humidity, which the irrigator can use
to calculate the amount of water needed. The drones not employed
for the former tasks will eliminate the moths and bugs that haunt
the cultivation.

In addition, the farm always has a field that is currently not used
to grow any crop. However, the tractor must still plow the soil in
that field. To perform this function, it will need a set of waypoints.
The tractor can either have them computed by a drone flying over
the field or as direct input from the farmer.

Finally, the farmer wants to harvest mature fruit and vegetables
(we can assume that the tractor knows how to harvest). After the
harvest, the tractor can spray the field with pesticides to protect
the crop.

As far as the animals are concerned, the farmer wants to feed them
and have a daily health check-up for every animal. Moreover, he
wants to collect the eggs from the hens and milk the cows and the
goats. It is worth mentioning that, during years of experience, the
farmer noticed that feeding the animals before their health check-
up makes them quieter, and the cows and the goats calmer when
they get milked.

6.1.2 Use-Case Analysis

Although not only one solution is possible for this example, here a reference
one is described. The approach to the problem, analogous to the one explicitly
suggested to the focus group and to end users, consists of the following steps:

CHAPTER 6. EVALUATION 61

• identify the roles of the organization;

• identify the groups of the organization;

• identify the tasks to be performed and possible relations between them;

• identify which roles are responsible for the tasks.

In particular, the approach used to solve the case study follows some simple
guidelines. As far as task decomposition is concerned, there could be different
reasons why a task may be split into subtasks. For instance, a task may be
too complex to be performed by a single agent since it needs the capabilities of
multiple agents. Another reason may be that a task takes too much time to be
performed atomically and it is better to split it into smaller tasks. Moreover,
a task may be decomposed into subtasks to use the achievement of a subtask
as a precondition for the achievement of another task. Finally, a task may be
split into subtasks to allow for parallel execution of the subtasks by multiple
agents.

On the other hand, when it comes to the definition of the roles, the ap-
proach mainly relies on the identification of a set of capabilities that the agent
playing that role should provide in order to perform the tasks assigned to it.
For instance, referring to the “write paper” example in fig. 4.1, the role of the
writer is defined by the capability of writing the sections of a paper, there-
fore agents playing that role can successfully perform the tasks regarding the
writing of the section of the paper.

Roles

The approach to the problem starts by identifying the roles of the organi-
zation. The ones defined for the case study are:

• Tractor Pilot which will be played by agents that can drive a tractor.
This role is abstract and can be specialized in:

– Soil Plower: played by an agent capable of plowing the soil;

– Harvester: played by an agent that can harvest the crops;

• Drone Pilot which, in an analogous way to the tractor pilot, will be
played by agents that can control a drone. This role is abstract and can
be specialized in:

– Temperature Checker: played by an agent that can measure the
temperature;

62 CHAPTER 6. EVALUATION

– Humidity Checker: played by an agent that can measure the
humidity;

– Bugs Eliminator: played by an agent that can kill bugs;

• Irrigation System: played by an agent that can irrigate the fields;

• Animal Feeder: played by an agent that can feed the animals;

• Vet: played by an agent that can perform a health check-up on the
animals;

• Product Collector: played by agents that can collect the products
from the animals. It is an abstract role that can be specialized in:

– Egg Collector: played by an agent that can collect the eggs from
the hens;

– Milk Collector: played by an agent that can collect the milk from
the cows and the goats;

Groups

Once the roles are identified, the next step is to identify the groups of the
organization. In particular, the groups are defined as follows:

• Farm Group: it is a group of agents that can perform the tasks related
to the farm. In this scenario, there are no roles that directly belong to
this group. However, it contains the following subgroups:

– Field Group: a group of agents that can perform the tasks re-
lated to the fields. The roles that belong to this group are: Soil
Plower, Harvester, Temperature Checker, Humidity Checker, Bugs
Eliminator, and Irrigation System;

– Animal Group: a group of agents that can perform the tasks
related to the animals. The roles that belong to this group are
Animal Feeder, Vet, Egg Collector, and Milk Collector.

Tasks/Goals

The next step involves identifying the tasks, or goals, to be performed and
the possible relations between them.

The first goal encountered is Irrigate Field. However, the latter needs some
intermediate steps to be achieved and, therefore, it has dependencies on other
goals. In particular, the Calculate Water is needed so that the irrigator knows

CHAPTER 6. EVALUATION 63

how much water to use. In turn, the Calculate Water goal needs the Measure
Temperature and Measure Humidity goals to be achieved.

Proceeding with the scenario, the next goal is Eliminate Bugs. The Elimi-
nate Moths goal could be also identified, but, for simplicity, it is not considered.

The next goal is Plough Field that needs either the Compute Waypoints or
the Input Waypoints goals to be achieved, therefore it depends on them with
an or relation.

Next, the Harvest goal is identified, which also enables the Spray Pesticides
goal.

Finally, the goals concerning the animals are defined. In particular, the Feed
Animals, Health Check-Up, and Collect Products goals are identified. The lat-
ter can be further specialized in Collect Eggs and Collect Milk. In turn, Collect
Milk needs the Milk Cows and Milk Goats goals to be achieved. Moreover, the
Feed Animals goal enables all the other goals related to the animals.

As far as the assignation of the goals to the roles is concerned, table 6.1
shows the result of the analysis:

Goal Responsible Role
Irrigate Field Irrigation System
Calculate Water Irrigation System
Measure Temperature Temperature Checker
Measure Humidity Humidity Checker
Eliminate Bugs Bugs Eliminator
Plough Field Soil Plower
Compute Waypoints Drone Pilot
Harvest Harvester
Spray Pesticides Tractor Pilot
Feed Animals Animal Feeder
Health Check-Up Vet
Collect Products Product Collector
Collect Eggs Egg Collector
Collect Milk Milk Collector
Milk Cows Milk Collector
Milk Goats Milk Collector

Table 6.1: Assignation of the goals to the responsible roles.

6.2 Solution with the Visual Language

In this section, a solution for the above scenario using the developed visual
language is presented.

64 CHAPTER 6. EVALUATION

Figure 6.1: Solution for the structure of the organization.

In fig. 6.1 the solution regarding the structure of the organization is pre-
sented. The outermost rectangle represents the Farm Group that contains two
subgroups, Animal Group and Field Group, depicted by the two inner rect-
angles. The three circles that are not placed inside any group represent the
abstract roles Product Collector, Tractor Pilot, and Drone Pilot. As
for the other roles, they are concrete and therefore placed inside their corre-
sponding group. Some of them extend the abstract roles, as is the case of
Egg Collector and Milk Collector that extend Product Collector. Fi-
nally, the cardinality of the roles inside the groups is represented in the form
<min,max>. For instance, the Bugs Eliminator role has to be played by at
least 1 agent and at most 10 agents while all the other roles have to be played
by exactly 1 agent.

CHAPTER 6. EVALUATION 65

Figure 6.2: Solution for the behavior of the organization.

As far as the behavior of the organization is concerned, fig. 6.2 shows its
solution with the visual language. For instance, the Collect Products goal
requires the Collect Milk and Collect Eggs goals to be achieved, therefore,
it depends on them with an and relation. The latter is represented by the solid
arrows that connect the enabler goals to the enabled goal. Indeed, the use of
dashed arrows would indicate an or relation, like the one between the Compute
Waypoints and Input Waypoints goals and the Plough Field goal. In turn,
the Collect Milk goal requires the Milk Cows and Milk Goats goals to be
achieved. Again, the former depends on the latter goals with an and relation.
Moreover, the Milk Cows and Milk Goats goals need the Feed Animals goals
to be achieved in order for them to be pursued. Finally, the latter goal also
enables the Health Check-Up goal.

To conclude, the assignation of the goals to the roles is represented by the
presence of the circle corresponding to the role inside the rectangle representing
the goal. For instance, the Vet is responsible for the Health Check-Up goal.

66 CHAPTER 6. EVALUATION

6.3 Users’ Test

Due to the shortage of time, it was nearly impossible to gather a large
number of users to test the developed visual language. Moreover, even though
the target users for the system are domain experts, finding them and having
them test the system would not have been feasible.

Thus, the users’ test was performed on a small number of people from the
research group. Since the users have a background in computer science and
some of them are familiar with the domain of the scenario, the result was
expected to be slightly optimistic but still useful to evaluate the usability of
the system.

6.3.1 Test Description

The test consisted in asking the users to provide a solution for the smart-
farming scenario using the Web IDE and therefore exploiting the designed
visual language. The vast majority of the users were already familiar with the
scenario since they participated in the focus group sessions that helped the
design of the visual language itself. They were also asked to think aloud while
they were building the solution, so that possible doubts could be clarified,
mainly about the meaning of the concepts of the organization model such as
roles, groups, and goals.

After the users had provided their solutions, they were asked to provide
feedback through a short questionnaire. The latter was composed of a few
questions about every step of the process, from the identification of the core
concepts of the organizations to the use of the Web IDE to build the solution.

The questions were designed to evaluate the usability of the system and the
visual language on one hand, and the effectiveness of the organization model
on the other, that is the ability of the model to represent the organization
in a way that is natural and understandable for the users. Specifically, the
questions were modeled as statements such as It was easy for me to identify
what roles are needed in the organization and It was easy for me to create the
roles using the IDE.

The participants were asked to rate the statements on a scale from 1 to 5,
where 1 means that they strongly disagreed with the statement and 5 means
that they strongly agreed with the statement.

6.3.2 Results

Even though some of the users needed some hints to get started, all of
them were able to provide a solution for the scenario in an acceptable amount

CHAPTER 6. EVALUATION 67

of time, with the average time being around 25 minutes.

All the solutions provided by the users produce a syntactically correct or-
ganization specification, which means that no errors will be encountered when
the system tries to deploy the organization. However, the solutions provided
by the users are not all necessarily semantically correct, that is, they might
not represent the organization in a way that completely matches and satisfies
the requirements of the scenario.

What the users most struggled with was the identification of the roles and
the groups. Specifically, they had difficulties in distinguishing the concepts of
agents and the roles played by them. Moreover, some of them had difficulty
understanding that roles have to be inserted in groups. On the other hand,
the users easily understood the concept of goals and were able to identify them
in the scenario together with the relations between them.

However, once the users were explained the meaning of the concepts and
some fundamentals of the organization model, they were able to provide a
solution for the scenario in a short amount of time.

As far as the use of the Web IDE is concerned, all the users had no issues
in creating the visual components and interacting with them. What is more,
the navigation through the different pages of the IDE was straightforward for
all the users.

Therefore, these results show that the visual language is intuitive and that
the Web IDE is easy to use. As far as the organization model is concerned, it
appears to be effective in representing the organization powerfully and flexibly,
even though some of the users do not inherently reason about organizations in
terms of the model’s concepts. Nevertheless, it turned out to be simple enough
to be easily understood by the users when they are briefly introduced to the
main concepts.

In fig. 6.3 and fig. 6.4 the ratings of the statements are shown. The first
figure shows the results for the statements related to the organization model,
that is the identification of the core concepts of the organization. On the other
hand, the second figure shows the results for the statements related to the use
of the Web IDE. Each color represents a step of the process of the test, that is,
the identification and creation of the roles, groups, goals, dependencies among
goals, and the assignation of goals to roles, respectively.

According to the feedback provided by the users, the result of the test is
extremely positive. As already stated, the results were expected to be slightly
optimistic since the users are familiar with the domain and the organization
model. However, the results show that the organization model is effective in
representing the organization and that the visual language is intuitive and easy
to use.

Finally, it is worth noting that the user that provided the most complete

68 CHAPTER 6. EVALUATION

solution for the scenario was a computer science student who had never heard
of MAS organizations before, proving that there is no need for a specific back-
ground and previous experience to define one.

1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5 Roles
Groups
Goals

Dependencies among goals
Goals assignation to roles

Figure 6.3: Average rating of the statements concerning the identification of
the main concepts of the organization model.

1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

3

4

5 Roles
Groups
Goals

Dependencies among goals
Goals assignation to roles

Figure 6.4: Average rating of the statements concerning the ease of use of the
Web IDE when defining the concepts.

Conclusions

Main Contribution

As stated multiple times in this document, the main contribution of the
thesis work is the application of visual programming techniques to the Multi-
Agent Oriented Programming (MAOP) paradigm aiming at overcoming the
challenges that come from the coordination of single entities in a way that is
accessible by non-technical domain experts.

This project represents the natural evolution of the previous work from
[8] that was also carried out at the University of St. Gallen and that was
focused on the development of a visual programming paradigm for software
agents. Indeed, it moves a step forward toward the vision for an accessible
Integrated Development Environment (IDE) that mixes Multi-Agent Oriented
Programming and Hypermedia in a seamless interface for both humans and
software agents.

The work culminated in the development of a prototype of the system that
was tested and evaluated on a sample of users and gave promising results in
terms of usability, user-friendliness, and correctness. However, a long path was
taken to reach this point.

The development steps were first focused on the analysis of the require-
ments coming from the IntellIoT project, the research interest of the hosting
group, and the already implemented agent’s IDE. Then the analysis of the
tools and technologies used by the research team brought to the identification
of MOISE and the JaCaMo meta-model as a starting point to implement the
solution.

The next step involved the analysis of the MOISE specifications, its core
concepts, and the gathering of a focus group to identify the building blocks of
the visual programming language in a way that would be as understandable
as possible for the target users.

The implementation of an interface supporting the usage of the visual lan-
guage followed, alongside the development of a storage and backend to provide
the persistence of the organization specifications created.

69

70 CONCLUSIONS

Finally, the Web IDE was integrated with the existing runtime environment
to allow the execution of the organizations created by the users, therefore
allowing the full cycle of development and deployment of the organizations.

The prototype subsequently underwent an evaluation study, first trying to
address a rather complex real-world scenario, and then testing the usability of
the system with a small sample of users in contact with the tool for the first
time and with little to no explanation of its functionalities.

Overall, this thesis brought to the realization of a usable tool that can be
used by non-technical users to create and deploy organizations in a way that
is accessible and understandable for them. Most important, this opened a lot
of potential directions for future work, as the system is still in its early stages
on one hand, and it enables new research threads on the other.

Open Challenges and Future Work

Working on a project that touches multiple and diverse research fields,
that relies on currently developing technologies, and in an environment that
encourages the exploration of new ideas and the interaction with colleagues
from different backgrounds and working on different research topics, can only
result in a continuous flow of new questions and new directions to explore. Of
course, the thesis work cannot follow all the possible paths and therefore a lot
can be done to improve the existing solution and expand it.

First of all, the development of the visual language is an ongoing process
that requires more iteration than the ones it was possible to carry out to
be able to refine the visual building blocks and make them more intuitive
and accessible for the users. Indeed, a lot of work is still needed to find the
right visual abstractions to represent the core concepts that might require the
exploration of different visual paradigms and the gathering of more feedback
from the users.

Moreover, some concepts of the MOISE specifications were purposefully
left out of the visual language, both for time constraints and for the need to
keep the language as simple as possible. However, more advanced users might
find it useful to have access to these concepts. Therefore, a way to extend the
visual language to include them should be explored.

As far as the Web IDE is concerned, the current implementation only sup-
ports the creation of organizations and their deployment on the runtime en-
vironment. However, it would be extremely interesting to add the possibility
to monitor the state and development of the organizations and to provide a
way to interact with them. This way, the user could be involved not only at
design time but also at runtime, promoting the human-in-the-loop approach

CONCLUSIONS 71

the IntellIoT project is based on.
Regarding the runtime environment, for the time being, the user has to

manually choose the agents that will participate in the organization and as-
sign them the roles they should play. However, it would be interesting to
explore the possibility of automatically assigning roles to the agents based on
their capabilities. Indeed, some members of the research group are currently
working on the development of a framework based on costs and rewards that
are assigned to the agents when they adopt a certain role and achieve the
goals the role is responsible for. This is a promising direction toward self-
organization and re-organization in Multi-Agent Systems that will be for sure
explored in the future.

As far as the technologies used are concerned, lately, a lighter version of
MOISE has been developed, calledMOISE simple 1, that, as the name suggests,
should be easier to use for domain experts. Therefore, it could be fruitful
to compare the two approaches and analyze the tradeoffs in terms of user-
friendliness and expressiveness.

Hopefully, given the interest in the project from both the research group
in St. Gallen and the one in Cesena, some of these directions can be explored
in future research projects.

1https://github.com/moise-lang/moise/tree/master/src/main/java/ora4mas/

simple

https://github.com/moise-lang/moise/tree/master/src/main/java/ora4mas/simple
https://github.com/moise-lang/moise/tree/master/src/main/java/ora4mas/simple

Acknowledgments

This thesis and my academic years would not have been the same without
the many inspiring people that I have met along the way. Therefore, I would
like to express my gratitude to my mentors, colleagues, and friends that have
supported me during this journey.

Firstly, I would like to thank my supervisor, Prof. Alessandro Ricci for
transmitting to me his passion for his research topics through his enthusiasm
when teaching, and for giving me the opportunity to live such a unique ex-
perience by connecting me with some of the brightest people in the field of
Multi-Agent Systems.

Then I would like to thank Samuele Burattini for always being there during
the development of this thesis, for your reassurance and support, and for your
precious advice. I wish you all the best for a successful and rewarding academic
career.

I would also like to thank everyone I had the pleasure to work with in St.
Gallen while working on this thesis, especially Prof. Simon Mayer, Prof. Andrei
Ciortea, and Jérémy Lemée for their continuous support and for introducing
and guiding me into the world of research. From the first day I arrived in
St. Gallen, you made me feel at home and part of your group, and I am truly
grateful for that. Thank you for all the interesting discussions, the lovely lunch
chats, and for sharing your knowledge and experience with me.

Speaking of St. Gallen, I would also like to thank my flatmate Sebastian and
my friends Lukas and Jennifer for making my stay there so enjoyable, letting
me have some fun after long days of work, and supporting me when work was
overwhelming and through sad and difficult times. In such a short time, we
have been able to share so much and you have become such an important part
of my life.

I want to thank my family for their unconditional everyday support and
their help. Thank you for allowing me to keep studying and following my
passions. I know that sometimes I am not the most open and outgoing person,
but I truly appreciate all the love and care you give me.

Even though probably words are not enough to express my gratitude, I still
want to try and thank the members of what I call my second family. First of

73

74 ACKNOWLEDGMENTS

all, Simone whom I met during my first year of university and who had the
burden to put up with me since. Hopefully, we can yell at each other some
more when working together on other projects in the future. Equally, I would
like to thank Marta and Martina. We have shared quite possibly all the joy
and sorrow of our master’s degree. You have always made me feel understood
and appreciated, and I am infinitely grateful for that.

Last but not least, I would like to thank all the individuals whom I have met
during this journey and who contributed to making my university experience
valuable and unique.

Bibliography

[1] Hosny Ahmed Abbas. Organization of multi-agent systems: An overview.
International Journal of Intelligent Information Systems, 4(3):46, 2015.

[2] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, et al. Understanding the mirai botnet. In
26th USENIX security symposium (USENIX Security 17), pages 1093–
1110, 2017.

[3] Marie Baezner and Patrice Robin. Stuxnet. Technical report, ETH Zurich,
2017.

[4] Olivier Boissier, Rafael H Bordini, Jomi Hubner, and Alessandro Ricci.
Multi-agent oriented programming: programming multi-agent systems us-
ing JaCaMo. MIT Press, 2020.

[5] Olivier Boissier, Jomi F. Hübner, and Alessandro Ricci. The JaCaMo
Framework, pages 125–151. Springer International Publishing, Cham,
2016.

[6] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Program-
ming multi-agent systems in AgentSpeak using Jason. John Wiley & Sons,
2007.

[7] Michael Bratman. Intention, Plans, and Practical Reason. Cambridge:
Cambridge, MA: Harvard University Press, 1987.

[8] Samuele Burattini, Alessandro Ricci, Simon Mayer, Danai Vachtsevanou,
Jérémy Lemee, Andrei Ciortea, and Angelo Croatti. Agent-oriented visual
programming for the web of things. 2022.

[9] Andrei Ciortea, Olivier Boissier, and Alessandro Ricci. Engineering world-
wide multi-agent systems with hypermedia. In Engineering Multi-Agent
Systems, pages 285–301, Cham, 2019. Springer International Publishing.

75

76 BIBLIOGRAPHY

[10] Andrei Ciortea, Olivier Boissier, Antoine Zimmermann, and Adina Magda
Florea. Give agents some rest: Hypermedia-driven agent environments. In
Amal El Fallah-Seghrouchni, Alessandro Ricci, and Tran Cao Son, editors,
Engineering Multi-Agent Systems, pages 125–141, Cham, 2018. Springer
International Publishing.

[11] Andrei Ciortea, Simon Mayer, Fabien Gandon, Olivier Boissier, Alessan-
dro Ricci, and Antoine Zimmermann. A decade in hindsight: The missing
bridge between multi-agent systems and the world wide web. In Proceed-
ings of the International Conference on Autonomous Agents and Multia-
gent Systems. May 2019.

[12] Maria-Francesca Costabile, Daniela Fogli, Catherine Letondal, Piero Mus-
sio, and Antonio Piccinno. Domain-expert users and their needs of soft-
ware development. In HCI 2003 End User Development Session, 2003.

[13] Salem Ben Dhaou Dakhli and Mouna Ben Chouikha. The knowledge-gap
reduction in software engineering. In 2009 Third International Conference
on Research Challenges in Information Science, pages 287–294, 2009.

[14] Andrea Facchinetti, Giovanni Sparacino, Stefania Guerra, Yoeri M Luijf,
J Hans DeVries, Julia K Mader, Martin Ellmerer, Carsten Benesch, Lutz
Heinemann, Daniela Bruttomesso, et al. Real-time improvement of con-
tinuous glucose monitoring accuracy: the smart sensor concept. Diabetes
care, 36(4):793–800, 2013.

[15] Roy T. Fielding. Architectural styles and the design of network -based
software architectures. PhD thesis, 2000. Copyright - Database copy-
right ProQuest LLC; ProQuest does not claim copyright in the individual
underlying works; Last updated - 2022-10-29.

[16] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
web architecture. ACM Trans. Internet Technol., 2(2):115–150, may 2002.

[17] Dominique Guinard. A web of things application architecture: Integrating
the real-world into the web. PhD thesis, ETH Zurich, 2011.

[18] Mahdi Hannoun, Olivier Boissier, Jaime S. Sichman, and Claudette
Sayettat. Moise: An organizational model for multi-agent systems. In
Maria Carolina Monard and Jaime Simão Sichman, editors, Advances in
Artificial Intelligence, pages 156–165, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

[19] Carl Hewitt. Viewing control structures as patterns of passing messages.
Artificial intelligence, 8(3):323–364, 1977.

BIBLIOGRAPHY 77

[20] BRYAN HORLING and VICTOR LESSER. A survey of multi-agent orga-
nizational paradigms. The Knowledge Engineering Review, 19(4):281–316,
2004.

[21] Jomi F. Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. In-
strumenting multi-agent organisations with organisational artifacts and
agents. Autonomous Agents and Multi-Agent Systems, 20(3):369–400,
2010.

[22] Jomi F. Hubner, Jaime S. Sichman, and Olivier Boissier. Developing or-
ganised multiagent systems using the moise+ model: programming issues
at the system and agent levels. International Journal of Agent-Oriented
Software Engineering, 1(3-4):370–395, 2007.

[23] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Moise+:
Towards a structural, functional, and deontic model for mas organization.
In Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems: Part 1, AAMAS ’02, page 501–502, New
York, NY, USA, 2002. Association for Computing Machinery.

[24] Alan Turing Institute. Multi-agent systems. Accessed January
11, 2023 https://www.turing.ac.uk/research/interest-groups/

multi-agent-systems.

[25] N. Jennings and M. Wooldridge. Software agents. IEE Review, 42(1):17–
20, 1996.

[26] Nicholas R Jennings. On agent-based software engineering. Artificial
intelligence, 117(2):277–296, 2000.

[27] Seung-Kyun Kang, Rory KJ Murphy, Suk-Won Hwang, Seung Min Lee,
Daniel V Harburg, Neil A Krueger, Jiho Shin, Paul Gamble, Huanyu
Cheng, Sooyoun Yu, et al. Bioresorbable silicon electronic sensors for the
brain. Nature, 530(7588):71–76, 2016.

[28] Donald J. D. Mulkerne. Pert! what? why? how? The Journal of Business
Education, 48(3):111–114, 1972.

[29] Alessandro Ricci, Michele Piunti, Mirko Viroli, and Andrea Omicini.
Environment Programming in CArtAgO, pages 259–288. Springer US,
Boston, MA, 2009.

[30] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Give agents their
artifacts: The a&a approach for engineering working environments in mas.

https://www.turing.ac.uk/research/interest-groups/multi-agent-systems
https://www.turing.ac.uk/research/interest-groups/multi-agent-systems

78 BIBLIOGRAPHY

In Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’07, New York, NY, USA, 2007.
Association for Computing Machinery.

[31] Yoav Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

[32] Balaji Varanasi and Sudha Belida. HATEOAS, pages 165–174. Apress,
Berkeley, CA, 2015.

[33] World Wide Web Consortium (W3C). Web of things.
https://www.w3.org/WoT/.

[34] World Wide Web Consortium (W3C). Web of things thing description.
https://www.w3.org/TR/wot-thing-description10/.

[35] Danny Weyns, Robrecht Haesevoets, and Alexander Helleboogh. The ma-
codo organization model for context-driven dynamic agent organizations.
ACM Trans. Auton. Adapt. Syst., 5(4), nov 2010.

[36] Danny Weyns, Andrea Omicini, and James Odell. Environment as a first
class abstraction in multiagent systems. Autonomous agents and multi-
agent systems, 14(1):5–30, 2007.

[37] Michael Wooldridge. An introduction to multiagent systems. John wiley
& sons, 2009.

	Introduction
	Context, Motivations and Research Proposal
	The IntellIoT Project
	Mission
	Use Cases

	Domain-Expert Programming
	Agent-Oriented Visual Programming
	Proposing a Visual Programming Paradigm for Organizations

	Background
	Multi-Agent Systems
	What is an Agent?
	From the Individual to the Collective

	Multi-Agent Oriented Programming
	Environment in Multi-Agent Systems
	Organization in Multi-Agent Systems
	The JaCaMo Platform

	Hypermedia Multi-Agent Systems
	The World Wide Web
	The Web of Things
	Web-based Multi-Agent Systems
	The Bridge between the Web and Multi-Agent Systems

	Requirements
	MOISE Features
	Structural Dimension
	Functional Dimension
	Normative Dimension
	Organization Execution

	Functional Requirements
	Non-Functional Requirements

	Design
	A Visual Language for Organizations
	The Visual Paradigm
	Reference Language
	Focus Group

	Visual Language Design
	Structure of the Organization
	Behavior of the Organization

	Main Components and Architecture
	Web-based IDE
	Storage & Backend
	Runtime Environment

	Development
	Web-based IDE
	Web User Interface
	Technologies
	Code Generation

	Storage & Backend
	Storage
	Backend

	Running Organization Entities
	Runtime Environment
	Running Agents
	Artifacts Creation
	Organizations' Deployment

	Evaluation
	Case Study
	Smart-Farming Scenario
	Use-Case Analysis

	Solution with the Visual Language
	Users' Test
	Test Description
	Results

	Conclusions
	Acknowledgments

