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Abstract

The last few decades have seen significant technological advancements in computing, the
internet, and mobile technology, leading to the growth of the Internet of Things (IoT).
This has resulted in a network of physical devices embedded with sensors, software, and
connectivity, which can collect and share data. However, this growth has also brought
new challenges, such as the need for complex software engineering to take advantage
of the computational infrastructure available while considering unpredictability and
communication heterogeneity.
This thesis explores the aggregate programming, which is a paradigm based on field

calculus, and it allows for the easy manipulation of data across devices, making it possible
to perform operation on the data of distributed systems, in a simple and efficient manner.
The paradigm has been implemented in various programming languages and platforms,
such as Protelis, Scafi and FCPP.
This thesis proposes a new implementation of the aggregate programming paradigm,

called Collektive.
The aggregate programming paradigm requires the communication of the devices to
be coordinated through the alignment, which keeps track of the computational state of
each device. The work done in this thesis explores different Kotlin metaprogramming
techniques in order to solve this problem, illustrating the final solution achieved through
the implementation of a Kotlin compiler plugin, which is totally transparent and portable.
The project provides the user a minimal DSL, which is compatible with multiple

platforms, such as JVM, JavaScript and Kotlin Native. This is possible because of the
features offered by Kotlin Multiplatform, which is used for the implementation of the
DSL. Moreover, this thesis addresses the validation process carried out to test the correct
behavior of the system, which guarantees that Collektive can be considered at the same
level of the existing aggregate programming implementations.

ix



Chapter 1

Introduction

In the last few decades, there has been a significant technological development in various
fields. Computing technology has advanced rapidly, with the introduction of faster and
more powerful processors, and the widespread adoption of cloud computing.
The Internet has also become an integral part of modern life, connecting people and
devices across the globe; in addition, the development of faster and more reliable connec-
tivity networks has made it possible to transfer and share data at an even faster rate.
Mobile technology has grown exponentially, thanks to the adoption of smartphones and
other mobile devices.
One of the fields that has seen a substantial growth, due to the increasing availability and
affordability of devices, sensors and other components, is the Internet of Things (IoT).
The term IoT refers to the growing network of physical devices, vehicles, buildings and
other items that are embedded with sensors, software and connectivity, which enables
these Things to collect and share data. These capabilities have the potential to bring
significant benefits to society and economy, such as improving public services, increasing
efficiency and productivity, and reducing costs.
This technological development is closely connected with the growth of distributed

systems. As a consequence of the increase in computing power and the availability of
fast and reliable networks, it has become possible to allow devices and systems to work
together and share data, even when they are physically separated.
The general growth just discussed brought new challenges, such as the need of

engineering complex software which has to take full advantage of the computational
infrastructure available, taking in consideration the unpredictability of changes and the
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CHAPTER 1. INTRODUCTION

heterogeneity of communication required.
In order to face the new complexities it is necessary to rethink and renovate the

process of software development.
Aggregate Programming is a paradigm which aims to address these requirements. It

allows for the easy manipulation of data across devices, making it possible to perform
operation on the data of distributed systems, in a simple and efficient manner.
This paradigm has been implemented in different programming languages and plat-

forms: for example Protelis [1], Scafi [2] and FCPP [3]. All of them present strengths,
but also weaknesses: in order to address those, a new framework can be a solution.
In the following sections of this chapter, these themes are described in details, in

order to define the goal of this thesis. Specifically Section 1.1 describes the aggregate
programming characteristics and its main complexities, in Section 1.2 are introduced the
implementations of the aggregate paradigm that constitute the current state of the art,
and Section 1.3 presents the motivations behind this work and the goals that aims to
achieve.

1.1 Context

In this section it is going to be discussed in details the paradigm of Aggregate Programming,
in order to provide the context of its development and an overview about how the paradigm
works.

1.1.1 Aggregate Programming

Since the last few decades have witnessed technological advances, the traditional way of
engineering software is, in some cases, suboptimal.
The systems developed are becoming more and more complex, with requirements that
are sometimes difficult to achieve.
These challenges are enhanced when coming into terms with distributed systems,

because there is the need to handle the always increasing number of connected devices,
that share and compute data.
Some relevant complexities are the following [4]:

• Scalability: as the number of devices in a distributed system grows, the coordination

2



CHAPTER 1. INTRODUCTION

becomes increasingly complex. This requires the development of scalable algorithms
and protocols that can handle large numbers of devices;

• Heterogeneity and interoperability: in a distributed system, devices may be
made by different manufacturers and use different protocols, which can make it
difficult for them to communicate with each other. The interoperability between
heterogeneous devices and systems is a major challenge;

• Synchronization: devices are usually not connected to a common clock, which can
make it difficult to synchronize their activities. This can lead to inconsistencies and
errors within the system;

• Latency: the distance between devices in a distributed system can lead to high
latency, which can affect the performance of the system. Managing and reducing
latency is a challenge while coordinating numerous devices;

• Consistency: devices may have different views of the system state, which can lead
to inconsistencies. Guarantee consistency across devices can be challenging and
requires the development of distributed algorithms and protocols;

• Fault tolerance and error control: devices may fail or become disconnected, which
can disrupt the system. Ensuring fault tolerance and the ability to detect and recover
from failures is essential in this kind of systems;

• Security and privacy: coordinating devices in a distributed system requires the
sharing of sensitive information, which can create security risks.

Traditionally, the development of this kind of architectures is focused on the single
device, instead of the system as a whole. This means that the developers need to concern
about all the aspects just discussed, such as the coordination between devices, creating
specific algorithms, but also about security, consistency, fault tolerance, which creates
unnecessary complexities during the engineering of a system.
This approach is not feasible when dealing with large-scale, decentralized and adaptive
infrastructures, such as the one represented in Figure 1.1, which shows an example of a
real life environment, with numerous heterogeneous devices that need to communicate
with each others.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a real life environment, where heterogeneous devices have
the possibility to communicate with each other wirelessly creating complex distributed
systems [5]

Aggregate programming is a paradigm that focuses on the manipulation of complex
data structures as a whole, rather than their individual components [5]. The focus is on
what a system is required to do, rather than on how is going to achieve it.
This paradigm is closely related to the field calculus [6], a mathematical framework for
modeling and reasoning about distributed systems.
Aggregate programming in combination with field calculus, provides a powerful tool for
modeling, reasoning, and programming distributed systems. It allows for the efficient
manipulation of large and complex data in distributed systems, and facilitates the repre-
sentation of relationships and interactions between devices. It is a useful approach to
adopt for IoT and other distributed systems where scalability, coordination, and security
are critical concerns.

The basic concept used in aggregate programming is the computational field, which
is a mathematical function that assigns a value to each point in a space, and it is used to
represent and manipulate the state of a distributed system.
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CHAPTER 1. INTRODUCTION

In order to explain better what a computational field is and how it is used, it is
necessary to discuss the assumed computational model [7].
Supposing a program P executed by a network of devices defined by a dynamic neighboring
relationship. The computation of P can be analyzed by a local and a global point of view.
Considering the local perspective, P is computing on a round-based scheme in single
devices. A round is executed in the following steps:

• the device sleeps for a delta of time and at some point it wakes up;

• it retrieves the information received from neighbors while it was sleeping. The
messages sent by the neighbors are fields, and they map the neighbor device
identifier with the values computed;

• it gathers information about its context;

• it retrieves the information stored locally in the previous round about the context;

• it executes P, which might manipulate the data of the current context, the data
retrieved from the previous round and the neighbors values;

• at the end of the execution of P, the device stores the current context’s value in the
local memory and sent a message to all the neighbors about the current computation;

• at the end of the round, the device returns to sleep, until another round begins.

On the other hand, the global point of view is the key that makes aggregate com-
puting a powerful tool. In this case, the computation considers the entire network of
interconnected devices as a single, unified entity.
The data is represented as a distributed space-time field evolution, which maps the com-
putation events to values computed by devices.
A computational field is a snapshot of the state of the distributed system’s network at a
certain moment in time, which maps device identifiers to their values.
The main constructs provided by the field calculus are the following:

• Rep-expression rep(e0){(x) → e}

This is the repeat construct, and it represents the time evolution. This allows the
field to change dynamically: if in the previous round the rep expression has not

5



CHAPTER 1. INTRODUCTION

been evaluated, the initialization value is e0, otherwise it is the value obtained in
the last computation of rep;

• Nbr-expression nbr{e}

The neighboring is used to model the device-to-neighbor interaction. In order to
do this, it is necessary to construct neighboring fields: in this data structure each
event is associated to a value, that is mapped to a neighbor identifier and its last
value computed. Using this construct it is possible for a device to understand its
surrounding by manipulating the neighboring field obtained;

• Branching if(e0){e1}else{e2}
Branching causes a domain restriction, which means that devices compute e1 only
in the restricted domain where e0 is true, otherwise they compute e2. This behavior
and its consequences will be discussed in details in Section 1.1.1.1;

• Function calls e(e1, ..., en)
This construct model a function call where e evaluates to a field of function values.

As previously said, the data structures manipulated are distributed over space, and
they evolve over time. These two aspects are handled, in the case of field calculus, by
two separate constructs: the evolution in time is manipulated by rep-expression, the space
management, which provide neighbors interactions, is provided by the nbr-expression.
The use of time evolution and neighbor interaction operators in the traditional way leads
to a slowdown in the efficient spread of information. This is due to the separation of state
sharing (nbr) and state updates (rep), which requires information received through nbr
to be stored through rep in the local memory of the device before it can be passed on
during the next execution of nbr [8].

It is possible to overcome this limitation by extending the field calculus with a new
construct, which has been called share [8]. The share operator allows to observe the
neighbors’ field, updated the local values and sharing immediately the updated state in a
single computation. It is possible to observe the differences between the behavior of the
share operator and the combination of rep and nbr in Figure 1.2.
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Figure 1.2: Comparison between the combination of rep-expression and nbr-expression,
and the share construct [8]

1.1.1.1 Domain restriction: alignment

The expected consequence of a branch construct is to determine the portion of code that
is going to be computed. In the field calculus, the branch construct also has an unusual
behavior, which is called domain restriction.

1 i f ( e0 ) {e1} e l s e {e2}

Taking in consideration this portion of pseudocode, it is possible to identify two different
restricted subdomains:

1. Dtrue: this is how the domain is called when e0 is true;

2. Dfalse: the name of the domain in the case that the condition e0 is false.

For example, if a device is in the domain Dtrue, the following are the implications [7]:

• it does not compute e2, which is the typical branch behavior;

• if e2 involves a nbr-expression, this is not going to be evaluated by the considered
device. This means that the neighboring devices inDfalse can not obtain the value of
this device for the nbr-expression in e2, because it has not been computed. Similarly,
the nbr-expression in e1 evaluated by this device is not going to be shared from
Dtrue to Dfalse;

• if the device evaluated e2 instead of e1 in its previous round, then all the rep-
expressions in e2 are going to be computed using the initialization value.

7
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Given this behavior, the result is that devices operating in different subdomains are
computing in isolation. As a direct consequence of that they can not communicate with
each other unless they are in the same domain. This characteristic is called clustering,
which is an important feature: it allows restricting computations in subdomains in an
easy and efficient way, which is extremely useful in many use-cases.
The domain restriction is a crucial trait of aggregate programming, and it introduces

to a problem that, necessarily, has to be taken in consideration: different devices that
operate in a highly distributed system do not possess a shared memory that can be used
to keep track of the computation being executed on each device. On the other hand,
this domain restriction characteristic requires that each device must communicate only
with devices in the same subdomain, which means that they are computing the same
operation.
This is defined as the alignment problem, and it is necessary to explore all the

information of the system in order to find a solution.
First, it is important to keep in mind that each device has its own identifier, which

can be used to define the author of a message.
Second, when dealing with a computational field, such as when retrieving neighboring
values using a nbr-expression, the device is currently computing the operation that it is
actually looking for in the field.
In order to explain this concept better, here is a snippet of pseudocode:

1 i f ( e0 ) {nbr ( e1 ) } e l s e {nbr ( e2 ) }

When a device δ1 is in the domain Dtrue, it computes nbr(e1): this means that it is
retrieving from the neighbors that computed e1, while evaluating e1 itself.
Consequently, δ1 and the other devices have to be aligned in order to exchange information:
they are all in the same subdomain, in which e0 is evaluated as true, and they are
computing nbr(e1).
Given these concepts, it is possible to understand how to deal with the alignment problem:
thanks to the current computational location of a device, it is possible to understand
which values it is currently trying to retrieve, and, since each device has an identifier, the
values can be mapped to those identifiers. Then, combining all the information together,
a computational field is obtained.
One thing to notice is that the alignment is not a concern of the branch construct
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only. In general, the alignment feature is necessary all along an aggregate program, but it
can be more clearly noticed in the branch occurrences, which is the reason it has been
discussed as the first example.
Considering this pseudocode:

1 fun f1 () {nbr ( e1 ) }
2 fun f2 () {nbr ( e1 ) }
3

4 f1 ()
5 f2 ()

Even though the body of the functions f1 and f2 is the same, they are two different
expressions. This means that the neighboring expression in f1 is not the same of the one
in f2, and when one of the neighboring expression is retrieving the values computed by
the neighbors, it has to consider only its current computational location. For example if
the neighboring expression in f1 is executing, it has to get the neighbors’ evaluation of
the nbr(e1) inside the body of f1. The resolution of this problem is the same explained
for the branch expression.
Concluding, the alignment is provided by keeping track of the computational location,

which must be done every time an aggregate programming expression is involved. In this
way it is possible to solve any ambiguity that might appear during the computational
field construction.

1.2 State of the art

The aim of this section is to give an introduction about the state-of-the-art technologies
that have been developed in the field of aggregate programming. This overview is going
to take in consideration how each implementation works and the choices that led their
development, with the goal of depicting a representation of the context in which the
project of this thesis is going to be set in.

1.2.1 Protelis

Protelis [1] is a functional language inspired by Proto. It implements the field calculus
providing a modern specification language.

9
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The architecture is based on Java, and the reasons are multiple:

• Java is portable across different systems and devices;

• It is easy to import libraries and APIs;

• The variety of low-cost embedded devices that are able to support Java is increasing;

• Java optimizations in terms of speed and resources consumption are making it a
valid alternative to low-level languages, such as C.

Since Protelis is a functional language, but its syntax is Java-like, its adoption is not
difficult. For example, the following is a snippet of code written in Protelis, which is
used to calculate the distance between each device and the source, using the gradient
algorithm:

1 def myPosit ion () = s e l f . g e tDev i c ePos i t i on ()
2 def nbrRange () = nbr ( myPosit ion () ) . d is tanceTo (myPosit ion () )
3 share (d <− POSITIVE_INFINITY ) {
4 l e t shortestPathViaNeighborhood =
5 foldMin ( POSITIVE_INFINITY , d + nbrRange () )
6 i f ( env . has ( " source " ) ) {
7 0
8 } else {
9 shortestPathViaNeighborhood
10 }
11 }

Listing 1.1: Protelis example

Protelis is very versatile, and it can be used in a wide range of application domains. It
is possible to create Protelis modules and execute them in simulations using Alchemist [9],
which is a simulator for pervasive computing and distributed systems.

1.2.2 ScaFi

ScaFi [2] is a programming language and framework for Aggregate Programming. Its
name stands for Scala Fields, since it is built on top of the Scala programming language,
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which provides the functional programming paradigm and type-safe features. It also uses
the Akka framework for actor-based concurrency and the Java Virtual Machine (JVM) for
execution.
ScaFi implements a variant of field calculus, providing a domain-specific language

(DSL) and API in order to allow writing, testing and running aggregate programs.
One of the key features of ScaFi is its support for declarative programming, which

allows developers to specify the desired outcome of a computation, rather than how the
computation should be performed. This makes it easier for developers to write correct
and efficient distributed algorithms, as they can abstract away the low-level details of
communication and synchronization.
ScaFi aims to provide a high-level and type-safe programming interface for building

complex systems.
The combination of the Scala programming language, the Akka framework, and the JVM
provides a strong foundation for building scalable and robust distributed systems.
In particular, the choice of a JVM-based architecture has the same advantages discussed
previously for Protelis in Section 1.2.1, which are mainly portability, low-cost of devices,
diffusion and general JVM performances optimizations.

1.2.3 FCPP

FCPP [3] is a library in C++14, and it implements the field calculus.
It provides tools for simulation of distributed systems, and its extensible component-based
architecture makes it suitable for a wide range of application scenarios.
Differently from Protelis and ScaFi, FCPP does not rely on the Java Virtual Machine

(JVM). It is implemented in C++, which choice gives the following advantages:

• numerous devices support C++ architectures, making it possible deploy FCPP on
systems of any sort, which includes microcontrollers;

• C++ is performance-oriented, which means that the system requirements are very
low, increasing the variety of devices that can use FCCP.

These two features allow the coverage of multiple use-cases that were not possible to
handle using Protelis and ScaFi: for example the deployment on microcontroller-based
systems or cloud applications that have strict parallelism requirements in order to scale
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correctly, which is guaranteed by the performance improvements.
Since it is based on a lower level language that Protelis and Scafi, programs written in
FCCP might be difficult to understand when dealing with complex systems.

1.3 Motivation and goal

When talking about aggregate computing, there are several important features that must
be considered when comparing different aggregate programming frameworks, such as
ScaFi, Protelis, and FCPP.
After the analysis of the previous sections, it is possible to achieve the following conclusion:

• Protelis
It has a simple and expressive programming model, but its simplicity and expres-
siveness come at the cost of performances, as the framework does not provide much
control over the underlying data structures and algorithms. Moreover, Protelis
might not be the best choice for systems that require strong interoperability with
other systems and technologies, since it has a limited set of integrations;

• ScaFi
It has a strong focus on programmability and support for Scala, which can make
the system more complex and difficult to understand for developers who are not
familiar with the language or the functional programming paradigm. Additionally,
ScaFi may have a higher overhead compared to other frameworks due to its use of
a more expressive programming model;

• FCPP
The key aspects taken in consideration from FCPP are scalability and performance,
providing efficient algorithms and data structures for large-scale data processing.
These features can make the framework more complex and difficult to understand,
since it utilize a low-level programming model that requires a deep understanding
of algorithms and data structures.

These considerations highlight crucial weaknesses of the already existent frameworks
that the project of this thesis tries to overcome. Specifically, the project is an aggregate
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programming Domain-Specific Language (DSL) in Kotlin and the main features to achieve
are the following:

• Transparency: refers to the ability of the DSL to provide clear and concise informa-
tion about the underlying system’s behavior, such as how data is processed, stored,
and communicated between nodes in a distributed system. Transparency helps to
reduce the complexity of the system and makes it easier to understand and maintain,
especially in the case of large and complex systems;

• Minimality: refers to the design of the DSL to have as few constructs and abstractions
as possible while still providing all the necessary functionality. This makes the
system easier to understand, maintain, and debug. Minimality also helps to lower
the overhead associated with the use of the DSL, which is especially important for
systems that require high performance and scalability;

• Portability: refers to the ability of the DSL to run on different platforms and
environments, such as different operating systems, cloud platforms, and hardware
architectures. Portability helps to ensure that the systems built using the DSL can
be easily deployed and run in different environments, which is especially important
for systems that need to be deployed in multiple locations or need to scale to meet
changing demands.

The goal of this thesis is the study and the implementation of the aggregate program-
ming paradigm, facing the alignment problem discussed in Section 1.1.1.1, focussing on
transparency, minimality and portability.
The reminder of this thesis is organized as follows. Chapter 2 debates all the possibilities
of metaprogramming in Kotlin, and Chapter 3 explains in details the solution of the
alignment problem. Chapter 4 describes how the DSL is implemented, shows the end
usage result, and presents the validation process. Finally, Chapter 5 summarizes the work
done in this thesis, adding plans for future development.
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Chapter 2

Metaprogramming in Kotlin

A typical program computation can be summarized as follows: it reads data as input,
computes that data and generates an output.
Metaprograms1 are able to take as input another program, sometimes even the metapro-
gram itself, manipulate it and return a new version of it expressing a modified behavior.
In Figure 2.1 it is shown this difference with a representation of a simple program which
transforms the input data, and a metaprogram which, on the other hand, modifies an
entire input program generating an output program.

program

input input input

output

(a) Simple program

metaprogram

output
program

input
program

(b) Metaprogram

Figure 2.1: Representation of an execution of a simple program compared to a metapro-
gram

1https://devopedia.org/metaprogramming
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Metaprogramming in Kotlin2 is a powerful feature that allows for the manipulation
and generation of code at compile time. The possible benefits of this technique are:

• Code generation: it generates repetitive or boilerplate code automatically, reducing
the amount of code that needs to be written and maintained by hand. Consequently,
this can increase code readability and maintainability, as well as reducing the risk of
introducing bugs or errors, that can be easily done by humans during the executions
of repetitive tasks;

• Readability: it provides a higher level of abstraction, allowing to abstract away
complex logic and make code more readable and easier to understand. This can also
help to simplify the implementation of elaborated algorithms and data structures;

• Reusability: by generating code automatically, it is possible reuse the same logic
across multiple parts of applications, increasing overall code reuse and maintain-
ability;

• Supports Domain-Specific Languages (DSLs): it enables to create custom domain-
specific languages (DSLs) that are optimized for specific tasks or use cases, which
can help to simplify complex operations and make the code more readable and
intuitive;

• Custom annotations: it allows creating custom annotations, which can be used
to provide additional information about the code and to automate tasks such as
code generation. This can improve code quality and make it easier to understand
intentions and goals behind the code.

Themain cost that has to be paid when dealing with metaprogramming is the increased
language complexity.

2.1 Metaprogramming techniques

A multitude of different techniques can be used in Kotlin in order to create metaprograms.
In the following sections the main approaches provided by Kotlin are going to be analyzed

2https://www.droidcon.com/2022/04/28/meta-programming-with-kotlin-for-
android/
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in details, in order to give an overview of the possible alternatives when coming into
terms with metaprogramming.

2.1.1 Annotations

Annotations3 in Kotlin are a type of metadata that can be added to provide additional
information about the code, as well as to automate certain tasks.
To create a custom annotation in Kotlin, first it is necessary to declare the annotation

type, using the annotation keyword, as shown in the snippet of code in Listing 2.1.

1 annotation c lass MyAnnotation

Listing 2.1: Example of creation of a custom annotation in Kotlin

Kotlin provides the option to use additional attributes by annotating the annotation
class with meta-annotation. The available meta-annotation alternatives are:

• @Target: it is used to specify the elements that can be annotated, which can be
classes, functions, properties and expressions;

• @Retention: it defines if an annotation is stored in the compiled class files and if it
is visible at runtime using reflections;

• @Repeatable: it allows an annotation to be used on the same element multiple
times;

• @MustBeDocumented: it can be used when the annotation is part of a public API,
and it must be included in the generated API documentation.

For example, this is a possible custom annotation that uses meta-annotation:

1 @Target ( Annotat ionTarget . CLASS , Annotat ionTarget . FUNCTION)
2 @Retention ( Annotat ionRetent ion .RUNTIME)
3 annotation c lass MyAnnotation

Listing 2.2: Example of custom annotation with meta-annotations in Kotlin

In this snippet of code in Listing 2.2, the @Target annotation specifies the elements that
the annotation can be applied to, in this case either classes or functions. The@Retention

3https://kotlinlang.org/docs/annotations.html
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annotation refers to the retention policy, which determines that the annotation is available
at runtime.
Annotations can be used to provide metadata, such as the purpose of a function, the

intended usage of a class, or the preferred behavior of a method. One possible use case is
to use annotations to specify that a certain method should only be called on a background
thread, or that a certain class is serializable.
Another feature provided by annotations, which is considered metaprogramming, is

the possibility to use them to automate tasks, such as code generation. For example,
annotations can be used to automatically generate code for serializing and deserializing
objects.
It is possible to use the annotation in the code by placing the @ (at) symbol, followed

by the annotation type before the element that is going to be annotated, such as a class,
function, or property.
The snippet of code reported in Listing 2.3 shows how to actually use a custom annotation,
specifically the one created in Listing 2.2.

1 @MyAnnotation

2 c lass MyClass
3

4 @MyAnnotation

5 fun myFunction () {
6 val myVariable = 42
7 }

Listing 2.3: Example of usage of a custom annotation in Kotlin

In this example, the MyAnnotation annotation is applied to both a class and a function.
The annotations can be used by other code, either at compile time or at runtime, to
provide additional information about the annotated elements.

2.1.2 KSP

KSP stands for Kotlin Symbol Processing, and it is an API that can be used to build
lightweight compiler plugins4. It offers an easy compiler plugin API that takes advantage

4https://kotlinlang.org/docs/ksp-overview.html
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of Kotlin’s capabilities, but it keeps the learning curve low.
KSP has been developed as an alternative technology to kapt5, which was used to

allow annotation processing. Currently, kapt is in maintenance mode, meaning that it
is being kept up-to-date with the new Kotlin and Java releases, but without adding any
features.
In comparison to kapt, annotation processors that utilize KSP can be executed two times
faster.
Kotlin Symbol Processing is a feature of the Kotlin compiler that allows to manipulate

the code at compile time by processing the symbols contained in the code. As a conse-
quence of that, it is possible to write metaprogramming code that analyzes, transforms,
and generates other code, without the need to access the code at runtime.
KSP reads the source code, generates new modules, and during the compilation the Kotlin
compiler uses the original code and the generated source without distinctions, as it is
shown in Figure 2.2, creating one executing program.

KSP

Source code

Generated
source code

Kotlin Compiler

generates

reads

Figure 2.2: Representation of KSP behavior

This API allows processing Kotlin programs in a native way, with an understanding of
Kotlin-specifc features, which includes extension functions, local functions and declaration-
site variance. The API also models types explicitly, enabling type checking.
KSPmodels the structure of Kotlin programs, making class declarations, class members,

functions and parameters accessible for processing, while elements such as if blocks and
for loops are not.
It can also be seen as a preprocessor framework, making a KSP plugin a symbol processor
that follow three main steps:

1. It analyzes the source program and its resources;
5https://kotlinlang.org/docs/kapt.html
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2. It generates an output, which might be code or in another form;

3. Finally, the Kotlin compiler compiles the source program with the generated output.

Differently from a typical compiler plugin, KSP restricts processors from modifying
the source code, as it is considered read-only. This choice can be justified by the intention
to prevent confusion that may arise from a plugin that modifies the language semantics.
The source code, from the KSP perspective looks like this when being analyzed:

1 KSFi le
2 packageName : KSName
3 f i leName : S t r i ng
4 dec l a r a t i on s : L i s t<KSDeclarat ion>
5 KSClas sDec la ra t ion // c l a s s , i n t e r f a c e , ob j e c t
6 simpleName : KSName
7 quali f iedName : KSName
8 con t a i n i ngF i l e : S t r i ng
9 typeParameters : KSTypeParameter
10 paren tDec la ra t ion : KSDeclarat ion
11 c l a s sK ind : ClassKind
12 pr imaryConstructor : KSFunct ionDec larat ion
13 superTypes : L i s t<KSTypeReference>
14 // conta ins inner c l a s s e s , func t ions , p r ope r t i e s
15 dec l a r a t i on s : L i s t<KSDeclarat ion>

Listing 2.4: The source code from KSP perspective

The Listing 2.44 shows the data structure that is accessible using KSP. Specifically, in this
code it is contained a class declaration (KSClassDeclaration), and it is possible to get its
name, type, parameters, inner declarations, and so on.
This representation allows to have a complete overview of the code structure.
KSP expects two elements to be implemented: the SymbolProcessorProvider and

the SymbolProcessor.
The create function is invoked when KSP creates an instance of the SymbolProcessor: this
means that, without the SymbolProcessorProvider, it would not be possible to instantiate
a SymbolProcessor. The SymbolProcessorProvider is separated from the SymbolProcessor to
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allow more freedom during the development. The SymbolProcessorProvider interface is
defined like shown in Listing 2.54.

1 in ter face SymbolProcessorProvider {
2 fun c rea t e ( environment : SymbolProcessorEnvironment ) :
3 SymbolProcessor
4 }

Listing 2.5: SymbolProcessorProvider interface

In Listing 2.64 is shown the interface of the SymbolProcessor.
The only function that needs to be overridden is process, which is typically used to read
files and pass the elements to the visitors.

1 in ter face SymbolProcessor {
2 fun process ( r e s o l v e r : Reso lver ) : L i s t<KSAnnotated>
3 }

Listing 2.6: SymbolProcessor interface

The Resolver is the entry point of the functionalities provided by KSP: it can be used, for
example, to get all the files of the source code, the symbols with annotation, a class, or a
function declaration by name.
As many other compiler related APIs, KSP supports the visitor pattern, allowing to
examine each element in an object-oriented way.
For example, the code in Listing 2.74 reports an implementation of a visitor that inspects
the declarations and collects the function names in a list.

1 c lass F indFunc t i on sV i s i t o r : KSTopDownVisitor<Unit , Unit>() {
2 override fun v i s i t Fun c t i onDe c l a r a t i on (
3 func t ion : KSFunct ionDeclarat ion ,
4 data : Unit
5 ) {
6 f unc t i on s . add( func t ion . t oS t r i ng () )
7 }
8 }

Listing 2.7: Visitor that collects function declarations
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In conclusion, one of the biggest strength of KSP is that it provides an API built on top
of the compiler plugin: for this reason, it is able to hide the compiler changes, minimize
maintenance efforts, and its API makes possible to implement a light-weight compiler
plugin without the complexities and the knowledge required to create a real compiler
plugin.
On the other hand, since the goal of KSP is to be a simple solution for common problems,
it comes with some limitations 6:

• it can not examine expression-level information;

• it can not modify the source code, but it can only generate new code;

• it is not integrated within the IDE, meaning that the IDE does not have any infor-
mation about the code generated.

2.1.3 Kotlin compiler plugins

Kotlin compiler plugins7 are a way to extend the functionalities of the Kotlin compiler by
adding custom processing to the compilation. This means that the compiler plugin code
runs at compile-time, and, since this is a feature of kotlinc, it only works on Kotlin source
code.
Compiler plugins allow automating tasks and enforce coding standards. For example,

they can be used to generate boilerplate code, such as accessor methods, or to enforce
specific naming conventions or coding styles. Compiler plugins can also be used to
perform code analysis and modification, such as adding custom checks and warnings, or
refactoring the code automatically.
Kotlin compiler provides a powerful API, which makes it possible to even modify the

internals of functions and classes. This enables to solve metaprogramming problems that
were impossible using annotation processors, for example with KSP. Another advantage
is that compiler plugins work on every Kotlin target, without having to write multiple
plugins.
However, it is important to be aware of the potential downsides of using Kotlin compiler

plugins. One of the main cons is that in order to write even a really simple plugin, it
6https://kotlinlang.org/docs/ksp-why-ksp.html
7https://resources.jetbrains.com/storage/products/kotlinconf2018/slides/

5_Writing%20Your%20First%20Kotlin%20Compiler%20Plugin.pdf
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is necessary to have compiler background knowledge. Because of the high learning
curve, it is important to consider very carefully if it is necessary to develop a plugin. The
investment of time and work can be significant and, beside understanding how a compiler
plugin works, it is necessary to develop:

• An IntelliJ plugin: whenever they are used synthetics members, such as functions
that are going to be created by the plugin at compile time, the IntelliJ plugin is
used to avoid errors highlights, making the IDE understand what is going on;

• A Gradle or Maven plugin: in order to make the user able to use and configure the
compiler plugin;

• The actual compiler plugin.

Moreover, compiler plugins can slow down the compilation process and make it more
complex. Additionally, this can cause compatibility issues with different versions of the
Kotlin compiler, and may require significant effort to maintain and update. It is also
worth mentioning that because compiler plugins modify the behavior of the compiler,
they can potentially introduce bugs and cause compatibility issues with other plugins.
Finally, another aspect that must be taken in consideration is the fact that the Kotlin

compiler API is not documented. This means that working with it and understanding the
functions’ behaviors is not an easy task, and it requires even more time.
A Kotlin compiler plugin architecture is organized as shown in Figure 2.37.
Two different modules can be distinguished in the architecture: a Gradle module and

a Kotlin module.
The Gradle module is a wrapper for the Kotlin module, and it is an entry point for

Gradle. The Gradle module is composed by:

• plugin: this part is unrelated to Kotlin, and it is based on the Gradle API. It provides
an entry point from a build.gradle script, and it makes possible to configure the
plugin via Gradle extensions;

• subplugin: this is the bridge that allows the interaction between Gradle and the
Kotlin APIs. It reads the Gradle extension options and defines the compiler plugin’s
identifier, which is a unique key used in order to avoid collision with other plugins.
The subplugin defines also the location of the compiler plugin artifact, which is
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Plugin

Subplugin

CommandLineProcessor

ComponentRegistrar

Extension Extension

Figure 2.3: The Kotlin compiler plugin architecture

going to be used to download it at compile time. The location can be local or a
Maven coordinate.

The Kotlin module is dived in three main parts:

• CommandLineProcessor: the options created in the Gradle subplugin are loaded
and used by the CommandLineProcessor. Whenever a Kotlin program is launched,
kotlinc is invoked and the arguments that are set in the subplugin are passed to the
Kotlin compiler;

• ComponentRegistrar: it registers the extension components, which are going to
be used when the project is compiling;

• Extensions: they are used to actually generate code. There are a lot of different
extensions, which are used based on the use case.

Since the components of a plugin architecture have been explained from a general
point of view, it is now necessary to explain each element more in depth.
Specifically, the following sections are organized as follows: Section 2.1.3.1 introduces
how to create a Gradle plugin necessary to use a compiler plugin, Section 2.1.3.2 goes
into details of the IR (Intermediate Representation) that is the foundation that makes a
compiler plugin possible, in Section 2.1.3.3 it is explained how to inspect and navigate
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Kotlin IR, in Section 2.1.3.4 are covered advanced features, such as how to build new
elements and how to transform the Kotlin IR, and Section 2.1.3.5 brings all together,
showing the highlights of a working example of a simple Kotlin compiler plugin.

2.1.3.1 Gradle Plugin

A Gradle plugin8 is typically used to handle a set of tasks that extend the project’s
capabilities.
In the context of Kotlin compiler plugins, the Gradle plugin is responsible for:

• Giving the artifact coordinates of the compiler plugin: this is used to download the
artifact from Maven Central or another location, which might be a local submodule;

• Defining the identification string of the compiler plugin: used to avoid conflicts
with other compiler plugins options, since the identification string of the plugin is
used to separate the command line options;

• Translating the Gradle configuration to command line options.

In order to create the artifact coordinates and the ID it is possible to use the buildconfig
plugin9.

1 bui ldConf ig {
2 val p ro j e c t = p ro j e c t (":compiler-plugin")
3 packageName( p ro j e c t . group . t oS t r i ng () )
4 bu i l dCon f i gF i e ld ("String" , "KOTLIN_PLUGIN_ID" , "\"${

project.group}.${project.name}\"")
5 . . .
6 }

Listing 2.8: Example of a buildconfig that creates the compiler plugin artifact

The code in Listing 2.8 shows how to create references to a subproject called compiler-

plugin and how to create the identification string, which is the concatenation of the
project group and name. Similarly, it is possible to reference the name, the version and
the project group of the compiler plugin, creating a unique reference to its artifact.

8https://docs.gradle.org/current/userguide/custom_plugins.html
9https://github.com/gmazzo/gradle-buildconfig-plugin
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After creating the configuration just presented, it is possible to create the actual Gradle
plugin, such as in Listing 2.9. Gradle exposes an interface that is specifically created for
Kotlin compiler plugins, which is called KotlinCompilerPluginSupportPlugin.

1 c lass GradlePlugin : Kot l inCompi le rP lug inSuppor tP lug in {
2 . . .
3 }

Listing 2.9: Gradle plugin class example

From this class they can be defined the compiler artifact, the identification string and any
needed extension. For example, a Gradle Extension can be used to accept a command
line parameter that enable and disable the plugin.
Basically, the creation of a Gradle plugin when dealing with Kotlin compiler plugins is

always the same, and it is based on the notions just discussed in this section.

2.1.3.2 Kotlin IR

The Kotlin compiler is organized in two parts: the frontend is used to analyze the code,
and the backend is the one that generates the executables.
Kotlin used to have three different backends: Kotlin/JVM, Kotlin/JS and Kotlin/Native.
These backends were used to generate JVM byte code, JavaScript and LLVM IR, which is
the representation for Kotlin Native.
When the Kotlin/Native backend was first developed, it was based on a new infras-

tructure, which used an internal representation for Kotlin code10. After its stabilization,
Kotlin developers started to migrate the other two backends to the same representation.
This allows to share the backend logic, and to have most of the feature and optimization
done only once for all the targets. Moreover, the common backend infrastructure grants
the possibility to create multiplatform compiler plugins.
Currently, the structure of the compiler can be represented as in Figure 2.411: the

frontend takes as input source file written in Kotlin, and then, each backend creates a
syntax tree with all the information, using the IR representation. Only after this step, the
code is transformed in the specific bytecode of each backend, which is different for each
10https://blog.jetbrains.com/kotlin/2021/02/the-jvm-backend-is-in-beta-

let-s-make-it-stable-together/
11https://twitter.com/kotlin/status/1453741469148270593/photo/1
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Frontend

*.kt

JVM IR backend JS IR backend native backend

IR generator and optimized

JVM bytecode
generator and optimize

JavaScript bytecode
generator and optimize

LLVM bytecode
generator and optimize

*.class *.js *.so

IR IR IR

syntax tree +
semantic info

Figure 2.4: The new Kotlin compiler backend that uses IR

target.
The IR representation is an abstract syntax tree (AST). An AST12 is a data structure

that represents the abstract syntactic structure of a program. It is a tree representation of
the source code, where each node in the tree corresponds to a construct in the source
code. The nodes in the tree contain information about the construct, such as its type,
location, and properties.
For example, considering the simple snippet of pseudocode in Listing 2.10.

1 i f (a < b) {
2 x = a + b
3 } else {
4 x = a − b
5 }

Listing 2.10: Pseudocode of a simple assignment and expression

The AST that is generated from the code structure of Listing 2.10 is shown in Figure 2.5.
Each node in the tree describes a construct in the source code. The root node represents
the assignment of the result of the branch expression to the variable x. The branch defines
12https://dev.to/balapriya/abstract-syntax-tree-ast-explained-in-plain-

english-1h38
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assign

x branch

binary
op: +

binary
op: -

a b a b

if-body

else-body

compare
op: <

a b

codition

Figure 2.5: The Abstract Syntax Tree of the source code in Listing 2.10

the conditional construct, and it has three children: the condition, the if-body and the
else-body. Each of these blocks is represented by a separate subtree, with <, + and -

nodes representing the comparison, addition and subtraction operations, respectively.
The nodes a and b are the variables, that are used as operands of these operations.
The condition node is crucial, because it is used to decide whether to evaluate the if-body
or the else-body.
The AST is generated by a parser, which takes the source code as input and constructs

the tree representation based on the syntax rules of the language. Once the AST is
generated, it can be used for various purposes, such as type checking, code analysis,
optimization, and code generation.
An AST provides a more abstract and structured representation of the source code
compared to the raw source code. This makes it easier to analyze and manipulate
the code, as well as to automatically generate code or perform other tasks. For example,
compilers use the AST to perform optimizations, such as constant folding, dead code
elimination, and inlining, before generating machine code.
Hence, Kotlin IR (Intermediate Representation) backend is the part of the Kotlin

compiler that generates a representation of the Kotlin code. This is used as the input
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for the next stage of the compilation, which can be either the code generator or another
intermediate representation.
The IR backend is designed to provide a high-level, platform-agnostic representation

of the Kotlin code, making it easier to target different platforms and architecture. The IR
code is optimized for use by the code generator, reducing the number of intermediate
representations required, and allowing for better optimization.
Kotlin IR backend is an important part of the Kotlin compiler as it enables the compiler

to target different platforms, such as the JVM, JavaScript, and Native code, while still
providing a high-level representation of the code. This makes it easier to maintain and
evolve the compiler and provides a more flexible way to target new platforms in the
future.

2.1.3.3 Basics

In order to be able to build a Kotlin compiler plugin it is necessary to understand how
the Kotlin IR syntax tree looks like.
First, one important information is that every node in the tree implements the IrEle-

ment interface. IrElement has an extension function, called dump(), that allows to get
as output the IR tree from any point.
This feature is extremely useful when trying to generate code, because, in the case of
errors, the exception thrown does not indicate what caused the problem. The message
associated to a thrown exception just says the following:

1 org . j e t b r a i n s . k o t l i n . backend . common . BackendException : Backend
In t e r na l e r ro r : Except ion during IR lowering

Listing 2.11: Kotlin IR lowering Exception

Typically, this is symptom of the generation of not well-formed elements, that are caught
during compilation. This can be verified by writing the code that wants to be generated
and comparing its dump() output against the one created by the compiler plugin, finding
the necessary changes that needs to be done.
For example, it is going to be analyzed the generated IR tree of this snippet of code:

1 fun main () {
2 p r i n t l n ("test")
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3 }

Listing 2.12: Kotlin basic code to demostrate the Kotlin IR representation

This is the complete Kotlin IR syntax tree that is generated from the source code of
Listing 2.12:

1 FILE fqName:<root> fileName :Main . kt
2 FUN name :main v i s i b i l i t y : pub l i c modal i ty : FINAL <> () returnType :

k o t l i n . Unit
3 BLOCK_BODY
4 CALL ‘ pub l i c f i n a l fun p r i n t l n (message : k o t l i n . S t r i ng ) : k o t l i n .

Unit [ ex t e rna l ] dec lared in ko t l i n . io ’ type=ko t l i n . Unit o r i g i n=
nu l l

5 message : CONST St r ing type=ko t l i n . S t r i ng value=" t e s t "

Listing 2.13: Kotlin IR tree of Listing 2.12

The indentation of the IR allows to understand the relationship between each node,
increasing its readability. In order to provide more clarity, they are going to be analyzed
the most significant nodes of the IR.
Starting from the following node:

1 FUN name :main v i s i b i l i t y : pub l i c modal i ty : FINAL <> () returnType
: k o t l i n . Unit

Listing 2.14: Kotlin IR tree of the main function in Listing 2.12

This represents the definition of the main() function and the IR tree representation
provides a lot of information about it:

• FUN indicates that the current node is a declaration of a function;

• name is used to express how the function is called;

• visibility shows that the main function visibility is public;

• modality declares that main is final;

• <> refers to the fact that the function does not have a generic type;

• () means that main does not take parameters;
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• returnType indicates that the return type of the main function is kotlin.Unit.

The child of the function IR element is the initialization of its body, which is declared
like this:

1 BLOCK_BODY

Listing 2.15: Kotlin IR tree of the body block of the main function in Listing 2.12

When analyzing the IR tree, two different keywords are going to be found for bodies. The
first one is BLOCK_BODY, which is used in this specific case in Listing 2.15: this means that
the body is expected to have multiple statements. The second one is EXPRESSION_BODY,
which is indicated when the body holds a single expression, such as a variable assignment.
Finally, the Listing 2.16 shows the println() function call and its parameter:

1 CALL ‘ pub l i c f i n a l fun p r i n t l n (message : k o t l i n . S t r i ng ) : k o t l i n
. Unit [ ex t e rna l ] dec lared in ko t l i n . io ’ type=ko t l i n . Unit
o r i g i n=nu l l

2 message : CONST St r ing type=ko t l i n . S t r i ng value=" t e s t "

Listing 2.16: Kotlin IR tree of the body block content of the main function in Listing 2.12

Similarly to the FUN keyword, CALL is used to indicate that a function is being called.
Specifically, it declares the call of the println function, alongside with information about
where to find its declaration, which is in this case in kotlin.io, since the print is a Kotlin
library function. Moreover, the function has one parameter, which is called message. The
second line in Listing 2.16 gives all the details about it: it is a constant, defined by the
CONST keyword, it is a String and its value is test.
Another basic feature that needs to be explained is how to actually visit the IR syntax

tree from the code point of view. One key concept that is necessary to cover before diving
into it is the visitor design pattern13. This is a behavioral design pattern which purpose
is to add new operations to existing classes without modifying the classes themselves.
The operation defined can be performed on elements of an object structure, which is
defined in a separate class, called the Visitor, that implements the desired behavior. The
elements of the object structure are updated to accept the Visitor instance, allowing it to
traverse the structure and perform the operation on each element. The structure of the
design pattern just described is reported in the UML in Figure 2.613.
13https://www.baeldung.com/java-visitor-pattern
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Figure 2.6: The Visitor design pattern UML

In the context of the Kotlin compiler, the visitor pattern is applied as in Figure 2.7. The
IrElement interface represents the object structure that needs to be visited. As anticipated
previously in this section, this interface is implemented by all the node of the IR syntax
tree, which means that every element can be visited through this pattern.
For example, the two implementations of IrElement, shown in Figure 2.7, are IrClass and
IrFunction, which represents class declarations and function declarations respectively. A
lot of other different elements that are not specified in the UML exists; this omission is
done in order to increase its readability. Examples of the omitted elements are: IrConst
for constant, IrCall for function calls, IrBranch that includes if-else blocks, etc.
The IrElement has two functions that enable the visitor pattern that have two completely
different behaviors:

• accept: it allows the visit of only the current element. For example, if trying to visit
a class, only the class element is going to be analyzed and returned;

• acceptChildren: this function implementation consists on calling the accept function
on each child of the current element, including itself.
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<<interface>>
IrElement

accept(visitor: IrElementVisitor<R, D>, data: D): R

acceptChildren(visitor: IrElementVisitor<Unit, D>, data: D): Unit

IrFunction

accept(visitor: IrElementVisitor<R, D>, data: D): R

acceptChildren(visitor: IrElementVisitor<Unit, D>, data: D): Unit

IrClass

accept(visitor: IrElementVisitor<R, D>, data: D): R

acceptChildren(visitor: IrElementVisitor<Unit, D>, data: D): Unit

<<interface>>
IrElementVisitor

visitFunction(declaration: IrFunction, data: D)

...
visitClass(declaration: IrClass, data: D)

Client

Figure 2.7: The Visitor design pattern UML applied in the Kotlin compiler plugin context
in order to visit the IR syntax tree

Both functions possess two parameters, where the first one is the IrElementVisitor, the
second one is data, which is used to pass information about the context to the IR visitor.
The return type in the accept function can be used to get as output the elements visited, and
it is useful, for example, when the navigation aims to find a specific element. Otherwise,
the return can just be set as Unit.

1 c lass CustomVis i tor (
2 private val elements : MutableLis t<IrElement>
3 ) : I rE l emen tV i s i t o r<Unit , Nothing?> {
4 override fun v i s i t E l emen t ( element : IrElement , data : Nothing ?) {
5 elements . add( element )
6 element . acceptCh i ldren ( this , data )
7 }
8 }
9

10 fun c o l l e c t ( element : I rElement ) = bu i l d L i s t <IrElement> {
11 element . accept ( CustomVis i tor ( th i s ) , nul l )
12 }

Listing 2.17: Example of a custom visitor and a function that supports the collection of
elements

32



CHAPTER 2. METAPROGRAMMING IN KOTLIN

In the case of acceptChildren, its return type is Unit, which means that when visiting
recursively the children of an element, no data can be returned. Whenever it is necessary
to collect information from a recursive visitor, it is usually created a builder object that
can be updated and then returned. In Listing 2.1714 the role of the collect function is to
create a mutable list that is updated on the visit of each child of the root element.
As previously said, the IrElementVisitor is the interface that has to be implemented

in order to create a custom visitor. It requires two type parameters: the first one indicates
the return type of the visit functions, the second one the type of the data that can be used
to pass contextual information. The interface provides a lot of different visit methods,
that can be used based on the wanted behavior. In Figure 2.7 are reported visitFunction
and visitClass, but other examples are visitBody, visitVariable, visitDeclaration, etc.
The IrElement and the IrElementVisitor, with the understanding of the IR syntax

tree, allows creating basic Kotlin compiler plugins, without modifying the existing source
code.

2.1.3.4 Advanced features

There are two advanced aspects that need to be introduced, which are the building of
new IR elements and the transformation of the IR syntax tree.
In order to understand how to build IR elements, it is important to keep in mind

that the Kotlin compiler entry point provides the IrPluginContext, which contains the
information about the context of the plugin. This is a critical element because it can be
used to obtain an instance of the IrFactory, which is a factory that can create IR elements,
such as IrClass for creating new classes or IrSimpleFunction used for creating functions.

1 pluginContext . i r F a c t o r y . buildFun {
2 name = Name. i d e n t i f i e r ("main")
3 v i s i b i l i t y = D e s c r i p t o r V i s i b i l i t i e s . PUBLIC
4 modal i ty = Modali ty . FINAL
5 returnType = typeUni t
6 }

Listing 2.18: Main function IR building by using the IrFactory
14https://blog.bnorm.dev/writing-your-second-compiler-plugin-part-3
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For example, the code in Listing 2.1815 shows how to use the factory to create a function
called main and that does not have a return type.
The factory can only be used to create new element declarations, so it is necessary

another way in order to build statements and expressions. This is provided by the
IrBuilder and by the IrBuilderWithScope, which is really convenient when, for example,
a new statement is created in a specific function scope.
The transformation of the IR can be done similarly to the navigation seen in Sec-

tion 2.1.3.3, but it is performed by another interface that extends IrElementVisitor, which
is called IrElementTransformer. The UML that shows the organization of the interfaces
in this context can be seen in Figure 2.8.
Considering the IrElement, there are two transforming functions, that matches the

<<interface>>
IrElement

transform(transformer: IrElementTransformer<D>, data: D): IrElement

trasformChildren(trasformer: IrElementTrasformer<D>, data: D): Unit

IrFunction

transform(transformer: IrElementTransformer<D>, data: D): IrElement

trasformChildren(trasformer: IrElementTrasformer<D>, data: D): Unit

IrClass

transform(transformer: IrElementTransformer<D>, data: D): IrElement

trasformChildren(trasformer: IrElementTrasformer<D>, data: D): Unit

<<interface>>
IrElementTransformer

visitFunction(declaration: IrFunction, data: D)

...
visitClass(declaration: IrClass, data: D)

Client

<<interface>>
IrElementVisitor

visitFunction(declaration: IrFunction, data: D)

...
visitClass(declaration: IrClass, data: D)

Figure 2.8: The Visitor design pattern UML applied in the Kotlin compiler plugin context
in order to transform the IR syntax tree

navigation functions:

• transform: it is like the accept function considered for the visiting of the IR tree,
and it is used to transform only a specific element;

• transformChildren: similarly to acceptChildren, it transforms recursively all the
children of the element, including itself.

15https://blog.bnorm.dev/writing-your-second-compiler-plugin-part-4
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The IrElementTransformer provides the same methods of the IrElementVisitor, such as visit-
Class and visitDeclaration, but the return type is always set as the element itself. Basically,
when wanting to transform a function it is sufficient to create an IrElementTransformer

and to override the visitFunction method, implementing whatever transformation needed.
For example the element can be modified or created by using the IrFactory or the IrBuilder,
or existing elements can be deleted.
As a whole, all these functionalities discussed constitute powerful tools that allow all

kind of compile-time modifications, that can be encapsulated in a Kotlin compiler plugin.

2.1.3.5 Example

The complexities involved in Kotlin compiler plugins, discussed in the previous sections,
need a further exploration. For this reason, it has been developed a simple plugin16,
which aims to dive deeply into the details of basic and advanced features implementation.
For example, considering the following code:

1 fun t e s t ( ) {
2 p r i n t l n ("Hello!")
3 }
4

5 fun main () {
6 t e s t ( )
7 }

Listing 2.19: Kotlin code without the modification of the compiler plugin created as an
example

When executing the code in Listing 2.19, this is the result shown in the console:

1 main dec l a r a t i on
2 t e s t de c l a r a t i on
3 Hel lo !

Listing 2.20: Output of the execution of Listing 2.19 with the application of the compiler
plugin created as an example

16https://github.com/ElisaTronetti/compiler-plugin-kmp

35

https://github.com/ElisaTronetti/compiler-plugin-kmp


CHAPTER 2. METAPROGRAMMING IN KOTLIN

The goal of this compiler plugin is to modify at compile time every function declaration,
inserting a print of the function name. This means that after the compilation, the code in
Listing 2.19 is going to be transformed as in the code in Listing 2.21. The arrows added
are used to identify the lines of code created by the compiler plugin.

1 fun t e s t ( ) {
2 −> pr i n t l n ("test declaration")
3 p r i n t l n ("Hello!")
4 }
5

6 fun main () {
7 −> pr i n t l n ("main declaration")
8 t e s t ( )
9 }

Listing 2.21: Kotlin code with the modification of the compiler plugin created as an
example

One thing to notice is that, typically, the functions’ names are not passed from compilation
time to run time, this information would be usually lost. By the intervention of the plugin,
that information is not lost, but it is inserted in the print function and shown to the user.
Moreover, the module of the project that contains the code that is going to use the

compiler plugin is a Kotlin Multiplatform project. The reasons behind this choice are
going to be explained afterwards in Section 4.1, but this example is also a proof of
concept of the feasibility of creating Kotlin compiler plugins for multiplatform projects.
This project example is composed by three submodules:

• gradle-ir-plugin: it creates the subplugin, identifying the location of the compiler
plugin, which is in the same Gradle project but in a different submodule;

• compiler-ir-plugin: the actual compiler plugin, that is going to be discussed in
details;

• kmp-sample: it is the Kotlin multiplatform project, which uses the Gradle plugin to
include the compiler plugin;

Since the Gradle module is just based on mandatory but standard settings, it is only
going to be analyzed the compiler module.
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The first component of the compiler plugin is the CommandLineProcessor, which sets
one command line option: when including the plugin to a project, it can be specified a
boolean parameter that enables or disable the plugin, making it easier to use.
The creation of this parameter consists on building an option using the CliOption class,
which is used to inform the compiler plugin what parameters to expect and what is their
role. The option created for this example is shown in the code in Listing 2.22.

1 Cl iOpt ion (
2 optionName = ARG_ENABLED,
3 va lueDesc r ip t i on = "bool <true | false>" ,
4 de s c r i p t i on = "If the compiler plugin should be applied" ,
5 requ i red = f a l se

6 )

Listing 2.22: Creation of compiler option that enables or disables the plugin

The entry point of the compiler plugin is the ComponentRegistrar. It checks whether
the plugin is enabled or not, and, in case it is, it registers a generation extension, which
is going to actually perform code changes. In the ComponentRegistrar implementation,
the function that perform this feature is the following:

1 override fun reg i s te rPro jec tComponents (
2 p ro j e c t : MockProject ,
3 con f i gu ra t i on : Compi lerConf igurat ion
4 ) {
5 i f ( con f i gu ra t i on . get (ARG_ENABLED) ) {
6 I rGenera t ionExtens ion . r e g i s t e r Ex t en s i on (
7 pro j e c t ,
8 I rGenera t ionExtens ionImpl ()
9 )
10 }
11 }

Listing 2.23: Example of registration of extension if the plugin is enabled performed by
the ComponentRegistrar
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In Listing 2.23 it is shown how to register the extension that is going to generate code. The
IrGenerationExtension implemented method is generate, and it is shown in Listing 2.24.

1 override fun generate (
2 moduleFragment : IrModuleFragment ,
3 pluginContext : I rP lug inContex t
4 ) {
5 val f unP r i n t l n = pluginContext . r e f e renceFunc t ions (
6 FqName("kotlin.io.println")
7 ) . f i r s t ( )
8

9 moduleFragment . t ransform (
10 TransformerImpl ( pluginContext , f unP r i n t l n ) ,
11 nul l

12 )
13 }

Listing 2.24: Example of IrGenerationExtension implementation of methos generate

The generate method just shown has two different purposes:

• It aims to find the reference of the Kotlin print function, which is going to be used
in the code generation. This is done by specifying the name of the function and its
package, then it is going to be searched in the whole plugin context;

• It creates an instance of the transformer implementation, giving it as argument the
plugin context and the print function found, which are all the information that is
going to be used to modify the code.

The most important element of all, that actually perform the code transformation, is
the TransformerImpl, which implements the IrElementTransformer interface.
Since the modifications that needs to be achieved are applied to all the function declaration
bodies, the visitFunction needs to be overridden as reported in the code in Listing 2.25,
which works in the following way:

• for each function declaration found in the context, verify if it has a body. For
example, abstract declarations do not have a body;
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• if a body is found, it modifies the declaration it passing it to the irDebug function.

1 override fun v i s i t F un c t i o n (
2 dec l a r a t i on : I rFunc t ion
3 ) : I rSta tement {
4 val body = dec l a r a t i on . body
5 i f ( body != nul l ) {
6 dec l a r a t i on . body = irDebug ( dec la ra t ion , body )
7 }
8 return super . v i s i t F un c t i o n ( dec l a r a t i on )
9 }

Listing 2.25: Example of visitFunction implementation of the transformer, used to visit all
the function declarations

The implementation irDebug is shown in Listing 2.26, and it is used to add an irEnter
element and then all the statements in the body of the function are inserted again in the
function body, in order to maintain the previous behavior. The body is recreated and
returned by using the DeclarationIrBuilder.

1 private fun irDebug (
2 func t ion : I rFunct ion ,
3 body : IrBody
4 ) : IrBlockBody {
5 return Dec l a r a t i on I rBu i l d e r (
6 pluginContext ,
7 func t ion . symbol
8 ) . i rBlockBody {
9 +i rEn t e r ( func t ion )
10 for ( statement in body . s ta tements ) +statement
11 }
12 }

Listing 2.26: Example of implementation of a function that adds a new element into the
function body
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In the code in Listing 2.27 it is shown the extension function irEnter, which is used to
build a new IrCall. The IrCall aims to create a new function call, specifically of the print
function retrieved previously. It also adds a new argument, which is a string of the name
of the function it is going to be created into.

1 private fun I rBui lderWithScope . i r En t e r (
2 func t ion : I rFunc t ion
3 ) : I rFunc t ionAcces sExpre s s ion {
4 return i r C a l l ( logFunct ion ) . a l so { c a l l −>
5 c a l l . putValueArgument (
6 0 ,
7 i r S t r i n g ("${function.name} declaration")
8 )
9 }
10 }

Listing 2.27: Example of creation of a new function call and adding to it arguments

In conclusion, this transformation, applied to all the function declarations, creates the
behavior that this project example wanted to achieve.
It proves that the source code can be modified completely and that the compiler plugin
can be also applied smoothly to multiplatform projects.
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Transparent alignment in Kotlin

The alignment, discussed in Section 1.1.1.1, is a crucial feature that must be provided in
order to create a working implementation of the Aggregate programming paradigm.
The first step necessary to find a solution for a problem is to define a simple use case,

which is going to be the base of the resolution attempts. A good starting point to illustrate
this is represented by the code in Listing 3.1, which was also discussed previously in
Section 1.1.1.1. In order to be coherent with the final solution, the code is now written
in Kotlin and the nbr-expression is now called neighboring.

1 fun f1 () { neighbor ing (e1 ) }
2 fun f2 () { neighbor ing (e1 ) }
3

4 f1 ()
5 f2 ()

Listing 3.1: Starting point code to resolve the alignment problem

The goal that needs to be achieved is to find an alignment solution that is able to keep
track of the current computational state of a device, making it possible to align only the
correct expressions with each other. In this example, it is necessary to find a unique way
to identify the execution of the neighboring expression in the body of the f1 function
from the one in the f2 function.
The computing device identification is not considered right now, since it is not a core
problem in these attempts. Once the base case is solved, then further complexities of the
alignment problem are going to be analyzed, such as the branch construct.
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There are key aspects that are considered for this study and that are used to compare
the different approaches:

• Availability for Kotlin multiplatform: it is important to keep in mind that DSL is
developed by using Kotlin multiplatform, which choice is discussed in Section 4.1.
The approaches chosen must be available for a Kotlin multiplatform architecture;

• Portability: the alignment solution has to work for all the targeted platforms by
Kotlin Multiplatform, which are Kotlin Native, JavaScript and JVM. Multiple devices
computing on the same platform have to be able to align correctly;

• Interoperability: the solution should allow devices executing on different platform
to align;

• Efficiency: key aspect to consider, since it can not be produced an elaborated
solution that needs devices with high computational requirements;

• Transparency: finally, this feature has to be transparent to the final user, without
making the developer write ulterior code to make the alignment work.

Different approaches have been tried to find a solution, and, for each attempt, the
advantages and the disadvantages are discussed. The following sections analyze all
the possibilities taken in consideration: Section 3.1 goes into details of the attempts
with stacktraces and hashes, Section 3.2 exploit the problem with annotations and KSP,
understanding their limits. Finally, Section 3.3 describes in details the solution adopted,
by developing a Kotlin compiler plugin. In each section there is a table that recaps the
characteristics for each technology tried for the alignment based on the key aspects
highlighted previously.

3.1 Stacktraces and hashes

Since the alignment problem is quite complex, the firsts attempts regards simple strategies
without the concern of efficiency, trying to use already existing Kotlin functionalities to
generate a unique identifier.
One way of keeping track of the functions called during a program execution is by

checking the stacktrace. This leads to one of the possible solutions, which is throwing
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exceptions whenever an aggregate programming construct is computed, and then using
the generated exception stacktrace as the unique identifier.
The stacktraces can be generated in all the platforms that the DSL aims to target. On
each platform, the stacktrace is identical for every program execution, meaning that it
is possible to align different devices that are executing the same program on the same
target.
Moreover, this solution offers transparency to the final user, because the alignment can
work without having the developer to write additional code.
On the other hand, this option presents two main problems that can not be avoided:

1. The first problem regards the efficiency of this solution. Since an aggregate program
runs continuously on each computing device, an enormous amount of exceptions
would be thrown, causing delays that can create issues in a distributed system;

2. The second problem refers to the interoperability of device computing on different
targeted platforms. The stacktraces generated by the Native target are completely
different from the one generated by JavaScript and JVM, and they represent in-
formation in a non-identical way. This means that devices running on different
platforms can not align correctly, since the identifier generated for the sequence of
the functions called does not match.

Following a similar line of reasoning, the next attempt involved the hash-codes. Kotlin
provides a method that, given an object, returns its hash-code. It is guaranteed that the
hash-code generated is always the same whenever two objects are equal to each other. In
order to take advantage of this feature, it was created a new class called Event, which has
the role to encapsulate the DSL expression that is currently being computed by a device,
and then uses the object hash-code as identifier.
In general, this is not a suitable solution: the hash generated is the same during a
single execution, but this is not the case when running multiple devices that have to
communicate, meaning that the alignment can not be achieved, since the identifiers can
be different even though they should not be.
This issue is also present when trying to align devices running on different platforms, but
there is an additional problem: the hash-code generated from a target is not the same in
another target, creating a discrepancy impossible to overcome.
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Available for
Kotlin

Multiplatform

Allows
same target
interoperability

Allows
different targets
interoperability

Acceptable
efficiency

Transparent
to the
final user

Stacktrace yes yes no no yes
Hash yes no no yes yes

Table 3.1: Comparison between stacktrace and hash for solving the alignment problem

Considering these attempts and their characteristics, it is possible to conclude that
they are not suitable as resolution for the alignment problem. In order to give a clear view
of their pros and cons, the characteristics of the alternative just discussed are recapped in
Table 3.1.

3.2 Annotations and KSP

Since simple Kotlin functionalities are not feasible for solving the alignment problem,
another possibility is to try different metaprogramming alternatives, such as the ones
discussed in Chapter 2.
The first metaprogramming technique taken in consideration is annotations. As

explained in Section 2.1.1, annotations can be used to attach additional metadata to
elements in the code, which can be used to create specific behaviors. For example, it
is possible to use them to define that a function should be causing the alignment and
specify through the annotations how to handle it.
Before trying to develop such solution, a few considerations must be highlighted:

• A key aspect of this project is the interoperability, achieved by using Kotlin multi-
platform for the chosen targets (Native, JavaScript and JVM). While this thesis is
being redacted, Kotlin\JS does not support annotations, creating a compatibility
issue that is difficult to overcome;

• In order to take advantage of the metadata provided by annotations, the developer
should annotate manually every element in the source code whenever the align-
ment is required. This is not acceptable, since it would violate the requirement of
transparency for the final user.

This results in the impossibility to use annotations for the alignment, since a possible
solution developed using said methodology would not meet the basic requirements of the
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project.
The next alternative that involves metaprogramming is KSP (Kotlin Symbol Process-

ing), which is described in details in Section 2.1.2. Starting from KSP 1.0.1, it is possible
to use KSP on multiplatform projects1, which includes also the targets necessary to reach
successfully the outcome desired.
KSP allows the creation of lightweight compilers, providing an API that hides all the
complexities that a complete compiler plugin would involve. While designing a possible
solution, it is necessary to keep in mind the biggest limitation that this technology brings
within: the impossibility to modify the source code.
Since KSP can access the code at compile time, it would be possible to extract information
that can be used to build a custom stacktrace that keeps track of the sequence of functions
called. Then, this custom stack can be used as identifier when needed. For this reason, it
has been created a class Stack, which interface is reported in Listing 3.2.

1 in ter face Stack {
2 fun currentPath () : Str ing
3 fun a l i gn ( token : Str ing ) : Unit
4 }

Listing 3.2: Stack interface for KSP

By using the Stack it is possible to add to a data structure everything that is necessary
for the alignment, which might be for example function calls. Considering the base
case cited previously in Listing 3.1, when executing f1, the stack list should contain [f1,
neighboring], and when computing f2 would be [f2, neighboring], making it possible to
uniquely identify the two different expressions.
Trying to obtain the result just described, the problem can be divided in two smaller
steps:

1. The aggregate programming constructs are part of the DSL functions exposed to the
final user, meaning that it is not possible for the user to change their implementation
in any way while using it. Moreover, the name of these functions is known in
advanced. This leads to create a simple solution for handling them, which consists
on changing their implementations and adding a line of code that it is responsible to

1https://kotlinlang.org/docs/ksp-multiplatform.html
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insert in the Stack data structure the function name. For example, in the neighboring
implementation there would be a function call responsible for the alignment, that
add its name to the stack.

2. The second problem, which is more complex, can not be solved in the same way,
since it would be the final user to manually solve the alignment problem. The
solution would be to modify the functions f1 and f2 using KSP and adding the
same line of code discussed for the previous case. On the other hand, the direct
modification of the source code is not allowed by KSP, which means that the only
solution would be to recreate the same code of the user, with the added function
calls. This solution would be feasible for simple use cases, but it is not efficient
when dealing with complex systems.

This leads to the conclusion that it is crucial for the solution of the alignment problem to
have the possibility to modify the source code. KSP can be used as a temporary solution
for some use cases, also taking advantage of the simple and powerful API that it provides,
but the downsides are important factors to consider.

Available for
Kotlin

Multiplatform

Allows
same target
interoperability

Allows
different targets
interoperability

Acceptable
efficiency

Transparent
to the
final user

Stacktrace yes yes no no yes
Hash yes no no yes yes
Annotation no yes (manually) yes (manually) yes no
KSP yes yes yes no yes

Table 3.2: Comparison between stacktrace, hash, annotation and KSP for solving the
alignment problem

Concluding, the characteristics of annotation and KSP are added in Table 3.2 alongside
with the stacktrace and hash ones, summarizing the considerations made on all the
alternatives considered up until this point.

3.3 KCP: solution with total transparency and portability

Kotlin compiler plugins are another metaprogramming alternative. As discussed previ-
ously in Section 2.1.3, the development of a compiler plugin requires a lot of time and
study, but it also provides a total freedom when trying to modify the code at compile
time.
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The following considerations prove that a plugin can be used to solve the alignment
problem:

• When developing a project using Kotlin multiplatform, the compiler translates
under the hood the Kotlin code into the code for the targets. Before doing that, it is
transformed into an Intermediate Representation, called IR, which as been discussed
in Section 2.1.3.2. This representation allows the creation of multiplatform compiler
plugins, without the need to distinguish the plugin between the different platforms;

• Since the source code is completely available at compile time, it is possible to analyze
it in order to make the plugin understand when the alignment is needed. Then,
new code can be generated to guarantee the correct alignment, which can rely to a
stack similar to the one discussed for KSP;

• Since the generation is based on the intermediate representation, this allows the
interoperability between the different project targets, and also on devices running
on the same platform;

• The plugin modifications are applied at compile time, which does not impact in a
relevant way the execution time;

• Finally, the code generation is also totally transparent to the user, meaning that he
does not have to worry about the alignment.

The Kotlin compiler plugin solution is the chosen one for creating this crucial feature,
because, comparing it with the other alternatives, it is the one that respects all the
requirements. All the characteristics of the analyzed possibilities are summarized in
Table 3.3.

Available for
Kotlin

Multiplatform

Allows
same target
interoperability

Allows
different targets
interoperability

Acceptable
efficiency

Transparent
to the
final user

Stacktrace yes yes no no yes
Hash yes no no yes yes
Annotation no yes (manually) yes (manually) yes no
KSP yes yes yes no yes
KCP yes yes yes yes yes

Table 3.3: Comparison between stacktrace, hash, annotation, KSP and Kotlin compiler
plugin for solving the alignment problem
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The chosen approach is similar to the one discussed for KSP in Section 3.2: the best
way to understand if two different devices are aligned is by using a custom stack, which
can keep track of the sequence of functions called during the computation. In order to do
so, the stack is used to push the function name into the data structure when a function is
called, and then it is popped when the control flow exits that function. A similar behavior
is provided in the case of the domain restriction caused by the branch construct, pushing
in the stack the condition evaluated.
This important data structure has been called Stack and its interface is shown in

Listing 3.3.
1 in ter face Stack {
2 fun currentPath () : Path
3 fun alignRaw ( token : X?) : Unit
4 fun dea l ign () : Unit
5 }

Listing 3.3: Stack interface for Kotlin compiler plugin solution

The stack has an internal mutable list that is updated when calling the method alignRaw
and dealign. Specifically, alignRaw is used to push a generic identifier into the stack, while,
on the other hand, dealign is used to pop it.
When a device needs to know its computational state, it can retrieve its path using the
function currentPath. A Path is a data class that is used as a wrapper of the current
stack state, in order to return the immutable list, following Kotlin best practice. Its
implementation is in Listing 3.4.

1 data c lass Path ( val path : L i s t<Any?>)

Listing 3.4: Path dataclass for Kotlin compiler plugin solution

The data structures that can be used to store the information about the computation
has been defined, which lays the foundations of the alignment solution.
It is now necessary to provide a method that actually updates the stack correctly, without
having to do it manually. This is also going to be the function call generated by the
compiler plugin to perform the alignment.
The method alignedOn in Listing 3.5 needs to be explained further, since its behavior is
central in the solution proposed.
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1 fun <R> alignedOn ( p ivo t : Any? , body : () −> R) : R {
2 s t a ck . alignRaw ( p ivo t )
3 return body () . a l so { s tack . dea l ign () }
4 }

Listing 3.5: Function that perfoms the alignment in the Kotlin compiler plugin solution

The function signature accepts two parameters: the first one is the pivot, which is the
identifier that is going to be pushed in the stack, the second one is body, which is the
element that is going to be computed.
For instance, considering the base example reported at the beginning of this chapter in
Listing 3.1, and supposing the computation of f1, the pivot would be the name of the
function, that is the string f1, and the body would be f1(), which performs the computation
of that function.
The implementation of alignedOn is entitled to update the stack pushing the pivot, then
it executes the function taken as parameter and returns as output the value computed.
Once the computation of the function is completed, it also resets the stack at its previous
state.
The basic information to explain the solution has been presented, and it is now

necessary to divide the problem in two smaller steps. In Section 3.3.1 it is going to
be discussed how to perform the alignment when dealign with function calls, giving
also an example of the generation of the code created by the compiler plugin. Then, in
Section 3.3.2 it is going to be explained how to guarantee the alignment when there are
branches that cause domain restriction.

3.3.1 Function alignment with KCP

Before describing the mechanism used to generate code using the compiler plugin, it is
necessary to define what the Kotlin compiler plugin should generate in the context of
functions.
Listing 3.6 shows how the code presented as base case example in Listing 3.1 is

modified during compilation by the compiler plugin.
To each function call now corresponds a new call to the alignedOn function reported

previously in Listing 3.5, creating the mechanism of alignment.
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1 fun f1 () {
2 alignedOn ("neighboring") {
3 neighbor ing (e1 )
4 }
5 }
6 fun f2 () {
7 alignedOn ("neighboring") {
8 neighbor ing (e1 )
9 }
10 }
11

12 alignedOn ("f1") {
13 f1 ()
14 }
15 alignedOn ("f2") {
16 f2 ()
17 }

Listing 3.6: Generation goal to handle the alignment of Listing 3.1

While executing the code in Listing 3.6, this is what happen to the stack:

• First, the alignedOn on line 12 is executed and the state of the stack is now [f1];

• Then, f1 is computed, which causes another alignedOn call. The stack is updated,
and its current value is now [f1, neighboring];

• While executing the neighboring function, the device looks into the messages
received by its neighbors in order to find fields that match the current stack value [f1,
neighboring]. Those neighbors are the one aligned with the considered computing
device;

• Then the alignedOn call at line 2 has completed its execution, so there is another
update on the stack, which dealign from the current state. The stack is [f1];

• Also the alignedOn on line 12 is finished, causing the stack to be empty again;
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• The exact behavior happens when computing f2, with the difference that the stack
when computing the neighboring function is [f2, neighboring]. In this way, only the
neighbors values found that executed f2 and then neighboring are considered.

Now that the end result that wants to be achieved for this base case is clear, the
compiler plugin can be explained in details.
Since most of a basic plugin implementation has been presented in the example in
Section 2.1.3.5, only the crucial part of the transformation of the code are going to be
discussed in this section.
The IrGenerationExtension, before registering the transformer necessary to perform

the code modification, needs to retrieve two elements, which absence would preclude the
execution of the plugin. The user would be informed with a console message in the case
that, during the compilation, the required elements were not found.
The referred elements are:

1. The alignedOn function declaration: in order to be able to call an already existent
function, it is necessary to specify to the compiler to look for that function. In this
case it is necessary the reference to alignedOn, discussed in Listing 3.5;

2. The aggregate context: the functions exposed by the DSL are encapsulated in the
AggregateContext class, which also contains the reference to the stack instance.
Since it is possible to modify the stack only through its instance, the aggregate
context class retrieved here can be used to get the instance of the object when
calling the alignedOn function. More details about the AggregateContext class are
going to be discussed in Chapter 4.

In order to optimize the solution, not every element of the source code is going to
be modified by the compiler plugin, but only the necessary ones. If the final user needs
a particular alignment not covered by the developed plugin, he can use the alignedOn
function manually.
The entry point of the DSL is the function aggregate, which takes as parameter a function
type with receiver. The receiver is the AggregateContext, meaning that all the call members
of the receiver can be used inside the aggregate function call.
After retrieving the necessary elements, the IrGenerationExtension registers the Aggregate-
CallTransformer, which visits through the visitor pattern all the function calls looking for
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all the aggregate call. Because of that, the compiler plugin knows that inside that function
calls there might be the necessity to modify the code to provide the alignment feature.
For each aggregate function call the transformation is then delegated to the Align-

mentTransformer, which handles the alignment required by the function calls and the
branch constructs.
Starting from the function calls, this is what happen:

• The visitCall provided by the transformer’s interface is overridden, providing access
to all the children of the aggregate function call that are also calls;

• Then the behavior can be divided in three different cases:

1. If the function call has been already aligned, any modification is applied to the
code;

2. Otherwise, in order to provide another optimization, it is checked if the consid-
ered function call or any of its children has a reference to the AggregateContext.
Only the functions provided by the DSL, which are neighboring, repeating
and sharing have a reference to that context. This means that everything not
related to the DSL does not require to be modified for the alignment problem.
This research is performed by checking the current function call’s receivers
and by the AggregateRefChildrenVisitor whenever it is necessary to visit the
children.
If any of the elements analyzed have a reference to the AggregateContext, then
the code is not transformed;

3. If the AggregateContext reference is found, then the transformation proceeds.

Of the three possible outcomes, only the third one makes the computation continue,
in all the other cases the not modified function call is returned. For this reason, it is
necessary to assume that an AggregateContext reference has been found in order to
continue to explain how the transformation works;

• In order to be able to create a new function call in the source code, it has to be
declared inside an irStatement, which is used to define also the scope where the
function is created;

• Inside the irStatement is then created the alignedOn function call;
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• Finally, the transformed function call is returned.

The creation of the alignedOn function call is crucial for this transformation, and it is
going to be described in more details.
Once created the irStatement it is possible to create a new irCall like shown in Listing 3.7.

1 i r C a l l ( al ignedOnFunction ) . apply {
2 // Set generics type

3 putTypeArgument ( expres s ion . type )
4 // Set aggregate context

5 putArgument (
6 al ignedOnFunction . d i spatchRece iverParameter ! ! ,
7 aggregateContextReference
8 )
9 // Set the argument that is going to be pushed in the stack

10 putValueArgument (
11 i r S t r i n g (
12 expres s ion . symbol . owner . kotlinFqName . a sS t r i ng ()
13 )
14 )
15 // Create the lambda that is going to call expression

16 val lambda = buildLambdaArgument (
17 pluginContext ,
18 aggregateLambdaBody ,
19 expres s ion
20 )
21 putValueArgument (1 , lambda)
22 }

Listing 3.7: Generation of the alignedOn function call in Listing 3.5

The irCall builds a new alignedOnFunction, which is the reference to the alignedOn function
responsible for the alignment. It is set the type argument and the dispatch receiver, which
are both necessary to create a correct element. Then, the value argument is the first
parameter of the alignedOn function, and it is created using the name of the originating
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expression. Finally, the second value argument is the body of the call of the original
function, which is recreated as a lambda.
The lambda as argument is created in another function, which is implemented as follows:

1 pluginContext . i r F a c t o r y . buildFun {
2 name = Name. s p e c i a l ("<anonymous>")
3 th i s . returnType = expres s ion . type
4 th i s . o r i g i n = I rDec l a r a t i onOr i g i n . LOCAL_FUNCTION_FOR_LAMBDA
5 th i s . v i s i b i l i t y = D e s c r i p t o r V i s i b i l i t i e s . LOCAL
6 } . apply {
7 th i s . pa t chDec la ra t ionParen t s ( this@buildLambda . parent )
8 i f ( expres s ion . symbol . owner . returnType . i sUn i t ( ) ) {
9 th i s . body = contex t .
10 i r B u i l t I n s .
11 c r e a t e I r Bu i l d e r ( symbol ) .
12 i rBlockBody {+expres s ion }
13 } else {
14 th i s . body = contex t .
15 i r B u i l t I n s .
16 c r e a t e I r Bu i l d e r ( symbol ) .
17 i rBlockBody {+irRe turn ( expres s ion ) }
18 }
19 }

Listing 3.8: Generation of the lambda body of the alignedOn function call in Listing 3.5

From line 2 to 5 of Listing 3.8, standard parameters are set, such as the return type, the
lambda parent and data that informs the compiler that it is dealing with an anonymous
function. Then, if the original expression return type is unit, then the body of the lambda
is just the expression itself. Otherwise, a return block is added, which contains the original
function call.
To recap the process it is possible to start from the simple code in Listing 3.9. It

is reported a snippet of an aggregate program before its execution, and the behavior
expected from the Kotlin compiler plugin can be summarized in three aspects:
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1. It identifies the starting point of the aggregate program;

2. It does not perform the alignment on the println function call, since it does not
involve aggregate constructs;

3. It aligns the neighboring function call.

1 aggregate {
2 p r i n t l n ("do not align")
3 fun c a l c u l a t e () {
4 neighbor ing ("test")
5 }
6 }

Listing 3.9: Base example of aggregate program

The Figure 3.1 shows how the various elements developed for the compiler plugin work
together. The AggregateCallTransformer finds the aggregate call, the AlignmentTransformer

AggregateCallTransformer

AlignmentTransformer

irCall
expression name

lambda

Figure 3.1: Specification of each compiler plugin element that modify the source code in
Listing 3.9

is able to understand which function needs to be aligned, which in this example is
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neighboring. Then the new function call is created, with the two parameters: the name of
the original function and its call.

3.3.2 Branch construct alignment

As anticipated in Section 1.1.1.1, also the branch construct creates a domain restriction
that needs to be handled by the alignment feature. Again, it is necessary to define the
required result that has to be achieved by the compiler plugin.

1 val number = (0 . . 10 ) . random()
2 i f (number > 5) {
3 neighbor ing ("higher")
4 } else {
5 neighbor ing ("lower")
6 }

Listing 3.10: Base example of Koltin code that requires the branch alignment

Given the example in Listing 3.10 its transformation would be the one reported in
Listing 3.11.

1 val number = (0 . . 10 ) . random()
2 i f (number > 5) {
3 alignedOn ("[number > 5, true]") {
4 alignedOn ( neighbor ing ) {
5 neighbor ing ("higher")
6 }
7 }
8 } else {
9 alignedOn ("[constant, false]") {
10 alignedOn ( neighbor ing ) {
11 neighbor ing ("lower")
12 }
13 }
14 }

Listing 3.11: Generation goal to handle the alignment of branches required in Listing 3.1
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The alignedOn function calls at line 4 and 10 are created by the mechanism explained
previously is Section 3.3.1, and at line 3 and 9 there are the alignment functions for the
branches.
Supposing that the random generated number is 7, the stack during the computation of
the code in Listing 3.11 is the following:

1. Since the value of number is 7, the condition of the if at line 2 is true and its body
is executed;

2. The alignment function at line 3 allows putting in the stack [[number > 5, true]],
which is a pair of the condition evaluated and its actual value, which is true;

3. Then, to the stack it is added the neighboring call, leading to [[number > 5, true],

neighboring]. This means that the neighboring function align only whenever the
condition of the if is true, meaning that it is higher than 5;

4. After the computation of neighboring, it is popped from the stack, leaving again
only [[number > 5, true]];

5. Finally, the body of the if has been successfully executed and the stack can be
cleared.

Before diving into the creation of the alignedOn parameters, it is necessary to under-
stand how the IR syntax tree handled the branches when there are multiple conditions,
which is slightly different from the single condition just presented. Kotlin IR works
with binary trees, which means that whenever it has to handle branches with multiple
conditions, it creates nested branches.
For example, considering Listing 3.12, it is represented as shown in Figure 3.2.

1 i f (a && b) {
2 func t ion ()
3 }

Listing 3.12: Example of code where a branch has multiple conditions

The Figure 3.2 shows that a branch is handle like follows:

• The first branch of the if evaluates the condition a;

57



CHAPTER 3. TRANSPARENT ALIGNMENT IN KOTLIN

IrBranch

if

a b

then

IrBranch

if

a

then

function&&

Figure 3.2: The IR of a branch with multiple condition shown in Listing 3.12

• If a is true, then it is evaluated the condition b. This creates the chance to align
b based on the evaluation of a, because after the evaluation of a the stack is [[a,
true]], which means that b align only with the neighbors that evaluated a as true;

• After obtaining both the result of a and b, it is calculated the value of a && b;

• If the full condition is evaluated as true, the stack is [a && b, true];

• Then it is computed function(), which is aligned based on the stack just created.

It is the AlignmentTransformer that, as well as the functions’ alignment, handles the
branches. It overrides two different functions:

• visitBranch: it represents the if and the else if condition;

• visitElseBranch: it is used for the else branch;

The way these two types of elements are handled is the same, so just the normal if branch
is discussed.
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The result of a branch is divided in the IR in blocks or expressions:

• IrBlock: in this case the if result consists of a block, like this:

1 i f ( cond i t ion ) {
2 func t ion ()
3 func t ion ()
4 }

• IrExpression: the result of the if it is not encapsulated in brackets, it is composed
by one expression:

1 i f ( cond i t ion ) func t ion ()

The IrBlock and the IrExpression requires a slightly different implementation: if a
branch was constituted by an IrBlock, when creating the alignedOn function call it is
necessary to keep in mind that the second parameter is going to be a block and not a
single expression.
The building of the alignedOn function call is the same of the code shown in Listing 3.8,
the only difference is the creation of the parameters.
The first parameter is the name of the element that is going to be put in the stack.

As seen before, just the name of the condition is not sufficient, since the alignment is
based on the name and the condition value. For this reason, the first parameter is a pair
constituted by the condition name and its value, like this: [condition, true].
When the condition is a variable, a function call or an anonymous function, the stack will
contain the exact name of the element. In the case of a constant, for example just the
value true, then it is used the placeholder constant.
The second parameter is constituted by a lambda that contains the body of the if.

Since it is considered in this discussion that the body is an IrBlock, then it is necessary to
create a new block that is going to create the lambda.
There are three main things that need to be done when creating the lambda body, and
they are shown in Listing 3.13:

1. Setting the return type: since the body of the if is a block, it is constituted by
multiple expression. The last expression return type defines the return type of the
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block. In order to be able to get the result of the if construct, it is necessary to set it
correctly;

2. Creating the IrBlock: the block created contains all the expressions of the previous
block but the last one. In this way, the behavior of the block is not going to change;

3. Setting the return type: finally, the last element to add to the block is the return,
which is defined by the last expression. It must be created inside the irReturn
element, which is used to create a special block that is expected to match the return
type.

1 th i s . returnType = getReturnType ( l a s t Exp r e s s i on )
2 th i s . body = contex t .
3 i r B u i l t I n s .
4 c r e a t e I r Bu i l d e r ( symbol ) .
5 i rBlockBody {
6 for ( bodyStatement in expres s ion . s ta tements ) {
7 +bodyStatement
8 }
9 +irReturn ( l a s t Exp r e s s i on )
10 }

Listing 3.13: Creation of the lambda body when modifying a IrBranch

This constituted the whole behavior of the compiler plugin when dealing with a
IrBranch, but the transformation is almost identical when a IrElseBranch is considered.
One final detail of the transformation of the branches is in common with the functions
handling: the alignment is required if and only if there are aggregate programming
construct calls, which means that the modification of an IrBranch when its body does not
involve any aggregate function is useless.
For this reason, the same controls performed for the function calls are applied here, which
means that, when visiting any branch, only if the AggregateContext reference is found in
any of it body expression or expressions’ children, then the alignment transformation is
actuated. This enhances the performances of the Kotlin compiler plugin created.

60



Chapter 4

Collektive: aggregate programming in

pure Kotlin

The name given to the project is Collektive1, which emphasize the aggregate programming
aim to dispose of numerous devices that work together to achieve a certain goal. Moreover,
the name contains the term ‘kt’, which refers to the development in Kotlin.
The goal of Collektive is to provide to the user a minimal DSL that makes it possible to

create aggregate programs transparently. It is necessary to keep in mind that the solution
needs to respect these requirements:

• Transparency: refers to the clear and concise information it provides about how the
underlying system behaves, such as data processing, storage, and communication
between nodes. Transparency helps to reduce complexity, making it easier to
understand and maintain large and complex systems;

• Minimality: the goal is to design it with the fewest possible constructs and abstrac-
tions while still offering the required functionalities. This reduces the complexity
of the system, making it easier to maintain and debug, and lowers the overhead
associated with using the DSL, which is particularly important for systems that
require high performance and scalability;

• Portability: refers to its ability to run on various platforms and environments,
including different operating systems, cloud platforms, and hardware architectures.
This enables systems built with the DSL to be easily deployed and run in differ-

1https://github.com/ElisaTronetti/collektive
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ent environments, which is crucial for systems requiring deployment in multiple
locations or scalability to meet changing demands.

The following sections are organized in order to present in details the project de-
veloped. Specifically, Section 4.1 discuss the main technological choice involved in the
development of the DSL, in Section 4.2 is shown the project structure, in Section 4.3 is
analyzed in details the DSL created. Then, Section 4.4 presents the final result and how
the DSL can be used, and Section 4.5 is used to highlight the validation methods applied
to test the correct behavior of the project developed.

4.1 Technology

This section presents the main technological choice taken regarding the development of
the DSL, in order to meet the requirements cited previously.
It is important to achieve a certain level of portability, specifically for devices running on
JVM, JS and Kotlin Native platforms, which makes also possible to gain interoperability
between different targets. Moreover, an ideal solution would not require writing the DSL
code in three different programming languages to match the required platforms.
For the reasons just presented, the choice made for this project development is Kotlin
Multiplatform.

4.1.1 Kotlin Multiplatform

Kotlin Multiplatform technology is specifically designed to streamline the development
process for cross-platform projects.
It achieves this by minimizing the amount of time developers spend writing and main-
taining identical code for different platforms. This approach saves valuable resources and
time, as the code can be written once and used across multiple platforms.
Kotlin Multiplatform allows to write code in the Kotlin programming language and

use it across multiple platforms, including Android, iOS, web, and desktop. As can be
seen in Figure 4.12, Kotlin Multiplatform code behaves in the following way2:

• Common Kotlin: the code written in common Kotlin can be used across multiple
platforms without requiring modifications. This code can include business logic,

2https://kotlinlang.org/docs/multiplatform.html
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Figure 4.1: How Kotlin Multiplatform works

data models, and other non-platform-specific functionalities. Common code can
rely on a set of libraries that are available for Kotlin Multiplatform and that cover
everyday tasks, such as serializations or coroutines;

• Platform-specific versions of Kotlin: this refers to Kotlin/JVM, Kotlin/JS and
Kotlin/Native, which include extensions to the Kotlin language, allowing developers
to use platform-specific APIs, features and tools;

• Platform native code: finally, through these platforms it is possible to access the
platform native code (JVM, JS and Native), with the possibility to use all the native
features.

The way that Kotlin Multiplatform avoid the necessity to write and maintain the same
code over and over again for all the targeted platforms, is by providing the possibility to
share the same code across multiple platforms.
It is possible to share the code in different ways3:

3https://kotlinlang.org/docs/multiplatform-share-on-platforms.html
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• Share code on all platforms: this is typically done when some business logic is
common to all platforms, in order to write it only once in the common code and
then share it on all the targets, as shown in Figure 4.23;

Figure 4.2: Kotlin Multiplatform sharing code on all platforms

• Share code among some platforms: this organization is usually applied when
similar platforms share a big portion of code. As it can be seen in Figure 4.32, it is
possible to define hierarchies that allow to organize the shared code, such as the
desktopMain folder that shares some code with its dependencies, which does not
include the whole code present in commonMain.

Figure 4.3: Kotlin Multiplatform reusing code among some platforms of the project

In some cases it might be necessary to access platform-specific APIs from the common
code. This can be done by using the specific Kotlin mechanism of expected and actual
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declarations4.
In Figure 4.44 it is shown an example of this mechanism. For instance, in the common

Figure 4.4: Kotlin Multiplatform expect and actual dependency mechanism

code it is created a new function or class, and it is declared using the keyword expect. The
keyword informs the compiler that it should look for the implementation of this element
in the platform-specific folders. This can be done by declaring the same function or class
by using the actual keyword, which allows taking advantage of platform-specific APIs.
In the cited example, the actual implementation required are for the iOS and Android
platforms.
Kotlin Multiplatform also includes tools to help developers manage their codebase,

such as Gradle plugins that allow for building and testing code across multiple platforms.
One advantage of Kotlin Multiplatform is, for example, the ability to share code

between Android and iOS. This can be especially valuable for companies that want to
develop apps for both platforms, as it can help reduce development time and costs. With
Kotlin Multiplatform, developers can write shared code for common features, such as
user authentication or data storage, and then write platform-specific code for the UI and
other platform-specific features.
Concluding, Kotlin Multiplatform is the perfect technology to achieve this thesis project,

because it allows creating a unique code base that is possible to use on three different
4https://kotlinlang.org/docs/multiplatform-connect-to-apis.html
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platforms: JVM, JavaScript and Native. Moreover, the implementation of platform-specific
behaviors is not required, meaning that only the common code has been developed.

4.2 Project structure

Collektive has been developed as a Gradle project composed by three different submodules,
as shown in Figure 4.5. The cited submodules are:

compiler-plugin

plugin collektive-test

gradle-plugin

dsl

collektive

Figure 4.5: Package diagram of Collektive project

1. plugin: it is divided in two submodules itself:

(a) gradle-plugin: necessary plugin used by a gradle project in order to include the
compiler plugin. Its structure has been introduced previously in Section 2.1.3.1;

(b) compiler-plugin: the compiler plugin is used to modify a data structure, which
to keep tracks of the stack at runtime. For each aggregate function and branch
construct, the stack data structure is updated in order to allow the alignment
whenever necessary. The specific functionalities of the compiler plugin have
been explained in depth in Section 3.3;

2. dsl: the actual DSL implementation in Kotlin Multiplatform, where the logic is
implemented and that exposes the operators of the aggregate computing. The
description of this submodule is going to be presented in Section 4.3;
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3. collektive-test: this submodule is used to test an aggregate program by running it
on a simulated environment provided by the Alchemist Simulator [9]. More details
about this are in Section 4.5.

4.3 DSL

A DSL (Domain-Specific Language)5 is a programming language or language construct
that is designed to be highly specific to a particular domain, or problem space. Unlike
general-purpose programming languages, which are intended to be applicable across a
wide range of domains and problem types, DSLs are created to meet the specific needs of
a particular application or system. For this reason, general-purpose languages, such as
Java, are generally more complex than DSLs.
DSLs can be implemented in a number of ways, including: standalone programming
languages, libraries that extend existing programming languages, or annotations or
macros that modify the syntax or behavior of an existing language. DSLs can be used
to provide a higher level of abstraction over complex systems or processes, allowing
developers to express ideas and concepts in a more concise and intuitive way.
To ensure that DSLs are fit for their intended purpose, they are typically developed in
close collaboration with domain experts. In fact, many DSLs are not designed to be used
by programmers, but rather by non-technical individuals who are knowledgeable in the
relevant domain. This collaborative approach helps to ensure that the DSL is intuitive
and expressive for its intended users, allowing them to more easily and effectively express
complex ideas and processes.
The DSL developed for this project is organized as shown in the package diagram in

Figure 4.6.
As previously described, Kotlin Multiplatform allows to create common code that is then
compiled on three different targets, which are JVM, JavaScript and Native. Since the
behavior of the DSL does not require platform-specific features, it is present in the project
only the commonMain package, which contains the whole implementation.
It is also present the commonTest folder, which is used to define the tests to verify the
correct behavior of the system and that is possible to run over the different platforms, to

5https://www.jetbrains.com/mps/concepts/domain-specific-languages/
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commonMain

src

commonTest

dsl

Figure 4.6: Package diagram of Collektive DSL

ensure that the implementation works as predicted for all the targets. In Section 4.5 are
going to be presented more details about the tests.

AggregateContext

neighbouring(type: X): Field<X>

repeating(initial: X, repeat: (X) -> Y): Y

sharing(initial: X, body: (Field<X>) -> Y): Y

alignedOn(pivot: Any?, body () -> R): R
Stack

currentPath(): Path

alignRaw(token: X?): Unit

dealign(): Unit

toString(): String

1
1

Path

path: List<Any?>

X: Any

AggregateResult

result: X

toSend: Map<Path, *>

newState: Map<Path, *>

Field

local: Pair<ID,*>

messages: Map<ID,*>

toMap(): Map<ID,T>

get(id: ID): T

ID

id: Any?

1

1

1

1

X, Y, R: Any

T: Any?

X: Any

Figure 4.7: Class diagram of Collektive DSL

The implementation of the project involves the elements presented in the class diagram
in Figure 4.7, which are:

• AggregateContext: it is the class that contains the implementation of the aggregate
programming constructs and the function that performs the alignment. Moreover,
this class is used to handle all the data necessary for the computation: it stores the
local state of the device computed in the previous round, the messages received
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from the neighbors, the device identifier, and an instance of the stack used to keep
track of the computational state. The AggregateContext contains also the data class
AggregateResult, making it possible to instantiate it when the context receiver is
AggregateContext;

• AggregateResult: the computation of an aggregate program returns as output an
AggregateResult, which contains the results obtained from the current iteration,
and it is composed by: the actual result returned by the aggregate program, the
messages to send to the neighbors to notify them of the current results, and the
new device local state;

• Field: this class represents the computational field, and it is used by the aggregate
constructs to handle this data structure. It contains the local value of the device
that is computing and all the messages received by the neighbors. Specifically, the
local value is a pair that contains the ID and a map of paths and computed values.
Similarly, the messages are composed by the identifier of the neighbor and the same
map containing the path and the registered result obtained in the computation
corresponding to that path;

• ID: a simple identifier which goal is to be able to uniquely recognize different
computational device in the aggregate system. Any type of identifier can be used;

• Stack: this is the data structure discussed previously in Section 3.3, and it is used
by the compiler plugin to save the current computational state in order to provide
the alignment feature. Through an instance of this class it is possible to retrieve
the current path in order to create a computational field or to get the neighboring
devices values computed on that specific path;

• Path: the path class has already been introduced in Section 3.3, and its role is to
return an immutable list whenever it is necessary to retrieve the current stack state.

A key aspect of this project is the implementation of the aggregate programming
constructs contained in the AggregateContext class.
The implementation of the neighboring function is reported in Listing 4.1. It accepts in
input any parameter, which is the value computed by the current device and that is going
to be shared with the neighborhood.
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1 fun <X> neighbor ing ( type : X) : F ie ld<X> {
2 toBeSent [ s t a ck . currentPath () ] = type
3 val messages = messagesAt ( s ta ck . currentPath () )
4 return F ie ld Impl ( Pa i r ( l o ca l I d , type ) , messages )
5 }

Listing 4.1: Neighboring implementation

The behavior of this construct consists on:

• Saving the value computed and the current stack in order to send the message to
the neighbors;

• Retrieving the messages of the neighbors that correspond to the current path;

• Finally, returning a field with the local value and the neighbors values, ready to be
manipulated.

1 fun <X , Y : Any> repeat ing ( i n i t i a l : X , repeat : (X) −> Y) : Y {
2 val r e s =
3 i f ( p rev iousS ta t e . conta insKey ( s tack . currentPath () ) ) {
4 repeat ( p rev iousS ta t e [ s t ack . currentPath () ] as X)
5 } else {
6 repeat ( i n i t i a l )
7 }
8 s t a t e [ s tack . currentPath () ] = res
9 return r e s
10 }

Listing 4.2: Repeating implementation

The repeating function is used to represent the time evolution, and it allows the field to
change dynamically.
This expression needs two parameters:

1. initial: the initial value used whenever the function is evaluated for the first time;
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2. repeat: the function that is going to be computed and that takes as input the initial
value or the output of the previous round evaluation.

The body of repeating can be broken down in the following steps:

• It checks whether a previous state exists for the current path in the perviousState
map;

• If a previous state exists, it is invoked the repeat function with the value associated
with the current path in the previous round;

• If a previous state does not exist, the function invokes repeat with the initial value;

• Furthermore, the result of the repeat evaluation is stored in the statemap associated
to the current state. This creates the evolution of the local device state, that is going
to be used in the next aggregate program iteration;

• Finally, the computed value returned by repeat is returned.

The last aggregate programming constructs is sharing, and its implementation is
shown in Listing 4.3. As described before in Section 1.1, the sharing allows to observe
the neighbors’ field, updated the local values and share immediately the updated state in
a single operation.
This function accepts two parameters:

1. initial: similarly to the repeating constructs, the initial value is used whenever a
sharing function is evaluated for the first time;

2. body: it is used to transform immediately the field, resulting a value that is going
to be shared with the neighborhood.

The behavior of the sharing function can be described as follows:

• The function retrieves the messages of the neighbors for the current path from the
stack instance;

• It checks whether a previous state exists for the current path, similarly to the
repeating function;
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• If a previous state exists, the function retrieves it from the previousState map.
Otherwise, it is used the initial value;

• Taken the retrieved value, whether it is the initial value or the one computed in
the previous round, and the messages from the neighbors, a new field instance is
created;

• The expression invokes the body function with the new created field as argument;

• The returned value of the body function is stored in the toBeSent map assigned
to the current path. This map contains all the messages to send to the neighbors
before the next round begin;

• Finally, the output value of body is returned by the sharing function.

1 fun <X , Y : Any?> shar ing (
2 i n i t i a l : X ,
3 body : ( F ie ld<X>) −> Y
4 ) : Y {
5 val messages = messagesAt ( s ta ck . currentPath () )
6 val prev ious =
7 i f ( p rev iousS ta t e . conta insKey ( s tack . currentPath () ) ) {
8 ( p rev iousS ta t e [ s t ack . currentPath () ])
9 } else {
10 i n i t i a l
11 }
12 val sub j e c t = Fie ldImpl<X>(
13 Pa i r ( l o ca l I d , prev ious ) ,
14 messages
15 )
16 return body ( sub j e c t ) . a l so {
17 toBeSent [ s t a ck . currentPath () ] = i t
18 }
19 }

Listing 4.3: Sharing implementation
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The main entry point of an aggregate program is shown in the code in Listing 4.4.

1 fun <X> aggregate (
2 l o c a l I d : ID = In t I d () ,
3 messages :Map<ID ,Map<Path,∗>>=emptyMap<ID ,Map<Path ,Any>>() ,
4 s t a t e : Map<Path ,∗> = emptyMap<Path , Any>() ,
5 i n i t : AggregateContext . ( ) −> X
6 ) = s ing l eCyc l e ( l o ca l I d , messages , s t a t e , compute = i n i t )

Listing 4.4: Aggregate entry point

The aggregate function accepts four parameters:

1. localId: it is the identification number of a device, which can be used when it
is necessary to make the same device compute another round of the aggregate
program. This parameter is not mandatory, and, in case it is not defined, a new
random identifier is generated;

2. messages: it might be sometime necessary to give the aggregate program some
contextual information about the previous round outcome. This parameter is used
to provide the messages received from the neighbors, and it is initialized ad an
empty map as default value;

3. state: similarly to the messages parameter, this is used to propagate the previous
state of the device in the current round. It is not mandatory, and it is initialized as
an empty map whenever it is not found;

4. init: it is a lambda expression that takes an instance of AggregateContext as a
receiver object.
A lambda expression is a block of code that can be executed later, and it can be
passed around as a value. In Kotlin, lambda expressions can have a receiver object,
which is an object on which the lambda is invoked.
In Kotlin, a context receiver is a way of providing a context or a scope to a block of
code, such as a lambda expression. A context receiver allows the block of code to
access the properties and functions of the receiver object using the this keyword,
without having to explicitly specify the receiver object in the code.
This means that when the lambda expression init is invoked, it has access to the
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properties and functions of the AggregateContext object. By using the aggregate
function, it is then possible to define the lambda that is going to be computed, and,
by doing so, the aggregate constructs defined in the AggregateContext can be used
freely.

This aggregate function in Listing 4.4 allows the computation of a single cycle, which
means that only one round is going to be performed. This requires the user of the DSL to
define how the different devices should communicate.
In Section 4.5 it is going to be presented a different aggregate function that allows to run
multiple rounds of an aggregate program, used to test the correct behavior during the
validation process.
The singleCycle function returns an AggregateResult, which is the output of an

aggregate program in Collektive. The implementation of the singleCycle function is
reported in Listing 4.5. This class contains the value computed from the aggregate
lambda, a map of all the messages to send to the neighbors, and the new state of the
device.

1 with ( AggregateContext ( l o ca l I d , messages , s t a t e ) ) {
2 AggregateContext . AggregateResul t (
3 compute () ,
4 messagesToSend () ,
5 newState ()
6 )
7 }

Listing 4.5: Single cycle AggregateResult output

4.4 Usage example

One important aspect to consider during the development of a DSL is its usability. It is
important to provide the user with a minimal set of operators, each of them with a clear
purpose.
This is what has been achieved with Collektive, since the constructs are coherent with
the aggregate programming original operators.
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In order to use Collektive, it is necessary to perform some steps to set up the environ-
ment:

1. Include the compiler plugin: since the alignment is crucial for the DSL to work, it
is important to include into the Gradle project the custom Gradle plugin created to
expose the Kotlin compiler plugin.
Whenever a new submodule of Collektive is created, the Gradle plugin can be
included as shown in the code in Listing 4.6;

1 p lug ins {
2 id ("io.github.elisatronetti.kotlinAlignmentPlugin")

ve r s ion "0.1.0"

3 }

Listing 4.6: Inclusion of the custom Gradle plugin to a local Gradle submodule

2. Include the DSL: it is also necessary to include the DSL to the project, in order to
be able to access all the aggregate programming constructs developed. The code in
Listing 4.7 shows how to include it into a new Collektive submodule.

1 dependencies {
2 implementation ( p r o j e c t ( path=":dsl") )
3 }

Listing 4.7: Inclusion of the DSL to a local Gradle submodule

Once the setup is finished, the DSL is available into the new submodule. By calling the
function aggregate, the DSL functions neighboring, repeating and sharing can be used.
Moreover, the compiler plugin included provides the correct alignment of the elements.

1 val double : ( Int ) −> Int = { i t ∗ 2 }
2 val t e s tVa lue : Int = 2
3 aggregate {
4 neighbor ing ( double ( t e s tVa lue ) )
5 }

Listing 4.8: Example of an aggregate program developed with Collektive
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The snippet of code in Listing 4.8 shows an example of usage. The program shares
with the neighbors the double of a local number. In this example, the value of the
number is hardcoded, but in a real world example, this value might depend on the device
environment, which would make different devices have a different value evaluation.

4.5 Validation

The term validation refers to the process of ensuring that the software meets the intended
requirements and specifications and fits for its intended use. Validation is a critical aspect
of the software development process as it helps to ensure that the software is free of
defects, meets the expectations of its users, and performs its intended function correctly.
The validation process typically involves testing the software in various ways, and the

goal of each type of testing is to ensure that the software meets the intended goal and
that it performs as expected in various environments and scenarios.
Collektive validation consists on two main tests:

1. Functional testing: involves verifying that the software performs its intended
functions correctly and without errors;

2. Compatibility testing: involves testing the software’s ability to operate correctly in
different environments and with different hardware and software configurations.

These validation processes are achieved in two different ways, which are going to be
discussed in this section.
The first method tests both the functionalities and the compatibility of the system.

This is obtained by taking advantage of the Kotlin Multiplatform features because, when
it comes to testing, it provides several tools and frameworks that can be used to test code
written in Kotlin on different platforms.
One popular testing framework for Kotlin Multiplatform is KotlinTest6; said framework
is a multiplatform testing library that provides a common API for writing tests that can be
run on different platforms. It supports a range of testing styles, including behavior-driven
development (BDD) and property-based testing.
Kotlin Multiplatform also provides a set of common annotations that can be used to mark

6https://kotlinlang.org/docs/multiplatform-run-tests.html
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tests and test suites, such as the @Test annotation. These annotations can be used in
conjunction with testing frameworks like KotlinTest to write and run tests on multiple
platforms.
Since the DSL is developed using Kotlin Multiplatform, the package commonTest contains
the test implemented using KotlinTest.
The organization of the folder commonTest is shown in Figure 4.8. It contains only the

aggregate

kotlin

branch

field stack

commonTest

Figure 4.8: Package diagram of Collektive DSL tests

kotlin subfolder, since the implementation of platform-specific tests is not required.
The test are organized in the following folder system:

• field: contains unit testing of the Field class and the field manipulation functions,
such us the retrieval of the lower comparable value contained in the field;

• stack: similarly to the Field, also the Stack class requires unit testing, to verify that
it works as predicted;

• branch: it contains all the possible testing of the branching alignment. It verifies the
correct alignment of simple if, else-if and else blocks and expressions. Furthermore,
it tests the alignment of the when Kotlin expressions;

• aggregate: finally, in this folder are contained all the tests of the aggregate pro-
gramming constructs, which are neighboring, repeating and sharing.
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Since testing only one round of an aggregate program would not be enough to ensure
the correct system behavior, it has been implemented an infrastructure that allows to test
multiple rounds.
It is necessary to create a class that allows to save the messages and deliver them to other
devices. This class is called Network, and its interface is shown in the code in Listing 4.9.

1 in ter face Network {
2 fun send ( l o c a l I d : ID , message : Map<Path , ∗>)
3 fun r e c e i v e () : Map<ID , Map<Path , ∗>>
4 }

Listing 4.9: Network interface to simulate multiple round of an aggregate program in
tests

Before creating an aggregate program, it is necessary to instantiate a Network, which
contains an internal map of messages, and it is used to handle the communication between
devices.
It is also necessary to create a new entry point for the DSL, which makes it possible to

accept parameters to handle multiple rounds.

1 fun <X> aggregate (
2 cond i t ion : () −> Boolean ,
3 network : Network = NetworkImpl () ,
4 i n i t : AggregateContext . ( ) −> X
5 ) = runUnt i l ( condi t ion , network , compute = i n i t )

Listing 4.10: Aggregate programming entry point used to compute multiple rounds

The new aggregate function is reported in Listing 4.10, and it accepts the following
parameters:

1. condition: it is a lambda expression that takes no arguments and returns a Boolean
value, which is used to establish whether the computation should run another round
or not;

2. network: an instance of the Network class introduced in the code in Listing 4.9,
which is used to handle sending and receiving messages;
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3. init: the actual aggregate program, contained in a lambda expression which has as
receiver object an AggregateContext.

This aggregate function calls runUntil, and in the snippet of code in Listing 4.11 it is
reported the main logic its implementation.

1 while ( cond i t ion () ) {
2 computed = s ing l eCyc l e (
3 l o ca l I d ,
4 network . r e c e i v e () ,
5 s t a t e ,
6 compute
7 )
8 s t a t e = computed . newState
9 network . send ( l o ca l I d , computed . toSend )
10 }

Listing 4.11: Main logic of the runUntil function

The purpose of runUntil is to repeatedly execute the compute lambda expression until
the condition lambda returns true.
In order to do that, every time it is necessary a new iteration, it is computed a singleCycle,
which is the same function used in the normal aggregate program execution, which was
presented in Section 4.3. A cycle requires the local identifier of the device, it retrieves
from the network the message received from the neighbors, the current local state of the
device and the lambda that define the computation.
Afterwords, it updates the local state, and it sends the via network the messages regarding
the computed values of this round.
By using the mechanisms just presented, it is possible to create tests that check the

correct interaction between devices, also verifying that the alignment works properly.
Moreover, KotlinTest allows to run the implemented tests over the different targets of the
project, testing the compatibility of the software over different platforms.
The second validation process regards mainly the functional testing, and it aims to

provide a proof of concept of the potential of Collektive.
The goal is to implement a gradient algorithm using the constructs provided by the DSL,
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and then simulate the computation of a distributed system using Alchemist Simulator [9].
In order to achieve this objective, it has been created a new submodule in the Collektive
project called collektive-test. Alchemist dependencies, the DSL, and the Gradle and
compiler plugin are fundamental for this purpose.
The following classes are required in order to create the correct infrastructure used to

make the simulation possible:

• CollektiveDevice: this is the abstraction of a node present in the simulation envi-
ronment. This class makes possible to send and receive messages, to store neighbors
information and to uniquely identify nodes;

• CollektiveIncarnation: an incarnation is the interpreter that allows Alchemist to
understand a language and to execute it correctly. This incarnation is specific for
Collektive, and it is used to find the aggregate entry point through reflections, and
it defines how each iteration of the aggregate program should be performed.

The algorithm is implemented as an AggregateContext extension function, and it is
shown in the code in Listing 4.12.

1 fun AggregateContext . g rad ien t (
2 source : Boolean ,
3 sensor : Dis tanceSensor
4 ) = shar ing (Double . POSITIVE_INFINITY ) { d i s t ance s −>
5 val paths : F ie ld<Double> = sensor . d i s t ance s () + d i s t ance s
6 val minByPath = paths . min( i n c l ud i ngSe l f = f a l se ) ? . value
7 when {
8 source −> 0.0
9 minByPath == nul l −> Double . POSITIVE_INFINITY
10 else −> minByPath
11 }
12 }

Listing 4.12: Gradient algorithm implemented using Collektive

The algorithm calculates the gradient from a node that is defined as source. By using the
sharing construct, it is possible to retrieve all the neighbors’ data. This is used to obtain
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the distances of the neighbors from the source, and then, the distance of the current
device is added to the neighbors one. After that, it is searched the minimum distance,
which is going to be the current distance from the device to the source node. Finally, the
algorithm returns zero if the node is the source, infinity if the minimum distance is not
found, or the minimum value.
Since sharing has been used, the computed value is then propagated to the neighborhood.
In order to make the incarnation find the aggregate program, it is necessary to define

an entry point, which is reported in the code in Listing 4.13.
1 c lass Aggregate ( private val node : Co l l ek t i veDev i ce <∗>) {
2 private val nodeId = node . node . id
3 private var s t a t e = emptyMap<Path , Any?>()
4 fun en t rypo in t () = aggregate (
5 I n t I d ( nodeId ) ,
6 node . r e ce i v e () ,
7 s t a t e
8 ) {
9 grad ien t ( nodeId == 0 , node)
10 } . a l so { s t a t e = i t . newState }
11 }

Listing 4.13: Gradient algorithm entry point

The Aggregate class takes as parameter a CollektiveDevice, which is used to establish the
device that is currently computing.
The function entrypoint() is the function that the incarnation is going to look for and
execute.
The entry point creates an aggregate block, which takes as parameter all the contextual
information about the device: the device identifier, the messages received from the
neighbors, and the state obtained in the previous round. The computation consists of the
execution of the gradient algorithm just presented, and it also defines that the node with
the identification number 0 is going to be the source.
At the end of the single execution of the aggregate program, the current state of the
device is updated.
Finally, it has been created the simulation environment, which creates 200 nodes in a
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2D space. The result of the creation of the nodes is shown in Figure 4.9.

Figure 4.9: Alchemist simulation environment before running Collektive gradient algo-
rithm

Once Alchemist has generated the nodes that are going to be involved, it is only
necessary to run the simulation. The UI of Alchemist is going to color differently the
nodes, basing on the distance from the source: the more the node is colored in red, the
more is near to the source, the more the color tends to a colder color, the further is from
the source node.
The source node can be distinguished from the other nodes from the different shape and
color: it is shaped as a square, and it has a light blue border.
The user interface of the Alchemist Simulator shows also other information:

1. Rounds performed: it refers to the number of time the aggregate program has been
executed before reaching a stable gradient. The example showed in Figure 4.10
performed 30331 rounds;

2. Execution time: this is a valuable indicator of the performance of the algorithm
written using Collektive. The example in exam found a stable solution of the gradient
in 150.73 milliseconds.

82



CHAPTER 4. COLLEKTIVE: AGGREGATE PROGRAMMING IN PURE KOTLIN

Figure 4.10: Alchemist simulation environment execution of Collektive gradient algorithm

This validation process using Alchemist Simulator shows the potential of Collektive: it
is easy to implement algorithms that define the behavior of a system, and the execution
is fast and reliable.
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Chapter 5

Conclusion and future work

During the work done in this thesis, it was necessary to explore in details of a lot of
different aspects.
The foundation is the aggregate programming paradigm, which introduced its con-

structs and the alignment problem.
Regarding the alignment, multiple technological alternatives were discussed, and some
of them required to dive into the metaprogramming. Specifically, they were analyzed
Kotlin annotations and stacktraces, KSP (which stands for Kotlin Symbol Processing) and
Kotlin compiler plugins.
As seen in Chapter 3, the final solution involved the creation of a Kotlin compiler plugin,
that creates a custom stack that is used to align correctly the different devices. The plugin
required a deep comprehension of the compiler and the IR used to represent the syntax
tree, which was used to manipulate correctly the different elements.
Since the compiler plugin is developed based on an intermediate representation main-
tained by Kotlin itself, it is expected to not require drastic changes over time.
Collektive project includes the Gradle plugin, the compiler plugin and the DSL, and it

lays the foundation of a new aggregate programming tool.
The DSL created achieved the requirements established before its development, which

are:

• Transparency: the behavior of the DSL is transparent to the final user, it performs
exactly what an aggregate paradigm expert would expect. Moreover, the alignment
is resolved without needing the developer to explicitly handle it, by using the Kotlin
compiler plugin;
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• Minimality: the DSL exposes only four functions, which are the necessary feature
for the aggregate programming:

1. neighboring: to model device-to-neighbors interactions;

2. repeating: to handle the time evolution;

3. sharing: to observe the neighbors’ field, updated the local values and sharing
immediately the updated state;

4. alignedOn: to take advantage of the alignment in peculiar situations that the
compiler plugin typically does not align;

• Portability: since its development is in Kotlin Multiplatform, it is possible to
guarantee the compatibility with JVM, JavaScript and Kotlin Native platforms.

The validation process verifies the correct system behavior on the different targets,
taking in consideration single computation and executions that involved multiple rounds
to prove the correct interaction between devices.
The usage of Alchemist Simulator [9] proves that it is possible to create algorithms,
such as the gradient, in a simple way, and that the communication between the devices
works as predicted.
Different improvements can be done in the future:

1. It is possible to integrate Collektive into Alchemist [9], creating an incarnation that
allows to create new algorithms just using the simulator;

2. Another possible development is the implementation of a library with self-stabilizing
functions, which would capture families of strategies used typically to achieve
flexible and resilient decentralized behaviors, in order to hide the complexities by
using the field calculus constructs [10];

3. It would be also necessary in the future to publish the project to a package repository
like Maven Central, JCenter, or similar, allowing others to easily download and use
Collektive as a dependency in their own projects.
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