
Alma Mater Studiorum − Università di Bologna

Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Astrofisica e Cosmologia

Dynamic Zoom Simulations in AREPO

Tesi di laurea

Presentata da:

Riccardo Zangarelli

Relatore:

Chiar.mo Prof. Marco Baldi

Correlatori:

Prof. Federico Marinacci

Dott. Enrico Garaldi

Anno Accademico 2021‑2022





S A T O R

A R E P O

T E N E T

O P E R A

R O T A S

Sator square (roman puzzle)





Contents

Sommario v

Abstract vi

1 Introduction 1
1.1 Fundamentals of cosmology . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Friedmann‑Lemaître‑Robertson‑Walker metric . . . . . . 2
1.1.2 The Friedmann equations and cosmological parameters . . . 4

1.2 Structure formation in the early Universe . . . . . . . . . . . . . . . . 7
1.2.1 Jeans perturbation theory . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Hot and cold dark matter . . . . . . . . . . . . . . . . . . . . . 11

1.3 Processes of galaxy formation . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Gas cooling and star formation . . . . . . . . . . . . . . . . . . 13
1.3.2 Feedback processes . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 The numerical approach . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Numerical techniques 20
2.1 N‑body solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Particle‑mesh method . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Hierarchical multipole method . . . . . . . . . . . . . . . . . . 24
2.1.3 Tree‑PM method . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Smoothed particle hydrodynamics . . . . . . . . . . . . . . . . 30
2.2.2 Moving mesh schemes . . . . . . . . . . . . . . . . . . . . . . . 32

3 The Dynamic Zoom Simulations algorithm 36
3.1 Algorithm outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Tree‑based DZS . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 The AREPO implementation . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Initial setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Tree walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

iii



iv CONTENTS

3.2.3 Node derefinement . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Particle elimination and insertion point . . . . . . . . . . . . . 55
3.2.5 Additional considerations . . . . . . . . . . . . . . . . . . . . . 59
3.2.6 Baryon derefinement . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Algorithm validation 64
4.1 Output analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Lightcone Halo Mass Function . . . . . . . . . . . . . . . . . . 67
4.1.2 Sky‑projected lightcone . . . . . . . . . . . . . . . . . . . . . . 68
4.1.3 3D lightcone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.4 Particle displacements . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1 Run time performance . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Work‑load balance . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Summary, conclusions and future prospects 85
5.1 Work‑load balance and DZS special stop . . . . . . . . . . . . . . . . 86
5.2 Further validation and additional physics . . . . . . . . . . . . . . . . 87
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 89



Sommario

Nell’astrofisica moderna, le simulazioni cosmologiche rappresentano lo strumento
di analisi principale per modellizzare e interpretare la sempre crescente quantità di
dati forniti dalle campagne osservative. La prossima generazione di survey, tuttavia,
richiederà simulazioni con risoluzione e volume coperto senza precedenti, con un
impatto estremamente elevato sulle risorse computazionali. Per affrontare questo
problema e ridurre il costo computazionale delle future simulazioni, ho implemen‑
tato nel codice d’avanguardia AREPO un nuovo metodo denominato “Dynamic Zoom
Simulations” (DZS), proposto originariamente in un contesto dark‑matter‑only nel
più datato codice PGADGET-3 da Garaldi et al. (2020). Il metodo sfrutta il fatto che
il confronto significativo fra dati osservativi e output simulati richiede che questi
ultimi siano in una forma cosiddetta “lightcone‑like”, la quale include nei file di out‑
put soltanto una frazione del volume totale simulato. Per questo motivo, il metodo
DZS punta a concentrare gli sforzi computazionali di una simulazione all’interno del
cono di luce, riducendo dinamicamente la risoluzione al di fuori di esso. Ciò riduce
di molto le risorse computazionali richieste con modifiche minime rispetto a una run
standard. In particolare, nel contesto dark‑matter‑only testato in questo elaborato, le
simulazioni eseguite con il metodo DZS sono in grado di riprodurre accuratamente
delle quantità lightcone‑like come la Lightcone Halo Mass Function, il cono di luce
proiettato sulla volta celeste e il cono di luce tridimensionale, nonché di generare dis‑
locazioni molto contenute nella posizione finale delle singole particelle. Dopo aver
implementato e testato accuratamente l’algoritmo originale in un codice più mod‑
erno, ho iniziato ad occuparmi del suo principale difetto, vale a dire la mancanza
di supporto per la fisica barionica. In questo senso, l’implementazione è ancora
in corso, ma ci si aspetta che abbia un impatto ancora maggiore sulle risorse com‑
putazionali risparmiate. Anche nel caso dark‑matter‑only, comunque, la mia im‑
plementazione consente di eseguire la simulazione con la box più grande tra quelle
testate in quasi metà del tempo richiesto per una simulazione standard. Questo risul‑
tato sarà probabilmente ancora migliore in simulazioni con risoluzioni più elevate
e volumi più grandi, così da rendere il metodo DZS uno strumento estremamente
promettente per ridurre significativamente l’impatto computazionale della prossima
generazione di simulazioni cosmologiche.
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Abstract

In modern astrophysics, cosmological simulations represent the primary analysis
tool to model and interpret the ever‑growing amount of data provided by observa‑
tional campaigns. However, the next generation of surveys will require simulations
with unprecedented resolutions and volume coverages, whose impact on computa‑
tional resources will be extremely high. To address this issue and reduce the com‑
putational cost of these upcoming simulations, I implemented in the state of the art
code AREPO a new method dubbed “Dynamic Zoom Simulations” (DZS), originally
proposed in a dark‑matter‑only‑fashion by Garaldi et al. (2020) in the older code
PGADGET-3. This method exploits the fact that a meaningful comparison of real data
and simulated output requires the latter to be in a lightcone‑like form, which in‑
cludes only a fraction of the total simulated volume in the output files. Therefore,
the DZS methods aims to focus the computational efforts of a simulation inside the
lightcone by dynamically reducing the resolution outside of it. This largely reduces
the computational resources employed with only minimal modifications with re‑
spect to a standard run. Specifically, in the dark‑matter‑only scenario tested in this
work, simulations performed with the DZS method are capable of accurately re‑
producing lightcone‑like quantities such as the Lightcone Halo Mass Function, the
sky‑projected lightcone and the 3𝐷 lightcone with deviations mostly below the per‑
cent level, as well as generating very contained displacements in the final position of
individual particles. After implementing and thoroughly testing the original DZS al‑
gorithm in a more modern code, I also started to address its main drawback, namely
the lack of support for baryonic physics. The implementation is still ongoing, but
is expected to have an even‑bigger impact on the computational resources saved.
Nevertheless, even in the dark‑matter‑only case, my implementation is capable of
running the simulation with the biggest box among those tested in nearly half of the
original run time. This result is likely to get even better in simulations with higher
resolutions and larger volumes, making the DZS method a very promising tool to
ease the computational burden of the next generation of cosmological simulations.

vi



1 ∣ Introduction

Cosmology, which is the study of the Universe as a whole, represents a relatively
young branch of astrophysics: the concept of an evolving Universe was unconceiv‑
able until the early 20th century, when Einstein’s generaly relativity (Einstein 1915)
paved the way to new cosmological models, later formalised by the Friedmann equa‑
tions (Friedmann 1922). These showed that our Universe is unlikely to be stationary,
as later confirmed by the Hubble‑Lemaître law (Hubble 1929), which highlighted a
correlation between the distance of an object and its recession velocity from the ob‑
server, showing that the Universe is in fact expanding. The newfound dynamical
nature of the large‑scale Universe gave rise to the topic of the formation and evo‑
lution of objects such as stars and galaxies, topic whose understanding requires to
consider other fundamental results: for example, the first observational evidence of
“missing” matter (Zwicky 1933) and of the accelerated expansion of the Universe
(Riess et al. 1998) imply the existence of two components, respectively dark matter
and dark energy, whose nature is still unknown.

This chapter will present the cosmological framework and main physical pro‑
cesses behind the formation of cosmic structures and galaxies, and explain how in
order to better understand these processes, it is of paramount importance to repro‑
duce observational data through numerical simulations; it will also highlight how
it is crucial to analyse and possibly extend the capabilities of numerical methods in
modeling observational data.

1.1 Fundamentals of cosmology

The standard cosmological model in use nowadays is based on a fundamental prin‑
ciple, which serves as guidance in the construction of a theoretical framework. This
so‑called Cosmological Principle states that on sufficiently large scales the Universe
is homogeneous and isotropic. The former property implies that there are no privi‑
leged positions in the Universe, the latter that there are no privileged directions. The
cosmic microwave background (CMB, e.g. Penzias and Wilson 1965) represents an

1



2 1 Introduction

observational proof of the isotropy of the Universe, because the temperature map of
the CMB radiation (i.e. its main observable property) is nearly independent of di‑
rection. In order for the assumption of homogeneity to also hold, the observer must
not be in a privileged location (e.g. a spherically simmetric density distribution looks
isotropic only if observed from its center, but it can be inhomogeneous). If the as‑
sumption of not being in such a location (i.e. of the Universe not having privileged
positions) holds, and if there are observational proofs of isotropy, the Cosmological
Principle represents a good starting assumption to model our Universe.

In order to elaborate a cosmological model, it is also necessary to select an ap‑
propriate theory of gravity.1 The most accurate theory available in this regard is
general relativity (Einstein 1915), which uses a geometrical framework to describe
space‑time and the relationship between changes in its curvature and the matter in‑
side it. In fact, this framework is employed in a cosmological model through the
definition of a so‑called metric tensor.

1.1.1 The Friedmann‑Lemaître‑Robertson‑Walker metric

The definition of a general metric tensor can be obtained through the concept of
distance 𝑠 between two events in the 1𝐷 + 3𝐷 space‑time (i.e. a three‑dimensional
space with an additional coordinate for time). Specifically, an event is a point of
space‑time with coordinates (𝑥0, 𝑥1, 𝑥2, 𝑥3), where the first is the time coordinate and
the other three are the cartesian space coordinates, i.e. the position vector x. When
considering events separated by infinitesimal displacements d𝑥𝑖, 𝑖 = 0, 1, 2, 3 in a
space‑time whose geometry is modified by a gravitational potentialΦ(x), the square
of the generic distance d𝑠 can be written as

d𝑠2 =
3

𝑖,𝑗=0

𝑔𝑖𝑗d𝑥𝑖d𝑥𝑗 = 𝑔𝑖𝑗d𝑥𝑖d𝑥𝑗 , (1.1)

where the last equality follows from Einstein summmation notation2 and 𝑔𝑖𝑗 is the
metric tensor. The components of 𝑔𝑖𝑗 are a function of the gravitational potential
and determine how the distance between events and the geometry of space‑time are
affected by the matter inside it. The reduction of this concept to empty space (Φ(x) =
0 ∀x) yields the so‑called Minkowski metric tensor 𝜂𝑖𝑗, whose matrix representation

1From a cosmological point of view, gravity is often considered the most important force, because
it is the strongest on large distances among all forces of nature (Coles and Lucchin 2002).

2This notation implies a sum over pairs of repeated subscript and superscript indices, without the
need to explicitly write the ∑ operator. It was introduced in Einstein (1916).
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can be written as

𝜂 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.2)

The expression for d𝑠2 is readily obtained through the use of matrix multiplication:

d𝑠2 = 𝑥0 𝑥1 𝑥2 𝑥3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥0
𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑐2d𝑥20 − (d𝑥21 + d𝑥22 + d𝑥23) . (1.3)

It is easy to show that for events connected by a beam of light d𝑠2 is always zero,

𝑥1

𝑥2

𝑥0

𝑃

future lightcone

past lightcone

Figure 1.1: 1𝐷 + 2𝐷 sketch of the past and fu‑
ture lightcones (grey) of a reference event 𝑃.
With a restriction to a fixed time (cyan rectan‑
gle), the space component of the lightcone is
a circle (blue), whereas it would be a sphere
with three spatial dimensions (figure adapted
from D’Inverno 1992).

for example by considering a spheri‑
cal wave front of light, which propa‑
gates with speed 𝑐 and covers a spacial

distance √d𝑥21 + d𝑥21 + d𝑥23 in a time
d𝑥0. In this case, the distance is classi‑
fied as light‑like and the events can be
causally connected. This also occurs if
𝑐2d𝑥20 is greater than d𝑥21 + d𝑥22 + d𝑥23
(d𝑠2 > 0, time‑like distance). If instead
d𝑥21 + d𝑥22 + d𝑥23 > 𝑐2d𝑥20 (d𝑠2 < 0,
space‑like distance), the events cannot
be causally connected, because that
would require an information propa‑
gation speed greater than 𝑐 (which is
not allowed by relativity).3

By choosing a reference event (typ‑
ically a point of space at the present
time) it is possible to build the set of
all events that are causally connected
to that event, both in the past (nega‑
tive time difference) and in the future

(positive time difference). In the 1𝐷 + 2𝐷 representation of fig. 1.1, the two sets of
3The signs of 𝜂𝑖𝑗 in eq. 1.2 and eq. 1.3 are defined conventionally and in fact can be swapped (to

yield d𝑠2 < 0 as a time‑like distance and d𝑠2 > 0 as a space‑like distance). The notation adopted here
is the one employed in Coles and Lucchin (2002) and D’Inverno (1992).



4 1 Introduction

causally connected events have the shape of cones with vertices located on the ref‑
erence event, hence the name “lightcone” given to them.

The concept of metric can be easily adapted to the Cosmological Principle to yield
the most general metric which obeys the assumptions of homogeneity and isotropy,
i.e. the Friedmann‑Lemaître‑Robertson‑Walker metric (FLRW, e.g. Walker 1937):

d𝑠2 = 𝑐2d𝑡2 − 𝑎(𝑡)2
d𝑟2

1 − 𝑘𝑟2
+ 𝑟2(d𝜃2 + sin2 𝜃d𝜙2) , (1.4)

where 𝑎(𝑡) ≥ 0 is the so‑called scale factor, a parameter which describes the dy‑
namical behaviour of the Universe (i.e. its expansion or contraction), is usually di‑
mensionless and depends on the time 𝑡. Note that spherical coordinates have been
employed, but in place of the usual radial coordinate 𝑅 there is the quantity 𝑟 ≡ 𝑅/𝑎.
The parameter 𝑘 can only be equal to 0, 1 or −1 and is related to the geometry of the
Universe as follows:

• 𝑘 = 0 corresponds to a so‑called flat Universe: the space is Euclidean and its
2D representation is a flat surface;

• 𝑘 = 1 corresponds to a closed (spherical) Universe, which has finite volume but
no boundaries, such as the 2D surface of a sphere.

• 𝑘 = −1 corresponds to an open (hyperbolic) Universe; as in the Euclidean case,
this space is infinite.

The FLRW metric represents a fundamental tool to build a cosmological model,
mainly because inserting that metric in the Einstein field equations of general rel‑
ativity yields the Friedmann equations, which describe the time evolution of the
geometry of the Universe.

1.1.2 The Friedmann equations and cosmological parameters

The Einstein field equations of general relativity can be written as (e.g. D’Inverno
1992):

𝑅𝑖𝑗 −
1
2𝑔𝑖𝑗𝑅 =

8𝜋𝐺
𝑐2

𝑇𝑖𝑗 , (1.5)

where 𝑅𝑖𝑗 and 𝑅 are the Ricci tensor and the Ricci scalar, which depend on the grav‑
itational potential, 𝐺 is the gravitational constant and 𝑇𝑖𝑗 is the stress‑energy tensor,
which quantifies the distribution of matter and energy. Here this tensor is assumed
to be that of a perfect fluid, as is usually the case in a cosmological framework. By
using the Friedmann‑Lemaître‑Robertson‑Walker metric of eq. 1.4 to describe 𝑔𝑖𝑗,
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the resulting equations are not identities only if 𝑖 = 𝑗, with the three spatial com‑
ponents yielding the same equation (as it is expected under the Cosmological Prin‑
ciple). These time‑time and space‑space relations yield the following Friedmann
equations for 𝑎(𝑡):

�̈� = −4𝜋3 𝐺𝜌 +
3𝑝
𝑐2 

𝑎 , (1.6)

�̇�2 + 𝑘𝑐2 = 8𝜋
3 𝐺𝜌𝑎

2 , (1.7)

where 𝜌 is the fluid density and 𝑝 is its pressure. Note that in the first equation, �̈�
is always negative if the density and pressure are both positive (which is the case of
ordinary fluids), meaning that the expansion or contraction of a Universe modeled
by these equations is decelerating. It is also worth noting that the above equations
do not allow a static solution (that is, dimensions aside, �̈� = �̇� = 0), unless pressure
and density have opposing signs. In fact, this requirement can be met by arbitrarily
altering the geometry of space‑time through a so‑called cosmological constantΛ > 0,
which modifies the Einstein equations as follows:

𝑅𝑖𝑗 −
1
2𝑔𝑖𝑗𝑅 − Λ𝑔𝑖𝑗 =

8𝜋𝐺
𝑐2

𝑇𝑖𝑗 . (1.8)

Note that Λ can still theoretically represent an additional matter or energy compo‑
nent (whose density and pressure have opposing signs) if intended as a positive
addition to 𝑇𝑖𝑗. Thanks to this new component (or geometry modification), the Fried‑
mann equations can have a static solution (the Einstein model, Einstein 1917), which
holds for a closed Universe (𝑘 = 1) made of dust (𝑝 = 0), where the cosmological con‑
stant has exactly the value needed to yield a density 𝜌Λ and pressure 𝑝Λ such that
𝜌Λ = −3𝑝Λ/𝑐2. This is a very restrictive and unstable condition, because any variation
of Λ leads the Universe to a dynamic state. Moreover, our Universe does not seem
to be closed; in fact, studies such as the one carried on through the Wilkinson Mi‑
crowave Anisotropy Probe (WMAP, Bennett et al. 2003) and a subsequent one by the
Planck collaboration (2016) have shown that our Universe is flat with a high confi‑
dence level. These observational results are usually achieved by fitting observational
data with models which depend on quantities named cosmological parameters.

First and foremost, these quantities include the so‑called Hubble parameter 𝐻 ≡
�̇�/𝑎, whose name comes from its direct involvement in the aforementioned Hubble‑
Lemaître law. Specifically, consider the following time derivative of the quantity
𝑅 = 𝑟𝑎 of a certain astrophysical object (i.e. the modulus of its velocity v):

|v| = d(𝑟𝑎)
d𝑡 = 𝑟d𝑎

d𝑡 𝑎
d𝑟
d𝑡 = 𝑅

�̇�
𝑎 + 𝑎v𝑝𝑒𝑐 = 𝑅𝐻 + 𝑎v𝑝𝑒𝑐 . (1.9)
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When the peculiar velocity of an object (i.e. the component of its motion which is not
due to the expansion of the universe) is neglected, the Hubble parameter represents
the proportionality constant of the relation between the distance of an object and its
velocity. Since the scale factor is a function of time, so is the Hubble parameter; its
value at the present time is often referred to as “Hubble constant” 𝐻0 because it is
independent of space. Furthermore, the fact that objects are receding from the ob‑
server implies that their emission will be shifted to redder wavelengths due to the
Doppler effect. By considering a monochromatic beam of light with a rest wave‑
length 𝜆𝑒 emitted by a source and its observed wavelength 𝜆𝑜, it is possible to define
the redshift 𝑧 of that source as

𝑧 ≡ 𝜆𝑜 − 𝜆𝑒
𝜆𝑒

. (1.10)

It can be shown (e.g. Condon and Matthews 2018) that the redshift of a beam of light
emitted at a time 𝑡 and reaching the observer at 𝑡0 is related to the scale factor 𝑎(𝑡) as
𝑧 = 𝑎(𝑡0)/𝑎(𝑡) − 1. In fact, the redshift is often employed independently of a specific
source and generally intended as 𝑧(𝑡), with 𝑧(𝑡0) being 0 by definition.

The other major cosmological parameters Besides 𝐻0 are directly related to the
geometry of the Universe and its matter and energy components. These parameters
are obtained by setting 𝑘 = 0 in eq. 1.7 and solving for 𝜌:

𝜌𝑐 =
3𝐻2
8𝜋𝐺 . (1.11)

This “critical density” 𝜌𝑐 is the value needed to make the Universe flat. Moreover,
if 𝜌 > 𝜌𝑐 the Universe is closed, whereas if 𝜌 < 𝜌𝑐 the Universe is open. The
density parameter Ω ≡ 𝜌/𝜌𝑐 summarizes this concept by being either equal to 1,
greater than 1 or smaller than 1, respectively. Generally speaking, there are multi‑
ple components that add up to the total density parameter Ω𝑡𝑜𝑡, notably baryonic
and dark matter (Ω𝑚 = Ω𝑏 + Ω𝑐), radiation (Ω𝑟), and dark energy (ΩΛ). The latter
is needed because, as previously mentioned, the accelerated expansion of the Uni‑
verse discovered in 1998 does not agree with the Friedmann equations, which only
allow decelerating Universes. To solve this issue, it is possible to reintroduce the
cosmological constant Λ, which rather than nullifying �̈� (as in the Einstein model),
changes its sign. Moreover, observational constraints on Ω𝑡𝑜𝑡,0 (i.e. its value at the
present time) show that it is very close to one (the aforementioned Planck collab‑
oration result is 1 − Ω𝑡𝑜𝑡,0 = −0.052+0.049−0.055), but matter only contributes to that as
Ω𝑚,0 = 0.315±0.013; furthermore, the energy density of radiation yieldsΩ𝑟,0 ≈ 10−5

due to the extremely small temperature of the main source of photons (that is, the
CMB, which has 𝑇 ≈ 2.72 K, e.g. Planck Collaboration 2016). The cosmological con‑
stant acts as the missing component to ensure the flatness of the Universe and is
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associated to an unknown “dark energy”, which is also responsible for the acceler‑
ated expansion.

Another component whose nature is still unknown is dark matter (DM), which
in fact constitutes the 84% of the total matter in the Universe (Planck Collabora‑
tion 2016). It has never been directly observed because it is supposed to interact
extremely weakly with electromagnetic radiation (hence the name), but its existence
is proven by the gravational effects that it exerts on visible matter, such as the flatten‑
ing of galactic rotation curves (e.g. van Albada et al. 1985), the increase of the velocity
dispersion in galaxy clusters (e.g. Zwicky 1933), and lensing effects (e.g. Zheng et al.
2012).4 Moreover, dark matter plays a major role in the formation of structures (e.g.
Blumenthal et al. 1984) as will be explained in the next section, which also briefly
introduces the framework of the early Universe.

1.2 Structure formation in the early Universe

Observations show that our Universe is homogeneous and isotropic of sufficiently
large scales, which nowadays span at least ≈ 150Mpc (Marinoni et al. 2012). Smaller
scale density fluctuations, however, do indeed exist and give rise to the distribu‑
tion of astrophysical objects, from the larger spatial scale of galaxy clusters to the
smaller scale of stars, planets and minor bodies. Aggregations of these objects form
the large scale cosmic structure, where sites of clustering are connected by web‑like
filaments (Bond et al. 1996) and leave vast volumes of the universe (the so‑called
cosmic voids) mostly free of matter. First of all, it is appropriate to understand how
these inhomogeneities formed in the first place by briefly analysing the history of
the early Universe. Without a cosmological constant, the function 𝑎(𝑡) can only be
concave down (due to the negative sign of �̈�, see eq. 1.6), and this concavity nec‑
essarily implies an intersection with the temporal axis, marking the “time zero” of
the Universe. Theoretically, a cosmological constant could change the sign of �̈� and
avoid the intersection, but in our Universe the value of Λ is so small (< 10−55 cm−2,
Linde 1974) that its effects are not relevant in the early Universe.

The instant 𝑡 = 0 is called “Big Bang”, and in fact it represents a mathematical
singularity, because both the Hubble parameter and the density tend to infinity for
𝑡 → 0. In the extreme conditions of the Big Bang, general relativity does not hold
anymore, because both quantum and gravitational interactions share the same scale.
In fact, there is a specific time 𝑡𝑝 in which the typical scales of gravity and quantum

4For an extensive review of dark matter and of its observational evidence, see for example Bertone
et al. (2005).
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mechanics are exactly equal. This so‑called Planck time 𝑡𝑝 = 10−43 s marks the mo‑
ment after which gravitational effects can be safely described without employing
quantum corrections. However, for 𝑡 < 𝑡𝑝, including the singularity at 𝑡 = 0, physics
is currently unable to properly treat the evolution of the Universe.

There are other issues affecting the standard cosmological model: for example,
the unknown nature of the cosmological constant Λ, as well as its extremely small
but non‑zero value necessary to ensure both the accelerated expansion and the flat
geometry. In fact, flatness itself is also a problem because of the following depen‑
dency of Ω𝑡𝑜𝑡 on the scale factor and consequently, on time (Linde 1984):

|Ω𝑡𝑜𝑡 − 1| = �̇�(𝑡)−2 . (1.12)

In the early Universe, the matter‑energy contribution of cosmological constant was
negligible and the expansion was decelerating, yielding �̈� < 0 and �̇� decreasing with
time. Consequently, |Ω𝑡𝑜𝑡 − 1| has an increasing trend which leads to |Ω𝑡𝑜𝑡(𝑡0)| ≫ 1
if the total density parameter was not extremely close to 1 in the early Universe
(|1 − Ω𝑡𝑜𝑡(𝑡𝑝)| < 10−59, Linde 1984). This is a very strict condition, and ascribing
it to coincidence would not be satisfactory from a physical point of view. To pro‑
vide a theoretical explanation for the flat geometry, it is possible to introduce a so‑
called inflationary period in the early Universe (𝑡 ≲ 10−10 𝑠, Linde 1984; Linde 1990;
Starobinskii 1983), in which the expansion is characterised by �̈� > 0, and thus by a
decrease of |Ω𝑡𝑜𝑡 − 1|with time. If the inflationary period covers a long enough time
interval Δ𝑡 = 𝑡𝑓 − 𝑡𝑖, it can make Ω𝑡𝑜𝑡 asimptotically tend to 1 for 𝑡 → 𝑡𝑓. Moreover,
inflation plays a key role in structure formation: the abrupt accelerated expansion
that characterises this period generates small fluctuations5 in the density field 𝜌(x)
(where “small” means (𝜌(x) − 𝜌0)/𝜌0 ≪ 1, with 𝜌0 mean density, Linde 1990). These
fluctuations can be studied by intending them as perturbations of the otherwise con‑
stant field 𝜌(x), and can eventually grow into the gravitationally bound structures
observed today.

1.2.1 Jeans perturbation theory

The Jeans perturbation theory (Jeans 1902) provides a criterion to determine whether
a perturbation is able to grow over time (i.e. if it is unstable) or not, under the ef‑
fect of a gravitational potential. More specifically, consider the following system of
equations which describe the evolution of a fluid (e.g. Landau and Lifshitz 1959; Shu

5These fluctuations are actually detectable in the CMB radiation, where they arise as temperature
inhomogeneities 𝛿𝑇, with 𝛿𝑇/𝑇 ≈ 10−6 (Smoot et al. 1992).
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1992):

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌v) = 0 , (1.13)

𝜕v
𝜕𝑡 + (v ⋅ ∇)v = −

∇𝑃
𝜌 − ∇Φ , (1.14)

∇2Φ = 4𝜋𝐺𝜌 (1.15)
𝜕𝑠
𝜕𝑡 + v ⋅ ∇𝑠 = 0 , (1.16)

where 𝜌 is the fluid density, v is its velocity, 𝑝 its pressure, 𝑠 its entropy per unit mass
andΦ the gravitational potential acting on it. Note that eq. 1.16, which expresses the
conservation of entropy per unit mass, excludes any energy losses due to viscous or
thermal dissipation effects. In fact, the fluid described by the system above is invis‑
cid, which is the case of most astrophysical fluids (Shu 1992). The other equations
are the continuity equation (eq. 1.13), the Euler equation (eq. 1.14) and the Poisson
equation (eq. 1.15). These equations are satisfied by the static solution with 𝜌 equal
to a constant value 𝜌0 ≠ 0, 𝑝 = 𝑝0, 𝑠 = 𝑠0, ∇Φ = 0 and v = 0. According to eq. 1.15,
however, ∇Φ = 0 implies 𝜌0 = 0, i.e. a null density distribution. Even if this static so‑
lution is technically unphysical, the resulting criterion is still a qualitatively correct
tool to analyse perturbed systems. Consequentially, this problem can be set aside
by arbitrarily assuming that eq. 1.15 only applies to the density and gravitational
potential perturbations 𝛿𝜌 and 𝛿Φ (the so‑called “Jeans swindle”, e.g. Binney and
Tremaine 2008).

These two perturbations, along with 𝛿v, 𝛿𝑝 and 𝛿𝑠, constitute a state with 𝜌 =
𝜌0 + 𝛿𝜌, v = 𝛿v, 𝑝 = 𝑝0 + 𝛿𝑝, Φ = 𝛿Φ and 𝑠 = 𝑠0 + 𝛿𝑠, and this state can be inserted
in the above system of equations. In a linear framework, terms which depend more
than linearly on the perturbations 𝛿 are discarded; this is a good approximation as
long as the fluctuations represent small displacements from the unperturbed state.
The solutions of the perturbed system of equations are assumed to be in the form of
plane waves:

𝛿𝑢 = ̂𝛿𝑢𝑒(𝑖k⋅x−𝜔𝑡) , (1.17)

where 𝑢 is a generic fluid property among those listed above, ̂𝛿𝑢 is the constant am‑
plitude of the perturbation, k is the wavevector and 𝜔 the angular frequency. Per‑
forming the necessary calculations yields the dispersion relation

𝜔2 − 𝑐2𝑠𝑘2 + 4𝜋𝐺𝜌0 = 0 , (1.18)

where 𝑐2𝑠 ≡ 𝛿𝑝/𝛿𝜌 is the sound speed. Having 𝜔2 < 0 leads to instability and growth
of the perturbations (i.e. there is a solution with Im(𝜔) > 0). This concept can be
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expressed in terms of the Jeans wavelength 𝜆𝐽 , whose value follows from the disper‑
sion relation through 𝜆2 = 4𝜋2/𝑘2 and 𝜔2 = 0:

𝜆𝐽 = 𝑐𝑠
𝜋
𝐺𝜌0


1/2

. (1.19)

Perturbations with wavelength 𝜆 < 𝜆𝐽 are stable and propagate as sound waves,
whereas if 𝜆 > 𝜆𝐽 instability arises and the amplitude of the perturbations changes
with time; in the case of 𝛿𝜌, this can lead to a gravitational collapse (in the limit
𝜆 ≫ 𝜆𝐽 , the propagation speed of the perturbation is the free‑fall time). A useful
quantity derived from 𝜆𝐽 is the Jeans mass𝑀𝐽 = 𝜌0(4𝜆3𝐽𝜋/3), with𝑀 > 𝑀𝐽 leading to
instability and 𝑀 < 𝑀𝐽 leading to stability. Qualitatively speaking, the Jeans crite‑
rion can be explained by taking into account the competition of gravity and pressure
forces: a fluid with a large mass has a strong self‑gravity, which is harder to over‑
come by the pressure force with respect to a smaller mass.

The analysis of𝑀𝐽(𝑡) yields an evolutionary picture of the perturbations that are
stable or unstable at a given time, allowing to build dynamic models of structure for‑
mation. However, the description of gravitational instabilities carried on so far holds
for collisional particles (i.e. baryonic matter) in a Newtonian framework; nonethe‑
less, the Jeans length for dark matter is the same as that in eq. 1.19, except that 𝑐𝑠 is
replaced by an estimate 𝑣∗ of the mean DM particle velocity.

To take into account the expansion of the Universe, it is appropriate to switch
from phsyical coordinates x to the so‑called comoving coordinates x𝑐, related by
xc = 𝑎0x/𝑎 (where 𝑎0 = 𝑎(𝑡0)). Generally, its harder for perturbations to grow in
an expanding Universe with respect to the Newtonian case, because the expansion
acts against the gravitational pull of overdense regions. Moreover, the different com‑
ponents of the early Universe (i.e. dark matter, baryonic matter and radiation6) need
different dispersion relations that lead to different behaviours of 𝑀𝐽(𝑡). Therefore,
tracing the evolution of the Jeans mass requires knowledge of the dominant com‑
ponent of the Universe in every stage of its evolution, knowledge which is obtained
through a comparison of the time evolution of Ω𝑟, Ω𝐷𝑀 and Ω𝑏. This comparison
yields a so‑called equivalence redshift 𝑧𝑒𝑞 ≈ 3400 (e.g. Planck Collaboration 2020),
which separates the period when Ω𝑟 > Ω𝑚 (𝑧 > 𝑧𝑒𝑞, 𝑡 < 𝑡𝑒𝑞) from the one in which
Ω𝑚 > Ω𝑟 (𝑧 < 𝑧𝑒𝑞, 𝑡 > 𝑡𝑒𝑞). An additional aspect to consider is that matter can be
coupled to radiation if the interaction rate between the two is higher than 𝐻, i.e. the
expansion rate of the Universe. While this is the case, independently of the dominant

6As mentioned earlier, the cosmological constant contribution to the total matter‑energy density
of the universe is negligible in the early stages of the evolution of our Universe; its crucial role in
making the universe flat only arises in relatively recent cosmic times.
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component, perturbations have an oscillatory behaviour (Padmanabhan 1993) and
do not grow. In fact, baryons remain coupled to radiation until 𝑧𝑟𝑒𝑐 ≈ 1100, when nu‑
clei and electrons recombine and photons are free to reach the observer, constituting
what is known as the CMB. From this point onwards, baryonic overdensities with
𝑀 > 𝑀𝐽 can become unstable. Dark matter perturbations can begin to grow even
earlier (because dark matter, if the model chosen for it allows weal interactions with
the radiation field, decouples from it at 𝑧𝑑𝑒𝑐,𝐷𝑀 > 𝑧𝑒𝑞) and by 𝑧𝑟𝑒𝑐 baryons can group
up faster because the potential wells have already been deepened by DM instabilities
(e.g. Blumenthal et al. 1984). Without this dark matter support, baryon perturbations
alone would not be able to grow efficiently enough to collapse into the structures that
we observe today, which is one of the main reasons why dark matter plays a major
role in the standard cosmological model. Additionally, the early decoupling of dark
matter raises the possibility that at 𝑧𝑑𝑒𝑐,𝐷𝑀 the Universe was hot enough for DM
particles to be relativistic (i.e. with speed 𝑣 ∼ 𝑐), yielding a case known as hot dark
matter (HDM). On the contrary, cold dark matter (CDM) is already not relativistic
at 𝑧𝑑𝑒𝑐,𝐷𝑀, and leads to a different structure formation scenario.

1.2.2 Hot and cold dark matter

When studying the behaviour of𝑀𝐽(𝑧) for hot dark matter, the only redshift intervals
involved are 𝑧 > 𝑧𝑑𝑒𝑐,𝐷𝑀, 𝑧𝑑𝑒𝑐,𝐷𝑀 > 𝑧 > 𝑧𝑒𝑞 and 𝑧 < 𝑧𝑒𝑞. In this case, the evolutionary
trend of the Jeans mass shows an increase with decreasing 𝑧, leading to a very high
peak value 𝑀𝐽(𝑧𝑒𝑞) ≈ 1015 M⊙, where M⊙ is the solar mass (Padmanabhan 1993).
On the other hand, the same analysis for cold dark matter has to take into account
the additional redshift 𝑧𝑛𝑟 > 𝑧𝑑𝑒𝑐,𝐷𝑀, when dark matter becomes non‑relativistic
while still being coupled to radiation. In the new time interval 𝑧𝑛𝑟 > 𝑧 > 𝑧𝑑𝑒𝑐,𝐷𝑀,
𝑀𝐽 has a slower increasing trend with respect to HDM, which ultimately leads to
𝑀𝐽(𝑧𝑒𝑞) ≈ 106 M⊙. In both cases, after the equivalence the Jeans mass decreases as
𝑎−3/2.

It is worth noting that while according to subsec. 1.2.1 perturbations with 𝑀 <
𝑀𝐽 oscillate and can technically grow if 𝑀𝐽 becomes smaller than 𝑀, in reality the
DM particles move with mean velocity 𝑣∗ (the one to insert in the DM equation for
𝜆𝐽) over a typical distance 𝜆𝑓𝑠, called free streaming length (e.g. Blumenthal et al.
1984). Perturbations with wavelength 𝜆 < 𝜆𝑓𝑠 < 𝜆𝐽 do not actually oscillate, but
are smeared out and cancelled by DM particles escaping potential wells due to a
sufficiently large 𝜆𝑓𝑠. As in the case of the Jeans mass, it is possible to define a free
streaming mass 𝑀𝑓𝑠 from 𝜆𝑓𝑠, and for both HDM and CDM 𝑀𝐽(𝑧𝑒𝑞) = 𝑀𝑓𝑠(𝑧𝑒𝑞).
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This means that 𝑀𝐽(𝑧𝑒𝑞) sets a lower limit for the mass of overdensities which can
collapse into structures after the equivalence. In the hot dark matter case this lower
limit is very high, initially resulting in the formation of superclusters, with smaller
structures such as clusters and galaxies being formed afterwards by fragmentation
(top‑down scenario). Conversely, cold dark matter allows the formation of smaller
objects right after 𝑧𝑒𝑞, and bigger structures can grow subsequently through gravita‑
tional merging (bottom‑up scenario). Therefore, checking if the youngest structures
are superclusters or smaller objects can help in understanding the type of DM in the
Universe. In fact, galaxies are observed from 𝑧 ≈ 12 (Robertson et al. 2022), whereas
the biggest structures are still undergoing gravitational collapse (Ryden 2017), thus
excluding the hot dark matter case. Further constraints come from Ly𝛼 forests which
are linked to the shape of DM halos, related in turn to the type of dark matter. These
constraints indicate that a hypotetical dark matter particle should be more massive
(i.e. colder) than 5.3 𝑘𝑒𝑉 (Iršič et al. 2017). In fact, even though the standard cosmo‑
logical model is usually referred to as ΛCDM model (because it includes a cosmo‑
logical constant and cold dark matter), there are some discrepancies between models
of cold dark matter and observational data which led to consider warm DM models
(e.g. Bode et al. 2001) and even a mixed scenario including different types of dark
matter.

1.3 Processes of galaxy formation

So far, the evolution of perturbations has been described in a linear framework,
which holds as long as 𝛿 ≡ 𝛿𝜌/𝜌0 ≪ 1. In this case, assuming a perturbation as a
spherical overdense region, the sphere will actually keep expanding with the rest of
the Universe, albeit slightly slower. Eventually, it will reach a maximum radius, af‑
ter which the overdensity will start contracting due to its own gravitational pull and
enter a non‑linear evolutionary regime. This process will carry on until the grav‑
itational force is balanced by other effetcs, notably the pressure force for baryons
(yielding hydrostatic equilibrium) and the velocity dispersion for dark matter parti‑
cles; when this happens, the overdensity is said to be in virial equilibrium (because it
obeys the virial theorem, e.g. Ciotti 2021). If there were no other processes, the bary‑
onic gas inside a DM virialised structure (a so‑called halo) would not evolve further
and stars and galaxies would not exist. Unlike dark matter, however, baryons are
able to undergo further contraction by radiating away part of their energy through
a process called radiative cooling, and eventually part of these baryons will collapse
into stars and give birth to the gravitationally bound systems of gas, stars and dark
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matter that we commonly call galaxies.

1.3.1 Gas cooling and star formation

The mechanisms behind gas cooling include a wide range of physical processes,
which lead to different cooling efficiencies depending on the gas properties. For this
reason, it is useful to model the gas in the dark matter halos of the early Universe.
For the sake of simplicity, the gas can be assumed to have an isothermal, spherically
simmetric distribution of radius 𝑅𝑣𝑖𝑟, while the total mass of the halo and the gas is
𝑀𝑣𝑖𝑟. The comparison of the gravitational potential energy and the internal energy
of the gas through the virial theorem yields the following definition of virial tem‑
perature (e.g. Rees and Ostriker 1977), which provides a rough estimate of the gas
temperature:

𝑇𝑣𝑖𝑟 ≃
𝐺𝑚𝐻𝑀𝑣𝑖𝑟
𝑘𝑅𝑣𝑖𝑟

, (1.20)

where 𝑚𝐻 is the hydrogen mass and the approximation comes from the fact that an
exact relation would require knowledge of the DM halo density profile, as well as
of the chemical composition of the gas inside it. The relationship between the gas
temperature and the virial mass 𝑀𝑣𝑖𝑟 is very important to understand which halos
can form galaxies: if𝑀𝑣𝑖𝑟 is too high, so is the virial temperature and cooling becomes
inefficient.7 Other than that, the temperature determines the ionization state of the
gas components, which allows some cooling mechanisms over others. Specifically,
𝑇 ≈ 104 K is the ionization temperature of hydrogen (i.e. the most abundant element
of the Universe), and separates the following main cooling regimes.

A gas with 𝑇 ≳ 104 K can cool mainly through Bremsstrahlung (free‑free), re‑
combination (free‑bound) and radiative de‑excitation (bound‑bound). The two lat‑
ter mechanisms are closely related to collisional excitation and collisional ionization:
after a collision, a bound electron acquires enough energy to move to a higher level
or even free itself from an atom. These processes can fuel the free‑bound and bound‑
bound cooling mechanisms, and in fact, one of the simplest assumptions to describe
cooling is that recombination is entirely due to collisional ionization; in other words,
the two phenomena balance each other. Other commonly employed conditions are
an instantaneous radiative return to the ground state after an excitation and the ab‑
sence of any external photoionising field. When all these are applied to a low‑density

7Here there is the implicit assumption of the gas being in virial equilibrium with the DM halo
when cooling starts to take place; in fact, the full picture is much more complicated than that, and the
gas might very well enter the halo with 𝑇 < 𝑇𝑣𝑖𝑟 and skip the virial equilibrium phase (e.g. Birnboim
and Dekel 2003; Kereš et al. 2005).
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gas, they constitute the collisional ionization equilibrium assumption (CIE, e.g. Cox
and Tucker 1969). If CIE holds, it is relatively easy to calculate the rate at which the
gas loses its internal energy:

d𝜀
d𝑡 = −𝑛𝑡𝑛𝑒Λ(𝑇) , (1.21)

where 𝜀 is the internal energy density, 𝑛𝑡 is the ions and neutral atoms number den‑
sity, 𝑛𝑒 is the electron number density and Λ(𝑇) is the so‑called cooling function. In
this temperature regime, Λ(𝑇) has a peak around 2 ⋅ 104 K due to the maximum effi‑
ciency of recombination and de‑excitation of hydrogen. Smaller peaks at higher tem‑
peratures are due to other elements such as helium and, if present, metals.8 Even‑
tually, at very high temperatures (𝑇 ≳ 107 K), Bremsstrahlung remains the only
contribution to Λ(𝑇).

If the temperature of a gas is ≲ 104 K, cooling is generally much less efficient,
because matter is mostly neutral and so the free‑bound and free‑free processes can‑
not take place. Moreover, there are not enough free electrons to make collisional
excitation efficient. If the gas is metal‑rich, there are additional transitions that can
fuel cooling, but even so, the cooling function is usually not nearly as high as when
𝑇 ≳ 104 K. In fact, the cold dark matter scenario leads to the smaller DM halos
(𝑀𝑣𝑖𝑟 ≲ 105 M⊙) having 𝑇𝑣𝑖𝑟 ≲ 103 K. The gas in these halos is believed to be the
source of the stellar component of the oldest galaxies; however, no atomic cooling
mechanism described so far is able to operate at these low temperatures, especially
when considering the absence of metals in the primordial gas. This complication
raises the question of how to cool the primordial gas, in order to make it contract be‑
low𝑅𝑣𝑖𝑟 and form stars. The answer lies in molecular coolants: at 𝑇 ≲ 103 K, the most
abundant molecule of the primordial gas is molecular hydrogen (H2), which is able
to provide efficient cooling in low density regimes up to a minimum temperature
𝑇 ≈ 200 K (Galli and Palla 2013). From this point onwards, gas compression slowly
rises its temperature and a protostellar core is formed, which accretes matter from
its surroundings and gives birth to an actual star. In fact, it is possible to calculate
the expected accretion rate in order to have an estimate of the final mass of the star
𝑀𝑠𝑡𝑎𝑟. In the temperature range of the gas surrounding the core (𝑇 ≈ 300 − 1000 K)
protostellar cores can accrete gas with a rate of 10−3 M⊙/yr, yielding𝑀𝑠𝑡𝑎𝑟 ≈ 100M⊙.
These very massive stars are also extremely hot, with a surface temperature of 105 K,
which implies the emission of many ionizing photons. These are able to increase the
ionization fraction of the surrounding gas, which in turn favors the formation chan‑

8Metals, which in an astrophysical framework are generally elements heavier than helium, are ac‑
tually found only in gas which has been chemically enriched by stars, and are absent in the primordial
baryonic matter.
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nels of H2 and enables more efficient cooling, up to 𝑇 ≈ 150 K. Moreover, molecules
with a permanent electric dipole such as hydrogen deuteride (HD) and LiH can fur‑
ther cool the gas up to 𝑇 ≈ 30 K (Galli and Palla 2013), a temperature which allows
an easier gravitational collapse thanks to the low pressure support (𝑝 ∝ 𝑇 in a perfect
gas). In fact, this temperature is similar to the typical value of the modern sites of star
formation, the so‑called giant molecular clouds (GMCs). These are dense structures
susceptible to Jeans instability and with a complex internal morphology, which in‑
cludes the effects of turbulence and magnetic fields. As in the primordial Universe,
the gravitational collapse leads to the formation of a protostar, but the lower medium
temperature implies lower accretion rates and star masses with respect to the oldest
objects.

1.3.2 Feedback processes

The galaxy components described so far, i.e. stars and the gaseous medium sur‑
rounding them, are obviously not independent of each other: gas instabilities can
lead to the formation of stars, and in turn the evolution of stars influences the in‑
sterstellar medium (ISM). The latter process includes a variety of phenomena which
are collectively known as stellar feedback. First of all, stars form elements heavier
than helium which can be returned to the ISM mainly through supernova explo‑
sions: core‑collapse supernovae (i.e. SN types II, Ib and Ic) mark the death of stars
with mass ≳ 8 M⊙, which have relatively short lifespans and mainly eject alpha‑
elements (i.e. those which can be formed by aggregation of helium nuclei). On the
other hand, remnants from much longer lived stars (𝑀𝑠𝑡𝑎𝑟 ≲ 1 M⊙) can undergo
gravitational instability through mass accretion and give rise to a type Ia supernova
(SN Ia), which destroys the remnant and injects Fe‑group elements into the ISM (e.g.
Matteucci and Greggio 1986). Generally, supernovae also transfer kinetic energy to
the surrounding medium, which can lead to the removal of gas from the galaxy and
to subsequent star formation quenching (negative feedback), but also to local gas
compression, which increases its self gravity (positive feedback). Normally, the en‑
ergy transfer efficiency of core‑collapse supernovae is very low, but when coupled
with stellar wind bubbles9 they can lead to the removal of a fraction of gas from the
ISM. This gas can either fall back to the ISM in a different location (galactic fountain)
or remain in the outer regions of the galaxy (galactic wind). In the latter case, which

9Stellar wind bubbles form through mass ejection from very massive stars (spectral class O/B). The
radiation pressure pushes away with high speed the outer layers of the star, creating a shock when
this “wind” interacts with the ISM and a reverse shock in the wind itself. This heats up the wind and
produces a “bubble”, which sweeps the shocked ISM by expanding adiabatically (Cimatti et al. 2020).
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tends to only take place in galaxies with a very high star formation rate (starburst
galaxies), the ejected gas velocity can be high enough to let it escape the galactic
potential well.

In fact, feedback processes also arise from the so‑called active galactic nuclei
(AGN), which are produced by the accretion of surrounding matter onto the super‑
massive black hole (SMBH) found at the center of most galaxies. Tipically, the in‑
falling matter has a finite angular momentum which prevents it from going straight
into the SMBH; instead, it arranges itself in a disk‑like structure around the central
object, thanks to the outwards transfer of angular momentum. This disk rotates dif‑
ferentially around the SMBH, i.e. with a radius‑dependent angular velocity; this im‑
plies a viscous tension between adjacent “rings”, causing a loss of angular momen‑
tum as matter spirals inwards. The resulting release of gravitational energy fuels
the rotational kinetic energy and thermal energy of the disk, which then cools radia‑
tively (Shakura and Sunyaev 1973). Specifically, this radiation represents the optical
and UV emission of an AGN, composed of blackbodies at different temperatures,
each of which corresponding to a specific ring of the disk. In fact, optical photons
also fuel the AGN emission in other bands, namely X (e.g. Haardt and Maraschi
1991) and mid‑infrared (e.g. Pier and Krolik 1992). It should be noted that the above
description of an AGN disk holds as long as the disk is able to carry the thermal
energy on its surface, where it can be radiated away. However, this is not always
the case, as the infalling matter can retain most of its internal energy without being
able to have an efficient radiative cooling. This advection‑dominated accretion flow
(ADAF) can lead to the formation of powerful relativistic outflows (i.e. “jets”), pref‑
erentially directed along the rotation axis of the disk (e.g. Narayan and Yi 1995) and
hosting electrons which radiate in the radio band through synchrotron.

In terms of feedback, AGN with ADAF‑like disks tend to operate in the so‑called
kinetic mode (or radio mode), with jets inflating hot bubbles in the galactic halo;
one of the main effects of these bubbles is the halting of cooling flows10 in galaxy
clusters, because the bubbles provide a mechanical energy source capable of reheat‑
ing the cooled gas (e.g. Tucker and David 1997). On the other hand, if the disk is
radiatively efficient, the feedback is mainly provided by photons (quasar mode): ra‑
diation pressure creates high‑velocity (∼ 0.1𝑐, where 𝑐 is the speed of light) winds
in close proximity to the central AGN, which in turn sweep the surrounding ISM,
driving a shock through it and generating a gas outflow. If the shocked material is

10According to eq. 1.21, a higher density environment yields more efficient energy losses through
cooling; this is exactly what should happen in the dense inner regions of galaxy clusters, where cooled
gas is pushed further inwards (creating a cooling flow) by the overlying medium (Fabian 1994).
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able to cool efficiently (momentum‑driven outflow), its impact on the ISM is very
mild, and the outflow eventually stops close to the central nucleus (within ∼ 1 𝑘𝑝𝑐,
Zubovas and King 2012). On the other hand, if the cooling efficiency of the shocked
material is low (energy‑driven outflow), the wind is eventually able to sweep gas
far from the AGN and significantly reduce (possibly even to zero) the accretion rate.
Moreover, the energy budget involved in this latter type of feedback can be high
enough to make the ISM of the host galaxy escape its potential well, yielding the
quenching of star formation (e.g. Zubovas and King 2012). In fact, energy‑driven
outflows are thought to be responsible for the absence of star formation in the most
massive galaxies, where the energy released through the aforementioned supernova
feedback is not high enough to sweep them clear of their gaseous content.

1.4 The numerical approach

The combination of the processes described above gives rise to the general struc‑
ture and galaxy evolution theory, which makes us able to model and interpret the
ever‑growing amount of observational data available. However, due to the com‑
plexity and non‑linearity of the involved phenomena, it is extremely challenging,
and in most cases even impossible, to treat them in a purely theoretical fashion (e.g.
Springel 2016; Vogelsberger et al. 2020). For this reason, the task of modeling and
interpreting observations is usually carried out through cosmological simulations,
which evolve over a certain time period a finite volume of the Universe, typically
a cube with comoving side and periodic boundary conditions (to mimic the homo‑
geneity and isotropy set by the Cosmological Principle). The main components to
include in a cosmological simulation are, first and foremost, dark matter and dark
energy, since the former drives the formation of structures (as seen in section 1.2) and
the latter accelerates the expansion of the Universe11. In fact, many simulations, such
as the Millennium‑XXL run (Angulo et al. 2012), the Dark Sky Simulations (Skillman
et al. 2014), the DEUS Full Universe run (Alimi et al. 2012), the Bolshoi simulation
(Klypin et al. 2011), the Phoenix runs (Gao et al. 2012) and the Via Lactea simula‑
tion (Diemand et al. 2008) only employ these components, because their goal is to
analyse the large scale structure and the morphology and distribution of DM halos.
In this framework, the only force to treat in a simulation is gravity; in fact, the the‑
ory adopted to describe this force is usually the Newtonian one instead of general
relativity, because in a linear approximation the two give the same results, and the

11In fact, dark energy is not directly treated in a dynamical evolution framework and only arises
in a simulation through its effects on 𝐻(𝑧).
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velocities involved in the non‑linear regime are much lower than the speed of light
(Vogelsberger et al. 2020). Other projects like the IllustrisTNG simulations (Springel
et al. 2018), the Auriga suite (Grand et al. 2017), the EAGLE project (Schaye et al.
2015), the Horizon‑AGN simulation (Dubois et al. 2014), the LATTE‑FIRE run (Wet‑
zel et al. 2016) and the massiveblack‑II simulation (Khandai et al. 2015) also take into
account baryons and their complex physics, including for example cooling, magnetic
fields, models of star formation, feedback by both stars and AGN and chemical en‑
richment of the gas.

In order to adapt the gravitational and hydrodynamic models to numerical sim‑
ulations, it is necessary to discretize the equations and quantities involved in those
models. For example, a continuous density field 𝜌(x) can be sampled with a set of
N discrete point masses; clearly, the larger is N, the better the particles sample the
field (i.e. the higher the simulation resolution) and the more accurately the physical
processes involving that field are described. In fact, both dark and baryonic matter
are actually made of physical discrete particles, but following each of them through
a simulation would be an impossible task to handle for modern computers, because
of the incredibly large N.12 Normally, the particles followed in a simulation are far
less than the physical ones and thus much more massive, with N ranging from a
few millions to even trillions in the biggest projects. With this “tracer particles” ap‑
proach, simulations can actually be performed with a reasonable amount of compu‑
tational resources, both during the run (e.g. in terms of run time and memory) and
after it (e.g. in terms of storage space) and yield results which make us able to inter‑
pret and make predictions on observational data. However, there are still hardware
limitations which define an upper bound for the number of tracer particles, which
otherwise would always be high enough to achieve the desired resolution. As ob‑
servational campaigns cover increasingly large regions of the Universe with high
accuracy, this upper bound becomes more and more incovenient, because the simu‑
lation quality and/or volume coverage tend to be too low for a comparison with real
data. This is especially true in the case of simulations of galaxy formation, because
baryon physics takes a much higher toll on computational resources with respect to
gravity‑only calculations. Specifically, if modern galaxy formation simulations have
very high resolutions, they usually cover a small volume of the Universe or even a
single DM halo; conversely, simulations which evolve large volumes of the Universe
are necessarily resolution limited. Therefore, this work aims to develop an algorithm
which can ease the computational burden of cosmological simulations, in order to

12Considering N as the number of nucleons (i.e. protons and neutrons) and according to Avo‑
gadro’s number, for a single gram of matter 𝑁 ≈ 1023.
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take a step further towards the possibility to simulate large‑scale galaxy formation
with a high resolution. Before trying to understand how this algorithm works, it is
necessary to briefly introduce some numerical techniques already employed in grav‑
ity and hydrodynamic calculations to satisfy the need for a large number of tracer
particles.



2 ∣Numerical techniques

The importance of cosmological simulations has been briefly explained in the previ‑
ous chapter, which also highlighted the inability to simulate the entirety of the parti‑
cles which constitute the matter of our Universe, relying instead on macro particles
which trace the underlying physical ones. Actually, this is not the only approxima‑
tion usually employed in modern simulation codes, because further techniques are
used to increase the number of simulated particles while keeping the computational
cost in check. In fact, there is a large variety of different methods to achieve this
result, each with its strenghts and weaknesses and some more suited to particular
types of simulations (or even specific stages of a simulation) than others; the ones
presented in this chapter will be the starting point to achieve a better performance in
DM‑only and potentially galaxy formation simulations. Techniques which address
the gravitational force calculations are presented in section 2.1, whereas hydrody‑
namic ones are described in section 2.2.

2.1 N‑body solvers

When N particles or objects in general interact gravitationally, the calculations of
their individual trajectories constitute a so‑called N‑body problem. This problem is
analytically solved through an integration of the following Newtonian equations of
motion, which hold for system of N point‑like particles labeled with 𝑖 = 1, … ,N:

ẍ𝑖 = −∇𝑖Φ(x𝑖) , (2.1)

Φ(x) = −𝐺
𝑁

𝑗=1

𝑚𝑗

√(x − x𝑗)
2 + 𝜀2

, (2.2)

where x𝑖 = (𝑥1𝑖, 𝑥2𝑖, 𝑥3𝑖) is the position vector of each particle, 𝑚𝑖 is their mass and
∇𝑖 is the operator (𝜕/𝜕𝑥1𝑖, 𝜕/𝜕𝑥2𝑖, 𝜕/𝜕𝑥3𝑖). The quantity 𝜀 is called “softening length”
and its main effect is to dampen the gravitational potentialΦ(x) at short distances, in
order to ensure the collisionless behaviour of the system (e.g. Springel 2016). In fact,

20
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the only case in which the problem allows an analytical integration of the equations
above is when 𝑁 = 2 (e.g. Goldstein et al. 2008). For larger N, which is obviously
the case of cosmological simulations, the solution cannot be calculated with analytic
techniques. However, it is still technically possible to perform an exact calculation
of the gravitational force acting on each particle through the formula

̈x𝑖 = −𝐺
𝑁

𝑗=1

𝑚𝑗
[(x𝑖 − x𝑗)2 + 𝜀2]3/2

(x𝑖 − x𝑗) , (2.3)

which is a sum with 𝑁 − 1 addends for each of the 𝑁 particles, yielding a total num‑
ber of operations which scales with 𝑁 as 𝒪 (𝑁2) (equivalently, it can be said that the
direct summation has a scaling of 𝒪 (𝑁2)). When trying to carry on this summa‑
tion in a simulation framework, this scaling translates in a number of operations to
be performed which quickly becomes prohibitive for large 𝑁. The aforementioned
additional techniques, usually applied on top of the tracer particles approximation,
provide a scaling improvement at the cost of approximate gravitational force calcula‑
tions. Among these techniques, the most relevant for this work are the particle‑mesh
(PM) method and especially the hierarchical multipole (“tree”) method; in fact, a
combination of the two is often employed in modern simulation softwares, yielding
the so‑called “tree‑PM” algorithm.

2.1.1 Particle‑mesh method

As the name suggests, the particle‑mesh method involves the construction of a mesh
over the simulation domain, in order to obtain a density field 𝜌 to be inserted in the
Poisson equation (eq. 1.15), which is then solved for the gravitational potential Φ.
There are various methods to obtain an estimate of Φ, one of which takes advantage
of the properties of linear differential operators, specifically of the concept of Green
functions (e.g. Ciotti 2021). Given a linear operator ℒ , a Green function provides a
way to solve the general differential equation

ℒ[𝑓(x)] = ℎ(x) , (2.4)

where ℎ(x) is a given function of the Cartesian coordinate x. A function 𝑔(x,y) is
called a Green function for the operator ℒ if the application of ℒ to 𝑔 yields the
Dirac delta:

ℒ[𝑔(x,y)] = 𝛿(x − y) . (2.5)

At this point, solving eq. 2.4 for 𝑓 can be reduced to the following integration prob‑
lem:

𝑓(x) = 
ℝ𝑛
ℎ(y)𝑔(x,y)d𝑛y . (2.6)
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When the concept of Green functions is applied to eq. 1.15, the above equation can
be further simplified to a convolution between 𝑔 (now a function of x− y) and ℎ(x) =
4𝜋𝐺𝜌(x):

Φ(x) = 4𝜋𝐺
ℝ3
𝜌(y)𝑔(x − y)d3y . (2.7)

By the convolution theorem, this implies that the Fourier transformℱ of Φ is equal
to the product between the Fourier transforms of 𝜌 and 𝑔. In fact, in the periodic
box with side 𝐿 commonly employed in cosmological simulations, 𝜌(x) is a periodic
function and can be expressed as a Fourier series:

𝜌(x) = 
k
𝜌k𝑒𝑖k⋅x with 𝜌k =

1
𝐿3 𝐿3

𝜌(x)𝑒−𝑖k⋅xdx , (2.8)

where the quantities 𝜌k are the Fourier coefficients, or modes, of the series. In this
framework, eq. 1.15 is solved by computing and multiplying each mode by the Green
function in Fourier space 𝑔k to yield the coefficientsΦk, which can be used to finally
calculate Φ(x) through its Fourier series. The reduction of eq. 2.7 to simple prod‑
ucts, coupled with the ease and accuracy provided by modern Fourier transform
algorithms1, has made this solution of the Poisson equation one of the most widely
employed in cosmological simulations.

The Poisson equation, however, requires a density field, whereas the building
blocks of cosmological simulation are tracer particles. Therefore, the first task that
the particle‑mesh method has to accomplish is the construction of a density field:
particles inside each cubic mesh cell contribute to the total mass of the cell, which in
turn provides a local density estimate when divided by the cell volume. The exact
contribution of each particle can be evaluated by defining a so‑called shape function
𝑆(x); if each cell center, or grid point, is indexed by p = {𝑝𝑥, 𝑝𝑦, 𝑝𝑧} and the linear size
of a cell is ℎ, then the fraction𝑊p(x𝑖) of mass assigned by the particle 𝑖 to the cell p is

𝑊p(x𝑖) = 
xp+ℎ/2

xp−ℎ/2
𝑆(x𝑖 − x)d3x , (2.9)

assuming that 𝑆(x) is normalized to unity. Consequently, the density estimate for
each cell will be

𝜌p =
1
ℎ3

𝑁

𝑖=1

𝑚𝑖𝑊p(x𝑖) . (2.10)

1Similarly to the gravitational force computation, calculating the Fourier transform of a discretized
field of 𝑁 elements through a direct summation has a scaling 𝒪 (𝑁2) (e.g. Springel 2016). Nowadays,
numerical Fourier transforms are calculated through the fast Fourier transform (FFT) algorithm (Coo‑
ley and Tukey 1965), which provides both a better scaling (i.e. 𝒪 (𝑁 ln𝑁)) and a higher accuracy with
respect to direct summation.
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As previously mentioned, the contribution of each particle to each cell, and thus
the specific value of 𝜌p, is influenced by the choice made for the shape function:

𝑥𝑥𝑥𝑝−1 𝑥𝑝 𝑥𝑝+1 𝑥𝑝+2

𝑆
(a)

𝑥𝑥𝑝−1 𝑥𝑝 𝑥𝑝+1 𝑥𝑝+2

𝑆
(b)

𝑥𝑥𝑝−1 𝑥𝑝 𝑥𝑝+1 𝑥𝑝+2

𝑆
(c)

Figure 2.1: one‑dimensional representation of three
mass assignment schemes for the same particle position
(red arrow): the NGP (a), the CIC (b) and the TSC (c)
(figures adapted from Springel 2016).

common examples are the
Dirac delta, which leads to the
nearest grid point (NGP) as‑
signment, and a cubic or tri‑
angular “cloud”, which leads
to the clouds‑in‑cell (CIC) and
the triangular shaped clouds
(TSC) assignments, respec‑
tively.

If 𝑆(x) = 𝛿(x), the fraction
𝑊p(x𝑖) can only be equal to 1
or 0, depending on the posi‑
tion of particle 𝑖: if x𝑖 ∈ [xp −
ℎ/2, xp +ℎ/2], all of its mass𝑚𝑖
is assigned to cellp, otherwise
𝑚𝑖 does not contribute at all to
𝜌p. In other words, the mass

of each particle is assigned to the closest cell center with respect to the position of
the particle, as shown in fig. 2.1a.

In the CIC scheme the shape function is the following:

𝑆(x) = 1
ℎ3
Πxℎ

 , (2.11)

where Π(x) is the top‑hat function

Π(x) =

⎧⎪⎪⎨
⎪⎪⎩
1 if |x| ≤ 1/2

0 if |x| > 1/2
. (2.12)

In this case, depicted in fig. 2.1b, 𝑊p(x𝑖) will be ≠ 0 only when the cubes with side
ℎ centered on x𝑖 and xp overlap, and the fraction of mass given to each cell will be
proportional to that overlap. Usually, the total mass 𝑚𝑖 will be split between two
cells in 1𝐷, four in 2𝐷 and eight in 3𝐷; in fact, there is a general rule stating that
the number of cells with a non‑zero fraction of 𝑚𝑖 scales with the number of dimen‑
sions 𝑑 as 2𝑑. Moreover, as opposed to the previous scheme, this density estimate is
piecewise linear and continuous, but its first derivative is not.

The derivative can be made continuous through the TSC scheme (fig. 2.1c), whose
2𝐷 geometrical interpretation is a triangle with base 2ℎ; the mass assignment is car‑
ried on similarly to the CIC scheme, namely by considering which mesh cells overlap
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with the shape function centered on x𝑖. In this case, the number of cells involved in
the mass assignment scales with the dimensions as 3𝑑. Practically speaking, both the
CIC and the TSC schemes are good choices for the particle‑mesh method, as they re‑
tain a certain degree of information about the position of particles inside a cell.

Once the density field has been created and the Poisson equation has been solved,
the gravitational accelerations need to be calculated from the potential Φp, where
the subscript refers to the fact that the density field, and thus the potential, has been
calculated at the mesh cell centers. The discretization of eq. 2.1 which is usually
employed is a simple finite differencing scheme, with truncation errors of 𝒪 (ℎ4) or
𝒪 (ℎ5). The resulting values ẍp can be finally used to calculate the gravitational forces
F𝑖 of each particle 𝑖 by interpolating accelerations from the cell centers. It is manda‑
tory to use the same function 𝑊p(x) employed in the mass assignment stage, to en‑
sure a vanishing self‑force and antisymmetric forces between particle pairs: if these
are not guaranteed, a particle might start moving by itself, violating momentum
conservation. With this requirement, the force F𝑖 acting on particle 𝑖 is

F𝑖 = 𝑚𝑖
p
ẍp𝑊p(x𝑖) . (2.13)

The main advantage of the particle‑mesh method is its scaling of 𝒪 (𝑁) (plus the
cost of the Fourier transform2), but its biggest limit is represented by the mesh it‑
self, which sets a fixed spatial resolution given by ℎ: in a cosmological simulation,
structure formation evolves hierarchically over a large dynamic range, for which the
smallest scales of interest might be unresolved by an excessively coarse mesh.

2.1.2 Hierarchical multipole method

The hierarchical multipole method (Barnes and Hut 1986) aims to speed up the di‑
rect summation of gravitational partial forces (eq. 2.3) by approximating groups of
distant particles through their multipole expansion. This expansion follows from
the Taylor series of the gravitational potential Φ generated in a point x by a group of
𝑁 particles:

Φ(x) = −𝐺
𝑁

𝑖=1

𝑚𝑖
|x − x𝑖|

= −𝐺
𝑁

𝑖=1

𝑚𝑖
|x − s + s − x𝑖|

, (2.14)

where the last expression introduces the center of mass

s =
∑𝑁𝑖=1𝑚𝑖x𝑖
∑𝑁𝑖=1𝑚𝑖

, (2.15)

2See footnote 1 for the scaling of the popular FFT algorithm.
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useful to expandΦ under the condition |x𝑖−s| ≪ |x−s|; this basically implies that the
angle 𝜃 under which the𝑁 particles are seen from the position of the particle located
in x is small, as seen in fig. 2.2. After defining y ≡ x − s the Taylor expansion can be
written as

1
|y + s − x𝑖|

= 1
|y| +

y ⋅ (s − x𝑖)
|y|3

+ y𝑇[3(s − x𝑖)(s − x𝑖)𝑇 − (s − x𝑖)2]y
2|y|5

+ … . (2.16)

This result can be inserted in eq. 2.14 to yield various multipole moments. The first
term gives rise to the monopole moment𝑀; the second term (i.e. the dipole moment)
vanishes because the Taylor expansion has been calculated with respect to the center
of mass s, and the third term becomes the quadrupole moment:

monopole: 𝑀 =
𝑁

𝑖=1

𝑚𝑖 , (2.17)

dipole:
𝑁

𝑖=1

𝑚𝑖(s − 𝑥𝑖) = (𝑀s −𝑀s) = 0 (2.18)

quadrupole: 𝑄𝑖𝑗 =
𝑁

𝑘=1

𝑚𝑘[3(s − x𝑘)𝑖(s − x𝑘)𝑗 − 𝛿𝑖𝑗(s − x𝑘)2] . (2.19)

𝜃

x

x𝑖

center of mass

s

origin

Figure 2.2: sketch showing a particle distribu‑
tion far enough from the point x to yield a small
opening angle 𝜃; the combined gravitational ef‑
fects of the particles are approximated through a
multipole expansion at their center of mass (figure
adapted from Springel 2016).

These moments can now yield an
approximate estimate of the grav‑
itational potential

Φ(x) ≃ −𝐺
𝑀

|x − s| +
y𝑇Qy
2|x − s|5 

,

(2.20)
from which the gravitational ac‑
celeration can be obtained through
eq. 2.1.

In order to effectively calculate
forces with the hierarchical mul‑
tipole method, it is necessary to
define suitable groups of particles
to calculate moments from, and
criteria to decide when the grav‑
itational effects of these groups
can be approximated (in fact, one
criterion has already been men‑
tioned: a small opening angle 𝜃).
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Among the many ways to accomplish the first of these two tasks, the oct‑tree al‑
gorithm (Barnes and Hut 1986, hence the alternate name of this N‑body solver) is
one of the most popular: the simulation domain, that is, a cube with side 𝐿 which
contains every simulation particle, represents the so‑called “root node”, i.e. the first
tree level. This cube is divided into 8 cubic subdomains with side 𝐿/2, which consti‑
tute the nodes of the second tree level. Each of these nodes is further divided into
8 smaller nodes with side 𝐿/4, creating the third tree level; this node splitting pro‑
cess continues recursively until each node in the lower levels contains at most one
simulation particle, as shown in fig. 2.3.

To calculate the force acting on a particle x𝑖, a so‑called “tree walk” is performed:
starting from the root node (i.e. the whole box), each node is tested with an open‑
ing criterion; if the criterion is satisfied, the multipole moments of the node can be
employed right away in the force calculation, and the walk along that “branch” (i.e.
the set of lower level objects starting from a node) stops. In this case, the tree walk
continues to “siblings” (i.e. the nodes on the same level), without the need to open
the node and analyse all of its eight “children” in the next tree level. This latter task,
however, must be accomplished when a node does not satisfy the opening criterion:
in this case, the multipole expansion would be too rough of an approximation, and
force calculations must be refined by carrying on the tree walk to lower levels and
children nodes.

The criteria commonly employed in this framework include the aforementioned
geometrical criterion, which can be formalised as follows:

𝐿
|s − x𝑖|

≤ 𝜃𝑔𝑒𝑜𝑚 , (2.21)

where 𝐿 is the linear size of the node tested with the criterion and 𝜃𝑔𝑒𝑜𝑚 is a free
parameter which sets a tolerance level for the force accuracy (if 𝜃𝑔𝑒𝑜𝑚 was set to 0,
the force calculation would be carried on by direct summation). If a node satisfies the
above relation, there is no need to open it and its multipole moments can be used.
Another criterion widely employed is the so‑called relative or dynamical criterion
(Springel 2005), which aims to limit the maximum force error introduced by the tree
method. This is achieved through a comparison of a rough estimate of the force
error per unit mass (obtained from the truncation error of eq. 2.16) with a fraction of
the expected force value, given by the free parameter 𝛼 times the acceleration |a𝑖,𝑜𝑙𝑑|
which particle 𝑖 had in the previous simulation timestep. The truncation errorΔ𝐹𝑛𝑜𝑑𝑒
of the force per unit mass exerted on x𝑖 by a node can be written as

Δ𝐹𝑛𝑜𝑑𝑒 ∼
𝐺𝑚𝑛𝑜𝑑𝑒
|s − x𝑖|2

𝜃2 , (2.22)
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where 𝑚𝑛𝑜𝑑𝑒 is the mass of the node and 𝜃 = 𝐿/|s − x𝑖| is the angle depicted

level 0

level 1

level 2

level 3

Figure 2.3: two‑dimensional sketch of the oct‑tree algo‑
rithm (a quad‑tree in 2D). Note the node in level 2 which
already contains only one particle, and is not further di‑
vided. Moreover, empty nodes do not need to be stored
(figure taken from Springel 2016).

in fig. 2.2. Given the above er‑
ror, the relative criterion is the
following:

𝐺𝑚𝑛𝑜𝑑𝑒
|s − x𝑖|2

𝜃2 ≤ 𝛼|a𝑖,𝑜𝑙𝑑| . (2.23)

If a node satisfies this cri‑
terion, the force error intro‑
duced by its multipole mo‑
ments is small enough to
safely use that node without
opening it. Typically, most
simulation softwares offer the
possibility to choose a geo‑
metrical opening criterion or
a relative one.

It can be shown (e.g. Barnes
and Hut 1986; Springel 2016)
that the computational cost
of gravitational force calcula‑
tions through the tree method
scales as 𝒪 (𝑁 ln𝑁), which is
a great improvement over the
direct summation scaling. This method is also able to automatically adjust to the
dynamic scales of the simulation, because more smaller nodes are created as parti‑
cles cluster. The main disadvantage of the tree method, however, is its application
to almost homogeneous matter distributions (such as the universe at high redshifts):
in this case, the very small force felt by a particle is the sum of many partial contri‑
butions from other particles and nodes, so obtaining accurate results becomes com‑
putationally expensive.

2.1.3 Tree‑PM method

Interestingly enough, the situations in which the PM method does not work opti‑
mally, for example when particles cluster below the mesh cell size, are well handled
by the tree method and vice versa, since the PM method probably represents the
fastest approach to obtain accurate results for a highly homogeneous field. For this
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reason, it is common practice to use a combination of the two algorithms in cosmo‑
logical simulations, which calculate the long‑range gravitational force through the
PM method and the short‑range one through the tree method. This force splitting
starts with the Fourier series of the gravitational potential, whose modes Φk are di‑
vided as follows:

short‑range component: Φ𝑠ℎ𝑜𝑟𝑡k = Φk[1 − exp(−k2𝑟2𝑠 )] , (2.24)

long‑range component: Φ𝑙𝑜𝑛𝑔k = Φk exp(−k2𝑟2𝑠 ) , (2.25)

where 𝑟𝑠 is the so‑called force splitting scale. The long‑range potential can be handled
in Fourier space through the PM algorithm, whereasΦ𝑠ℎ𝑜𝑟𝑡k needs to be brought back
to real space right away. For a single particle with mass 𝑚 in a cubic periodic box
with side 𝐿, and for 𝑟𝑠 ≪ 𝐿, the short‑range potential is:

Φ 𝑠ℎ𝑜𝑟𝑡(x) = −𝐺𝑚𝑟 erfc
𝑟
2𝑟𝑠

 , (2.26)

where 𝑟 = min(|x − r − n𝐿|) represents the smallest distance which separates the
particle at r from the point x where Φ 𝑠ℎ𝑜𝑟𝑡 is calculated, among all of the periodic

Δ𝐹
/𝐹

𝑟/𝐿

Figure 2.4: errors introduced by the particle‑mesh
method for the force due to a single particle. The dotted
line represents the mesh size, the dashed line the force
splitting scale (figure taken from Springel 2005).

images of the box (n ∈ ℤ3).
Aside from the quantity 𝑟,
which takes care of the pe‑
riodic boundary conditions,
Φ 𝑠ℎ𝑜𝑟𝑡 is simply the new‑
tonian potential of a point
mass multiplied by the error
function

erfc(𝑥) = 1 − 1
√𝜋


𝑥

−𝑥
𝑒−𝑡2d𝑡 ,

(2.27)
which dampens the poten‑
tial when 𝑟 becomes similar
to 𝑟𝑠 (at 𝑟 ∼ 5𝑟𝑠,Φ 𝑠ℎ𝑜𝑟𝑡 is neg‑
ligible). The short range po‑

tential in real space is processed by the tree algorithm, restricted to nodes closer than
5𝑟𝑠. This leads to faster computation times with respect to an approach which covers
the whole box.

The long‑range force introduces an error which is due to the mesh anisotropy
and is most prominent on scales similar to the cell size (Springel 2005). Nevertheless,
this anisotropy can be arbitrarily reduced by increasing the splitting scale 𝑟𝑠, even
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though in that case the tree algorithm would have to work on larger portions of the
simulation domain to calculate the short‑range force. As shown in fig. 2.4, setting
𝑟𝑠 to a value larger than the cell size leads to errors not greater than 2%, and the
rms force error is even smaller, usually sitting below 1%; a typical sweet spot for 𝑟𝑠
to minimise errors is 4.5 times the cell size (i.e. the default value of the AREPO code,
Weinberger et al. 2020).

2.2 Hydrodynamics

The system of equations which describes the behaviour of an inviscid fluid is the
aforementioned system of eqs. 1.13, 1.14 and 1.16. In fact, solving the system formed
by these equations requires an additional equation, i.e. a closure relation, repre‑
sented by an equation of state which links the pressure with the other variables;
for ideal fluids, the equation is

𝑃 = (𝛾 − 1)𝜌𝜖 , (2.28)

where 𝛾 is the adiabatic index.
The hydrodynamic system of equations can be analysed in two distinct ways: the

so‑called Eulerian approach, which aims to describe a fluid through its properties
in fixed points of space, and the Lagrangian approach, which instead follows the
evolution of each “fluid element” as it moves with the flow. The two approaches
also lead to equivalent but distinct ways of writing the fluid equations: the Eulerian
formulation is that of eqs. 1.13, 1.14 and 1.16, whereas the Lagrangian formulation
of the same equations is the following:

D𝜌
D𝑡 + 𝜌∇ ⋅ v = 0 , (2.29)

Dv
D𝑡 = −

∇𝑃
𝜌 − ∇Φ , (2.30)

D𝑠
D𝑡 = 0 , (2.31)

where the operator D/D𝑡 ≡ 𝜕/𝜕𝑡 + v ⋅ ∇ is the Lagrangian derivative, which adds a
component to the usual time derivative to take into account the motion of the fluid.
The distinction between the two approaches persists in the numerical methods em‑
ployed to solve the system of equations. Specifically, this work will focus on La‑
grangian algorithms like the smoothed particle hydrodynamics (SPH) and hybrid
approaches such as moving mesh schemes3, as they are employed in the numerical
codes which will be introduced later on.

3As will be seen in subsec. 2.2.2, a moving mesh does indeed follow the fluid in its motion, but
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2.2.1 Smoothed particle hydrodynamics

The smoothed particle hydrodynamics approach is based on a set of fluid particles,
which makes it well suited to the tracer particles formalism of cosmological simu‑
lations. These particles are used to construct a density field, which in turn is em‑
ployed in the SPH equations of motion. Unlike the case of the particle‑mesh method
described in subsec. 2.1.1, the SPH algorithm operates in a mesh‑free fashion: for a
given field 𝐹(x), it is possible to obtain a smoothed version 𝐹𝑠(x) through the follow‑
ing operation:

𝐹𝑠(x) = 𝐹(x′)𝑊(x − x′, ℎ)d3x′ , (2.32)

where 𝑊(x, ℎ) is the interpolation kernel and ℎ is its width. Even though kernels
like the Gaussian distribution can technically be employed, it is usually preferred
to adopt functions with a finite support4, such as a cubic spline (fig. 2.5) which is
second order accurate if the particles are regularly distributed. If the starting field 𝐹
is only known at the particle positions, it is possible to approximate eq. 2.32 through
a summation over all particles:

𝐹𝑠(x) ≃ 
𝑖

𝑚𝑖
𝜌(x𝑖)

𝐹(x𝑖)𝑊(x − xi, ℎ) , (2.33)

where the ratio𝑚𝑖/𝜌(x𝑖) represents the volume element assigned to each particle. The
formula for 𝜌(x) can be readily obtained from the above equation by setting 𝐹 = 𝜌:

𝜌𝑠(x) ≃ 
𝑖
𝑚𝑖𝑊(x − x𝑖, ℎ) . (2.34)

It should be noted that the kernel has to be wide enough to include a significant
number 𝑁𝑛𝑔𝑏 of neighboring particles for an accurate estimate of the underlying
field.5 Actually, most practical applications of the SPH algorithm use a position‑
dependent kernel width, which takes care of variations in the neighboring particle
density and tries to keep 𝑁𝑛𝑔𝑏 approximately constant. This width can be either a
function of x (“scatter” approach) or x𝑖 (“gather” approach): while the former leads
to a density field whose integral returns the total mass of the system, the latter is gen‑

the method cannot be considered entirely Lagrangian as mesh cells can exchange mass (so there are
no fixed fluid elements to follow). In fact, each mesh cell can be considered as a site where fluid
properties are updated through exchanges with neighboring cells (in an Eulerian fashion), but the
cells are not fixed in space, which is the Lagrangian aspect of this method.

4The support of a function 𝑓with real values is the closed subset of the domain where the function
has a non‑zero value. When 𝑓 ≠ 0 for a finite set of values, the function is said to have a finite support.

5For example, a 1D particle distribution with equal spacing 𝑑 can lead to a second order accurate
field estimate if ℎ = 𝑑 is chosen as the kernel width (Springel 2016).
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Figure 2.5: one‑dimensional example of cubic
spline kernel, usually a function of 𝑥/(2ℎ). Note
that 𝑊[𝑥/(2ℎ)] ≠ 0 only in the finite interval be‑
tween −1 and 1 (figure adapted from Springel
2016).

erally preferred because it re‑
quires to define ℎ only at the parti‑
cle positions. Moreover, the sum‑
mation depicted in eq. 2.34 is not
performed over every simulation
particle, provided that 𝑊 has fi‑
nite support: in this case, only
the 𝑁𝑛𝑔𝑏 closest particles of parti‑
cle x have 𝑊(x − x𝑖) ≠ 0. There‑
fore, the computational cost of the
whole field calculation scales as
𝒪 (𝑁𝑛𝑔𝑏𝑁), since it is necessary to
calculate 𝜌 only at the position of
each of the 𝑁 total particles (i.e.
x = x𝑗, 𝑗 = 1, 2, … ,𝑁). If the kernel

did not have a finite support, calculating 𝜌(x𝑗) would require a sum with 𝑁 terms,
yielding a 𝒪 (𝑁2) total scaling.

It should be noted that eqs. 1.13, 1.14 and 1.16 derive from a known Lagrangian.
Therefore, after obtaining an estimate for 𝜌, it is possible to apply the Euler‑Lagrange
equations to this Lagrangian to obtain the equations of motion; these are a set of rel‑
atively simple ordinary differential equations which substitute the entire system of
the Euler partial differential equations. Moreover, eqs. 1.13 and 1.16 are automati‑
cally satisfied by the SPH method, which conserves mass and specific entropy.

The specific entropy, however, will vary when dealing with shocks, in which the
fluid properties jump by finite amounts. In a shock front, the differential form of the
Euler equations no longer holds, but the integral form (i.e. the so‑called weak for‑
mulation) still does, and leads to the Rankine‑Hugoniot jump conditions (Rankine
1870). These conditions imply that the specific entropy of a fluid always increases
when passing through a shock, therefore the inviscid fluid assumption does not hold
at the shock front, where kinetic energy is turned into heat. A possible way to treat
this complication is to introduce an artificial viscosity, which is set to act only at
a shock front and introduces adequate dissipation effects. Equivalently, artificial
viscosity can be considered as a way to broaden the shock front and turn the math‑
ematical discontinuities, i.e. the jumps, into thin regions where the fluid properties
have large but continuous variations, as if there was no shock at all in the first place
(Von Neumann and Richtmyer 1950). In this framework, the differential form of the
Euler equations still accurately describes the fluid, and so do the SPH equations of
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motion; however, the added viscosity is technically unphysical, and information is
lost on scales smaller than the broadened shock front.

Among the main reasons to employ the SPH algorithm is its ability to conserve (to
machine precision) mass, linear momentum, angular momentum and energy; more‑
over, this method is invariant under Galilean transformations and as a Lagrangian
approach, it can adjust to the large spatial range encountered in cosmological sim‑
ulations by following particles as they cluster. On the other hand, SPH indeed has
some limitations: under certain conditions, it can suppress fluid instabilities, aside
from being unable to handle contact discontinuities with high accuracy (Springel
2016).

2.2.2 Moving mesh schemes

Historically, hydrodynamical mesh schemes have been mostly Eulerian, employing
a fixed mesh which grants very high accuracy but lacks the adaptivity and Galilean

Figure 2.6: Voronoi tessellation (solid black lines) and
Delaunay triangulation (blue dashed lines) of a set of
mesh‑generating points (red) enclosed in a 2𝐷 periodic
box. Each vertex of the Voronoi mesh corresponds to a
circumcircle midpoint of the triangulation (figure taken
from Springel 2016).

invariance of Lagrangian al‑
gorithms such as SPH. To
maintain the accuracy and
grant the adaptivity, the mesh
could be allowed to move
with the fluid; this “moving
mesh” approach, however,
has to deal with its fair share
of complications, notably the
mesh tangling which exces‑
sively distorts cells by giving
them a characteristic “bow‑
tie” shape. To overcome
this issue, it is possible to
use an unstructured mesh
such as the Voronoi tessella‑
tion of some dynamic mesh‑
generating points (Springel
2010; Springel 2016; Wein‑
berger et al. 2020), where each
cell of the tessellation com‑
prises the volume of space around a point which is closer to that point than to any
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other. The topological dual of the Voronoi tessellation is the Delaunay triangula‑
tion, which is uniquely built by requiring that the circumcircles of the triangles hav‑
ing three mesh‑generating points as vertexes do not contain any of the other points.
The Voronoi tessellation and the Delaunay triangulation of a set of points in 2𝐷 are
shown in fig. 2.6; in 3𝐷, the circumcircles become circumspheres and the triangles
become tetrahedra.

To hydrodynamically describe each cell of the tessellation, it is possible to apply
the same procedure which would be used for an Eulerian mesh, namely the evolu‑
tion of the mean properties of cells through flux exchanges with neighboring cells.
More specifically, this approach consists of:

1. a reconstruction step, in which cell‑averaged properties are used to compute
these properties everywhere the cell, typically in a piecewise linear fashion;

2. an evolution step, in which different fluid properties on the shared side of two
cells (i.e. the cell interface) consitute a 1𝐷piecewise constant initial values prob‑
lem; in fact, this is a so‑called Riemann problem, which can be solved (exactly
or approximately) to yield the fluxes at the cell interface and evolve the fluid
properties in the two cells by a time Δ𝑡;

3. an averaging step, which theoretically needs to be mentioned because changes
in the fluid properties propagate as waves that need to be spatially averaged to
yield the properties of each cell after a time Δ𝑡; in practice, however, this step
is not explicitly performed because the fact of approximating fluid properties
through their values in each cell handles this step implicitly, since the values
assigned to each cell are averaged across its volume.

This reconstruct‑evolve‑average (REA) scheme is repeated on every timestep, with
the addition of a Voronoi mesh reconstruction because mesh‑generating points are
allowed to move with the fluid as it evolves. This reconstruction actually eliminates
the aforementioned mesh tangling issue, because it allows the mesh itself to move
according to the motion of the fluid.

The general equations employed in the REA scheme (specifically in the evolution
step) can be obtained by considering the following compact form of eqs. 1.13, 1.14
and 1.16, which hold for each cell of the Voronoi mesh (Springel 2016):

𝜕U
𝜕𝑡 + ∇ ⋅ F = 0 , (2.35)

where U ≡ (𝜌, 𝜌v, 𝜌𝑠) and F ≡ (𝜌v, 𝜌v ⊗ v + 𝑃, 𝜌𝑠v), with ⊗ being a tensor product.
Note that the term with the gravitational potential, which appears in eq. 1.14, has
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been neglected for simplicity. Normally, it arises in the right hand side of eq. 2.35 as
a so‑called source term. The integration of the compact form over the volume 𝑉 of
a cell yields

𝜕Q
𝜕𝑡 ≡

𝜕
𝜕𝑡 𝑉

Ud𝑉 = 
𝜕𝑉
[F −Uw𝑇]dn , (2.36)

where the last equality represents a surface integral over the cell boundary 𝜕𝑉 (with
n being a normal vector to that boundary), and follows from the Gauss theorem (e.g.
Ciotti 2021). The quantityw (transposed as a line vector in the above equation) is the
velocity of each point of the boundary, and is generally constant in both Eulerian and
Lagrangian mesh codes; specifically,w = 0 in the former case (the mesh is fixed) and
w = v in the latter case (the mesh follows the local velocity of the fluid). In the hybrid
approach of an unstructured mesh, however, w must be included explicitly in the
expression forQ, and taking this quantity into account renders this method Galilean‑
invariant. The physical meaning of eq. 2.36 refers to the aforementioned second step
of the REA scheme: the fluid properties of a cell depend on the fluxes which enter or
exit that cell during a given timestep. Therefore, the discretization of eq. 2.36 over a
timestepΔ𝑡 and over the finite volume of cells requires an expression for these fluxes,
expression which can be found by considering two mesh cells, labeled 𝑖 and 𝑗, and
their 2𝐷 cell interface A𝑖𝑗, (i.e. a vector with modulus equal to the interface area and
oriented normally to it). The averaged flux across the interface 𝑖𝑗 is then defined as

F𝑖𝑗 =
1
|A𝑖𝑗|


|A𝑖𝑗|

[F −Uw𝑇]dA𝑖𝑗 , (2.37)

which can be inserted in eq. 2.36 to yield the integrated fluid properties of cell 𝑖, that
is, Q𝑖, through a summation over all interfaces with neighboring cells 𝑗:

𝜕Q𝑖
𝜕𝑡 = −

𝑗
|A𝑖𝑗|F𝑖𝑗 , (2.38)

which can be discretized as

Q𝑛+1𝑖 = Q𝑛𝑖 − Δ𝑡
𝑗
|A𝑖𝑗|F̂

𝑛+1/2
𝑖𝑗 , (2.39)

where the superscripts indicate the timestep each quantity is calculated at. Specifi‑
cally, the quantities Q𝑛+1𝑖 are the time evolution of Q𝑛𝑖 after a time Δ𝑡, and depend
on the time‑averaged fluxes F̂𝑛+1/2𝑖𝑗 , which are instead calculated at an intermediate
timestep Δ𝑡/2. It is clear that the practical estimate of the fluxes ̂F𝑖𝑗 (i.e. the solution
of the Riemann problem at the cell interface 𝑖𝑗) is a crucial part of the moving‑mesh
scheme. There are a variety of methods to obtain this estimate: for example, with‑
out going into details, an exact iterative Riemann solver (e.g. Gottlieb and Groth
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1988) is employed in the moving‑mesh code AREPO (Springel 2010; Weinberger et
al. 2020), but there are also approximate methods such as the Harten‑Lax‑Van Leer
(HLL, Harten et al. 1983).

In summary, solving the mesh tangling problem through a Voronoi tessellation
yields an accurate, highly adaptive and galilean invariant fluid treatment, which,
along with the tree method for gravity calculations, is also suited to the new algo‑
rithm which will be described in the next chapter.



3 ∣ The Dynamic Zoom Simulations
algorithm

The first two chapters provided an introduction to the general cosmological and
galaxy formation framework, along with the techniques adopted in modern sim‑
ulations to follow the involved physical processes with a good level of accuracy.
This accuracy critically depends on the number 𝑁 of tracer particles; as mentioned
in section 1.4, however, there is still an upper bound to the possible achievable res‑
olution, which will eventually become too coarse to obtain the accuracy required
for the interpretation of observational data. In fact, the upcoming generation of in‑
struments such as Euclid (Laureijs et al. 2011), WFIRST (Spergel et al. 2015), LSST
(Ivezić et al. 2019) and SKA (Braun et al. 2015) will provide extensive amounts of
data with an unprecedented quality, and obtaining simulated results with a corre‑
sponding quality could already be too expensive in terms of run time and storage
requirements. Regarding the latter, it should be noted that simulation output is tra‑
ditionally saved to disk as so‑called “snapshots”, which depict the whole simulation
box at a given cosmic time; on the other hand, observational data comes in a light‑
cone form, due to the light generated by objects at different distances having a finite
speed. Therefore, snapshots cannot be directly compared to observations; instead,
they have to be combined into “lightcone‑like” data, for example by selecting from
each snapshot the particles located in a thin spherical shell with radius equal to the
lightcone radius.1 The thickness of each shell yields the accuracy of this piecewise‑
constant approximation; tipically, an acceptable accuracy requires a large number
of snapshots, in order to frequently sample the cosmic time covered by the simula‑
tion. Obviously, this results in a large storage requirement, which rapidly becomes
prohibitive as more particles are included in a simulation.

An easy solution to the storage problem, at least in theory, is to perform the

1The lightcone radius 𝑅𝑙𝑐 at a given time 𝑡𝑙𝑐 is the radius of the sphere obtained from the light‑
cone through the constraint 𝑡 = 𝑡𝑙𝑐 (fig. 1.1.) at the time the snapshot was taken and centered on the
observer. The lightcone itself is calculated with the observer as the reference event.

36
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piecewise‑constant approximation that leads to the lightcone‑like output during the
simulation, without saving to disk the whole snapshots. Regarding the computa‑
tional resources required during the run, they should reflect the change to lightcone‑
like output and concentrate on those portions of the domain which will, at some
point, be saved to disk.

3.1 Algorithm outline

If a simulation software generates outputs in a lightcone‑like fashion from the time
when the lightcone is entirely inside the simulation box (i.e. when 𝑅𝑙𝑐 < 𝐿/2, with 𝐿
box side, when the observer is in the center of the box), an increasingly large frac‑
tion of particles will not be saved to disk. This concept is depicted in fig. 3.1, where
structures in the grey shaded area of the simulation domain will not be included in
any lightcone‑like output. From a computational point of view, however, this area
is usually treated no differently than the area inside 𝑅𝑙𝑐, so there is a vast amount of
resources and run time spent to evolve particles which do not show up in the output
files. To save these resources, it is possible to simply remove the grey area of fig. 3.1
from the simulation domain, which in practice becomes smaller and smaller towards
𝑧 = 0 (Shrinking Domain Framework, SDF, Llinares 2017). However, it is worth not‑
ing that this results in a loss of periodicity of the system, which implies modifications
of the Poisson equation and, consequently, of the gravity solver. These modifications
also take care of large‑scale gravitational effects, which otherwise would be lost due
to the removal of particles. With a fully relativistic treatment of gravitational inter‑
actions, particles inside of the lightcone would not be affected by those outside (due
to the finite propagation speed of gravitational perturbations), but as mentioned in
section 1.4, many softwares actually operate in the newtonian framework described
in section 2.1. In this case, the force field felt by a particle is istantaneously generated
by every other particle in the simulation domain (including the ones outside of the
lightcone).

To efficiently combine the relativistic concept of lightcones and the newtonian
approximation of simulation codes, a new method dubbed “Dynamic Zoom Sim‑
ulations” (DZS, Garaldi et al. 2020) has been recently developed and implemented
in a DM‑only fashion into the code PGADGET-3.2 This code is capable of describing
gravitational interactions with a tree‑PM algorithm, while also handling hydrody‑
namics through an SPH approach. Moreover, PGADGET-3 is also massively parallel,
i.e. it allows multiple computational units (called “tasks”) to work simultaneously on

2An earlier version of this code, called GADGET-2, is presented in Springel (2005).
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Figure 3.1: space‑time diagram of a cosmological simulation in a 1D+1D fashion; the light‑
cone radius (black solid lines) crosses the box boundaries at a certain “target” redshift, i.e.
the maximum redshift which allows the production of lightcone‑like output. This output is
created in every discrete timestep 𝑑𝑡𝑖 from particles crossing the lightcone radius; therefore,
the grey shaded area is always discarded in the output process (figure taken from Garaldi
et al. 2020).

different fractions of the whole simulation domain while a “master task” performs
coordination and serial operations when needed. Specifically, the parallelization of
PGADGET-3 is managed by the Message Passing Interface (MPI, Clarke et al. 1994).
This is a so‑called distributed memory model, which means that every task accesses
its own memory and variables, which can (and usually will) share the same name
across tasks but store different content. To access this content from other tasks, it is
necessary to resort to communications.

Unlike the SDF, the DZS approach does not remove particles outside of the light‑
cone, rather, it merges them, thus reducing their number and the simulation reso‑
lution; this effectively reduces the computational effort outside of the lightcone and
concentrates it inside 𝑅𝑙𝑐, where the original number of particles is left untouched
as those particles will actually be stored in a lightcone‑like output. Moreover, the
system of particles remains fully periodic, so the gravity solver does not need any
modifications to run DZS correctly. It should be noted, however, that the decreased
resolution outside of the lightcone does indeed represent an approximation which
leads to differences with respect to a “standard” run. In fact, as it will be shown in
chapter 4, these differences are usually small, and in any case they can be reduced
through the parameters of the algorithm, at the cost of a smaller performance gain.
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3.1.1 Tree‑based DZS

The particle merging operation and subsequent resolution reduction which charac‑
terise the DZS method can be naturally carried out in a gravitational oct‑tree frame‑
work. In fact, tree nodes approximate the combined gravitational effect of the parti‑
cles they contain, as if each node not opened during a gravitational force calculation
contained a single, massive particle. The DZS algorithm takes this concept a step
further by actually converting into such particles (hereafter, “derefining”) the tree
nodes that fulfill a specific criterion, which first and foremost checks if the nodes are
located outside of the lightcone, because only such nodes are allowed to be derefined.
When a new particle is created from a node, that particle inherits the properties of the
node, for example its total mass, center of mass and center of mass velocity, whereas
the particles located inside the derefined node are eliminated from the simulation
domain. The whole process is carried out across the timesteps of a simulation (in
order to follow changes in 𝑅𝑙𝑐), with the net result of a “zoomed” high resolution
region (i.e. the lightcone) which dynamically shrinks towards the observer as 𝑧 → 0.

First of all, the node derefinement process requires every tree node to be tested
with the criterion and eventually flagged for derefinement; in this case, the particles
inside the node are also flagged for removal. This whole procedure requires a single
depth‑first tree walk, which makes the algorithm very efficient. After the walk, par‑
ticles are actually created from nodes and eliminated depending on the previously
assigned flags. The tree walk is performed as shown in fig. 3.2 for a single task on a
given timestep: starting from the root node labeled as 1 (which is never derefined3),
the walk passes to node 2, which is checked with the criterion but does not satisfy
it. Since that node has a child, the walk continues through the dashed red arrow to
object 10: this is a particle which does not need to be eliminated, since its father node
is not going to be derefined. The walk cannot go deeper from here, because object 10
does not have any children, so it moves on to its siblings. Object 11 is a node, and as
such is tested with the derefinement criterion; in fact, this node satisfies the criterion
(as indicated by the green arrow), so it is flagged for derefinement. The tree walk
then moves on to particle 34, which is flagged for elimination because it is located
inside a node to be derefined. After this flagging, the walk continues to siblings:
in the case of fig. 3.2, all of these siblings are particles, and therefore they are also
flagged for removal. Once every sibling has been walked, the walk simply returns

3Derefining the root node would lead to a simulation with only one particle which retains the mass
of the whole box, i.e. a particle which would not have any interactions with anything, except for its
periodic images.
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Figure 3.2: scheme of the tree walk performed by the DZS algorithm in PGADGET-3 Specifi‑
cally, the two zoomed boxes highlight the tree walk through the use of arrows: solid green
arrows refer to portions of the walk which lead to particles to eliminate, whereas objects
walked through dashed red arrows are left untouched by the algorithm (figure taken from
Garaldi et al. 2020).

to the last object analysed in the previous tree level (i.e. node 11) and moves on to its
siblings. Once those have also been analysed, the walk goes up yet another level, i.e.
to node 2, before going to its siblings.

A different situation is encountered in node 4, which is represented in the right‑
most zoom box of fig. 3.2. The node satisfies the derefinement criterion, so the walk
from that node follows a path similar to that seen in node 11. This time, however, the
walk will eventually encounter object 33, which is neither a node nor a particle; in
fact, it is a so‑called pseudoparticle. In a parallel computing framework, particles are
distributed among tasks in a process called domain decomposition4, which means
that the particle content of some nodes may be located across multiple tasks. This is
where pseudoparticles, i.e. objects that cannot be opened and simply trace the mass
of particles assigned to other tasks, come into play. In the DZS framework of fig. 3.2,

4A domain decomposition employs a special oct‑tree whose lower level nodes, called leaves, con‑
tain a set number of particles (unlike the gravitational tree described in subsec. 2.1.2, which has at
most one particle per node in the lower levels) and are distributed among tasks. The tasks which hold
the particles inside these leaves will actually employ those particles while building the gravitational
tree.
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pseudoparticles are not locally flagged by the algorithm (as they do not contain any
local particles); instead, object 33will be handled by the task which stores its particle
content.

As mentioned above, the node derefinement process is carried out according to
a certain criterion whose main purpose is to exclude from derefinement the nodes
inside the lightcone. In fact, since the criterion applies to tree nodes, it is possi‑
ble to generalise the one normally used by the hierarchical multipole method (sub‑
sec. 2.1.2), expressed in eq. 2.21 or eq. 2.23 (depending on which one is chosen by
the tree method), to test if a node can be derefined. The generalisation is neces‑
sary because the tree method uses the geometrical and dynamical criteria locally,
i.e. by relating a node and the particle which feels the gravitational force. In the
DZS framework, the involved objects are the node to be tested and a point on the
spherical surface of the lightcone; specifically, this point is located at r𝑙𝑐 (|r𝑙𝑐| = 𝑅𝑙𝑐),
on the line connecting the observer and the center of mass of the node s (such that
|s − r𝑙𝑐| = |s| − |r𝑙𝑐| = |s| − 𝑅𝑙𝑐). Formally, this yields the following criteria applicable
to the DZS algorithm:5

geometrical:
𝐿

|s| − 𝑅𝑙𝑐
≤ 𝜃𝑔𝑒𝑜𝑚 , (3.1)

dynamical:
𝐺𝑚𝑛𝑜𝑑𝑒
(|s| − 𝑅𝑙𝑐)2

𝜃2 ≤ 𝛼|a𝑙𝑐,𝑜𝑙𝑑| , (3.2)

where a𝑙𝑐,𝑜𝑙𝑑 is the minimum acceleration for the previous timestep among those
of the particles located inside of the lightcone, and generalises the quantity a𝑖,𝑜𝑙𝑑 of
eq. 2.23. Note that eq. 3.2 requires the additional condition |s|−𝑅𝑙𝑐 > 0, i.e. the center
of mass of the tested node should be located outside of the lightcone. Moreover, the
opening angle 𝜃𝑔𝑒𝑜𝑚 (or the fraction 𝛼 if one wishes to use the dynamical criterion)
can be viewed as a free parameter of the DZS algorithm: a large 𝜃𝑔𝑒𝑜𝑚 yields more
derefined nodes, i.e. fewer particles overall; this translates into a larger performance
gain, but also into heavier modifications of the simulation domain and consequently
a coarser approximation with respect to a standard run. Conversely, reducing the
angle sacrifices some performance gain for more contained approximations.

So far, Dynamic Zoom Simulations have been described in a rather general fash‑
ion, highlighting the employed criteria and the core operations of the tree walk.
From a practical point of view, however, implementing the algorithm into a numer‑
ical code involves many more steps, for example the actual derefinement of nodes
and removal of particles, the lightcone radius calculations and the relationship be‑
tween the algorithm and the workflow of the code. Moreover, there are additional

5Note that the system of coordinates depicted here uses the observer, which is usually assumed
to be at the center of the simulation box, as its origin.
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adjustments to be made in order to ensure the correct behaviour of a simulation per‑
formed with the DZS algorithm. In the following section, all these topics will be
discussed as part of the new implementation of DZS capabilities in the numerical
code AREPO.

3.2 The AREPO implementation

The existing PGADGET-3 implementation of the DZS algorithm has the benefits of
being fast and efficient in terms of run time and memory and work‑load balance,6

as well as yielding very contained errors (Garaldi et al. 2020). This implementa‑
tion is currently limited to dark‑matter only simulations; however, as mentioned in
section 1.4, simulations of galaxy formation usually are the most computationally
expensive, so to fully exploit the potential of this technique, it is necessary to adapt
the DZS algorithm also to the case of full‑physics simulations. For this reason, this
work presents an implementation of the DM‑only DZS algorithm to a state of the art
software for galaxy formation simulations, i.e. the public release of AREPO (Springel
2010; Weinberger et al. 2020), as well as a first approach to baryon derefinement.

The AREPO code, which is written in the C language, uses a tree‑PM scheme to
treat gravitational effects (similarly to PGADGET-3) and handles the hydrodynamic
evolution through a moving mesh scheme. It is also massively parallel and uses the
MPI standard. By default, AREPO includes 6 different particle types, ranging from
gas particles (type 0) and dark matter particles (type 1) to stars (type 4) and black
holes (type 5), each type with its own softening length. It should also be noted that
each of these particles is able to evolve in time according to its own timestep, for
example to allow regions with a very high particle density to use smaller timesteps
than lower‑density portions of the domain. Every individual timestep d𝑡𝑛 is related
to a “system” timestep hierarchy d𝑡 as d𝑡𝑛 = d𝑡/2𝑛, in order to have so‑called global
simulation steps7 where all particles have a simultaneous evolution.

In describing the new implementation of the DZS algorithm, it is first appropriate
to follow the footsteps of Garaldi et al. (2020) and start with its DM‑only implemen‑
tation in AREPO, from the initial setup (subsec. 3.2.1) to the tree walk and particle
creation and elimination in simulation steps (subsecs. 3.2.2–3.2.4). Due to the vari‑

6The work‑load balance of a simulation step is defined as the maximum across all tasks of the
wall‑clock time spent on the tree algorithm, divided by its average value.

7It is appropriate to make a distinction between particle timesteps, which refer to the evolution
of single particles, and simulation steps, in which multiple particles, potentially with different in‑
dividual timesteps, are evolved up to a certain simulation time 𝑡 (i.e. they are synchronised to that
time).
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ous operations and tree object types that participate in the derefinmement process,
the general flow of the algorithm is not always easy to follow, which is why fig. 3.3
provides a graphical overview of the whole DZS action and will be repeatedly taken
up later. This series of schemes show a 2𝐷 particle distribution shared across two
tasks from before the DZS algorithm starts to operate (figs. 3.3a and 3.3b) to the final
result (fig. 3.3f), passing through the tree walk (figs. 3.3c and 3.3d) and the particle
creation and elimination stage (fig. 3.3e). The node derefinement process is depicted
only for a couple of nodes (namely, node 3 and node 8) in task 2 for the sake of sim‑
plicity. The inclusion of another task in fig. 3.3 serves the purpose of showing a new
kind of tree object, namely the imported point, which has been introduced in AREPO
and was absent in PGADGET-3. The role and DZS‑related treatment of imported points
will be explained at the end of subsec. 3.2.2; for now, it is appropriate to consider
them as any other particle, such as those which in fig. 3.3d are inside nodes to be
derefined and are thus eliminated in fig. 3.3f. Once the dark matter related portion
of the algorithm has been described, it is finally possible to introduce an approach
to baryon derefinement (subsec. 3.2.6).

3.2.1 Initial setup

There is a minimal amount of instructions that should be carried on at the beginning
of a Dynamic Zoom Simulation, which mainly involve determining the lightcone ra‑
dius as a function of time. This can be accomplished through the following integral,
which holds in a flat universe:

𝑅𝑙𝑐(𝑧) = 𝑘
𝑧

0

d𝑧′

[Ω𝑚,0(1 + 𝑧′)3 +ΩΛ,0(1 + 𝑧′)2]1/2
, (3.3)

where 𝑘 is a constant depending on the speed of light, the unit of length employed
in the simulation and the chosen𝐻0 value,8 which for every simulation of this work
is set to 𝐻0 = 67.66 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 (Planck Collaboration 2020). In practice, the in‑
tegral is discretized as a sum with d𝑧′ = 10−5. Since the above integral depends
only on the cosmological parameters Ω𝑚,0 and ΩΛ,0, it is possible to use the same
values across different simulations if the cosmological model remains unchanged;
furthermore, employing cosmological models other than the ΛCDM one could lead
to more complicated integrals which is not optimal to calculate on the fly. For these

8Tipically, due to the usage of different values of𝐻0 among scientific works, it has become common
pratice to express the Hubble constant in terms of the parameter “little ℎ” as 𝐻0 = 102ℎ 𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1.
If the dependency on ℎ of each quantity (e.g. distance, mass, etc.) is clearly expressed, adjusting the
results of scientific works to a certain value of 𝐻0 is as simple as substituting the appropriate value
for ℎ (Croton 2013).
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Figure 3.3: series of chronologically ordered 2𝐷 sketches showing how the node derefine‑
ment process takes place in one MPI task (namely, task number 2). The two bigger squares
are the domain leaves assigned to each task, the smaller ones in (c) and (d) are tree nodes
(with the red ones satisfying the derefinement criterion). The particles (circles) are colored
depending on the task they are located in, and are marked in red when they are flagged for
elimination. Finally, the green particle with a blue or red border in task 2 is an imported
point linked to the slightly faded particle outside of the task 1 leaf.
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reasons, the DZS algorithm offers the possibility to read at the beginning of the sim‑
ulation a so‑called lightcone file, containing pre‑calculated values of the lightcone
radius at certain cosmic times (possibly with more advanced integration techniques
than the direct summation). At any given simulation step, these values are linearly
interpolated to yield the lightcone radius corresponding to the current simulation
time.

3.2.2 Tree walk

One of the main parts of the DM‑only DZS algorithm is the tree walk, qualitatively
described in subsec. 3.1.1. This description already highlighted the different op‑
erations performed on the various kinds of tree‑related objects: nodes are tested
and eventually flagged for derefinement, particles are flagged for elimination, pseu‑
doparticles are mostly ignored. In fact, the first question to ask in a practical imple‑
mentation of the walk is how to distinguish different tree objects: AREPO assigns to
each of them a unique integer tag, i.e. a variable called no, and depending on the spe‑
cific value of this tag, each entity is classified as a node, a particle, a pseudoparticle
or an imported point. In practice, the tree walk is performed by each task through
the function walk_tree, which takes the tag of the root node as its first argument,
with an additional integer argument erase_particles, initially set to zero. When
the walk reaches a node no which satisfies the derefinement criterion, this latter ar‑
gument is changed to a non‑zero value, signaling that the particles inside no should
be flagged for removal.

As mentioned earlier, the first job performed by the function walk_tree is check‑
ing what kind of object its first argument represents; initially, no is the root node
which, as mentioned above, cannot be derefined. For this reason, the function im‑
mediately checks for the first child node of no, named nno. At this point, walk_tree
simply calls itself, but with nno as its first argument. In fact, this recursive behaviour
characterises the whole tree walk: for example, instances of walk_tree related to
nodes call themselves with their first child as an argument, and these new instances
will eventually call walk_tree for their children and siblings. Once an instance re‑
turns (i.e. finishes to do its operations), the workflow of the tree walk simply re‑
sumes from immediately after that instance was called. It should also be mentioned
that each separate instance of walk_tree has its own variables, which are not shared
with other instances unless they are provided as arguments of a function call.

As mentioned above, the first nested call of the tree walk function will involve a
child of the root node; generally, the operations performed by walk_tree when no
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walk_tree(no, erase_particles)

is no a node?to the particle, pseudoparti-
cle or imported point cases

does no have zero mass?

duplicate the erase_particles flag

should no be derefined?set erase_particles ≠ 0

find the first child object of no

call walk_tree
for that first child

should no be derefined?should the new particle be stored here?

flag no for derefinement does no have a sibling?

return

call walk_tree for that sibling

no

yes

no

yes

no, just open
the node

now, if no has to be derefined,
a task to store the new parti-
cle in is uniquely determined

yes

yes no
no

yes, just check
for siblings

no, need to go
one level up yes

Figure 3.4: flowchart of the function walk_tree in the case of no = node. The start of the
function is marked in blue, operations in green, yes/no checks in orange and recursive calls
of walk tree within the function itself are highlighted in cyan. The red box represents the
end of the function, whereas the purple box refers to other no types.

refers to a node are outlined in fig. 3.4 and sketched in fig. 3.3c and fig. 3.3d. First of
all, it should be verified that the node has a non‑zero mass, otherwise there is nothing
to derefine in the first place and the walk can simply move on to siblings. On the
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other hand, if the node is not empty, the derefinement criterion checks wheter or not
the node no needs to be derefined and, if so, the flag erase_particles is updated
to a non‑zero value. This communicates to the subsequent nested call to the first
child of no (the upper cyan box in fig. 3.4) that the particle content of the tree branch
departing from no should be flagged for removal. Graphically speaking, this stage
of the walk corresponds to the case no = 3 in figs. 3.3c and 3.3d, where node number
3 is marked in red because it satisfies the derefinement criterion. More specifically,
fig. 3.3c represent the state of the simplified domain with two tasks just before the
upper cyan box of fig. 3.4, i.e. when node 3 has already been tested, but its particle
content has not been reached by the walk yet. After all the nested calls on the branch
departing from no = 3 have returned, the system is depicted by fig. 3.3d with the
red particles being flagged for removal. Note that if the case discussed here was
that of no = 4 (outlined in black in fig. 3.3c as it does not need to be derefined), the
flowchart in fig. 3.4would simply continue the walk to lower levels of the tree to test
children nodes with the derefinement criterion. In fact, when passing from fig. 3.3c
to fig. 3.3d from the point of view of node 4, one of its children, namely node 8,
satisfies the derefinement criterion and its particle content is flagged for removal.

If the node no examined in fig. 3.4 has to be derefined, the particles inside the
branch of that node will compare their tasks of belonging in order to find that with
the minimum rank9 and select it as the holder of the new particle. This approach,
altough possibly leading to an uneven new particle distribution among tasks (which
will be fixed by a domain decomposition anyway), is able, through a simple min‑
imisation, to easily and uniquely determine a task to store new particles in. Most
importantly, it does not require any data communication between tasks, which can
be an expensive operation in terms of performance. After the task to store the new
particle in has been determined, it is necessary to check once again if node no has
to be derefined. This repeated check, which will obviously yield the same result as
the upper one in fig. 3.4, is needed because at this point the workflow comes from
an operation which needs to be performed for every node, i.e. calling walk_tree for
its first child, whereas the next operation depicted in fig. 3.4 only concerns nodes to
be derefined. This operation, namely the actual flag for derefinement of node no,
will only be carried on by the task whose rank is the minimum identified above, i.e.
the task which will create the new particle. After this operation, the walk along the
tree branch of no is effectively done, and it can continue to the siblings of no, if there
are any which have not been walked to yet. Otherwise, the function walk_tree can

9In AREPO (and generally in the MPI framework), each task is identified by an integer value, called
rank, ranging from zero to the total number of tasks minus one.



3.2 The AREPO implementation 49

return. When all the functions in a level of a branch have returned, the walk goes
up a level in the tree and continues from where it called the functions (i.e. after the
upper cyan box in fig. 3.4). Eventually, the instance of walk_tree with no = rootnode
will also return and the walk will finally end.

For the sake of completeness, it is appropriate to add a couple of details to the role
of the erase_particles flag. As described above, this flag signals that the node no
has to be derefined by changing to a non‑zero value, and that value is passed to lower
levels of the tree within the first nested call in fig. 3.4 to be used for particle flagging.
However, the non‑zero flag also notifies the children of no (in fact, the whole tree
branch of no) that their father has already satisfied the derefinement criterion, and
it is not necessary to separately derefine the children because their particle content
will be eliminated anyway due to the flagging of no. Specifically, each of the checks
“should no be derefined” infig. 3.4 is complemented by an additional check, to verify
that erase_particles is still zero up to that point in the tree walk. If that is not the
case, there is no point in flagging for derefinement the node currently tested with
the criterion, because one of its “ancestors” (i.e. father, grandfather etc.) has already
been flagged in an upper tree level. In any case, the currently tested node should
be able to pass this erase_particles information to its siblings, because they share
the same relation with higher levels of the tree. At the same time, if the flag is still
zero, a node should be able to set it to a non‑zero value and signal to its children,
grandchildren etc. that their particle content should be eliminated. For this reason,
erase_particles is duplicated, with one flag being communicated to siblings of the
currently examined node and the other one, eventually changed as needed to a non‑
zero value, to its children.

After having described how the tree walk behaves when no is a node, it is now
appropriate to also describe the case of the other tree objects. The operations per‑
formed by walk_tree when no is a particle are depicted in fig. 3.5. The function now
simply checks if erase_particles has been changed from its initial value of zero,
signaling that a parent node of particle no needs to be derefined. In this case, the
function minimises the task rank to store the new particle in, as mentioned earlier,
and flags the particle no for elimination. This flagging procedure sets the particle
mass, unique identifier10 and velocity components to zero. In fact, before setting the
ID to zero, its value is saved so that the ID can be inherited by new particles created
from derefined nodes, ensuring ID uniqueness. In fact, the specific ID assigned to

10This non‑negative integer identifier, aptly called ID, is independent of the tree and remains un‑
changed for the whole simulation (if a particle does not need to be eliminated); it is also unique among
tasks, meaning that two particles cannot have the same ID even if they are located in different tasks.



50 3 The Dynamic Zoom Simulations algorithm

walk_tree(no, erase_particles)

is no a particle?to the node, pseudoparti-
cle or imported point cases

is erase_particles ≠ 0?minimise as needed the task
rank to store the new particle in

does no have a sibling?save the unique identifier
of no, flag no for removal

return

call walk_tree for that sibling

no
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no

no, need to go
one level up yes

Figure 3.5: flowchart of the function walk_tree in the case of no = particle, with the same
color scheme as fig. 3.4.

the new particle will be that of the particle flagged last in the branch of the former
node, because only one ID per new particle is needed and so every flagged particle
overwrites the same ID variable. Once these flagging operations are done, the func‑
tion tries to walk to a sibling of no, similarly to the no = node case. Referring to the
tree walk that describes the derefinement of node 3 in fig. 3.3, the particle flagging
operation takes place between figs. 3.3c and 3.3d.

The structure of walk_tree for a pseudoparticle, depicted in fig. 3.6, is essen‑
tially identical to the particle one, but it has a couple of important differences: first
of all, the aforementioned “task of belonging” for the minimisation process is the
task where the particles which no traces are stored. Using the rank of this task en‑
sures that every task contributing to the content of a node to be derefined achieves,
at the end of the walk along its branch, an identical result for the task to store the
new particle in. The second main difference, as mentioned in subsec. 3.1.1, regards
the fact that, even with erase_particles ≠ 0, there is no flagging operation to be
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walk_tree(no, erase_particles)

is no a pseudoparticle?to the node, particle or
imported point cases

is erase_particles ≠ 0?minimise as needed the task
rank to store the new particle in

does no have a sibling?

return

call walk_tree for that sibling

no

yes

yes

no

no, need to go
one level up yes

Figure 3.6: flowchart of the function walk_tree in the case of no = pseudoparticle, with the
same color scheme as fig. 3.4.

performed, as there are no local particles to flag inside no. Checking the value of
erase_particles has the only purpose of performing the minimisation operation if
needed, and from that point, the tree walk to siblings continues with the exact same
operations seen in other cases.

The handling of imported points by the tree walk, on the other hand, is formally
identical to the case no = particle (fig. 3.5), but their flagging and elimination oper‑
ations are much more complicated. First of all, it is necessary to explain what im‑
ported points are: following Springel (private communication), the need for them
in AREPO arises because not every simulation timestep performs a domain decom‑
position, and particles, during their time evolution, may move out of the leaf of
the domain tree that they were assigned to and “invade” the boundaries of other
tasks. Ideally, these particles would be assigned to a new task thanks to a domain
decomposition, which however is not performed. Nonetheless, the tree construction
(which relies on the domain oct‑tree) and related gravity calculations should be in‑
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Every task:
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Figure 3.7: flowchart showing the various operations that need to be performed by the DZS
algorithm to handle imported points. The colors indicate stages of the workflow with respect
to the tree construction and its DZS walk, with numbers highlighting their chronological
order.

dependent of the presence or not of a domain decomposition, which is why these
particles are indeed assigned to another task, but by the tree construction itself; in
fact, particles sent to another task are indexed by the latter as imported points. It
is crucial to stress that this new task assignment is temporary and that imported
points exist only within the tree framework: actual particles that moved out of the
boundaries of a leaf remain in the task holding that leaf until a new domain decom‑
position is performed. From the DZS point of view, this means that directly erasing
imported points is useless, as they will be eliminated anyway when the tree is erased
from memory. Instead, the tasks which hold imported points need to flag them and
send this flagging information to the tasks which physically hold the particles cor‑
responding to imported points.

The role of an imported point and its behaviour in the DZS framework are graph‑
ically represented in figs. 3.3a, 3.3b, 3.3d and 3.3e: the first of these figures represents
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the state of the system of particles immediately after a new domain decomposition
has been performed, with all particles inside the leaves of their task of belonging. In
fig. 3.3b, corresponding to when the gravitational tree to walk is built, it is possible to
notice that the leftmost particle belonging to task 1 has exited the leaf node (as shown
by the faded green particle). Due to the periodic boundary conditions, that particle
will be assigned to task 2 by the next domain decomposition; in the meantime, it
shows up as an imported point in task 2 (green particle with blue border). This im‑
ported point is flagged with the particle content of node 3 in fig. 3.3d (as shown by
that point now having a red border), but the faded green particle, still located in task
1, is not flagged yet. This flagging operation has to wait until the tree walk has been
completed: in fig. 3.3e, task 2 has communicated to task 1 the fact that the imported
point has been flagged, so the faded particle is marked in red and will be eliminated
by task 1.

To describe in detail as clearly as possible how imported points are handled by
the DZS algorithm, tasks will be hereafter labelled as “particle holders” and “im‑
ported point holders”, depending on wheter they act on the particles they sent or
those received as imported points; in fact, each task plays both roles, altough in dif‑
ferent parts of the workfow. Relevant operations performed by both categories, even
out of walk_tree, are shown in fig. 3.7. First of all, the DZS algorithm makes some
adjustments to the imported point communication phase, which takes place during
the gravitational tree construction: every task, now acting as a particle holder, stores
the no value of each particle to be sent as an imported point in a dedicated array,
and when the actual communication is performed, adds to the default packet to be
sent the particle ID and the local task rank. By doing so, the imported point holder
task which receives the communication has access to both these values, needed re‑
spectively to flag the imported point if needed and to know which task to send the
flagging information to. Specifically, imported point holders create an array called
imported_IDs_to_remove with size equal to the number of imported points received
from every other task, and initialise every element to −1 (i.e. no valid particle ID)
before walk_tree is called for the first time. During the tree walk, if an imported
point is inside a branch of a node to be derefined (erase_particles ≠ 0), a −1 el‑
ement of imported_IDs_to_remove is overwritten by the ID of that imported point
(more properly, of the particle associated to the point). After the walk, each value of
imported_IDs_to_remove is sent back to the appropriate particle holder tasks. This
operation is necessary because, as mentioned before, there would be no point in eras‑
ing the imported points locally, and instead each ID and −1 value (which signals that
a particle needs to be eliminated or kept, respectively) needs to be communicated to
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the correct particle holder task which stores the actual particles to flag. In fact, each
particle holder creates an array called imported_IDs_recv in which it stores the re‑
ceived data. The content of this array is then compared to the IDs of the particles
stored in the tree construction stage. When a match between the two is found (by
construction, every non‑negative value in imported_IDs_recv is guaranteed to have
a match), the corresponding local particle is flagged for removal, in the exact same
way as any other particle during the tree walk.

In summary, local particles linked to imported points of other tasks cannot be
flagged directly during the walk; instead, they have to wait until every instance of
walk_tree has returned and the imported point holders have sent the necessary data.
Unfortunately, due to the fact that the elimination information for an imported point
is located in one task and the corresponding particle in another task, it is necessary to
resort to communications to ensure the correct behaviour of the DZS algorithm. In
fact, since the number of imported points is usually very small (in the tree which the
algorithm acts on, the ratio of this number and that of local particles is in the interval
[10−5, 10−3]) their communications do not to affect the performance in a noticeable
way.

3.2.3 Node derefinement

The end of the tree walk leaves some particles with mass, velocity components and
ID all equal to zero, and some node indexes no flagged for removal. While the former
will not actually be treated until the next domain decomposition (see next subsec‑
tion), the latter are used to build new particles shortly after the walk. In fact, the first
operations performed after the walk regard the orange boxes of fig. 3.7, which are all
enclosed in the function handle_imported_points. After all these operations have
been carried on, each flagged index no (which identifies a node to be turned into a
particle locally) is passed to the function make_particle_from_tree_node; this func‑
tion creates a new particle‑like element and fills it with data located inside the Nodes
structure. Specifically:

• the mass of the new particle is the mass of the node (i.e. of all of its former
content);

• the three position components of new particle are the components of the center
of mass s of the node;

• the velocity components of the new particle are the components of the center of
mass velocity of the node, which are evaluated for the DZS algorithm during
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the tree construction phase, similarly to how the mass and center of mass of
each node are normally calculated;

• the type of the new particle is an user‑defined integer value, which should be
≠ 0, 4 and 5 (i.e. the type of gas particles, stars and black holes, respectively);

• the simulation time at which the new particle starts its evolution is the current
simulation time;

• the specific particle timestep assigned to each new particle is the smallest one
currently evolved, to avoid the risk of larger timesteps giving too rough of an
approximation for the trajectory of the particle;

• the old acceleration of the new particle (i.e. the acceleration which it would
have had in the previous timestep, if it existed) is the mimimum value of the
old acceleration across every particle outside of the lightcone (this quantity is
needed for the tree‑opening dynamical criterion);

• the ID of the new particle is the one determined during the tree walk;

• the softening value of the new particle can be the specific user‑defined value
assigned to the DZS particle type; alternatively, the user can choose to scale the
softening 𝜀 of every newparticle according to its mass𝑚 as 𝜀 = 𝜀𝑏𝑎𝑠𝑒(𝑚/𝑚𝑏𝑎𝑠𝑒)1/3,
where 𝑚𝑏𝑎𝑠𝑒 and 𝜀𝑏𝑎𝑠𝑒 are the mass and softening values of a type 1 simulation
particle. This ensures that when the new particles are very massive they do not
get really close to other particles, resulting in a strong gravitational interaction
which would require many small timesteps to be accurately evolved in time
(and since this interaction would take place outside of the lightcone, it is of no
interest to describe it accurately).

When all these tasks have been completed, make_particle_from_tree_node inserts
the newly created particle at the end of the local particle structure.

The operations described above all take place along with a few others in a func‑
tion called merge_nodes, which is summarised in fig. 3.8. Furthermore, this function
is inserted in a wrapper function for all the main processes carried on by the algo‑
rithm. The wrapper function is called at a specific time during each global timestep,
and also takes care of particle elimination.

3.2.4 Particle elimination and insertion point

The description carried on so far has shown that the DZS algorithm modifies sub‑
stantially the simulation domain; this makes it very important to appropriately in‑
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merge_nodes() call construct_forcetree
to build the tree

allocate the necessary variables of
the tree walk and initialise them
as needed (e.g. every element of

imported_IDs_to_remove
to −1)

call walk_tree(no = root
node, erase_particles
= 0) to start the tree walk

call handle_imported_points
after the walk has ended

call
make_particle_from_tree_node
for every no index locally flagged

free the memory occu-
pied by the variables of the
tree walk and by the tree

Figure 3.8: flowchart showing the operations performed by merge_nodes. The start of the
function is marked in blue, operations in green and calls to other functions in cyan.

sert the algorithm into the workflow of the standard code, in order to avoid any
incorrect behaviour. For example, the algorithm should be only allowed to oper‑
ate during global simulation steps, because the particle merging operation requires
every particle to be at the same simulation time. Moreover, for an optimal distri‑
bution of particles and of the work‑load associated with them, it is necessary to
perform a domain decomposition after the DZS algorithm has modified the num‑
ber of simulation particles, because, for example, even if the particles inside a dere‑
fined node were distributed across multiple tasks, the new particle will be stored
in a single one of those tasks. Therefore, a domain decomposition is performed
as an attempt to evenly distribute the work‑load; furthermore, the elimination of
flagged particles is carried on within the decomposition, in the same place where
other particle rearrangements are normally performed by the code (i.e. in the func‑
tion domain_rearrange_particle_sequence).

The specific method employed to eliminate the particles alsomimics pretty closely
the ones adopted in other particle rearrangements: particles are indexed by an in‑
teger value 𝑝 which varies from zero to the local number of particles NumPart (ex‑
cluded) with increments of one. If the mass and ID of the particle corresponding to
a specific value 𝑝𝑠𝑝𝑒𝑐 are equal to zero, that particle is swapped with the one indexed
as NumPart −1 in the structure holding particle data, and NumPart becomes equal to
itself minus 1. Afterwards, the new particle in the same position 𝑝𝑠𝑝𝑒𝑐 is checked to
see if it also has mass and ID = 0, and is eventually swapped with the last particle.
These checks on the same 𝑝𝑠𝑝𝑒𝑐 continue until the particle in that position is one not
flagged for elimination, and the iteration goes on to 𝑝𝑠𝑝𝑒𝑐 + 1. When the iteration is
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Simulation timestep with a high
enough fraction of active particles

is this simulation
step a global one?

update the position of all par-
ticles to the current simulation

time according to the force they
feel (i.e. synchronise them)

call dzs_treebased

free pre-existing domain
decomposition data to
prepare for the new one

update the position of all par-
ticles to the current simulation

time according to the force they
feel (i.e. synchronise them)

perform a new domain
decomposition

same workflow from now on

in a Dynamic Zoom Simulation in a standard run

no, do as you
would in a
standard run

yes, go on
with the DZS
algorithm

Figure 3.9: flowchart showing the workflow of a timestep from the check for enough active
particles (in this case, the condition is satisfied) with and without the DZS compile time op‑
tion. Checks are depicted in orange, operations in blue, and function calls in cyan.

over, all particles have been eliminated, and a global communication sums up the
new local number of particles across all tasks, to yield the updated global number of
particles in the simulation.

As mentioned before, a domain decomposition needs to be performed after the
operations carried on by merge_nodes; however, it should be noted that a domain
decomposition is one of the most resource‑hungry processes in a cosmological sim‑
ulation, so performing one just for the DZS algorithm would impact its performance
gain; instead, it is more computationally efficient to insert the DZS operations where
there is already a domain decomposition by default. In fact, domain decompositions
occur roughly in the middle part11 of certain simulation steps, i.e. those with a high

11In a gravity and hydrodynamics framework, each simulation step d𝑡𝑖 in AREPO is made of two
gravitational half‑steps (each yielding a gravitational time evolution of d𝑡𝑖/2) and a full hydrodynamic
timestep between the two gravitational ones (which evolves hydrodynamically the system by a time
d𝑡𝑖). This approach, namely a second order operator‑splitting (Glowinski et al. 2016; Weinberger et al.
2020) formally holds even in a DM‑only framework (i.e. without hydrodynamics), and the “middle
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dzs_treebased()

compute the lightcone radius,
compute the minimum old accelera-
tion among the particles inside and

among those outside of the lightcone

is a portion of the simulation
box outside of the lightcone?

free pre-existing domain
decomposition data to
prepare for the new one

perform a new domain decomposition

return

call merge_nodes()

update global number of particles
after node derefinement

free pre-existing domain
decomposition data to
prepare for the new one

perform a new domain decomposition

return

no, do as you
would without
DZS (particles

already drifted)
yes

Figure 3.10: flowchart of the function dzs_treebased. The start of the function is marked in
blue, operations in green, yes/no checks in orange and function calls in cyan.

enough fraction of particles (1% by default) which are evolved in that timestep. If the
DZS algorithm is enabled in the simulation, the aforementioned wrapper function,
called dzs_treebased, can be inserted in the framework of this domain decompos‑
tion when a simulation step is global, as shown in fig. 3.9. Note that the domain
free operation and the subsequent decomposition are not explicitly included in the
DZS case, because they are performed inside dzs_treebased. This detail leads to
another difference between the two cases: the particle synchronisation operation is
performed after the domain free operation in the standard framework and before it
in the DZS framework. This ensures that the positions of particles analysed by the
tree walk are actually updated to the same point in time and allows to locate new
particles at that point, as is done in subsec. 3.2.3. It should be mentioned that swap‑
ping the synchronisation and domain free operations does not have any impact on

part” of a simulation step here refers to the portion between the two gravity half‑steps.
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the workflow, as the two processes are not consequential.

Aside from the domain decomposition, dzs_treebased performs other opera‑
tions, as shown in fig. 3.10. First of all, the lightcone radius needs to be calculated (ei‑
ther by integration or linear interpolation, as described in subsec. 3.2.1), along with
the minimum old acceleration among all particles inside the lightcone (needed if the
dynamical derefinement criterion is employed) and outside of it (needed to be as‑
signed to new particles, as mentioned in subsec. 3.2.3). As an optimization strategy,
at first the newly calculated lightcone radius is then compared to the half‑diagonal of
the simulation box, to check if there is a portion of the latter which is located outside
of the lightcone (i.e. a portion which the DZS algorithm can operate on). If this por‑
tion does not yet exist, dzs_treebased simply falls back to the standard domain free
and decomposition operations, and then returns. On the other hand, if the lightcone
has shrunk towards the observer enough to cross the boundaries of the simulation
domain, the DZS algorithm is free to operate and the function calls merge_nodes.
After this latter function returns, the total number of simulation particles needs to
be updated before the usual processes related to the domain decomposition. After
the latter has also took place, the wrapper function finally returns.

3.2.5 Additional considerations

The AREPO implementation described so far, albeit self‑consistent, does not include
some minor details which were omitted until now for the sake of clarity. For exam‑
ple, both the geometrical and the dynamical derefinement criterion offer the possi‑
bility to perform an additional check, i.e. that the side of the (cubic) node tested is
smaller than a user‑defined value. If that is the case, the node can eventually be dere‑
fined, otherwise it cannot, even if it satisfies the derefinement criterion employed.
This measure prevents the derefinement of large nodes, so that the resolution out‑
side of the lightcone does not become too low to sample the large‑scale gravitational
field with a reasonable accuracy. In fact, the evolution of this field still needs to be
followed to some degree because of the influence that it has on the particle content
of the lightcone.

Another detail included in the DZS algorithm implementation addresses the is‑
sue of not having any “zoomed” portion of the simulation domain (i.e. a portion at
the original resolution of the simulation) at 𝑧 = 0, because 𝑅𝑙𝑐(𝑧 = 0) = 0. Generally,
it might be useful to have such a volume even at zero redshift for output analysys
purposes. The DZS algorithm grants the possibility to have such a volume through
a user‑defined buffer zone 𝑏 > 0, which increases the lightcone radius and is used in



60 3 The Dynamic Zoom Simulations algorithm

every check related to that radius; formally, this implies a substitution of the quantity
𝑅𝑙𝑐 in eqs. 3.1 and 3.2 with 𝑅𝑙𝑐 + 𝑏, as if the real lightcone radius was not the former
quantity but the latter. Note that this also applies to the yes/no check depicted in
fig. 3.10. In fact, the buffer zone also helps in reducing the impact of node dere‑
finement on the actual lightcone, even when employing an aggressive derefinement
criterion.

Last but not least, the algorithm also sets a lower limit to the particle timestep of
every particle outside of the lightcone, as a precaution measure against the situations
where particles get too close as a consequence of derefinement. In fact, rescaling
the gravitational softening according to the mass of a particle (subsec. 3.2.3) should
already avoid most of these situations, but this timestep limit was originally intro‑
duced in the PGADGET-3 implementation and it was carried over to AREPO, to tackle
those small timesteps which rarely slip past the rescaled softening. Specifically, the
limit is set to the smallest timestep inside of the lightcone, and is calculated by the
DZS algorithm before the first gravitational simulation half‑step. This calculation
also assigns a flag to each particle, signaling if it is inside or outside of the light‑
cone radius. The flag is then used during the particle timestep calculation within
the first gravity half‑step, and if a particle is outside of the lightcone, its timestep can
be limited as needed.

These details complement the description of the DM‑only DZS algorithm im‑
plementation. However, AREPO is tailored for simulations which include baryon
physics, which in fact requires most of the computational resources of the run. There‑
fore, employing the aforementioned tree‑based algorithm (which can only act on
DM particles) in this kind of simulations, altough being technically possible, would
leave the gas content of the simulation untouched and not yield any performance
gain from operations performed on that content. For this reason, it is appropriate
to extend the capabilities of the DZS algorithm to include baryon derefinement. In
fact, the moving mesh approach employed in AREPO provides a way to treat baryons
in the DZS framework.

3.2.6 Baryon derefinement

As mentioned in subsec. 2.2.2, one major advantage of a Voronoi tessellation is to
avoid the cell tangling which can arise when trying to follow the evolution of a fluid
with a structured moving mesh. It should be noted, however, that the time evolution
of an unstructured mesh such as the Voronoi one can yield cells with significant mass
and/or size deviations with respect to the initial values, hindering the spatial adap‑
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tivity of the scheme. To address this issue, AREPO offers the possibility to refine or
derefine mesh cells, respectively by splitting a mesh‑generating point into two sepa‑
rate ones which are then displaced by a small quantity in random directions, and by
“dissolving” the fluid properties within a cell into adjacent ones (Weinberger et al.
2020); in fact, the latter process provides a built‑in baryon derefinement that the DZS
algorithm can take advantage of. Specifically, the standard version of AREPO adopts
by default a mass criterion to select cells with a mass lower than a set value and dere‑
fine them. Adapting this scheme to the DZS algorithm requires the introduction of
an additional criterion to test mesh‑generating points with, namely the geometrical
criterion of eq. 3.1. The only quantity appearing in that equation which is not explic‑
itly provided by the code is the cell “length” 𝐿, which is not properly defined since,
unlike tree nodes, mesh cells are generally not cubic. Nonetheless, an estimate of 𝐿
to insert in the baryonic derefinement criterion can be provided by 𝐿 = [3/(4𝜋)𝑉]1/3

(where𝑉 is the cell volume), under the assumption of spherical cells. The quantity 𝐿
is also compared with the maximum allowed node size to avoid creating mesh cells
too massive and/or with an excessive volume.

It is now appropriate to describe how this additional criterion fits within the gen‑
eral workflow of mesh refinement and derefinement, as well as within the workflow
of the DM‑only, tree‑based DZS algorithm. In fact, the DM and baryon derefine‑
ment DZS algorithms can act independently of each other, with the only change
with respect to a DM‑only simulation occurring in the tree construction stage of
fig. 3.8: to ensure that the properties assigned to new particles (e.g. mass and po‑
sition) are correctly referred to the dark matter content of derefined nodes, the func‑
tion construct_forcetree is set to only use DM particles to build the tree.

Regarding the standard meshderefinement and refinement operations, it is worth
mentioning that they can be enabled or disabled in a simulation thanks to dedicated
options, and the additional criterion employed by DZS is set to work alongside these
options, if present. More specifically, consider a global timestep of a simulation
which includes both dark matter and baryons: in the function which normally tests
a mesh generating point with the default mass criterion, the first criterion which is
actually employed is the DZS geometrical one. If the point satisfies the criterion, it
is flagged for derefinement and the corresponding cell will be dissolved into adja‑
cent ones (the actual mesh generating point will be eliminated in the next domain
decomposition). On the other hand, if the point does not satisfy the criterion, the
testing function follows the standard workflow of AREPO. In comparison to the stan‑
dard mesh refinement, the only modification needed in the DZS framework is to set
the refinement process to only take place inside of the lightcone. This avoids the
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refinement of mesh generating points outside of the lightcone, where the mesh res‑
olution has been lowered by the DZS geometrical criterion. Without this limitation
on mesh refinement, the code would constantly try to increase the resolution of the
mesh while the DZS algorithm would try to achieve the opposite result, resulting in
a waste of computational resources.

The above implementation of baryon derefinement in the DZS framework raises
the question of why this derefinement was not carried on in a tree framework, simi‑
larly to the DM case. The answer lies in the fact that the Voronoi mesh is much more
complicated to modify than the oct‑tree. First of all, creating new mesh generating
points from nodes of a (baryon only) oct‑tree could alter the mesh geometry and lead
to excessive distortions (for example, if the center of mass of a node to derefine is far
from its geometric center). Second of all, each cell of the mesh stores fluid properties
which need to be correctly assigned to new particles once those cells are eliminated.
Performing this operation is far from trivial and also requires to recursively calculate
fluid properties in the tree construction framework (similarly to the center of mass
velocity in subsec. 3.2.3), as well as to find a way to define the values assigned to
new particles. In short, it is safer and more natural to employ the mesh derefine‑
ment structure already included in AREPO, as the dissolving procedure of derefined
cells distributes the fluid properties to neighboring cells and does not generally lead
to major mesh distortions. This choice, however, is not without its flaws: one major
downside of the employed mesh derefinement method is that, unlike the tree, the
Voronoi tessellation is not a hierarchical structure: in the DM‑only case the derefine‑
ment process could quickly turn many particles into one, if for example a large node
with a high particle content was flagged for derefinement in a high tree level. In
the Voronoi mesh, on the other hand, there are no levels and every mesh generating
point has its own cell. This means that every point has to be tested with the derefine‑
ment criterion; moreover, the elimination process itself is quite slow, since the code
prevents neighboring cells from being derefined at the same time (otherwise there
could be missing neighboring cells to dissolve fluid properties in). In fact, there is no
particle creation stage in this baryonic derefinement framework; instead, individual
particles are slowly eliminated over the course of a simulation. This translates into
an iterative derefinement process which spans many timesteps for the same volume
of the simulation and takes up a significant amount of computational resources, also
because the DZS geometrical criterion is much easier to satisfy with respect to the
standard mass criterion and thus many more mesh cells are derefined in a Dynamic
Zoom Simulation than in a standard one.

Whether or not a mesh‑based derefinement is actually better than a tree‑based
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one is an open question which would require, first of all, a complete implementa‑
tion of the latter approach and, second of all, output generation tools which allow
an extensive analysis of DZS‑related approximations in a full‑physics framework.
As will be explained in the next chapter, a meaningful comparison between runs
with and without DZS requires lightcone‑like output, which in AREPO, at the mo‑
ment, does not include any hydrodynamical properties of saved particles. For this
reason, and also because of some minor issues currently affecting the DZS‑related
baryon derefinement, I have chose not to include in this work results related to that
derefinement, and instead to present them when an appropriate and complete anal‑
ysis will be possible. Nonetheless, the next chapter presents a comprehensive study
of DZS‑related approximations and performance improvements in the DM‑only sce‑
nario, showing that the present state of the algorithm is indeed accurate and safe to
use and that it laids solid foundations for full‑physics Dynamic Zoom Simulations.



4 ∣Algorithm validation

After explaining the fundamental reasons behind the need for a performance im‑
provement in cosmological simulations, and after describing in detail how this work
tries to achieve that improvement, it is finally time to check how the DZS algorithm
performs in practice. This is carried out by performing pairs of runs (“twin” simu‑
lations) which have the exact same initial conditions (ICs, i.e. box side, number and
phase‑space distribution of particles), with one of them also employing the DZS al‑
gorithm; in fact, I have repeated such pairs of simulations with a variety of initial
conditions. All these runs will be used to quantify the differences in the mass and
density distribution, as well as in the positions of individual particles, that a Dy‑
namic Zoom Simulation has with respect to a standard simulation thanks to a variety
of output data, mainly in a lightcone‑like form. In fact, a direct comparison of tradi‑
tional output types, namely of the whole content of the simulation domain at a fixed
time, would be impossible, since the DZS algorithm modifies the domain by chang‑
ing the number of particles. Nonetheless, a direct comparison is meaningful inside
the lightcone, where the number of particles and their physical properties should re‑
main approximately unchanged in Dynamic Zoom Simulations and the only source
of differences with respect to a standard run (that is, the approximations introduced
by node derefinement) is the large‑scale gravitational field generated outside of 𝑅𝑙𝑐.
Obtaining a numerical estimate of these approximations is crucial to verify the cor‑
rect behaviour of the DZS algorithm (i.e. “validate” the code). Once it is verified that
the approximations do not lead to significant modifications of the output data, it is
possible to finally analyse how the DZS algorithm impacts the performance of the
code in terms of run time and work‑load balance.

4.1 Output analysis

The suite of simulations employed here is similar to those of Llinares (2017) and
Garaldi et al. (2020) (so that the results can be easily compared), and is tailored to
study how the DZS algorithm performs with different box sizes and resolutions.

64
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name 𝐿 [𝑀𝑝𝑐 ℎ−1] 𝑁 𝑀𝑝𝑎𝑟𝑡 [1010 𝑀⊙ ℎ−1] 𝜀 [𝑀𝑝𝑐 ℎ−1]
MEDIUM 2048 5123 552.55 0.1

MEDIUMHR 2048 10243 69.07 0.05
LARGE 8192 5123 35363.4 0.4

LARGEHR 8192 10243 4420.42 0.2

Table 4.1: simulations employed in the DM‑only algorithm validation, where 𝐿 is the box
side, 𝑁 is the number of tracer particles, 𝑀𝑝𝑎𝑟𝑡 is the mass of each particle and 𝜀 is the soft‑
ening length.

The four tested simulations, all of which are DM‑only, are listed in tab. 4.1. The
main difference with respect to the suite employed in Garaldi et al. (2020) lies in
the substitution of the DUSTGRAIN simulation (𝐿 = 2000 𝑀𝑝𝑐 ℎ−1, 𝑁 = 20483, not
used here due to the large amount of resources required to perform such a run) with
the new box MEDIUMHR; with a large number of particles in a relatively small box,
the MEDIUMHR simulations represent the highest resolution available in the suite
employed here.

The evolution of each simulated box is followed from 𝑧 = 50 to 𝑧 = 0 in a
gravity‑only framework, with a gravitational softening given by the reference for‑
mula 𝜀 = (𝑋𝐿/𝑁1/3) = 𝑋𝜆 (e.g. Zhang et al. 2019), with 𝑋 = 1/40 being a fraction
of the mean interparticle separation 𝜆 (particles created by the DZS algorithm will
have their softening rescaled according to their mass, as mentioned in subsec. 3.2.3).
The quantity 𝜆 is also used to define DZS‑related run time options: the radius of the
buffer zone and maximum linear node size (subsec. 3.2.5) are set at 5𝜆 and 4𝜆, re‑
spectively. In practice, the latter value ensures a minimum resolution outside of the
lightcone which is equivalent to that of a simulation with 1/64 of the original number
of particles. Additionally, every Dynamic Zoom Simulation employed here uses a
geometrical derefinement criterion with an opening angle 𝜃𝑔𝑒𝑜𝑚 = 0.1.

As mentioned before, the only direct way to compare output from a run with the
DZS algorithm (herafter, “dzs” run) and a run without it (hereafter, “std” run) is by
using lightcone‑like data, whose method of acquisition, i.e. the use of thin spheri‑
cal shells with radius equal to 𝑅𝑙𝑐, was described at the beginning of chapter 3. In
the DZS version of AREPO, this data is collected on the fly, resulting in a large re‑
duction of the necessary storage space and input/output time in the simulation. I
ported the code which saves lightcone‑like data during the simulation to the pub‑
lic version of AREPO following the approach described in Fosalba et al. (2008), with
some improvements leading to an easier handling of the output files. Specifically,
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Figure 4.1: Lightcone Halo Mass Function for the twin MEDIUMHR simulations (top panel);
the bottom panel represents relative erros in number density. In the bottom panel, the rela‑
tive differences are always exactly zero, which is why the 𝑦 scale has been chosen arbitrarily.

the code saves to disk the particles located in spherical shells with outer radius 𝑅𝑙𝑐
during selected simulation steps, with the inner radius of each shell being equal to
the outer one of the last saved shell. In fact, this on the fly saving system also allows
to arrange the shells into HEALPix maps (Górski et al. 2005), effectively producing
a sky‑projected lightcone output. Moreover, traditional outputs can be produced
along with lightcone‑like ones: for example, halo catalogs, i.e. files containing data
regarding dark matter halos identified in the simulation domain by the so‑called
Friends‑Of‑Friends algorithm (FOF, first used with this purpose in Davis et al. 1985),
are generated alongside lightcone shells in the MEDIUMHR twin simulations. I used
these catalogs (which, similarly to a snapshot, store data collected at a fixed simu‑
lation time) to build the Lightcone Halo Mass Function (LCHMF), which is the first
type of lightcone‑like output analysed in this validation.
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4.1.1 Lightcone Halo Mass Function

The Lightcone Halo Mass Function relates the mass and number density of the DM
halos located in points of space‑time which allow them to be indirectly detected by
the observer through the propagation of light; in the piecewise‑constant approxi‑
mation employed here, these halos are inside the lightcone shells. The output data
needed to create the LCHMF is only generated for the MEDIUMHR simulations be‑
cause their relatively high resolution allows the FOF algorithm to identify the largest
amount of structures and offer a larger sample of halos to be compared between the
dzs and std runs, therefore providing the most stringent test possible with this sim‑
ulation suite. Moreover, a box side 𝐿 = 2048 𝑀𝑝𝑐 ℎ−1 allows the DZS algorithm to
operate from 𝑧 ≃ 0.69 to 𝑧 = 0, i.e. nearly half of the timespan covered by the sim‑
ulation in the employed ΛCDM framework. In fact, the LCHMF has been created
from a slightly lower redshift (when the lightcone started being completely inside
the simulation domain, to avoid the need for any box replications), namely 𝑧 ≃ 0.36.
In practice, the LCHMF was built by extracting haloes whose centers of mass are
in adjacent thin shells with outer radius corresponding to the lightcone radius at
the time the halo catalog was produced. While this does not ensure that every se‑
lected halo is entirely inside a lightcone shell, it guarantees that each catalog entry is
included in at most one shell, so that the resulting LCHMF does not have any dupli‑
cate halos. The number 𝑁(𝑀) of selected halos as a function of mass𝑀 is estimated
for an arbitrary number of mass bins (twenty, in this case), and each value 𝑁(𝑀) is
divided by the volume of the sphere with radius equal to the lightcone radius when
the first catalog was saved, to finally yield a number density estimate 𝑛𝐿𝐶.

The LCHMF comparison for the twin MEDIUMHR runs is depicted in fig. 4.1. The
first noticeable thing is the limited range of the 𝑥 axis: despite the fact that the MEDI‑
UMHR runs have the best resolution among the simulations listed in tab. 4.1, each
DM particle starts with a mass 𝑀𝑝𝑎𝑟𝑡 ≃ 7 ⋅ 1011 𝑀⊙, which limits the mass range
the FOF algorithm can operate on. Nonetheless, in the top‑end view of the LCHMF
provided by the MEDIUMHR runs, the std and dzs simulation yield identical results.
This is a somewhat expected outcome, because even though the domain modifica‑
tions due to the DZS algorithm are indeed significant in the MEDIUMHR simulations,
they arise relatively late with respect to those occurring in larger boxes. These boxes
include, for example, those employed in the LARGE and LARGEHR runs, where do‑
main modifications and subsequent approximations should generally be higher. In
fact, the LARGEHR pair of simulations will be included in the next subsection, which
concerns the analysis of HEALPix output.
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4.1.2 Sky‑projected lightcone

The acronym HEALPix stands for Hierarchical Equal Area isoLatitude Pixelization
(Górski et al. 2005), and it constitutes a tool employed in discretizing data on the
surface of a sphere across pixels with the same area. Its main purpose is to allow an
easier analysis of output data (both real and simulated) which spans the whole sky
(i.e. as if the observer was in the center of a sphere), typically through a 2D angular
projection. In this algorithm validation framework, each spherical lightcone shell
is sky‑projected and discretized with HEALPix. This procedure yields a pixelized
spatial mass distribution of each lightcone shell, and when the mass content of each
pixel is summed over every lightcone shell, the result is a lightcone‑like mass distri‑
bution spanning a certain redshift range. This distribution has been generated for
the MEDIUM, MEDIUMHR and LARGEHR simulations, with the latter having a redshift
range of 𝑧 ∈ [≃ 1.44, 0]without the need for any box replications. The other two pairs
of simulations span the same range as the MEDIUMHR in the LCHMF subsection, i.e.
from 𝑧 ≃ 0.36 to 𝑧 = 0. The number of pixels in the HEALPix distributions generated
on the fly is the same for all simulations, namely 12582912 = 12 ⋅ 10242 or, equiva‑
lently, the 𝑁𝑠𝑖𝑑𝑒 parameter is equal to 1024. For visualization purposes, during the
output analysis the pixelization was downsampled to 𝑁𝑠𝑖𝑑𝑒 = 256, i.e. 786432 pixels.

The sky‑projected mass distributions of all the examined pairs of simulations are
depicted in fig. 4.2 (MEDIUM), fig. 4.3 (MEDIUMHR) and fig. 4.4 (LARGEHR). Each fig‑
ure includes the distribution produced by the std run, the dzs run, the distribution
of relative differences bewteen the two and of relative differences in the power spec‑
trum 𝐶𝑙. This latter quantity is the spatially averaged difference between two points
in a mass distribution as a function of their angular distance, expressed through the
parameter 𝑙 (linked to an actual angle 𝜃 roughly as 𝑙 ≈ 180∘/𝜃). First of all, the first
two figures refer to simulations sharing the same box size, and thus the same degree
of modifications on the simulation domain by the DZS algorithm. The two pairs of
simulation do, however, have different resolutions, which yield different degrees of
accuracy. It should be noted that there are more pixels with a non‑zero relative dif‑
ference in the MEDIUM simulations with respect to the MEDIUMHR ones, meaning that
a lower resolution results in more particles whose position is displaced over the pixel
size due to the modified gravitational field. Moreover, in the MEDIUM runs those pix‑
els also have higher relative difference values. A possible explanation for this lies in
the fact that the MEDIUM runs have less particles than the MEDIUMHR ones to generate
a mass distribution over the same number of pixels; therefore, every pixel has less
counts on average and displacements over the pixel size (which generate non‑zero
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differences in the distributions) tend to weigh more. Anyway, in both cases the dis‑
placements are generally smaller than 2%. In fact, the few pixels with a non‑zero
relative difference in fig. 4.3 have values always smaller than 0.3%, yielding very
contained relative differences also in the angular power spectrum (|Δ𝐶𝑙/𝐶𝑙| ≪ 10−4).
The power spectrum differences are also very small in the MEDIUM runs of fig. 4.2,
with |Δ𝐶𝑙/𝐶𝑙| being always < 10−3.

As for the LARGEHR results depicted in fig. 4.4, there is a much higher impact
of the DZS algorithm on the relative difference distribution due to the bigger box:
first of all, there are many pixels which yield a non‑zero difference, although with
the usual small values (mostly below 1%). In fact, these values are even smaller
than those of fig. 4.2. According to the comparison between the MEDIUM and MEDI‑
UMHR results and given the fact that the MEDIUM runs actually have a resolution 8
times higher than the LARGEHR ones, the difference distribution in fig. 4.4 should
have higher values than that in fig. 4.2. The bigger redshift range employed in the
LARGEHR results, however, includes more lightcone shells in the mass distributions
and increases the average pixel count, resulting in a lower weight of displacements
over the size of a pixel. This remark is supported by fig. 4.5, which depicts the
LARGEHR results over the same redshift range as the MEDIUM and MEDIUMHR ones. In
this case, displacements over the pixel size are actually more and have higher values
than in fig. 4.2, which is the expected outcome from different mass resolutions; the
power spectrum also has larger differences, which however never exceed the percent
level. When considering the same spectrum over the larger redshift range of fig. 4.4,
the LARGEHR runs behave marginally worse than the MEDIUM ones, as the combined
effect of a larger number of non‑zero pixels with lower values in the difference dis‑
tribution yields values of |Δ𝐶𝑙/𝐶𝑙| at most slightly larger than 10−3. In summary,
DZS‑related approximations are very contained in all the examined HEALPix out‑
put and provide evidence of the uselfulness of the algorithm.

4.1.3 3D lightcone

While the HEALPix projection described above allows an all‑sky view and compar‑
ison of simulated results, it is also appropriate to analyse more directly the spherical
lightcone shells. The combined particle content of all the shells produced in a run is
sliced along the 𝑧 axis (the slice is 30 𝑀𝑝𝑐 thick), and a density field is created from
the particles in the slice (similarly to how that field is obtained in the SPH frame‑
work, see subsec. 2.2.1). A 2D conic slice of this field is plotted over discrete pixels
in fig. 4.6 for the MEDIUM simulations and in fig. 4.7 for the MEDIUMHR simulations,
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Figure 4.2: sky‑projected mass distributionΣ of the std and dzs MEDIUM runs (top two panels,
arbitrary units, darker colors corresponding to lower pixel counts). Third panel: distribution
of relative difference between the std and the dzs results (the scale is symmetric with respect
to the error with the highest absolute value). Fourth panel: plot of relative difference in
the angular power spectrum 𝐶𝑙 , with linear scaling in the 𝑦 axis for |Δ𝐶𝑙/𝐶𝑙| < 10−4 and
logarithmic scaling otherwise.
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Figure 4.3: same as fig. 4.2, but for the MEDIUMHR runs.
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LARGEHR, 𝑧 ∈ [≃ 1.44, 0]
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Figure 4.4: same as fig. 4.2, but for the LARGEHR runs from 𝑧 ≃ 1.44 to 𝑧 = 0.
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LARGEHR, 𝑧 ∈ [≃ 0.36, 0]
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Figure 4.5: same as fig. 4.2, but for the LARGEHR runs from 𝑧 ≃ 0.36 to 𝑧 = 0.
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with the lightcones spanning the same redshift range as in the previous subsection,
namely 𝑧 ∈ [≃ 0.36, 0]. The figures also include a relative difference distribution sim‑
ilar to those seen in the previous subsection. At first glance, the dzs and std results
appear very similar (if not identical) for both pairs of simulations, with the character‑
istic web‑like arrangement of large‑scale structures. A more quantitative inspection
comes from the relative difference distribution, which reveals, for example, that in
both figures non‑zero differences arise in the inner portion of the conic slice. This
result can be explained by considering the way in which lightcone shells are pro‑
duced during the run: the innermost shells with low 𝑅𝑙𝑐 values are collected in later
simulation steps with respect to the outer shells, which means that the particle con‑
tent of the former shells has been affected by DZS‑related modifications for a longer
simulation time than the latter shells, hence the increase of relative deviations close
to the observer.

As for the values of these deviations, they are mostly sub‑percent in both the
MEDIUM and MEDIUMHR simulations, with the latter showing very few non‑zero spots
in the relative difference distribution. This behaviour is coherentwith the sky‑project‑
ed results of the previous subsection, where the higher resolution of the MEDIUMHR
runs led to fewer and smaller differences than in the MEDIUM case. In fact, this lat‑
ter pair of simulations shows a significant number of non‑zero spots in the relative
difference distribution, which also has a couple of strange “artifacts” where an area
with positive values is surrounded by a ring of negative values (or vice versa), such
as the one highlighted in the zoom box of fig. 4.6. This effects is likely to be caused by
the tools employed to build the smoothed density field from a particle distribution
with a relatively small number of elements. In fact, when this technique is applied to
simulations with lower particle counts (as the LARGE and LARGEHR runs, both having
a worse resolution than that of the MEDIUM ones), the resulting density field closely
mimics the distribution of actual particles without a significant smoothing effect, as
a consequence of the lower particle density in the simulation domain.1 Compar‑
ing these density fields in a relative difference map yields more ring‑like artifacts,
strenghtening the conclusion that the artifacts are related to a low resolution.

Overall, the error analysis has shown that the DZS algorithm is capable of repro‑
ducing the lightcone‑like results of a standard simulation with high accuracy, which
is expected to get even higher when dealing with a larger number of particles while
keeping the box side fixed.

1It should be mentioned that this poor density field rendition is the reason why the LARGE and
LARGEHR results are not included in the 3D lightcone analysis.
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Figure 4.6: density distribution for a 2D conic subset of a thin slice (30 𝑀𝑝𝑐 thick) obtained
from the 3D lightcone of the dzs and std MEDIUM simulation (top two panels, arbitrary units,
darker colors corresponding to lower pixel counts). Third panel: distribution of relative
differences between the dzs and std results (the scale is symmetric with respect to the error
with the highest absolute value). The zoom box highlights the presence of a ring‑like artifact.
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Figure 4.7: same as fig. 4.6, but for the MEDIUMHR runs and without any zoom boxes.
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4.1.4 Particle displacements

While the above subsections have shown that the DZS algorithm yields very con‑
tained differnces with respect to a standard run and can be considered safe to use, a
complete investigation should include the most strict comparison possible, i.e. that
which is performed between pairs of single particles in a twin set of simulations.
Specifically, particle pairs are constituted by the particles which start in the same
exact position in twin simulations, and during a dzs run might end up in a differ‑
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Figure 4.8: anticumulative distribution of particle displacements Δ𝑥 calculated at various
redshifts in the LARGE (a) and LARGEHR simulations (b); the displacements are normalized to
the softening length 𝜀, equal to 0.4 𝑀𝑝𝑐 in (a) and to 0.2 𝑀𝑝𝑐 in (b). The vertical black dotted
line marks Δ𝑥/𝜀 = 8.
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𝑧 = 3.24 𝑧 = 2.02 𝑧 = 0.91 𝑧 = 0.54 𝑧 = 0.32

LARGE 1.08 ⋅ 10−8 6.22 ⋅ 10−8 1.0 ⋅ 10−7 0.0 0.0
LARGEHR 0.0 7.77 ⋅ 10−9 7.53 ⋅ 10−8 6.66 ⋅ 10−7 1.79 ⋅ 10−6

𝑧 = 0.13 𝑧 = 0.03

LARGE 0.0 0.0
LARGEHR 2.23 ⋅ 10−6 1.50 ⋅ 10−4

Table 4.2: number of particles without a match divided by the number of particles inside the
lightcone in the std LARGE and LARGEHR simulations; the redshifts are equal to those depicted
in fig. 4.8.

ent position with respect to the corresponding std run; such pairs are identified by
matching particle IDs across snapshots performed in dzs and std runs. Quantify‑
ing the positional distance of each dzs particle from the corresponding std one (i.e.
the displacement of that particle) gives a very precise idea of how the DZS algo‑
rithm only minimally affects the simulation domain. By construction, this particle
displacement check can be performed only inside the lightcone (that is, the whole
sphere with radius 𝑅𝑙𝑐, not just a thin shell), where the dzs component of a particle
pair cannot be removed or modified by the algorithm. For this reason, and to have
the largest possible amount of particles to analyse as well as test the configuration
with the largest expected DZS impact, displacements are calculated for the twin sim‑
ulations LARGE and LARGEHR at different redshifts and shown in fig. 4.8. In fact, each
displacement Δ𝑥 is normalised by the softening length 𝜀 (see section 2.1), with the
value Δ𝑥/𝜀 = 8 being chosen as an upper limit for individual displacements which
do not worsen the spatial reliability of a simulation (following Garaldi et al. 2020).
In the LARGE simulations (fig. 4.8a), every displacement is way smaller than the up‑
per limit, with the vast majority of particles having Δ𝑥/𝜀 ≲ 10−2 in every examined
redshift. There is, however, a minor fraction of particles (≲ 10−3) with higher dis‑
placements which tend to get even higher with decreasing redshift, showing how the
DZS‑related approximations accumulate during a simulation. In fact, at 𝑧 = 3.24 (i.e.
shortly after the lightcone has entered the LARGE and LARGEHR simulation box) every
particle hasΔ𝑥/𝜀 < 10−2, but the tail of the distribution reaches higher displacements
as 𝑧 tends to zero, reaching its peak at 𝑧 = 0.54. Afterwards, the maximum displace‑
ment becomes smaller as a result of the decreasing number of particles inside the
lightcone.

The results of the LARGEHR runs (fig. 4.8b) follow a similar trend, but with much
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higher displacements. Nonetheless, most particles are not displaced farther than 8
times the softening length, with the exception of a small fraction (≈ 10−6) at 𝑧 = 0.32;
in fact, these few particles do not affect the overall visual differences between the std
and the dzs run, as confirmed by fig. 4.4. Actually, the dependency on resolution ob‑
served in particle displacements, that is, a general increase ofΔ𝑥/𝜀, seems to disagree
with that of previous subsections. This discrepancy is indeed only apparent, because
the HEALPix and 3D lightcone results focus on quantities integrated over the size of
a pixel, where an increasing density of particles helps in making differences smaller;
on the contrary, the present analysis takes into account the individual contributions
of each particle, where a small fraction of values exceeding the set tolerance stands
out among the vast majority of displacements. Furthermore, a lower simulation res‑
olution implies an higher mass for tracer particles, leading to them having smaller
peculiar velocities by construction, which by themselves limit the displacements.

Last but not least, it should be noted that the displacement of a particle can trans‑
port it inside or outside of the lightcone, possibly resulting in a number of particles
without a matching companion. While this number is always a very small fraction
of the whole content of the lightcone in the std runs, it is appropriate to include it
in tab. 4.2, especially considering that particles without a companion cannot be de‑
picted in fig. 4.8. The better resolution of the LARGEHR results in a very small fraction
of particles inside the lightcone without a match in the dzs run, whereas the very few
particles left inside 𝑅𝑙𝑐 at low redshift all have their companion in the LARGE case.

4.2 Performance analysis

The previous section showed that runs performed with the DZS algorithm yield ac‑
curate output data when compared to simulations without it. While this is a reassur‑
ing result, it does not verify that Dynamic Zoom Simulations are indeed able to be
carried out with a lower toll on computational resources than that of standard runs.
In fact, this section aims to compare the run times and work‑load balances of every
pair of simulations depicted in tab. 4.1, to see, first of all, if there is an actual perfor‑
mance improvement and, second of all, how different boxes and resolutions affect
that improvement. It should be noted that such an analysis ideally requires that both
the std and dzs runs of a twin set of simulations are performed on the exact same
computational units. In this framework, however, this requirement is not always
met due to the large number of computational units, most of which are constantly
in use, on the computing cluster the simulations have been performed on, that is,
the SuperMUC‑NG cluster of the Leibniz Supercomputing Centre. Nonetheless, all
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the computational units employed have the same hardware and should thus be able
to yield the same performance results. Another important thing to point out is that
the following performance estimate comes from simulations which have performed
output writing operations to create the data seen in the previous section; given that
simulations including the DZS algorithm have a lower number of particles to save to
disk, part of the observed performance gain can also be due to these output‑related
operations. In fact, this framework mimics a more realistic simulation scenario and
highlights how the different operations of a code can benefit from a reduced number
of particles.

4.2.1 Run time performance

The wall‑clock time required to run simulations with and without dzs is depicted in
fig. 4.9, both in a cumulative fashion and referred to the performance of individual
simulation steps. In the top panel, independently of the specific twin simulations
examined, the dzs and std runs show identical curves (with the exception of the
MEDIUM runs in the first stages of the simulations, see below), but from the scale
factor in which the first derefinement takes place (marked by the diamond symbols),
the dzs runs gradually become more efficient, yielding a substantial flattening of the
curves when the number of particles becomes half of the initial one (event marked
by the circular symbols). In fact, this flattening results from the reduced run time
per simulation step required by the dzs runs, highlighted in the bottom panel of
fig. 4.9: as the volume outside of the lightcone becomes larger and more particles are
eliminated, simulation steps take much less time to be carried out. Furthermore, the
DZS‑related performance gain also comes from the fact that the increased clustering
of matter at low redshift leads to smaller particle timesteps and thus a more resource‑
hungry time evolution. Indeed, this performance analysis shows that having a small
number of particles in this stage of a simulation helps in reducing the computational
costs. The bottom panel of fig. 4.9 also shows why the LARGE and LARGEHR runs have
a better total run time saving (defined as 1−𝑡𝑑𝑧𝑠𝑤𝑐 (𝑎 = 1)/𝑡𝑠𝑡𝑑𝑤𝑐 (𝑎 = 1)) than the MEDIUM and
MEDIUMHR runs: the larger box allows the lightcone to enter the simulation domain
earlier and node derefinements start to take place sooner, resulting in a more rapidly
declining wall‑clock time per simulation step and thus in a larger run time saving
overall.

To discuss these run time savings in more detail, it is appropriate to point out a
feature arising infig. 4.9: in the top panel it is possible to notice a rapid increase in the
cumulative run time at the end of each dashed curve (as shown by the smaller zoom
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Figure 4.9: top panel: wall‑clock time 𝑡𝑑𝑧𝑠𝑤𝑐 needed to run a dzs simulation up to a certain
cosmic time (expressed through the scale factor 𝑎), as a function of 𝑎 (solid curves); the curves
are normalized to the total run time of the corresponding std runs (𝑡𝑠𝑡𝑑𝑤𝑐 when 𝑎 = 1) for
comparison purposes, and the std runs are also plotted as a reference (dashed curves). The
two zoom boxes highlight the early and last stages of the simulations. Bottom panel: ratio
of the wall‑clock time employed to perform a (global) simulation step in a dzs run (𝑡𝑑𝑧𝑠𝑤𝑐,𝑠𝑡𝑒𝑝)
and in the corresponding std one (𝑡𝑠𝑡𝑑𝑤𝑐,𝑠𝑡𝑒𝑝), as a function of the scale factor each step was
performed in. The zoom box highlights the early stages of the simulations. In both panels,
diamonds identify the moment in which the first node is derefined, and circles mark the time
at which the total number of particles becomes half of the initial one.

box), as if the final operations of std simulations required a substantial amount of
computational resources. This happens because of the so‑called restart files, which
AREPO creates as a way to resume a simulation from the time in which it ended. In
fact, these files contain the memory image of each MPI task, which makes their cre‑
ation more significant in a std run with respect to a dzs run, due to the higher num‑
ber of particles and data related to them. Indeed, this also works in favor of the DZS
performance gain, and while creating the restart files might not seem like an opera‑
tion directly related to the time evolution of tracer particles, is part of every realistic
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𝑡𝑑𝑧𝑠𝑤𝑐 (𝑧 = 0)/𝑡𝑠𝑡𝑑𝑤𝑐 (𝑧 = 0) 𝑁𝑑𝑧𝑠𝑝𝑎𝑟𝑡(𝑧 = 0)/𝑁𝑑𝑧𝑠𝑝𝑎𝑟𝑡(𝑧 = 50)

MEDIUM 0.82 0.046
MEDIUMHR 0.84 0.033

LARGE 0.65 0.045
LARGEHR 0.54 0.037

Table 4.3: total wall‑clock time needed to complete a dzs simulation, normalized to the re‑
spective std total run time. For the sake of completeness, the second column of the table
includes the final number of particles in each dzs run with respect to the initial number.

cosmological simulation setup that I chose to reproduce in this analysis.2

With that said, the run time savings yielded by the ICs with the same box size
can now be compared: the MEDIUM and MEDIUMHR runs share a very similar result,
showing that the two mass resolutions do not yield significant differences in the
limited timeframe in which node derefinement takes place. On the other hand, this
is not the case in the LARGE and LARGEHR runs: as can be seen in tab. 4.3, the increased
resolution leads to a lower fraction of the total std run time being employed by the
dzs simulation, and thus to a higher run time saving. This result likely comes from
the aforementioned increased computational cost of low redshift simulation steps,
whose performance impact is usually directly related to the resolution. Therefore,
the performance gain provided by the DZS algorithm should also be more significant
when the number of particles in a box is increased, which is indeed what happens
in the LARGE and LARGEHR simulations. In fact, in the latter pair of simulations the
dzs run has been completed in nearly half the run time taken by the std run, which
is a very promising result for high‑resolution simulations.

4.2.2 Work‑load balance

Given the fact that the DZS algorithm heavily modifies the simulation domain and
basically separates it into a high resolution and a low resolution volume, it is appro‑
priate to see how this affects the work‑load balance3 during a run, with an emphasis

2Usually, cosmological simulations produce restart files at regular intervals (every few hours) as
a safety measure against crashes and interruptions, to resume a run without having to repeat it from
the start. The simulations analysed here, on the other hand, only produce restart files at the end of the
run, because completing these simulations does not require more than a few hours in the first place.
Nonetheless, it should be noted that the regular production of restart files during a simulation in a
realistic setup makes the DZS algorithm even more efficient.

3As mentioned in chapter 3, the work‑load balance is a property of every simulation step and is
defined as the maximum wall‑clock time spent on tree algorithm across every MPI task, divided by
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Figure 4.10: work‑load balance of the dzs runs (solid lines) and of the corresponding std
runs (dashed) lines. The quantity 𝑁𝑡𝑎𝑠𝑘𝑠 represents the number of MPI tasks each pair of
simulations was performed with. The role of diamond and circular symbols is identical to
that which they have in fig. 4.9.

on large deviations from the ideal value of 1. The work‑load balances of all simu‑
lations included in tab. 4.1 are plotted against the scale factor in fig. 4.10; the plot
also includes the number of MPI tasks employed in each pair of runs, because hav‑
ing a number of tasks which is too high compared to the size of the problem can
largely affect the work‑load balance. There are in fact DZS‑related imbalances in
every examined simulation, with peak values getting as high as 1.3. In every set of
twin simulations, reducing the number of particles makes it harder for the domain
decomposition to distribute them evenly across tasks. Eventually, however, all the
dzs curves start decreasing towards 𝑎 = 1 either gradually or abruptly, signaling that
AREPO is finally managing to keep the imbalances in check. To understand why this
is the case, it is possible to notice that the simulation stages with the highest imbal‑
ances are mostly dependent on the box size, being located around 𝑎 ≃ 0.7 or 0.8 for
the LARGE and LARGEHR runs and at 𝑎 ≃ 0.9 for the MEDIUM and MEDIUMHR simula‑
tions. At these points of a dzs simulation, the clustering of matter, which is a source
of imbalance in itself (because the clustering leads to tasks having fewer particles re‑
sort to communications more often and slowing down the workflow), occurs mostly

its average value.
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inside of the lightcone, and the tasks working in this portion of the simulation vol‑
ume will generally take a longer time to complete their operations with respect to
the tasks working outside 𝑅𝑙𝑐. As the lightcone shrinks towards the observer, most
of the simulation domain adjusts to the same resolution and the imbalance becomes
lower. In any case, the imbalance peaks show significant deviations from the std
runs (whose work‑load balance remains always reasonably close to 1), and while
the performance gains depicted in subsec. 4.2.1 are very promising, the results of
fig. 4.10 show that there is indeed some room for improvement (also because the
work‑load balances of dzs runs in PGADGET-3 deviate from 1 at most by a few per
cent, Garaldi et al. 2020). Some brief suggestions to achieve this improvements and
to deal with imbalances in general can be found in the next and final chapter of this
work, which also sums up the state of the current implementation and mentions
some possible extensions.



5 ∣ Summary, conclusions and future
prospects

In this work, I have introduced the DZS framework and described its implementa‑
tion in the code AREPO, highlighting the performance gain that can be obtained with
this technique in a DM‑only scenario. More specifically:

• in chapter 1, I have presented the cosmological framework and the theory of
gravitational instabilities that leads to structure formation, highlighting the
crucial role of dark matter. In addition, I have also described the main mecha‑
nisms that lead to the formation and evolution of stellar objects and galaxies.
Last but not least, I have introduced cosmological simulations as a way to ad‑
dress the lack of a purely analytical framework for structure and galaxy forma‑
tion, emphasizing the role of tracer particles and limitations on their number
in high‑resolution simulations;

• in chapter 2, I have described some techniques employed to make gravity and
hydrodynamics calculations more efficient. Specifically, I have included the
particle‑mesh method and the hierarchical multipole method for the gravita‑
tional framework (as well as the combination of the two methods, which con‑
stitues the tree‑PM approach), and the smoothed particle hydrodynamics and
moving mesh methods to treat baryonic physics;

• in chapter 3, I have provided a general overview of the Dynamic Zoom Simu‑
lations algorithm as a way to overcome the aforementioned limitations in high‑
resolution simulations, and a detailed description of its implementation in the
tree‑PM moving mesh code AREPO, starting with the DM‑only, tree‑based ap‑
proach. This consists in merging the particle content of tree nodes lying out‑
side the past lightcone of a random observer into single, massive particles. The
process includes a tree walk, in which different operations are performed on
nodes, particles, pseudoparticles or imported points, the particle elimination
and creation stage, and the way to insert the algorithm in the general code
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workflow. I have also introduced a possible mesh‑based approach for baryon
derefinement, relatively easy to implement but still to be tested in terms of
accuracy and performance gain;

• in chapter 4, I have tested the ability of the DM‑only DZS algorithm to correctly
produce lightcone‑like output in a variety of simulation setups. Specifically,
this output included theLightcone Halo Mass Function, the sky‑projected light‑
cone and the 3D lightcone, with DZS‑related approximations being very con‑
tained (below 1% in most cases). Afterwards, I verified that the algorithm does
indeed introduce a performance gain, and studied how the simulation resolu‑
tion and the box size affect this gain in the employed setups. Specifically, the
simulations that I have performed with the DZS algorithm need from 16% to
46% less time to be completed than the corresponding standard runs. These re‑
sults are expected to get even better when employing higher resolutions, larger
boxes, and/or including the more complex baryonic physics.

The current state of Dynamic Zoom Simulations in AREPO, while being self‑consis‑
tent, allows a variety of extensions and improvements which is appropriate to men‑
tion here, starting with the suggestions regarding work‑load balance mentioned at
the end of chapter 4.

5.1 Work‑load balance and DZS special stop

As seen in subsec. 4.2.2, DZS‑related modifications on the simulation domain in‑
deed take their toll on the work‑load balance of global simulation steps. While this
is expected due to the change in resolution and the clustering of matter, some adjust‑
ments could be made in order to reduce the imbalance and further improve perfor‑
mance when possible. For example, AREPO weighs the cost of the tree‑related grav‑
itational calculations of each particle through the real numbers GravCost; when a
new particle is created from a tree node, however, the associated GravCost is set to
zero, as well as that of every particle flagged for removal. This can make a proper
work‑load balance more difficult to achieve in the next domain decomposition and
partly contribute to the peaks seen in fig. 4.10. I already started working in this di‑
rection by performing simulations where the GravCost of new particles was given
by the maximum value across all particles inside the corresponding derefined node,
but without any noticeable work‑load balance improvement. It is possible that more
sophisticated choices for the GravCost of new particles could help in reducing the
observed imbalances.
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In any case, it is foreseeable that the DZS‑related change in resolution will eventu‑
ally lead to a large imbalance (especially with a high number of particles at the start of
a simulation), due to the lower and lower number of particles assigned to MPI tasks
and the subsequent large use of communications. For this reason, the PGADGET-3
implementation of DZS allows to set a user‑defined threshold for the maximum al‑
lowed imbalance or the minimum ratio of the current and the starting number of
particles. If the simulation exceeds one of these limits, it stops as soon as possible in
order to be resumed with more appropriate computational resources, namely fewer
MPI tasks and memory. It is important to point out, however, that it is not possible to
use the restart files mentioned in subsec. 4.2.1 in this DZS “special stop” framework,
because a run restarted with those files needs to have the same number of tasks as the
files were created with. This restriction is also present in PGADGET-3, which is why
the existing implementation of DZS special stop implies the generation of a snapshot
when the run is stopped, as simulations can be restarded from snapshots without the
limitations that apply to restart files. Snapshot files, however, tipically do not store
data as precisely as restart files, which is why resuming a simulation with DZS spe‑
cial stop could lead to additional approximations with respect to a standard run, and
testing in this sense will be required when the feature is added to AREPO.

5.2 Further validation and additional physics

Other than the tests required by the future implementation of DZS special stop, fur‑
ther analysis is needed to complement the work described in chapter 4. First of all,
the DZS algorithm depends on a variety of parameters: the opening angle 𝜃𝑔𝑒𝑜𝑚, for
example, or the quantity 𝛼 of eq. 3.2, when the dynamical criterion is employed; the
buffer and the maximum node size also play a key role in determining DZS‑related
approximations and performance gains. Therefore, a comprehensive parameter de‑
pendence analysis should be carried out for a quantitative understanding of how
different parameters and/or criterion combinations affect both lightcone‑like output
and individual particle displacements, as well as the overall time saving of the algo‑
rithm. Such a testing procedure will also help to validate the DZS algorithm in the
presence of a dynamical derefinement criterion (as all the runs discussed in chapter 4
have been performed with a geometrical criterion).

Second of all, while the suite of simulations in this work offers a variety of differ‑
ent initial conditions, it would be appropriate to extend the validation to the large‑
scale and high‑resolution simulations that the DZS algorithm has been designed
for. This is especially true in the baryon derefinement framework (once ready),
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whose validation simulations should also gradually include the additional physics
described in chapter 1, such as cooling, star formation, magnetic fields and stellar
and AGN feedback. In fact, the capabilities of the DZS algorithm can be extended
even further, as it is virtually suited to every particle‑based model of alternative
physics; AREPO, for example, can already employ models such as modified gravity
(Arnold et al. 2019), self‑interacting DM (Chua et al. 2021), fuzzy DM (Mocz et al.
2019) and massive neutrinos (Adamek et al. 2022); all these modifications of AREPO,
as well as other models not yet implemented, could be adapted to the DZS frame‑
work and benefit from its performance gain.

5.3 Conclusions

In this work I presented the current framework of cosmological simulations and pro‑
posed a method to make these simulations more efficient. My implementation of
this method in a state of the art code for baryon physics simulations such as AREPO
has yielded a safe, accurate and efficient algorithm capable of reducing the run time
needed by a DM‑only simulation almost by 50% in one of the tested pairs, with rela‑
tive differences with respect to a standard run mostly below 1%. In fact, these results
are compatible with the ones reported in Garaldi et al. (2020), and it can be foreseen
that the two implementations will share a similar increase in performance gain when
the algorithm is applied to the next generation of cosmological simulations, where
the very large volumes and high mass resolutions will all play in favor of the DZS
framework. As mentioned in the previous section, the algorithm is also very versa‑
tile, because its structure makes it adaptable to additional complex and non‑standard
physics in a relatively straightforward way.

In conclusion, with this work I hope to have paved the way to a wider and wider
usage of the DZS algorithm with a variety of physical models and in increasingly
complicated scenarios, which will all take advantage of the performance improve‑
ment needed to reach unprecedented levels of resolution and accuracy.
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