
Alma Mater Studiorum
Università di Bologna

SCHOOL OF ENGINEERING

-Forlì Campus-

SECOND CYCLE MASTER’S DEGREE in

AEROSPACE ENGINEERING

Class LM-20

GRADUATION THESIS

In Automatic Flight Control

Parameter Identification
of the Fossen Model

Applied to the UUV Blucy

Candidate:
Raffaele Borgognoni

Supervisor:
Prof. Paolo Castaldi

Co-Supervisor:
Dott. Massimiliano Menghini

Academic year 2022 · 2023

Abstract

This thesis describes the procedure followed to identify the Fossen mathemat-
ical model of the unmanned underwater vehicle Blucy developed within the
SUstainable fiSHeries wIth DROnes data Processing project. The identifica-
tion consists in finding the parameters that constitute the Fossen mathematical
model of Blucy. These parameters describe important properties of Blucy,
such as its mass, geometry and inertia, as well as its hydrostatic and hydro-
dynamic characteristics. In Chapter 2, the study of the mathematical model
is addressed. In Chapter 3, the dynamic vectorial equations of the model are
implemented into Simulink. In Chapter 4, the parameters identification is
performed through a combination of different tools and methods, including
detailed 3D CAD modeling, meshing and CFD simulations. In Chapter 5, the
identified parameters are integrated into Simulink and tested. At the end of
Chapter 5, a novel approach based on fractional order modeling is applied to
test the accuracy and adaptability of a novel strategy for modeling complex
systems. The results obtained from this work show the effectiveness of the
proposed approach in identifying the Fossen mathematical model of Blucy.

2

Contents

1 Introduction 11
1.1 Blucy . 12
1.2 Objectives . 14

2 Mathematical Modeling 19
2.1 Coordinate Systems . 19
2.2 Kinematics . 22

2.2.1 Linear Velocity Transformation 22
2.2.2 Angular Velocity Transformation 23
2.2.3 6DOF Kinematic Equations 24

2.3 Rigid-Body Kinetics . 24
2.4 Hydorstatics and Hydrodynamics 28

2.4.1 Restoring Forces . 28
2.4.2 Viscous damping . 29
2.4.3 Added mass . 31

2.5 Robot-Like Vectorial Model 33

3 Simulink Model 35
3.1 Kinematics Block . 36
3.2 Kinetics Block . 38

4 Parameters Identification 45
4.1 Geometry and Inertia Parameters Estimation 47

4.1.1 Geometry and Inertia Results 50
4.2 Hydrodynamic Parameters Estimation 51

3

4.2.1 Linear Motion Simulations 52
4.2.2 Angular Motion Simulations 64
4.2.3 CFD Results . 66

4.3 Added Mass Estimation . 75

5 Testing of the Simulink Model 81

6 Conclusions 95

Appendices

A Matlab Code 99
A.1 Initialization Script . 99
A.2 M_RB_fun and skew_fun . 102
A.3 Ellipsoid Added Mass . 103

B OpenFOAM Code 105
B.1 “0” Directory . 105
B.2 fvSchemes . 109
B.3 fvsolution . 110
B.4 controlDict . 113

C CFD Results 115
C.1 Surge . 116
C.2 Sway . 117
C.3 Heave . 118
C.4 Roll . 119
C.5 Pitch . 120
C.6 Yaw . 121

Bibliography 123

4

List of Figures

1.1 Blucy exploded-view . 15
1.2 Blucy dimensions . 17

2.1 The North-East-Down frame 21
2.2 The Body-fixed frame . 21
2.3 Restoring forces . 29
2.4 Longitudinal drag variation 31

3.1 View of Blucy external block 36
3.2 View of the two main blocks of the model 36
3.3 Block diagram describing Euler transformation 37
3.4 Euler transformation block . 37
3.5 Transformation block diagrams 38
3.6 Kinetic equations block diagram 39
3.7 Hydrodynamic Coriolis and centripetal matrix block 39
3.8 Rigid-body Coriolis and centripetal matrix block 40
3.9 Hydrodynamic damping block 42
3.10 Restoring forces block . 43

4.1 CAD model simplification . 46
4.2 Steps for CFD set up . 47
4.3 Blucy complete CAD model 48
4.4 CG and CB position . 52
4.5 Control volume for CFD . 58
4.6 Wake and drone size boxes . 58
4.7 Propeller size box . 59

5

4.8 Volume mesh . 59
4.9 Volume mesh detail . 60
4.10 Blucy surface mesh . 60
4.11 Visualization and statistics of Blucy linear velocities 62
4.12 OpenFOAM hierarchy . 64
4.13 SolidWorks mesh visualization 65
4.14 Visualization and statistics of Blucy angular velocities 67
4.15 Fit options . 68
4.16 Example of fitting functions 70
4.17 Pressure distribution in surge at 1m/s 72
4.18 Pressure distribution on xz-plane in surge at 1m/s 72
4.19 Streamlines in surge at 1m/s 73
4.20 Velocity distribution on xz-plane in surge at −0.6m/s 73
4.21 Streamlines in sway at 0.6m/s 74
4.22 Pressure distribution on xy-plane in yaw at 8 deg/s 74
4.23 Blucy and ellipsoid comparison 77
4.24 AMCOMP environment . 78
4.25 Lamb and AMCOMP comparison 79

5.1 Blucy movement during an ascent of 500 s 83
5.2 Results of ν from Test I . 84
5.3 Results of ν from Test II . 86
5.4 Step input . 88
5.5 Results of ν from Test III . 89
5.6 Usage of the nid block . 91
5.7 Results of ν from Test IV, α = 0.95 93
5.8 Results of q at different α . 94

6

List of Tables

1.1 Blucy components . 16

4.1 Mass results . 51
4.2 CAD simplifications . 53
4.3 Software comparison . 54
4.4 Volume and size boxes dimensions for surge simulations 56
4.5 Properties of the size boxes 57
4.6 Type and number of mesh elements 57
4.7 Properties . 57
4.8 Linear velocity simulations set up 61
4.9 SolidWorks mesh parameters 65
4.10 Angular velocity simulations set up 65
4.11 Linear motion hydrodynamic coefficients 69
4.12 Angular motion hydrodynamic coefficients 69
4.13 Nonlinear damping coefficients 71

5.1 Test I settings . 82
5.2 Test II settings . 85
5.3 Test III settings . 87
5.4 Test IV settings . 92

7

Acronyms
ASW Anti-Submarine Warfare

AUV Autonomous Underwater Vehicle

CAD Computer-Aided Design

CB Center of Buoyancy

CFD Computational Fluid Dynamics

CG Center of Gravity

CN3 Communication/Navigation Network Nodes

DOF Degree of Freedom

DVL Doppler Velocity Log

EKF Extended Kalman Filter

FANS Favre-Averaged Navier-Stokes

FOG Fiber-Optic Gyroscope

FOV Field of View

GUI Graphical User Interface

HDPE High-Density Polyethylene

IA Influence Activities

ID Inspection/Identification

ISR Intelligence Surveillance and Reconnaissance

MBES Multibeam Echosounder

MCM Mine Countermeasures

8

MiniCT Miniature Conductivity-Temperature

MiniSVS Miniature Submersible Velocity Sensor

NED North-East-Down

NGC Navigation Guidance and Control

OF OpenFOAM

RANS Reynolds-Averaged Navier-Stokes

ROV Remotely Operated underwater Vehicle

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

SPURV Special Purpose Underwater Research Vehicle

STL Standard Triangle Language

SUSHI DROP SUstainable fiSHeries wIth DROnes data Processing

SW SolidWorks

TCS Time Critical Strike

USBL Ultra-Short Baseline

UUV Unmanned Underwater Vehicle

9

10

Chapter 1

Introduction

Unmanned Underwater Vehicles (UUVs), also known as underwater drones,
are submersible vehicles able to operate without human presence onboard.
UUVs may be divided into two categories:

• Remotely Operated underwater Vehicles (ROVs): they are directly
controlled by personnel through a tether that provides communication
and, in some cases, power;

• Autonomous Underwater Vehicles (AUVs): they don’t need a direct link
to the ground station via a tether; in other words, they don’t require
the action of an operator since they are able to accomplish their mission
autonomously.

The origins of the development of underwater drones dates back to the 1950s
when the first UUV (classified as AUV) was created in the USA by the
Applied Physics Laboratory of the University of Washington [29]. The drone
was named Special Purpose Underwater Research Vehicle (SPURV), and it
was designed to collect oceanographic data in the Arctic waters. Since then,
the UUVs market has been rapidly increasing, especially in the last decades,
when underwater drones have evolved from being extremely complex and
heavy machines for academic research to representing efficient tools for solving
a wide range of issues in research, military and commercial applications [5,
12].

11

As reported in [2, 22], nine are considered to be the main operational
fields for underwater vehicles:

1. Intelligence Surveillance and Reconnaissance (ISR);

2. Mine Countermeasures (MCM);

3. Anti-Submarine Warfare (ASW);

4. Inspection/Identification (ID);

5. Oceanography/Hydrography;

6. Communication/Navigation Network Nodes (CN3);

7. Payload Deliver;

8. Influence Activities (IA);

9. Time Critical Strike (TCS).

The UUV named “Blucy”, which is the primary subject of the work being
discussed, lies in the fifth category.

1.1 Blucy

Blucy is the multipurpose UUV prototype initially developed within the
Interreg Italy–Croatia SUstainable fiSHeries wIth DROnes data Processing
(SUSHI DROP) project with the objective of supporting sustainable fisheries
while promoting biodiversity protection and restoration [16, 20].

In fact, the vehicle is equipped with acoustical and optical technologies to
assess the environmental status of habitats, monitor the biodiversity of marine
ecosystems, and evaluate the benefits of opto-acoustic surveys in deriving
single-species abundance indices for direct input into stock assessments.

To provide higher flexibility, Blucy is designed to be hybrid, meaning
that it can operate either as a ROV or an AUV: in ROV mode, Blucy needs
to be controlled by a human operator who is typically located on a surface

12

vessel, using a tether that provides communications to the vehicle. This
mode allows for real-time control and manipulation of the vehicle. While
remotely operated, Blucy is equipped with a 600m optical fiber cable winch
that allows for communication with the operator. In AUV mode, on the other
hand, Blucy can operate autonomously by using onboard sensors and software
to navigate and carry out pre-programmed missions. This mode allows for
extended operation without the need for constant human supervision, making
it useful for tasks such as mapping, surveying, environmental monitoring,
and, more generally, scientific research. For this purpose, Blucy is equipped
with a 24V battery and a system of sensors aimed at determining the relative
positioning of the drone during submarine activities, such as

Fiber-Optic Gyroscope (FOG): gyroscope that uses light waves to sense
angular velocity;

Doppler Velocity Log (DVL): underwater acoustic sensor that measures
the speed and direction of a moving object relative to the seabed by
emitting acoustic pulses that bounce off the seabed and return to the
sensor, providing information on the object’s speed and direction;

Ultra-Short Baseline (USBL): type of acoustic positioning system used
for underwater navigation and tracking. It works by transmitting
acoustic signals from a surface vessel to an underwater transponder.
The measurement of time needed for the signal to travel allows for
accurate position tracking;

Miniature Submersible Velocity Sensor (MiniSVS): underwater sen-
sor used to measure the velocity of water currents. It works by emitting
acoustic signals that bounce off suspended particles in the water;

Miniature Conductivity-Temperature (MiniCT): underwater sensor used
to measure the salinity and temperature of seawater. It works by mea-
suring the electrical conductivity of seawater, which is related to its
salinity, and then using this information to calculate the water’s salinity
level.

13

The information acquired by the instruments is processed by Extended Kalman
Filter (EKF).

Concerning the scientific data collection, Blucy is provided with the
following instruments:

PilotCAM: optical camera installed in the frontal part of the drone that
provides a wide Field of View (FOV) video stream for precision navi-
gation, inspection, visual census, and computer vision. The camera’s
inclination angle can be changed according to the mission’s operational
scenarios;

BottomCAM: optical camera installed at the bottom of the UUV with a
viewpoint towards the seabed (nadir) for photogrammetric purposes.
The camera’s high-resolution images, LED illuminators, and photogram-
metric parameters allow for precise seabed survey planning and model-
ing;

Multibeam Echosounder (MBES): active acoustic sensor used to pro-
duce high-quality bathymetric maps and water column information.
MBES can be used for quantitative fisheries stock assessment and habi-
tat mapping.

Furthermore, Blucy is equipped with a set of other instruments and actuators
that allow it to perform its tasks; most∗ of them are reported in Figure 1.1
on the facing page and listed in Table 1.1 on page 16, while Blucy main
dimensions are reported in Figure 1.2 on page 17.

1.2 Objectives

As previously mentioned, Blucy is designed to be a hybrid system. However,
to date, Blucy has only been tested in its ROV mode, whereas it has not yet
been tested in its autonomous mode of operation. To make the submersible
drone autonomous, it is necessary to design autopilot controllers, but first,
one needs to derive the mathematical model of Blucy.

∗Some components are missing in the manual.

14

Figure 1.1: Blucy exploded-view [25]

15

Component Name Quantity

1 Structure bottom 1
2 Structure top 1
3 Structure lateral 2
4 Hook 1
5 Structure NGC canister support 2
6 Structure bow 1
7 Structure foot stern 1
9 Support transverse battery 2
10 Support multibeam 2
11 Support main thruster 2
12 Structure vertical stern 2
13 Support main thrusters 2
14 Lifting hook 1
15 Support transverse round bow 1
16 Support lateral thruster 1
19 Thrusters vertical 2
20 Thruster starboard 1
21 Thruster port 1
22 NGC canister 1
23 Groove communication system 1
24 Battery 1
25 Support Battery 1
26 DVL 1
27 FOG 1
28 SIM for SONIC 1
29 USBL transponder 1
30 Microstrain 1
31 MiniCT 1
32 MiniSVS 1
33 Altimeter 1
34 Camera 1
35 Pilot camera 1
36 Multibeam 1
37 Structure support multibeam 2
39 Support Diam. 43 2
40 Led Ageotech 6
41 Evologics S2C 1
42 Support Diam. 40 4
43 Buoyancy foam top 1
44 Buoyancy foam starboard 1
45 Hull bow 1
46 Buoyancy foam port 1
47 Hull support 1 1
48 Hull support 2 1
49 Hull support 3 1
50 Hull support 4 1
51 Pilot camera support 1
52 Radio Modem 1
54 Hull support 5 2
55 Connectors 1
56 Weights 7
57 SIM flange 1
62 Buoyancy foam top 2 1
63 Buoyancy foam top 3 1

Table 1.1: Blucy components

16

Figure 1.2: Blucy dimensions [25]

17

The mathematical modeling of underwater vehicles is a complex task
that involves a variety of physical and mechanical parameters. While several
models have been proposed, the most widely used in the field is the Fossen
model [9]. This model has been extensively validated in both simulation and
field experiments, and provides a reliable and accurate representation of the
dynamics of underwater vehicles [3].

The model is based on six degrees of freedom: surge, sway, heave, roll,
pitch and yaw. The equations of motion for each degree of freedom are
expressed in terms of the mechanical properties of the vehicle, hydrodynamic
coefficients, and external forces and moments acting on the vehicle (such as
gravity, buoyancy, etc.). These properties need to be estimated in order to
describe Blucy dynamics.

Therefore, this work aims at identifying Blucy mathematical model by
estimating all the main parameters necessary to describe the dynamics of the
system. Moreover, the so-obtained mathematical model will be incorporated
into a simulator, so providing Blucy “virtual” model, since the simulator is
essentially a digital representation of the physical vehicle.

Once the mathematical model is determined and the virtual model built,
the design of autopilot controllers can proceed†, paving the way for allowing
Blucy to operate autonomously in a variety of underwater environments.

The upcoming chapters will show the procedure followed to generate the
virtual model of Blucy. The main steps that will be undertaken are:

• describing the mathematical model;

• building the virtual model in the simulator software;

• presenting the methods used to identify the main parameters of Blucy
and the coefficients obtained;

• presenting the first simulation results.

†The implementation of the controllers is not covered in the context of this work.

18

Chapter 2

Mathematical Modeling

As stated in the introduction, in order to make Blucy autonomous, it is
necessary to derive its mathematical model, that is the set of equations of
motion that describe the behavior of the drone when subjected to external
and propulsive forces. Then, it is also necessary to specialize the equations
by introducing Blucy characteristic parameters. In this way, the controllers
capable of making the vehicle autonomous can actually be designed.

While the aforementioned parameters vary for each underwater vehicle
(they, however, may be similar for vehicles with similar geometries and
conditions), the equations of motion describing the dynamics of a small
submersible are generally valid for each geometry and condition, if certain
assumptions are made.

The goal of this chapter is, therefore, to underline the main characteristics
of the mathematics lying behind the motion of underwater vehicles. For this
purpose, the following sections mainly (but not only) focus on the material
available in [9], which is considered to be the standard reference for marine
craft motion and control systems design.

2.1 Coordinate Systems

To describe the motion of an object in space, it is necessary to introduce at
least one system of coordinates. Considering both the literature for underwater

19

vehicles and the scope of this work, two reference frames will be used:

• Body: it is fixed to a point of the hull and moves together with the
object. Its axes are defined as {b} = (xb, yb, zb) and are directed as in
Figure 2.2 on the next page:

– xb: longitudinal axis, points toward the prow;

– yb: transverse axis, points toward the starboard;

– zb: vertical axis, points toward the bottom;

• North-East-Down (NED): this reference frame can be considered
to be inertial for most of the UUVs, as long as they navigate at low
speeds and within a limited operational range (flat Earth navigation
assumption), so that Newton’s laws are still applicable. Its origin is
fixed to a point on the water surface, and its axes are represented by
{n} = (xn, yn, zn), of which the first two form a plane tangent to the
Earth’s reference ellipsoid. They are oriented as in Figure 2.1 on the
facing page:

– xn points toward the magnetic north;

– yn points toward the east;

– zn points toward the earth center.

As already said, it is essential to define these two coordinate systems to
describe the dynamics of marine crafts: this is because linear and angular
velocities, as well as the external forces acting on the vehicle, are most
conveniently expressed in terms of body coordinates, whereas it is equally
convenient to describe the linear and angular positions with respect to an
inertial frame. Thus, the need arises to apply vectorial transformations to
pass from one frame of reference to the other. These transformations will be
addressed in the following section.

20

ye

ze

xe

O

O′

xn
yn

zn

Figure 2.1: The North-East-Down frame

xb

zb

yb

xn
yn

zn

Figure 2.2: The Body-fixed frame

21

2.2 Kinematics

The dynamics of a system can be divided into kinematics, which is the study
concerning the geometrical aspects of motion, and kinetics, which is the study
of the forces responsible for the motion. In this section, the kinematics part
will be covered.

It is clear that the real motion of a marine craft takes place in six Degrees
of Freedom (6DOFs). The DOFs are represented by three displacements (or
translations) and three rotations. Concerning the translations, the longitudi-
nal motion parallel to xb is referred to as surge, the sideways motion parallel
to yb is referred to as sway, and the vertical motion parallel to zb is defined as
heave; whereas the rotations about xb, yb, and zb are named roll, pitch, and
yaw respectively.

It is now useful to define the following vectors:

η = [x y z ϕ θ ψ]⊤ (2.1)

ν = [u v w p q r]⊤ (2.2)

and stress out some aspects:

• η represents the position of the body frame with respect to the inertial
frame in terms of linear displacements (first three entries of the vector)
and Euler angles (last three elements);

• ν represents the linear and angular velocities of the vehicle with respect
to the body frame;

These considerations further emphasize the need for transformation matrices
to relate vectors between different coordinate systems.

2.2.1 Linear Velocity Transformation

In guidance, navigation and control applications, it is customary to use the
following rotation matrix to project the body-fixed linear velocity components
into the earth-fixed linear velocity components:

22

Rn
b (η2) =


cψcθ −sψcϕ+ cψsθsϕ sψsϕ+ cψcϕsθ

sψcθ cψcϕ+ sϕsθsψ −cψsϕ+ sθsψcϕ

−sθ cθsϕ cθcϕ

 (2.3)

where η2 = [ϕ θ ψ]⊤, s · = sin(·), c · = cos(·), and the subscript/superscript
notation should be read as Rto

from. Analogously, to perform a vector transfor-
mation from {n} to {b}, it is sufficient to take the transpose of the matrix,
in fact:

Rn
b (η2) = Rb

n(η2)⊤ (2.4)

One can now relate the linear velocities between body and inertial frames:


ẋ

ẏ

ż

 = Rn
b (η2)


u

v

w

 (2.5)

2.2.2 Angular Velocity Transformation

In a similar way, one can also relate ν2 = [p q r]⊤ with η̇2 = [ϕ̇ θ̇ ψ̇]⊤

through TΘ(η2): 
ϕ̇

θ̇

ψ̇

 = TΘ(η2)


p

q

r

 (2.6)

being

TΘ(η2) =


1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 (2.7)

where t · = tan(·). Moreover, (2.6) can be expanded in component form to

23

obtain the Euler angle attitude equations:

ϕ̇ = p+ q sin(ϕ) tan(θ) + r cos(ϕ) tan(θ) (2.8a)

θ̇ = q cos(ϕ) − r sin(ϕ) (2.8b)

ψ̇ = q
sin(ϕ)
cos(θ) + r

cos(ϕ)
cos(θ) (2.8c)

From the relations (2.8), it can be seen that a pitch angle of θ = ± 90◦ leads
the matrix TΘ to be undefined. This condition is never encountered by surface
vessels; nevertheless, underwater vehicles may face it; if that happens, two
solutions can be adopted:

• use two different Euler angle representations with different singularities
and switch between them at need;

• use quaternion representation.

However, experience has shown that Blucy pitch never approaches the singu-
larity angle. Therefore, no further analyses of this matter are needed.

2.2.3 6DOF Kinematic Equations

Summarizing the results from the last two subsections, the 6DOFs kinematic
equations can be written in a vectorial form as follows:

η̇ = JΘ(η)ν (2.9)

Expanding the latter, one obtains:
 η̇1

η̇2

 =

 Rn
b (η2) 03×3

03×3 TΘ(η2)


 ν1

ν2



2.3 Rigid-Body Kinetics

It is now necessary to analyze the motion of rigid bodies to derive the marine
craft equations of motion. To this aim, the first step is to introduce the

24

following vectors:
rg = [xg yg zg]⊤ (2.10)

rb = [xb yb zb]⊤ (2.11)

τ RB = [X Y Z K M N]⊤ (2.12)

where:

• rg represents the position of the Center of Gravity (CG) of the vehicle
with respect to the body frame;

• rb represents the position of the Center of Buoyancy (CB) of the vehicle
with respect to the body frame;

• τ RB is the column vector of the generalized external forces and moments
acting on the craft with respect to the body frame.

Moreover, the matrix describing the inertia of the vehicle about its CG can
be defined as

Ig =


Ix −Ixy −Ixz

−Iyx Iy −Iyz

−Izx −Izy Iz

 , Ig = I⊤
g > 0 (2.13)

where Ix, Iy and Iz are the moments of inertia about the xb, yb and zb axes,
and Ixy = Iyx, Ixz = Izx and Iyz = Izy are the products of inertia defined as

Ix =
∫

V

(
y2 + z2

)
ρdV Ixy =

∫
V
xyρdV =

∫
V
yxρdV = Iyx

Iy =
∫

V

(
x2 + z2

)
ρdV Ixz =

∫
V
xzρdV =

∫
V
zxρdV = Izx

Iz =
∫

V

(
x2 + y2

)
ρdV Iyz =

∫
V
yzρdV =

∫
V
zyρdV = Izy

The nonlinear 6DOF rigid-body equations of motion can now be defined
in terms of body-fixed coordinates through the following set of coupled

25

differential equations:

m [u̇− vr + wq − xg(q2 + r2) + yg(pq − ṙ) + zg(pr + q̇)] = X

m [v̇ − wp+ ur − yg(r2 + p2) + zg(qr − ṗ) + xg(qp+ ṙ)] = Y

m [ẇ − uq + vp− zg(p2 + q2) + xg(rp− q̇) + yg(rq + ṗ)] = Z

Ixṗ+ (Iz −Iy)qr − (ṙ + pq)Ixz + (r2− q2)Iyz + (pr − q̇)Ixy

+m [yg(ẇ − uq + vp) − zg(v̇ − wp+ ur)] = K (2.14)
Iy q̇ + (Ix−Iz)rp− (ṗ+ qr)Ixy + (p2− r2)Izx + (qp− ṙ)Iyz

+m [zg(u̇− vr + wq) − xg(ẇ − uq + vp)] = M

Iz ṙ + (Iy −Ix)pq − (q̇ + rp)Iyz + (q2− p2)Ixy + (rq − ṗ)Izx

+m [xg(v̇ − wp+ ur) − yg(u̇− vr + wq)] = N

where m is the constant mass of the vehicle. Moreover, relations (2.14) can
be expressed in a vectorial form according to [8] as follows:

MRB ν̇ + CRB(ν) ν = τ RB (2.15)

where MRB is the rigid-body system inertia matrix (MRB = M⊤
RB > 0), and

it is defined as follows:

MRB =



m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz

−myg mxg 0 −Izx −Izy Iz


(2.16)

while CRB is the rigid-body Coriolis and centripetal matrix that can be
written, according to [11], as:

26

CRB(ν) =

 03×3 −mS(ν1) −mS(ν2)S(rg)

−mS(ν1) +mS(rg)S(ν2) −S(Ib ν2)

 (2.17)

where the operator S(·) generates the skew-symmetric matrix of the vector
between parentheses:

S(λ) = −S⊤(λ) =


0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

 , λ =


λ1

λ3

λ3


Finally, (2.17) can be expanded, according to [10], to illustrate the complexity
of the 6DOFs problem:

CRB(ν) =



0 0 0

0 0 0

0 0 0

−m(ygq + zgr) m(ygp + w) m(zgp − v)

m(xgq − w) −m(zgr + xgp) m(zgq + u)

m(xgr + v) m(ygr − u) −m(xgp + ygq)

(2.18)

m(ygq + zgr) −m(ygp + w) −m(zgp − v)

−m(xgq − w) m(zgr + xgp) −m(zgq + u)

−m(xgr + v) −m(ygr − u) m(xgp + ygq)

0 −Iyzq − Ixzp + Izr Iyzr + Ixyp − Iyq

Iyzq + Ixzp − Izr 0 Ixzr + Ixyq + Ixp

−Iyzr − Ixyp + Iyq −Ixzr − Ixyq − Ixp 0



27

2.4 Hydorstatics and Hydrodynamics

Concerning the external forces acting on the craft, they can be divided in:

• hydrostatic forces;

• hydrodynamic forces:

– linear and nonlinear damping;

– added mass;

• propulsion forces;

• wind forces;

• wave forces.

This work does not take into account the forces exerted by wind and waves.

2.4.1 Restoring Forces

The restoring forces are hydrodstatic forces. They are due to the combined
effects of gravity and buoyancy acting on the vehicle. As sketched in Figure 2.3
on the next page, the buoyancy force vector points upwards, while the weight
vector points downwards; and they are defined by:

W = mg, B = ρg∇

where ∇ represents the volume of displaced water, according to Archimedes’
principle. Moreover, it is worth mentioning that, in the case of Blucy (and
many other ROVs applications), the buoyancy force remains constant and
slightly larger than the weight throughout the mission. This, in fact, allows
the robot to

• be more easily controllable in heave (requiring less power);

• be statically stable about its roll and pitch axis;

• surface automatically in case of system failure.

28

As already said at the beginning of Section 2.3, the points of action of weight
and buoyancy are rg and rb, respectively. It follows that, using Euler angles,
one obtains the restoring forces vector for underwater vehicles:

g(η) =



(W −B) sin θ

− (W −B) cos θ sinϕ

− (W −B) cos θ cosϕ

− (ygW − ybB) cos θ cosϕ + (zgW − zbB) cos θ sinϕ

(zgW − zbB) cos θ cosϕ + (xgW− xbB) cos θ cosϕ

− (xgW− xbB) cos θ sinϕ − (ygW− ybB) sin θ


(2.19)

B

W

Figure 2.3: Restoring forces

2.4.2 Viscous damping

The hydrodynamic damping acting on submersibles is primarily due to:

• potential damping;

• skin friction;

• damping due to vortex shedding;

• lifting forces.

29

In general, it is difficult to separate these phenomena; therefore it is convenient
to simply consider hydrodynamic damping as the sum of linear and nonlinear
contributions. They are accounted for by the following matrices:

Dl = −



Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr


(2.20)

and

Dn(ν) = −



X|u|u|u| 0 0 0 0 0

0 Y|v|v|v| 0 0 0 0

0 0 Z|w|w|w| 0 0 0

0 0 0 K|p|p|p| 0 0

0 0 0 0 M|q|q|q| 0

0 0 0 0 0 N|r|r|r|


(2.21)

To understand the meaning of this notation, one should think of the drag
force acting on a moving object: taking, for instance, the longitudinal motion
of Blucy, the drag force it experiences is shown in Figure 2.4 on the facing
page, and it is clear that the curve can be approximated by a second-order
polynomial function [14] of the form:

X(u) = Xuu+X|u|uu
2 (2.22)

where Xu and X|u|u are, respectively, the linear and quadratic hydrodynamic
damping coefficients describing the force variation (parallel to the x-direction
of the craft) caused by changes in longitudinal speed.

30

0 0.5 1 1.5 20

50

100

150

200

250

u [m/s]

X
[N

]

Figure 2.4: Longitudinal drag variation

2.4.3 Added mass

In fluid dynamics, the concept of added mass (or virtual mass) describes the
inertia of the fluid surrounding a moving object. When the density of the
medium is much lower than that of the vehicle, the effect can be neglected
(this happens, for instance, to aircraft and satellites); on the other hand, when
the density of the object and the density of the medium have the same order
of magnitude, this phenomenon largely affects the motion of the object and
needs to be taken into account. This is clearly the case for submersibles or
airships. This fact is visible by simply adding the mass of the displaced fluid
in Newton’s second law:

F = (mobj + mdisp) a

where mobj is the mass of the object and mdisp is the mass of the displaced
fluid.

According to [15], the general expressions for added mass comprise 36
constant parameters. These parameters can be used to define the added mass

31

matrix MA as follows:

MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


, MA = M⊤

A ≥ 0 (2.23)

where (taking for instance the first element) each value can be defined [13] as

Xu̇ = ∂X

∂u̇

∣∣∣∣∣
u̇=0

When dealing with a real fluid, all the parameters could in principle be
different, whereas assuming an ideal (frictionless) medium, one has only 21
independent parameters, being MAij

= MAji
. Moreover, according to [9],

expression (2.23) can be further simplified in case the AUV is only allowed to
move at low speed and presents three planes of symmetry: the contribution
of the off-diagonal terms in MA can be neglected, which yields:

MA = −diag{Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ} (2.24)

Of course, engineering judgment must be used to decide whether the previous
approximation is suitable for the model or not. Furthermore, for a rigid body
moving through an ideal fluid, the hydrodynamic Coriolis and centripetal
matrix CA(ν) can always be parameterized such that it is skew-symmetric:

CA(ν) = −CA(ν)⊤ (2.25)

One parametrization satisfying (2.25) is

CA(ν) =

 03×3 −S(A11ν1 + A12ν2)

−S(A11ν1 + A12ν2) −S(A21ν1 + A22ν2)

 (2.26)

32

where Aij ∈ R3 is given by

MA =
A11 A12

A21 A22

 (2.27)

Finally, (2.25) can be expressed in component form according to

CA(ν) =



0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0

0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0


(2.28)

where

a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr

b1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr

b2 = Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr

b3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr

(2.29)

2.5 Robot-Like Vectorial Model

Combining together the expressions and definitions given in the previous
sections, the underwater vehicle equations of motion can be written in a
vectorial setting according to [10]:

η̇ = JΘ(η)ν (2.30)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + τ wind + τ wave (2.31)

33

where

M = MRB + MA (2.32)
C = CRB + CA (2.33)

By manipulating (2.31), one obtains

ν̇ = M−1[τ −g(η)−C(ν) ν+D(ν) ν] (2.34)

In conclusion, (2.34) represents the equation that will be implemented in the
simulator to describe Blucy behavior.

34

Chapter 3

Simulink Model

This chapter covers the main steps followed to build the virtual model of
Blucy (according to the Fossen model previously described) using MATLAB
and Simulink, the MATLAB-based graphical programming environment for
modeling [1] (hereafter, the software will be referred to as Matlab).

In Figure 3.1 on the next page is depicted the outermost block in which
all other blocks and functions are contained. On the left of the figure, the
six external control inputs can be seen: they are the forces and moments
generated by the thrusters and directly acting on the UUV. It is important to
note that this is a simplified representation that doesn’t take into account the
position nor the characteristics of the thrusters: it only accounts for the force
and moment resultants produced by the propulsion system. Furthermore, on
the right side of the block, the six outputs representing the state vector ν can
be found.

The level immediately below the first block is shown in Figure 3.2 on
the following page. It contains two boxes: the one on the left side describes
Blucy kinematics, while the one on the right side describes the kinetics of the
vehicle.

35

Figure 3.1: View of Blucy external block

Figure 3.2: View of the two main blocks of the model

3.1 Kinematics Block

The purpose of the “Euler Transformation” block in the Simulink model is to
perform the transformation described by equation (2.9). In fact, the block
relates the body linear and angular velocity variables to the time derivative
of the position vector of the NED frame. The schematic block diagram of the
transformation is depicted in Figure 3.3 on the next page.

As already discussed in Section 2.2, both the linear and angular velocities
need to be related between {n} and {b}. The way in which this mapping is
performed is visible in Figure 3.4 on the facing page.
Furthermore, the linear velocity transformation, as described by relation (2.5),
is carried out by the chain of blocks shown in Figure 3.5a on page 38,
where the box named “Rotation Order: XYZ” is the Simulink built-in block

36

JΘ(η) 1
s

ν η̇ η

Figure 3.3: Block diagram describing Euler transformation

Figure 3.4: Euler transformation block

performing Rn
b (see expressions (2.3) and (2.4)). In the same way, the scheme

depicted in Figure 3.5b on the following page computes the angular velocity
transformation. The “T_theta_fun” block is a user-defined function that
reproduces TΘ (recall expression (2.6)) by means of the following Matlab
code:

function T_theta = T_theta_fun(phi_theta_psi)

phi = phi_theta_psi(1);

theta = phi_theta_psi(2);

% 2) Pitch

T_theta_mat = [cos(theta) 0 -sin(theta);

0 1 0 ;

sin(theta) 0 cos(theta)];

% 1) Roll

T_phi_mat = [1 0 0 ;

0 cos(phi) sin(phi);

0 -sin(phi) cos(phi)];

T_theta_inverse = [[1;0;0] T_phi_mat*[0;1;0] ...

T_phi_mat*T_theta_mat*[0;0;1]];

T_theta = inv(T_theta_inverse);

end

37

(a) Linear velocity transformation block

(b) Angular velocity transformation block

Figure 3.5: Transformation block diagrams

3.2 Kinetics Block

The overall structure implemented to compute the 6DOFs equations of motion
in Simulink is shown in Figure 3.6 on the next page; the sole purpose of
the diagram is to reproduce relation (2.34). To understand the schematics,
one can look at the arrow labels describing the logical steps of the system.
Moreover, all the gain blocks containing the writing “Minv∗uvec” are simply
meant to multiply each block output by the inverse of the matrix M , defined
in (2.32).

Proceeding in the characterization of the diagram, the four light grey
user-defined boxes are now described starting from the one on top.

CA(ν) Function Block

The content of this block is shown in Figure 3.7 on the facing page. Being
the hydrodynamic Coriolis and centripetal matrix a function of the velocity

38

Figure 3.6: Kinetic equations block diagram

vector ν and the added mass matrix MA, the function needs two inputs.
Then, recalling expression 2.34, “C_A” is multiplied by the velocity and
“C_A∗nu” represents the final output. The Matlab function implemented in
the “C_A_fun” box simply reproduces 2.28.

Figure 3.7: Hydrodynamic Coriolis and centripetal matrix block

39

function C_A = C_A_fun(M_A,nu)

u = nu(1); v = nu(2); w = nu(3);

p = nu(4); q = nu(5); r = nu(6);

a1 = M_A(1,1)*u+M_A(1,2)*v+M_A(1,3)*w+M_A(1,4)*p+M_A(1,5)*q+M_A(1,6)*r;

a2 = M_A(2,1)*u+M_A(2,2)*v+M_A(2,3)*w+M_A(2,4)*p+M_A(2,5)*q+M_A(2,6)*r;

a3 = M_A(3,1)*u+M_A(3,2)*v+M_A(3,3)*w+M_A(3,4)*p+M_A(3,5)*q+M_A(3,6)*r;

b1 = M_A(4,1)*u+M_A(4,2)*v+M_A(4,3)*w+M_A(4,4)*p+M_A(4,5)*q+M_A(4,6)*r;

b2 = M_A(5,1)*u+M_A(5,2)*v+M_A(5,3)*w+M_A(5,4)*p+M_A(5,5)*q+M_A(5,6)*r;

b3 = M_A(6,1)*u+M_A(6,2)*v+M_A(6,3)*w+M_A(6,4)*p+M_A(6,5)*q+M_A(6,6)*r;

C_A = [0 0 0 0 -a3 a2;

0 0 0 a3 0 -a1;

0 0 0 -a2 a1 0;

0 -a3 a2 0 -b3 b2;

a3 0 -a1 b3 0 -b1;

-a2 a1 0 -b2 b1 0];

end

CRB(ν) Function Block

The matrix of rigid-body Coriolis and centripetal forces is obtained by the
scheme visible in Figure 3.8. The Matlab function inside “C_RB_fun” is
aimed at reproducing the matrix CRB(ν) as it is defined in 2.17. Moreover,
it can be seen that, as expected, the function needs four inputs, namely the
center of gravity position, the inertia matrix, the mass and the body velocity
of the vehicle.

Figure 3.8: Rigid-body Coriolis and centripetal matrix block

40

function C_RB = C_RB_fun(r_g,I_g,m,nu)

nu1 = nu(1:3);

nu2 = nu(4:6);

skew_nu1 = [0 -nu1(3) nu1(2);

nu1(3) 0 -nu1(1);

-nu1(2) nu1(1) 0];

skew_nu2 = [0 -nu2(3) nu2(2);

nu2(3) 0 -nu2(1);

-nu2(2) nu2(1) 0];

skew_rg = [0 -r_g(3) r_g(2);

r_g(3) 0 -r_g(1);

-r_g(2) r_g(1) 0];

Ig_nu2 = I_g*nu2;

skew_Ig_nu2 = [0 -Ig_nu2(3) Ig_nu2(2);

Ig_nu2(3) 0 -Ig_nu2(1);

-Ig_nu2(2) Ig_nu2(1) 0];

C11 = zeros(3);

C12 = -m*skew_nu1 - m*skew_nu2*skew_rg;

C21 = -m*skew_nu1 + m*skew_rg*skew_nu2;

C22 = -skew_Ig_nu2;

C_RB = [C11 C12;

C21 C22];

end

It is clear from the above Matlab code that the skew symmetric matrices are
“manually” generated inside the function itself.

D(ν) Function Block

The hydrodynamic damping, as already pointed out, is made up of its linear
and nonlinear (quadratic) parts. While the linear matrix Dl is constituted
by constant coefficients, the nonlinear one needs to be shaped considering the
effect of the velocity, that is why, on the right-hand side of Figure 3.9 on the
following page, the input “nu” is also present. The other inputs are simply
the constant quadratic coefficient visible in expression (2.21) and, of course,
the linear matrix. The Matlab code presented hereafter can be found in the

41

user-defined function “Dn_fun”.

Figure 3.9: Hydrodynamic damping block

function Dn = Dn_fun(Xuu,Yvv,Zww,Kpp,Mqq,Nrr,Yrr,Nvv,nu)

Dn11 = Xuu*abs(nu(1));

Dn22 = Yvv*abs(nu(2));

Dn33 = Zww*abs(nu(3));

Dn44 = Kpp*abs(nu(4));

Dn55 = Mqq*abs(nu(5));

Dn66 = Nrr*abs(nu(6));

Dn = -[Dn11 0 0 0 0 0;

0 Dn22 0 0 0 0;

0 0 Dn33 0 0 0;

0 0 0 Dn44 0 0;

0 0 0 0 Dn55 0;

0 0 0 0 0 Dn66];

end

g(η) Function Block

The block implementing the restoring forces into the Simulink model is given
in Figure 3.10 on the next page. It is important to note that, in contrast with
the previous operators, this matrix is not a function of the body velocity, in

42

fact it depends on the submarine position with respect to the inertial frame of
reference. Moreover, from the lines of code presented in the following, one can
see that the function simply reproduces (2.19). The inputs are the position
vectors of the center of gravity and the center of buoyancy, the weight and
buoyancy forces of the marine craft and η.

Figure 3.10: Restoring forces block

function g_eta = g_eta_fun(r_g,r_b,W,B,eta)

xg = r_g(1);

yg = r_g(2);

zg = r_g(3);

xb = r_b(1);

yb = r_b(2);

zb = r_b(3);

phi = eta(4);

theta = eta(5);

g_eta=[(W-B)*sin(theta);

-(W-B)*cos(theta)*sin(phi);

-(W-B)*cos(theta)*cos(phi);

-(yg*W-yb*B)*cos(theta)*cos(phi)+(zg*W-zb*B)*cos(theta)*sin(phi);

(zg*W-zb*B)*sin(theta)+(xg*W-xb*B)*cos(theta)*cos(phi);

-(xg*W-xb*B)*cos(theta)*sin(phi)-(yg*W-yb*B)*sin(theta)];

end

In conclusion, the Simulink model obtained through the outlined steps is still

43

general: it can be useful to describe the major part of UUVs since it simply
applies the equations of motion as described by the Fossen mathematical
model.

However, to specifically characterize Blucy behavior, the Simulink model
needs to be fed with Blucy proper parameters, such as mass, geometry,
hydrodynamic coefficients, etc.

The process of identifying the parameters of Blucy will be addressed in
the following chapter.

44

Chapter 4

Parameters Identification

As already stated, to make Blucy autonomous it is crucial to provide the
equations of motion with the vehicle characteristic parameters. It is easy
to understand that the more accurate these parameters are, the better the
simulator will reproduce the UUV real behavior, and the more effective will
be the applied controllers. The aim of this chapter can therefore be divided
in:

• introducing Blucy main parameters;

• showing the procedure followed to estimate Blucy coefficients;

• briefly discussing how the parameters influence the simulator;

• highlighting the drawbacks of the methods employed;

• presenting the results.

The first set of parameters needed to identify Blucy virtual model is repre-
sented by the vehicle main geometrical and inertial properties:

• mass and volume of the vehicle;

• position of the Center of Gravity (CG);

• position of the Center of Buoyancy (CB);

• inertia matrix.

45

These parameter values are typically obtained through physical measurements
or Computer-Aided Design (CAD) analysis. Hence, the first step is to set up
a faithful 3D CAD model of the ROV that takes into account all its main
characteristics (such as detailed parts, materials, dimensions, etc.).

Moreover, the second ingredient of the mathematical model is represented
by the UUV hydrodynamic parameters (hydrodynamic damping and added
mass), their evaluation can be achieved in two different ways, which are: real
experiments, and Computational Fluid Dynamics (CFD) simulations.

The second methodology was selected due to time and cost limitations — it
is clear enough that the first way is generally the most expensive — along
with the increasing accuracy of modern calculators. Moreover, to perform
CFD analysis, some pre-processing is necessary, as shown in Figure 4.2 on
the facing page.

It is noteworthy to say that the complexity of the CAD model plays
an important role in the preparation time as well as in the computational
cost needed for running the CFD simulations. For this reason, starting from
Blucy complete CAD model, a simplified version of it was obtained using
SolidWorks (SW) [26], as it is highlighted in Figure 4.1.

Figure 4.1: CAD model simplification

46

Real model

3D CAD model

Meshing

CFDSettings

Simplification

Geometry properties
Inertia properties

Settings

Results
Damping
Added mass

Figure 4.2: Steps for CFD set up

4.1 Geometry and Inertia Parameters Esti-
mation

Blucy coefficients related to its shape and mass were obtained directly from
the complete CAD model previously created, as well as from Blucy “Use and
Maintenance” manual.

Before presenting the results obtained from Blucy CAD, it is relevant to
briefly summarize the design process that was carried out during the internship
work [4]. The entire procedure of shaping Blucy 3D model was performed
using SolidWorks, and all the individual parts shapes and dimensions were
obtained starting from:

• Blucy itself;

• the aforementioned manual of Blucy;

• research papers [19, 20].

47

Figure 4.3: Blucy complete CAD model

48

Figure 4.3 on the facing page provides a glimpse into how the individual parts
were assembled to create the complete system.

Canisters

The first components to be designed were Blucy various canisters, which
are cylindrical-shaped pressure vessels that are used to store and transport
equipment, instruments, or samples in underwater missions. They are often
attached to the AUV body, and they are designed to withstand high pressures
at depth. In the case of Blucy, the canisters were those stowing the main
electrical components of the ROV, such as the Navigation Guidance and
Control (NGC), the communication system, the payload, and the FOG.

Structure

Blucy frame is entirely made of perforated parts in High-Density Polyethylene
(HDPE). These are custom components obtained through milling and drilling
and are held together by nuts and bolts. It is clear enough that the structure
has the task of sustaining all other parts. Another important structural
component is represented by the hook, needed to haul the drone into the
water.

Buoyancy Foam

Buoyancy foam is a low-density resistant material often employed in the
underwater field. The purpose of the foam is to make the drone buoyancy to
be slightly larger than its weight. This, in fact, allows the robot

• to require less power for hovering;

• to be statically stable about its roll axis;

• to surface automatically in case of system failure.

49

Thrusters

Blucy motion is guaranteed by six thrusters attached to the main frame.
There are four horizontal actuators of which two control the surge motion
(both are mounted on the stern), and two control the yaw angle (one is on
the starboard and the other on the port side). Additionally, the two vertical
thrusters fixed on the top of the robot allow for the heave movement of
the vehicle. Each thruster consists of a cylinder containing the brushless
servomotor that is magnetically connected to the propeller shaft.

4.1.1 Geometry and Inertia Results

From the detailed CAD assembly, the mass of Blucy was determined to be:

mblucy = 216.14 kg

which is in agreement with the one reported in the manual. Moreover, from
the manual, it was taken the mass of the water displaced by the vehicle, which
is equal to the UUV volume multiplied by the water density, resulting in:

mwater = 216.16 kg

To obtain the weight and buoyancy force, it is sufficient to multiply the
previous values by the gravity acceleration.

Another important result derived from the 3D model is the CG position
of Blucy, which is reported in Figure 4.4 on page 52; whereas the CB position
was taken from the manual. Considering Blucy CG as the center of the UUV
and therefore of the body frame, its definition simplifies to:

rg = (0, 0, 0)mm

while the CB position with respect to CG becomes:

rb = (7, 0, −96)mm

50

Parameter Value
kg m2

Ixx 11.318
Iyy 50.169
Izz 42.682
Iyx 0.015
Izx 2.03
Izy 0.017

Table 4.1: Mass results

making Blucy statically stable.
Concerning the inertial parameters of Blucy, they were automatically

derived from SolidWorks with respect to the body axis centered in the CG;
they are reported in Table 4.1. The inertia matrix of the UUV can now be
written according to (2.13):

Ig =


11.318 −0.015 −2.033
−0.015 50.169 −0.017
−2.033 −0.017 42.682



4.2 Hydrodynamic Parameters Estimation

In the process of simplifying the vehicle, some major adjustments were made:
all internal components (and the gaps in between) were neglected in favor of
a solid volume with a smooth and continuous external surface; on the outside
of the main volume only the larger parts were left in place, furthermore the
geometry of the external parts was simplified by replacing real elements with
cylinders; the propellers of the external thrusters were constrained against
rotation; fillets were applied at edges. These simplifications are summarized
in Table 4.2 on page 53.

Moreover, two different software were employed to set up and run the
CFD simulations: OpenFOAM (OF) [21] and SolidWorks Flow Simulation;
their tasks were divided as follows:

51

CG

CB

0.86 m

0.32 m

Figure 4.4: CG and CB position

OpenFOAM was used to simulate Blucy linear velocities of surge, sway
and heave. If properly used, it represent a more powerful solution with
respect to the SW tool for CFD; nonetheless, being an open source
software without Graphical User Interface (GUI), it can be cumbersome
to set up;

SW Flow Simulation was used to simulate Blucy angular velocities about
the roll, pitch and yaw axis. The application is easier to set up when
compared to OF, especially when dealing with parametric studies.

The tasks division was mainly due to time and hardware constraints, and the
pre-processing tool selected to perform the model meshing (necessary for OF)
was ANSA [27].

It is now time to proceed in analyzing the software setup.

4.2.1 Linear Motion Simulations

As already pointed out, the meshing of the CAD model was performed by
means of ANSA, which is a pre-processor tool capable of preparing and

52

Simplifications

Geometry
– all external holes and internal cavities were

filled in order to have a continuous external
surface

– fillets were applied at every external edge

– the original shapes of external elements, such
as the mounts of the main thrusters and LEDs,
were replaced by extruded cylinders

– external cables were not taken into account

– bottom of Blucy extremely simplified through
plane surfaces

Setup
– external propellers were left rigidly in place

(no rotation allowed during simulations)

– the porosity of external surfaces was neglected

Table 4.2: CAD simplifications

53

OpenFOAM SW Flow Simulation
Pros

– High accuracy:it provides high
accuracy results compared to
many other CFD tools, which
makes it suitable for advanced
simulations

– Flexibility: it is highly customiz-
able and offers a wide range of
modeling options, making it suit-
able for a variety of applications
in different fields

– Large quantity of documentation
is readily available online from
the OF community

– Open source: it is free to use and
the source code is available for
users to modify and extend

– Very easy to set up

– Very easy-to-use GUI: immediate
visual feedback on CFD settings

– The documentation provides ex-
tensive coverage of its features
and commands

– Automatic mesh generation: no
need for external tools

– Easy to automatically run multi-
ple simulations with varying pa-
rameters

Cons

– The software needs an external
tool to generate the mesh: more
time and effort are needed to ac-
quire the knowledge to use an-
other (often commercial) tool

– Documentation not always easy
to be found

– To access all the available com-
mands, OF needs to operate
within the Ubuntu environment

– Lack of user-friendly GUI

– Not so powerful for CFD: limited
number of simulation parameters
can be set up; under equal con-
ditions requires a more consid-
erable amount of RAM with re-
spect to OF

– Proprietary software

– Only basic hexahedral mesh gen-
eration

– It is relatively difficult to auto-
matically run multiple simula-
tions with varying parameters

Table 4.3: Software comparison

54

processing simulation models, including meshing, geometry clean-up, and
model setup. ANSA is commonly used in the automotive, aerospace, and
defense industries for simulations of fluid dynamics and structural mechanics.
In addition, ANSA is especially useful when dealing with OpenFOAM, as it
provides a convenient interface that allows the user to directly export the
model into the OF case.

The steps followed for meshing the model were:

1. define the external control volume;

2. define a size-box considering the wake developed by Blucy motion;

3. define a smaller size box to enhance mesh refinement on Blucy external
surface;

4. define a size box containing the propellers to avoid geometry disconti-
nuities;

5. define the mesh geometry for surface and volume;

6. define the mesh properties.

Initially, the external control volume was shaped as a simple cuboid by defining
its eight vertices coordinates with respect to the point (0, 0, 0) corresponding
to Blucy center of gravity. Eventually, the volume was set to be larger where
the wake was expected to develop: for instance, in the case of a positive surge
motion, the largest part of the volume was placed behind Blucy stern (see
Figure 4.8 on page 59); this was done to improve the accuracy of the CFD
analyses. For the same reason, the control volume was slightly modified for
the simulations involving the sway motion and the heave one: in both cases
the overall volume size was reduced due to the smaller velocities involved.
In addition, the same considerations hold in the definition of the wake size
boxes, drone shell and propellers; but it is, however, important to highlight
some differences: while the drone and propeller refinement boxes were kept
constant for the three cases, the wake box was the main varying parameter:
its volume was considerably increased in the regions of wake generation. The

55

final overall dimensions of the volume and size boxes can be found in the
table below.

Object Length (m)
x y z

Control volume 32 20 21
Wake size box 6 4 5
Drone size box 2.25 0.84 1.2

Table 4.4: Volume and size boxes dimensions for surge simulations

In addition to the external dimensions of the aforementioned cuboids, it is
also necessary to specify their mesh “spacing”. The mesh spacings determine
the resolution of the numerical mesh used in the simulation, which affects
the accuracy and computational cost of the analysis. Therefore, the spacings
were chosen considering the desired accuracy and computational resources
available: the outer volume resolution was set to increase from 1m at the
boundaries to 25 cm, while the size box spacings are reported in Table 4.5.

Then, the surface and volume mesh geometries were selected: concerning
the surfaces, the ANSA command “Auto CFD” with the option “tetra” was
used, while for the volume geometry the command “hexa interior” was selected.
This selection (mostly appreciable in Figure 4.9) is due to the fact that, in
any simulation case, the flow is almost unidirectional, therefore, this kind of
mesh geometry results more efficient in terms of computational cost.

Finally, the mesh generation provided the number and types of elements
that are summarized in Table 4.6. Afterwards, the mesh properties (i.e. the
boundary conditions) were defined as reported in Table 4.7.

In order to minimize errors and computational time, it is necessary to
investigate the actual behavior of Blucy prior setting up the CFD simulations.
In practice, this entails estimating Blucy operational range and outlining,
as far as possible, the UUV maximum linear and angular velocities. The
real data of Blucy linear body velocity, obtained from the NGC, is shown in
Figure 4.11 on page 62. The following considerations should be taken into
account:

• the real data of Blucy has not been extensively analyzed in this work,

56

Name Max length Max length Growth rate
surface volume volume

(mm) (mm)
Drone 10 10 1.2
Wake 35 35 1.2
Left propeller 1 1 1
Right propeller 1 1 1

Table 4.5: Properties of the size boxes

Shell
quads 113 863
trias 1 786
total 115 649

Volume
tetras 3 480 762
pentas 248 272
hexas 8 434 332
pyramids 461 425
total 12 623 791

Table 4.6: Type and number of mesh elements

Name Type Num. Elem.
Blucy wall 1 125
Inlet patch 630
Outlet patch 630
Symmetry symmetry 3 264
Auto Detect Volume fluid 12 623 791

Table 4.7: Properties

57

Figure 4.5: Control volume for CFD

Figure 4.6: Wake and drone size boxes

58

Figure 4.7: Propeller size box

22 m10 m

Figure 4.8: Volume mesh

59

Figure 4.9: Volume mesh detail

Figure 4.10: Blucy surface mesh

60

Motion Speed range Step Notes
(m/s) (m/s)

Surge −2 to 2 0.2 Blucy is designed to reach its maxi-
mum speed in heave. According to
the manual, the drone maximum for-
ward speed is 2 m/s. However, pilot’s
experience reported a lower top speed
of about 1 m/s.

Sway −0.8 to 0.8 0.2 Blucy was not designed for speed in
sway, as its lateral section is signifi-
cantly larger than the other sections,
causing a substantial increase in resis-
tance when moving along the yb axis.

Heave −1.4 to 1.4 0.2 Blucy maximum velocity in heave can
be influenced by the drone net buoy-
ancy. However, real data shows lower
velocities with respect to heave.

Table 4.8: Linear velocity simulations set up

which means that errors and inconsistencies may still be present. Thus,
the plotted data were considered in conjunction with the pilot’s experi-
ence;

• data points that are significantly different from the mean trend were
deemed outliers due to measurement noise and sea currents;

• it is important to note that not all sensors are sampled in the same
manner.

Table 4.8 summarizes the simulations set up for the linear motion along the
body axes.

Concerning the OpenFOAM environment, it is behind the scope of this
work to give a deep insight into every aspect of the software; however, a
brief introduction of the main characteristics and a concise description of
the settings used should now be made. Following the scheme depicted
in Figure 4.12 on page 64, one can understand that a CFD simulation
in OpenFOAM is referred to as an OpenFOAM “case”, which consists of

61

(a) Blucy linear motion data

(b) PDF of Blucy linear velocities

Figure 4.11: Visualization and statistics of Blucy linear velocities

62

several directories, including “0”, “constant”, and “system”. The directory “0”
contains the initial conditions of the simulation, while the directory “constant”
contains information such as the geometry and boundary conditions of the
simulation domain, as well as information regarding the fluid viscosity and
the turbulence model employed. Finally, the “system” directory contains the
solver configuration files. These configuration files are named dictionaries,
which are text files that specify the information required by the software to
run a simulation. For instance, the dictionaries contained in “system” are:

fvSchemes → defines the discretization schemes that are used to approxi-
mate the solution of the governing equations. It sets the method used
to discretize the terms in the equations and determine the order of
accuracy;

fvSolution → defines the solution algorithms used to solve the discretized
equations. It sets the method used to iterate the solution and determine
when the solution has converged. For instance, it can specify the type
of linear solver and the stopping criteria for the solution process;

controlDict → defines the overall settings: the user can set the simulation
start and stop time, the time step size, and the write interval for saving
the solution. It can also specify the type of solver used for the simulation,
as well as any additional options for that solver.

The aforementioned dictionaries, together with the dictionaries contained in
“0”, are reported in Appendix B (note that the initial and boundary conditions
are those for the surge simulation at 1m/s). It is now important to make
some considerations:

• the simulations performed within this work are based on solving the
steady-state Reynolds-Averaged Navier-Stokes (RANS) equations;

• simpleFoam is a solver in OpenFOAM that uses the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) algorithm to solve
the RANS equations;

63

Case

0 constant system

- U
- p
- k
- epsilon
- nut

- polyMesh (dir)
- transportProperties
- turbulenceProperties

- controlDict
- fvSchemes
- fvSolution

Figure 4.12: OpenFOAM hierarchy

• the turbulence model used within simpleFoam is the k− ϵ model, which
involves solving two separate equations for the turbulence kinetic energy
(k) and the turbulence dissipation rate (ϵ).

4.2.2 Angular Motion Simulations

The CFD simulations of Blucy angular motion were performed by means
of SolidWorks Flow Simulation. The fluid density was set to 1025 kg/m3

(salt water), and SolidWorks turbulence model was employed with turbulence
intensity equal to 0.1%. In fact, SolidWorks is able to manage turbulent flows
by means of the Favre-Averaged Navier-Stokes (FANS) equations, together
with the transport equations for the turbulent kinetic energy and its dissipation
rate: the k − ϵ formulation. Lastly, the convergence criteria were chosen to
be the forces (and moments) along (and about) the three principal directions
xb, yb and zb.

The mesh was directly generated within the Flow Simulation tool, which,
however, offers built-in meshing options that are less customizable than those
of ANSA. The final mesh characteristics are reported in Table 4.9 on the
facing page and depicted in Figure 4.13 on the next page.

64

Control volume
x-size 16m
y-size 16m
z-size 9m

Hexa mesh
Fluid cells 1 807 502
Fluid cells contacting solids 679 793
Maximum refinement level 5

Table 4.9: SolidWorks mesh parameters

Motion Speed range Step Notes
(deg/s) (deg/s)

Roll 0 to 10 1 Blucy may experience minor roll
and pitch angular velocities due to

Pitch 0 to 10 1 hydrodynamic characteristics and
sea currents.

Yaw 0 to 10 1 Blucy is designed to perform yaw
maneuvers.

Table 4.10: Angular velocity simulations set up

Figure 4.13: SolidWorks mesh visualization

65

Analogously to the set up of the linear motion simulations, some consid-
erations should now be made about the kind of angular motion that Blucy
can experience in a real-world scenario. With regards to the discussion on
linear velocities, Figure 4.14 on the facing page shows data on the pitch and
yaw angular velocities (whereas some issues have been encountered in the roll
angular velocity sampling), and their respective normal distributions, which
justify the choice to simulate angular maneuvers not exceeding 10 deg/s. It is
important to note that while Blucy is controllable in yaw, it is not designed
to execute complex maneuvers about its roll and pitch axes. Nonetheless, the
drone may still experience minor angular velocities due to its hydrodynamic
characteristics and sea currents. Table 4.10 on the previous page summarizes
these considerations.

4.2.3 CFD Results

The considerations of the preceding subsections were first used to generate
the different meshes for the six different simulation scenarios (surge, sway,
heave, roll, pitch and yaw), then they were implemented in SolidWorks Flow
Simulation as “parametric studies”, and in OpenFOAM as “cases”. Some
considerations are now necessary:

• in SolidWorks, a parametric study is a type of simulation study that
allows for automatically investigating how a design responds to changes
in its parameters. In this case, the variable parameter was the angular
rotation of Blucy, and the outputs were the forces and moments acting
on the moving body;

• in the OpenFOAM environment, on the other hand, a “case” for each
velocity was built. The code that was implemented in the dictionaries
(boundary conditions, controlDict, etc.) to set up the simulations is
reported in Appendix B∗;

• in OpenFOAM, a “function object” was used to output the forces and
moments acting on the body. A “function object” is a piece of code

∗The attached code is only for the simulation of surge at 1 m/s.

66

(a) Blucy angular motion data

(b) PDF of Blucy angular velocities

Figure 4.14: Visualization and statistics of Blucy angular velocities

67

Figure 4.15: Fit options

that performs a specific operation on the simulation data at a particular
time during the simulation. It is essentially a utility that can be used to
extract, manipulate or post-process data generated during a simulation.

After the simulation runs, all the resulting data were collected and converted
into plots of the resulting forces and moments for each different case, at
each different velocity. By fitting the resulting curves, the hydrodynamic
parameters can be determined. In fact, recalling that

X(u) = Xu u+X|u|u u
2

Xu and X|u|u represent respectively the linear and nonlinear damping coeffi-
cients for the longitudinal motion. One can then employ this logic for each
curve obtained from the CFD simulations.

To this aim, the Matlab tool “Curve Fitter” was employed. In Figure 4.15
the “Fit Options” can be seen. It should be noted that the fitting functions
are polynomial of the second order of the form

f(x) = p1x
2 + p2 x + p3

where p3 was manually set to zero since no forces are applied to the body at
null velocity.

68

Surge Sway Heave
Coeff. Value Coeff. Value Coeff. Value
Xu −2.368 Xv 2.13 Xw 0.0837
Yu −0.008119 Yv −27.58 Yw 0
Zu 0.09057 Zv 18.02 Zw −2.06
Ku 0.1185 Kv 5.269 Kw −0.0066
Mu 0.04597 Mv 0 Mw −0.1555
Nu 0.1342 Nv −21.73 Nw 0

Table 4.11: Linear motion hydrodynamic coefficients

Roll Pitch Yaw
Coeff. Value Coeff. Value Coeff. Value
Xp −0.0961 Xq −0.0148 Xr −0.7742
Yp −1.436 Yq 0.0048 Yr 5.068
Zp −0.1694 Zq −0.071 Zr −0.3614
Kp 0.3026 Kq 0 Kr 0.7409
Mp 0.018 Mq −0.0626 Mr −0.2689
Np 0.4122 Nq 0 Nr −7.005

Table 4.12: Angular motion hydrodynamic coefficients

Moreover, in Figure 4.16 on the next page, two examples of curve fitting
are presented: on the left-hand side of the figure, the curve represents the
variation of the longitudinal drag that Blucy experiences in surge at different
velocities. On the right-hand side of the figure, the trend of the lateral force
in sway is depicted.

Concerning the linear damping terms, they are reported in Table 4.11 and
Table 4.12. It should be pointed out that the terms equal to zero are due
to the fact that fitting scattered data would be meaningless. All the curves
reporting the simulation results can be found in Appendix C.

Regarding the nonlinear damping coefficients, the terms of interest (see
relation (2.21)) are reported in Table 4.13 on page 71.

69

0 0.5 1 1.5 2

−250

−200

−150

−100

−50

0

u [m/s]

X [N]

CFD
poly2

0 0.2 0.4 0.6 0.8

−400

−300

−200

−100

0

v [m/s]

Y [N]

CFD
poly2

Figure 4.16: Example of fitting functions

70

Coeff. Value
X|u|u −61.96
Y|v|v −595.2
Z|w|w −243;
K|p|p −23.67
M|q|q −95.52
N|r|r −240.4

Table 4.13: Nonlinear damping coefficients

The resulting matrices are

Dl = −



−2.368 2.13 0.0837 −0.0961 −0.0148 −0.7742
−0.0081 −27.58 0 −1.436 0.0048 5.068
0.0906 18.02 −2.06 −0.1694 −0.071 −0.3614
0.1185 5.269 −0.0066 0.3026 0 0.7409
0.046 0 −0.1555 0.018 −0.0626 −0.2689
0.1342 −21.7300 0 0.4122 0 −7.005


and

Dn(ν) = −



−61.96 |u| 0 0 0 0 0
0 −595.2 |v| 0 0 0 0
0 0 −243 |w| 0 0 0
0 0 0 −23.67 |p| 0 0
0 0 0 0 −95.52 |q| 0
0 0 0 0 0 −240.4 |r|



Finally, some visualizations of pressure distribution, velocity field and stream-
lines around Blucy are shown in the following figures. They were generated
through the open source software ParaView [17] (only to visualize OpenFOAM
results), and SolidWorks.

71

Figure 4.17: Pressure distribution in surge at 1m/s

Figure 4.18: Pressure distribution on xz-plane in surge at 1m/s

72

Figure 4.19: Streamlines in surge at 1m/s

Figure 4.20: Velocity distribution on xz-plane in surge at −0.6m/s

73

Figure 4.21: Streamlines in sway at 0.6m/s

Figure 4.22: Pressure distribution on xy-plane in yaw at 8 deg/s

74

4.3 Added Mass Estimation

The added mass parameters can be estimated through experimental or numer-
ical methods — as for the damping parameters — , and analytical methods.
In this work, two techniques were used, which are:

1. the analytical Lamb’s theory (as taken from [18]), based on simplifying
assumptions about the geometry and motion of the AUV;

2. a numerical CAD environment for the fast computation of added mass:
AMCOMP [6].

Lamb’s Theory

Lamb’s theory is based on an analytical solution for the potential flow around
an ellipsoid, which is derived from Laplace’s equation. The solution provides
expressions for the added masses of the ellipsoid, based on its geometric
parameters such as its semi-axes and orientation. It is important to underline
the fact that approximating Blucy with an ellipsoid (see Figure 4.23 on
page 77) can clearly lead to a reduction in the estimation accuracy.

Lamb’s equations are here summarized:

A0 = abc
∫ ∞

0

du

(a2 + u) ∆ B0 = abc
∫ ∞

0

du

(a2 + u) ∆ C0 = abc
∫ ∞

0

du

(a2 + u) ∆

where a, b and c are the ellipsoid semi-axes, and

∆ = {(a2+ u)(b2+ u)(c2+ u)} 1
2

By choosing a, b and c so to keep the same rations as Blucy semi-axes, and
keeping the ellipsoid volume equal to the drone volume, one can use the

75

previous quantities (see Appendix A) to obtain the elements of MA:

λ11 = 4
3πρabc

A0

2 − A0
λ44 = 4

15
πρabc(b2 − c2)2(C0 −B0)

2(b2 − c2) + (B0 − C0)(b2 + c2)

λ22 = 4
3πρabc

B0

2 −B0
λ55 = 4

15
πρabc(c2 − a2)2(A0 − C0)

2(c2 − a2) + (C0 − A0)(c2 + a2)

λ33 = 4
3πρabc

C0

2 − C0
λ66 = 4

15
πρabc(a2 − b2)2(B0 − A0)

2(a2 − b2) + (A0 −B0)(a2 + b2)

Resulting in

MA = −diag {λ11, λ22, λ33, λ44, λ55, λ66 }

= −diag { 34, 756, 177, 9, 30, 158 }
(4.1)

AMCOMP

The AMCOMP tool has the ability to compute the added mass for CAD
models in Standard Triangle Language (STL) file format by implementing
the procedure described in [28]: the underlying idea is to calculate the kinetic
energy of the fluid displaced by the moving body by means of the potential
flow theory. An illustration of the AMCOMP usage is presented in Figure 4.24
on page 78.

The software gave the following matrix:

MA = −



−56.41 5.8372 −7.0623 2.2791 7.8604 −6.5026
5.8372 −327.41 4.1352 4.7939 1.5077 62.28

−7.0623 4.1352 −185.61 2.2847 6.2788 −1.6736
2.2791 4.7939 2.2847 0.1137 −0.4063 −3.9641
7.8604 1.5077 6.2788 −0.4063 −39.14 7.3145

−6.5026 62.28 −1.6736 −3.9641 7.3145 −82.4


(4.2)

In conclusion:

• comparing the results of Lamb’s theory and AMCOMP (see Figure 4.25
on page 79), it can be seen that the diagonal elements follow a similar

76

(a) Frontal view

(b) Lateral view

(c) Top view

Figure 4.23: Blucy and ellipsoid comparison

77

Figure 4.24: AMCOMP environment

trend, and the largest difference lies in the second element, which
corresponds to Yv̇;

• as expected, a diagonal matrix is obtained from Lamb’s theory: all the
off-diagonal terms are null since the ellipsoid presents three planes of
symmetry;

• off-diagonal terms obtained from AMCOMP, as it will be clear in the
forthcoming, can trigger oscillatory effects within the simulator;

• the added mass matrix obtained from AMCOMP is not positive semidef-
inite: its eigenvalues are (−0.46, 35.10, 55.14, 72.12, 186.20, 342.73), how-
ever, the negative element is at least two orders of magnitude smaller
than the other eigenvalues, making this error negligible.

78

1 2 3 4 5 6

−500

0

500

Diagonal position

Va
lu

e
[k

g]

Lamb
AMCOMP

Figure 4.25: Lamb and AMCOMP comparison

79

80

Chapter 5

Testing of the Simulink Model

The Simulink model was updated with the parameters obtained in the previous
chapter using a Matlab initialization script. The primary script and other
necessary Matlab functions to initialize the parameters can be found in
Appendix A.

Afterward, a series of tests were conducted, and the most significant results
from the various simulations are presented here. The goal is to compare these
results in order to better understand the behavior of the model and how the
model is influenced by changes in parameters.

The work will be now divided into sections, each section will present
a different test. Moreover, each section will provide a table presenting the
overall settings of the test in analysis, and the plots of the velocity results (that
are represented by the components of the state vector ν). The dimensions
are m/s for the linear velocities and deg/s for the angular velocities.

It is also important to note that the center of the body frame is always
considered coincident with the CG, therefore it will always be rg = (0, 0, 0),
whereas rb could vary.

Test I

In this test, all the parameters were left unmodified with respect to the ones
derived in the previous chapter. Therefore, all the elements in the hydro-

81

dynamic matrices are taken into consideration. Furthermore, the buoyancy
force is slightly larger than the weight force and there are no propulsive forces
acting on the system (τth = 0); thus, a negative vertical velocity is expected.

All the main settings are summarized in the table below.

Parameter Setting

rb (0, 0, zb)
B −W > 0

Dl complete
MA AMCOMP
τth = 0

Solver automatic
Step size variable

t 100 s

Table 5.1: Test I settings

In Figure 5.2 on page 84 the components of ν are plotted. Some considerations
on the velocity curves should now be made:

• as expected, the heave velocity, w, has a parabolic initial behavior that
stabilizes afterwards. This is simply due to the fact that the force acting
on the body is constant and equal to B − W , this force accelerates
Blucy. As Blucy moves through the fluid, it experiences a drag force
that opposes its motion. This drag force increases with the velocity of
Blucy, which leads to a point where the drag force becomes equal in
magnitude to the net buoyant force, resulting in zero acceleration. At
this point, the heave velocity stabilizes to a constant value;

• concerning the surge and sway velocities, u and v respectively, their
non-zero behavior is due to the fact that the off-diagonal terms of the
added mass matrix and of the linear damping matrix are different from
zero, therefore the vertical motion mathematically triggers small surge
and sway movements, as well as angular actions;

82

Figure 5.1: Blucy movement during an ascent of 500 s

• the oscillatory behavior observed in the angular velocities is unlikely
to be physically meaningful for the type of AUV being simulated.
Additionally, the magnitude of the oscillation is small and has a zero
mean, which is consistent with the idea that it may be a result of
numerical error. Therefore, the argument that the oscillations are likely
due to numerical integration is plausible. However, it is necessary to
perform further analyses or sensitivity studies to confirm the accuracy of
the results and assess the impact of numerical errors on the conclusions
drawn.

In conclusion, the simulated heave motion of Blucy perfectly describes the
behavior of the object that can actually be observed in a real-world scenario.
Also, the birth of small surge and sway velocities is in accordance with the
mathematics described in Chapter 2 and with the approximations introduced
by the CFD simulations; nevertheless, it might be difficult to accurately
measure a drift in the x and y directions of less than one meter during an
ascent of 40 meters in seawater (see Figure 5.1).

However, Blucy oscillations in roll, pitch, and yaw, although small, do not
match reality and most likely represent a persistent numerical error. The next
test explores a possible explanation for why these oscillations do not decay.

83

(a) ν1 [m/s]

(b) ν2 [deg/s]

Figure 5.2: Results of ν from Test I

84

Test II

In this test, a different approach was applied, consisting of selecting the
“ode1b” solver, which is the backward Euler method with a fixed step size.
All the other parameters were kept constant to compare the new results with
those of Test I.

Parameter Setting

rb (0, 0, zb)
B −W > 0

Dl complete
MA AMCOMP
τth step input along xb

Solver ode1be
Step size fixed

t 100 s

Table 5.2: Test II settings

In Figure 5.3 on the next page, the results of the current simulation are shown.
It is clear that the linear velocity curves have the same general behavior as
those in the previous case. However, focusing on v, a smoother trend can be
seen that suggests the vanishing of the numerical error in place of a more
realistic attitude.

Moreover, looking at the angular rates, it can be concluded that their
behavior is now more reasonable: the oscillations are still small in amplitude,
but they decay over time. The roll and pitch rates go back to zero as w
approaches its constant value, whereas the yaw rate remains different from
zero and reaches a negative constant value after 300 s. This last observation
is in accordance with the CFD simulations.

85

(a) ν1 [m/s]

(b) ν2 [deg/s]

Figure 5.3: Results of ν from Test II

86

Test III

In this test, two main changes in the settings were introduced: first, an
external force in the surge direction was applied for a finite interval of time.
Second, the buoyancy force acting on Blucy was adjusted to be equal to its
weight. These changes were made to investigate the transition of the system
from a moving state to a still state: since no additional energy is entering
the system after the input, unless numerical integration errors are present,
the small angular oscillations are expected to vanish, as well as any other
movement of the body.

The shape of the input is presented in Figure 5.4 on the following page:
the step represents an external force X, measured in newtons, that acts on
the system for 100 s.

Parameter Setting

rb (0, 0, zb)
B −W = 0

Dl complete
MA AMCOMP
τth step input along xb

Solver ode1be
Step size fixed

t 600 s

Table 5.3: Test III settings

Looking at Figure 5.5a on page 89, some considerations can now be
done regarding the outcome of the simulation: concerning the linear velocity
results, Their behavior is reasonable since there is a forward velocity that
starts with the input and reaches a constant speed in accordance with the
CFD simulations. Subsequently, the velocity decays. Moreover, the motion
coupling also triggers small velocities in sway and heave that decay as well.

Focusing on the roll, pitch and yaw rates, it is clear that their trend can
actually describe a physical phenomenon: once Blucy has returned to its state

87

Figure 5.4: Step input

of rest, also the angular dynamics ceases its course after the initial trigger
due to the coupling of the system.

Overall, these results seem to effectively capture the dynamics of the
system. However, further investigation is needed to better understand the
observed phenomena and their implications for the modeling of complex
systems.

Test IV

For this test, an essentially different approach has been used: in fact, the
results presented in the current sections are obtained through fractional order
modeling of the system.

Fractional order modeling refers to a mathematical modeling approach
where differential equations or transfer functions with fractional orders are
used to describe the behavior of physical systems. In traditional modeling,
the orders of the derivatives used to describe the system are integers, while in
fractional order modeling, they can be any real number, typically between 0
and 1. This allows for a more flexible and accurate representation of complex
systems with non-integer order dynamics, such as those found in biology,
engineering, and finance. Fractional order modeling has gained increasing
attention in recent years due to its potential for better understanding and

88

(a) ν1 [m/s]

(b) ν2 [deg/s]

Figure 5.5: Results of ν from Test III

89

controlling complex systems.
Fractional order models are suitable for describing the behavior of real

systems for several reasons:

• memory effect: many physical systems exhibit a memory effect, meaning
that their current state depends on their previous states. This memory
effect can be modeled using fractional derivatives, which allow for the
consideration of non-instantaneous interactions in a system;

• irregular behavior: some physical systems exhibit irregular or non-
smooth behavior, such as slow convergence, power-law decay, or long-
tailed distributions. Fractional order models can better capture these
irregular behaviors compared to integer order models;

• complexity: many real-world systems are complex and exhibit multiple
time scales. Fractional order models can capture the multiple time
scales and their interactions, which is difficult to achieve using integer
order models;

• flexibility: fractional order modeling provides additional degrees of
freedom, making it suitable to capture unmodeled dynamics, parameters
uncertainties and unknown disturbances.

As already said, fractional calculus is a generalization of integration and
differentiation to non-integer order fundamental operator aD

q
t , where a and t

are the bounds of the operation and q ∈ R. The continuous integro-differential
operator is defined as

aD
q
t =


dq

dtq for q > 0

1 for q = 0∫ t
a(dτ)q for q < 0

Among the most frequently used definitions for the general fractional operator,
there is Caputo’s definition of the fractional differential operator of order q:

aD
q
t f(t) = 1

Γ(n− q)

∫ t

a

f (n)(τ)
(t− τ)q−n+1 dτ for (n− 1 < q < n)

90

where
Γ(α) =

∫ ∞

0
xα−1e−x dx for α > 0

is the gamma function.
For a deeper understanding of the mathematical theory behind these

definitions, the reader may refer to [7, 24].

Figure 5.6: Usage of the nid block

Concerning the Simulink model, the implementation of fractional modeling
consists in employing a fractional derivative before the integrator. To this
aim, the Ninteger toolbox for Matlab [23] was used: in particular, the block
designed to perform the fractional derivative is the nid block, where “nid”
stands for non-integer derivative. The block is described by the following
frequency domain transfer function:

C(s) = ksv, v = 1 − α ∈ R

The dialogue window of the block is shown in Figure 5.6.

91

Parameter Setting

rb (0, 0, zb)
B −W > 0

Dl complete
MA AMCOMP
τth step input along xb

Solver ode1be
Step size fixed

t 600 s

Table 5.4: Test IV settings

Table 5.4 displays the Simulink configuration used in this test, which is
similar to the configurations used in Test I and Test II, but with a longer
simulation time of 600 s. It is worth noting that the only parameter used to
tune the fractional model was “v_nid”, which corresponds to the exponent
“v” previously introduced.

In Figure 5.7 on the next page, the results for α = 0.95 are plotted together
with the results for α = 1 (which is the integer model case). In the figure, the
fractional model curves are those in blue denoted by “_frac” in the legend.

The plotted velocities indicate that the fractional results exhibit the same
tendency as the integer results, which suggests that the fractional system still
accurately describes the system dynamics. Moreover, the initial oscillations
of the roll and pitch rates are slightly damped away in the fractional model.
This indicates that the fractional model has a smoothing effect on the system
response, which could be advantageous in certain applications where noisy or
erratic behavior needs to be minimized. Overall, the results might represent a
first step in demonstrating the effectiveness of the fractional calculus approach
in modeling the dynamics of complex systems. Of course, further investigation
and validation on more complex systems will be necessary to fully assess its
potential.

Furthermore, it may be interesting for this discussion to show one more
result varying the parameter α. In Figure 5.8 on page 94, we can see the

92

(a) ν1 [m/s]

(b) ν2 [deg/s]

Figure 5.7: Results of ν from Test IV, α = 0.95

93

Figure 5.8: Results of q at different α

results for different values of α, ranging from α = 0.9 to α = 0.7. It can
be observed that the initial oscillation of the pitch rate is influenced by the
fractional exponent, as it decreases along with decreasing α. This again
suggests that the fractional order model has a smoothing effect on the system
response, which is more pronounced for lower values of α.

It is worth noting that the asymptotic behavior remains the same for all
values of α. Nevertheless, further analyses on the steady state value should
be made to assess whether or not a certain value of α can be deemed to be
optimal for this particular system.

94

Chapter 6

Conclusions

The objective of this thesis was to identify the Fossen mathematical model [9]
for the unmanned underwater drone Blucy developed within the Interreg
Italy–Croatia SUSHI DROP Project. To do so, different tools and methods
have been used throughout the thesis.

The first step consisted in studying the mathematical model (i.e. the
Fossen model) for underwater vehicles. The assessment of the kinematics
and kinetics parts and the understanding of the different hydrodynamic and
hydrostatic forces acting on an underwater vehicle allowed for an aware
selection of the parameters necessary for the model to work. Moreover, the
mathematical model was preliminary translated into blocks and functions in
the Matlab and Simulink environment.

To identify the parameters, starting from the real prototype and from the
2D drawings of its main components, the detailed 3D CAD model of Blucy
was generated by means of SolidWorks. It was important to take into account
the features of the real object, such as the accurate dimensions, densities and
geometries of its parts. The 3D CAD model provided the values for the main
mass, geometric and inertial parameters needed in the kinematic equations of
the Fossen model.

Subsequently, the hydrodynamic parameters were identified by simplifying
the complex 3D CAD model using SolidWorks. The simplified model was
then pre-processed through SolidWorks and ANSA. Therefore, the meshing

95

of the body was performed. After the meshing, the CFD simulations were
performed by means of OpenFOAM, for the linear motion simulations, and
SolidWorks, for the simulations of angular motion. From the CFD analyses,
all the forces and moments acting on Blucy in the different scenarios were
obtained as functions of the simulated velocities (the simulated velocities
have been selected based on real data from Blucy in field operations). These
functions were analyzed through Matlab in order to derive the hydrodynamic
parameters that characterize the dynamic part of the Fossen model. These
parameters comprise the linear and nonlinear damping, which were accounted
for by the aforementioned CFD simulations, as well as the hydrodynamic
added mass coefficients.

Concerning the added mass coefficients, they were determined through two
different methodologies: using the AMCOMP environment [6], specifically
designed to estimate the added masses of complex bodies by employing the
potential theory, and using Lamb’s theory, which provides the exact solution
for the added mass computation of an ellipsoid. The so obtained results were
then compared.

Successively, the identified parameters were incorporated into Simulink
to simulate Blucy dynamics. This served as a test bench for both the
mathematical model and the parameters obtained during the CAD and CFD
analyses. In fact, these tests were meant to investigate whether or not the
identified coefficients well predicted Blucy behavior.

Referring to the results reported in Chapter 5, they were obtained by
performing simulations of different maneuvers. From the outcomes, it was
observed that the velocity curves exhibited a reasonable behavior consistent
with what can be observed during a real mission. This suggests that the
model and estimated parameters can already offer a valid description of Blucy.

The objective of applying fractional order modeling to the Simulink model
of Blucy was to explore the potential benefits of this novel approach in
capturing the complex dynamics of the underwater drone. By utilizing the
Ninteger toolbox of Matlab to implement the fractional integrator, the aim
was to investigate whether this approach could improve the accuracy and
efficiency of the mathematical model.

96

The results obtained from the simulations showed that the fractional order
model exhibited a stable and realistic trend with similar overall behavior to
the integer model. These findings suggest that fractional order modeling could
be a promising approach for accurately modeling the dynamics of complex
systems such as underwater drones. Further exploration of this approach
could lead to significant advancements in the design and development of such
systems.

In conclusion, this work effectively identified and validated for the first
time the Fossen mathematical model for the unmanned underwater drone
Blucy. This achievement sets the fundamental basis for the development of
novel navigation, guidance and control algorithms that can be employed to
make Blucy autonomous. Furthermore, fractional modeling shows potential
for enhancing control strategies by increasing their precision and adaptability.

97

98

Appendix A

Matlab Code

A.1 Initialization Script

%% BLUCY %%

% Initial conditions (for integrators)

x0 = 0;

y0 = 0;

z0 = 0;

phi0 = 0;

theta0 = 0;

psi0 = 0;

u0 = 0;

v0 = 0;

w0 = 0;

p0 = 0;

q0 = 0;

r0 = 0;

% Environment

g = 9.81; % [m/s^2]

rho = 1025; % [kg/m^3] density of salt water

m = 216.4; % [kg] Blucy mass

m_displaced_water = 216.6; % [kg]

W = m_blucy*g; % [N] Blucy weight force

B = m_displaced_water*g; % [N] buoyancy force

% Inertia matrix [kg*m^2]

Ixx = 11.318;

99

Ixy = 0.015;

Ixz = 2.033;

Iyx = 0.015;

Iyy = 50.169;

Iyz = 0.017;

Izx = 2.033;

Izy = 0.017;

Izz = 42.682;

I_g = [Ixx -Ixy -Ixz;

-Iyx Iyy -Iyz;

-Izx -Izy Izz];

% Centre of gravity and centre of buoyancy position [m]

xg = 0;

yg = 0;

zg = 0;

r_g = [xg yg zg].';

xb = 0;

yb = 0;

zb = -0.0968;

r_b = [xb yb zb].';

% Added mass coefficients

Xudot = -56.41;

Xvdot = 5.8372;

Xwdot = -7.0623;

Xpdot = 2.2791;

Xqdot = 7.8604;

Xrdot = -6.5026;

Yudot = 5.8372;

Yvdot = -327.41;

Ywdot = 4.1352;

Ypdot = 4.7939;

Yqdot = 1.5077;

Yrdot = 62.28;

Zudot = -7.0623;

Zvdot = 4.1352;

Zwdot = -185.61;

Zpdot = 2.2847;

Zqdot = 6.2788;

Zrdot = -1.6736;

Kudot = 2.2791;

Kvdot = 4.7939;

Kwdot = 2.2847;

Kpdot = 0.1137;

100

Kqdot = -0.4063;

Krdot = -3.9641;

Mudot = 7.8604;

Mvdot = 1.5077;

Mwdot = 6.2788;

Mpdot = -0.4063;

Mqdot = -39.14;

Mrdot = 7.3145;

Nudot = -6.5026;

Nvdot = 62.28;

Nwdot = -1.6736;

Npdot = -3.9641;

Nqdot = 7.3145;

Nrdot = -82.40;

% Blucy useful matrices

M_RB = M_RB_fun(m_blucy,r_g,I);

M_A = -[Xudot Xvdot Xwdot Xpdot Xqdot Xrdot; % from AMCOMP

Yudot Yvdot Ywdot Ypdot Yqdot Yrdot;

Zudot Zvdot Zwdot Zpdot Zqdot Zrdot;

Kudot Kvdot Kwdot Kpdot Kqdot Krdot;

Mudot Mvdot Mwdot Mpdot Mqdot Mrdot;

Nudot Nvdot Nwdot Npdot Nqdot Nrdot];

M_A = diag([34 756 177 9 30 158]); % from Lamb theory

M = M_RB + M_A;

Minv = inv(M); % inverse of M

% Quadratic damping coefficients

Xuu = -61.96;

Yvv = -595.2;

Zww = -243;

Kpp = -23.67;

Mqq = -95.52;

Nrr = -240.4;

% Linear damping coefficients

Xu = -2.368;

Xv = 2.13;

Xw = 0.08366;

Xp = -0.09607;

Xq = -0.01479;

Xr = -0.7742;

Yu = -0.008119;

Yv = -27.58;

101

Yw = 0;

Yp = -1.436;

Yq = 0.004849;

Yr = 5.068;

Zu = 0.09057;

Zv = 18.02;

Zw = -2.06;

Zp = -0.1694;

Zq = -0.07099;

Zr = -0.3614;

Ku = 0.1185;

Kv = 5.269;

Kw = -0.006648;

Kp = 0.3026;

Kq = 0;

Kr = 0.7409;

Mu = 0.04597;

Mv = 0;

Mw = -0.1555;

Mp = 0.01799;

Mq = -0.06258;

Mr = -0.2689;

Nu = 0.1342;

Nv = -21.73;

Nw = 0;

Np = 0.4122;

Nq = 0;

Nr = -7.005;

% Linear damping matrix

Dl = -[Xu Xv Xw Xp Xq Xr;

Yu Yv Yw Yp Yq Yr;

Zu Zv Zw Zp Zq Zr;

Ku Kv Kw Kp Kq Kr;

Mu Mv Mw Mp Mq Mr;

Nu Nv Nw Np Nq Nr];

A.2 M_RB_fun and skew_fun

% Computes the rigid-body inertia matrix

function M_RB = M_RB_fun(m,r_g,I_g)

102

skew_rg = skew_fun(r_g);

M_RB = [m*eye(3) -m*skew_rg;

m*skew_rg I_g];

end

% Computes the skew symmetric matrix of a 3x3 vector

function skew_symmetric = skew_fun(lambda)

skew_symmetric = [0 -lambda(3) lambda(2);

lambda(3) 0 -lambda(1);

-lambda(2) lambda(1) 0];

end

A.3 Ellipsoid Added Mass

% Ellispoid added mass from Lamb theory

rho = 1025; % [kg/m^3] density of salt water

% Semiaxes [m]

a_blucy = 1; % x-semiaxis

b_blucy = 0.350/2; % y-semiaxis

c_blucy = 0.735/2; % z-semiaxis

V_blucy = 0.42249; % [m^3] Blucy volume from CAD

% Ellipsoid parameters: its semiaxes must have same ratio of Blucy

% dimensions and its volume must be equal to Blucy volume

b = (3/4*V_blucy*b_blucy^2/(pi*a_blucy*c_blucy))^(1/3);

c = c_blucy/b_blucy*b;

a = a_blucy/b_blucy*b;

% Make a visual comparison btw Blucy and Ellipsoid

figure()

ellipsoid(1.05,-0.5,0.375,a,b,c,50) % plot ellipsoid

axis('equal'); hold on

fid = stlread("blucy_noTh.STL"); % read STL file

stl = trimesh(fid); % plot STL

stl.FaceColor = '#0079c1';

stl.EdgeColor = '#ddbf5f';

m_w = 4/3*pi*rho*a*b*c; % mass of displaced water

Ixx = 4/15*pi*rho*a*b*c*(b^2+c^2); % inertia of displaced water

Iyy = 4/15*pi*rho*a*b*c*(a^2+c^2);

103

Izz = 4/15*pi*rho*a*b*c*(a^2+b^2);

% Lamb's formulas

funA0 = @(u) 1./((a.^2+u).*sqrt((a.^2+u).*(b.^2+u).*(c.^2+u)));

funB0 = @(u) 1./((b.^2+u).*sqrt((a.^2+u).*(b.^2+u).*(c.^2+u)));

funC0 = @(u) 1./((c.^2+u).*sqrt((a.^2+u).*(b.^2+u).*(c.^2+u)));

A0 = a*b*c*integral(funA0,0,inf);

B0 = a*b*c*integral(funB0,0,inf);

C0 = a*b*c*integral(funC0,0,inf);

% Dimensional added mass coefficients

lambda11 = A0/(2-A0)*m_w;

lambda22 = B0/(2-B0)*m_w;

lambda33 = C0/(2-C0)*m_w;

lambda44 = 1/5*(b^2-c^2)^2*(C0-B0)/(2*(b^2-c^2)+(b^2+c^2)*(B0-C0))*m_w;

lambda55 = 1/5*(c^2-a^2)^2*(A0-C0)/(2*(c^2-a^2)+(c^2+a^2)*(C0-A0))*m_w;

lambda66 = 1/5*(a^2-b^2)^2*(B0-A0)/(2*(a^2-b^2)+(a^2+b^2)*(A0-B0))*m_w;

% Nondimensional added mass coefficients

k11 = lambda11/m_w;

k22 = lambda22/m_w;

k33 = lambda33/m_w;

k44 = lambda44/Ixx;

k55 = lambda55/Iyy;

k66 = lambda66/Izz;

% Dimensional added mass matrix

dim_AM_mat = diag([lambda11 lambda22 lambda33 lambda44 lambda55 lambda66]);

% Nondimensional added mass matrix

nondim_AM_mat = diag([k11 k22 k33 k44 k55 k66]);

104

Appendix B

OpenFOAM Code

B.1 “0” Directory

/*--*/
/*--------------------------U---------------------------*/
FoamFile
{

version 2.0;
format binary ;
arch "LSB; label =32; scalar =64";
class volVectorField ;
location "0";
object U;

}
/*--*/
dimensions [0 1 -1 0 0 0 0];
internalField uniform (-1 0 0);
boundaryField
{

Drone
{

type noSlip ;
}
Inlet
{

type fixedValue ;
value uniform (-1 0 0);

}
Outlet
{

105

type zeroGradient ;
}
Symmetry
{

type symmetry ;
}

}
/*--*/
/*--------------------------p---------------------------*/
FoamFile
{

version 2.0;
format binary ;
arch "LSB; label =32; scalar =64";
class volScalarField ;
location "0";
object p;

}
/*--*/
dimensions [0 2 -2 0 0 0 0];
internalField uniform 0;
boundaryField
{

Drone
{

type zeroGradient ;
}
Inlet
{

type zeroGradient ;
}
Outlet
{

type fixedValue ;
value uniform 0;

}
Symmetry
{

type symmetry ;
}

}
/*--*/
/*--------------------------k---------------------------*/
FoamFile
{

version 2.0;
format binary ;
arch "LSB; label =32; scalar =64";
class volScalarField ;
location "0";

106

object k;
}
/*--*/
dimensions [0 2 -2 0 0 0 0];
internalField uniform 0.003;
boundaryField
{

Drone
{

type kqRWallFunction ;
value uniform 0;

}
Inlet
{

type turbulentIntensityKineticEnergyInlet ;
intensity 0.01;
value uniform 0.003;

}
Outlet
{

type inletOutlet ;
inletValue uniform 0.003;
value uniform 0.003;

}
Symmetry
{

type symmetry ;
}

}
/*--*/
/*-----------------------epsilon ------------------------*/
FoamFile
{

version 2.0;
format binary ;
arch "LSB; label =32; scalar =64";
class volScalarField ;
location "0";
object epsilon ;

}
/*--*/
dimensions [0 2 -3 0 0 0 0];
internalField uniform 9e -05;
boundaryField
{

Drone
{

type epsilonWallFunction ;
value uniform 9e -05;

}

107

Inlet
{

type turbulentMixingLengthDissipationRateInlet ;
mixingLength 2;
value uniform 9e -05;

}
Outlet
{

type inletOutlet ;
inletValue uniform 9e -05;
value uniform 9e -05;

}
Symmetry
{

type symmetry ;
}

}
/*--*/
/*--------------------------nut -------------------------*/
FoamFile
{

version 2.0;
format binary ;
arch "LSB; label =32; scalar =64";
class volScalarField ;
location "0";
object nut;

}
/*--*/
dimensions [0 2 -1 0 0 0 0];
internalField uniform 0;
boundaryField
{

Drone
{

type nutUSpaldingWallFunction ;
value uniform 0;

}
Inlet
{

type calculated ;
value uniform 0;

}
Outlet
{

type calculated ;
value uniform 0;

}
Symmetry
{

108

type symmetry ;
}

}
/*--*/

B.2 fvSchemes

FoamFile
{

version 2.0;
format binary ;
class dictionary ;
location " system ";
object fvSchemes ;

}
/*--*/
ddtSchemes
{

default CrankNicolson 0.7;
}

gradSchemes
{

default cellMDLimited Gauss linear 0;
grad(U) cellMDLimited Gauss linear 0.333;
grad(CDO) Gauss cubic ;

}

divSchemes
{

default none;
div(phi ,U) Gauss linearUpwind grad(U);
div(phi ,k) Gauss linearUpwind default ;
div(phi , omega) Gauss linearUpwind default ;
div ((nuEff *dev2(T(grad(U))))) Gauss linear ;
div(phi ,R) Gauss upwind ;
div(R) Gauss linear ;
div(phid ,p) Gauss limitedLinear 1;
div(phi ,K) Gauss linearUpwind default ;
div(phi ,e) Gauss limitedLinear 1;
div (((rho* nuEff)*dev2(T(grad(U))))) Gauss linear ;
div(phi , epsilon) bounded Gauss linearUpwind grad(epsilon);
div(phi ,CDO) Gauss limitedLinear 1;
div ((nu*dev2(T(grad(U))))) Gauss linear ;
div(phi , nuTilda) bounded Gauss linearUpwind grad(nuTilda);

109

}

laplacianSchemes
{

default Gauss linear limited 1.0;
}

interpolationSchemes
{

default linear ;
}

snGradSchemes
{

default limited 1.0;
}

oversetInterpolationSuppressed
{

grad(p);
surfaceIntegrate (phiHbyA);

}

fluxRequired
{

default no;
pcorr ;
p ;

}

oversetInterpolation
{

method cellVolumeWeight ;
}

wallDist
{
method meshWave ;
}

B.3 fvsolution

FoamFile
{

version 2.0;

110

format binary ;
class dictionary ;
location " system ";
object fvSolution ;

}
/*--*/
solvers
{
" pcorr. *"

{
solver GAMG;
tolerance 0.01;
relTol 0;
smoother GaussSeidel ;
cacheAgglomeration on;
agglomerator faceAreaPair ;
nCellsInCoarsestlevel 1000;
mergelevels 1;

}
p
{

$pcorr ;
tolerance 1e -7;
relTol 0.0;

}
pFinal
{

$p;
tolerance 1e -7;
relTol 0;

}
"(k| omega)"
{

solver smoothSolver ;
smoother GaussSeidel ;
tolerance 1e -07;
relTol 0;

}
"(k| omega | epsilon |R| nuTilda) Final "
{

$U;
tolerance 1e -7;
relTol 0;

}
U
{

solver PBiCGStab ;
preconditioner DILU;
tolerance 1e -8;
relTol 0;

111

}
UFinal
{

$U;
tolerance 1e -9;

}
cellDisplacement
{

solver GAMG;
tolerance 1e -8;
relTol 0;
smoother DIC;

}
Phi
{

solver GAMG;
smoother DIC;

tolerance 1e -06;
relTol 0.01;

}
cellMotionUz
{

solver PCG;
preconditioner DIC;
tolerance 1e -08;
relTol 0;

}
residualControl

{
"(p)"
{

tolerance 1e -3;
relTol 0;

}

"(U)"
{

tolerance 1e -3;
relTol 0;

}
}

CDO
{
solver smoothSolver ;
// preconditioner DILU;
smoother GaussSeidel ;
tolerance 1e -08;
relTol 0;
minIter 1;

112

}
}
SIMPLE
{

nNonOrthogonalCorrectors 10;
tolerance 1.0e -14;
relTol 5e -3;
consistent true;
residualControl
{

"(p|U)" 1e -3;

}
}
potentialFlow
{

nNonOrthogonalCorrectors 3;
}
relaxationFactors
{

fields
{

p 0.7;
}
equations
{

"(U|k| omega)" 0.3;
"(U|k| omega) Final " 1.0;

}
}

B.4 controlDict

FoamFile
{

version 2.0;
format binary ;
class dictionary ;
location " system ";
object controlDict ;

}
/*--*/
application simpleFoam ;
startFrom startTime ;
startTime 0;

113

stopAt endTime ;
endTime 1000;
∆T 1;
writeControl timeStep ;
writeInterval 10;
purgeWrite 0;
writeFormat binary ;
writePrecision 6;
writeCompression uncompressed ;
timeFormat general ;
timePrecision 6;
graphFormat raw;
runTimeModifiable yes;
adjustTimeStep off;
maxCo 0.5;
maxAlphaCo 0.5;
maxDeltaT 0.01;

functions {
forces1

{
// Mandatory entries
type forces ;
libs (" libforces.so ");
patches (Drone);
// Optional entries
// Field names
p p;
U U;
rho rhoInf ;
rhoInf 1025;
// Reference pressure [Pa]
pRef 0;
// Include porosity effects ?
porosity no;
// Store and write volume field representations of forces and moments
writeFields yes;
writeInterval 10;
// Centre of rotation for moment calculations
CofR (-0 .86 0 -0.325);

}
yPlus

{
// Mandatory entries (unmodifiable)
type yPlus ;
libs (fieldFunctionObjects);
writeInterval 10;

}
}

114

Appendix C

CFD Results

This appendix presents the results of the CFD simulations carried out on
the AUV Blucy submersible through OpenFOAM (used to simulate the
linear motion) and SolidWorks Flow Simulation (used to simulate the angular
motion). The results are presented in the form of graphs showing the forces
and moments acting on the AUV under various motion conditions, including
different linear velocities of surge, sway, and heave, as well as different angular
velocities of roll, pitch, and yaw. These results are among the most important
findings of this study, as they provided key insights into the hydrodynamic
performance of the AUV and enabled the identification of its main parameters.

The comprehensive analysis of these results allowed for the identification
of the linear and nonlinear damping terms, which are essential for building
an accurate underwater drone model.

It is important to note that some of the graphs in this appendix contain
scattered data that could not be accurately fit by a polynomial function of
the second degree. This is likely due to the fact that the forces and moments
acting on Blucy in these cases were relatively small, causing the simulation
error to be larger than the physical quantities being analyzed. These curves
resulted in the respective hydrodynamic coefficients being set equal to zero.

The results are presented divided into different sections, with each section
providing the curves for a different kind of motion.

115

C.1 Surge

0 0.5 1 1.5 2

−250

−200

−150

−100

−50

0

u [m/s]

X [N]

0 0.5 1 1.5 20

1

2

3

u [m/s]

K [Nm]

0 0.5 1 1.5 20

2

4

6

8

u [m/s]

Y [N]

0 0.5 1 1.5 20

2

4

6

8

10

12

u [m/s]

M [Nm]

0 0.5 1 1.5 20

2

4

6

8

u [m/s]

Z [N]

0 0.5 1 1.5 2

−4

−3

−2

−1

0

u [m/s]

N [Nm]

116

C.2 Sway

0 0.2 0.4 0.6 0.80

10

20

30

40

50

v [m/s]

X [N]

0 0.2 0.4 0.6 0.8
−25

−20

−15

−10

−5

0

v [m/s]

K [Nm]

0 0.2 0.4 0.6 0.8

−400

−300

−200

−100

0

v [m/s]

Y [N]

0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0.6

0.8

1

v [m/s]

M [Nm]

0 0.2 0.4 0.6 0.80

5

10

15

v [m/s]

Z [N]

0 0.2 0.4 0.6 0.80

20

40

60

80

100

v [m/s]

N [Nm]

117

C.3 Heave

0 0.2 0.4 0.6 0.8 1 1.2 1.40

5

10

15

w [m/s]

X [N]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.25

−0.2

−0.15

−0.1

−5 · 10−2

0

w [m/s]

K [Nm]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.6

−0.4

−0.2

0

w [m/s]

Y [N]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−80

−60

−40

−20

0

w [m/s]

M [Nm]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−500

−400

−300

−200

−100

0

w [m/s]

Z [N]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−5 · 10−2

0

5 · 10−2

0.1

0.15

w [m/s]

N [Nm]

118

C.4 Roll

0 2 4 6 8 10

−6

−4

−2

0
·10−2

p [deg/s]

X [N]

0 2 4 6 8 10

−0.6

−0.4

−0.2

0

p [deg/s]

K [Nm]

0 2 4 6 8 10
−1.5

−1

−0.5

0

p [deg/s]

Y [N]

0 2 4 6 8 10

−0.1

−5 · 10−2

0

p [deg/s]

M [Nm]

0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

p [deg/s]

Z [N]

0 2 4 6 8 100

0.1

0.2

0.3

p [deg/s]

N [Nm]

119

C.5 Pitch

0 2 4 6 8 100

2

4

6

8

·10−2

q [deg/s]

X [N]

0 2 4 6 8 10

−1

−0.5

0

0.5

1

·10−3

q [deg/s]

K [Nm]

0 2 4 6 8 10

−8

−6

−4

−2

0
·10−3

q [deg/s]

Y [N]

0 2 4 6 8 10
−3

−2

−1

0

q [deg/s]

M [Nm]

0 2 4 6 8 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

q [deg/s]

Z [N]

0 2 4 6 8 10
−1

0

1

2

·10−3

q [deg/s]

N [Nm]

120

C.6 Yaw

0 2 4 6 8 10

−0.3

−0.2

−0.1

0

r [deg/s]

X [N]

0 2 4 6 8 100

0.2

0.4

0.6

0.8

r [deg/s]

K [Nm]

0 2 4 6 8 100

2

4

6

8

r [deg/s]

Y [N]

0 2 4 6 8 10
−4

−3

−2

−1

0
·10−2

r [deg/s]

M [Nm]

0 2 4 6 8 10

−0.1

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

r [deg/s]

Z [N]

0 2 4 6 8 10

−8

−6

−4

−2

0

r [deg/s]

N [Nm]

121

122

Bibliography

[1] MATLAB. Version 9.13.0 (R2022b). Natick, Massachusetts: The Math-
Works Inc., 2022. url: https://www.mathworks.com.

[2] Yannick Allard and Elisa Shahbazian. Unmanned underwater vehicle
(UUV) information study. Tech. rep. OODA Technologies Inc Montreal,
Quebec Canada, 2014.

[3] Gianluca Antonelli et al. Underwater robots: motion and force control
of vehicle-manipulator systems. Vol. 2. Springer, 2006.

[4] Raffaele Borgognoni. Mathematical model identification of the AUV-
ROV Blucy from the SUSHI DROP Project. Unpublished. Internship
report submitted to the University of Bologna. 2021.

[5] P. Castaldi et al. “Autonomous Underwater Vehicle Actuators Health
Monitoring for Smart Harbour Application”. In: 2020 5th International
Conference on Smart and Sustainable Technologies (SpliTech). 2020,
pp. 1–6. doi: 10.23919/SpliTech49282.2020.9243818.

[6] Alessandro Ceruti, T Bombardi, and Piergiovanni Marzocca. “A CAD
environment for the fast computation of Added Masses”. In: Ocean
Engineering 142 (2017), pp. 329–337.

[7] Shantanu Das. Functional fractional calculus. Vol. 1. Springer, 2011.

[8] Thor I. Fossen. “Guidance and Control of Ocean Vehicles. John Willey
& Sons”. In: Inc., New York (1994).

[9] Thor I. Fossen. Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

123

https://www.mathworks.com
https://doi.org/10.23919/SpliTech49282.2020.9243818

[10] Thor I. Fossen. Nonlinear modelling and control of underwater vehicles.
Universitetet i Trondheim (Norway), 1991.

[11] Thor I. Fossen and Ola-Erik Fjellstad. “Nonlinear modelling of marine
vehicles in 6 degrees of freedom”. In: Mathematical Modelling of Systems
1.1 (1995), pp. 17–27.

[12] Salimzhan A. Gafurov and Evgeniy V. Klochkov. “Autonomous un-
manned underwater vehicles development tendencies”. In: Procedia
Engineering 106 (2015), pp. 141–148.

[13] Julián González Agudelo. “Contribution to the model and navigation
control of an autonomous underwater vehicle”. In: (2015).

[14] Ali Hammoud et al. “Design and dynamic modeling of ROVs: estimating
the damping and added mass parameters”. In: Ocean Engineering 239
(2021), p. 109818.

[15] Frederick H. Imlay. The complete expressions for added mass of a rigid
body moving in an ideal fluid. Tech. rep. DAVID TAYLOR MODEL
BASIN WASHINGTON DC, 1961.

[16] ITALY-CROATIA.EU. SUSHI DROP SUstainable fiSHeries wIth DRO-
nes data Processing. 2019. url: https://www.italy-croatia.eu/
web/sushidrop.

[17] Inc. Kitware. ParaView. 2021. url: https://www.paraview.org.

[18] Horace Lamb. Hydrodynamics, 6th edition. Dover Publications, Inc.,
1945.

[19] A Lambertini et al. “Monitoring and Surveying from an Underwater
Vehicle in SUSHI DROP Project”. In: 2021 International Workshop
on Metrology for the Sea; Learning to Measure Sea Health Parameters
(MetroSea). IEEE. 2021, pp. 189–193.

[20] Alessandro Lambertini et al. “Underwater Drone Architecture for Ma-
rine Digital Twin: Lessons Learned from SUSHI DROP Project”. In:
Sensors 22.3 (2022), p. 744.

[21] OpenCFD Ltd. v2212. 2022. url: https://www.openfoam.com.

124

https://www.italy-croatia.eu/web/sushidrop
https://www.italy-croatia.eu/web/sushidrop
https://www.paraview.org
https://www.openfoam.com

[22] U.S. Navy. The Navy Unmanned Undersea Vehicle (UUV) Master Plan.
CreateSpace Independent Publishing Platform, 2014.

[23] D Pedro Mata de Oliveira Valério. “Ninteger v. 2.3 Fractional control
toolbox for MATLAB”. In: Lisboa, Universidade Technical (2005).

[24] Ivo Petráš. “Modeling and numerical analysis of fractional-order Bloch
equations”. In: Computers & Mathematics with Applications 61.2 (2011),
pp. 341–356.

[25] Consiglio Nazionale delle Ricerche. SushiDrop AUV/ROV, Manuale di
uso e manutenzione. Oct. 2018.

[26] SOLIDWORKS. Version 2021. Dassault Systèmes, 2021. url: https:
//www.solidworks.com.

[27] BETA CAE Systems. Version 2021. 2021. url: https://www.beta-
cae.com.

[28] Marco Tuveri, Alessandro Ceruti, and Pier Marzocca. “Added masses
computation for unconventional airships and aerostats through geo-
metric shape evaluation and meshing”. In: International Journal of
Aeronautical and Space Sciences 15.3 (2014), pp. 241–257.

[29] Christopher Von Alt. “Autonomous underwater vehicles”. In: Autonomous
Underwater Lagrangian Platforms and Sensors Workshop. Vol. 3. 2003,
p. 2.

125

https://www.solidworks.com
https://www.solidworks.com
https://www.beta-cae.com
https://www.beta-cae.com

