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CAMPUS DI CESENA

Dipartimento di Informatica - Scienza e Ingegneria

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Revelio: a Modular and Effective Framework
for Reproducible Training and Evaluation of

Morphing Attack Detectors

Tesi di laurea in
Visione Artificiale e Riconoscimento

Relatore:
Guido Borghi

Correlatori:
Annalisa Franco
Matteo Ferrara

Presentata da:
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Abstract

Morphing Attack, i.e. the possibility of eluding face verification systems through
a facial morphing operation between a criminal and an accomplice, has recently
emerged as a serious security threat. Despite the importance of this kind of
attack, the development and comparison of Morphing Attack Detection (MAD)
methods is still an arduous task, mainly due to the scarcity of publicly-available
datasets and the failure of the internal ones to accurately reflect the problem’s
complexity; these two causes combined lead to low generalization capabilities and
challenges in comparing the different MAD approaches proposed in the literature.
Therefore, in this thesis, we propose and publicly release Revelio, a flexible and
modular framework for the reproducible development and evaluation of both single-
image (S-MAD) and differential (D-MAD) systems. Then, we conduct a review
of the datasets exploited in the literature and introduce two new ones, namely
ChiMo and FEI. Moreover, we introduce a new metric useful for summarizing
and simplifying the comparison of diverse approaches across different datasets,
named Weighted Average Error across Datasets (WAED), and conduct a review of
the publicly available benchmarks used to test algorithms for this task. Besides,
an extensive analysis of several state-of-the-art approaches through Revelio is
performed, comparing several literature methods and thus deeply analyzing the
main challenges in the MAD task. Finally, by exploiting Revelio features, a new
model is proposed to improve the state of the art on SOTAMD single-image and
double-image benchmarks.
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Chapter 1

Introduction

In this Chapter, we present the necessity of creating Morphing Attack Detection
(MAD) algorithms to defend against the emerging threat represented by Morphing
Attacks on passport photos. Then, we discuss the two families of MAD approaches:
Single-image (S-MAD) or Differential (D-MAD). Finally, we formally introduce
the face morphing algorithm.

1.1 Morphing attack

Figure 1.1: An example of a morphed face (central), created starting from two subjects
(on both sides).

Through a Morphing Attack [28, 23] an official document can be shared across
two different people, destroying the unique link between the document and its real
owner.
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In practice, a subject with no criminal records (accomplice) might apply for
an official document using a morphed mugshot photo that hides the identity of a
criminal, as shown in Figure 1.1. Indeed, several studies [70, 65] have shown that
morphed images can be effectively used to fool both the human control, e.g. a
police officer, and the currently available commercial-off-the-shelf (COTS) Face
Recognition Systems (FRSs).

For these reasons, the morphing attack represents a serious and concrete security
threat for identity verification-based applications, such as the Automated Board
Control (ABC) gates at international airports where the facial photo stored in the
electronic Machine Readable Travel Document (eMRTD) is automatically verified
against the live acquired image of the document owner. Moreover, it has been
proven that this attack was used at least once for circumventing face recognition
systems [78, 46]. Therefore, the availability of Morphing Attach Detection (MAD)
methods [59], i.e. systems that are able to automatically detect the presence of
a morphed face in images, is strongly needed by public and private institutions
and has raised the interest of researchers belonging to different areas [76]. The
difficulty in solving this task is also exacerbated by the fact that different morphing
algorithms may produce very different results in terms of quality and presence of
artifacts, as shown in Figure 3.1.

Despite the relevant number of approaches proposed in the literature in the last
years, the accuracy level reached so far by MAD systems is still unsatisfactory for
deployment in real-world applications. Furthermore, a standardized way of training
and testing MAD algorithms has yet to emerge in the literature. The research
community devoted some efforts to the development of public evaluation platforms
for MAD approaches, such as NIST FRVT MORPH [48] or FVC-OnGoing [19,
5], where the performance can be objectively assessed by supervised testing on
sequestered datasets, i.e. data never seen during training and not owned by
laboratories and algorithm developers. These benchmarks represent a valuable
resource for MAD testing. However, it is worth noting that reproducing and
comparing published methods is still a challenging task, especially for deep learning-
based solutions. This issue probably originates from the relative novelty of the MAD
task, introduced for the first time in [28], which determines two main consequences:

• the lack of publicly available datasets of morphed images on which to train
and validate the proposed methods, also due to privacy issues;

• the lack of publicly available source code of the MADs proposed in the
literature.

In this scenario, each research laboratory or institution usually works on its
own data, thus making it difficult to evaluate the impact of the training data
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on the overall MAD performance [8] and severely limiting the reproducibility of
algorithms and results. We believe that the use of public evaluation benchmarks
based on sequestered data, in combination with a shared framework on which
publicly released datasets are exploited to develop and train newly proposed MAD
methods, can help to improve the quality level of contributions and understanding
in the morphing research field.

Relying on these considerations, this thesis proposes Revelio, a modular frame-
work aimed at providing shared and effective support for MAD systems development,
training, and validation. Revelio has been explicitly designed to reduce the efforts
needed for the development and comparison of MAD systems, with particular atten-
tion to simplifying the usage and integration of new components, defining common
protocols, and relying only on publicly available datasets, for both training and
validation procedures. Together with this thesis, we publicly release the source code
and the official documentation1 of the framework. The released framework already
includes several literature algorithms frequently used in MAD system development.

In order to test the features of Revelio, we conducted an extensive experimental
validation to deeply analyze and compare the performance of several deep learning-
based MAD solutions, also proving that Revelio allows the training of state-of-the-
art detectors in a straightforward and simple manner. For the sake of reproducibility,
all experiments are carried out on publicly released or reproducible datasets. We
believe that, in this way, this work can be a useful reference for future research
works, analysis, and investigations on MAD techniques.

Revelio is designed to support and speed up the development of both Single-
image Morphing Attack Detection (S-MAD) and Differential Morphing Attack
Detection (D-MAD) algorithms, both introduced in Section 1.2.

1.2 Types of Morphing Attack Detectors

Generally, the output of a MAD system is represented by a score that indicates if
one or more images are genuine (bona fide) or not (morphed).

Two families of approaches can be coarsely categorized, focusing on the number
of face images used as input:

• Single-image methods (S-MAD), also referred as no-reference or forensic
methods;

• Differential methods (D-MAD), also referred as two-images- or pair-based
systems.

1https://miatbiolab.csr.unibo.it/revelio-framework
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1.2.1 Single-image MAD (S-MAD)

These systems receive only one image as input and the morphing process is detected
using only a single image, as depicted in Figure 1.2. Depending on the environment
these systems are installed in, their input can be:

• the mugshot photo presented to the police officer during the enrollment
procedure;

• the face image available during the verification procedure, i.e. the image
ready from the eMRTD during the controls at ABC gates.

Figure 1.2: A typical pipeline for S-MAD systems. The input is represented by the
mugshot picture of the subject, and the S-MAD algorithm outputs whether the given
image has undergone a morphing process. Image source: [70].

In both cases, the output is usually a score or a prediction that directly reveals
whether the image presents anomalies that can be traced back to a morphing
process.

These methods work under the assumption that the morphing process leaves
specific traces in the image, in terms of texture anomalies or visual artifacts, such as
ghost or half-shade effects that can occur due to regions not overlapping exactly (e.g.
hair, pupils, and nostrils), or distorted edges or shifted image areas. However, this
assumption can be broken by a sufficiently motivated criminal, who can manually
post-process the morphed image using off-the-shelf image editing software in order
to reduce the amount and severity of the produced artifacts, thus creating a very
high-quality morphed image and posing a serious challenge for S-MAD systems.

Finally, while biometric passports do include a digital copy of the photo ID of
the citizen, this is always compressed in order to fit in the limited chip memory,
and the photo inside the chip is often a printed and scanned version of the original;
these two factors, usually combined, have the effect of drastically reducing the
amount of detectable artifacts [69]. The effects of both factors can be observed in
Figure 3.7.
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1.2.2 Differential MAD (D-MAD)

These systems (whose pipeline can be summarized in Figure 1.3) receive a pair
of images as input, and the morphing process is detected by comparing the two
sources. D-MAD systems operate on the assumption that one of the two photos
must come from a trusted source, i.e. from the camera installed in an ABC gate or
from a police officer who is present when taking the subject’s mugshot photo.

Figure 1.3: A typical pipeline for D-MAD systems. By comparing the mugshot picture
stored in the passport and a trusted, live-capture image of the subject, the D-MAD
algorithm outputs whether the picture contained in the passport has undergone a
morphing process. Image source: [70].

These systems can be deployed in two scenarios:

• during passport issuance: the trusted image is the live acquisition of the face,
while the provided mugshot photo represents the untrusted one;

• during controls at ABC gates : the trusted image is the live acquisition during
the automatic face verification procedure, while the untrusted one is the
image stored in the eMRTD.

D-MAD systems can be grouped into two subcategories [63]:

• the first category contains algorithms that compare feature vectors extracted
from both input images;

• the second category relies on demorphing, i.e. algorithms that try to reverse
the morphing process, as presented in [26].

1.3 Face morphing

In the field of computer graphics and animation, image morphing is an effect that
is capable of transforming one image into another through a seamless transition.
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This technique was originally described in [75] and was used for the first time by
Industrial Light and Magic, a motion picture visual effects company based in the
United States, for the movie Willow (1988).

This technique can be effectively used for a variety of applications and subjects,
including human faces. Indeed, starting from two subjects it is possible to apply
a face morphing process to obtain one or many intermediate faces, as shown
in Figure 1.1.

Morphing algorithms can be divided into two major categories: landmark-based
and GAN-based. GAN-based morphing algorithms employ Generative Adversarial
Networks (GANs) such as StyleGAN [36] to generate the morphed image. On the
other hand, landmark-based face morphing algorithms can be composed of two
sequential steps:

• the application of a warping function wB→A, which expresses the geometric
transformation required to align the set of points in image B to the ones in
A;

• image blending, simply obtained as a weighted average of the pixel intensity
of the two images.

Many morphing algorithms employ an α parameter, also called morphing factor,
which weighs the transformations between the two images.

Being landmark-based morphing algorithms more common, we primarily focus
on those.

Formally, the face morphing process that outputs an intermediate morphed
image Iα starting from two images I0 and I1 is defined as follows. Given the corres-
ponding face landmarks (e.g. eye corners, nose tip, etc.) P0 = {ui, i = 1, . . . , N}
and P1 = {vi, i = 1, . . . , N}, respectively for I0 and I1, the intensity of a pixel in
position p for the morphed image Iα can be computed using Equation 1.1:

Iα (p) = (1− α) · I0 (wPα→P0 (p)) + α · I1 (wPα→P1 (p)) (1.1)

In Equation 1.1, Pα is the set of landmark positions obtained by linearly
interpolating the corresponding points in P0 and P1, as specified in Equation 1.2,
whose visual explanation can be found in Figure 1.4:

Pα = {ri | ri = (1− α) · ui + α · vi,ui ∈ P0,vi ∈ P1} (1.2)

While several warping functions wB→A have been proposed in literature [82],
a common approach consists in representing the two sets of points by means of
topologically equivalent triangular meshes, derived via Delaunay triangulation [13].

While typically the α factor is the same for both face warping and image
blending, in [24] an alternative version of Equation 1.1 is presented, where α is
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Figure 1.4: A visual explanation of Equation 1.2: the red circles are the landmarks in
P0, while the blue squares are the landmarks in P1. On the right, it is possible to see
a pair of corresponding points u ∈ P0 and v ∈ P1 with the linear interpolation r ∈ Pα

with α = 0.4. Image source: [26]

replaced with two distinct values, αW , and αB, which represent the warping and
blending factors, respectively.

Iα (p) = (1− αB) · I0
(
wPαW

→P0 (p)
)
+ αB · I1

(
wPαW

→P1 (p)
)

(1.3)

The resulting Equation 1.3 can be used to better evaluate the importance of
face warping and image blending. Indeed, given the subjects in Figure 1.5, it is
possible to construct a grid consisting of the resulting face morphs by varying αW

and αB, as shown in Table 1.1.

Figure 1.5: Images I0 and I1 used to generate Table 1.1. Image source: [24].
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αW = 0 αW = 0.1 αW = 0.3 αW = 0.5

α
B
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0
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3

α
B
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0.
5

Table 1.1: Morphed images obtained with different warping and blending factors. Image
source: [24].
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Chapter 2

Revelio framework
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Figure 2.1: Overview of the Revelio framework. As depicted, the framework is modular
and is mainly based on six different blocks, to simplify the development of new S-MAD
and D-MAD systems and also expand the functionalities of the framework itself. Each
block can be run in an online or offline manner and its presence is mandatory or optional
in the final pipeline (see Chapter 2).

The design of the Revelio framework is based on the conviction that a simple
and shared platform is a key element in order to develop better S-MAD and D-MAD
systems. Therefore, the framework is designed to be modular and flexible, while
abstracting away most of the complexity that is typical of Machine and Deep
Learning approaches, such as dataset loading, definition and implementation of
the data processing pipeline, model training, and finally performance evaluation
according to different metrics.

The modular structure of the framework is depicted in Figure 2.1. All these
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modules rely on a single YAML configuration file, through which the user manages
and handles the whole framework: its main sections are included and discussed
in the following paragraphs. Indeed, it is trivial for the end user to swap between
different face detectors, change the data augmentation pipeline, or use a new feature
extractor: only a few lines in the experiment configuration file are needed. In
addition, once a seed is specified in the configuration file, the framework is designed
to be deterministic: therefore, if all datasets are available, the training and testing
of a given model are fully reproducible and comparable. Moreover, should the
already built-in modules not be enough, little effort is needed to implement a
custom functionality (be it a new data augmentation step, a new feature extractor,
or a whole new model) which is then ready to be used in new experiments. This is
made possible by the integrated plugin system, which allows the loading of Python
files containing the new modules that can then be invoked by the experiments that
require them.

In the following Sections, further details for each module are briefly reported
and discussed.

2.1 Data loading

As the name suggests, this module is responsible for loading into memory all the
required data, organized in datasets, according to the user-defined specifications in
the experiment configuration file.

The user can specify one or many datasets to be used for training and testing,
and this can be done with a great level of flexibility. Indeed, the user is required to
specify only the dataset’s name, root path, and split ratio for training, validation,
and test sets, as detailed in Listing 2.1; while more advanced settings for loading
a dataset are available, they are not strictly required and are either inferred or
some sensible default values are employed. The code to be used to correctly load a
dataset into memory is specified by a dataset loader, which takes the dataset root
path as input and returns a list of dataset element descriptors: these simple objects
contain only the path to one (S-MAD) or many (D-MAD) images, alongside the
class the element belongs to (either bona fide or morphed).

When loading each dataset, the list of all dataset element descriptors is randomly
split following the training/validation/test ratios that the user expressed in the
configuration file for that dataset. By design, the sum of these ratios can be less
than 1 (i.e. if the user does not want to load entirely a dataset). After all datasets
are loaded, the framework merges together the three subsets, thus obtaining a
global training, validation, and test set.

Due to the fact that this stage operates on the dataset as a whole, this process
cannot be parallelized; however, the following stages can be significantly sped up
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by having multiple workers processing disjoint slices of the dataset in parallel.

datasets:

- name: dataset_name

path: /directory/to/dataset_root

split:

train: 0.7

val: 0.1

test: 0.2

testing_groups:

- testing-group-1

- testing-group-2

loader:

name: MyCustomLoader

args:

arg1: value1

arg2: value2

- ...

Listing 2.1: Configuration of the Data Loading module: among different settings, it is
possible to set a specific loader, defining the splits used in training, validation and testing
procedures. While this is a complete configuration example, some configuration options
are either optional or inferred if unspecified.

2.2 Face detection

The next module of the framework is aimed at localizing the face in each image
according to a specific detection algorithm. The output of the face detector is
a bounding box ((xTL, yTL), (xBR, yBR)), which indicates the position of the face
inside the image through the use of top-left (TL) and bottom-right (BR) corner
coordinates. Furthermore, if the face detector supports it (e.g. the DLib [37] face
detector), facial landmarks are extracted and embedded into the object representing
the dataset element’s image.

Since the face detection and landmarks extraction processes can be particularly
time-consuming, this stage is carried out offline and its output is stored for each
image, so that if the face detector’s parameters do not change, its results will
be loaded instead of being computed from scratch. We observe the choice of the
face detection algorithm is a key element in the MAD task, due to the fact that
each face detector produces different bounding boxes, as shown in Figure 2.2, thus
potentially affecting the classification performance of the model.
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From an implementation point of view, three face detectors widely used in
biometrics are already available in the framework: DLib [37], OpenCV [81] and
MTCNN [86].

face_detection:

output_path: /directory/to/face_detection_output

algorithm:

name: detector_name

args:

arg1: value1

arg2: value2

...

Listing 2.2: Configuration of the Face Detection module.

Listing 2.2 shows how the face detector can be chosen in the experiment’s
configuration file. The face detector’s arguments are dependent on the employed
algorithm: for instance, the DLib detector allows an optional argument to specify
the path of the landmark detector to use, while the MTCNN detector does not
have any arguments to set.

(a) DLib (b) OpenCV (c) MTCNN

Figure 2.2: Comparison between the bounding boxes generated by three different face
detectors, i.e. DLib [37], OpenCV [81] and MTCNN [86].

2.3 Data augmentation

The following stage is applied only to the training set; validation and test sets
will always skip this stage. This module is optional and can be skipped during
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model training. The augmentation pipeline is composed of multiple sequential
steps, each of them associated with a probability of execution on a given input
element. Moreover, especially when implementing a D-MAD algorithm, the user
may want to apply a certain augmentation step to only one of the images in each
dataset element (e.g. a grayscale filter to the live-capture image and a JPEG
compression on the suspected morphed image). Due to the stochastic nature of the
data augmentation stage, its output is never cached. From an implementation point
of view, the Revelio framework has already coded data augmentation procedures
regarding the resize and the compression of the input data, in combination with
the simulation of the printing and scanning process (P&S) that, as highlighted
below, assume particular importance in the MAD task [58, 27].

Listing 2.3 shows a minimal example of a data augmentation pipeline composed
of two steps: the first one applies a simulated printing and scanning process [27]
to approximately half the training elements, while the second one applies a JPEG
compression so that each image is under the specified number of bytes while
retaining the maximum possible quality. If the probability is not specified, the step
is by default applied to all the training elements.

augmentation:

enabled: true

steps:

- uses: print_scan

probability: 0.5

- uses: jpeg_compression

probability: 0.5

args:

max_bytes: 15000

- ...

Listing 2.3: Configuration of the Data Augmentation module. As an example, it is
reported the Print & Scanned procedure, applied with a probability of 50% on input
images, followed by the JPEG compression with a maximum size of 15kB.

2.4 Feature extraction

In this module, a feature extractor is used to extract features from input images. A
feature extractor can be defined as a pre-trained network, able to extract features
related to the training task: this is the case, for instance, of models trained for Face
Recognition, which provide features related to the subject’s identity. Besides, a
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feature extractor can be also a mathematical procedure computed on input images:
for instance, this is the case in which a Fourier transformation is applied.

Since the framework cannot know in advance how the extracted features will
be used, the computed features are inserted as values in a per-image dictionary
whose keys are the names of the algorithms used. These features’ dictionaries
are then made available to the MAD model, which is ultimately responsible for
combining and using the extracted features accordingly. As feature extraction can
be rather computationally expensive, this stage can be cached. However, as it
is executed after the data augmentation stage (whose output is stochastic), the
feature extraction results cannot be cached if any data augmentation is applied.

Inspired by methods that exploit forensic features in their implementation,
PRNU [15, 68], Wavelets [1, 2] and Fourier [85] features have been implemented
and tested in Revelio, as discussed in the following.

feature_extraction:

enabled: true

output_path: /directory/to/feature_extraction_output

algorithms:

- name: feature_extractor

args:

arg1: value1

arg2: value2

...

- ...

Listing 2.4: Configuration of the Feature Extraction module.

Listing 2.4 shows an example of how it is possible to configure one or multiple
feature extractors to be applied to every image of each dataset element.

Analogously to the face detection section in the configuration file, each feature
extractor has its own set of arguments that can be set. For instance, some
feature extractors require a fixed-size image in order to produce a fixed-size feature
vector/matrix, so they require both a target width and height to resize all images.
Other feature extractors may not have this constraint, so those arguments would
not be available.

2.5 Data preprocessing

Finally, just before feeding the images to the model, the last stage of the pipeline
is data preprocessing, which is responsible for manipulating all the images across
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training, validation, and test sets. As many models require images with a well-
defined shape, this stage is particularly useful for resizing them so that they have
the same shape in order to be fed into the model; another common use case for
this stage is normalizing the images using specific mean and variance vectors.

The data preprocessing stage has many resemblances with the data augmentation
stage, but there are some key differences: firstly, each preprocessing step is by
default executed on all datasets instead of just the training set with a user-defined
probability; lastly, it is applied to all images of a given dataset element.

If necessary, it is possible to have certain preprocessing steps be executed only
on certain datasets: this feature can be helpful when an augmentation step is
always applied with random parameters to the training set, and the same step must
also be applied in a more controlled way on both the validation and test sets.

2.6 Model training

The next stage of the pipeline is responsible for the training of the MAD model.
The configuration file is split into two main sections: model definition and training.
In the former, the user must specify which model to adopt for the experiments; in
the latter, the user must provide all the information required in order to train the
model. The training section contents vary according to the model used, as different
models have different training configuration arguments.

While the framework theoretically supports any type of model that can be
trained and output predictions as PyTorch tensors, particular attention has been
dedicated to deep learning-based binary classification models to discriminate bona
fide and morphed images. Once the model is loaded into the specified device (either
CPU or GPU), the training process starts. The user can specify the number of
epochs and the batch size, and the framework will automatically split the datasets
into batches. The loss function and the optimizer are also specified by the user in the
configuration file, and the framework will automatically create the corresponding
objects. Revelio has already implemented the most common loss functions and
optimizers, such as Binary Cross-Entropy (BCE) loss, Adam, and SGD, but it is
also possible to specify custom ones by simply implementing them as plugins.

In order to have a leaner training loop, some extra features such as checkpoints,
early stopping, and experiment logging tools have been implemented as callbacks,
which are objects that react to certain events inside the training loop. The
framework has some callbacks already implemented, such as the one to save the
model’s weights at the end of each epoch, and the callback which stops the training
process if the validation loss does not improve for a certain number of epochs. For
the logging, a specific callback logs the various metrics through Tensorboard1. It

1www.tensorflow.org/tensorboard
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is also possible to implement custom callbacks, to extend the functionalities of
the framework. In total, there are 10 events that can be captured via callbacks:
before/after training, before/after training/validation epoch, and before/after
training/validation step.

Finally, training metrics are of prime importance when training a model. Gen-
erally, metrics are stateful objects which, after being initialized, are updated after
every step by providing two tensors, respectively containing the expected and
the predicted scores; as soon as the metric’s state is updated, its value can be
computed. Revelio comes with several built-in metrics which are widely used
in literature [68] when developing MAD systems, also described in Section 3.5.
Indeed, classification accuracy, True Positive Rate (TPR), True Negative Rate
(TNR), Equal Error Rate (EER), and Bona fide Presentation Classification Error
Rate (BPCER) at one or many user-specified Attack Presentation Classification
Error Rate (APCER) (BPCER@APCER) are already present and ready to use, as
detailed in the following.

Listing 2.5 shows how the experiment can be configured in Revelio. In the model
section, the user specifies which model to use and sets any of its custom arguments,
that vary according to the chosen model. The training section’s contents are
dependent on the type of model that is used. For instance, if the model is a neural
network, there are several arguments to be set. Firstly, the user must specify the
number of epochs to train the model with; moreover, an optimizer must be specified
and at least its learning rate must be provided; finally, the user must select which
loss function should be used. Finally, the user can specify an arbitrary number of
callbacks, by specifying their name and potentially their arguments.

2.7 Evaluation

Revelio provides a way of defining logical test sets called testing groups, and metrics
are then reported for each unique testing group, in addition to the whole test set.
This way, the user can have separate metrics’ values divided by dataset, algorithm,
morph level, or any possible combination of these. However, some metrics (e.g.
EER) cannot be computed if all images of a given group belong to the same class
(either bona fide or morphed), so it is essential that each testing group contains at
least some bona fide and morphed images.

Finally, as shown in Listing 2.6, the framework saves the metrics and computed
scores (separated by their true label) for each testing group to text files, so that
they can be easily inspected by humans. Moreover, the metrics for each testing
group can be dumped into a JSON file, so that they are more easily accessible to
be read and manipulated by automated scripts capable of reading such file format.

The metrics reported in Section 3.5 are already implemented in Revelio.
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experiment:

batch_size: 64

model:

name: feature_inception_resnet

args:

pretrained: true

feature_name: wavelets

input_depth: 23

training:

enabled: true

args:

epochs: 50

optimizer:

name: SGD

args:

lr: 0.0005

loss:

name: BCEWithLogitsLoss

callbacks:

- name: Tensorboard

args:

log_dir: /directory/to/logs

- ...

Listing 2.5: Configuration of the Model Training module dedicated to S-MAD training.
As reported, is possible to define a specific model, in combination with all the training
details, such as the optimizer and callbacks to log the training details.
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scores:

bona_fide: /dir/to/{group}_bona_fide_scores.txt

morphed: /dir/to/{group}_morphed_scores.txt

metrics: /dir/to/metrics_scores.json

metrics:

- name: equal_error_rate

- name: bpcer_at_apcer

args:

thresholds:

- 0.1

- 0.05

- 0.01

Listing 2.6: Configuration of the Evaluation module, in which it is possible to define the
metrics output by Revelio framework (in this example: Equal Error Rate (EER) and
lowest BPCER related to APCER ≤ 10%, APCER ≤ 5% and APCER ≤ 1%.
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Chapter 3

Datasets and evaluation

In this Chapter we report all the datasets used for training and evaluating both
S-MAD (Chapter 5) and D-MAD (Chapter 6) algorithms; these datasets are either
publicly available or can be generated by applying public morphing algorithms on
face images contained in the original public datasets. In addition, we release1 the
subject pairs used to create the morphed images and the list of the data exploited
for training.

As a general overview, some statistics about each dataset are reported in
Tables 3.1 and 3.2. In order to facilitate a comparison between the quality of
the various morphing algorithms, some visual samples are depicted both in each
dataset’s corresponding Subsection and in Figure 3.1. A detailed analysis of
the composition and data sources of each dataset is reported in the following
Subsections.

3.1 Literature datasets

Being morphing attack detection a relatively recent research topic, the number
of available datasets in the literature is fairly limited. Moreover, privacy issues
prevent the publication and diffusion of standard datasets that can be exploited
for training and evaluating MAD algorithms, thus hampering the proliferation of
datasets that are specifically created for tackling this problem. To work around
these limitations, researchers internally create new datasets starting from existing
face-based datasets not specifically constructed for face morphing, including but not
limited to the AR [45], FRGC [53], Color Feret [54], LFC-MFD [56], Multimodal
BioSecure Database (BMDB) [51], and CelebA [41] datasets. In particular, only
faces that are ISO/ICAO-compliant [83] can be exploited to test face recognition
and morphing systems.

1https://miatbiolab.csr.unibo.it/revelio-framework
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(a) UBO [6] (b) OpenCV [44] (c) FaceMorpher [55] (d) StyleGAN [36] (e) WebMorph [16]

(f) AMSL [50] (g) Sqirlz Morph [84] (h) FaceFusion [22] (i) UTW [59] (j) NTNU [59]

Figure 3.1: Visual samples of different morphing algorithms used for the training and
the experimental evaluation. As shown, the overall quality of morphed images strongly
depends on the type of algorithm exploited and may include, among the others, visible
artifacts in the background (e.g. OpenCV, FaceMorpher, and WebMorph) or the face
(e.g. UBO, AMSL). It is important to note that morphed images produced through the
Sqirlz Morph algorithm are manually retouched.

Morphing Algorithm Dataset Data Source #Morphed Quality

UBO [6] PMDB AR - FRGC - Feret 711 - 199 - 198 Medium
OpenCV [44] Idiap Morph FRGC - FRLL - Feret 964 - 1222 - 529 Low
FaceMorpher [55] Idiap Morph FRGC - FRLL - Feret 964 - 1222 - 529 Low
StyleGAN [36] Idiap Morph FRGC - FRLL - Feret 964 - 1222 - 529 Low
WebMorph [16] Idiap Morph FRLL 1221 Low
AMSL [50] Idiap Morph FRLL 2175 Low
Sqirlz MorphD [84] MorphDBD FRGC - Feret 50 - 50 High
Sqirlz MorphP&S [84] MorphDBP&S FRGC - Feret 50 - 50 High
FaceFusion [22] ChiMo - FEI CFD - FEI 8310 - 2000 Medium
UTW [59] ChiMo - FEI CFD - FEI 8310 - 2000 Medium
NTNU [59] ChiMo - FEI CFD - FEI 8310 - 2000 Medium

Table 3.1: Morphing algorithms and datasets. For each morphing algorithm, the related
dataset name, the original source of the images used for the morphing procedure, and the
number of morphed images for every data source are reported. The last column reports
the quality of morphed images, as discussed in Sections 3.1 and 3.2.
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Data Source #Morphed #Bonafide Notes

FRGC [53] 3092 2581 50 P&S
AR [45] 711 1422 -
Feret [54] 1985 2720 50 P&S
FRLL [16] 7062 92 -
CFD [43] 24930 831 -
FEI [79] 6000 200 -

Table 3.2: Analysis of the amount of morphed and bonafide images in relation to each
source dataset (see Table 3.1). As shown, the morphed images represent the large majority
of available data during the training and testing phases.

3.1.1 Progressive Morphing Database (PMDB)

This dataset [26] is built starting from three well-known datasets, i.e. AR [45],
FRGC [53] and Color Feret [54], using the public morphing algorithm described
in [26], creating a total of 1108 morphed images, a sample of which can be found
in Figure 3.2. 280 subjects were used to generate the morphed images, split into
134 males and 146 females.

It is important to note that on PMDB no manual retouching procedures are
applied to morphed images in order to enhance the visual quality; therefore, the
images may contain artifacts (such as blurred areas or ghosts). The background is
automatically replaced by the morphing algorithm, then it does not include any
artifacts.

Figure 3.2: Visual samples of three images from the PMDB [26] dataset.
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3.1.2 Idiap Morph

This dataset [62, 61] is a publicly available set of several datasets, specifically con-
sisting of five subsets created with five distinct morphing algorithms (OpenCV [44],
FaceMorpher [55], StyleGAN [36], WebMorph [16] and AMSL [50]), exploiting the
face images belonging to the Feret [54], FRGC [53] and Face Research Lab London
Set [16] (in this thesis referred as FRLL) datasets as input data. A sample image
from each morphing algorithm used in this dataset can be found in Figure 3.3.

As depicted in Figures 3.1b and 3.1c, the overall visual quality of morphed
images created employing the OpenCV and FaceMorpher algorithms is negatively
influenced by the heavy presence of artifacts, located both in the background
and foreground (i.e. the face) of images. In morphed faces generated with the
StyleGAN-based approach (as shown in Figure 3.1d), visual artifacts are less visible,
but common GAN-related textures are still present and detectable [87]. The AMSL
morphing algorithm (a sample of which can be found in Figure 3.1f) is exploited to
produce 2175 morphed images starting from 102 adult faces, with a morphing factor
equal to 0.5. The interesting feature of this morphing algorithm is represented by
the compression procedure applied to all images, in order to fit on the single chip of
the eMRTD that is available in official documents: therefore, the available images
are encoded using the JPEG Sequential Baseline (ISO/IEC 10918-1) mode of
operation [83] and have a maximum size of 15 kB. We observe that the compression
procedure tends to make the S-MAD task more challenging since it deletes most of
the artifacts possibly introduced by the morphing algorithm.

3.1.3 MorphDB

This dataset [26], built using images belonging to the Color Feret [54] and FRGC [53]
datasets, consists of 100 morphed images created starting from 50 male and 50
female subjects using the Sqirlz Morph 2.1 [84] algorithm. A sample image from
this dataset can be found in Figure 3.4.

Unfortunately, this dataset is not publicly released, but it can be found on the
FVC-onGoing [5] platform to be used as a test dataset as in the Revelio framework.
Despite this issue, it represents an interesting testing dataset, since all morphed
images have been manually retouched, and therefore the final visual quality is
excellent. This dataset contains also a set consisting of real printed-and-scanned
(P&S) images, i.e. bonafide and morphed images that have been realistically
printed and scanned with professional tools. These two factors combined make this
dataset particularly challenging, although the limited number of images may make
it unsuitable for conducting an extensive performance review of a MAD algorithm.
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(a) OpenCV [44] (b) FaceMorpher [55] (c) StyleGAN [36]

(d) WebMorph [16] (e) AMSL [50]

Figure 3.3: Visual sample of an image for each morphing algorithm used in the Idiap
Morph [62, 61] dataset.

(a) Digital (b) Printed & scanned

Figure 3.4: Visual sample of an image from the MorphDB [26] dataset, in both digital
and printed-and-scanned form.
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3.2 Proposed datasets

To further increase the volume of available training data, we introduce two datasets
that can be used for Morphing Attack Detection: ChiMo and FEI. Both these
datasets are based on others that are not explicitly designed for solving Morphing
Attack Detection. To generate the morphed images, the same protocol has been
employed: for each subject, five other subjects of the same ethnicity and gender
have been selected for morphing; in order to maximize the attack potential of the
morphed images (i.e. the probability of fooling FRSs), the average face verification
scores of three commercial SDKs (VeriLook 2, Cognitec3 and Innovatrics4) have been
used to select the most similar subjects for each individual. Then, two morphing
factors (0.3 and 0.5) and three different morphing algorithms (FaceFusion [22],
UTW [59] and NTNU [59]) are applied for each subject pair.

3.2.1 ChiMo

The ChiMo dataset has been generated using the images (with neutral expression)
of the Chicago Faces Database (CFD) [43] that includes images of 831 subjects of
varying ethnicities.

By implementing the protocol depicted above, this dataset contains 24930
morphed images (8310 per morphing algorithm). A sample image from each
morphing algorithm used in this dataset can be found in Figure 3.5.

Finally, two versions of this dataset are created: the first one contains the
digital images as produced through the morphing procedure, while in the second
(referred to with the subscript JPG) we applied a compression procedure similar to
the one applied on AMSL, thus obtaining images with a maximum size of 15 kB.

3.2.2 FEI

The FEI dataset has been generated using the images contained in the FEI Face
Database [79], which includes 200 subjects, equally split between male and female.

By implementing the protocol depicted above, this dataset contains 6000
morphed images (2000 per morphing algorithm). A sample image from each
morphing algorithm used in this dataset can be found in Figure 3.6.

For each subject two frontal images (one with a neutral or non-smiling expression
and the other with a smiling facial expression) are available, thus making this
dataset suitable for D-MAD as well. All faces are mainly represented by subjects
between 19 and 40 years old with distinct appearances, hairstyles, and accessories.

2www.neurotechnology.com/verilook.html
3www.cognitec.com
4www.innovatrics.com/
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(a) FaceFusion [22] (b) UTW [59] (c) NTNU [59]

Figure 3.5: Visual sample of an image for each morphing algorithm used in the ChiMo
dataset.

(a) FaceFusion [22] (b) UTW [59] (c) NTNU [59]

Figure 3.6: Visual sample of an image for each morphing algorithm used in the FEI
dataset.
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3.3 D-MAD suitability

With the exception of ChiMo, all datasets are also suitable for D-MAD: indeed,
each subject can be paired with another picture of the same subject with a different
pose and possibly lighting conditions. This condition is necessary for a dataset to
be suitable for D-MAD because it would be incorrect to use the same image both
to generate the morphed picture and as a live image.

The statistics about the datasets used for the D-MAD task can be found in
Table 3.3.

Morphing Algorithm Dataset #Bona fide #MorphedC #MorphedA

UBO [6] PMDB 280 1108 1108
OpenCV [44] Idiap Morph 3951 5021 5021
FaceMorpher [55] Idiap Morph 3951 4323 5022
StyleGAN [36] Idiap Morph 3951 4323 5022
Sqirlz MorphD [84] MorphDBD 756 396 360
FaceFusion [22] FEI 400 4000 4000
UTW [59] FEI 400 4000 4000
NTNU [59] FEI 400 4000 4000

Table 3.3: Morphing algorithms and datasets. For each morphing algorithm, the related
dataset name, the original source of the images used for the morphing procedure, and the
number of morphed images for every data source are reported. The last column reports
the quality of morphed images, as discussed in Sections 3.1 and 3.2.

3.4 Real-world applicability

One significant issue that afflicts many of the presented datasets is that they fail
to accurately represent the different quality levels of the pictures used as input.

Indeed, the majority of the images used for training MAD algorithms have high
definition and low compression ratios; however, while these conditions are ideal,
they are not realistic for real-world use cases.

Two commonplace factors that rapidly deteriorate the quality of the input
images can be found:

• strong lossy compression: the subject’s mugshot image stored into the chip
in compressed form, either using the JPEG Sequential Baseline (ISO/IEC
10918-1) mode of operation or the JPEG-2000 Part-1 Code Stream Format
(ISO/IEC 15444-1) [83]; considering the minimum image size requirement of
11 kB given in [33], most of the issuing authorities adopt a compressed image
size of around 12-15 kB;
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• printing and scanning : in many countries, the digital photo acquired by
professional photographers is printed on paper and then scanned by the
officer to be included in the document during the eMRTD issuing process.

Both these processes, which can be seen in Figure 3.7, have the effect of
concealing many of the artifacts left by morphing algorithms, thus hampering the
performance of MAD systems that have been trained only on high-quality images.

(a) Digital (b) Printed & scanned

(c) Compressed (d) P&S and compressed

Figure 3.7: Visual sample of the same image with different artifacts. As shown, strong
image compression and P&S severely degrade the quality of the image (d) with respect
to the original digital version (a).

31



3.5 Literature metrics

In order to evaluate and compare MAD systems, there are several metrics commonly
used for performance assessment in the context of morphing detection [70]:

• Bona Fide Presentation Classification Error Rate (BPCER): represents the
proportion of bona fide images wrongly classified as morphed; if the morphed
class is the positive one, this metric is equivalent to the False Rejection Rate
(FRR). It can be mathematically defined as follows:

BPCER(τ) =
1

N

N∑
i=1

H(bi − τ) (3.1)

• Attack Presentation Classification Error Rate (APCER): represents the pro-
portion of morphed images wrongly accepted as bona fide; if the morphed
class is the positive one, this metric is equivalent to the False Acceptance
Rate (FAR). It can be mathematically defined as follows:

APCER(τ) = 1−

[
1

M

M∑
i=1

H(mi − τ)

]
(3.2)

In both definitions, τ is the score threshold on which bi,mi, the detection scores,
are compared; H(x) = {1 if x > 0, 0 otherwise} is defined as a step function.

Typically, the BPCER is measured with respect to a defined value of APCER,
i.e. B0.1, B0.05 and B0.01, representing the lowest BPCER with APCER ≤ 10%,
≤ 5% and APCER ≤ 1%, respectively. Ideally, a MAD algorithm employed in a
real-world setting would need to operate at a low APCER (i.e. letting almost no
criminals through) of around 0.1%, while maintaining an acceptable corresponding
BPCER (i.e. generating few false positives) of around 1%.

Finally, the APCER and BPCER metrics can be plotted to create the Detec-
tion Error Trade-off (DET) curves to facilitate the comparison between different
approaches. An example of DET curve can be found in Figure 3.8: the ratio of
false negatives increases when moving to the right, while the ratio of false positives
increases when moving up. The curve must at least intersect the

The Equal Error Rate (EER), i.e. the error rate for which both BPCER and
APCER are equal, is usually depicted in the plot or included as a single value.

3.6 Proposed metrics

The results reported on different datasets, using several performance indicators,
can be sometimes dispersive and difficult to analyze as a whole. To the best of our
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Figure 3.8: An example of a DET curve; the green area in the bottom-left corner
represents the ideal operating window for real-world uses.

knowledge, we are not aware of widely-accepted methods capable of mitigating this
problem; therefore, we introduce our proposed approach to address this very issue.

3.6.1 Weighted Average Error across Datasets (WAED)

To summarize and simplify the comparison of diverse approaches across different
testing datasets, we introduce therefore a new metric, namely Weighted Average
Error across Datasets (in short, WAED), that aims to condense the aforementioned
set of error metrics E computed on different testing datasets D into a single value:

WAED =
∑
E∈E

∑
D∈D

wDwEE(D) (3.3)

where:

• E(D) is the value of the error indicator E ∈ E , measured on the dataset
D ∈ D;

• wE is a weighting factor assigned to each error indicator in order to focus
our attention on the error indicators which are more relevant for a real-
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world scenario (e.g. B0.01). The weights considered for the WAED metric
computation (see Table 3.4) are chosen by assigning the majority of the
weight to the most common real-world operating point (i.e. B0.01), followed
by the EER, as it is useful for evaluating the performance of the system at a
glance, and finally the other two chosen operating points (i.e. B0.05 and B0.1);

• wD is a dataset weight that empirically measures the dataset complexity: a
good method to quantify this factor is by measuring the similarity of the
morphed images to the two contributing subjects. In particular, for each
dataset D ∈ D, we compute the value sD, through the comparison of each
morphed image mi ∈ D with the S bona fide images bi,j used in the morphing
process. The comparison is done on K different commercial face verification
SDKs, as follows:

sD =
1

M

M∑
i=1

1

S

S∑
j=1

1

K

K∑
k=1

sk (mi, bi,j)− thrk
thrk

(3.4)

where M = |D|, S = 2 since we tackle images produced through two-subjects
morphing algorithms, and K = 3 since we exploit Verilook, Cognitec, and
Innovatrics SDKs, respectively. To make comparable the scores of different
SDKs, the similarity score sk(mi, bi,j) provided by each SDK is normalized
according to the FAR1000 threshold (thrk) provided by the SDK.

Finally, the single dataset scores are normalized in the range [0, 1] as follows:

wD =
sD

max
D∈D

sD
(3.5)

The proposed metric produces a single numeric value in the range [0, 1] with
which comparisons are simplified: being an overall error measure, low values are
desirable.

Metric Weight (wE)

EER .30
B0.1 .10
B0.05 .20
B0.01 .40

Table 3.4: Metric weights (wE) used for the proposed WAED metric.
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3.7 Benchmarks

As mentioned in Section 3.1, many MAD systems are trained on datasets that are
internally created, which often lack diversity with regard to size, image quality,
realistic post-processing, and variability of morphing algorithms. These issues
become particularly apparent when evaluating different MAD systems.

To have a fair comparison between different MAD algorithms, and to measure
their performance in conditions as close as the ones found in the real world, two
standard benchmarks have been proposed: the SOTAMD dataset (available through
the FVC-onGoing5 [5] platform) and the NIST FRVT MORPH 6 [48] platform.

Both of these are more generally known as sequestered datasets : researchers do
not have access to the images contained in these benchmarks, so they cannot be
used to train the models or guide in any way the choice of the best hyperparameters.

3.7.1 SOTAMD sequestered test set

To have a complete and fair performance comparison between MAD systems, a
new dataset is created as a joint effort in an EU-funded project, known as State-
Of-The-Art Morphing Detection (SOTAMD). The SOTAMD dataset consists of
the following:

• Enrollment images: bona fide face images meeting the requirements of
passport application photo capture (e.g. photographer studio);

• Gate images : bona fide face images captured live with a face capture system
in an Automated Border Control (ABC) gate;

• Chip images: compressed face images stored on an electronic Machine-
Readable Travel Document (eMRTD);

• Morphed face images : morphed images created from the pool of enrolled face
images; this database contains both digital (with and without postprocessing)
and printed and scanned images.

The final number of images is 300 bona fide, 2045 morphed, and 1500 at the
gate (1096 and 3703 for bona fide and morphed in the P&S scenario, respectively).
There are 75 unique pairs of candidates for morphing from 150 individuals of
various ethnicities and ages.

5https://biolab.csr.unibo.it/fvcongoing
6https://pages.nist.gov/frvt/html/frvt_morph.html
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3.7.2 NIST Face Recognition Vendor Test

The NIST Face Recognition Vendor Test, also known as NIST FRVT MORPH,
provides ongoing independent testing of MAD systems. The test leverages several
datasets created using different morphing techniques in order to evaluate the
robustness of the morphing attack detector. The test datasets are divided into
three tiers, with increasing difficulty levels.

• Tier 1 : lower quality morphs created with readily accessible tools available
to non-experts, such as online tools from public websites and free mobile
applications. These morphs are created using low-effort processes and are
generally low quality and contain large amounts of morphing artifacts that
are visible to the human eye.

• Tier 2 : morphs generated using automated morphing methods based on
academic research and best practices. Automated methods allow for the
generation of morphs in large quantities for testing.

• Tier 3 : higher quality morphs created using commercial-grade tools with
manual processes. These are high-quality morphs with very minimal visible
morphing artifacts.
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Chapter 4

Related works

This Chapter contains a non-exhaustive selection of relevant proposed methods to
tackle both S-MAD and D-MAD problems.

4.1 Single-image Morphing Attack Detection

4.1.1 Detection of morphed faces from single images: a
multi-algorithm fusion approach

In [64], summarized in Figure 4.1, the authors propose a system employing tra-
ditional methods for feature extraction and relying on several Support Vector
Machines [14] (SVMs) to produce intermediate normalized attack detection scores
in the [0, 1] range, which are then combined through the sum-rule with proper
normalization [34].

Figure 4.1: Overview of the S-MAD method proposed in [64], based on multiple Support
Vector Machines (SVMs) [14] that are trained on different features, and whose scores are
combined using a normalized sum-rule [34]. Image source [64].

The employed features can be categorized into four disjoint groups:
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• Texture descriptors : Local Binary Patterns (LBP) [40] and Binarized Stat-
istical Image Features (BSIF) [35] are used to capture any possible texture
differences between bona fide and morphed images.

• Keypoint extractors: Scale Invariant Feature Transform (SIFT) [42] and
Speeded Up Robust Features (SURF) [4] are employed because, according to
the authors, morphed images tend to present less key locations; therefore,
the number of detected keypoints is used as a discriminating feature.

• Gradient estimators: Histogram of Oriented Gradients (HOG) [73] and
sharpness (i.e. the mean of the gradient in two dimensions) are adopted
because the morphing process reduces the steepness of such gradients.

• Deep learning-based methods: OpenFace [3] is used thanks to the advance-
ments in face recognition.

A commercial off-the-shelf face recognition system is used to evaluate the
performance of the proposed algorithm. Results show that LBP represents the
best solution as a single descriptor, followed by BSIF, SURF, SIFT, sharpness, and
HOG. Moreover, the fusion of different features provides better results, but with
limited absolute improvement. The best combination consists in combining the
LBP, SIFT, and sharpness features.

4.1.2 Detection of face morphing attacks based on PRNU
analysis

In [68], the authors propose the analysis of the camera’s sensor noise, known as
Photo Response Non-Uniformity (PRNU) [12], to classify images into either the
bona fide or morphed classes.

PRNU has previously been utilized as a reliable tool to perform various forensic
tasks, including detecting digital forgeries. The PRNU origins from slight variations
among individual pixels during the photoelectric conversion in digital image sensors.

The method, summarized in Figure 4.2, consists in extracting the PRNU noise
from the image and extracting two kinds of features, namely spatial and spectral
features; the former aim at analyzing the distribution of the PRNU noise, while
the latter try to reveal any alterations of the PRNU signal caused by the morphing
process. Feature aggregation is obtained by sampling the minimum or maximum
score among the individual cells, and the final decision is taken using a threshold.

Experimental results show good accuracy with the respect to traditional image
descriptors and deep features from FaceNet [71], even though the results are strongly
affected by the exploited morphing algorithm.
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Figure 4.2: Overview of the S-MAD method proposed in [68], based on the extraction and
analysis of the Photo Response Non-Uniformity (PRNU) [12] noise. Image source: [68].

4.1.3 Face morphing detection in the presence of print-
ing/scanning and heterogeneous image sources

In [24], the authors propose to use well-known networks (in particular AlexNet [39],
VGG-19 [74], VGG-Face2 [9] and VGG-Face16 [52]) to determine whether an image
is morphed or not.

Due to the scarcity of training data, a first fine-tuning step is performed on
digital images starting from networks pre-trained either on the Imagenet [17] or the
VGG-Face2 [9] datasets. Then, a second step of fine-tuning is conducted to improve
the performance of the algorithm on printed-and-scanned images. Indeed, results
show that networks trained only on digital images are not able to effectively classify
images that have undergone a printing and scanning process. The exploiting of
simulated printed-and-scanned images during the model’s training allows, in some
cases, for a significant improvement.

4.1.4 Morphing detection based on regional analysis of local
frequency content

In [47], the author explores the possibility of classifying images by analyzing them
in the frequency domain.

The author employs an SVM and a DNN for classifying the spectrums obtained
after applying a 2D Discrete Fourier Transform and computing the power spectrum
on the images.

Results show that, in a single-image setting, the SVM has a slightly higher
classification accuracy than the DNN. However, being the study limited in scope,
it is difficult to compare the obtained results to the others that can be found in
the literature.
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4.1.5 Attention aware wavelet-based detection of morphed
face images

In [1], a summary of which can be found in Figure 4.3, the authors propose the use
of uniform wavelet decompositions to extract forensic features from the images and
then classifying them by employing an Inception-Resnet V1 [77] with three custom
attention modules.

Figure 4.3: Overview of the S-MAD method proposed in [1], based on uniform wavelet
decompositions for extracting forensic features, to be classified using an Inception-
Resnet V1 [77]. Image source: [1].

The authors affirm that most artifacts produced by facial image morphing
techniques lie within the high-frequency spectrum, and therefore using wavelet
decomposition allows them to select the desired wavelet sub-bands by discarding
the low-frequency ones. In particular, the authors apply a three-level undecimated
2D wavelet decomposition on the input image, discarding the LL sub-band after
the first decomposition. In total, each image is decomposed into 48 sub-bands that
are then stacked channel-wise. Then, the resulting volume is fed into an Inception-
Resnet V1 network, which has been adapted to support a 48-channel input volume.
Moreover, the authors insert three attention modules: each module receives as
input the global feature vector and the activations of a specific volume inside the
network, to produce an attention-weighted local feature vector. According to the
authors, the three attention modules can emphasize the artifacts stemming from
the morphing attack, leading to more accurate detection of morphed images. The
resulting three attention-weighted local feature vectors are then concatenated and
used as input for the classifier.

Results show that while the conducted ablation study proves that the inserted
attention modules are effective in improving the model’s performance, the authors
also demonstrate that the use of undecimated wavelet decomposition is actually
advantageous only in limited cases, while in the others a classifier that takes RGB
images and uses an Inception-Resnet V1 as backbone provides generally lower error
rates.
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4.2 Differential Morphing Attack Detection

4.2.1 Detecting morphed face images using facial landmarks

In [67], summarized in Figure 4.4, the authors propose an algorithm developed on
the basis that facial landmarks tend to be averaged between two subjects during
the creation of morphed images. In particular, they observe that the distance of a
specified landmark between two bona fide images of the same individual is likely to
be smaller than the distance between the same landmark from a genuine image of
the subject and a morphed image of another one. Following these considerations,
the authors extract two types of features: Euclidean distances between landmarks,
and angles between a pre-defined set of neighboring landmarks.

Figure 4.4: Overview of the D-MAD method proposed in [67], based on comparing the
Euclidean distance of facial landmarks between the suspected morphed and live images.
Image source: [67].

Results show that the best performance can be achieved using an SVM with a
Radial Basis Function (RBF) [10] kernel. Nevertheless, though results indicate that
some information about the morphing process can be derived from facial landmarks,
the presented solution does not possess sufficient overall performance to be viable
for practical applications.

4.2.2 Face demorphing

In [25], authors explore the idea of trying to reverse the morphing process and
extracting the identity of the legitimate document owner. The method, whose
pipeline can be outlined in Figure 4.5, employs a face recognition system to compare
the live and the potentially morphed images; then, the same system compares the
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Figure 4.5: Overview of the D-MAD method proposed in [25], based on reversing the
morphing process to extract the identity of the legitimate document owner. Image
source: [25].

live image and the picture obtained via the demorphing process. Only if both
checks succeed, then the document is considered valid and the ABC gate is allowed
to open. On the contrary, if any face verification check fails, an alert is sent to a
human officer. In particular, if the second check is unsuccessful, a warning of a
possible morphing attempt is triggered.

Results are collected using the VeriLook FRS and suggest that images morphed
with a factor α ∈ [0.2, 0.3] represent the best trade-off between the probability of
the morphed image being accepted by both face verification systems and human
officers. Moreover, the demorphing process is able to reduce the chance (according
to the authors, from 60–70% to 6–10%) of a criminal fooling an ABC gate, while
at the same time maintaining the number of false positives relatively limited.
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4.2.3 Deep face representations for differential Morphing
Attack Detection

In [66], authors propose to exploit a pre-trained deep neural network, i.e. Fa-
ceNet [71] and ArcFace [18], for feature extraction.

As these networks are pre-trained on datasets with no morphed images, the ex-
tracted features do not contain any information specific to any morphing algorithm.
The algorithm, depicted in Figure 4.6, extracts the embeddings for both the live
and the suspected morphed images and combines them by subtracting them. Then,
an SVM with an RBF kernel is trained on these difference vectors and a score is
produced.

Figure 4.6: Overview of the D-MAD method proposed in [66], based on combining and
then classifying the features emitted by a state-of-the-art backbone such as ArcFace [18].
Image source: [66].

(a) Softmax (b) ArcFace

Figure 4.7: Comparison of 2D features of 8 identities (one per color) produced using
the softmax and ArcFace losses. Dots indicate samples and lines represent the center
direction of each identity. Image source: [18].
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Results show the effectiveness and robustness of the proposed algorithm. Au-
thors show that the ArcFace backbone proves to be very effective at producing
robust embeddings, also thanks to its specific loss function [18] that maximizes the
geodesic distance between different identities, as shown in Figure 4.7. Moreover, this
D-MAD algorithm provides remarkable results against the SOTAMD sequestered
test set, obtaining a D-EER of 4.54%.

However, as the underlying feature extractor does not have any knowledge
about face morphing, the algorithm proposed by the authors can be essentially
considered a face verification system rather than a morphing attack detector.
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Chapter 5

Single-image MAD experiments

In this Chapter, we define the training and testing protocols used in our experimental
evaluation for S-MAD systems, describing the datasets used and the training and
testing split. In particular, we aim to clearly define a common protocol for future
MAD proposals, seizing the opportunity to propose a comprehensive empirical
comparison of different MAD approaches available in the literature.

5.1 Datasets and protocols

In Revelio, and in all the following experiments and tables, we group the train and
test datasets relying on the morphing algorithm used to produce morphed images,
as also reported in the first column of Table 3.1. When training and evaluating the
S-MAD experiments the images from the FEI data source are not included, as it
is a dataset that was introduced after the end of the experiments. Therefore, the
FaceFusion, UTW and NTNU morphing algorithms are comprised exclusively of
images from the ChiMo dataset (8310 morphed images).

We believe this data organization is useful to analyze the MAD performance
in relation to different morphing algorithms that represent a key element in the
development of MAD techniques [70]. Then, different datasets can be grouped in
the same set; for instance, the StyleGAN-based [36] morphing algorithm groups the
subsets belonging to the Idiap Morph built on three different data sources (FRGC,
FRLL and Color Feret).

All the experiments have been carried out following the dataset organization
and training/testing protocols described in Table 5.1. Specifically, we create a
challenging setup following these considerations:

• Morphing algorithms used to produce images in training and testing splits
are different; more precisely, we create one validation and one test set: the
first one is a subset (20% of the images) taken from the same datasets used
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Morphing Algorithm Train/Val (%) Test (%)

UBO [6] 70+10 20
OpenCV [44] 70+10 20
FaceMorpher [55] 70+10 20
StyleGAN [36] 70+10 20
WebMorph [16] 0 100
AMSL [50] 0 100
Sqirlz MorphD [84] 0 100
Sqirlz MorphP&S [84] 0 100
FaceFusion [22] 0 100
UTW [59] 0 100
NTNU [59] 0 100

Table 5.1: Morphing algorithms and datasets in the Revelio framework used for the
experimental evaluation. For each morphing algorithm, the percentage of images available
during the training, validation, and testing phases are shown.

for model training so that the morphing algorithms coincide with those in the
training set, while the second one, on which the WAED metric is computed
(see Section 3.6.1), contains all the morphed images generated with unseen
morphing algorithms.

• The training datasets contain morphed images with low visual quality due to,
for instance, the presence of artifacts, as shown in Figure 3.1, while the test
set only includes medium or high-quality morphed images, due to the human
intervention in retouching procedures (MorphDB) or the absence of visible
artifacts in the backgrounds (ChiMo).

It is worth noting that this setting assures a demanding cross-morphing al-
gorithm evaluation, aiming to verify the generalization capabilities of the investig-
ated MAD methods. Besides, all the images taken from the Chicago Face Dataset
belong to subjects never seen during the training procedure.

Table 3.2 reports, for each public face dataset, the number of bona fide images
considered in the experiments and the total number of morphed images derived
from that dataset. It is important to note the unbalanced amount of bona fide and
morphed images, which contributes in making challenging the proposed setting.

In order to evaluate and compare the investigated MAD methods, we use the
metrics reported in Sections 3.5 and 3.6.

Moreover, as reported in Section 3.6.1, we employ the proposed WAED metric
to summarize and simplify the comparison of the diverse approaches across the
different testing datasets. The weights for the testing datasets employed in the
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S-MAD experiments (wD) are computed by following the instructions mentioned
in Section 3.6.1, obtaining the results that are reported in Table 5.2.

Dataset Weight (wD)

FaceFusion[JPG] 1.00
NTNU[JPG] .94
UTW[JPG] .88
Webmorph .80

Sqirlz .78
AMSL .77

Table 5.2: Dataset weights (wD) used for the proposed WAED metric (see Section 3.6.1).
Subscript [JPG ] denotes both versions of the dataset, with digital and compressed images.

5.2 Experimental results

As previously mentioned, experimental results are reported grouped by morphing
algorithms, and then a single group can refer to more than one dataset. Associations
between the original dataset and the morphing algorithms are reported in Table 3.1.

In all the following experiments, all the networks are pre-trained either on the
ImageNet [17] or VGG-Face2 [9] datasets (weights downloaded from the official
PyTorch1 storage), and trained using the binary cross-entropy loss function. As an
optimizer, we use the Stochastic Gradient Descent (SGD), with a learning rate in
the range of [10−3, 5 · 10−3] and early-stopping (with patience of 5 epochs and a
minimum improvement of 10−3) to prevent overfitting computed on the validation
set. All the configuration settings and trained models are publicly released2.

5.2.1 Investigation on face detectors

Several robust face detection techniques are available in the literature and this
first set of experiments aims to compare the most promising ones and to evaluate
their impact on S-MAD performance, being aware that in this application scenario
face detection is quite a simple task, since all input images are fully ISO/ICAO-
compliant [83], with natural expression, acquired in constrained (frontal) pose and
lighting conditions, etc.

Then, we focus on testing three different face detectors widely used in the
literature, in particular in MAD methods, based on Machine and Deep Learning

1https://pytorch.org
2https://miatbiolab.csr.unibo.it/revelio-framework/
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Morphing Alg.
DLib [37] OpenCV [81] MTCNN [86]

EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01

UBO .000 .000 .000 .000 .000 .000 .000 .000 .014 .000 .000 .014
OpenCV .001 .000 .000 .001 .005 .000 .000 .002 .018 .002 .006 .035
FaceMorpher .002 .000 .000 .000 .002 .000 .000 .002 .007 .001 .002 .006
StyleGAN .001 .000 .000 .000 .003 .000 .000 .001 .018 .002 .004 .021

AMSL .302 .650 .700 .950 .300 .700 .750 .900 .112 .150 .300 .650
Webmorph .400 .700 .900 1.000 .400 .750 .750 .900 .362 .800 .800 .850
Sqirlz MorphD .041 .012 .033 .122 .032 .000 .008 .081 .032 .021 .033 .062
FaceFusion .255 .656 .803 .945 .277 .598 .732 .898 .300 .759 .876 .970
NTNU .215 .680 .854 .978 .249 .651 .826 .966 .182 .489 .752 .954
UTW .538 .912 .959 .992 .516 .899 .946 .996 .300 .567 .714 .878
FaceFusionJPG .445 .832 .922 .981 .450 .859 .924 .983 .270 .503 .663 .886
NTNUJPG .491 .901 .946 .990 .471 .894 .948 .987 .327 .659 .786 .931
UTWJPG .491 .865 .929 .982 .508 .878 .929 .983 .363 .709 .806 .931

WAED ↓ .6944 .6800 .5831

Table 5.3: Morphing detection scores across different Face Detectors given a fixed ResNet-
50 [32] detector. Results are reported in terms of Equal Error Rate (EER), the lowest
BPCER related to APCER ≤ 10%, ≤ 5%, and ≤ 1%, respectively. The proposed
WAED metric summarizes performance (lower is better) across listed testing datasets
(see Section 3.6.1).

techniques: DLib [37], Haar cascades-based [81] (here referred as OpenCV) and
MTCNN [86]. Experiments are carried out in combination with a ResNet-50 [32]
architecture, whose effectiveness has been widely documented in the literature for
several classification tasks, including MAD [7, 26].

The results reported in Table 5.3 suggest that the MTCNN face detector leads
to the best accuracy, while DLib and OpenCV have similar lower values. As
depicted in Figure 2.2 the face crop provided by MTCNN detector includes a wider
facial area and then tends to include facial parts (chin and outline) in which the
morphing procedure usually leaves artifacts.

As mentioned, the choice of the best algorithm and the computation of the
WAED metric is based on the results obtained on the second group of testing
datasets, in which morphed images have been created with morphing algorithms
different from the ones used for the training images.

5.2.2 Investigation on DNN architectures

In the second part of the experiments, we aim to define the best architecture to
tackle the morphing classification task.

In [27], authors proposed to exploit well-known deep architectures, ranging from
AlexNet [39] to VGG-Face [74], to address the S-MAD task. Reported results seem
to suggest that a deep learning approach can achieve high accuracy, provided that
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Morphing Alg.
ResNet-50 [32] Inception-Resnet V1 [77] Vision Transformer [20]

EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01

UBO .014 .000 .000 .014 .003 .000 .000 .000 .006 .000 .000 .002
OpenCV .017 .002 .006 .022 .008 .000 .000 .006 .014 .000 .004 .039
FaceMorpher .006 .001 .002 .005 .004 .000 .000 .003 .006 .000 .000 .005
StyleGAN .017 .002 .003 .018 .013 .000 .000 .021 .009 .000 .002 .009

AMSL .112 .150 .300 .650 .005 .000 .000 .000 .150 .250 .300 .350
Webmorph .362 .800 .800 .850 .250 .350 .650 .900 .300 .400 .650 .850
Sqirlz MorphD .032 .021 .033 .062 .024 .012 .025 .123 .054 .015 .058 .118
FaceFusion .300 .759 .876 .970 .114 .136 .243 .502 .240 .440 .579 .829
NTNU .182 .489 .752 .954 .114 .132 .261 .519 .228 .448 .598 .897
UTW .300 .567 .714 .878 .312 .641 .769 .942 .439 .750 .836 .951
FaceFusionJPG .270 .503 .663 .886 .125 .165 .351 .669 .186 .278 .391 .679
NTNUJPG .327 .659 .786 .931 .158 .265 .448 .703 .223 .369 .507 .769
UTWJPG .363 .709 .806 .931 .315 .643 .753 .918 .324 .709 .826 .959

WAED ↓ .5831 .3915 .5103

Table 5.4: Morphing detection scores across different architectures given a fixed Face
Detector (MTCNN). Results are reported in terms of Equal Error Rate (EER), the
lowest BPCER related to APCER ≤ 10%, ≤ 5%, and ≤ 1%, respectively. The proposed
WAED metric summarizes performance (lower is better) across listed testing datasets
(see Section 3.6.1).

a certain amount of representative training data is available for model training.
This work lead us to select three different deep learning-based architectures already
proposed in the literature, i.e. ResNet-50 [32] (the same used in the evaluation
of Section 5.2.1), Inception-Resnet V1 [77] and the recent Vision Transformer
(ViT) [20].

The architecture choice is because of ResNet-50, as mentioned before, revealing
high accuracy in several classification tasks, while Inception-Resnet V1 has been
effectively used in [1] for the S-MAD task. Differently, the ViT model is an
architecture recently proposed in the literature, that seems to be able to overcome
the performance of traditional Convolutional Neural Networks (CNNs) for image
classification [31]. We also internally tested other architectures obtaining lower
results, here not reported for simplicity.

The experimental results reported in Table 5.4 show that the Inception-Resnet V1
outperforms the other architectures by a clear margin, with equal training and
testing data, thus confirming the findings reported in [1]. Presumably, the presence
of kernels with different sizes at the same level of the network enhances the ability
of the model to detect specific patterns on pixel values, and then morphed images.
Therefore, all the following experiments are performed using the Inception-Resnet
model.
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5.2.3 Investigation on data augmentation

Morphing Alg.
No augmentation JPEG [83] Print & Scan [27]

EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01

UBO .003 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
OpenCV .008 .000 .000 .006 .009 .000 .000 .005 .008 .000 .000 .003
FaceMorpher .004 .000 .000 .003 .004 .000 .000 .000 .011 .000 .000 .012
StyleGAN .013 .000 .000 .021 .011 .000 .000 .011 .008 .000 .000 .008

AMSL .005 .000 .000 .000 .000 .000 .000 .000 .050 .050 .050 .300
Webmorph .250 .350 .650 .900 .158 .200 .250 .750 .315 .500 .500 .750
Sqirlz MorphD .024 .012 .025 .123 .001 .000 .000 .001 .069 .019 .118 .192
FaceFusion .114 .136 .243 .502 .094 .088 .176 .408 .129 .178 .341 .671
NTNU .114 .132 .261 .519 .091 .081 .176 .469 .167 .313 .501 .787
UTW .312 .641 .769 .942 .391 .740 .850 .964 .329 .621 .741 .884
FaceFusionC .125 .165 .351 .669 .114 .134 .283 .633 .162 .255 .434 .735
NTNUC .158 .265 .448 .703 .149 .239 .404 .679 .203 .412 .579 .829
UTWC .315 .643 .753 .918 .298 .604 .736 .918 .300 .622 .752 .940

WAED ↓ .3915 .3515 .4580

Sqirlz MorphP&S .252 .455 .540 .760 .197 .320 .385 .520 .218 .420 .505 .710
Sqirlz MorphP&S+JP2 .278 .495 .615 .855 .237 .355 .555 .780 .210 .395 .475 .610

WAEDP&S ↓ .5655 .4530 .4669

Table 5.5: Morphing detection scores across different Data Augmentation techniques,
given a fixed architecture (Inception-Resnet V1) and a Face Detector (MTCNN). Results
are reported in terms of Equal Error Rate (EER), the lowest BPCER related to APCER
≤ 10%, ≤ 5%, and ≤ 1%, respectively. The proposed WAED metric summarizes
performance (lower is better) across listed testing datasets (see Section 3.6.1).

Following the considerations reported in [27], we analyze the impact of different
data augmentation techniques on the final classification accuracy.

Data augmentation techniques play a crucial role in many different classification
tasks, increasing the amount and the variety of images available for model training.
The context of face morphing is, in some respects, different from other applications
since the morphing process leaves only labile traces and the risk of weakening such
details by applying transformations to the original images is concrete.

Then, we evaluate here different techniques for data augmentation: some of
them are the typical approaches used in the literature. In particular, we evaluate
here image resizing, which is generally required for model training since the large
majority of neural networks receive input images with a fixed spatial resolution;
the tests are aimed at evaluating the impact of the resizing algorithm used (i.e.
the interpolation algorithm) on the final accuracy of the model.

We also evaluate other transformations specific to this application scenario,
defined taking into account the typical pipeline of the document issuing process. In
many countries, in fact, the digital photo acquired by professional photographers
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is printed on paper and then scanned to be included in the document during
the eMRTD issuing process. Moreover, when stored into the chip, the image is
compressed, either using the JPEG Sequential Baseline (ISO/IEC 10918-1) mode of
operation or the JPEG-2000 Part-1 Code Stream Format (ISO/IEC 15444-1) [83].
Considering the minimum image size requirement of 11 kB given in [33], most of
the issuing authorities adopt a compressed image size of around 12-15 kB; we follow
here the approach adopted in [59] setting the maximum size of the compressed
photo to 15 kB.

As to the printing and scanning process, we apply here the simulation approach
introduced and described in [27].

The MAD results obtained using different data augmentation techniques are
reported in Table 5.5. The first column represents the baseline, where no data aug-
mentation is applied; the second column contains the results of a JPEG compression
with a probability of 50% on input images; finally, the third column represents the
performance obtained by applying the printing and scanning simulation with a
probability of 50% on input images.

The results (and the corresponding WAED metric) are reported separately for
the testing datasets used in the previous tables and for the P&S ones (not used in
the previous experiments).

Mainly guided by the findings in [27], all augmented models were obtained by
fine-tuning the baseline model, rather than training from scratch. As expected,
data augmentation has a slight but noticeable effect on the performance of the
model with respect to digital images. JPEG compression seems to produce in
general a positive effect even on non-compressed and printed/scanned datasets.

The simulation of the P&S process is expected to produce positive effects on
the P&S datasets and the results prove that in this case the model trained using
the simulation of the printing and scanning process performs better than the model
without this kind of augmentation; however, the advantages with respect to the
model trained with JPG compression augmentation are quite limited. As to this
aspect, we believe that the effectiveness of the simulation might be improved by an
optimization of its parameters that should be tuned to better represent the real
P&S process.

Finally, we internally test the investigated MAD also considering different
color spaces in input, following the findings reported in [60] that highlight that
the use of color spaces other than RGB might have a positive impact on MAD
performance. Then, we convert all training and test images in grayscale, HLS
and YCbCr color spaces: we omit to report the related Table since results reveal
that the RGB representation offers the best performance, and indeed the color
information positively contributes to the detection of morphed images. With
grayscale images, we obtain WAED = 0.3824, with HSL WAED = 0.5677 and
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with YCbCr WAED = 0.4360. We also tested a single channel in input, obtaining
similar results (WAED = 0.4411 using only the L channel of HSL, WAED = 0.7453
using the Y channel of YCbCr color space).

5.2.4 Investigation on forensic features

Morphing Alg.
Fourier [21] Wavelets [29] PRNU [12]

EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01 EER B0.1 B0.05 B0.01

UBO .112 .117 .235 .318 .021 .000 .000 .063 .125 .178 .244 .481
OpenCV .083 .055 .156 .430 .048 .022 .046 .186 .066 .041 .083 .199

FaceMorpher .052 .022 .056 .095 .021 .004 .010 .042 .077 .063 .106 .241
StyleGAN .060 .037 .074 .269 .051 .025 .052 .170 .023 .003 .013 .053

AMSL .403 .850 .850 .950 .200 .250 .450 .600 .356 .800 .850 .950
Webmorph .500 .950 .950 1.000 .411 .600 .650 .900 .550 .900 .950 1.000

Sqirlz MorphD .163 .292 .402 .763 .071 .070 .149 .356 .260 .442 .550 .639
FaceFusion .291 .613 .786 .922 .262 .515 .680 .915 .485 .925 .965 .989

NTNU .184 .338 .507 .794 .191 .327 .490 .761 .246 .587 .813 .978
UTW .879 1.000 1.000 1.000 .833 .998 1.000 1.000 .159 .253 .410 .851

FaceFusionJPG .446 .845 .922 .983 .188 .325 .480 .727 .372 .700 .832 .955
NTNUJPG .558 .927 .970 .993 .239 .451 .585 .810 .426 .835 .923 .986
UTWJPG .378 .757 .848 .976 .392 .774 .863 .963 .368 .727 .846 .958

WAED ↓ .7345 .5768 .7075

Table 5.6: Morphing detection scores across different forensic features used in combination
with the Inception-Resnet V1 architecture and the MTCNN Face Detection. Results are
reported in terms of Equal Error Rate (EER), the lowest BPCER related to APCER
≤ 10%, ≤ 5%, and ≤ 1%, respectively. The proposed WAED metric summarizes
performance (lower is better) across listed testing datasets (see Section 3.6.1).

The use of forensic features has received increasing attention not only in fake
face image detection (the so-called DeepFakes [30]), but also in the MAD field [49].
Indeed, we implement in our framework a selection of the most used forensic
features in the MAD task available in the literature.

As reported in [21], the Fourier transform can be effectively exploited to detect
fake facial images; in [47] this feature is used to detect morphed images and then is
implemented and tested in the Revelio framework.

Following the considerations reported in [68], the second investigation regards
the use of the Photo Response Non Uniformity (PRNU) [12], i.e. the unique
pattern noise related to a specific digital sensor used to acquire an image. The
underlying idea is that the morphing procedure can affect the uniformity of the
sensor noise, and then its analysis can help to spot morphed images.

Thirdly, our experiments aim to investigate the use of wavelets [29], since in [1]
an approach based on an attention-aware neural network that receives in input this
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kind of feature is presented, obtaining an interesting accuracy on the NIST FRVT
MORPH [48] platform. We implement this approach to the best of our knowledge3,
following two different approaches.

In both experiments, following the paper [11], we apply three-level undecimated
2D wavelet decomposition, using Daubechies 4 (db4) as the mother wavelet; in the
first implementation, a one-level wavelet decomposition is applied, while in the
second we apply a three-level decomposition and we finally exploit a selection of 23
sub-bands channel-wise stacked. The first approach provided better results in our
experiments, so the metrics are reported only for this implementation.

Experimental results are reported in Table 5.6: on our testing set all the forensic
features seem to have only a limited capability in detecting morphed faces produced
by morphing algorithms never seen during the training procedure. Specifically,
results suggest a limited generalization capability in the cross-morphing algorithm
scenario, with a lower EER on the first set of testing datasets (in which the same
morphing algorithm is also used in the training procedure), with respect to the
EER achieved in the second, more challenging, block of testing datasets. Best
performances across different forensic features are provided by the use of wavelets
with one-level decomposition (WAED = 0.577, while the three-level decomposition
achieves WAED = 0.603). This finding has a confirmation in [1], in which an
Inception-Resnet V1 architecture achieves comparable performance receiving in
input RGB images or wavelets.

5.2.5 Investigation on training data

Here, we investigate the influence of training data, and in particular the availability
of different morphing algorithms, in the development of robust MAD methods.

We train the best MAD detector obtained, i.e. the Inception-Resnet V1 network
receiving for input RGB faces detected with MTCNN, on different training data
configurations. This experimental validation is useful in order to understand how
the image visual quality, the variety of morphing algorithms, and the amount of
training data influence the final performance of the system.

As expected, the results reported in Table 5.7 reveal that the combination of all
available datasets produces the best performance, thus highlighting the importance
to train MAD models on varied and large-size datasets.

In particular, the presence of different morphing algorithms is a key element,
even when they generate images with visible artefacts and, from a general point
of view, produce low-quality morphed images (e.g. morphed faces produced with
WebMorph, FaceMorpher and OpenCV morphing algorithms). As to this point, we

3The original paper is currently patent pending, and then a limited amount of implementation
details are revealed.
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Morphing Alg.
UBO [6] OpenCV [44] FaceMorpher [55] StyleGAN [36]

EER B0.05 B0.01 EER B0.05 B0.01 EER B0.05 B0.01 EER B0.05 B0.01

UBO .000 .000 .000 .071 .079 .253 .152 .298 .465 .211 .537 .747
OpenCV .046 .043 .334 .022 .006 .041 .060 .069 .155 .135 .421 .702
FaceMorpher .024 .006 .159 .020 .006 .027 .035 .030 .080 .168 .509 .849
StyleGAN .171 .833 .987 .057 .082 .281 .124 .254 .535 .004 .000 .003

AMSL .022 .000 .250 .100 .100 .200 .050 .050 .150 .250 .500 .700
Webmorph .405 .900 1.000 .300 .700 .850 .300 .550 .750 .500 .900 .950
Sqirlz MorphD .020 .011 .151 .044 .048 .146 .252 .413 .589 .150 .238 .460
FaceFusion .407 .925 .990 .176 .442 .680 .181 .445 .727 .321 .798 .955
NTNU .307 .889 .990 .137 .330 .611 .114 .239 .510 .310 .776 .945
UTW .312 .800 .943 .204 .645 .904 .363 .859 .969 .403 .854 .955
FaceFusionJPG .174 .552 .834 .141 .342 .608 .146 .357 .659 .316 .771 .921
NTNUJPG .215 .688 .889 .183 .478 .691 .174 .450 .745 .353 .816 .952
UTWJPG .405 .898 .981 .344 .776 .935 .365 .844 .965 .456 .925 .987

WAED ↓ .5815 .4271 .4675 .6672

Table 5.7: Morphing detection scores across different training sets given a fixed model
(Inception-Resnet V1) and face detector (MTCNN). Results are reported in terms of
Equal Error Rate (EER), the lowest BPCER related to APCER ≤ 5% and ≤ 1%,
respectively. The proposed WAED metric summarizes performance (lower is better)
across listed testing datasets (see Section 3.6.1). Due to space reasons, neither the value
of the lowest BPCER related to APCER ≤ 10%, nor the column containing the results
of training with the combined datasets (see Table 5.4) is reported.

have to consider that the face region is cropped after detection and most of such
artefacts are cut off; this allows us to exploit for training the features of the facial
region without relying on the heavy presence of artefacts in the region surrounding
face (which is unlikely in a real operational scenario).

Moreover, results reported in the top part of Table 5.7, confirm the tendency
of MAD approaches to overfit on the training dataset, as also reported in [59,
58]. Indeed, in all cases, best performances are obtained when the morphing
algorithms used in training and testing correspond, with the exception of OpenCV
and FaceMorpher algorithms, which produce similar morphed images.

These considerations highlight the importance of cross-dataset evaluations in
the MAD field, in combination with results obtained on sequestered datasets [19,
48].

5.2.6 Test on FVC-onGoing platform

Finally, we test the developed S-MAD methods on the SOTAMD sequestered
datasets [59] through the FVC-onGoing [19] platform.

In particular, following the experimental results, we test different versions of a
solution based on the Inception-Resnet V1 pre-trained on the ImageNet dataset,
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Method R-1 R-2 R-3 R-2PS

Training

UBO ✓ ✓ ✓ ✓

OpenCV ✓ ✓ ✓ ✓

FaceMorpher ✓ ✓ ✓ ✓

StyleGAN ✓ ✓ ✓ ✓

AMSL ✓ ✓ ✓

WebMorph ✓ ✓ ✓

Sqirlz ✓ ✓ ✓

FaceFusion ✓ ✓ ✓

NTNU ✓ ✓ ✓

UTW ✓ ✓ ✓

Augm.
JPEG ✓

P&S ✓

Table 5.8: Training configuration for the different versions of our method tested on the
FVC-onGoing [5] platform.

which receives input faces cropped with the MTCNN face detector.

The first version (referred to as “R-1”) is trained on the morphing algorithms
exploited to create the training set of all previous experiments, i.e. UBO, OpenCV,
FaceMorpher, and StyleGAN, following the 80-20 split for the training and validation
procedure. The second version (“R-2”) is trained on all data available in the Revelio
framework, thus including, in addition to the previous ones, the morphed images
obtained with AMSL, WebMorph, Sqirlz Morph, FaceFusion, NTNU, and UTW
algorithms. Since the amount of data is increased, we split train and validation
sets with 90% and 10% percentages. The third version of the method (“R-3”) is
the same as the previous one (R-2), and the JPEG compression (see Section 5.2.3)
is randomly applied to input data during the training phase. Finally, the last
version (“R-2PS”) is the same as R-2 but trained by applying the P&S simulation
process [27] on input images. Only in this case, the model starts the training
with parameters that belong to R-2. A summary of these settings is reported in
Table 5.8.

Results are shown in Table 5.9 and also officially published on the platform.
It is worth noting that R-1 achieves state-of-the-art results, despite the limited
amount and variety of training data that belong to publicly released datasets.
R-2 confirms the tendency to have better performance when new, and possibly
high-quality, morphed images are available during the training procedure, probably
due to also the presence of similar morphing algorithms in the test set [59]. The
efficacy of the JPG compression, as observed in the Revelio experimental evaluation,
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Algorithm Year EER B0.1 B0.05 B0.01

[38] 2017 42.32 78.00 82.67 93.33
[76] 2018 41.38 100 100 100
[60] 2020 31.80 65.00 79.33 91.67
[27] 2021 38.99 100 100 100
R-1 2023 27.77 59.33 70.67 90.33
R-2 2023 12.67 18.00 28.33 55.00
R-3 2023 10.33 11.67 23.67 48.00

[57] 2017 54.37 94.89 98.27 99.91
[38] 2017 45.52 85.86 96.90 100
[76] 2018 43.34 100 100 100
[68] 2019 48.04 85.86 97.35 100
[27] 2021 37.10 100 100 100

R-2PS 2023 24.63 51.28 68.25 91.42

Table 5.9: Comparison of the results on the sequestered SMAD-SOTAMD D-1.0 (top)
and SMAD-SOTAMD P&S-1.0 (bottom) benchmarks, respectively, through the FVC-
onGoing [5] platform. As shown, S-MAD algorithms developed with Revelio framework
outperform the competitors.

is confirmed by the results of R-3, proving the efficacy of the proposed framework
to be an effective and valuable tool in the development and deployment of MAD
algorithms. Similar observations are true also for the P&S morphed images: the
P&S simulation algorithms implemented in the framework can be effectively used
to create competitive solutions avoiding the time-consuming process of printing
and scanning real photos.

The Detection Error Tradeoff (DET) curves computed on the SOTAMD se-
questered dataset on the FVC-onGoing [5] platform are reported in Figure 5.1a and
Figure 5.1b, with which is possible to appreciate the detail of the performance of
the proposed systems and the competitors tested on digital (left) and P&S (right)
morphed images. To summarize, overall results suggest that it is possible to use
the Revelio framework to develop, in a simple and effective manner, state-of-the-art
S-MAD systems, clearly improving the performance obtained by the competitors,
also exploiting only publicly released datasets.
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Chapter 6

Differential MAD experiments

In this Chapter, we define the training and testing protocols used in our experimental
evaluation for D-MAD systems, describing the datasets used and the training and
testing split. In particular, we aim to investigate the performance of composing both
an S-MAD algorithm with a state-of-the-art D-MAD approach in the literature.

6.1 Datasets and protocols

Morphing Algorithm Train/Val (%) Test (%)

UBO [6] 90+10 0
OpenCV [44] 90+10 0
FaceMorpher [55] 90+10 0
StyleGAN [36] 90+10 0
Sqirlz MorphD [84] 90+10 0
Sqirlz MorphP&S [84] 90+10 0
FaceFusion [22] 0 100
UTW [59] 0 100
NTNU [59] 0 100

Table 6.1: Morphing algorithms and datasets in the Revelio framework used for the
experimental evaluation. For each morphing algorithm, the percentage of images available
during the training, validation, and testing phases are shown.

Similarly to what is described in Section 5.1, we group the train and test
datasets relying on the morphing algorithm used to produce morphed images, as
also reported in the first column of Table 3.1.
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All the experiments are carried out following the dataset organization and
training/testing protocols described in Table 6.1. Table 3.3 reports, for each public
face dataset, the number of bona fide and morphed couples. When training and
evaluating the D-MAD experiments, the images from the CFD data source are
not included, as very few subjects have an alternative pose that can be used as a
live-capture image; therefore, no couples are available for that dataset. Therefore,
the FaceFusion, UTW, and NTNU morphing algorithms are comprised exclusively
of images from the FEI dataset (24000 morphed couples). Moreover, while bona
fide couples are reported more than once in the aforementioned Table, no duplicate
couples are present in either the training, validation, or test sets: this is done to
ensure that the bona fide couples are present only once after merging the different
data sources, thus preventing the bona fide class to have a greater weight during
training.

Chapter 5 placed a greater focus on evaluating the performance of the system
with respect to the employed morphing algorithm. However, the main objective of
the following experiments is to assess the efficacy of each tested algorithm according
to the identity in the live-capture image. More specifically, results are split into
two distinct groups, without discriminating according to the employed morphing
algorithm:

• Criminal : contains bona fide (i.e. no morphing attempt is present) and
morphed couples; in the latter, the live image contains the criminal’s identity;

• Accomplice: contains bona fide and morphed couples in which the live image
contains the accomplice’s identity; due to the greater similarity between the
subjects present in both pictures, this group is generally considered more
challenging than the previously mentioned one.

A sample for each kind of couple can be found in Figure 6.1. In any case, it
is important to note that the subjects depicted in the live images do not have a
neutral pose, to simulate how a real passenger would realistically behave when at
the Automated Border Control (ABC) gate; therefore, the model used to extract
the identity feature vector must be resistant variations in both pose and possibly
lighting conditions as well.

Unless otherwise specified, training is performed on all available couples, i.e.
bona fide and morphed, with both criminal and accomplice. While training, only
images with a morphing factor of 0.5 are used.

Moreover, since the effectiveness of SVM classifiers for tackling the D-MAD task
has been proven in the literature (see Section 4.2), we run each experiment twice,
swapping the underlying classifier: indeed, we test both an MLP with varying
architecture according to the employed features, and an SVM with RBF kernel.
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(a) Criminal (b) Accomplice

Figure 6.1: Visual samples of two couples; note how the live picture (on the right) is not
used to create the morphed image (on the left); moreover, the subject is depicted with a
non-neutral pose, to simulate how a passenger would realistically behave at the gate.

In order to evaluate and compare the investigated D-MAD methods, we use
the metrics reported in Sections 3.5 and 3.6.

Moreover, we employ the WAED metric (introduced in Section 3.6.1) to sum-
marize and simplify the comparison of the diverse approaches. However, as only
one test set is employed, we adopt wD = 1. Finally, as we expect the two above-
mentioned testing groups to yield substantially different results and to gather better
insights into the performance of the tested models, we compute two distinct values
for the WAED metric.

6.2 Experimental results

Following the established protocol in the previous Section, results are reported
divided by type of subject present in the live image and by employed classifier.

To have a baseline against which to compare the efficacy of other D-MAD
methods, in the first experiment (referred to as S-MAD), the R-3 model (illustrated
in Section 5.2.6) is used as a feature extractor on the suspected morphed image,
and the resulting vector is then used as the classifier’s input, thus tackling the
D-MAD problem as an S-MAD task.

Inspired by the work in [66], the second experiment (referred to as ArcFace)
employs features that are extracted from both images using the DeepFace [72]
implementation of the ArcFace [18] network. The embedding of the live image is
subtracted from the embedding of the suspected morphed image, and the resulting
vector is then used as the classifier’s input.

Finally, to gather a better insight into the possible contribution of a state-of-
the-art S-MAD algorithm on a D-MAD system, we run a third experiment (referred
to as Both), in which we concatenate the features obtained from the two previous
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methods and use the resulting vector as the classifier’s input. Particular attention
is devoted to the results of couples where the accomplice is present in the live
image, which represents a more challenging setup due to the greater similarity
between the two subjects.

Each SVM has been trained using an RBF kernel with a C = 3 regularization
factor and a γ kernel coefficient which is inversely proportional to the variance of
the training data received in input. Each MLP model is trained using the binary
cross-entropy loss function. The chosen optimizer is Adam, with a learning rate
equal to 5 · 10−4 and early stopping (with patience of 5 epochs and a minimum
improvement of 10−3).

The experimental results obtained from running the three methods are reported
in Table 6.2.

Feature Classifier Fusion
Criminal Accomplice

WAED EER B0.1 B0.05 B0.01 WAED EER B0.1 B0.05 B0.01

S-MAD
MLP

N/A
.359 .186 .255 .360 .515 .359 .186 .255 .360 .515

SVM .302 .175 .195 .250 .450 .302 .175 .195 .250 .450

ArcFace
MLP

N/A
.241 .085 .072 .147 .447 .509 .180 .300 .470 .827

SVM .165 .066 .043 .085 .310 .492 .175 .320 .475 .780

Both

MLP
Concat.

.350 .168 .225 .345 .520 .340 .168 .222 .317 .510
SVM .313 .175 .213 .275 .460 .305 .175 .198 .248 .458

MLP
MM

.297 .138 .180 .265 .463 .289 .132 .150 .245 .463
SVM .325 .160 .233 .320 .475 .305 .140 .180 .278 .475

MLP
MV

.389 .185 .292 .398 .563 .362 .175 .245 .338 .543
SVM .410 .257 .360 .423 .530 .344 .195 .245 .317 .495

Table 6.2: Morphing detection scores obtained on the FEI test set across different features,
classifiers and feature fusion techniques. Results are reported in terms of Equal Error Rate
(EER), the lowest BPCER related to APCER ≤ 10%, ≤ 5%, and ≤ 1%, respectively. The
proposed WAED metric summarizes performance (lower is better) across listed testing
datasets (see Section 3.6.1).

In particular, the first observation is that MLPs generally perform worse than
SVMs when the features are standalone. It is also possible to notice that the
metrics obtained on the S-MAD approach are identical regardless of the type of
couple: this is to be expected, as in both cases the same suspected morphed images
are used and therefore the same results are reported.

As anticipated, ArcFace provides considerably better performance when com-
pared to the S-MAD method, indicating that a trusted, live-capture image proves to
be effective in tackling the task by comparing the two extracted identities; however,
the performance gap is significantly reduced when the accomplice is present in
the live-capture image: this is probably due to the greater similarity between the
identities, thus making it more challenging for the classifier to find an effective
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class boundary.

Finally, the third method demonstrates that incorporating S-MAD features into
a D-MAD algorithm provides a noticeable performance boost when the suspected
morphed image is compared against the accomplice; nevertheless, the same per-
formance improvement cannot be found when the passport picture is compared
against the criminal. Moreover, the technique employed to merge the ArcFace and
S-MAD features proves to be crucial in order to obtain satisfactory performance.
In particular, a naive concatenation of the two features provides results that are
remarkably similar to those reported for the S-MAD-only approach. This behavior
may suggest that the contribution of S-MAD features in correctly classifying the
couples is remarkably strong, outweighing the features provided by ArcFace and
thus negating the benefits they bring in comparing the identities.

To further investigate this behavior, we run a t-distributed Stochastic Neighbor
Embedding (t-SNE) [80] dimensionality reduction on the input features, divided
both by source (i.e. ArcFace or S-MAD) and by ground truth (i.e. bona fide or
morphed). The resulting plot, shown in Figure 6.2, highlights how the features can
easily be separated by their respective source, suggesting that they may occupy
different portions of the feature space. However, there is no clear separation
between bona fide and morphed feature vectors; this reinforces the hypothesis that
the classifier could be prioritizing the S-MAD features while disregarding those
generated by ArcFace.

In order to try to overcome these issues, we test two different fusion strategies:

• Min-max (MM): before concatenating the two feature vectors, they are
separately rescaled to have each component in the [0, 1] range;

• Mean-variance (MV): before concatenating the two feature vectors, they are
separately rescaled to have each component with mean value µ = 0 and
variance σ = 1.

Firstly, the performance gap that was previously found between MLPs and
SVMs is not present when the two features are merged together; indeed, the former
almost always outperforms the latter.

Secondly, the MV strategy provides unsatisfactory results, which are worse than
the naive concatenation strategy. An ex-post numerical analysis on the normalized
feature vectors used for training shows that, even when each component is rescaled
to have µ = 0 and σ = 1, the ArcFace and S-MAD vectors still show significant
differences in range. This could be a possible explanation of the performance of
the MM fusion strategy, thus proving that translating the two feature vectors to
the same numeric range helps improve the model’s performance.

63



Figure 6.2: t-distributed Stochastic Neighbor Embedding (t-SNE) [80] of ArcFace and
S-MAD feature vectors divided by ground truth. The blue and orange dots respectively
represent the bona fide and morphed ArcFace embeddings, while the green and red dots
respectively represent the bona fide and morphed S-MAD embeddings. The different
feature vectors can easily be separated by source (i.e. ArcFace versus S-MAD), but not
by ground truth (i.e. bona fide versus morphed).
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6.2.1 Investigation on cosine distance

Next, we test the performance impact of including the cosine distance between the
two ArcFace feature vectors. The underlying idea comes from the fact that, as
illustrated in [18] and in Figure 4.7, the embeddings produced by the model are
optimized in such a way that the geodesic angle between each identity is maximized.
Therefore, the cosine distance between the embeddings obtained from both the
suspected morphed and live images should be small (i.e. approximately 1) when
no morphing algorithm is applied; on the contrary, if the distance is greater (i.e.
closer to -1), then we can assume that the two presented identities are too far apart
and therefore some morphing process has taken place.

To determine if there is a tangible performance improvement, we train an MLP
whose input is composed of both the ArcFace and S-MAD features with min-max
fusion strategy, as well as the cosine distance between the two ArcFace embeddings.
Moreover, because of the chosen fusion strategy, we investigate whether to translate
the cosine distance from its [−1, 1] range to [0, 1]. Experimental results are shown
in Table 6.3.

Cosine dist.
Criminal Accomplice

WAED EER B0.1 B0.05 B0.01 WAED EER B0.1 B0.05 B0.01

None .297 .138 .180 .265 .463 .289 .132 .150 .245 .463
[−1, 1] .275 .125 .147 .235 .440 .288 .125 .155 .237 .468
[0, 1] .307 .141 .188 .290 .470 .290 .132 .170 .237 .465

Table 6.3: Morphing detection scores obtained on the FEI test set with and without
employing the cosine distance. Results are reported in terms of Equal Error Rate (EER),
the lowest BPCER related to APCER ≤ 10%, ≤ 5%, and ≤ 1%, respectively. The
proposed WAED metric summarizes performance (lower is better) across listed testing
datasets (see Section 3.6.1).

Experimental results show that adding the cosine distance provides a tangible
performance improvement only when left in its original range. On the contrary, if
the cosine distance is translated into the [0, 1] range the model’s performance is
considerably worsened.

6.2.2 Test on the FVC-onGoing platform

Finally, we test the developed D-MAD methods against the SOTAMD sequestered
test set through the FVC-onGoing [5] platform.

In particular, we choose three different baselines and then test two different
solutions. The first baseline is the algorithm depicted in [66] and summarized in
Section 4.2.3: this method is chosen for being the state of the art on the SOTAMD
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Algorithm Year EER B0.1 B0.05 B0.01

[25] 2018 14.17 17.20 22.77 64.57
[66] 2020 4.54 2.00 3.93 18.87

S-MAD 2023 9.66 9.67 22.67 46.00
RD-1 2023 10.40 10.93 25.60 48.00
RD-2 2023 10.23 10.33 19.67 47.47

Table 6.4: Comparison of the results on the sequestered DMAD-SOTAMD D-1.0 bench-
mark, through the FVC-onGoing [5] platform.

sequestered test set and to gather better insight on the influence of a state-of-the-art
S-MAD model when paired with the ArcFace features. The second baseline is the
method described in [25] and outlined in Section 4.2.2: this way, we are able to
compare the performance of our methods with a different approach that is not
based on machine learning but rather on face demorphing, i.e. the inversion of the
morphing process. Finally, the third chosen baseline is represented by running the
R-3 model obtained in Section 5.2.6 only on the suspected morphed image, thus
tackling the D-MAD task as an S-MAD problem.

The first tested algorithm (referred to as “RD-1”) is obtained by naively
concatenating the unnormalized ArcFace and S-MAD features. Moreover, after the
results shown in Table 6.3, we add the cosine distance of the two ArcFace vectors
as an extra feature. The second version (“RD-2”) is a variation of RD-1, where
both S-MAD and ArcFace features are normalized following the min-max strategy
depicted in Section 6.2 (i.e. both feature vectors are separately rescaled to the
[0, 1] range) while leaving the cosine distance in its natural range (i.e. [−1, 1]).

Results are shown in Table 6.4. As reported, the state-of-the-art method
proposed in [66] provides the best overall performance, while only focusing on
the identities of the two presented subjects and disregarding any possible artifact
that might be present in the suspected morphed image. However, one noteworthy
aspect of these results is that both the proposed methods (RD-1 and RD-2) fail to
outperform the S-MAD approach, thus suggesting that while the employed features
do contain some information regarding the identities and the morphing process,
these are probably combined in a suboptimal way; therefore, further work must be
done to investigate on this issue and to find a better feature fusion method that
contains more predictive power. Moreover, the RD-2 approach provides a slight
improvement in all metrics when compared to the original version (RD-1), thus
showing that the applied feature scaling described in Section 6.2 does bring a slight
performance improvement. Finally, another interesting aspect is that both methods
outperform the algorithm proposed in [25], showing that machine learning-based
techniques yield overall better results.
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The Detection Error Tradeoff (DET) curve computed on the SOTAMD se-
questered dataset on the FVC-onGoing [5] platform is reported in Figure 6.3,
with which is possible to appreciate the detail of the performance of the proposed
systems and the competitors tested on digital images.

Figure 6.3: DET curve computed on the DMAD-SOTAMD D-1.0 benchmark on the
FVC-onGoing [5] platform. Competitor reported: RD-1 (claret), RD-2 (light green),
S-MAD (dark green), [25] (red), [66] (blue).
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Chapter 7

Conclusions

This thesis presents Revelio, a new framework aimed at providing effective support
for the development, training, and evaluation of MAD algorithms. The framework
is publicly available on GitHub1 and released under the Apache-2.0 license. Our
extensive experimentation confirms that Revelio allows the user to develop and test
MAD approaches in a simple and effective way, achieving state-of-the-art results
on sequestered datasets.

Several considerations can be expressed after the analysis of the experimental
evaluation.

Firstly, both S-MAD and D-MAD are confirmed to be challenging tasks, and
the accuracy of existing MAD methods still does not satisfy real-world operational
requirements. The lack of a probe image with which to compare the tested image is
a key element for the final performance; this is confirmed in the literature and our
experimental validation, where state-of-the-art D-MAD methods usually achieve
greater accuracy in detecting morphed images than S-MAD algorithms.

Secondly, experimental results suggest that the availability of a great amount
and variety of training data, including several morphing algorithms and subjects
belonging to different source datasets, is an important element to improve S-MAD
performance. We believe that, in this context, the understanding of newly proposed
MAD systems might be significantly improved by the possibility of sharing a
common set of training datasets in combination with tests on public datasets and,
in particular, on sequestered datasets hosted in public platforms [48, 5]. The
adoption of the Revelio framework and the WAED metric can reduce the effort
needed to develop new MAD systems and to test and compare them with other
related approaches.

Another point of attention, still difficult to address, is the printing and scanning
process which makes the problem much more challenging, especially for S-MAD, in

1https://github.com/ndido98/revelio
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particular when followed by a compression step often applied to meet the image
size limits in eMRTD chips.

Finally, while state-of-the-art D-MAD algorithms do provide better performance
than their S-MAD counterpart, they tend to focus almost exclusively on the
presented identities, while disregarding any artifacts that the morphing process
may leave on the passport image.

A great variety of future work can be planned: firstly, continuous maintenance
and documentation activities related to the Revelio framework will be done in order
to support the whole community of the iMARS project, funded by the European
Union’s Horizon 2020 research and innovation program; secondly, new state-of-the-
art MAD approaches will be implemented, so that all research groups will be able
to compare their results against the current literature; thirdly, a more in-depth
investigation into the use of forensic features in the S-MAD task will be done,
with particular attention to the use of undecimated wavelet decompositions, which
obtained remarkable results in the NIST FRVT MORPH [48] and, on that regard,
the framework will be updated to more easily support submitting a proposed
algorithm to NIST; moreover, after the above-mentioned upgrades, the best model
we obtained in our experimental evaluations will be sent to NIST for benchmarking;
finally, to overcome the limitation of D-MAD systems that do not take into account
the presence of morphing artifacts, new ways of combining features must be
investigated so that the resulting predictive power is greater than the two separate
ones. This thesis, developed thanks to the European Union’s Horizon 2020 research
and innovation program, resulted in a scientific publication (parts of which are
reported verbatim in this thesis) that is currently under submission for the Expert
Systems With Applications (ESWA)2 journal, and we will integrate our work with
the constructive comments that will arise from the revisions of our submission.

2https://www.sciencedirect.com/journal/expert-systems-with-applications
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