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Abstract

In the context of the study of galaxy clusters it is usual to assume that the intracluster medium
(ICM) is static into a spherical dark matter (DM) halo. However, there are observational (and
theoretical) pieces of evidence that the estimates of mass under the assumption of hydrostatic
equilibrium are biased low with respect to the ”true” mass as traced, e.g., by gravitational
lensing. Moreover, on the basis of the cosmological N-body DM-only and hydrodynamical
simulations there is a clear evidence that the assumptions of spherically symmetric halo and of
hydrostatic equilibrium of the ICM are not always justified. One way to detect these departures
from hydrostatic equilibrium in the ICM is through the detection of bulk motions. However,
the low energy resolution of available X-ray instruments does not allow for this detection via
the Doppler shift of the emission lines centroids in the X-ray spectra. In this work, we build
polytropic models of the ICM in cool-core clusters: we explore different kinematic conditions
of the ICM (in particular, the rotation) and/or different shapes of halos, while preserving the
predicted regularity of internal structure of halos (the Navarro-Frenk-White profile and mass-
concentration relation) and the universality of observed thermodynamic profiles of the ICM.
Then, from these models, we reconstruct the main photometric and spectroscopic observables
to test the current photometric upper limits on the rotation speed and to probe the future
perspectives via mock observations with the spectrometer RESOLVE on board of XRISM. We
conclude that our models predict rotation of 400-500 km/s that do not violate the available
observational proxies (i.e. the thermodynamic profiles, shape of iso-surface brightness contours
and broadening of X-ray emitting lines), leaving some room in real clusters for possible rotation
within 500 km/s, which could be detected with future facilities.
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Riassunto della tesi

Le ossservazioni in banda X degli ammasi di galassie sono spesso interpretate assumendo che
il mezzo intracluster (ICM) sia statico e l’alone di materia oscura (DM) sferico. Tuttavia, en-
trambe le assunzioni non sono sempre giustificate: da un lato, le simulazioni numeriche con sola
DM, che modellano la crescita delle perturbazioni nel contesto cosmologico, hanno mostrato la
presenza di schiacciamento significativo nella maggioranza degli aloni (e.g. Allgood et al. 2006);
dall’altro lato, le simulazioni idrodinamiche hanno rivelato la presenza di rotazione significativa
dell’ICM (e.g. Nagai et al. 2013). Il miglior metodo per rilevare la rotazione negli ammassi
è lo spostamento delle righe di emissione negli spettri X, ma gli spettrografi X attualmente
disponibili non raggiungono delle risoluzioni in energia sufficienti a misurare tale spostamento
o a escluderlo; tuttavia, tali misurazioni potrebbero essere possibili con gli strumenti X di
nuova generazione [ad esempio, RESOLVE su XRISM (https://xrism.isas.jaxa.jp/en/)].
Al tempo stesso, la massa degli ammassi di galassie stimata dalle osservazioni X dell’ICM sotto
l’assunzione di equilibrio idrostatico risulta sottostimata di ≲ 30% (e.g. Pratt et al. 2019) se
confrontata alla massa ”vera” tracciata, e.g., dal lensing gravitazionale. Tale differenza può
essere spiegata dalla presenza della rotazione dell’ICM, che altera l’assunzione di equilibrio
idrostatico (vedi Fang et al. 2009). Inoltre, la rotazione dell’ICM combinata con deboli campi
magnetici dà vita a modi instabili del plasma (Nipoti et al. 2015), in grado di riscaldare l’ICM
tramite dissipazione turbolenta e, quindi, di contribuire a fermare i cooling flows negli ammassi.
La prima parte di questa tesi propone modelli realistici di tipici ammassi cool-core massivi, che
includono anche la rotazione o lo schiacciamento dell’alone di DM. Il Capitolo 1 è dedicato alla
costruzione di 3 modelli di aloni di forma differente, che rispettino le principali previsioni delle
simulazioni cosmologiche con sola DM (vedi Dutton & Macciò 2014). Nel Capitolo 2 presenti-
amo 3 modelli statici e 3 rotanti dell’ICM all’interno degli aloni del Capitolo 1: per verificare
quanto effettivamente questi modelli siano realistici li confrontiamo con i profili termodinamici
di Ghirardini et al. (2019) rappresentativi di un campione di ammassi ”cool core”, cioè con
temperatura dell’ICM che decresce verso il centro. Da questo confronto, concludiamo che è
possibile costruire distribuzioni di ICM realistiche immerse in un alone non necessariamente
sferico in presenza di rotazione di ≲ 500 km/s.
Nella seconda parte della tesi (Capitolo 3), testiamo i vincoli attuali sulla rotazione e sondiamo
le prospettive future nei raggi X, ricostruendo i principali osservabili fotometrici e spettroscopici
dai nostri modelli. Sebbene le morfologie della brillanza superficiale dei nostri modelli siano
ampiamente consistenti con quelle osservate (e.g. Campitiello et al. 2022), non è possibile porre
vincoli forti sulla rotazione dell’ICM. Infine, nel Capitolo 3, verifichiamo che lo spettrometro
RESOLVE sia in grado di rivelare la rotazione dei nostri modelli dell’ICM per velocità lungo
la linea di vista ≳ 300 km/s, persino in presenza di velocità turbolenta di ≲ 400 km/s.
Da questo lavoro concludiamo che negli ammassi reali c’è possibilità di rotazione di ≲ 500 km/s,
che potrebbe essere misurata dagli strumenti futuri. La possibilità che la rotazione dell’ICM
sia ≃ 500 km/s acquisce una grande rilevanza non solo per apprezzare uno dei fenomeni fisici
che plasmano la distribuzione dei barioni negli ammassi e regolano il loro bilancio energetico
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tramite instabilità magnetorotazionale, ma anche per stimare accuratamente la massa degli
ammassi, usati come traccianti cosmologici.
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Introduction

Galaxy clusters are the largest gravitationally bound structures in the Universe. According
to the bottom-up framework of structure hierarchical formation, the primordial small density
perturbations grow via gravitational instability up to form the massive bound structures, known
as dark matter (DM) halos. The pristine gas falls into the potential well of DM halos, formed
in the intersections of cosmic filaments, and is heated via strong shocks up to nearly the halo
virial temperature.

Dynamical evolution of the plasma in cool-core clusters. In the most massive DM halos
(those of galaxy clusters) the gas accumulates to form the fully ionised plasma ∼ 5-10 keV,
which we observe today: the intracluster medium (ICM). While the DM is subject only to
the gravitational interactions, the baryons also undergo radiative processes. The high tem-
peratures of the ICM and the lack of other extended emitting sources in the sky favour the
observations of thermal emission of the ICM in the X-ray band. At the same time, when
triggering the radiative processes, in the inner region of a galaxy cluster (∼ 100 kpc, known
as the core) the ICM is usually sufficiently dense to cool significantly: here the cooling time
[roughly tcool := E/(dE/dt) ∝ T 1/2/ne (for Breemstrahlung), with E the internal energy of gas,
ne the number density of electrons and T their temperature] is shorter than Hubble’s time tH
(∼ 10Gyr). The radiative cooling is expected to drive the monolithic collapse of the plasma
in the core, which undergoes a top-down condensation cascade to dense warm (ionised)
gas (∼ 104-105K) and, eventually, to cold (molecular) gas (≲ 100K). There is evidence for
this thermal cascade (see McNamara & Nulsen 2012 for a review): for instance, the observed
multiphase structure of gas (e.g. McDonald et al. 2012 and references therein) and the observed
relation between molecular gas (traced usually via CO emission lines) and Hα emission (e.g. Ho
et al. 2009 and references therein). This radiatively cooling gas, following a filamentary-shaped
cooling flow, likely rains toward the central brightest cluster galaxy (BCG), where this gas
reaches sufficiently low temperature to be converted into stars or to be accreted by the central
supermassive black hole (SMBH). The observed relation between the star formation rate (SFR)
of BCGs and the cooling rate in mass (Ṁcool) of the ICM (e.g. McDonald et al. 2011, O’Dea
et al. 2008 and references therein) proves indeed that the BCG (with its SMBH) and the ICM
in the core are not separate elements of the cluster. However, the aforementioned and further
signatures of an efficient radiative cooling of the ICM [such as the cusp of surface brightness
(e.g. Vikhlinin et al. 2006 and references therein) and a significant decrease of entropy profile
(e.g. McDonald et al. 2013 and references therein)] are detected only in a part of entire popula-
tion, known as cool-core clusters (while, the remaining clusters are known as non-cool-core).
In this work, we focus on cool-core clusters. Despite a substantial evidence of a moderate
cooling flow, roughly constant in time-averaged sense for ∼ 10Gyr (e.g. McDonald et al. 2013
and references therein), the SFR and Ṁcool averaged over a long time (∼ 5-8Gyr) are not as
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Introduction

high as expected on the basis of standard cooling flow model (the observed SFR and Ṁcool are
usually ∼ 1/10 of those predicted; e.g. O’Dea et al. 2008 and references therein). This tension
is known as cooling-flow problem: the ICM appears in the multiwavelength observations
globally stable, but locally thermally unstable in the very central regions (e.g. McCourt
et al. 2012, Gaspari et al. 2012; see also Section 2.2.1). At first sight the cooling flow problem
might have a simple solution: the presence of a heating mechanism responsible for halting the
cooling flows and for preventing the monolithic collapse of the ICM in the core. However,
this assumed mechanism could overheat the ICM preventing the local condensations typically
observed in cool-core clusters (see above). In short, solving the cooling flow problem means to
avoid at the same time overcooling and overheating of the ICM, preserving the structure and
the thermodynamics of the ICM in the core for ∼ 10Gyr.
In the multiwavelength observations of clusters and massive galaxy groups there are two clear
signatures: the radio emission in the core (e.g. Carilli et al. 1994), which traces the radio-
mode feedback (see Hlavacek-Larrondo et al. 2022 for a review) from the active galactic
nucleus (AGN), and the X-ray cavities, filled with a thermal dilute plasma of temperature
much higher than the halo virial temperature (≳ 20 keV; McNamara & Nulsen 2012) or with
relativistic particles in local pressure equilibrium with the surrounding ICM (e.g. Carilli et al.
1994). An observed scaling relation between cavity power and radio luminosity (e.g. Bı̂rzan
et al. 2008) and the fact that in most cool-core clusters the positions of X-ray cavities closely
match those of radio jets support the scenario, where the X-ray cavities and its plasma are in-
flated and heated via strong shocks by AGN relativistic jets up to ≳ 20 keV or relativistic regime
(e.g. Sarazin et al. 1995, Carilli et al. 1994; see McNamara & Nulsen 2012 for a review). From
the X-ray observations there is a clear evidence for a relation between the X-ray luminosity of
the core and the cavity power (e.g. Rafferty et al. 2006), which spans seven decades in X-ray
luminosity (from massive galaxies ∼ 1038 erg/s to massive clusters ∼ 1045 erg/s): this cavity
power-luminosity relation follows on average a line of equality between heating and radiative
cooling. As consequence of the combination of these relations, the radio-mode AGN feedback
provides the energy requested to offset the radiative cooling of the ICM. Moreover, given that
the cavity power-luminosity relation spans a wide range of luminosity, the AGN-driven heating
is not an ad-hoc mechanism to offset the radiative cooling only in massive clusters, but takes
part of a self-regulated mechanism, in which the radiative cooling and the subsequent gas
condensation in the core trigger the radio-mode AGN feedback via the accretion onto the BCG
and central SMBH and, then, the AGN jets reheat via the X-ray cavities the ICM in the core
up to nearly the halo virial temperature. On the basis of the previous considerations, the
radio-mode AGN feedback from the BCG is believed to be the ideal candidate for preventing
in time-averaged sense the monolithic collapse of the ICM in the core (e.g. McNamara &
Nulsen 2012, Rasia et al. 2015) and, at the same time, for allowing for local condensations,
even if the dynamical process, which transfers energy from the X-ray cavities to the ICM in
the form of thermal energy, is still largely unknown. Can the radio-mode AGN feedback be
entirely responsible for heating the ICM? Are there complementary mechanisms able to con-
tribute significantly to the energetic budget of the ICM? These are important questions in the
understanding of the thermodynamics of the ICM in the cool cores of galaxy clusters.
In this work, we study configurations of ICM in equilibrium within the DM halo. Assum-
ing that cooling is balanced by an ad-hoc heating mechanism in a time-averaged sense, the
configurations of the ICM represent the starting points to follow the local and global time
evolution of the ICM subject to local perturbations. Recent results of linear-stability analysis
and of magnetohydrodynamic (MHD) simulations show that the onset of local perturbations
in a plasma affected by the combination of radiative cooling, of weak magnetic fields and of
anisotropic heat conduction is the cause of serveral local MHD instabilities (e.g. Nipoti & Posti
2013, Binney et al. 2009 and references therein). Nevertheless, McCourt et al. (2012) proves
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that both in the linear and non-linear regimes no significant condensation of the ICM occurs,
if the instability timescale is much longer than the dynamical time (tdyn := (2r/g(r))1/2, where
g(r) is the intensity of gravitational field and r is the radial spherical coordinate, under the
assumption of spherical symmetry of gravitational field). The presence of a significant rotation
of the ICM (expected from hydrodynamical simulations; e.g. Nagai et al. 2013 and references
threin) combined with a weak magnetic field leads to the formation of magnetorotational
monotonically unstable modes in timescales as short as few dynamical times of the system
(Nipoti et al. 2015). Consequently, the magnetorotational instability (MRI) can play an im-
portant role in the time evolution of the ICM: the MRI can drive potentially to a significant
turbulent heating, which is belived to be an efficient mechanism to halt cooling flows within
galaxy clusters. Following the non-linear evolution of magnetorotational unstable modes, fu-
ture works could estimate the contribution of this turbulent heating to the energetic budget of
rotating ICM.

Regularity of the thermodynamic properties of the ICM. In a gravitationally bound system
the halo virial temperature (Tvir) is a proxy of the depth of the potential well (measured
from the virial, dynamical mass Mvir): for a halo that follows the singular isothermal sphere,
from the Virial Theorem (Cimatti et al. 2019)

Tvir =
µmp

24/3kB
(GMvir)

2/3 [∆c(z)H
2(z)

]2/3
,

where µ, mp, kB and H(z) are the mean molecular weight, the mass of a proton, Boltzmann’s
Constant and Hubble’s Parameter (see below), respectively (see Section 2.1.1 for details on this
Eq.). The concept of halo virial temperature is a prediction on the thermodynamic behavior
of galaxy clusters, in particular. If the temperature of a gas in hydrostatic equilibrium is close
to Tvir, we directly infer the dynamical mass of system from its temperature: this prediction
thus is an useful tool to rapidly estimate with a good accuracy the mass. While the stars are
the most significant contribution to the total baryonic mass of galaxies, the dominant baryonic
mass component of massive galaxy clusters consists of a high-energy plasma, which is usually
believed to be largely in hydrostatic equilibrium close to the halo virial temperature. So, when
dealing with large surveys of massive clusters, this relation is widely used to infer their mass. To
make these estimates easier, the temperature of the ICM is usually linked to X-ray or microwave
observables (known as mass proxies) such as the X-ray luminosity or the electron pressure,
respectively (see Voit 2005). However, a deviation from the virial relation is observed (see
Section 3.2.3; e.g. Reichert et al. 2011 and references therein): the departure from hydrostatic
equilibrium of the ICM (see below) and the interplay between radiative cooling and feedback-
driven heating are usually believed to be the cause of this deviation (e.g. Kravtsov & Borgani
2012).
There are theoretical predictions on how the thermodynamic quantities vary with the distance
from the center of the potential well. From DM-only simulations, which model the growth of
halos from the small primordial density perturbations up to the present-day structures, Allgood
et al. (2006) detected the flattening of most present-day halos as a relic of past major mergers
and found the redshift evolution of axial ratio of the halos. Despite the variety of shapes of halos
(e.g. Allgood et al. 2006) and the inhomogeneities among their merging trees, their spherically
averaged density profiles are well reproduced by an universal profile (e.g. Navarro et al. 1996,
Dutton & Macciò 2014): the Navarro-Frenk-White (NFW) profile (Navarro et al. 1996).
In agreement with the predictions based on the assumptions of shock-heating and of hydrostatic
equilibrium, even in the non-radiative N-body hydrodynamical simulations the profiles of the
thermodynamic quantities of the ICM are universal (e.g. Nagai et al. 2007a). In presence of
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radiative processes is the balance between radiative cooling and radio mode AGN feedback
sufficient to preserve the universality of the thermodynamic profile of the ICM? To answer
this important question, given the difficulty to cover via hydrodynamical simulations with a
sufficient resolution the entire cluster (from the scale of central AGN ∼ 1-10 pc up to the virial
radius ∼ 1Mpc), we rely primarily on the observations. Recently a remarkable effort has been
made to clean from impurities (like the clumpiness of ICM) the X-ray surface brightness profiles
of the ICM and to improve the accuracy in the measure of the distortion of cosmic microwave
background (CMB) spectrum (known as Sunyaev-Zel’dovich effect, SZE; Sunyaev & Zeldovich
1972), detectable at microwave wavelengths. From several works based on microwave and/or
X-ray informations over the last decades there is clear evidence for a regularity among the
thermodynamic profiles of the ICM outside the core (e.g. Vikhlinin et al. 2006, Ghirardini
et al. 2019 and references therein). Galaxy clusters in the central and outer regions thus are a
homogeneous population, however they show a variety of thermodynamic behaviors in the cores,
depending on the presence and prominence of cool cores. Ongoing observational campaigns
were launched to study the thermodynamics of the ICM (e.g. CHEX-MATE Project; http:
//xmm-heritage.oas.inaf.it/): in particular, the cause of deviation from the virial scaling
relations (likely the departure from hydrostatic equilibrium) and the influence of dynamical
state of clusters on the thermodynamic behavior of the ICM.

Hydrostatic mass bias: a limit for the use of galaxy clusters as cosmological probes.
Galaxy clusters are highly important test sites for cosmology (see Voit 2005, Pratt et al. 2019
for reviews). The measurement of mass profile of any galaxy cluster is a powerful tool to test
the predictions of cold dark matter paradigm on the internal structure of DM halos: primar-
ily, the concentration-mass relation (see Section 1.3; e.g. Ettori et al. 2010, Dutton & Macciò
2014). Mostly, galaxy clusters are being used to constrain the cosmological density parameters:
recovering the mass of a large sample of galaxy clusters at different redshifts, we trace the time
evolution of their mass function (Press & Schechter 1974) and compare it to the theoretical
predictions to constrain the geometry of the Universe (i.e. the overall density parameter Ω0)
and the contribution of any single component of the Universe to Ω0 (e.g. Vikhlinin et al. 2006).
Currently available telescopes are not able to observe the Early Universe, which developed the
primordial perturbations. A way to infer informations on the power spectrum of initial density
fluctuations (in particular, its normalization) is the observation of the Present-Day Universe:
primarily, the mass function of galaxy clusters.
When dealing with large X-ray surveys of clusters, it is not possible to accurately measure
individual masses for every object. The methods to constrain the cosmological parameters via
cluster surveys thus rely on mass proxies, even though the deviation of scaling relations from
the virial behavior forces us to empirically measure and calibrate them via X-ray observations.
So, it is of great interest to accurately measure the mass of an as large as possible sample of
galaxy clusters.
There are several methods to estimate the mass of galaxy clusters: two widely used approaches
are based on X-ray and lensing observations. The X-ray measurement of the density and tem-
perature profiles of the ICM provides one of the most reliable methods to determine the mass
of galaxy clusters. However, the necessary thermodynamic profiles of the ICM to the recon-
struction of mass profile, inferred from the X-ray observables via deprojection methods, are
usually interpreted by assuming that the ICM is static (see Ettori et al. 2013 for a review).
Galaxy clusters, being the most massive structures of the Universe, are effective lenses, so the
reconstruction of mass profile based on lensing observations is widely used (see Meneghetti et al.
2010). While the mass recovered via X-ray observations is underestimated in presence of sig-
nificant large-scale bulk motions of the ICM (included the rotation or turbulence), the method
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to reconstruct the mass of clusters via lensing observations is fully independent of the kine-
matics of the ICM (see Pratt et al. 2019). In general, there is a tension among these methods,
known as hydrostatic mass bias in the sense that the mass estimated via lensing observations
tends to be higher than the mass inferred from X-ray observations. One way to account for
the typically found biases of 5 − 30% of total mass in relaxed clusters (e.g. Meneghetti et al.
2010, Pratt et al. 2019) is to consider departures from hydostatic equilibrium, in the sense that
additional contributions beyond the thermal pressure support partly the ICM in equilibrium in
the potential well of clusters (see also Section 2.3).
In general, the ICM continuously undergoes external perturbations (induced by, e.g., mergers
and matter accretion along cosmic filaments; e.g. Nagai et al. 2013, Vazza et al. 2017) and inter-
nal pertubations [due to, e.g., the feedback processes from stars and central AGN (e.g. Gaspari
et al. 2012), motions of galaxies, MHD instability (see above and, e.g., McCourt et al. 2011)].
All these phenomena are able to trigger turbulence, rotation or streaming motions, which alter
the hydrostatic equilibrium of the ICM. Over the last two decades, it has been studied how an
additional pressure support from random turbulent motions of the ICM contributes to mass
biases, when assuming the hydrostatic equilibrium (e.g. Nagai et al. 2007b). However, few
works thus far accounted for the mass biases due to an additional support from rotation of the
ICM (e.g. Fang et al. 2009, Nipoti et al. 2015).

Gas rotation in clusters: current upper limits and detectability with new generation facil-
ities. Several features observed in some galaxy clusters [such as the detection of substructures
(e.g. Geller & Beers 1982), non-Maxwellian galaxy velocity distributions (e.g. Beers et al.
1990) or the X-ray surface brightness distorsions (e.g. Buote & Tsai 1995)] are interpreted
by Sunyaev et al. (2003) as the signatures of past mergers and accretion events. According to
hydrodynamic simulations which model the bottom-up growth of structures, one of the possible
consequences of merging and matter accretion is the rotation of the ICM in the outer regions of
clusters (e.g. Nagai et al. 2007b, Nagai et al. 2013), if a significant part of angular momentum
of two merging clusters is preserved. Furthermore, from a comparison between the results of
non-radiative and radiative numerical hydrodynamical simulations Lau et al. (2011) concluded
that the presence of a relatively efficient radiative cooling enhances the rotational support of
the ICM in the cool cores of clusters (see also Fang et al. 2009).
The best method to detect the rotation speed is usually based on the Doppler shift of the
centroids of the emission lines in the X-rays: for a typical speed of ≃ 500 km/s Sunyaev
et al. 2003 estimated that the Doppler shift of an iron line at 6.7 eV would be ≃ 10 eV. This
dectection requires high energy resolution (∆E) of X-ray spectrometers: ∆E ≲ 10 eV thus far
was reached only by the X-ray Calorimeter Spectrometer (∆E ≃ 5 eV) on board of ASTRO-H
(https://heasarc.gsfc.nasa.gov/docs/hitomi/) before losing its contact. The only spec-
trum of a galaxy cluster observed by ASTRO-H is that of the core of Perseus (relaxed) cluster,
where thanks to the measurement of the non-thermal broadening of the emission lines (see Sec-
tion 3.2.1) were found a line of sight velocity dispersion of 164±10 km/s (Hitomi Collaboration
et al. 2016). This measurement is usually interpreted as a reference speed of the turbulence of
the ICM. In the spectra of the entire cluster or of its core, the rotation of the ICM, together
with the turbulence and the bulk motions of other nature, contributes to the broadening of
emission lines, so it is hard to split these different components. Instead, in the spectra of a
partial region of cluster, where the ICM is either approaching or receding, the rotation speed
of the ICM produces only the shift of the emission line centroids from their rest-frame energies.
Therefore there are more chances to detect the rotation of the ICM via a spatially resolved
observation of a cluster partial region, but it requires a high angular resolution of X-ray spec-
trometers. In general, despite a sufficient angular resolution of current spectrometers, the lack
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of a currently available X-ray instrument of sufficiently high energy resolution (∆E ≳ 100 eV
for current spectrometers) do not allow for this detection. Nevertheless, using CHANDRA
(of ∆E ≃ 150 eV; https://www.nasa.gov/mission_pages/chandra/main/index.html) data,
Liu & Tozzi (2019) investigate via the Doppler shift of the centroids of the emission lines the
possibility that the galaxy cluster Abell 2107 rotates or undergoes a merging: even though
they cannot exclude the merger scenario, assuming rotation on cylinders they found a maxi-
mum tangential speed of 1380± 600 km/s at a radius of ≃ 160 kpc.
In the future, the X-ray instruments (bolometers) of new generation, such as RESOLVE on
board of XRISM (∆E ≃ 6 eV; https://xrism.isas.jaxa.jp/en/) or the spectrometer X-
IFU on ATHENA (∆E ≃ 2.5 eV; https://www.the-athena-x-ray-observatory.eu/), will
depict a comprehensive overview of the kinematics of the ICM thanks to their higher energy
resolutions (see, e.g., Roncarelli et al. 2018): the high quality of X-ray spectra of new gen-
eration spectrometers allow us to measure the Doppler shifts and broadening of the emission
lines with accuracy and precision comparable for RESOLVE to the calorimeter on board of
ASTRO-H and with unprecedented accuracy and precision for X-IFU. XRISM is a X-ray space
telescope built by japanese space agency, that will be active since 2023; XRISM will carry two
instruments for studying the soft X-ray energy range, RESOLVE and XTEND, for each of
which the satellite will have telescopes of focal length of 5.6m: SXT-S (Soft X-ray Telescope
for Spectrometer) and SXT-I (Soft X-ray Telescope for Imager), respectively. In particular,
RESOLVE is a soft X-ray microcalorimeter developed by NASA (https://www.nasa.gov/).
While, ATHENA is a future X-ray space telescope and is scheduled to be launched in 2035
by European Space Agency (ESA; https://www.esa.int/). Future works using RESOLVE
or X-IFU data will sample the clusters with a significant rotation or turbulence to solve the
problem of hydrostatic mass bias (i.e. the tension between mass estimators) and will estimate
the average rotational and turbulent supports of the ICM that could be the cause of deviation
of scaling relations from the virial behavior (see above and Section 3.2.3).
A promising direct probe for gas rotation in galaxy clusters in the future is the distorsion of the
CMB spectrum due to the rotation of the ICM, known as the rotational kinetic Sunyaev-
Zel’dovich Effect (rkSZE; Cooray & Chen 2002). The Inverse Compton scattering between
the CMB photons and the free electrons of the ICM produces a distortion of CMB spectrum:
measuring the shift of CMB signal from the wavelengths of rest-frame CMB means to estimate
the total energy of electrons of the ICM (see Mroczkowski et al. 2019 for a review). The mi-
croscopic random (thermal) motion of the ICM and the velocity of the entire cluster moving
in the large-scale structure of the Universe (known as peculiar velocity) primarily contribute
to the energetics of electrons in the CMB rest-frame, however a significant rotation of the
ICM provides a non-negligible energy fraction (e.g. Nagai et al. 2013 and references therein).
Indeed, the non-null (in the CMB rest-frame) line of sight tangential speed of electrons pro-
duces an additional shift of CMB signal: a temperature increment for approaching ICM and
a temperature decrement for receding ICM. When mapping the CMB in the plane of the sky,
rkSZE induces a dipole-like distortion, which differs significantly from that due to the thermal
motion of electrons (known as thermal Sunyaev-Zel’Dovich Effect, tSZE; Sunyaev & Zeldovich
1972) and from the monopole-like distortion related to the line of sight peculiar speed of cluster
(known as kinetic Sunyaev-Zel’Dovich Effect, kSZE; Sunyaev & Zeldovich 1980). This signa-
ture favour the observations of rkSZE in real clusters, however few attempts thus far have been
made to this end. Mock observations performed on clusters from high-resolution hydrodynam-
ical simulations (e.g. Baldi et al. 2018, Altamura et al. 2023) demonstrate the significance and
the detectability of the rkSZE, when comparing to the dominant distorsions of CMB spectrum,
tSZE and kSZE.
For the sake of completeness, we report some results on the bulk motions and, in particular,
rotation in galaxy clusters. If the ICM and member galaxies are both in equilibrium into the
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potential well of halo, they likely follow the same rotation law. We thus trace the rotation of
the ICM via the Doppler shift of the centroids of optical emitting lines of member galaxies:
though few attempts (e.g. Kalinkov et al. 2005), the sparse and discrete sampling of mem-
ber galaxies discourage the use of optical wavelengths to this end. Furthermore, over the last
decade a remarkable effort has been made to provide new methods to measure in absence of
an X-ray instrument of high energy resolution the bulk speeds of the ICM: primarily, the tur-
bulent speed of the ICM (e.g. Rebusco et al. 2005, Zhuravleva et al. 2012, Zhuravleva et al.
2022 and references therein), even if there were thus far few detections. In absence of direct
detection of speed of the ICM, we report a possible upper limit on the rotation of the ICM
provided by an indirect measurement: the speed of a merging cluster. Thanks to the detection
of a bow shock, Springel & Farrar 2007 measure the speed of a minor merger among galaxy
clusters ≳ 2500 km/s. Assuming the rotation of the ICM as a consequence of merger (e.g. Nagai
et al. 2013) and the tight conservation of angular momentum during this merging, 2500 km/s
is interpreted as a reference upper limit on the peak of rotation speed of the ICM.

The targets of this work in the context of the study of the ICM. The predicted regular-
ity of the internal strucuture of the halos (such as the universal spherically averaged density
profile and the mass-concentration relation; see Section 1.3.1, e.g. Navarro et al. 1996, Dut-
ton & Macciò 2014 and references therein) and the observed regularity of the thermodynamic
properties of the ICM (e.g. Ghirardini et al. 2019 and references therein) are appreciable and
important results obtained by independent works, but is there a self-consistent and comprehen-
sive description of the properties of both dark and baryonic components in cool-core clusters? It
is hard to find together these results in clusters from a N-body hydrodynamical high-resolution
simulation, which models the bottom-up growth of density small perturbations up to form the
present-day clusters. We thus rely on the combination of these results inferred from indepen-
dent works.
In this work the physical engines, which shape the distribution of the ICM throughout the
cluster, are the gravity of halo and the rotation of the ICM, if any. Assuming polytropic dis-
tributions, we explore the equilibrium of the ICM for a variety of the shapes of halos [expected
from DM-only simulations (e.g. Allgood et al. 2006)] and for different kinematic conditions of
the ICM [expected on the basis of the hydrodynamical simulations (e.g. Nagai et al. 2007b,
Nagai et al. 2013), of the tension between mass estimators (e.g. Pratt et al. 2019 and references
therein) and of few measurements (Liu & Tozzi 2019 and references therein)], while preserv-
ing the regularity of the thermodynamic properties of the ICM and of the internal structure
of halos. We thus propose six realistic models of the ICM plus the DM that depict the two
dominant mass components in a typical massive cool-core clusters as expected by unifying the
results discussed in this Introduction.
Due to the high content of thermal energy of the ICM the works over the last decades consider
the X-rays the most promising wavelengths to study the ICM and emphasized the prominent
role, which could play the high quality X-ray spectra in the understanding of the kinematics of
the ICM (e.g. Sunyaev et al. 2003). Moreover, a way to indirectly constrain the gas rotation
(e.g. Bianconi et al. 2013) and the shape of halos (e.g. Buote & Canizares 1992) is through the
morphology of X-ray surface brightness distribution. Assuming the spherical symmetry of halo
to build realistic models of rotating ICM and using primarily the observed ellipticity profile as
constraint on the rotation patterns, Bianconi et al. (2013) conclude that there is room for an
ICM rotation of ≲ 600 km/s in real clusters. In this work, comparing the X-ray photometric
observables reconstructed from our models of the ICM to currently available results, we discuss
the limits and possibilities to constrain the rotation patterns on the basis of the morphology
of X-ray surface brightness distribution of real clusters. Then, performing an analysis of mock
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Introduction

X-ray spectra we investigate one of possible applications of RESOLVE: measuring the gas rota-
tion under different turbulent conditions of the ICM in real galaxy clusters. It means not only
to appreciate the kinematic conditions of the ICM, but also to understand their role in shaping
the thermodynamic properties of the ICM and, consequently, to control the mass biases in the
use of clusters as cosmological probes.

This thesis is organised as follows. In Chapter 1 we build the models of halos that shape the
potential well, where the ICM is in equilibrium. In Chapter 2 we present our static and rotating
realistic models of the ICM. Chapter 3 is devoted to the reconstruction of X-ray photometric
observables and to the analysis of a collection of mock X-ray spectra constructed from our
models of the ICM. While the intrinsic properties of the models of the ICM are fully analytic,
their observables are numerical.
Thoughout this thesis we assume the concordance ΛCDM cosmological model, where the Hub-
ble’s constant is H0 = 70 km/s/Mpc, the parameter of density of overall (baryonic plus dark)
matter at redshift z = 0 Ωm,0 = 0.3 and the parameter of density of cosmological constant at z =
0 ΩΛ,0 = 0.7. The critical density of the Universe at redshift z is ρcrit(z) = 3H2(z)/(8πG), where
G is the universal constant of gravity, H(z) = H0E

1/2(z) and E(z) =
√
ΩΛ,0 + Ωm,0(1 + z)3.
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Chapter 1

Flattened DM halos

Most mass of a galaxy cluster resides in DM particles (which we expect to have masses ≳ GeV).
To compute the gravitational potential of a large collection of DM particles, using the super-
position principle we can add together the point-like potentials of all the DM particles, which
compose a DM halo. It is not practicable numerically, despite the remarkable improvement of
computer performance, since the number of DM particles, in a mass of ∼ 1015M⊙, is expected
to be enormous. We thus rely on an analytic density-potential pair, which mimic in a time-
averaged sense the density spatial distribution and, consequently, the potential of DM particles
in a halo, respectively. The assumption of a negligible gravitational field of stars is not always
justified in the innermost region of clusters, where the mass of BCG is comparable to dark
component. Formally we can interpret the assumed density-potential pair as due to DM plus
stars.
The difficulty to infer from the observations the morphology of DM halos suggests us to rely
on N-body simulations. In cosmological DM-only simulations the spherically symmetric halos
are rare (e.g. Allgood et al. 2006): one would not expect halos to be spherical if the relaxation
time is longer than the time between mergers, if mass accretion onto DM halos is directional
and/or if the infalling subhalos come along preferential direction (such as along a filament).
During the formation of present-day halos the major mergers are frequent and ubiquitous:
even if galaxy clusters are located in the intersections of cosmic filaments, where the infalling
mass come from a fairly random direction, the shape of their DM halos likely reflects the last
major marger. One way to account for the DM halo flattening is to go one step beyond
the spherical approximation and to approximate the halos as homeoids. Despite the use of
homeoidal approximation, it is hard to find analytic density-potential pairs. However, the
universal density profile of DM halos (that is the NFW), obtained from DM-only simulations
as average in spherical shells (e.g. Navarro et al. 1996), can be thought as a zero-order term of
a homeoidal density distribution. We thus find an exact flattened density-potential pair via a
homeoidal expansion (Ciotti & Bertin 2005) of NFW profile up to the first significant order
in flattening.

This Chapter is organised as follows. The method to construct a flattened density-potential
pair from a homeoidal expansion is described in Section 1.1, while the Sections 1.2.1 and 1.2.3
are devoted to the application to the NFW (the profiles of the gravitational field are derived in
Section 1.2.4). However, to avoid an unphysical density distribution we limit the flattening, as
discussed in Section 1.2.2. In Section 1.3 we present our models of halos that respect the main
predictions on their internal structure.
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Chapter 1. Flattened DM halos

1.1. Homeoidal expansion technique

The homeoidal expansion technique is a simple method to construct an exact flattened density-
potential pair. When going one step beyond the spherical symmetry, we usually use the ellip-
soidal symmetry: despite the difficulty to find the analytic form of the potential of a generic
density distribution stratified over homeoids, the limit for small flattening, known as homeoidal
expansion, is remarkably simpler.
Let us consider a density distribution stratified over homeoidal surfaces: ρm(x) = ρ0ρ̃(m) with
x = (x; y; z) and

m2(x; y; z) =
x2

a2
+
y2

b2
+
z2

c2
=
x2

a2
+

y2

a2(1− ϵ)2
+

z2

a2(1− η)2
, (1.1)

where ϵ and η are sufficiently small dimensionless parameters (0 < ϵ, η ≪ 1) such that b =
a(1 − ϵ) and c = a(1 − η). ϵ and η are the ellipticities of the ellipses in the plane z = 0 and
y = 0, respectively: they essentially parametrize the significance of flattening. The density
distribution depends only on m: in Eq.(1.1) a, b and c are constant. η and ϵ as well as the
axial ratios (1− ϵ or 1− η) thus are constant for any m.
In general, any ellipsoidal distribution (prolate, oblate or triaxial) can be built via a homeoidal
expansion, but in this project we focus only on

� prolate ellipsoid for 0 < η = ϵ ≪ 1 (i.e. b = c < a), such that the equatorial plane is
located at x = 0 and the symmetry axis is x;

� oblate ellipsoid for ϵ = 0 and 0 < η ≪ 1 (i.e. a = b > c), such that the equatorial plane
is located at z = 0 and the symmetry axis is z;

Any density distribution ρ(x) produces a gravitational potential Φ(x), which satisfies the Pois-
son Equation

∇2Φ(x) = 4πGρ(x). (1.2)

Any solution of Eq.(1.2) with a positive ρ(x) is called a density-potential pair. Eq.(1.2) allows
us to infer the gravitational potential from any density distribution, but the solution is analytic
only in special cases.
It is useful to work with dimensionless quantities:

ρ̃(x) =
ρ(x)

ρ0
, (1.3)

x̃ :=
x

a
,

ỹ :=
y

a
,

z̃ :=
z

a

and

Φ̃(x̃) :=
Φ(x)

4πGρ0a2
. (1.4)

Any dimensionless density-potential pair (ρ̃(x̃) and Φ̃(x̃)) satisfies the dimensionless Poisson
eq.

∇̃2Φ̃ = ρ̃, (1.5)
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1.1. Homeoidal expansion technique

where ∇̃ = a∇.
Under the assumption of small flattenings (0 < ϵ, η ≪ 1), we expand the homeoidal density-
potential pair (ρ̃(m) = ρ(m)/ρ0 and Φ̃(m) = Φ(m)/(4πGρ0a

2)) around the spherical term of
ϵ = η = 0 (ρ̃(r̃) and Φ̃0(r̃)) up to the first significant order in ϵ and η (for details see Ciotti &
Bertin 2005):

ρ̃(m) = ρ̃(r̃) +
ϵỹ2 + ηz̃2

r̃
ρ′(r̃) + o(ϵ2 + η2), (1.6)

where r̃ := r
a
=
√
x̃2 + ỹ2 + z̃2 and ρ′(r̃) := dρ̃

dr̃
with ρ̃ = ρ̃(r̃);

Φ̃(m) = Φ̃0(r̃) + (ϵ+ η)[Φ̃1(r̃)− Φ̃0(r̃)] + (ϵỹ2 + ηz̃2)Φ̃2(r̃) + o(ϵ2 + η2), (1.7)

where

Φ̃0(r̃) := −1

r̃

∫ r̃

0

ρ̃(m)m2dm−
∫ ∞

r̃

ρ̃(m)mdm, (1.8)

Φ̃1(r̃) := − 1

3r̃3

∫ r̃

0

ρ̃(m)m4dm− 1

3

∫ ∞

r̃

ρ̃(m)mdm (1.9)

and

Φ̃2(r̃) :=
1

r̃5

∫ r̃

0

ρ̃(m)m4dm. (1.10)

The zero-order term of Eq.(1.7) Φ̃0 (given by Eq.(1.8)), representing the spherically symmetric
potential, satisfies the spherically symmetric Poisson Equation

1

r̃2
d

dr̃

(
r̃2
dΦ̃0

dr̃

)
= ρ̃(r̃). (1.11)

Ciotti & Bertin (2005) show that the dimensionless potential Φ̃1(r̃)− Φ̃0(r̃) + z̃2Φ̃2(r̃) and the
dimensionless density z̃2ρ̃′(r̃)/r̃ satisfy Eq.(1.5). By the linearity of Eq.(1.5) it follows that
Φ̃(m) and ρ̃(m) to first-order in flattening are an exact flattened density-potential pair. The
homeoidal expansion technique thus consists in finding an exact flattened density-potential pair
from a homeoidal expansion of Eq.s (1.6) and (1.7), in this case, up to the first significant order
in flattening. This exact flattened density-potential pair has no ellipsoidal symmetry, even if it
is generated from a homeoidal expansion. In short, a homeoidal expansion can be used not only
to approximate a homeoidal density-potential pair for small flattenings, but also to produce an
exact aspherical density-potential pair for finite (not necessarily small) ellipticities.
The homeoidal expansion of the dimensionless gravitational field is

g̃(x̃) := −∇̃Φ̃(m) =− ∇̃Φ̃0(r̃)− (ϵ+ η)∇̃[Φ̃1(r̃)− Φ̃0(r̃)]+

− ∇̃[(ϵỹ2 + ηz̃2)Φ̃2(r̃)] + o(ϵ2 + η2),
(1.12)

where

g̃(x̃) :=
g(ax̃)

4πGρ0a

and x̃ := (x̃, ỹ, z̃).
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Chapter 1. Flattened DM halos

1.2. A flattened density-potential pair from the homeoidal
expansion of NFW profile

Let us take the NFW density-potential pair as zero-order term of a homeoidal expansion:

ρ(r) =
ρr(

r
rs

)(
1 + r

rs

)2 (1.13)

and

Φ0(r) = −4πρrr
2
s

ln
(
1 + r

rs

)
r
rs

. (1.14)

In dimensionless form, using Eq.s (1.3) and (1.4) with a = rs and ρ0 = ρr, we have

ρ̃(r̃) =
1

r̃(1 + r̃)2
(1.15)

and

Φ̃0(r) = − ln(1 + r̃)

r̃
. (1.16)

Before working with a homeoidal expansion, we report below in dimensionless units the proof
that Eq.(1.16) is the potential produced by the density distribution in Eq.(1.15). We begin
with the innermost derivative of right-hand side (hereafter, RHS) of Eq.(1.11):

r̃2dΦ̃0

dr̃
= −r̃2

r̃
1+r̃

− ln(1 + r̃)

r̃2
= ln(1 + r̃)− r̃

1 + r̃
.

Substituting the above expression in the Poisson eq. (1.11) and deriving again, we conclude
our demonstration:

1

r̃2
d

dr̃

(
r̃2
dΦ̃0

dr̃

)
=

1

r̃2

(
1

1 + r̃
− 1 + r̃ − r̃

(1 + r̃)2

)
=

1

r̃(1 + r̃)2
.

1.2.1. Flattened density distribution

The derivative of ρ̃(r̃) is

dρ̃

dr̃
= −(1 + r̃)−2r̃−2 − 2r̃−1(1 + r̃)−3 = −r̃−2(1 + r̃)−3(r̃ + 2r̃ + 1) = − 1 + 3r̃

r̃2(1 + r̃)3
. (1.17)

Substituting Eq.(1.17) into (1.6), we get the homeoidal expansion of NFW density profile

ρ̃(m) =
1

r̃(1 + r̃)2
− ϵỹ2 + ηz̃2

r̃

1 + 3r̃

r̃2(1 + r̃)3
+ o(ϵ2 + η2). (1.18)

Eq.(1.18) shows the role of the term to first order in the ellipticities: the flattening of the
distribution occurs by subtracting a part of the NFW density along the directions ỹ and z̃.
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Figure 1.1.: Maps of dimensionless density ρ(R/rs; z/rs)/ρr in the meridional plane for a selec-
tion of prolate NFW halos (see Eq.(1.19)). η spans the range [0; 1/3] (η = 0 refers
to the spherical NFW).

The absence of first-order term for ỹ = z̃ = 0 in Eq.(1.18) (i.e. along the x̃ axis) breaks the
spherical symmetry of distribution, since no subtraction of NFW density occurs along the x̃
axis (hereafter, the unperturbed axis). In short, for declining density profile to zero-order, the
first-order term drives a directional subtraction of a part of density of spherically symmetric
distribution.

The dimensionless density distributions used in this work are

� when the subtraction of NFW density occurs in the equatorial plane (some examples in
Figure 1.1),

ρ̃pro(R; z) =
1

r̃(1 + r̃)2
− ηR̃2

r̃

1 + 3r̃

r̃2(1 + r̃)3
, (1.19)

where R̃ =
√
ỹ + z̃ is the radius in the equatorial plane and r̃ =

√
R̃2 + x̃2;
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Oblate density maps

Figure 1.2.: Same as Figure 1.1, but for a selection of oblate NFW halos (see Eq.(1.20)).

� when the substraction of NFW density occurs along the vertical direction in the meridional
plane (some examples in Figure 1.2),

ρ̃obla(R; z) =
1

r̃(1 + r̃)2
− ηz̃2

r̃

1 + 3r̃

r̃2(1 + r̃)3
, (1.20)

where z̃ is the symmetry axis and r̃ =
√
R̃2 + z̃2.

We note that Figure 1.1 differs from 1.2 only in the direction of flattening as well as Eq.(1.19)
from Eq.(1.20). Given that the first-oder terms of Eq.s (1.19) and (1.20) are ∝ R̃2/r̃ and
∝ z̃2/r̃, respectively, the subtraction of NFW density is more significant outwards. For high
η it induces axial ratios of isodenses < 1− η and a peanut-shaped distribution far from the
center.
It is evident from Eq.(1.18) that the density distribution would assume negative values if the
directional subtraction of density is sufficiently large: given that ϵ and η measure the density
subtraction, the condition that the density is positive-defined at any point of space imposes
upper limits on ϵ and η, derived in the next Section (1.2.2).
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Figure 1.3.: Same as Figure 1.1, but for η spanning the range [1/3; 0.36]. In the white regions
the density is negative and thus unphysical.

1.2.2. Analytic constraint on flattening

To avoid unphysical density distributions we limit the subtraction of density in the following
way. We suppose ϵ ≤ η without loss of generality, because thanks to the spherical symmetry
of zero-order term we can select any perpedicular direction as a, b or c (of Eq.(1.1)). When
dρ̃
dr̃

≤ 0 as it is usual, for sufficiently high η the density homeoidal expansion (RHS of Eq.(1.6))
assumes a negative value at least at a point of space. We rewrite the condition

ρ̃(r̃) +
ϵỹ2 + ηz̃2

r̃

dρ̃

dr̃
≥ 0

as

1− ϵỹ2 + ηz̃2

r̃2

∣∣∣∣d ln ρ̃(r̃)d ln r̃

∣∣∣∣ ≥ 0. (1.21)
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Figure 1.4.: Same as Figure 1.2, but for η spanning the range [1/3; 0.36]. In the white regions
the density is negative and thus unphysical.

To find a constraint valid at any point of space on the subtraction of density, we substitute the
following expression for the second term in the left-hand side (hereafter, LHS) of Eq.(1.21):

sup
[0;∞)

(
ϵỹ2 + ηz̃2

r̃2

∣∣∣∣d ln ρ̃(r̃)d ln r̃

∣∣∣∣) = η sup
[0;∞)

∣∣∣∣d ln ρ̃(r̃)d ln r̃

∣∣∣∣ ,
where sup[0;∞)

ỹ2+z̃2

r̃2
= 1 in the plane x̃ = 0. The equation resulting from this substitution

allows us to limit η:

ηAM ≤ 1, (1.22)

where

AM := sup
[0;∞)

∣∣∣∣ ln(ρ̃(r̃))d ln(r̃)

∣∣∣∣ = sup
[0;∞)

|γ(r̃)| .

γ(r̃) is the logarithmic slope of density distribution

γ(r̃) :=
d ln ρ̃

d ln r̃
, (1.23)
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1.2. A flattened density-potential pair from the homeoidal expansion of NFW profile

for the NFW profile

γ(r̃) = r̃2(1 + r̃)2
(
− 1 + 3r̃

r̃2(1 + r̃)3

)
= −1 + 3r̃

1 + r̃
. (1.24)

To find AM , we look for maxima and minima of γ(r̃) for r̃ in the range [0;∞). Given that
the RHS of Eq.(1.24) is a monotonic function of r̃, we evaluate γ(r̃) only at extrema of this
range:

γ(r̃ → 0) = −1 (1.25)

and
γ(r̃ → ∞) = −3. (1.26)

The maximun in absolute value between the RHSs of Eq.s (1.25) and (1.26) gives us AM .
When dealing with Eq.(1.18), the limit on the ellipticities ϵ and η is from Eq.(1.22)

ϵ ≤ η <
1

AM
=

1

3
. (1.27)

In the prolate NFW density distribution 0 < η = ϵ ≤ 1/3 and in the oblate NFW ϵ = 0
and 0 < η ≤ 1/3. Given that Eq.(1.6) produces a peanut-shape distribution, the ellipticities
of isodenses far from the center are > 1/3 (see Figures 1.3 and 1.4 with η = 1/3 for some
examples). We check numerically the limit on η in Figures 1.3 and 1.4: only for η ≤ 1/3 there
is no unphysical density, while for η > 1/3 there are unphysical densities along the direction of
subtraction of density (as expected from Eq.(1.18)).

1.2.3. Flattened potential

In this Section, we construct the potential generated by Eq.(1.18) to first order in flattening
from a homeoidal expansion of NFW potential. For the NFW density profile the integrals in
Eq.s (1.8), (1.9) and (1.10) are∫ ∞

r̃

ρ̃(m)mdm =

∫ ∞

r̃

1

(1 +m)2
dm = −

[
1

1 +m

]∞
r̃

(1.28)

and ∫ r̃

0

ρ̃(m)m4dm =

∫ r̃

0

m3

(1 +m)2
dm. (1.29)

It is useful to rewrite the numerator in the RHS of Eq.(1.29) as

m3 = m(m+1)2−2m2−m = m(m+1)2−2(m+1)2+3m+2 = m(m+1)2−2(m+1)2+3(m+1)−1.

We integrate the RHS of Eq.(1.29), substituting the above expression for m3:∫ r̃

0

m3

(1 +m)2
dm =

∫ r̃

0

(
m− 2 +

3

(1 +m)
− 1

(m+ 1)2

)
dm =

=

[
m2

2
− 2m+ 3 ln(m+ 1) +

1

m+ 1

]r̃
0

.

(1.30)

After substituting Eq.s (1.29) and (1.30) into (1.9) and (1.10), respectively, the first-order
terms are

Φ̃1(r̃) = − 1

6r̃
+

2

3r̃2
− ln(1 + r̃)

r̃3
− 1

3r̃3(r̃ + 1)
+

1

3r̃3
− 1

3(1 + r̃)
(1.31)
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Figure 1.5.: Maps of dimensionless gravitational potential Φ(R/rs; z/rs)/(4πGρrr
2
s) in the

meridional plane, for the models shown in Figure 1.1 (see Eq.(1.33)).

and

Φ̃2(r̃) =
1

2r̃3
− 2

r̃4
+

3 ln(1 + r̃)

r̃5
+

1

r̃5(r̃ + 1)
− 1

r̃5
. (1.32)

One can substitute these expressions for the two components of the first-order term in Eq.(1.7)
to find the homeoidal expansion of NFW potential. Here, we present the potentials generated by
the density distributions in Eq.s (1.19) and (1.20) (some examples of these flattened potentials
are in Figures 1.5 and 1.6):

� when the subtraction of density occurs in the equatorial plane,

Φ̃pro(R̃; x̃) =− ln(1 + r̃)

r̃
+ 2η[− 1

6r̃
+

2

3r̃2
− ln(1 + r̃)

r̃3
− 1

3r̃3(r̃ + 1)
+

+
1

3r̃3
− 1

3(1 + r̃)
+

ln(1 + r̃)

r̃
] + ηR̃2[

1

2r̃3
+

− 2

r̃4
+

3 ln(1 + r̃)

r̃5
−+

1

r̃5(r̃ + 1)
− 1

r̃5
],

(1.33)
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Figure 1.6.: Same as Figure 1.6, but for the models shown in Figure 1.2 (see Eq.(1.34)).

where R̃ :=
√
ỹ2 + z̃2 is the radius in the equatorial plane (defined as x̃ = 0) and x̃ the

symmetry axis;

� when the subtraction of density occurs along the symmetry axis,

Φ̃obla(R̃; z̃) =− ln(1 + r̃)

r̃
+ η[− 1

6r̃
+

2

3r̃
− ln(1 + r̃)

r̃3
− 1

3r̃3(1 + r̃)
+

+
1

3r̃3
− 1

3(1 + r̃)
+

ln(1 + r̃)

r̃
] + ηz̃2[

1

2r̃3
+

− 2

r̃4
+

3 ln(1 + r̃)

r̃5
+

1

r̃5(1 + r̃)
− 1

r̃5
],

(1.34)

where z̃ is the symmetry axis and R̃ =
√
x̃2 + ỹ2 the radius in the equatorial plane

(defined as z̃ = 0).

As we note in Figures 1.5 and 1.6, given that the gravitational potential depends on the
entire distribution of density, there is everywhere a decrease of the gravitational potential for
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Chapter 1. Flattened DM halos

increasing η due to the subtraction of density and an ellipticity of gravitational potential < η.
If the subtraction of density follows no preferential direction, the density and the generated
gravitational potential would be spherical; however, the directional subtraction of density breaks
also the spherical symmetry of the gravitational potential. Indeed, in Figures 1.5 and 1.6 we
note the elongation of the gravitational potential along the unperturbed axis as well as in the
density maps.

1.2.4. Profiles of the flattened gravitational field

We report some useful expressions for deriving the gravitational fields generated by the density
distributions in Eq.s (1.19) and (1.20), using s as the independent variable:

d

ds

ln(1 + s)

s
=

1

s(1 + s)
− ln(1 + s)

s2
,

d

ds

1

s3(1 + s)
= − 3

s4(1 + s)
− 1

s3(1 + s)2

and
d

ds

ln(1 + s)

s3
=

1

(1 + s)s3
− 3

ln(1 + s)

s4
.

The gravitational field of the spherical NFW is g̃NFW = (g̃NFW,r̃; g̃NFW,ϕ; g̃NFW,θ) in spherical
coordinates, where

g̃NFW,r̃(r̃) = −dΦ̃0(r̃)

dr̃
=

1

(1 + r̃)r̃
− ln(1 + r̃)

r̃2
(1.35)

and g̃NFW,ϕ = g̃NFW,θ = 0.
The gravitational field that is a vector (g̃ := (g̃R̃; g̃ϕ; g̃z̃) in cylindrical coordinates) for an
axisymmetric distribution is g̃(R̃; z̃) = (g̃R̃; 0; g̃z̃). Hereafter, we rename the symmetry axis of
the prolate model x̃ as z̃ (i.e. we substitue z̃ for x̃ in Eq.s (1.19) and (1.33)). The profiles of
R̃- and z̃- components of the gravitational field in the meriodional plane are:
when the density subtraction occurs along the symmetry axis

g̃obla,R̃(R̃; 0) = −dΦ̃obla(R̃; 0)

dR̃
=

1

(1 + R̃)R̃
− ln(1 + R̃)

R̃2
− η

[
1

6R̃2
− 4

3R̃3
− 1

(1 + R̃)R̃3
+

+ 3
ln(1 + R̃)

R̃4
+

1

R̃4(1 + R̃)
+

1

3R̃3(1 + R̃)2
− 1

R̃4
+

+
1

3(1 + R̃)2
+

1

(1 + R̃)R̃
− ln(1 + R̃)

R̃2

] (1.36)

and

g̃obla,z̃(0; z̃) = −dΦ̃obla(0; z̃)

dz̃
=

1

(1 + z̃)z̃
− ln(1 + z̃)

z̃2
− η

[
− 1

3z̃2
+

8

3z̃3
+

2

(1 + z̃)z̃3
+

− 6
ln(1 + z̃)

z̃4
− 2

z̃4(1 + z̃)
− 2

3z̃3(1 + z̃)2
+

2

z̃4
+

+
1

3(1 + z̃)2
+

1

(1 + z̃)z̃
− ln(1 + z̃)

z̃2

]
;

(1.37)
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1.2. A flattened density-potential pair from the homeoidal expansion of NFW profile

when the density subtraction occurs in the equatorial plane

g̃pro,R̃(R̃; 0) = −dΦ̃pro(R̃; 0)

dR̃
=

1

(1 + R̃)R̃
− ln(1 + R̃)

R̃2
− 2η

[
− 1

12R̃2
+

2

3R̃3
+

+
1

2(1 + R̃)R̃3
− 3

ln(1 + R̃)

2R̃4
− 1

2R̃4(1 + R̃)
+

− 1

6R̃3(1 + R̃)2
+

1

2R̃4
+

1

3(1 + R̃)2
+

1

(1 + R̃)R̃
+

− ln(1 + R̃)

R̃2

]
(1.38)

and

g̃pro,z̃(0; z̃) = −dΦ̃pro(0; z̃)

dz̃
=

1

(1 + z̃)z̃
− ln(1 + z̃)

z̃2
− 2η

[
1

6z̃2
− 4

3z̃3
− 1

(1 + z̃)z̃3

+ 3
ln(1 + z̃)

z̃4
+

1

z̃4(1 + z̃)
+

1

3z̃3(1 + z̃)2
+

1

z̃4
+

+
1

3(1 + z̃)2
+

1

(1 + z̃)z̃
− ln(1 + z̃)

z̃2

]
.

(1.39)

As shown by some examples of flattened gravitational field in Figure 1.7, the subtraction of
density drives the decrease of the magnitude of the gravitational field and the break of the
spherical symmetry. However, Figure 1.7 reveals a feature of non-spherically symmetric density
subtraction, which is more significant in the center and for increasing η: a stronger gravitational
field along the direction of subtraction of density than along the unperturbed axis.

(a) (b)

Figure 1.7.: Profiles of the radial and vertical components of the gravitational field for oblate
(left panel) and prolate (right panel) models. gR(R/rs; z/rs)/(4πGρrrs) evaluated
at z = 0 and gz(R/rs; z/rs)/(4πGρrrs) at R = 0 are the dotted and dashed profiles,
respectively. η, spanning the range [0;1/3], is associated with the same color in both
panels.
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Chapter 1. Flattened DM halos

1.3. From a generic density-potential pair to a model of
halo

1.3.1. Predictions on the internal structure of halos

The depth and the shape of the potential wells that host the ICM are determined not only
by the mass of DM halos, but also by their internal structure. Revealing the properties of
halos requires to infer the gravitational potential and, consequently, the density profile from
the X-ray observations of the ICM and of background lensed sources. However, the biases in the
measurements of gravitational field from the X-ray observations (discussed in the Introduction)
and the difficulty to recover it over three decades in radius (∼ 10 − 103 kpc) from lensing
observations (e.g. Meneghetti et al. 2010) make the determinations of the internal structure
of halos only from the observations unreliable. Moreover, the difficulty to reproduce the non-
gravitational physics in cosmological N-body hydrodynamical simulations suggests us to rely
primarily on cosmological DM-only simulations. When dealing with flattened halos, there is no
uniquely accepted definition of their mass (see also Appendix A). In general, the paradigm used
for the description of statistical properties of halos in the DM-only simulations measures
their mass within spheres and is based on the following parameters.

� The radius r200 is usually interpreted as the boundary of a halo and defines the sphere
which contains an average density of 200ρcrit(z). The mass within the sphere of radius
r200 is M200 := (4/3)πr3200200ρcrit(z).

� r−2 is the radius where the logarithmic slope of spherically averaged density profile is
γ(r−2) = −2. r−2 is usually considered the scale radius of halo (in the spherical NFW
model rs = r−2).

� The halo concentration is c200 := r200/r−2.

If the internal structure of halos is universal, we would expect these parameters to be correlated.
From the observations (e.g. Ettori et al. 2010) and cosmological DM-only simulations there is
evidence for a mass-concentration relation, which at z = 0 is well approximated by a power
law (Dutton & Macciò 2014)

log c200 = 0.905− 0.101 log

(
M200

1012 ×H0/(100 km/s/Mpc)M⊙

)
, (1.40)

According to Eq.(1.40) c200 decreases for increasing mass: the halos over the scales of massive
clusters result less concentrated than those of galaxies. The scatter of the mass-concentration
relation is well reproduced by a log-normal distribution with dispersion σlog c ≃ 0.11

S(log c200) =
1√

2πσlog c
exp

[
−(log (c200)− log (cM−c))

2

2σ2
log c

]
, (1.41)

where cM−c is the centroid of mass-concentration relation and is given by Eq.(1.40).
As well known, in the cosmological framework of bottom-up growth of primordial density
perturbations most halos are aspherical. When approximating the halos as ellipsoids, even if
the majority of them is triaxial, the fact that the axial ratio of two principal semi-axes measured
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in a large sample of halos is close to 1 suggests us to use the spheroidal approximation for the
description of these halos. Using the ellipsoidal approximation, in a DM-only simulation Allgood
et al. (2006) investingate the dependence of the shapes of halos on their mass and measure
at an intermediate radius an average smallest-to-largest axial ratio ≃ 0.45 of halos of
M200 ∼ 1014 − 1015M⊙ at z = 0.
The predictions just discussed on the internal structure of halos are used in Section 1.3.2 as
constraints on the halo models.

1.3.2. Construction of spheroidal models of halos

In this work we use the spherical, oblate and prolate NFW profiles (derived in Section 1.2) to
model at redshift z0 = 0.05 typical halos ofM200 ≃ 1015M⊙ (the spherical model approximates a
halo where the smallest-to-largest axial ratio is close to 1). The NFW profiles are parametrized
by the density normalization ρr, the scale radius rs and the ellipticity η (we recall that η = 0 in
the spherical NFW). In our flattened models we take the largest possible flattening (η = 1/3)
to be as far as possible consistent with the prediction of Allgood et al. (2006) on the shape of
halos (see Section 1.3.1).

Figure 1.8.: Comparison of the concentrations of our spherical, oblate and prolate models
(square, point and triangle, respectively) with the distribution of concentrations
(blue curve) inferred from the mass-concentration relation (the combination of
Eq.s (1.40) and (1.41)) for halos of M200 = 1015M⊙.

The method to construct a halo model based on the spherical NFW (in this work, called
DMN ) is analytic. We assume M200 = 1015M⊙ and a concentration in agreement with the
mass-concentration relation of Dutton & Macciò (2014) (see Figure 1.8; in the spherical model
c200 = 3.98). Recalling that rs = r−2, we get rs = r200/c200, where

r200 =

[
M200

(4/3)π200ρcrit(z)

]1/3
, (1.42)

and we infer ρr from c200 = r200/r−2 as

ρr =
200

3

ρcrit(z)c
3
200

ln(1 + c200)− c200
1+c200

.
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Despite conceptually equal to the spherical case, the method to construct spheroidal halo
models based on the prolate and oblate NFWs is not exact: the difficulty is to find an analytic
expression of the mass of the aspherical NFW in spherical coordinates. Indeed, the mass of an
axisymmetric NFW within the sphere of radius r is

M(< r) := 4π

∫ r

0

(∫ √
r2−z2

0

ρ(R; z)RdR

)
dz, (1.43)

where ρ(R; z) is given by Eq.s (1.19) or (1.20) for the prolate and oblate NFWs, respectively
(we recall that in Eq.(1.19) we substitute z̃ for x̃). We thus compute r200 and r−2 in the
following way. The average density within the sphere of radius r is

⟨ρ⟩(< r) :=
3M(< r)

4πr3
, (1.44)

where M(< r) is given by Eq.(1.43). While, the spherically averaged density profile is

ρshell(r) :=
3[M(< r +∆r/2)−M(< r −∆r/2)]

4π[(r +∆r/2)3 − (r −∆r/2)3]
, (1.45)

where ∆r is the thickness of the spherical shell centered on a radius r (see Appendix A for
the departure of spherically averaged density profile from the NFW). We compute r200 as the
radius r where ⟨ρ⟩(< r) ≃ 200ρcrit(z) (with ⟨ρ⟩(< r) given by Eq.(1.44)) and r−2 as the radius
r where

d ln(ρshell)

d ln r
≃ −2, (1.46)

and ρshell(r) is given by Eq.(1.45).
To build the flattened halo models based on oblate and prolate NFWs (called, in this work, DMO
and DMP, respectively), we select a combination of ρr and rs for which M(< r200) ≃ 1015M⊙,
where M(< r200) is given by Eq.(1.43) with r = r200. Then, once computed r200 and r−2

(see above), we evaluate c200 = r200/r−2 and compare in Figure 1.8 the concentrations of our
flattened models (3.5 < c200 < 4.5) to the mass-concentration relation of Dutton & Macciò
(2014).
In Figure 1.9 we plot the profiles of density and potential of our models of M200 ≃ 1015M⊙,
using Eq.s (1.19), (1.33), (1.20) and (1.34) with the parameters of Table 1.1 (we recall that in
Eq.s (1.19) and (1.33) we substitute z̃ for x̃).

Model Density-potential pair ρr(g/cm
3) rs(kpc) r−2(kpc) r200(kpc)

DMN Spherical NFW 4.8× 10−26 519 519 2067
DMP Prolate NFW with η = 1/3 4.8× 10−26 700 487 2077
DMO Oblate NFW with η = 1/3 4.6× 10−26 600 522 2066

Table 1.1.: Parameters of DM halo models.
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(a) (b)

Figure 1.9.: Profiles of the density (left panel) and of the gravitational potential (right panel) of
our models of halos in the meridional plane. We plot ρ(R; z) and Φ(R; z) evaluated
both at z = 0 (dotted cruves) and at R = 0 (dashed cruves). The same color in
both panels refers to the same model.
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Chapter 2

Intrinsic properties of the ICM in cool-
core cluster models

The ICM in cool-core clusters is believed to be largely in hydrostatic equilibrium, however
a significant rotation is expected from the numerical hydrodynamical simulations (e.g. Nagai
et al. 2007b, Nagai et al. 2013). It is possible that the tension between mass estimators (i.e.
the problem of hydrostaic mass bias, discussed in the Introduction; e.g. Meneghetti et al. 2010,
Pratt et al. 2019) is partly due to ICM rotation. In this Chapter, to explore different kinematic
conditions of the ICM and/or different shapes of DM halos (built in Chapter 1), we construct
six polytropic models of the ICM.
As usual, we describe the ICM as a collisional inviscid perfect plasma. Even though the
mean free path of electrons of the unmagnetised ICM, known as Spitzer’s Value, is ∼ 10-
30 kpc (thus small, but not negligible), we expect that the magnetic fields suppress the mean
free path of electrons of the ICM down nearly to Larmor’s radius ∼ 103-105 km. In this
case, the mean free path is much smaller than the lengthscale of the system and the collisional
approach to the study of the ICM is justified. Given that the length scale of the system is much
larger than the Debye’s length (∼ 10-100 km), no electrostatic field of charges are able to
influence the evolution of the ICM. Moreover, the magnetic fields are dynamically unimportant:
the ratio between thermal and magnetic pressures is ∼ 10-100 for B ∼ 1µG (a typical intensity
of magnetic field measured in galaxy clusters; e.g. Bruggen 2013).

This Chapter is organised as follows. In Section 2.1.2 we discuss the universal profiles of
thermodynamic quantities of the ICM, in Sections 2.2.3 and in 2.3.3 we present our static and
rotating models of the ICM, respectively.

2.1. Predictable behavior of the thermodynamic properties
of the ICM

The paradigm used for the description of the universal thermodynamic profiles of the ICM is
based on the following quantities. r∆ is the radius of the sphere which contains an average
density of ∆ρcrit(z) (where ∆ ≥ 200), while M∆ := (4π/3)r3∆∆ρcrit(z) is the mass of halo
within the sphere of radius r∆ (for the definition of the mass of aspherical halo models, see
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Section 1.3.2 and also Appendix A). In this paradigm, at fixed redshift z, r3∆ thus is a proxy of
M∆. Assuming the cosmic baryon fraction (fb = 0.16) throughout the cluster, the average mass
density of the ICM within the sphere of radius r∆ depends only on ∆ρcrit(z) and, consequently,
the average electron number density of the (fully ionised) ICM within the sphere of radius r∆
is ⟨ne⟩(< r∆) ∝ ∆ρcrit(z). Since this Eq. is valid at any ∆ ≥ 200, the electron number density
profile of the ICM in the shell of radius r∆ can be thought as a function of E2(z) only:

ne(r∆) ∝ E2(z). (2.1)

2.1.1. From a scaling relation to a functional form of the thermodynamic
properties

The gas infalling into a massive DM halo is expected to be heated via adiabatic strong shocks.
In an entirely pressure-supported massive cluster under the assumption of self-similarity, the
Virial Theorem implies the following relation between the temperature of the ICM T∆ and
the virial mass of the cluster M∆ (e.g. Voit 2005):

T∆ ∝M
2/3
∆ E2/3(z). (2.2)

T∆ := T (r∆) is the temperature of the ICM in the spherical shell of radius r∆, even though
the X-ray observations usually associate T∆ with a global temperature of clusters (see Section
3.2.3).
Using Eq.(2.1), for a perfect fully ionised gas we rewrite Eq.(2.2) as

p∆ ∝M
2/3
∆ E8/3(z), (2.3)

where p∆ := p(r = r∆) is the pressure of the ICM in the shell of radius r∆.
From the observations there is a clear evidence that in massive cool-core clusters only in in-
termediate regions centred around r500 the ICM is fully in equilibrium: we expect the ICM
dynamics to depend on the prominence of cool core in the center, while on the continuous
interplay between cluster and its surroundings in the outskirts. In the spherical shell of radius
r500 the predicted mass-temperature and mass-pressure relations are (Ghirardini et al. 2019)

T500 = 8.85 keV

(
M500

1015M⊙
E(z)

)2/3

(2.4)

and

p500 = 3.426× 10−3 keV × cm−3

(
M500

1015M⊙

)2/3

E(z)8/3, (2.5)

respectively.
In real clusters a scaling relation is found betweenM500 and T500 closely resembling Eq.(2.4) (see
Section 3.2.3). In this Chapter we ignore the observed deviation from Eq.(2.4). At fixed z, T500
or p500 depend only onM500, so T500 and p500 are known as mass proxies. However, the presence
of a non-thermal support (due to the rotation or to the turbulence) causes an underestimate
of mass recovered for a given T500 or p500 by means of Eq.s (2.4) or (2.5), respectively, because
T500 and p500 refer only to the thermal support.
If a mass-temperature relation or a mass-pressure relation are observed at any radius r∆, the
thermodynamic profiles of the ICM would be tightly universal throughout the cluster. In the

20
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next Section (2.1.2) we present the functional form fQ(x) able to reproduce any profile Q(x)
of the thermodynamic quantity Q of the ICM in the form of

Q(x) = Q500fQ(x), (2.6)

where x := r/r500 and Q500 is the thermodynamic quantity computed from the relations (2.4)
or (2.5) for Q = T and Q = p, respectively. Moreover, the predicted mass-entropy relation,
that gives the expected dimensionless entropy (see Section 2.2.1) in the shell of radius r500,
is reported, e.g., by Ghirardini et al. 2019, while Q500 for the electron number density is
E(z)2 from Eq.(2.1). However, we expect the bulk motions to generate a departure from the
universal profiles as well as from the scaling relations. To reconstruct the universal profiles
of the thermodynamic quantities of the ICM (see the next Section), Ghirardini et al. (2019)
thus selected a sample of clusters with low mass biases, i.e. a sample where the measurements
of mass from the X-ray observations (under the assumption of hydrostatic equilibrium) match
those from gravitational lensing to < 10%.

2.1.2. Universal thermodynamic profiles

While Vikhlinin et al. (2006) performed one of the first reconstructions of the universal profiles
of the thermodynamic quantities of the ICM in real clusters, Nagai et al. (2007a) test the reli-
ability of the reconstruction method employed in Vikhlinin et al. (2006) via mock observations
of clusters from a high-resolution numerical simulation. This analysis demonstrated that the
thermodynamic profiles are reconstructed within a few percent. In the last decades several
works confirmed the regularity of the thermodynamic profiles of the ICM found by Vikhlinin
et al. (2006) in real clusters, even if the outermost region of cluster (r ≳ r500) were remained
unexplored. The combination of high quality data of SZE and of X-ray emission provided
by PLANCK (https://www.nasa.gov/mission_pages/planck) and by XMM-NEWTON, re-
spectively, allowed Ghirardini et al. (2019) to reconstruct the universal thermodynamic profiles
up to 2r500 with an unprecedented accuracy. Indeed, Ghirardini et al. (2019) combine the X-ray
and SZE data in the outskirts of clusters to increase the precision of their measurements while
keeping a good control of systematic errors. The sample of clusters used for this reconstruction
is the X-COP sample (Eckert et al. 2017) that consists of 4 cool-core clusters selected on the
basis of signal-to-noise ratio in the PLANCK Sunyaev-Zel’dovich survey (Planck Collaboration
et al. 2014). In the theoretical studies of the thermodynamic behavior of the palsma, the pres-
sure and the dimensionless entropy (see Section 2.2.1) can be thought as the combination of
density and temperature. Indeed, even though the thermodynamic quantities are four (density,
temperature, pressure and dimensionless entropy), the seed (i.e. independent) thermodynamic
properties are density and temperature. In this work, we thus use only the functional forms of
seed thermodynamic properties of the ICM, even if Ghirardini et al. (2019) trace the functional
forms of all the thermodynamic quantities. To infer the thermodynamic profiles of the ICM
from the observations of cool-core clusters, two of the most reliable observable are the Compton
Parameter (see below) related to the SZE and the Emission Measure (see below), which are
probes for the pressure and number density of the electrons of the ICM, respectively. Since
we observe directly only density and pressure, we perform the reconstruction of the functional
forms of density and temperature in the following way.
The emission measure (E.M.) inferred from the X-ray surface brightness is a probe of density
(e.g. Vikhlinin et al. 2006):

E.M. :=

∫
l.o.s.

nenpdl,
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where ne and np are the number densities of electrons and of protons, respectively, and dl
is an infinitesimal length along the line of sight (l.o.s.) of the observation. Ghirardini et al.
(2019) split the X-ray images of clusters into circular concentric annuli, where they evaluated
the median of the emission measure to be insensitive to the gas clumps. Then, under the
assumption of spherical symmetry they deprojected the E.M. to extract the profile of electron
number density. To trace back to the universal profile of density of the ICM in the form
of Eq.(2.6), they rescaled by E(z)2 and r500 the number density of electrons (ne) and the
deprojection radius r, respectively. The observed profiles of density of the ICM are usually
fit by an isothermal β-model (Cavaliere & Fusco-Femiano 1978), which, however, misses two
well-distinguished signatures: a central cusp and a strongly decreasing slope in the outskirts.
The functional form of density, which fits these features, is (see Vikhlinin et al. 2006 for the
complete derivation)

fn(x) =
n2
e(x)

E(z)4
= n2

c

(
x
rc

)−α
(
1 + x2

r2c

)3β−α/2 1[
1 +

(
x
rss

)δ]ξ/δ , (2.7)

where x := r/r500 and r500 is the radius of the sphere which contains an average density of
500ρcrit(z), while the fitting dimensionless parameters nc, rc, rss, β, α and ξ are quoted in
Table 2.1 (Ghirardini et al. 2019 fix δ = 3 when fitting).
The SZE is a probe of the content of thermal energy residing in the ICM (see the Introduction;
e.g. Nagai et al. 2007a): in absence of line of sight speed of the ICM (in the CMB rest-frame),
the Compton Parameter y accounts for the electron pressure (pe) integrated along the l.o.s.,
indeed (Mroczkowski et al. 2019)

y :=
σThom
mec2

∫
l.o.s.

pedl,

where σThom, me and c are the Thomson cross section, the electron mass and the light speed,
respectively.
The spherically averaged pressure profile was thus inferred from the SZE via the deprojection
of y in spherical shells of radius r. To trace back to the universal profile of pressure in the form
of Eq.(2.6), Ghirardini et al. (2019) rescaled r and the pressure p by r500 and p500 in Eq.(2.5),
respectively. Nagai et al. (2007a) on the basis of mock observations in a sample of clusters
from a high-resolution hydrodynamic simulation concluded that the generalized NFW profile
allowed them to closely match the observed profiles of pressure with the results of simulation.
The functional form of the pressure based on the generalized NFW is (Nagai et al. 2007a)

fp(x) =
p(x)

p500
=

pc

(c500x)χ[1 + (c500x)ψ]
υ−χ
ψ

, (2.8)

where x = r/r500, p500 is given by Eq.(2.5) and the fitting dimensionless parameters p0, c500, χ,
ψ and υ are quoted in Table 2.1.
To reconstruct the universal profile of temperature in the form of Eq.(2.6), we use

T (x) =
p(x)

ne(x)
, (2.9)

where x = r/r500, while p(x) and ne(x) are given by Eq.s (2.7) and (2.8), respectively.

Ghirardini et al. (2019) observed a scatter in the universal thermodynamic profiles of the
ICM, which reflects the fact that the history of formation of present-day clusters is not unique.
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Parameter CC
nc exp(−3.9)
rc exp(−3.2)
rss exp(0.17)
α 0.80
β 0.49
ξ 4.67
p0 6.03
c500 1.68
χ 0.51
ψ 1.33
υ 4.37

Table 2.1.: Dimensionless parameters of the functional forms of electron number density
(Eq.(2.7)) and of pressure (Eq.(2.8)) for X-COP sample of cool-core (CC) clus-
ters, taken from Ghirardini et al. (2019).

Parameter fn fp
σ1 0.09 0.03
σ0 0.13 0.00
x0 0.88 1.52

Table 2.2.: Dimensionless parameters of the intrinsic scatter for X-COP sample of cool-core
clusters, taken from Ghirardini et al. (2019). fn and fp refer to the functional forms
of density and temperature in Eq.s (2.7) and (2.8), respectively.

If the non-radiative processes drive the evolution of the ICM, in clusters with low mass biases
this scatter is substantially reduced. In the center of clusters where the radiative processes
determine the prominence of the cool cores we expect an increase of the scatter, even though
the ICM is in equilibrium in time-averaged sense.
Ghirardini et al. (2019) estimate the upper (+) and lower (−) profiles of scatter of the functional
form fQ(x) in the form of

S±
Q(x) = fQ(x) exp[±σint,Q(x)], (2.10)

where x = r/r500 and Q = p, ne. The intrinsic scatter σint,Q(x) follows a log-parabola

σint,Q(x) = σ1 log
2

(
x

x0

)
+ σ0, (2.11)

where x = r/r500, Q = p, ne and the fitting dimensionless parameters σ1, σ0 and x0 are listed
in Table 2.2.

The intrinsic scatter that is related to the relative scatter ∼ |S+
Q(x) − S−

Q(x)|/fQ(x) (with
Q = ne, p) is

� low at r ≃ r500 (∼ 1300 kpc in Figure 2.1) where the radiative processes tend to be
unimportant, as predicted in Section 2.1.1;

� high in the core (i.e. at r < 400 kpc in Figure 2.1) where the energetic budget of the
ICM, which undergoes efficient radiative processes, regulates the decrease of the profile
of temperature.
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Chapter 2. Intrinsic properties of the ICM in cool-core cluster models

Figure 2.1.: Profile of the intrinsic scatter of the functional forms of the pressure (red dashed
curve) and of the density (blue dotted curve) throughout the cluster. We use the
parameters of Table 2.2, taken from Ghirardini et al. (2019).

Note in Figure 2.1 that the profile of intrinsic scatter of density and pressure have the same
behavior, even though the pressure profile is less scattered throughout the cluster. Furthermore,
note that the equilibrium of the ICM (in time-averaged sense) is a necessary, but not sufficient
condition for the regularity of its thermodynamic behavior. For the sake of completeness, we
report that Ghirardini et al. (2019) noted an increase of the intrinsic scatter of the functional
forms in the region centred around 2r500 and they interpreted it as due to the variety of accretion
rates.
To estimate the scatter of the universal profile of temperature, we use the scatter propagation

σT (x)

T (x)
=

√(
σp(x)

p(x)

)2

+

(
σn(x)

ne(x)

)2

, (2.12)

where x = r/r500, σQ(x) := S+
Q(x)− S−

Q(x) (with Q = p, ne and S
±
Q given by Eq.(2.10)), while

T (x), p(x) and ne(x) are given by Eq.s (2.9), (2.8) and (2.7), respectively.

2.2. Hydrostatic equilibrium models of the ICM

2.2.1. The polytropic solution of hydrostatic equilibrium equation

Let us take the equations of the dynamics of an unmagnetised inviscid perfect plasma

∂ρ

∂t
+∇ · (ρu) = 0, (2.13)

ρ
∂u

∂t
+ (u · ∇)u = −∇p− ρ∇ΦDM (2.14)
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and
p

γ − 1

[
∂

∂t
+ (u · ∇)

]
σ = −ρΓ−∇ ·Q. (2.15)

ρ rapresents the ICM density (hereafter, the mass density of ICM is called ρ), u the velocity
vector of any fluid element, p its pressure, ΦDM the gravitational potential of cluster and σ
the dimensionless entropy (for a perfect gas σ := ln(pρ−γ), where γ is the adiabatic index).
Moreover, Q is the heat conduction flux and Γ, known as net energy loss function, is the
net cooling rate of fluid element for unit mass:

Γ := C −H,

where C and H are the cooling and heating rate for unit mass, respectively.
In a typical massive cool-core cluster, to avoid the thermal catastrophe and to maintain the bal-
ance between the cooling and heating of the ICM for ∼ 10Gyr as expected from the multiwave-
length observations (see the Introduction; e.g. McDonald et al. 2013 and references therein),
we assume Γ such that at any point of cluster −ρΓ−∇ ·Q = 0 if averaged over a sufficiently
long time scale. As well known, the thermal conduction cannot be entirely responsibile for
maintaining the ICM nearly to the halo virial temperature: the resulting thermal balance of
the ICM is necessarily sustained by an additional physical engine (likely the AGN feedback).
In order to avoid the description of the complex interplay between heating and cooling, the
observed conditions of the ICM (discussed in the Introduction; see McNamara & Nulsen 2012
for a review) suggest a phenomenological model, where H is a fixed position-dependent
function (e.g. Nipoti et al. 2015; see McCourt et al. 2012 for a complete description of H),
while Q and C depend on the thermodynamic properties of the ICM.
In our toy model, in absence of efficient net cooling or heating and of significant bulk motions
(u = 0) the plasma is in hydrostatic equilibrium: the set of fluid dynamic equations (Eq.s
(2.13), (2.14) and (2.15)) is reduced to

1

ρ
∇p = −∇ΦDM . (2.16)

Eq.(2.16) describes the balance between the pressure force ∇p and the gravitational force
−ρ∇ΦDM per unit volume: the thermal motion of particles (quantified by p) allows the plasma
to be in equilibrium into a given potential well.
Solving Eq.(2.16) means to find a profile of pressure of the plasma in equilibrium, known as
a distribution, able to balance a given gravitational potential ΦDM . Given that the pressure
is the combination of temperature and of density, the LHS of Eq.(2.16) depends on two ther-
modynamic quantities: T and ρ. Nevertheless, a generic solution of Eq.(2.16) is a barotropic
distribution, where the pressure depends only on the density at any point of space (e.g. Tas-
soul 1978 ). The temperature and density thus are statified over the gravitational potential.
Let us take a polytropic distribution

p = p0

(
ρ

ρ0

)γ′
, (2.17)

where γ′ is called polytropic index (taken positive), while p0 := p(x = x0) and ρ0 := ρ(x =
x0) are the pressure and density at a reference point of space x0, respectively. As a particular
case of barotropic distribution, where the pressure depends on ρ as a power law, a polytrope is
a solution of Eq.(2.16). From the substitution of Eq.(2.17) into (2.16), we get

γ′p0ρ
γ′−1

ργ
′

0

dρ = −ρdΦDM .
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Chapter 2. Intrinsic properties of the ICM in cool-core cluster models

Eq.(2.16) is vectorial: the direction of ∇p and −∇ΦDM is the same. We thus substitute the
differentials instead of gradients to find the above equation. Defining a new variable a := ρ/ρ0,
we integrate both sides of this equation:

γ′
p0
ρ0

∫ ρ(x)/ρ0

1

aγ
′−2da = −

∫ Φ(x)

Φ0

dΦ′.

After some algebraic steps, we find for γ′ ̸= 1 the expression of the density in a polytropic
distribution (in cylindrical coordinates)

ρ(R; z) = ρ(ΦDM(R; z)) = ρ0

[
1− γ′ − 1

γ′
µmp

kBT0
(ΦDM(R; z)− ΦDM,0)

] 1
γ′−1

(2.18)

where ΦDM,0 = ΦDM(x = x0), T0 = T (x = x0), µ is the mean molecular weight and mp the
mass of a proton.
The profile of the temperature of a perfect gas in a polytropic distribution is

T = T0

(
ρ

ρ0

)γ′−1

. (2.19)

As it is clear from Eq.(2.19), the distribution with γ′ = 1 is isothermal (i.e. T (x) = T0 at
any point of space x). However, the universal profile of temperature of the ICM suggests that
γ′ = 1 is not the best assumption (see, for example, Figure 2.2). Limiting ourselves to γ′ > 0,
for a declining density distribution of the plasma we distinguish the following solutions:

� for γ′ > 1 the temperature increases inwards;

� for γ′ < 1 the temperature decreases inwards.

For a given gravitational potential ΦDM , a solution of Eq.(2.18) with γ′ < 1 has a steeper
density profile than with γ′ > 1. For a given ΦDM , the only initial condition of Eq.(2.18) is
ρ0: the logarithmic slope of density profile of the plasma is independent of ρ0, while T0 and γ′

affect this logarithmic slope (see also Section 2.2.2).

2.2.2. A simple method to model the cool cores

The energetic budget of the ICM regulates the prominence of a cool core. However, given the
difficulty to describe the complex interplay between cooling and heating of the ICM (even via
hydrodynamical simulations), we rely on a phenomenological model. From the reconstruction
of the thermodynamic profiles of the ICM in cool-core clusters (see the profiles in Figure 2.2,
for examples), there is a clear evidence that the thermodynamic behavior of the ICM depends
on the distance from the center of the cluster: for example, in the cool core the temperature
decreases inwards and in the remaining cluster (known as outer region) the temperature de-
creases outwards. We thus introduce a break radius Rbreak to separate the cool core from the
outer region. A way to model the ICM in a cool-core cluster is a two-component compos-
ite polytrope (e.g. Nipoti et al. 2015, Bianconi et al. 2013), where we take for a spherically
symmetric model

� at r > Rbreak, γ
′
OUT > 1, known as the outer polytropic index;
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(a) (b)

(c) (d)

Figure 2.2.: Profiles (upper panels, blue curves) and maps (lower panels) of electron number
density (left) and temperature (right) for NRN model. In upper panels we plot
the average observed profiles (in red; Ghirardini et al. 2019) with their scatter (red
shaded strip) and the profiles of the model along the vertical (dashed) and radial
(dotted) coordinate in the meridional plane. In the upper right panel the green
solid line is the global temperature (see Section 3.2.3 for the discussion of it).

� at r ≤ Rbreak, γ
′
IN < 1, known as the cool-core polytropic index.

Rbreak essentially defines the position of the break in the temperature distribution of the ICM
and, consequently, is assumed on the basis of the universal thermodynamic profiles of the ICM
(see Figures 2.3 and, for example, 2.2).
In Figure 2.3 the comparison between the logarithmic slopes of the theoretical profiles of model
NRN (see Section 2.2.3) and of the functional forms (in Section 2.1.2) representative of the
thermodynamic profiles of the ICM in observed clusters shows that this simplified description
captures the essential signatures of the ICM in the cool core and in the outer region, such as the
positive logarithmic slope of temperature profile in the core (see Section 2.2.3 for the discussion
of logarithmic slopes in the outskirts of clusters). However, the break of the distribution at
r = Rbreak implies a departure of the composite polytrope model close to Rbreak from the
observed thermodynamic profiles (see, for example, Figure 2.2) due to the discontinuity of its
logarithmic slope (see Figure 2.3).
It is useful to define x0 = (Rbreak; 0) in the meridional plane. In absence of spherical symmetry,
we trace the break of the distribution of the ICM using the potential difference ∆ΦDM(R; z) :=
ΦDM(R; z) − ΦDM(Rbreak; 0). For a gravitational potential increasing outwards (as usual),
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Figure 2.3.: Profiles of logarithmic slopes of ICM density (dashed) and temperature (dotted)
for model and observed clusters. The red curves refer to the functional forms
representative of observed clusters (see Section 2.1.2), while the blue curve to one
of our models (in particular to NRN ; see Section 2.2.3). The vertical black dashed
line separates the core (r ≤ Rbreak) from outer region (r > Rbreak).

∆ΦDM(R; z) > 0 and ∆ΦDM(R; z) ≤ 0 define the outer region and the cool core, respectively.
In the meridional plane, the equations giving the density distribution of a two-component
composite polytrope model are

� if ∆ΦDM(R; z) > 0,

n(R; z) = n0

[
1− γ′OUT − 1

γ′OUT

µmp

kBT0
∆ΦDM(R; z)

] 1
γ′
OUT

−1

(2.20)

and

T (R; z) = T0

(
n(R; z)

n0

)γ′OUT−1

(2.21)

where n(R; z) := ρ(R; z)/(µmp) and n0 := ρ0/(µmp);

� if ∆ΦDM(R; z) ≤ 0,

n(R; z) = n0

[
1− γ′IN − 1

γ′IN

µmp

kBT0
∆ΦDM(R; z)

] 1
γ′
IN

−1

(2.22)

and

T (R; z) = T0

(
n(R; z)

n0

)γ′IN−1

. (2.23)

In a given gravitational potential, T0, γ
′
OUT and γ′IN determine the logarithmic slopes of the

thermodynamic profiles of ICM models:

� a lower γ′OUT and a higher γ′IN give a lower absolute value of the logarithmic slopes of
density and temperature outside and inside the core, respectively;
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� even though T0 represents the normalization of temperature profile, increasing T0 means
to decrease the absolute value of the logarithmic slope of density of the ICM throughout
the cluster.

Indeed, for sufficiently low T0, γ
′
IN and high γ′OUT the two-component composite polytrope

model has a cut-off of density in the outskirts and an infinite slope of density in the center of
the cluster. Given that the ICM covers the entire cluster from the center up to r200, we avoid
these peculiar behaviors taking for fixed γ′OUT and γ′IN , at any ∆ΦDM(R; z) > 0,

T0 >
γ′OUT − 1

γ′OUT

µmp∆ΦDM(R; z)

kB

and, at any ∆ΦDM(R; z) ≤ 0,

T0 >
|γ′IN − 1|
γ′IN

µmp|∆ΦDM(R; z)|
kB

.

At the same time, we can interpreted these Eq.s as limits on γ′OUT and γ′IN for a fixed T0. As
we note in Eq.s (2.20) and (2.22) (see also the above Eq.s), the physical engine that shapes
the ICM in our static models is the gravitational potential.

Model DM halo n0(cm
−3) T0(keV) Rbreak(kpc) γ′IN γ′OUT

NRN DMN 2.4× 10−3 8.4 350 0.76 1.30
NRP DMP 2.5× 10−3 9.5 330 0.73 1.42
NRO DMO 2.3× 10−3 9.3 370 0.73 1.35

Table 2.3.: Parameters of static models of ICM. The models of DM halos (second column) refer
to Table 1.1 (Chapter 1).

2.2.3. Realistic models of cool-core clusters with static ICM

Given that this work does not focus on a particular cluster, but models the distribution of the
ICM in a typical cool-core cluster of M200 ≃ 1015M⊙, we assume a typical metallicity observed
in the ICM: Z = 0.3 Z⊙, where Z⊙ is the solar metallicity (Anders & Grevesse 1989). For a
fully ionised gas the corresponding mean molecular weight is µ = 0.60 and the corresponding
ratio between the number density of electrons (ne) and of gas (ngas := ne + nt, where nt is the
number density of ions) is ngas/ne = 1.94. The universal profiles in Section 2.1.2 are such that
the baryon fraction is fb ≃ 0.16, that is the cosmic value. If the models of the ICM presented
below follow the average observed profiles, no additional control over the baryon fraction is
necessary here. Using the model of cool-core cluster proposed in Sections 2.2.1 and 2.2.2 (in
particular, using Eq.s (2.20), (2.21), (2.22) and (2.23)) and assuming the parameters of Table
2.3, we build the following distributions of static ICM in cool-core clusters of M200 ≃ 1015M⊙:
NRN, NRO and NRP shown in Figures 2.2, 2.4 and 2.5, respectively. We note that, even
though in this Table Rbreak is different for halos of different shape, the radii of the peak of
temperature in all these Figures are similar.
As shown by Figure 2.3, in the cluster outskirts the logarithmic slope of the universal profile
of temperature increases (and the average observed profiles of temperature tends to be more
isothermal than the two-component composite polytrope model; see, for example, Figure 2.2).
This could be a signature of the matter accretion, even though the intrinsic scatter seemingly
does not increase in Figure 2.1.
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(a) (b)

(c) (d)

Figure 2.4.: Same as Figure 2.2, but for model NRO.

Figures 2.2, 2.4 and 2.5 show a good agreement with the average observed profiles of Ghirardini
et al. (2019). As discussed in Ghirardini et al. (2019), there is a good agreement among the
universal thermodynamic profiles reconstructed by independent groups: it reveals at the same
time the regularity of the profiles of the thermodynamic quantities of the ICM and the success
of the functional forms of Ghirardini et al. (2019) for the description of the thermodynamic
properties of the ICM. Consequently, in this work we propose physical models of the ICM, which,
being consistent with these functional forms, are expected to be representative of the population
of cool-core clusters of M200 ≃ 1015M⊙. Previous works exploited the thermodynamic profiles
of Ghirardini et al. (2019) assuming spherical symmetry and in the absence of rotation (e.g.
Ettori et al. 2020). The fact that NRN ’s model in Figure 2.2 shows a good agreement with
the functional forms of Ghirardini et al. (2019) confirms the goodness of these assumptions in
the context of the study of the ICM. At the same time, since these assumptions are not always
justified, the proposed models with a flattened shape provide an alternative view: a way to
shape the distribution of the ICM without spherical symmetry of DM halo. Indeed, even if the
aspherical potentials used for these models of the ICM have a more negative slope along the
direction of flattening (see Section 1.2.4 and Figure 1.7), we are able to reproduce with a good
agreement the average observed profiles of the ICM in cool-core clusters using these spheroidal
potentials (with ellipticity of DM isodenses ≃ 0.3). On the basis of the results shown by Figures
2.4 and 2.5 we confirm the possibility that most halos in real galaxy clusters are flattened.

30



2.3. Rotating equilibrium models of ICM

(a) (b)

(c) (d)

Figure 2.5.: Same as Figure 2.2, but for model NRP.

2.3. Rotating equilibrium models of ICM

2.3.1. The equilibrium of a rotating plasma

Let us take the three components of Euler’s Equation (2.14) in cylindrical coordinates

∂uR
∂t

+ (u · ∇)uR − u2R
R

= −1

ρ

∂p

∂R
− ∂ΦDM

∂R
, (2.24)

∂uϕ
∂t

+ (u · ∇)uϕ +
uRuϕ
R

= −1

ρ

1

R

∂p

∂ϕ
− 1

R

∂ΦDM

∂ϕ
(2.25)

and
∂uz
∂t

+ (u · ∇)uz = −1

ρ

∂p

∂z
− ∂ΦDM

∂z
. (2.26)

The set of Equations of fluid dynamics for an unmagnetised inviscid perfect plasma is completed
by Eq.s (2.13) and (2.15).
In a static plasma, even though the particles of any fluid element are in a microscopic random
motion that produces the pressure able to maintain this plasma in hydrostatic equilibrium, there
is no displacement of a fluid element. In galaxy clusters the numerical simulations predict a
bulk velocity field (in cylindrical coordinates) u = (uR;uϕ;uz) ̸= 0. In non-relaxed clusters
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there are bulk motions with uR ̸= 0 and/or uz ̸= 0: they involve a transport of mass, linear
momentum and energy inwards or outwards, such that the ICM cannot be in equilibrium
within the potential well. Moreover, there is no equilibrium of the plasma even in presence
of a significant net heating or cooling: for instance, the presence of an important cooling flow
implies uR, uz ̸= 0. The clusters where the intensities of uR and uz are negligible are called
relaxed. However, given that from the multiwavelength observations (e.g. McDonald et al.
2013 and references therein) there is a clear evidence for the equilibrium of the ICM in time-
averaged sense in relaxed cool-core clusters (see also Section 2.2.1 and Introduction), the tension
among the mass estimators (e.g. Pratt et al. 2019) suggests a departure from the hydrostatic
equilibrium induced by additional supports to the thermal pressure of the ICM. A way to
account for the departure from the hydrostatic equilibrium is to introduce a significant rotation
(uϕ = ΩR ̸= 0 with ∂/∂ϕ = uR = uz = 0, where Ω(R; z) is the angular speed; predicted on the
basis of hydrodynamic simulations by, e.g., Nagai et al. 2007a and Nagai et al. 2013) able to
balance partly the gravitational potential. The rotating ICM in equilibrium into the potential
well of cluster follows a stationary (only ∂/∂t = 0), but not static (u = 0) configuration.
Under the conditions ∂/∂t = ∂/∂ϕ = uz = uR = 0, a rotating plasma is in equilibrium into a
gravitational potential ΦDM(R; z) and satisfies

∂p

∂R
= ρ

u2ϕ(R; z)

R
− ρ

∂ΦDM

∂R
, (2.27)

∂p

∂ϕ
= 0 (2.28)

and
∂p

∂z
= −ρ∂ΦDM

∂z
. (2.29)

A generic rotating fluid in equilibrium into a potential well follows

� a barotropic distribution, if the pressure is stratified over density, i.e. p(x) = p(ρ(x))
at any point of space x;

� a baroclinic distribution, if the pressure is not stratified over the ICM density.

Starting from Eq.s (2.27), (2.28) and (2.29), the Poincarè-Wavrè Theorem (e.g. Tassoul
1978) states that a gas in a barotropic distribution rotates along cylinders, i.e. has Ω = Ω(R)
(the hydrostatic equilibrium represents a limiting case, where Ω(R) = 0).
Under the assumption of barotropic distribution, the RHS of Eq.(2.27) is the combination of
the centrifugal acceleration (= uϕ(R)

2/R) and of the R-component of DM gravitational field
(= −∂ΦDM/∂R). We thus define a vectorial field, known as the effective gravitational field,
geff (R; z) = (geff,R; geff,ϕ; geff,z) as

geff,R :=
u2ϕ(R)

R
− ∂ΦDM

∂R
, (2.30)

geff,ϕ := 0

and

geff,z := −∂ΦDM

∂z
. (2.31)

Thanks to the definition of geff , we rewrite the three components of Euler’s Equations (2.27),(2.28)
and (2.29) in a vectorial Eq.

∇p = ρgeff , (2.32)

32



2.3. Rotating equilibrium models of ICM

where the effective gravitational field plays the same role of DM gravitational field (= −∇ΦDM)
in Eq.(2.16). The effective gravitational field is usually rewritten as a gradient of a scalar field
Φeff (R, z):

geff = −∇Φeff .

Φeff , known as effective potential, represents the combination of axisymmteric gravitational
potential ΦDM(R, z) and of cylindrical rotation: combining the above Equation with Eq.s (2.30)
and (2.32) we get

Φeff (R, z) = [ΦDM(R, z)− ΦDM(R⋆; z⋆)]−
∫ R

R⋆

u2ϕ(R
′)

R′ dR′, (2.33)

where (R⋆; z⋆) is a reference point.
Note the opposite signs among the two terms in RHSs of Eq.s (2.33) and (2.30): the cylindrical
rotation balances partly the R-component of the DM gravitational field. When the mass of
a galaxy cluster is estimated by assuming the hydrostatic equilibrium (see Eq.(2.16)), the
presence of a significant rotation in principle causes an underestimate of gravitational potential
and, consequently, of the mass of this cluster (see Eq.(2.33); e.g. Fang et al. 2009).
Eq.s (2.32) and (2.16) are identical, if we substitute Φeff for ΦDM , so Eq.(2.18) with Φeff (R; z)
instead of ΦDM(R; z) is a solution also for a rotating plasma in equilibrium into a potential
well.

2.3.2. An analytic effective potential

Let us take the rotation law (Bianconi et al. 2013)

u2ϕ(S) = u20
S2

(1 + S)4
, (2.34)

where S := R/R0, R0 is a reference radius, u0 a reference speed and R the radial coordinate in
the meridional plane. The features of Eq.(2.34) are (see also Figure 2.6a)

� a fall in the center, such that uϕ(S) → 0 when S → 0;

� a peak at intermediate radii (S ≃ 1);

� a decrease at large radii, such that uϕ(S) → 0 when S → ∞.

The free parameters u0 and R0 define the tangential speed of the peak of rotation law (2.34)
and its radius in the equatorial plane, respectively.
We find the analytic solution of the effective potential for the rotation law (2.34) in the following
way. The integral in the RHS of Eq.(2.33) for the rotation law (2.34) is∫ R

R⋆

u2ϕ(R
′)

R′ dR′ =

∫ S

R⋆/R0

S ′

(1 + S ′)4
dS ′. (2.35)

Substituting S ′ + 1− 1 for S ′ in the numerator of RHS of Eq.(2.35) and integrating, we get∫
S + 1− 1

(1 + S)4
dS =

∫ (
1

(1 + S)3
− 1

(1 + S)4

)
dS =

1

3(1 + S)3
− 1

2(1 + S)2
.
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Considering (R⋆; z⋆) = (∞; 0) and Φeff (∞; 0) = 0, the effective potential associated with this
rotation law is

Φeff (R; z) = ΦDM(R; z)−

 u20

3
(
1 + R

R0

)3 − u20

2
(
1 + R

R0

)2
 , (2.36)

where ΦDM(R; z) can be any axisymmetric gravitational potential (for which ΦDM(∞; 0) = 0).

(a) (b)

Figure 2.6.: Profiles of azimuthal speed (left panel) and of angular speed (right panel) of the
rotation patterns in Table 2.4.

Rotation pattern u0(km/s) R0(kpc)
RC1 1700 150
RC2 1500 130
RC3 2000 400

Table 2.4.: Parameters of the rotation patterns, associated with Eq.(2.34) and used to build
the rotating models of the ICM in Table 2.5.

2.3.3. Realistic models of cool-core clusters with rotating ICM

Model DM halo Rotation pattern n0(cm
−3) T0(keV) Rbreak(kpc) γ′IN γ′OUT

RMN DMN RC1 2.3× 10−3 8.9 350 0.67 1.35
RMO DMO RC2 3.0× 10−3 8.7 330 0.66 1.33
RMP DMP RC3 2.5× 10−3 9.0 320 0.70 1.39

Table 2.5.: Same as Table 2.3, but for our rotating models of the ICM. The rotation patterns
refer to Table 2.4.

Assuming the rotation law (2.34) and the parameters of Table 2.4, we build the rotation patterns
RC1, RC2 and RC3, whose azimuthal and angular speeds are plotted in Figure 2.6. Note in
Figure 2.6a that the peak of azimuthal speed of these rotation patterns is ≲ 500 km/s and
the peak radius in the equatorial plane is between ≃ 100 kpc and ≃ 400 kpc. These rotation
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(a) (b)

(c) (d)

Figure 2.7.: Same as Figure 2.2, but for model RMN. In the upper panels, using Eq.(2.37)
with Q = ne, T , we plot the teal solid curves that refer to ne,mean(r) and Tmean(r),
respectively.

patterns thus are consistent with the spectroscopic results of Liu & Tozzi (2019) and the upper
limit provided by the measurement of a merger speed (see the Introduction). On the basis
of the model of cool-core cluster proposed in Section 2.2.2 (in particular, Eq.s (2.20), (2.21),
(2.22) and (2.23)) with Φeff (in this work, Eq.(2.36)) instead of ΦDM , using these rotation
patterns and assuming the parameters of Table 2.5, we build the following polytropic models of
rotating ICM in a typical cool-core cluster of M200 ≃ 1015M⊙: RMN, RMO and RMP shown
in Figures 2.7, 2.8 and 2.9, respectively.
To consistently compare our models of the ICM to the average observed thermodynamic profiles
ofGhirardini et al. (2019) (see Section 2.1.2 for the description of the method used byGhirardini
et al. 2019) we split the distribution of the ICM into spherical shells. In any shell of volume
Vs := 4/3π[(r+∆r/2)3 − (r−∆r/2)3] (where r and ∆r are the radius and the thickness of the
shell, respectively) we compute the average of any thermodynamic quantity Q(R; z) as

Qmean(r) :=

∫
Vs
Q(R; z)dV

Vs
, (2.37)

where Q = ne, T .
We recall that the thermodynamic quantities of the plasma are stratified over the effective
potential, when the rotation speed is constant on cylinders. Given that this rotation balances
partly the R-component of the gravitational field, the distribution of the ICM tends to be
peanut-shaped (see Figures 2.7 and 2.8) with a depletion of the plasma close to the symmetry
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axis. However, for model RMO (see Figure 2.8), where the rotation speed is lower (see pattern
RC2 in Figure 2.6a), also the oblate halo contributes to the elongation of the distribution in
the equatorial plane. Actually, the morphology of the ICM is round in the center and peanut-
shaped at r ≳ R0 (i.e. at larger radii than the peak of tangential speed; see Section 2.3.2 for
the definition of R0). Figure 2.9 shows a rounder morphology of the ICM, since the rotation
on cylinders tends to counteract the depletion of the plasma close to the equatorial plane due
to a prolate halo. Even if our models of the ICM are particularily peanut-shaped, we expect
the presence of a vertical gradient of azimuthal speed to mitigate this effect in real galaxy
clusters.

(a) (b)

(c) (d)

Figure 2.8.: Same as Figure 2.7, but for model RMO.

Here we use the functional forms of Ghirardini et al. (2019) as constraints on the azimuthal
speed: the rotation patterns are such that we find an acceptable agreement between our models
of the ICM and the average observed profiles. Given that Ghirardini et al. (2019) selected a
sample of clusters with low mass biases (see Section 2.1.1), we expect a modest rotational
suppport for the models of the ICM that reproduce fairly well the average observed profiles
of Ghirardini et al. (2019) (in Section 2.1.2). From this comparison, we conclude that there
is room for a rotation of ≲ 500 km/s in presence or in absence of DM halo flattening in real
clusters. Furthermore, these rotating models of the ICM provide a way to interpret in presence
of rotation and, if present, of DM halo flattening the average observed profiles of the ICM
representative of the population of cool-core clusters of M200 ≃ 1015M⊙.
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(a) (b)

(c) (d)

Figure 2.9.: Same as Figure 2.2, but for RMP.
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Chapter 3

Observables reconstructed from models
of the ICM

The high-quality of data and the improvement of computer performance allow us to get the fol-
lowing important milestones in the framework of the thermal emission of galaxy clusters.
Over the last decade X-ray surveys accurately measured the flattening of isophotes (e.g. Campi-
tiello et al. 2022) and the deviation of scaling relations (see, e.g., Reichert et al. 2011) from the
virial behavior (see Section 2.1.1). The last decade simulations and observations showed that
the ICM is subject to continuous perturbations (such as feedback from stars and AGN, mergers
and matter accretion) able to trigger the bulk motions of the ICM (e.g. Nagai et al. 2013,
Vazza et al. 2017 and references therein; see also the Introduction), even if there was thus far
an only one detection of a line of sight speed (in the X-ray spectrum of the core of Perseus
cluster; Hitomi Collaboration et al. 2016). In this Chapter, we use these milestones to test the
current photometric limits on the rotation speed of the ICM under different shapes of the halos
(Section 3.1) and to probe via mock observations with the new generation facilities the future
spectroscopic perspectives in the X-rays on the detectability of the kinematic signatures of the
ICM: in particular, on the Doppler shift of emission line centroids (Section 3.2).
The ICM is usually approximated as an optically thin plasma (because the mean free path
of photons is ≳ 100Mpc and thus much larger than the length scale of cluster) in Collisional
Ionisation Equilibrium (CIE), where the rates of collisional ionisation and of radiative re-
combination are equal, the ions always are in the ground state and there is immediate emission
of photon after collisional excitation. The temperature of each model of the ICM (see Chapter
2), in agreement with the average observed temperature profile of Ghirardini et al. (2019),
is ≳ 5 keV throughout the cluster, so the X-rays are the ideal wavelengths for observing the
thermal emission reconstructed from our models of the ICM. The ICM in our distributions
thus emits in continuum via thermal Breemstrahlung, two photon decay and recombination
of free electrons and in line via the radiative emission from collisional excitation of inner-shell
electrons of heavy metals.
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3.1. Photometric proxies

The X-ray photometry in the framework of galaxy clusters is a powerful tool to test our knowl-
edge of the dynamics of the ICM: we expect the dynamical processes that involve the ICM to
leave a trace in the morphology of X-ray surface brightness (e.g. Schuecker et al. 2004, Zhu-
ravleva et al. 2022 and references therein). The X-ray isophotes of clusters in the sky present
a wide variety of shapes, primarily depending on the dynamical state of cluster (relaxed or
disturbed). Given that the X-ray isophotes usually are noisy, we usually rely on the global
shape parameters (for example, the average axial ratio) to perform a photometric classifica-
tion of clusters. However, this photometric classification does not show an evident bimodality
between relaxed and disturbed clusters (e.g. Campitiello et al. 2022 and references therein).
Indeed, even in relaxed clusters there are several physical phenomena, which contribute to an
aspherical morphology of X-ray surface brightness, such as the DM halo flattening (see, e.g.,
Buote & Canizares 1992), the presence of subhalos and gas substructures, an anisotropic tur-
bulence [expected from numerical hydrodynamical simulations (e.g. Lau et al. 2009)], the gas
clumpiness (e.g. Towler et al. 2023 and references therein), a significant rotation of the ICM
(see, e.g., Fang et al. 2009, Bianconi et al. 2013 and references therein). However, it is hard to
separate these effects only on the basis of the X-ray photometric information and, consequently,
the morphological parameters encode the combination of these effects.
The shape of X-ray surface brightness reconstructed from our models of the ICM departs from
the spherical symmetry as due to the DM halo flattening and/or the rotation of the ICM. We
thus interpret the observed flattening of X-ray isophotes only on the basis of these phenomena
to put upper limits on the rotation patterns and/or on DM halo shapes.

3.1.1. Morphology of the X-ray surface brightness distributions

The dominant radiative process in continuum down to a temperature ∼ 106K is the thermal
Breemstrahlung, so the bolometric emission of the ICM increases with the temperature. In
this Chapter, to account for the X-ray bolometric emission of a high-energy plasma in CIE, we
use the Cooling Function (Figure 3.1;Tozzi & Norman 2001)

Λ(T ) = C1(T (keV))
α + C2(T (keV))

β + C3, (3.1)

where the parameters C1, C2, C3, α and β are listed in Table 3.1.

Parameter Value

C1 8.6× 10−3 erg/s · cm3 · keV−α

C2 5.8× 10−2 erg/s · cm3 · keV−β

C3 6.3× 10−2 erg/s · cm3

α −1.7
β 0.5

Table 3.1.: Parameters of Cooling Function (3.1). We quote these parameters for a plasma of
Z = 0.3 Z⊙.

In the plane of the sky, the integration of bolometric emissivity of each fluid element residing
in a optically thin plasma along the l.o.s. is known as the surface brightness

Σ :=

∫
l.o.s.

ntneΛ(T )dl,
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Figure 3.1.: Profile of Cooling Function Λ(T ) of Tozzi & Norman (2001) for a high-energy
plasma of metallicity Z = 0.3 Z⊙ in CIE.

where dl is an infinitesimal length of l.o.s., nt = nN + np ≃ np is the number density of
positive charges (at such temperatures there is no fully neutral charge), with np and nN the
number density of free protons and of positive nuclei, respectively. In order to see the maximum
flattening of X-ray isophotes, we assume to observe edge-on our distributions of the ICM: the
surface brightness as a function of the coordinates R and z in the plane of the sky is

Σ(R; z) = 2

∫ ∞

R

nt(r̃; z)ne(r̃; z)Λ(r̃; z)r̃dr̃√
r̃2 −R2

, (3.2)

where r̃ represents the radius in the plane, parallel to the equatorial plane, crossed by l.o.s.

(a) (b)

Figure 3.2.: Profile (left panel) and map (right panel) of surface brightness (Σ) of NRN model
spanning the range [50 kpc; r500] (see Section 2.1.1 for the definition of r500). Here
the plane of the sky is parallel to the meridional plane: the orange dashed and blue
dotted profiles refer to Σ(0; z) and Σ(R; 0), respectively.

As we note from the morphologies of surface brightness distributions reconstructed through
Eq.(3.2) from our static models in Figures 3.2, 3.3 and 3.4, despite the projection in the plane
of the sky, Eq.(3.2) preserves the ellipsoidal symmetry of the density distribution of the ICM.
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(a) (b)

Figure 3.3.: Same as Figure 3.2, but for NRO model.

(a) (b)

Figure 3.4.: Same as Figure 3.2, but for NRP model.

The morphology of surface brightness distributions in Figures 3.5, 3.6 and 3.7 (reconstructed
from rotating ICM models through Eq.(3.2)) is rounder than the density distributions of the
ICM (see Figures 2.7, 2.9 and 2.8), since the integration along the l.o.s. ”softens” the peanut-
shape of density distribution (we recall that the temperature is stratified over the density here).
When comparing to the X-ray observations (see Campitiello et al. 2022 and references therein
for some examples of X-ray images of real clusters), we conclude that the shapes of surface
brightness maps reconstructed from our models of the ICM are consistent with those observed.
We note that the model maps are not noisy: a fully consistent work would require the convo-
lution with instrument response before comparing them to the observations, but this work is
left for the future.

3.1.2. Ellipticity of the X-ray isophotes

Since early X-ray observations of clusters there was a clear evidence for the departure of X-ray
isophotes from the spherical symmetry, so a tool to convert the visual morphological classifi-
cation into a quantitative form became immediately indispensable. Buote & Canizares (1992)
proposed a method to classify the morphology of X-ray surface brightness distributions of galaxy
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(a) (b)

Figure 3.5.: Same as Figure 3.2, but for RMN model.

(a) (b)

Figure 3.6.: Same as Figure 3.2, but for RMO model.

clusters on the basis of an average axial ratio (see Buote & Canizares 1994 for a complete de-
scription of this method). In a recent work Campitiello et al. (2022) used for the morphological
classification of X-ray surface brightness distribution this average axial ratio, defined in the fol-
lowing way.
In the plane of the sky, the four components of inertia’s tensor are

Ihj :=
P∑
i=1

Σi(xi − ⟨x⟩)h(yi − ⟨y⟩)j, (3.3)

where P is the number of points, x and y are the coordinates in the plane of the sky, Σi is the
surface brightness evaluated at point i, while ⟨x⟩ and ⟨y⟩ define the centroid of cluster. h, j
are two indices such that 0 ≤ h, j ≤ 2 and h+ j = 2.
The average axial ratio weighted over surface brightness (hereafter, axial ratio) is

ζ :=
Imin
Imax

(3.4)

with Imax := max{Id1, Id2} and Imin := min{Id1, Id2}, where Id1 and Id2 are the diagonal
components of inertia’s tensor (3.3) in diagonal form.
In the X-ray observations it is unusual to find the centroid of surface brightness in the center
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(a) (b)

Figure 3.7.: Same as Figure 3.2, but for RMP model.

of X-ray images, while in the maps of Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 ⟨x⟩ = ⟨y⟩ = 0
assuming the centre of mass as origin. If we observe the distribution of the ICM edge-on, x and
y correspond to the coordinates in the meridional plane R and z, respectively, and the inertia’s
tensor (3.3) is diagonal thanks to the central symmetry of surface brightness of our models.
In our maps of surface brightness Id1 = 4I20 and Id2 = 4I02, where I20 and I02 are given by
Eq.(3.3) with x = R and y = z.
In Table 3.2 we present the axial ratios of the surface brightness distributions reconstructed
from our models of the ICM by using Eq.(3.4). Note that the axial ratios are close to 1 in all
models: it is due to the definition of inertia’s tensor (3.3), where the central shape of X-ray
surface brightness contributes for most. In Figure 3.8 we compare these axial ratios to the
morphological classification inferred by Campitiello et al. (2022) from the observations of real
and simulated clusters (note that the simulated and observed distributions of ζ overlap): our
morphologies correspond to highly popoluted axial ratios. It means that the assumed rotation
patterns (see Section 2.3.3) and halo models (see Section 1.3.2) are consistent with the results
of the X-ray observations and of hydrodynamical simulations. The absence of a bimodal
distribution of axial ratios essentially prevents from imposing tight constraints on the shape
of halos and/or on the rotation patterns of the ICM in relaxed clusters.

Model ζ
NRN 1.00
NRO 0.90
NRP 0.86
RMN 0.97
RMO 0.88
RMP 0.93

Table 3.2.: Axial ratios (ζ) measured in the maps of surface brightness (see Figures 3.2, 3.3,
3.4, 3.5, 3.6 and 3.7) reconstructed from our models of the ICM.

Description of the samples used in Figure 3.8. The observed sample, used by Campitiello
et al. 2022 to measure the axial ratio of surface brightness, is the CHEX-MATE sample (CHEX-
MATE Collaboration et al. 2021;http://xmm-heritage.oas.inaf.it/) that consists of 118
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Figure 3.8.: The distribution of axial ratios (η) of the observed sample of clusters (violet solid
curve) and of the simulated sample (black dashed curve) of Campitiello et al.
(2022). Here η = ζ, where ζ is given by Eq.(3.4). The black dashed and violet
solid vertical lines are the medians of distribution of ζ in the simulated and observed
samples, respectively. Figure taken from Campitiello et al. (2022).

galaxy clusters, detected by Planck (https://www.cosmos.esa.int/web/planck) via ther-
mal Sunyaev-Zel’dovich Effect and studied homogeneously with the X-ray observatory XMM-
NEWTON (https://www.cosmos.esa.int/web/xmm-newton). This sample is composed of
two different sub-samples:

� Tier-1 represents the population of clusters at the most recent time (z < 0.2);

� Tier-2 represents the population of the most massive clusters to have formed thus far in
the history of the Universe (but with z < 0.6).

This sample contains together relaxed and disturbed clusters: Campitiello et al. 2022 find
approximately 19 relaxed, 37 disturbed and 62 mixed (which present morphological properties
both of relaxed and of disturbed clusters). The simulated sample is provided by THE THREE
HUNDRED collaboration (https://www.nottingham.ac.uk/astronomy/The300/index.php,
Cui et al. 2018) and consists of 1564 clusters spanning a wide range of redshift (0 < z < 0.59)
and mass (M500 > 1.1 × 1014h−1M⊙, with h := H0/(100 km/s/Mpc); see Section 2.1.1 for
the definition of M500). For the sake of completeness, images associated with three different
orientations of each simulated object are used to estimate the value of ζ whose distribution is
shown in Figure 3.8. These samples take into account both non-cool-core and cool-core cluster,
while our models of the ICM refer to the latter. As usual, Campitiello et al. (2022) consider
a significantly flattened morphology of the surface brightness as a probe of an ongoing merger:
Table 3.2 is consistent with this result, given that no model of the ICM has a low axial ratio.

3.2. Spectroscopic proxies

In the near future the analysis of high quality X-ray spectra (observed by new generation
facilities) will be a key tool to reveal the kinematic conditions of the ICM in relaxed clusters.
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Even though this work is focused on the rotation of the ICM, we model together the prominent
signatures of bulk motions expected in a X-ray spectrum (shift of centroids and broadening of
the emission lines) as describes in the next Sections (consistently with previous works like, e.g.,
Zhuravleva et al. 2012 and Bianconi et al. 2013).

3.2.1. From a model of the ICM to a X-ray spectrum

In order to detect the maximum shift of emission line centroids, we observe edge-on the rotating
distributions of the ICM. Any fluid element of the ICM produces a single-temperature source
spectrum, so the observed multi-temperature source spectrum of an optically thin plasma is the
sum of the single-temperature source spectra of fluid elements residing along the l.o.s. Mazzotta
et al. (2004) showed that for an optically thin high-temperature plasma (T > 3 keV at any point
of space) the fit to multi-temperature source spectrum with a single-temperature thermal
model is acceptable regardless of the actual spread in temperature distribution. The X-ray
emission of the ICM thus is recovered via a single-temperature thermal model in our mock
spectra.
In the plane of the sky we associate with any quantity Q(R; z) its average along the l.o.s.
Qlos(R; z) in the following way. For the sake of consistency, we use for all quantities of the
spectrum an only one weight, that can be the bolometric emissivity

b := ntneΛ(T ), (3.5)

where Λ(T ) is given by Eq.(3.1), while ne and nt are the same as in Eq.(3.2). However, in a
sample of clusters from a high resolution simulation Mazzotta et al. (2004) demonstrate that
the estimates of spectroscopic temperature with b are higher than the best-fits to the multi-
temperature source spectra and derived a weight w able to provide a better approximation of
spectroscopic temperature, once compared to the ”best-fit” results of the spectral analysis.
w essentially represents the specific emissivity of Breemstrahlung (∝ ntneT

−1/2) corrected
for the emissivity of the emission lines of inner-shell electrons of heavy metals:

w :=
ntne
T 3/4

. (3.6)

The integral of weights of Eq.(3.6) along the l.o.s. is

Wlos(R; z) =

∫
l.o.s.

w(R; z)dl = 2

∫ ∞

R

w(R; z)r̃√
r̃2 −R2

dr̃, (3.7)

where r̃ is the same as in Eq.(3.2).
At any point in the plane of the sky the average quantity along the l.o.s. is

Qlos(R; z) =
QW (R; z)

Wlos(R; z)
, (3.8)

where

QW (R; z) = 2

∫ ∞

R

w(R; z)Q(R; z)r̃√
r̃2 −R2

dr̃. (3.9)

The component of azimuthal speed uϕ responsible for the Doppler shift of emission line centroids
in each single-temperature source spectrum, which composes the X-ray emission of the ICM, is
the l.o.s. speed ulos(R) := uϕ(R) cos(α), where α is the angle between the l.o.s and the direction
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(a) (b)

(c)

Figure 3.9.: Maps of effective redshift (zeff ) in the plane of the sky, parallel to the meridional
plane, for models RMN (upper left panel), RMO (upper right panel) and RMP
(lower panel) models. zeff is stratified over vlos (see Eq.(3.12) for the definition of
zeff ). We focus on the circular regions R1 and R2 (in violet) when performing the
mock observations.

of uϕ. For a cluster seen edge-on, cos(α) = R/r̃. Eq.s (3.9) and (3.8) with Q(R; z) = ulos(R)
allow us to estimate the average l.o.s. speed vlos(R; z). Even though ulos(R) respects the
cylindrical symmetry, owing to the presence of w(R; z) in Eq.(3.9) vlos depends also on z, as
we note in Figure 3.9. Here, we note that good regions to measure a significant Doppler shift
of emission line centroids are located around z = 0 in the plane of the sky. The regions that
we select for the mock observations are larger than RESOLVE’s half power diameter θH (the
diameter within which half of the focused X-rays is enclosed): θH ≃ 1.6′ ≃ 93 kpc at z0 = 0.05.
Let us take in the plane of the sky the circular regions (in violet in Figure 3.9)

� R1 centered at the point (430 kpc; 0 kpc) with the radius of this region R̃ = 70 kpc;

� R2 centered at (1000 kpc; 0 kpc) with R̃ = 100 kpc.

An usual condition to well fit to the mock X-ray spectra is to have relatively high counts, so
the region R2 is larger than R1.
To build a mock X-ray spectrum, we need to average Qlos(R; z) in each circular region: the

47



Chapter 3. Observables reconstructed from models of the ICM

average quantity ⟨Q⟩ is

⟨Q⟩ :=
∑N

i=1QW,i

SW
, (3.10)

where

SW :=
N∑
i=1

Wi. (3.11)

N is the total number of grid points within the selected region, Wi and QW,i are computed at
any point i in the meridional plane through Eq.s (3.7) and (3.9), respectively.
The construction of the mock spectrum and the subsequent spectral analysis are performed
with the help of the software Xspec (Arnaud 1996; https://heasarc.gsfc.nasa.gov/xanadu/
xspec/). We model the X-ray thermal emission of the ICM via the velocity Broadened As-
trophysical Plasma Emission Code (BAPEC) as the combination of the emission lines from
the collisional excitation of inner shell electrons of heavy metals and of a continuum, that is
the sum of the thermal Breemstrahlung, two photon decay and recombination of free electrons.
The five parameters of the model BAPEC are

1. the spectroscopic temperature (measured in keV);

2. the metallicity of emitting plasma Z (evaluated with respect to a solar table; see Anders
& Grevesse 1989 for a reference table of solar elements), which regulates the prominence
of the emission lines (Z = 0.3 Z⊙ from Section 2.2.3);

3. the effective redshift zeff , which accounts for the Doppler shift of the centroids of the
emission lines from their rest-frame energy;

4. the broadening velocity σbroad (in km/s), which measures the non-thermal broadening
of the emission lines;

5. the parameter norm, which provides a measure of the normalization of the spectrum.

Assuming the weight in Eq.(3.6), Eq.s (3.9) and (3.10) (with the substitution of T or ulos for
Q and ⟨Tlos⟩ or ⟨vlos⟩ for ⟨Q⟩, respectively) allow us to estimate both spectroscopic temper-
ature and average l.o.s. velocity in each selected region. The difficulty to recover the exact
spectroscopic temperature from a model of the ICM (Mazzotta et al. 2004) suggests us to call
⟨Tlos⟩ as spectroscopic-like temperature ⟨Tsl⟩. For the sake of completeness, we estimate
the spectroscopic temperature on the basis of the bolometric emissivity in the same way as
⟨Tsl⟩, with Eq.(3.5) instead of Eq.(3.6). This temperature is called ⟨Tb⟩.
The Doppler shift of the centroids of the emission lines is the combination of receding velocity
of galaxy clusters due to the expansion of the Universe and of a motion of the plasma along a
preferential direction of the l.o.s. Considering ⟨vlos⟩ > 0 for receding plasma (and ⟨vlos⟩ < 0 for
approaching), using the formula of relativistic Doppler effect we estimate the effective redshift
(Roncarelli et al. 2018)

zeff = (1 + z0)

√√√√1 + ⟨vlos⟩
c

1− ⟨vlos⟩
c

− 1, (3.12)

where c is the speed of light and z0 = 0.05 is the rest-frame redshift of the cluster (from Section
1.3).
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The definition of parameter norm is

norm :=
10−14

4π[DA(1 + z0)]2

∫∫∫
V

nHnedV, (3.13)

where DA represents the angular distance of galaxy cluster (in cm), ne is the number density
of electrons (in cm−3) and nH = ne/1.17 in a fully ionised plasma (Anders & Grevesse 1989).
V is the volume occupied by the ICM, which emits the radiation observed in the regions R1
or R2 : V represents the cylinder of basis equivalent to the region under consideration in the
plane of the sky and height to 2r500. To compute norm we split the integral of Eq.(3.13) into
two different integrals:∫∫∫

V

nHnedRdzdl =

∫∫
Area

(∫
l.o.s.

nHnedl

)
dRdz,

where Area = πR̃2 and R̃ is the radius of circular region under consideration. The integration
of the innermost integral gives us a function of coordinates R and z in the plane of the sky
(parallel to the meridional plane)

A(R; z) := 2

∫ ∞

R

nH(R; z)ne(R; z)r̃√
r̃2 −R2

dr̃, (3.14)

where r̃ is the same as in Eq.(3.7). We then integrate the outermost integral in a consistent
way with the derivation of other parameters of BAPEC: we use Eq.(3.10) with QW,i = Ai and
SW = N (= the number of grid points within the region under consideration), where Ai is the
function in Eq.(3.14) evaluated at point i in the plane of the sky. The resulting value ⟨Q⟩ is
multiplied for Area to find the parameter norm.

Model region ⟨Tsl⟩ norm σtrueT ztrueeff,R ztrueeff,B ⟨Tb⟩
RMN R1 7.54 keV 0.00075 44 km/s 0.0508 0.0492 7.72 keV
RMN R2 6.82 keV 0.00069 41 km/s 0.0507 0.0493 7.17 keV
RMO R1 6.87 keV 0.00110 43 km/s 0.0506 0.0494 7.47 keV
RMO R2 6.27 keV 0.00097 35 km/s 0.0506 0.0494 6.99 keV
RMP R1 7.27 keV 0.00076 46 km/s 0.0513 0.0487 7.49 keV
RMP R2 6.51 keV 0.00068 42 km/s 0.0513 0.0487 6.92 keV

Table 3.3.: Input parameters of model BAPEC in our mock spectra. The colors red and blue
of effective redshift (zeff ) allow us to distinguish immediately the receding and
approaching regions, respectively, which, however, are both redshifted. We list both
⟨Tsl⟩ and ⟨Tb⟩, even if the input spectroscopic temperature is ⟨Tsl⟩.

A wide variety of physical phenomena contributes to the broadening of the emission lines.
In a static isothermal plasma that produces a single-temperature source spectrum, the fact
that the particles do not have the same kinetic energy induces a broadening of the emission
lines with broadening velocity σth ∼

√
kBT/(Amp), where A represents the mass number of

atoms responsible for this line emission and kB is Boltzmann’s Constant. This contribution
is called thermal broadening and the model BAPEC accounts for it while producing a
single-temperature source spectrum. Even though the spectroscopic temperature of a multi-
temperature source spectrum is recovered to good approximation by fitting with a single-
temperature model (see above), the inhomogeneity of temperature of the ICM along the
l.o.s. is the cause of an additional broadening. Indeed, the temperature dispersion with respect
to the ⟨Tsl⟩ is

ϑ2
T (R; z) := [T (R; z)− ⟨Tsl⟩]2, (3.15)
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Figure 3.10.: Fit (upper panel) to the mock spectrum of model RMP in the region R1 (with
σturb = 400 km/s) and the residuals (lower panel). FeXXV and FeXXV I (with
rest-frame energies close to 6.7 keV and 6.9 keV, respectively) are the prominent
emission lines in the upper panel. The spectrum span the energy range 0.5-8 keV.

where T (R; z) is the temperature of any fluid element residing in the volume V (see above).
Substituting ϑ2

T for Q in Eq.s (3.9) and (3.10) and using the weight in Eq.(3.6), we compute
⟨Q⟩ = ⟨ϑ2

T ⟩. Then, we convert ⟨ϑ2
T ⟩ into the temperature inhomogeneity broadening velocity

σT using

σT =

√
kB
√

⟨ϑ2
T ⟩

Amp

. (3.16)

In the X-rays the most prominent emission lines of the ICM are FeXXV and FeXXV I (see
Figure 3.10), so we assume A = 56. It is evident that σth and σT are low for A = 56 (see
below for reference values of σth and σT ) and, consequently, the chaotic motions of the ICM,
if any, are expected to provide a non-negligible contribution to the broadening of the emission
lines. On the basis of the works that over the last decades investigated the kinematic conditions
of the ICM via hydrodynamical simulations and observations, the turbulence is believed to
be an ubiquitous ingredient in galaxy clusters (e.g. Schuecker et al. 2004, Vazza et al. 2017
and references therein). Indeed, the processes originating on the galactic scales (such as AGN
feedback and bubbles; e.g. Gaspari et al. 2012), the MHD instability of the ICM (such as MRI
and magnetothermal instability; e.g. McCourt et al. 2011) and mostly cluster-scale processes
(such as mergers and motions on large-scale structure of the Universe; e.g. Vazza et al. 2017)
trigger and sustain the turbulence of the ICM. At the same time, mock and real observations
emphasized the prominent role which could play the turbulence in the future high-quality X-
ray spectra: providing the dominant contribution to the broadening of the emission lines (e.g.
Sunyaev et al. 2003, Zhuravleva et al. 2012). In general, we expect that a significant broadening
of the emission lines alters the fitting Doppler shift of emission line centroids: at fixed signal-to-
noise ratio there are lower chances to detect in presence of a significant turbulence of the ICM
the exact energy of the emission line centroids and, consequently, their shift (see, e.g., Bianconi
et al. 2013). In order to mimic an observation as far as possible realistic, we assume some
values of turbulent speed of the ICM (σturb): in agreement with the main works in literature
(e.g. Zhuravleva et al. 2012) and with the observed spectrum of Perseus (Hitomi Collaboration
et al. 2016), we consider σturb = 100, 200, 400 km/s. We estimate the broadening velocity σbroad
as due to the combination of turbulent and temperature inhomogeneity velocity dispersions
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using

σbroad =
√
σ2
turb + σ2

T , (3.17)

where σT is given by Eq.(3.16).
In order to mimic an observation as far as possible realistic, we introduce the absorption of
Milky Way (MW) as due to an equivalent hydrogen column density, typical of MW, NH =
0.05 × 1022 cm−2 (HI4PI Collaboration et al. 2016) via the PHotoelectric ABSorption model
(PHABS). We reconstruct the X-ray thermal emission of the ICM in any receding or approach-
ing region under consideration and for any rotating model under different turbulent conditions
of the ICM using a combination of PHABS and BAPEC (whose parameters are listed in Table
3.3). Here, Eq.(3.6) provides lower estimates of spectroscopic temperature than Eq.(3.5) (i.e.
⟨Tb⟩ > ⟨Tsl⟩), since Eq.(3.1) is an increasing function of temperature, while Eq.(3.6) a decreas-
ing one. We note that in Table 3.3 σT < 50 km/s and, for the sake of completeness, we report
that in our models of the ICM σth ≃ 110 km/s for A = 56. These values thus confirm that in
regions R1 and R2 the turbulence of σturb ≥ 200 km/s provides the dominant contribution to
the broadening of the emission lines FeXXV and FeXXV I (see also Zhuravleva et al. 2012
and Sunyaev et al. 2003).

Reg. σtrueturb [km/s] zfiteff (σs) σfitbroad[km/s] Zfit[Z⊙](σZ) T fitspec[keV](σSL)

R1R 0 0.0506± 0.0002(3.0) 83± 83 0.41± 0.08(1.4) 7.17± 0.58(0.6)
R1R 100 0.0506± 0.0002(3.0) 125± 68 0.36± 0.07(0.9) 7.50± 0.56(0.1)
R1R 200 0.0510± 0.0005(2.0) 381± 145 0.30± 0.07(0.0) 6.93± 0.60(1.0)
R1R 400 0.0501± 0.0006(0.2) 441± 194 0.34± 0.09(0.4) 8.35± 0.82(1.0)
R1B 0 0.0495± 0.0002(2.5) 5± 81 0.41± 0.08(1.4) 7.69± 0.66(0.2)
R1B 100 0.0493± 0.0002(3.5) 63± 95 0.31± 0.07(0.1) 7.90± 0.76(0.5)
R1B 200 0.0493± 0.0002(3.5) 164± 62 0.47± 0.09(1.9) 7.62± 0.59(0.1)
R1B 400 0.0502± 0.0005(0.4) 458± 137 0.42± 0.08(1.5) 7.12± 0.61(0.7)
R2R 0 0.0510± 0.0003(3.3) 134± 90 0.25± 0.06(0.8) 6.53± 0.58(0.5)
R2R 100 0.0506± 0.0004(1.5) 177± 116 0.29± 0.07(0.1) 7.22± 0.61(0.7)
R2R 200 0.0512± 0.0002(6.0) 191± 102 0.27± 0.07(0.4) 6.42± 0.56(0.7)
R2R 400 0.0502± 0.0006(0.3) 381± 97 0.36± 0.08(0.8) 7.09± 0.63(0.4)
R2B 0 0.0493± 0.0003(2.3) 89± 161 0.22± 0.06(1.3) 7.14± 0.64(0.5)
R2B 100 0.0492± 0.0003(2.7) 133± 95 0.29± 0.07(0.1) 7.21± 0.63(0.6)
R2B 200 0.0494± 0.0002(3.0) 220± 105 0.32± 0.07(0.3) 6.70± 0.55(0.2)
R2B 400 0.0494± 0.0003(2.0) 269± 97 0.41± 0.08(1.4) 7.07± 0.58(0.4)

Table 3.4.: Output parameters of the best-fit to the mock spectra reconstructed from the model
RMN on the basis of the parameters of Table 3.3 and, then, convolved with the re-
sponse matrices of RESOLVE. The use of blue and red allows us to distinguish the
spectral analyses for approaching and receding ICMs in cluster rest-frame, respec-
tively. The apex ”true” refers to a theoretical value, while ”fit” to a measurement.
σs, σZ and σSL are the significativities of rotation l.o.s. speed (Eq.(3.18)), of metal-
licity (Eq.(3.19) with Q = Z) and of spectroscopic temperature (Eq.(3.19) with
Q = T ), respectively.

3.2.2. Detectability of the shift of the centroids of the emission lines

In this Section, we update and extend the work of Bianconi et al. (2013), mimicking the ob-
servation of the X-ray thermal emission of the ICM in the selected regions (see Section 3.2.1)

51



Chapter 3. Observables reconstructed from models of the ICM

Reg. σtrueturb [km/s] zfiteff (σs) σfitbroad[km/s] Zfit[Z⊙](σZ) T fitspec[keV](σSL)

R1R 0 0.0507± 0.0002(3.5) 0± 90 0.33± 0.06(0.5) 7.20± 0.48(0.7)
R1R 100 0.0508± 0.0003(2.7) 154± 82 0.26± 0.05(0.8) 7.11± 0.50(0.5)
R1R 200 0.0509± 0.0003(3.0) 248± 93 0.29± 0.05(0.2) 6.94± 0.48(0.1)
R1R 400 0.0508± 0.0006(1.3) 444± 140 0.30± 0.06(0.0) 6.53± 0.44(0.8)
R1B 0 0.0492± 0.0002(4.0) 91± 88 0.33± 0.09(0.3) 7.36± 0.52(0.9)
R1B 100 0.0494± 0.0002(3.0) 2± 105 0.27± 0.05(0.6) 6.83± 0.47(0.1)
R1B 200 0.0495± 0.0003(1.7) 224± 98 0.26± 0.05(0.8) 6.45± 0.82(0.5)
R1B 400 0.0494± 0.0004(1.5) 278± 102 0.29± 0.06(0.2) 7.24± 0.55(0.7)
R2R 0 0.0506± 0.0002(3.0) 3± 115 0.24± 0.05(1.2) 5.97± 0.40(0.7)
R2R 100 0.0503± 0.00002(1.5) 36± 148 0.25± 0.05(1.0) 6.49± 0.48(0.5)
R2R 200 0.0502± 0.0003(0.7) 194± 88 0.26± 0.05(0.8) 6.33± 0.43(0.1)
R2R 400 0.0503± 0.0004(0.8) 323± 125 0.29± 0.05(0.2) 5.92± 0.39(0.9)
R2B 0 0.0494± 0.0002(3.0) 27± 121 0.29± 0.05(0.2) 6.43± 0.45(0.4)
R2B 100 0.0495± 0.0002(2.5) 0± 98 0.32± 0.06(0.3) 6.76± 0.47(1.0)
R2B 200 0.0500± 0.0006(0.0) 244± 115 0.30± 0.06(1.0) 6.19± 0.43(0.2)
R2B 400 0.0497± 0.0004(0.8) 329± 135 0.27± 0.05(0.6) 5.87± 0.40(1.0)

Table 3.5.: Same as Table 3.4, but for RMO.

with an exposure time of 100 ksec. Once reconstructed the thermal emission of our rotating
models of the ICM, we build the mock X-ray spectra in the range 0.5-8 keV convolving the
data with an instrumental response function of RESOLVE (https://heasarc.gsfc.nasa.
gov/docs/xrism/proposals/). Despite the symmetry of each model of the ICM (note also
the symmetry of effective redshift around z0 = 0.05 in Table 3.3), we convolve separately its
data for approaching and receding ICMs to account for the different behavior of response ma-
trices at different energies. Using the C-statistics of Xspec, we fit the model BAPEC plus the
absorption PHABS to any mock spectrum with no ”frozen” parameter (an example of these
spectral fittings is Figure 3.10). As we note from Figure 3.10, the relatively high emissivity
of the emission lines FeXXV and FeXXV I makes them particularily useful for measuring
the Doppler shift via a spectral fitting. The mock spectrum at energies around 6-7 keV thus
provides the most valuable informations for the spectral analysis to measure a l.o.s. speed.
In Tables 3.4, 3.5 and 3.6 we report our results for the models RMN, RMO and RMP, respec-
tively: in particular, the significativity of l.o.s. speed

σs :=

∣∣∣zfiteff − z0

∣∣∣
errz

, (3.18)

where zfiteff is the ”best-fit” redshift and errz the error of the fitting redshift to ≃ 67% of
confidence. We recall that the Doppler shift of emission line centroids is due to the rotation
of the ICM and to the expansion of the Universe (associated with z0). σs thus measures the
significance of the Doppler shift of the rotation: σs < 1 means no significant detection of a
l.o.s. speed of the ICM. Most spectral analyses have σs > 1: the measurement of rotation thus
is significant from these mock spectra. However, as discussed in Section 3.2.1, in presence of
highly significant turbulence (i.e. σturb ≥ 200 km/s) the Doppler shift fitting suffers from a
higher error and preserves a good significativity only in the spectra of the model RMP, where
the peak of the rotation speed is higher (see also Figure 2.6a). Indeed, the model RMP has
everywhere higher zeff − z0 than other rotating models, as we note from Figure 3.9.
The results of σs in Table 3.6 demonstrate the capability of RESOLVE to measure the Doppler
shift of the centroids of the emission lines due to ⟨vlos⟩ ≳ 300 km/s with a good significativity
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Region σtrueturb [km/s] zfiteff (σs) σfitbroad[km/s] Zfit[Z⊙](σZ) T fitspec[keV](σSL)

R1R 0 0.0513± 0.0002(6.5) 0± 122 0.30± 0.07(0.0) 7.59± 0.69(0.5)
R1R 100 0.0513± 0.0002(6.5) 11± 126 0.30± 0.07(0.0) 7.46± 0.73(0.3)
R1R 200 0.0514± 0.0002(7.0) 191± 73 0.36± 0.07(0.9) 6.46± 0.51(1.6)
R1R 400 0.0510± 0.0006(1.7) 360± 154 0.31± 0.08(0.1) 8.11± 0.81(1.0)
R1B 0 0.0487± 0.0002(6.5) 1± 88 0.29± 0.07(0.1) 6.87± 0.57(0.7)
R1B 100 0.0486± 0.0003(4.7) 136± 109 0.28± 0.07(0.3) 7.23± 0.63(0.1)
R1B 200 0.0482± 0.0004(4.5) 263± 126 0.21± 0.06(1.5) 6.68± 0.58(1.0)
R1B 400 0.0492± 0.0006(1.3) 395± 166 0.32± 0.08(0.3) 7.72± 0.71(0.6)
R2R 0 0.0512± 0.0003(4.0) 1± 105 0.23± 0.08(0.9) 6.57± 0.65(0.1)
R2R 100 0.0515± 0.0002(7.5) 47± 144 0.32± 0.08(0.3) 6.33± 0.47(0.4)
R2R 200 0.0517± 0.0002(8.5) 10± 365 0.31± 0.07(0.1) 6.77± 0.58(0.4)
R2R 400 0.0510± 0.0003(3.3) 171± 105 0.33± 0.08(0.4) 7.24± 0.68(1.1)
R2B 0 0.0484± 0.0002(8.0) 46± 179 0.30± 0.06(0.0) 5.75± 0.43(1.8)
R2B 100 0.0485± 0.0003(5.0) 0± 130 0.21± 0.06(1.5) 6.27± 0.53(0.5)
R2B 200 0.0484± 0.0003(5.3) 122± 99 0.28± 0.06(0.3) 6.06± 0.48(0.9)
R2B 400 0.0490± 0.0004(2.5) 413± 126 0.29± 0.07(0.1) 6.44± 0.56(0.1)

Table 3.6.: Same as Table 3.4, but for RMP.

even in presence of a non-thermal broadening of 200 km/s ≲ σbroad ≲ 400 km/s (where σbroad is
given by Eq.(3.17)), when observing a partial region of a galaxy cluster at redshift z0 = 0.05 with
an exposure time of 100 ksec. It is allowed by the high energy resolution (∆E) of RESOLVE:
∆E ≃ 7 eV FWHM at 6-7 keV allows us to measure with a good significativity the Doppler
shift of ≃ 10 eV FWHM of the iron lines.
In addition to the significativity of the l.o.s. speed, in Tables 3.4, 3.5 and 3.6 we report the
significativities of spectroscopic temperature T fitspec (called σSL) and of metallicity Zfit (called
σZ) to emphasize the capability and the limits of the spectral analysis to recover the input
parameters of Table 3.3. The significativity associated with the ”best-fit” quantity Qfit (with
Qfit = T fitspec, Z

fit in Tables 3.4, 3.5 and 3.6) is

σQ =

∣∣Qfit −Qtrue
∣∣

errQ
, (3.19)

where Qtrue and errQ are the input parameters (of Table 3.3) and the error of Qfit to ≃ 67%
of confidence, respectively (the significativity of T fit is called σSL). In Eq.(3.19), σQ measures
essentially at which level the recovered physical parameters match the input values: σQ ≤ 1
means that the spectral analysis recovers the input parameter Qtrue to ≃ 67% of confidence.
Note that σZ < 1 and σSL < 1 in most spectral fittings where σs > 2: the ”best-fit” parameters
accurately match the input Z and Tsl, while keeping fairly low the errors of zeff to ≃ 67%
of confidence. It reinforces the robustness of our conclusions on the chance to detect with
RESOLVE the l.o.s. speed in high-quality X-ray spectra of focusing partial regions of clusters.
Note that the fitting relative error ∼ errσ/σ

fit
broad in Tables 3.4, 3.5 and 3.6 usually is very high

for σtrueturb = 0: the spectral fittings are essentially low sensitive to the contibution of temperature
inhomogeneity along the l.o.s. to the broadening of the emission lines. It is due to low σtrueT for
any model and in any selected region in Table 3.3. From the comparison of Tables 3.4, 3.5 and
3.6 with Table 3.3, ⟨Tb⟩ usually matches the ”best-fit” spectroscopic temperature to ≃ 67% of
confidence: our results do not appear to be strongly correlated to the weight used to estimate
the spectroscopic temperature (see Section 3.2.1).
Since there is low scatter in the average observed thermodynamic profiles of the ICM outside the
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core (see Section 2.1.2), we expect no significant differences in the results of mock observations
with RESOLVE (with an exposure time of 100 ksec) in the regions R1 and R2 for a large sample
of clusters of M200 ≃ 1015M⊙ at redshift z0 = 0.05 (see also Section 3.2.3). Nevertheless, in
order to show that our mock X-ray spectra are representative of those of a large sample of
massive clusters, we compare them to a direct observable in Section 3.2.3.

3.2.3. Comparison with the mass-luminosity relation

Even though in most spectral fittings the significativities of spectroscopic temperature and
metallicity are < 1 (see Section 3.2.2), the mismatch between the ”best-fit” results of our mock
observations (see Tables 3.4, 3.5 and 3.6) and the input parameters (in Table 3.3) suggests that
using realistic intrinsic properties of the ICM does not necessarily mean to produce mock X-ray
spectra representative of those observed (see also Section 3.2.1 and Mazzotta et al. 2004). We
thus perform in this Section a comparison of our mock X-ray spectra with a direct observable: in
general, a mass-luminosity relation provides a valuable test for cluster models and spectra.
We recall the relation (2.2) with ∆ = 500: M500 ∝ T

3/2
500E

3/2(z) (the same relation can be
also derived from the self-similar model of Kaiser 1986; see also Kravtsov & Borgani 2012).
When dealing with X-ray observations, it is useful to substitute the bolometric X-ray luminosity
LX,bol for T500: in an entirely pressure-supported massive cluster the predicted mass-luminosity
(hereafter, M-L) relation is (Voit 2005)

M500 ∝ L
3/4
X,bolE(z)

−7/4, (3.20)

where M500 is the mass within the sphere of radius r500 (here, we use the notation introduced
in Section 2.1).
From the X-ray observations there is a clear evidence for a scaling relation between the bolo-
metric X-ray luminosity and the dynamical mass of clusters: it means that the clusters are
shaped by gravity to first approximation. However, the observed M-L relation is for a massive
cluster (Reichert et al. 2011)

M500 ≃ 1.64

(
LX,SR

1044 erg/s

)0.52

E(z)−0.901014M⊙, (3.21)

where LX,SR is the bolometric luminosity associated with the centroid of scaling relation, and
thus departs from Eq.(3.20). In Eq.(3.21),M500 is usually interpreted as the dynamical mass of
cluster, however in this work we consider M500 as the mass of the halo. The cause of deviation
from Eq.(3.20) could be the interplay between cooling and heating and more likely the departure
from the hydrostatic equilibrium (e.g. Kravtsov & Borgani 2012).
Reichert et al. (2011) observed in the M-L relation a scatter S, which for massive clusters is
well fit by a log-normal distribution of bolometric luminosity LX,bol with dispersion σlogL =
0.25

S(log (LX,bol)) =
1√

2πσlogL
exp

[
−(log (LX,bol)− log (LX,SR))

2

2σ2
logL

]
, (3.22)

where LX,SR is given by Eq.(3.21). The observed mass-temperature (hereafter, M-T) relation
is for a massive cluster (Reichert et al. 2011)

M500 ≃ 0.291(TM−T (keV))
1.62E(z)−1.041014M⊙, (3.23)

and thus departs from Eq.(2.2). From the X-ray observations Reichert et al. (2011) recover
M500, TM−T and LX,bol in Eq.s (3.21) and (3.23) assuming spherical symmetry and isothermal
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β-model (which is derived from the hydrostatic equilibrium of the ICM).
In Figures 2.2, 2.4, 2.5, 2.7, 2.8 and 2.9 we compare the temperature TM−T , computed through
Eq.(3.23), to the profiles of temperature in our models of the ICM. Note that TM−T is the
temperature associated with radii < r500 (∼ 1300 kpc in these profiles).
In general, the X-ray spectrometers are more accurate in the soft-X band, so we measure
in the range 0.5-2 keV the fluxes of our mock spectra in Section 3.2.2 via the task FLUX (of
Xspec). We report the measurements of these fluxes in Table 3.7: they represent reference
values in any region under consideration and for any model of the ICM.

Region 𭟋spec
RMN 𭟋spec

RMO 𭟋spec
RMP 𭟋M−L

soft−X
R1 ≃ 4.6 ≃ 5.0 ≃ 3.6 4.7
R2 ≃ 5.3 ≃ 4.5 ≃ 3.3 0.8

Table 3.7.: Comparison of fluxes measured in our mock spectra (second, third and fourth
columns for models RMN, RMO and RMP, respectively) with the fluxes related
to the centroid of M-L relation (last column) for M500 = 6.9 × 1014M⊙. We quote
the fluxes in unit of 10−13 erg/s/cm2.

We propose the following method to estimate the fluxes related to the M-L relation. We
introduce a parameter Cbol,soft, which converts the X-ray bolometric luminosity (LX,bol) into
the soft-X luminosity (Lsoft−X):

Cbol,soft :=
Lsoft−X
LX,bol

. (3.24)

In general, Cbol,soft depends on the temperature of plasma that emits the observed radiation.
We thus estimate LX,bol and Lsoft−X using Xspec via the task LUM: in absence of any response
matrix and of any absorption model, we model the emission of the ICM via the code APEC,
where the spectroscopic temperature is TM−T from Eq.(3.23) (for our spherical model of halo
that has M500 ≃ 6.9× 1014M⊙, TM−T ≃ 7.26 keV), Z = 0.3 Z⊙ and zeff = z0 = 0.05 (in APEC
the broadening of the emission lines is only thermal). While, Cbol,soft is independent of the
assumed value of norm.
The emission of the ICM strongly varies with the radius of the cluster (see some examples in
Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7). Indeed, the surface brightness profile usually is well
reproduced by the isothermal β-model (Cavaliere & Fusco-Femiano 1978)

ΣX(R•) =
ΣX,0[

1 +
(

R•
rscale

)2]3β−1/2
, (3.25)

where R• :=
√
R2 + z2 is the radius in the plane of the sky (parallel to the meridional plane

for an object seen edge-on), while rscale, ΣX,0 and β are the scale radius, the normalization
and the slope parameter of β-model, respectively. Mohr et al. (1999) found good fits to the
observed spherically averaged surface brightness profile in the outskirts of clusters for β = 0.6
and rscale = 0.15r500.
The ratio between the emission in the entire cluster and that in the region under consideration
is

R𭟋 :=

∫∫
Area

ΣX(R•)dRdz

2π
∫ r500
0

ΣX(R•)R•dR•
, (3.26)

where R• :=
√
R2 + z2, ΣX(R•) is given by Eq.(3.25) with β = 0.6 and rscale = 0.15r500 (see

above) and Area = πR̃2 with R̃ = 70 kpc or R̃ = 100 kpc for R1 or R2, respectively. Note that
R𭟋 is independent of ΣX,0. To be consistent with the derivation of parameter norm (which
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determines significantly the measured fluxes), we compute the numerator of Eq.(3.26) following
the method to evaluate the outermost integral in Eq.(3.13) (note that Area in Eq.(3.26) is the
same as in (3.13)).
The fluxes in the regions R1 and R2 derived from the M-L relation are estimated through

𭟋M−L
soft−X = Cbol,softR𭟋

LX,SR
4πD2

L

, (3.27)

where LX,SR is computed through Eq.(3.21) and DL is the luminosity distance from the cluster
at redshift z0 = 0.05. In Table 3.7 we report the fluxes estimated by using in Eq.(3.21) and in
Eq.(3.27) the mass of spherical halo model presented in Section 1.3 (i.e. M500 ≃ 6.9×1014M⊙).

(a) (b)

Figure 3.11.: Comparison of the fluxes (listed in Table 3.7; circle, triangle and square), measured
from our mock spectra in the regions R1 (right panel) and R2 (left panel), with
the distributions (in red) of fluxes as expected from Eq.s (3.27), (3.21)and (3.22).

In Figure 3.11, using Eq.s (3.22) and (3.27), we mimic the distributions of 𭟋M−L
soft−X in the

regions R1 and R2 for 1000 clusters of M500 = 6.9 × 1014M⊙ and we compare them to the
measurements of fluxes of our mock spectra in Table 3.7. Our fluxes closely match the relative
distribution in the region R1, while this match is significantly lower in R2. We ascribe this
difference to the use of a global temperature of the cluster (i.e. derived in the X-ray observations
from the isothermal β-model) to estimate Cbol,soft: TM−T ≃ 7.26 keV differs significantly from
the spectroscopic-like temperature of any model of the ICM in region R2 (see Table 3.3).
Nevertheless, in this work in Eq.(3.21) we use the ”true” mass of halos and not the dynamical
mass recovered under the assumption of hydrostatic equilibrium, which is smaller than the
”true” mass in any rotating model.
On the basis of the comparison of our measured fluxes with the M-L relation, the mock X-ray
spectra based on realistic intrinsic quantities of the ICM are fairly realistic: on one side it
confirms the goodness of method used to reconstruct the mock spectra (see Section 3.2.1), on
other side it reinforces the conclusions based on the spectral analyses in Section 3.2.2.
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Conclusions

In this work we propose, for different kinematic conditions of the ICM and for different shapes
of halos in a typical cool-core cluster of M500 ≃ 1015M⊙, six models of the ICM plus the DM,
which respects the main predictions on the average internal structure of halos and the average
observed thermodynamic behavior of the ICM. Then, comparing to the observations of real
clusters we test in the X-rays the main photometric and spectroscopic signatures of our models
(included the Doppler shift of the centroids of the emission lines via mock observations with the
forthcoming X-ray spectrograph RESOLVE). In this Chapter we summarize the main results
of this work and the future perspectives.

� We build, via a homeoidal expansion, exact flattened axisymmetric density-potential
pairs. The models of DM halos based on these aspherical density-potential pairs (with
ellipticities ≃ 0.3) respect for an opportune choice of scale radius and scale density the
main predictions of DM-only simulations: the universal spherically averaged density pro-
file and the mass-concentration relation (see Chapter 1 and also Appendix A for a complete
discussion of halo mass and the spherically averaged density profile of these aspherical
models). These models of halos allow us to build realistic polytropic models of the ICM
in cool-core clusters under different kinematic conditions of the plasma (see Sections 2.2.3
and 2.3.3).

� Ghirardini et al. (2019) construct the average observed profiles of the ICM throughout
the cool-core cluster (from the center up to r200). We demonstrate that within ≃ r500
a two-component composite polytrope model captures both in the outer region and in
the cool core the essential thermodynamic features of the average observed profiles of the
ICM (see Section 2.2.2).

� We find for a given axisymmetric gravitational potential the analytic expression of effective
potential (2.36) associated with rotation law (2.34) of Bianconi et al. (2013) (see Section
2.3.2). In this work, we show that the rotation patterns based on this rotation curve
with peaks of azimuthal speed ≲ 500 km/s at R ≲ 400 kpc (see Table 2.4 and Figure
2.6a) allow us to build realistic models of the ICM (see Section 2.3.3) under different
assumptions of the shapes of halos (here, we note that the prolate halo model favour high
rotation speeds of the ICM).

� We demonstrate that a model of a typical cool-core cluster of M200 ≃ 1015M⊙ with a
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polytropic distribution of the ICM can reproduce with a good agreement the universal
profiles of the thermodynamic quantities of the ICM not only under the assumption of
spherical symmetry and in absence of bulk motions, but also using halos of axial ratios
≃ 0.7 and/or in presence of rotation of ≲ 500 km/s (see Sections 2.2.3 and 2.3.3). At
the same time, we provide, for different kinematic conditions of the plasma and different
shapes of the halos, physical models of the ICM in a typical cool-cool clusters, which are
expected to be representative of the population of relaxed cool-core clusters of M200 ≃
1015M⊙. These models of the ICM thus could be used for the interpretation of the future
observations with the X-ray instruments on board of the observatories CHANDRA, XMM-
NEWTON, XRISM and ATHENA and with the microwave instruments on PLANCK.

� We test the tightness of the following photometric constraints on the rotation patterns
in relaxed clusters. The comparison with the universal profiles of the thermodynamic
quantities of the ICM and their observed scatter is a useful tool to select the rotation law
and its parameters (see Section 2.3.3), even if this test is currently limited to distributions
of the ICM with low mass biases. It is a promising test for the near future, since ongoing
observational campaigns aim to understand the relationship between the mass biases
and the departure from the average observed profiles of Ghirardini et al. (2019) (e.g.
CHEX-MATE Project; http://xmm-heritage.oas.inaf.it/). While, the difficulty to
find an evident bimodality of the distribution of morphological parameters (in particular,
of average axial ratio) of X-ray surface brightness between relaxed and disturbed clusters
suggests that we are not able to constrain tightly the rotation patterns via the morphology
of X-ray surface brightness for different shapes of halos (see Section 3.1). Indeed, our
models of the ICM are widely consistent with the current upper limits on the average
ellipticity of X-ray surface brightness (see Section 3.1.2). In this work, the indirect X-
ray photometric observables are not very powerful tests for the rotation patterns and,
consequently, the most promising probe for them is the Doppler shift and broadening of
the centroids of the emission lines in high quality X-ray spectra.

� By convolving the data reconstructed with an exposure time of 100 ksec from our models
of the ICM with the response matrices of RESOLVE, we present a collection of X-ray
spectra representative of those observed in clusters of M200 ≃ 1015M⊙ under different
kinematic conditions of the ICM (see Sections 3.2.1 and 3.2.3). On the basis of the
”best-fit” results of our spectral analyses, which in most cases closely match the input
parameters (see Section 3.2.2), we demonstrate the chance to detect in a X-ray spectrum
of either receding or approaching ICM the l.o.s. speed of ≳ 250 km/s via the fitting
Doppler shift of the centroids of the emission lines in presence of a non-thermal broadening
of σbroad ≲ 100 km/s. However, since the introduction of turbulence damages significantly
the spectral analyses, for σbroad ≳ 200 km/s this detection is possible only for l.o.s. speeds
of ≳ 300 km/s (see Section 3.2.2). This work strongly encourages future spectroscopic
observations of relaxed galaxy clusters with RESOLVE and/or X-IFU (see also Roncarelli
et al. 2018) to infer the l.o.s. speeds of the ICM from the shift of the centroids and from
the broadening of the emission lines.

� In the near future, to conclude the study of these rotating models, we plan to compute
their hydrostatic mass bias, following the method used by Nipoti et al. (2015). A nat-
ural extension of this work explores smaller largest-to-smallest axial ratios of halos (as
predicted by Allgood et al. 2006) and baroclinic distributions to reproduce the average
observed profiles of Ghirardini et al. (2019). In a future work focused on the detectability
of gas rotation in multiwavelength observations, we could explore via mock observations
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of the CMB signal, detectable at microwave wavelengths, the possibilities and limits to
measure with a good significativity the distortion of the CMB spectrum induced by gas
rotation from our models of cool-core clusters. Moreover, on the basis of the dispersion
relation presented by Nipoti & Posti (2013) a future work could follow in presence of
local perturbations the linear evolution of the ICM in our rotating models. According to
Nipoti et al. (2015) in this regime we expect the presence of magnotorotational unstable
modes, which could trigger an efficient turbulent heating in the non-linear regime and,
consequently, contribute to halt the cooling flows in the cool cores of relaxed clusters.

In this work, we conclude that our models predict rotation of 400-500 km/s that do not violate
the available observables in the X-rays (i.e. the average observed thermodynamic profiles and
shape of iso-surface brightness contours), leaving some room in real clusters for possible rotation
of ≲ 500 km/s, which could be detected via the Doppler shift of the centroids of the X-ray
emitting lines with the facilities on board of the observatories of new generation launched in
the future (see also Roncarelli et al. 2018 and Bianconi et al. 2013). The possibility that the
rotation in real clusters is ≃ 500 km/s acquires a great interest not only to fully appreciate one
of the phenomena which could shape the distribution of the ICM and regulate its energetic
budget via magnotorotational instability, but also to control mass biases, which could affect
the use of clusters as cosmological probes.
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Appendix A

The equivalent mass: a useful concept
of gravitational mass for aspherical clus-
ters

When dealing with spherical halos, the gravitational field is a direct probe of the mass of a
cluster (indeed, M(< r) = r2g(r)/G, where g(r) is the intensity of the spherically symmetric
gravitational field and r the spherical radius). If the predictions on the shape of halos based on
the DM-only simulations are correct, the assumption of spherical symmetry usually exploited
in the X-ray observations could cause overestimate or underestimate of the mass of aspherical
clusters. When comparing a flattened halo model with the halo properties inferred from the X-
ray observations, it is useful to introduce the concept of equivalent mass: the mass inferred
from the average gravitational field of an aspherical halo under the assumption of spherical
symmetry.
In this Appendix, it is interesting to quantify the difference between the ”true” mass and the
equivalent mass, essentially the mass bias introduced by the DM halo flattening, for the halo
models in Section 1.3.

The equivalent mass of our flattened halo models. The equivalent mass of a halo within
the sphere of radius r is

Meq(< r) :=
r2gmean(r)

G
, (A.1)

where gmean(r) is the intensity of the spherically averaged gravitational field. In this work we
use two definitions of gmean for spheroidal halo models:

gmean(r) =
2gR(r; 0) + gz(0; r)

3
(A.2)

and
gmean(r) = [g2R(r; 0)gz(0; r)]

1/3, (A.3)

where gR and gz are the intensities of the R- and z- components of the gravitational field (in
cylindrical coordinates), respectively. Note that for both definitions of gmean Meq(< r) is the
”true” mass of a spherically symmetric halo model, where gR(r; 0) = gz(0; r). In a generic
spheroidal halo model there is a mismatch between Meq(< r) in Eq.(A.1) and M(< r) in
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Eq.(1.43), so we conclude that we cannot use M(< r) when comparing to the results inferred
under the assumption of spherical symmetry.
Using both definitions of gmean in Eq.s (A.2) and (A.3), the difference between M(< r) in
Eq.(A.1) and M(< r) in Eq.(1.43) is negligible throughout the halo for each model in Table
1.1.

Departure of spherically averaged density profile of our flattened models from the spher-
ical NFW profile. Here we use the notation of Section 1.1. In this work, to be as far as
possible consistent with the predictions of DM-only simulations on the universal profile of
halos, we assume the NFW as the zero-order term of homeoidal expansion (see Chapter 1).
However, for a declining zero-order density distribution the directional subtraction of density
imposes a departure of the spherically averaged density profile from the zero-order spherical
term ρ̃(r̃). For the description of the spherically averaged density profile of aspherical NFW,
given by the truncation of Eq.(1.18) to the first significant order in flattening (ρ̃(x̃; ỹ; z̃)), we
use the analytic expression

ρ̃mean(r̃) :=
ρ̃(r̃; 0; 0) + ρ̃(0; r̃; 0) + ρ̃(0; 0; r̃)

3
=

1− (ϵ+ η)/3

r̃(1 + r̃)2
− 2(ϵ+ η)

3(1 + r̃)3
. (A.4)

We quantify the deviation of spherically averaged density profile of aspherical NFW from the
spherical NFW by means of the ratio between the absolute value of two terms in RHS of
Eq.(A.4)

D(r̃) =
| − 2/3(η + ϵ)/(1 + r̃)3|

(1− (η + ϵ)/3)/[r̃(1 + r̃)2]
=

2(η + ϵ)

3− (η + ϵ)

r̃

1 + r̃
. (A.5)

D(r̃), as well as the directional subtraction of mass, is significant only at r̃ ≫ 1 and for high η.
For η = 1/3, when the subtraction of density occurs in the equatorial plane, D(r̃ ≫ 1) ∼ 4/7
and, when along the symmetry axis, D(r̃ ≫ 1) ∼ 2/9. Indeed, the request for a physical density
(see Section 1.2.2) also provides D(r̃) < 1 everywhere.
Given that D(r̃) is a probe of the departure of our spheroidal halo models from the NFW
profile, we conclude that it is significant only in the halo outskirts.
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