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Abstract

Authorship attribution, also recognized as code stylometry, has always been
a milestone in obtaining important information for what concerns plagiarism
and de-anonymization tasks, assessing the author in several different ways
through the years. The proposed work revolves around the whole problem,
starting with the mining of a new dataset which faces data scarcity and
domain bias problems that afflicted the former works. Diving then into a
new machine learning model design, derived from the former state-of-the-art
techniques, which tries to gain advantages from Natural language process
practices adopted by the newest language models. The problem is then tackled
by moving through a metric learning technique, dealing for the first time
with the stylometry problem as a querying snippet mechanism that allows a
zero-shot inference over authors not present in the training set.



Sommario

L’elaborato presentato si pone al termine del progetto di ricerca intrapreso
all’interno del programma Erasmus+ presso l’università Tèlècom Paris. Il
soggetto della ricerca riguarda lo sviluppo di un tool volto a individuare la
paternità del codice sorgente, usando come chiave di lettura lo stile dell’autore.
Il lavoro viene frammentato in due sezioni principali:

• Sviluppo del Dataset

• Sviluppo del tool di stilometria

ricalcando il processo delineato durante la parte sperimentale della tesi.

Lo sviluppo del dataset si è reso necessario al fine di sopperire alle maggiori
esigenze di dati poste dai nuovi modelli di machine learning. Inoltre si è posto
l’obiettivo di utilizzare fonti che provenissero da progetti appartenenti a casi
d’uso reali, mentre la quasi totalità degli sviluppi allo stato dell’arte sono
basati su codice proveniente da competizioni algoritmiche. Il modello inerente
alla soluzione del task di inferenza della paternità del codice sorgente mostra
elementi di innovazione sotto diversi punti di vista. Partendo dal design della
struttura, rimodellata con uno sguardo alle metodologie più moderne dal
mondo del natural language processing, sino ad arrivare all’utilizzo del metric
learning per osservare possibili potenzialità di una tecnica finora non utilizzata
nel campo della stilometria. Gli esperimenti sono stati svolti seguendo un
ablation study al fine di poter trarre conclusioni riguardanti la bontà delle
soluzioni proposte.
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Chapter 1

Introduction

The code stylometry task is a problem stated to overcome anonymization
and plagiarism, putting its roots over forensics applications, its use cases can
spread across different domains. Nowadays, the problem is well related to
machine learning methodologies, addressing the model’s capability to infer the
person behind the written code. As techniques improved over time, the task
moved forward too, getting through different code vectorization techniques.
The feature extraction phase for code vectorization, settles a big problem as
much as the snippet encoding technique itself. Moving through time, three
main kinds of features identify the data:

• Lexical features

• Syntactical features

• Layout-based features

Splitting the code representation by means of these three traits, allows
us to infer the author’s fingerprint by analyzing the stream of tokens in
the source code(lexical features), by getting information about the graphic
layout of the source code(layout-based features), or by analyzing the AST
structure(syntactical features) which involves a code parsing phase. Several
approaches exploit all of the mentioned features, obtaining a vector which
represents snippets of code through all its nuances. Over time, when it
comes to solving the stylometry task, syntactical and lexical features seem to
overcome the layout-based ones, getting a better, not obfuscable snapshot of
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what it’s called the author’s ’fingerprint’. In this work, we deep into a novel
approach to code stylometry, trying to analyze the performances with a metric
learning approach over the task and to overcome the typical class-constrained
classification techniques related to the problem. We introduce a stylometer
capable of addressing the task by exploiting a contrastive objective, modelling
the latent space to achieve code embeddings closer by style, and opening the
view to a similarity function author recognition over the snippets.

We outline then the model to a zero-shot author recognition, where the zero-
shot label stands for a model capable of large flexibility, indeed, this kind
of classification works even over unseen authors, differentiating itself from
previous classical models which need fine-tuning when it comes to adding a
class(in our case the author), making the model unfeasible without this further
training step. Previous work[11] showed great results coupling semantically
similar snippets of code for zero-shot clone detection, highlighting a path to
other code metric learning domains like the one described above. We can
then pose a first research question:

Is it possible to achieve effective latent space representations that group snippets
of code closer by stylistic terms exploring metric learning techniques?

Problem statement
De-anonymization techniques spread across different use cases, making the
task a valuable opportunity to integrate technologies that could overcome the
problem from different points of view. Companies that migrate their system
or buy source code that no one could address; open source works with several
source code authors that anonymize themself by changing the account are
just a few of the problems that can occur and could need the use of a model
that helps on the author recognition phase. The focus has been addressed in
two different steps:

• Creating an author-labelled dataset

• Creating a model to solve the Stylometry task
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Chapter 2

Background and related work

Background, a metric learning overview
Before deepening into the problem, it’s necessary to introduce the metric
learning field and how it differs from standard classification techniques based
on classification heads. As neural network techniques expanded in the years,
research on latent space modelling has been tackled, observing how the input
is projected over the embedded space and trying to reshape it on the assigned
task. Standard classification techniques exploit as a final layer, a projection
head channelled with a softmax activation function, modelling the output into
a probability distribution. Architectures of this kind can be pruned by the
final softmax layer, obtaining a model exploitable for feature extraction tasks.
Major concerns for these techniques are scalability and flexibility. What
happens if a new class is added to the dataset? The first answer would be
exploiting transfer learning methodologies, enlarging the classification space
to a new set of classes. This technique can yes, be part of a solution, but it
does also need a large number of elements per class in order to be effective.
Here comes the need for a model that can tackle open-world problems, being
able to classify by clustering the elements, and generalise over seen and
unseen classes. The softmax cross entropy trained model, pruned of the last
classification layer can become an efficient embedding generator for a k-NN
classifier, but could lead to arbitrarily large or small distances between each
other, obtaining a latent space not useful for a nearest neighbour search space,
especially when it comes to a high number of different classes task Shota
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et. al [17]. Here comes the need for a new training paradigm, moving the
loss from the classical Cross Entropy to a loss which takes into account the
distances between the embeddings themselves. The distance in the embedded
space should preserve the objects’ similarity — similar objects get close and
dissimilar objects get far away. Various loss functions have been developed
for Metric Learning. For example, the contrastive loss guides the objects
from the same class to be mapped to the same point and those from different
classes to be mapped to different points whose distances are larger than a
margin. Given x ∈ X be an input data and y ∈ {1, ..., L} be its output label
we use x+ and x to denote positive and negative samples of x, meaning that
x and x+ are from the same class and x is from a different class. The kernel f
is the module that is responsible for the embedding, takes x and generates an
embedding vector. m is the margin parameter which stops pushing clusters
of different classes apart from each other.

L(xi, xj; f) = 1{yi = yj}∥f(xi)−f(xj)∥2
2+1{yi ̸= yj} max(0, m−∥f(xi)−f(xj)∥2)2

Figure 2.1: Contrastive margin loss

Triplet loss is also popular, which requires the distance between the anchor
sample and the positive sample to be smaller than the distance between
the anchor sample and the negative sample; here the margin works as a
distantiator between positive and negative samples Sun et. al.[18].

L(x, x+; x−; f) = max(0, ∥f(x) − f(x+)∥2
2 − ∥f(x) − f(x−)∥2

2 + m)

Figure 2.2: Triplet margin loss

A common problem in these losses is the slowness of convergence, as a matter
of fact, each sample is moved away from one single adversarial class at a time,
the multi-class N-pair loss introduced by Sohn [19] propose a way to, given a
batch of elements, bring the positive embeddings together while distancing the
adversarial ones. With this technique, a constraint over batch construction is
that there must be only one positive sample per class.
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Figure 2.3: Difference between Triplet loss and N-pair loss approaches.

This proposal has been generalized over contrastive representation learning
by Oord et al. [20] as InfoNCE loss.

L(x, x+; xi; f) = −EX log exp(f(x+) · f(x)/t)∑N
i exp(f(xi) · f(x)/t)

Figure 2.4: infoNCE loss, where N is the batch dimension and t is a temper-
ature hyperparameter proposed by Wu et al.[21] and exploited by Jain et. al
[22] for the code summarization task

Related work
Approaches to code stylometry have increased and developed through time,
posing a step-by-step evolution of the solution by exploiting the edge of
current machine learning technologies. The key point of all these approaches
is the vectorization of the source code, indeed, obtaining a good representation
in the latent space of the code’s snippet poses the strengths of the model
itself. As the need for a good representation income, feature selection and
encoding techniques changed over time, moving the perspective to different
techniques, trying to understand and improve the code understanding from
another point of view.
Oman et. al.[1] work introduced the idea of human fingerprint over code.
Starting from a human-driven classification, they demonstrated that it’s
possible to recognize who has written the source code, in the first place,
just by looking at common visual patterns that occur in the code. This
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experiment has driven the feature choice to a cluster-based classification,
trying an unsupervised technique to infer the code writer. The main gap
between this work and the further ones is the lack of Syntactic features, where,
by syntactic features we mean the Abstract syntax tree-derived data.

Before going deeper, defining what an AST is becomes fundamental; we follow
then the definition stated by the code2vec[8] work:

"An Abstract Syntax Tree (AST) for a code snippet C is a tuple 〈N,T,X,
s,δ,ϕ〉 where N is a set of nonterminal nodes, T is a set of terminal nodes, X
is a set of values, s ∈ N is the root node, δ : N → (N ∪ T) is a function that
maps a nonterminal node to a list of its children, and ϕ : T →X is a function
that maps a terminal node to an associated value. Every node except the
root appears exactly once in all the lists of children."

A.S.T. dependent methodologies
Caliskan et. al. [2] stepped into the authorship problem by introducing the
A.S.T. features usage, capturing the snippet vectorization not only by lexical
and layout-based features but with syntactical features too. The paper tackles
the problem from different points of view, showing how syntactical features
are less sensible to obfuscation processes, obtaining a more reliable model.
As the main AST features in this work we have the tree AST depth, showing
how much the author tends to nest the code; the AST bigram frequency is
then one of the key features in this research, stating that the model with the
only usage of AST bigram features can have results close to the ’full feature’
model. This shows the importance of the AST features over the others in the
authorship task and lays the groundwork for further analysis of the feature
magnitude in the classification process.

These features have been analyzed by exploiting the Information Gain tech-
nique, evaluating which one is more incisive over the class prediction. As the
results highlights, the most important features(percentage of the number of
features exploited) are:

• 54% lexical features

• 44% syntactic

• 1% layout based
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Clearly opening a new way of thinking about the stylometry task, showing
how syntactic features affect the inference process. Caliskan et. al. work
was grounded over the Random forest technique, addressing the problem as
a 229 classes classification over a Python Corpus; the average accuracy was
53.91% for top-1 classification, 75.69% for top-5 relaxed attribution over the
GCJ[3] dataset, introducing the idea of the ’problem derived’ model learning.
The concept was grounded on the design of the Corpus itself; for instance,
modelling a machine learning algorithm over a Dataset that contains snippets
of code belonging to one single project, can lead the model to learn how
to classificate the author by project, and not by style. The GCJ dataset is
taken by the Google code competition, obtaining a corpus modelled by several
problems per author, deflecting the previously mentioned problem.

A major interest point is to address these works over real use-case scenarios.
Open source/big companies projects work with multiple authors over each
single script of code, it’s necessary to move the context to arbitrarily small
snippets of code, checking the authorship. Dauber et. al. [4] address this
problem by working over ’one line minimum’ snippets of code. As the lines of
code decrease, the overall accuracy drops heavily, highlighting how this factor
afflicts the results. The Corpus taken into account was composed of C++

Figure 2.5: This plot shows accuracy, or hit rate, for samples grouped by the
number of characters.

code from over 104 different programmers, posed by starting from 14 seed
authors, moving then to contributors in order to increase the overall number
of classes and samples, exploiting the Git blame functionality to address the
code. The resulting dataset was composed of 150 samples per author with at
least 1 line of code. The work was pursued with the Random forest classifier
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as the Caliskan work, obtaining a single sample attribution accuracy of 48.8%

The rise of the embeddings
Since Mikolov[6] introduced the usage of word embeddings, outperforming
previously SOTA NLP tasks, the overall techniques which could involve token
features moved toward this path. The main idea behind Mikolov’s work was
about moving from sparse token representations, to dense ones, obtaining
inputs that can be semantically valuable. In order to obtain the semantically
rich embeddings, the approaches used were led by unsupervised language
modelling techniques, masking part of the sentence and obtaining an output
probability of the addressed masked word.

This approach outperformed all the previously stated works and delined the
path for further approaches.

As the Mikolov approach was being used over NLP techniques, this approach
is starting to be used over code stylometry tasks.

An initial approach to modelling tokens using this technique was brought by
Alsulami et. al.[7]. The reference model is structured using recurring modules
based on LSTM; specifically the results obtained were tested through uni and
bi-directional networks, obtaining a metric of comparison between a simple
model and a model capable of carrying out the computation also taking into
account the future values within the context.
The architecture differs from the previous ones also thanks to its use of only
syntactic features derived directly from the AST. We, therefore, have an an
iterative algorithm that will initially move through a mining step of the AST
tokens; tokens which will then be mapped to the optimized embedding space,
trained during the backpropagation phase, represented therefore through a
pre-established dimensionality as a hyperparameter. The embedding values
will then be used as input for the LSTM, creating a hidden state tree useful
for the final classification phase.
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Figure 2.6: Example of the LSTM embeddings in the Alsulami et. al. work.

In this case, the model was trained over the Google code Jam dataset[3] as
the Caliskan et. al. paper, working over C/C++ and Python source code,
taking into account 10 authors for the C/C++ language and 70 authors for
the Python language. The results show outstanding values, breaking the
SOTA with 88.86% accuracy regarding the Python dataset, and 85.00% for
what concerns the C/C++ code. These results demonstrate the capabilities
of both, embeddings and Syntactic features in the code stylometry task.

Code2vec, a new approach for snippet embedding tech-
niques
Alon et. al.[8] work aims to obtain a richer snippet representation combining
syntactical and lexical features.
The novelties that this model proposes are:

• Novel use of path structure as a syntactic feature

• Triplet encoding between two terminal nodes and their path embedded
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• Novel use of attention mechanism on snippet’s embeddings

As mentioned before, the model works with triplets of embeddings, each
triplet is defined by two terminal nodes extracted from the AST and the
path between these terminal nodes. The path exploited for the embedding
is mined starting from the terminal nodes taken into account, looking for
the lowest common ancestor in the Abstract Syntax Tree. The extracted
path is then represented as a string containing non-terminal nodes and the
direction, also mined during the processing phase. The embeddings used for
the models are so the representations of the two connected terminal nodes
and the embedding of the path String.

⟨x, (NameExpr ↑ AssignExpr ↓ IntegerLiteralExpr), 7⟩

Figure 2.7: embedded triple (terminal,path,terminal) for the statement "x =
7 "

The embedded Triple is then reprojected in a defined space with a fully
connected layer, with, as an activation function, the hyperbolic tangent
function. The aim of this layer is to learn a combined representation of the
three embedded features, moving them into a new latent space.
As it has been obtained the new representations of the arbitrarily chosen
Triplets, the aim moves now into leading to a combined representation of
the given embedded triplets(context vectors or path contexts). Here the
concept of soft and hard attention has been introduced obtaining a weighted
representation of the contexts as a final Vector for the entire snippet of code.
Soft and hard attention were defined as:

• Soft attention: weights are distributed “softly” over all path-contexts

• Hard attention: selection of a single path-context to focus on at a time

Both of these attention mechanisms were tested during an ablation study;
the soft attention weighting mechanism obtained better results over the code
summarization task, and it has been used over the final version of the model.
Here are the formulas for the Soft-attention mechanism:
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attentionWeight αi = exp (cT
i · α)∑n

j=1 exp (cT
j · α)

Figure 2.8: Computation of the attention weight, where alpha is the attention
matrix and c are the context-path vectors

codeV ector υ =
n∑

i=1
(αi · ci)

Figure 2.9: Computation of the final snippet representation

The final ’Snippet vector’ can be then exploited as the embedding of the
addressed snippet, adapting it depending on the task.

Figure 2.10: Code2vec model

The main problems addressed in this model are given by the sparseness
of the data, making the model extremely Data hungry. Terminal values
are represented as whole symbols, obtaining different embeddings for
semantically similar tokens(eg. "OldArray", "NewArray"). The monolithic
representation of the paths suffers from the same problem, having different
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embeddings for similar paths. These techniques suffer also from the problem
of out-of-vocabulary(OoV) tokens. In this domain, where the variable names
are so variegated and depending on the programmer itself, it’s easy to
encounter semantically equal names but written in different ways.
These problems are tackled by the model Code2Seq[13], which we will talk
about later.

As the Snippet embedding task has been improved by the development of
code2vec, Code stylometry research moved in this direction with the works
described by Bogomolov et. al.[9] and Kovalenko et. al.[11].

The first aim of Bogomolov’s work is to compare standard machine-learning
techniques to the code2vec approach. The first results that were highlighted
by this work are the outperforming accuracies compared to models without
syntactic features, confirming the valuable impact that these kinds of features
have.
Another important result is about how the Random Forest model outper-
formed code2vec with smaller amounts of data, bearing out even this time the
concerns about the data hungriness of the code2vec model. Bogomolov’s work
with code2vec reached good results, pushing the accuracies over the GCJ
dataset up to the SOTA level(previously 88.86% with the LSTM Alsulami
work) for what it regards the Random forest technique(95.9%), and lower
accuracies for the code2vec model(72.3%).
Kovalenko et. al.[11] work shifted slightly from previous approaches by looking
at the code differences between authors; a context change like this one needed
a specific dataset, mined appositely for the task from the IntelliJ Community
taking Java snippets of code. The model indeed extracts from the AST only
the differences between the previous code and the newest one, addressing
them to the pointed author. The main focus of this work is the time-labelled
snippet, showing the weight and the impact of self-improvement over years
over the latent space, grounding the evaluation phase, not over the author
recognition, but over the author’s embeddings distances from each other.

These techniques opened solutions for modern tasks. Azcona et. al.[10]
propose a vectorization technique of the user aimed at showing students’
criticalities in terms of school learning, by embedding student assignments.
It is therefore possible get a meaningful representation of the users engaged
within of a latent space of dimensionality decided a priori, showing how the
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style of programming is fundamental in the differentiation of users.
Author Dataset-S.Dim. N. Authors Technique Language Accuracy (%)

Caliskan GCJ-Source 229 R.F. Python 53.91
Dauber Custom-Fragment 104 R.F. C++ 48.80

Alsulami GCJ-Source 70 L.S.T.M. Python 88.86
Alsulami GCJ-Source 10 L.S.T.M. C++ 85.00

Bogomolov GCJ-Source 70 code2vec Python 72.30
Bogomolov GCJ-Source 70 R.F. Python 95.90

Above the table of accuracies per dataset type (if Source it has been used the
whole file, otherwise fragment ), number of authors, technique and language.

Code2seq as an advanced technique for code embedding
Considering the previous code2vec model, tackling the highlighted problems
was the principal concern for an improvement over code embedding tasks. As
we can infer from the name, Code2seq [13] is a model mainly designed for
having as an output a sequence, not anymore the single vector representation
of the embedded snippet; these design decisions are mainly addressed to the
code summarization task.

In order to solve the OoV problem over the monolithic path representation
and the terminal nodes, Code2seq changes completely the Context-Path
embedding, moving from monolithic embeddings to composed representations
of the inputs.

The first shrewdness is about the Terminal tokens embeddings. As we men-
tioned before, "SortArray" and "ArraySort" over the code2vec proposal have
two different embeddings for two semantically equal tokens. When it comes
to the code2seq model, the proposal was to split the tokens by exploiting
commonly used programmers’ habits like camel notation and underlining
character values through regex techniques; once obtained two different tokens,
the embedded values of the tokens are summed, obtaining semantically rich
embeddings representation composed by split elements. In this case, vec-
tor("Array") + vector("Sort") and vector("Sort") + vector("Array") lead to the
same representation in the latent space, improving the data sparsity problem
mentioned before; even semantically similar embeddings like vector("Array")
+ vector("Old") and vector("Array") + vector("New") are led by design to
closer embeddings.

15



This technique takes up from the findings made by Mikolov over the em-
beddings where the results showed the chance of vectorial operations over
embeddings, highlighting that "simple algebraic operations are performed
on the word vectors, it was shown for example that vector(”King”) - vec-
tor(”Man”) + vector(”Woman”) results in a vector that is closest to the
vector representation of the word Queen"[6]

The second point of weakness over the code2vec model was about the path
representation, even though the paper showed how almost all the monolithic
paths appear more than one time, it remains still a source of sparsity, which
is tackled by splitting the path into pieces(non-terminal nodes) and repre-
senting it exploiting a bidirectional LSTM, based upon non-terminal token
embeddings.

As the model is designed for the code summarization task, the final part of
code2seq is based on a decoder modelled with an attention mechanism which
selects dynamically which path-context representation influences the most
the output.

Figure 2.11: Code2seq model for code summarization task.

Code2seq’s improvements over the code2vec model are the modules which
inspire the final model used in this work for the code stylometry task, remod-
elling this work to obtain a vector representation as the code2vec model.
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There have been attempts to recreate language model pretraining with the
work of Feng et. al.[15] with CodeBERT, tested over the code summariza-
tion task, obtaining worse results than the code2seq model. This has been
addressed to the absence of the AST syntactic data, highlighting even this
time the importance of the AST features during the code representation in
the latent space.

Metric learning over code representation
As metric learning techniques expanded and research over it improved the
overall results through time, the representation of code in the latent space
has followed this path with the introduction of Contracode[22]. The first
aim of this project was to explore the concept of program representation
learning based on functional equivalence, moving the embeddings closer in a
matter of semantic similarities, and not just syntactic ones. For this purpose,
the loss exploited in the metric learning environment was the infoNCE loss
proposed by Oord et al. [20], obtaining a representation of the snippets which
converges between one similar class at a time, diverging from N-1 classes
where N is the dimension of the batch during the training phase. The proposal,
works in an unsupervised way, exploiting a data augmentation phase per
sample, keeping the semantic structure of the code unaltered and changing the
syntactical structure with different techniques. Results showed an apparent
model capacity of embedding code snippets by semantic similarities, grouping
functionally-wise snippets.
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Figure 2.12: A UMAP visualization of JavaScript method representations
learned by RoBERTa and ContraCode, in R2. Programs with the same
functionality share colour and number.

The proposed work was based on the idea that functionally-wise snippet
embeddings could lead to a valid pre-trained model for downstream tasks,
obtaining a prior latent space beneficial for a further fine-tuning phase. An
initial proposed test to validate the model is a zero-shot clone detection,
exploiting the cosine similarity between the embedded snippets with a thresh-
olding technique indicating what is cloned and what is not. Bui et. al. [23]
followed the same path, led by unsupervised learning techniques, but focusing
the project on the code retrieval task, embedding the snippets with code2vec
and code2seq encoders. Bui et. al. pose an important Research Question
which led the expectations of this work with the results of [22]

Are the code vectors generated by the pre-trained models useful in the unsu-
pervised space-searching task?

the positive results of this research question open to us the view for a domain
change, moving from code semantic similarity to code style similarity.
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Chapter 3

Methodology

The proposed work is composed of four main steps, assessing a work path for
the development phase:

• Data mining of the source code dataset, labelled per author-name

• Model design

• Data pre-processing, with a parsing step to retrieve the AST

• Experimental validation

Data mining
Creating a good Corpus for this approach is one of the cornerstones in order
to get a well-performing model. Data should be mined taking into account
several incoming problems; as the pre-processing phase needs data that must
be parsable, getting valuable input for this statement is a key point.

Other key points that have to be taken into account are the milestones
to obtain a great Corpus: "In building a corpus of a language variety, we
are interested in a sample which is maximally representative of the variety
under examination, that is, which provides us with as accurate a picture as
possible of the tendencies of that variety, including their proportions"[12].
Golden rules for the Corpora-making process should guide our work even
on our domain-shifted task from typical NLP problems. As we mine data
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we should project our emphasis on what results represent. It’s easy to make
mistakes when it comes to selecting the repositories to look into(where we
mine data); people with low-profile experience in coding could lead to rapid
stylistic changes over time, biasing the latent space with noisy data. Indeed,
expert authors who follow the quality of code guidelines should have more
consistent representation over time; this poses constraints over our variety
representation, moving from a full range to a narrower, well-defined Corpus.
Another essential feature to take care of is the representation of the style of the
programmer rather than the functionalities shown in the code. The mining
should take care of different repositories about the same author, tackling the
problem stated by Caliskan[2].

Obtaining a consistent dataset which reflects the points highlighted above,
requires a clear design methodology to follow, the schema below shows the
six main steps used to represent our population:
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First repositories URLs mining
Having as the first objective the need to work with Python’s projects which
follow the standardized guidelines of quality of code and to make sure to
work with well-outlined and consistent coding styles, we have to define a good
metric in order to rank the projects to mine. Munaiah et. al.[25] discerns the
idea of the quality of a project, differentiating it from its popularity. Here
the first definition of an engineered software project becomes crucial for an
initial ranking proposal:

An engineered software project is a software project that leverages sound
software engineering practices in one or more of its dimensions such as
documentation, testing, and project management.

Settled a good starting point for a Corpus lookup, Libraries.io[24] makes
a good fit for an initial repositories URL proposal, exploiting a ranking
algorithm described below. Libraries.io indexes data from more than 6M
packages from 32 package managers. It monitors package releases, analyses
each project’s code, community, distribution and documentation, and maps the
relationships between packages when declared dependent. The ’dependency
tree’ that emerges is the core of the services that it provides.

We took the indexed data from libraries.io as the starting lookup point for
repos since the indexing is sorted by ’SourceRank’, defined as: the name of the
algorithm used to rank search results. The maximum score for SourceRank is
currently 30 points.

The analysis is broken down into:

• Code

– Affects the score if the package has outdated dependencies:
Score = Score − 2

• Community

– How many ‘stars’ does the project have?
Score = Score + log(stars)/2

– How many contributors does the project have?
Score = Score + log(contributors)/2
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– How many ‘subscribers’ does the project have?
Score = Score + log(subscribers)/2

– Has there been an update within the last six months?
Score = Score + 1

• Distribution

– Is there a link to the source code?
Score = Score + 1

– Does the project use versioning?
Score = Score + 1

– Does every version use semantic versioning?
Score = Score + 1

– Has the project reached version 1.0.0 yet?
Score = Score + 1

– Is the project more than six months old?
Score = Score + 1

– Has the project had a release within the last six months?
Score = Score + 1

– Are all published versions marked as ‘pre-release’ by the main-
tainer?
Score = Score − 2

– Has the project been removed from the package manager?
Score = Score − 5

• Documentation

– Does the project have a readme file?
Score = Score + 1

– Does the project have a valid license?
Score = Score + 1

– Does the project have a description, homepage, repository link or
keywords?
Score = Score : +1
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– Is the project marked as deprecated by the owner?
Score = Score : −5

– Is the project marked as unmaintained by the maintainer?
Score = Score − 5

• Usage

– How many Projects are dependent on this project?
Score = Score + log(dependentprojects) ∗ 2

– How many Repositories are dependent on this project?
Score = Score + log(dependentrepositories)

Libraries.io gives the possibility through APIs for querying, exploiting the
SourceRank score by pre-established filters like platform and main program-
ming language.

Having the need for a large number of repositories for the initial look-up
list, it’s easy to exceed API query limits; indeed, the initial mining URL
repositories model design is based on a waiting algorithm which prevents the
system to crash, freezing the miner until a positive answer from the query is
reached. The repositories mined, elaborated page per page as the framework
of libraries.io needs, are filtered by regular expression to match the presence
of the word github inside of the URL.

Filtering the projects for being part of the GitHub hosting service is a con-
straint given to move later over the author and repository queries, exploiting
only one API service, and moving through a thinner and more reliable system
to expand the initial repositories list.

Lookup for Top authors over the initial repositories list
The second mining process stage is designed to expand the initial number of
repositories by looking up to the prominent project authors. This stage is
directly channelled to the next one and it takes as input the initial repositories
and it outputs the authors’ list.

The process is pursued as the former phase with the libraries.io APIs which
ranks the authors by importance, where the importance is given by the overall
participation in terms of project commits. Obtaining a list of authors gives
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us the chance to move over a high-level quality of code authors, addressing
the further look-up in a well-defined direction.

Final repos list expansion
The third stage is the one which tackles the data scarcity problem by expanding
the initial repository list with an author-driven look-up. Github[26] APIs are
in this case the framework exploited for the querying process. As mentioned
before, moving through the only usage of GitHub as a query framework is
designed to ease the repository URL extraction phase.

For each user, mined by the previous stage, a ranked look-up repository is
applied. In the beginning, the first query is modelled to retrieve the user’s
meta-data and extract the repositories URL list addressed to the user himself.
Once the repositories URL list is mined, the next step is to extract the
list’s meta-data, giving us the chance to mine and sort the repositories by
importance and filter them by need. The second query, as described above,
gives us a list of repositories and meta-data for each one; at the beginning,
an initial filtering phase is applied, pruning the repositories that are:

• Private repositories

• Not in Python language

Populating then a list of tuples (RepoURL, RepoStars). The decision to keep
the stars for each repository is given by the need of sorting the results by
importance, keeping then high-profile repositories. The final repositories list
is finally sorted by GitHub stars and pruned to the maximum amount of
repositories per user given previously as input.

Extracting different repositories per author helps to differentiate the author’s
repositories, creating a heterogeneous dataset by means of semantic content,
and increasing the overall variance.

The overall process is parallelized by exploiting the Pyspark framework; the
framework gives us the chance then to apply a distinct method, pruning the
duplicates by terms of URL.
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Repositories cloning and experiment reproducibility
The fourth step is the one that prepares the data for the final data mining
process. As we want to assure the experiment’s reproducibility, the need of
tracking the timestamp of the repositories comes, assuring a way to extract
the data from the same commit as the one extracted by us.

The cloning phase over the unique URLs repositories list obtained by the
previous steps is processed initially by cloning the repository with the –bare
command, assuring to extract a lighter version of the folder itself [27]. With
the git clone –bare command

instead of creating <directory> and placing the administrative files in <direc-
tory>/.git, make the <directory> itself the git directory. When this option is
used, neither remote-tracking branches nor the related configuration variables
are created

The lightening is given by the absence of the working tree, getting a repository
useless for the development phase, but with the needed data for further mining.
As mentioned before, after the repository has been cloned, the next step is
to write in a separate file .txt the URL of the repository with the relative
timestamp. As the step before, the whole phase is parallelized through the
usage of PySpark, fastening the whole process.

Dataset RAW preparation - data mining process
As we dive inside the core of the data mining phase, it’s necessary to review
the ideas behind this process. In order to obtain data which could work
over several different models, the ones that need the snippet’s AST requires
parsability, instantiating a big constraint over the process itself. Once one
of the prior tying factors has been settled, a decision step has to be tackled;
the idea of getting through open-world problems, where big snippets of code
are developed by multiple programmers, leads us to achieve parsable data
structures as thin as possible, keeping the semantic validity of the code and
the fingerprint style of the author.

These considerations that we get through led us to shrink the search space
starting with function definitions as a primary point of disambiguation. The
last point, but not for importance, is the author’s univocity. During the
mining phase, when it comes to code stylometry, making sure that the script
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comes from only one author is mandatory. The tool exploited during the
process is the git diff command, which prevents us from adversarial labels
(wrong class assumption) by posing the author who changed every single line.

Figure 3.1: Phase design of the step5

The combination of the git diff procedure and the function definition assump-
tion gets us as close as possible to a great, univocal per-style dataset.

In order to retrieve the diffs, the need to extract each commit from the
repository comes. As a background framework, it has exploited the pydriller
package [28], allowing us to move easily through project commits, filtering
them by language(Python).

As the commit has been extracted, the process can be mainly split into two
different parts:

• Not congruent extension pruning

• Data extraction

By checking the file extension, the first part prunes all the files that don’t
belong to the language addressed.

The second part is the core of the mining by which each modified file is
initially split into lines, exploiting a dictionary that associates each line
number to its content. The following part tackles the function definition
lookup by exploiting regular expressions, if the inspected line contains a
function definition, a temporary list is created, inserting all the following
contiguous lines till the dictionary key has a missing index, which indicates
that the snippet comes to a breaking part or another function definition.
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After the definition in the snippet has been spotted, a validity check needs
to be accomplished. The extracted snippet is at first utf-8 encoded, making
sure to have a snippet in a valid, standardized format. The snippet is then
parsed with the AST native Python package as an inspection for parsability.
If all constraints are exceeded, the code is added in its initial form(not
encoded and not parsed) to the list of methods, containing all the parsable
fragments of the inspected file. All the invalid repositories are tracked down,
guaranteeing the knowledge of the code provenience. All the code fragments
obtained during the mining process are collected and grouped as couples
(authorName,code-fragment) obtaining a good format for a labelled format
dataset.

The final part of this stage points out how to manage the persistence of the
dataset as a distinctive factor of univocity. Obtaining a dataset with a high
level of variance is one of the main points, leading to a representative and
not redundant set.

The design of the former mining phases, including this one, can suffer from
clone functions from diff. to diff. The problem has been tackled by exploiting
the fragment ASTs as names for the addressed files. Given the need for name
univocity in the filesystem, syntactically equal fragments are automatically
discarded. To compress the final name, the AST dump has been hashed
through the SHA1 algorithm, guaranteeing equal outputs for equal strings.

Author pruning and data undersampling
The final stage is settled to highlight the most relevant authors in the dataset
itself. Authors with a limited amount of code fragments can lead to classes
with less differentiated data.

The initial point of the pruning is then developed as a dimension-checking snip-
pet, looking at the total amount of elements contained in each class(directory),
if the classes don’t satisfy the dimensional constraint, the addressed directory
is pruned.

Once it has been obtained the final dataset dimension in terms of the class
number, the final part of this stage consists of the dataset undersampling to
obtain a balanced dataset. In order to speed up the process, the undersampler
script works with the multiprocessing Python framework, looking for the file
number constraint over all the class directories.
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Model design
As the model design affects the quality of the snippets’ embedding, this step
poses another cornerstone in the problem. Code embeddings through time, as
the related work section outstands, changed a lot by means of model structure
and the kind of features that were exploited. Recent(and not so much) works
[2,13,15] highlight the importance of syntactical features, narrowing our per-
spective over AST-based models, and opening up possibilities for comparisons.
Nghi et. al.[16] work has already compared the most modern approaches for
code encoding in a representation learning environment, focusing on snippets’
semantic similarity instead of stylistic and syntactic similarities, leaving an
open window over the code stylometry metric approach evaluation.

An adapted version of code2seq
Code2seq is a model designed mainly for code summarization tasks, posing a
decoder as the final part of the model. This task-driven design differentiates
itself from code2vec not only in the final decoder but even in the initial
embedding phase, tackling the problems highlighted by the former version. In
this work, the code2seq model has been modelled to generate a final vector,
but keeping the improvement points that the code2seq work showed.

Token embedding summation and Byte pair Encoding
technique

Figure 3.2: sub-tokenization and embedding summation.
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The Terminal tokens embedding in code2seq is one of the major design
improvements. The former code2vec model is used to embed terminal tokens
exploiting only the embedding layer; here, an abstraction layer has been
added. As Mikolov et. al. outstand [6] it’s possible to obtain meaningful
embedding representation over algebraic operations.

Here, the concept is incorporated to bypass the sparsity problem highlighted
in the code2vec [8] paper. The idea is to split tokens into subtokens, inspired
by programmers’ habits who tend to name functions and variables by merging
two or more names with camel notation paradigms or underscores between
words. The resulting embedding values have to be summated, obtaining a
unique, semantically valuable token representation.

tokenRepr i =
n∑

s=1
Ets

Figure 3.3: Subtoken summation where each subtoken is taken from the
terminal embedding layer Et

In the original code2seq approach, the sub-tokenization is handled only with
regex, leaving room for sparse token embeddings led by out of habits namings
like parsepatchoutput in which the resulting sub-tokens would be embedded
in a monolithic way.

In order to bypass this problem the intuition was taken from the modern
language and NLP models design [29,30], leveraging the novel use of the Byte
Pair Encoding technique introduced by Sennrich et. al. [31]. With the B.P.E,
compression over the vocabulary dimension has been applied, exploiting an
algorithm which works between word and character levels.

The idea behind the algorithm was taken from Gage [32] and adapted for
word tokenization usage by merging characters and word fragments that have
more frequency in the text. The final symbol vocabulary size is equal to the
initial vocabulary size, plus the number of merge operations, the latter is the
only hyper-parameter of the algorithm. This enables us to choose between
different vocabulary sizes, testing the trade-off between many sub-tokens and
monolithic words.

The terminal-token Corpus exploited is written by moving through the whole
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dataset and creating a text that contains all the terminal tokens present in the
Dataset. As the idea was to have meaningful word representations, the tokens
were at first regex split with the code2seq regex technique before placing them
in the corpus and normalized by lower casing the characters. This enables
the algorithm to recognize better the syntactically valuable words, enforcing
a more meaningful character merge.

AST embedding - from monolithic structures to LSTM
reprojection

Figure 3.4: A.S.T. embedding with Bidirectional LSTM

The code2vec structure shows data sparseness impairments even over the AST
projection, exploiting monolithic representations of the path between two
different terminal nodes, embedded as the string composed by the elements
of the non-terminal nodes and their path direction.

Code2seq aims to tackle this problem by using embeddings for each non-
terminal node and then exploiting a bidirectional LSTM to project the AST
on the latent space.

The two final hidden states are then both used in the following triplet projec-
tion. In this work, the two hidden states are pre-processed before the path
context by projecting them in the same initial dimensionality, the idea is to
obtain an antecedent matrix Wlstm specifically designed to extract semantic
information from the two different LSTM outputs.
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h1, ..., hl = LSTM(Ent1, ...., Entl)

ASTrepr i = [h→l , h←1 ] · Wlstm

Figure 3.5: Where the Ent values are the resulting projected non-terminal
tokens from the non-terminal embedding matrix; hl are the hidden output
states of the LSTM; Wlstm is the projection matrix that mixes up the two
final hidden states

From combined context vectors to the attention module,
adding an M.L.P. layer
The triplet resulting from the first embedding, as expressed before, has to
be elaborated, gaining semantic information derived from the AST and both
the terminal values in between them. The upcoming data from the previous
step can be synthesized as ’overall dimensionality * 3’. As the code2seq
model moves at this point, we apply a projection layer Wp with an activation
function Fp. In the code2vec and code2seq works, the activation function used
was the tanh, which normalizes the output in a codomain between ] − 1, 1[ ,
and it can be formulated as:

tanh(x) = ex − e−x

ex + e−x

Figure 3.6: Tanh activation function

Deep metric learning leads to slower convergence time than typical classifi-
cation tasks. As we experienced during training time, the tanh activation
function led to too much slow convergence times; replacing it with the ReLU
activation function led to better gradient propagation speeding up the overall
training process and gaining sparseness advantage [33].

ReLU(x) = max(0, x)

Figure 3.7: ReLU activation function
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The combined context vector is then the ReLU activation function application
over the projection in the initial dimensionality of the previous states, given
by the Terminal tokens and AST embeddings. For each context path Pi,
composed by the concatenated triplet [tokenRepriS, ASTrepri, tokenRepriE]
where the S and E subscripts stand for Starting and Ending token of the
addressed path, the resulting output from this stage is given by:

contextV ector CVi = ReLU(Pi · Wc)

Figure 3.8: Context vectors (CV) obtained exploiting ReLU function where
Wc is the Context projection matrix and PI is the context Path as described
above

As we obtain N combined context vectors, where N is entirely arbitrary,
code2seq and code2vec models entangle the results with an attention module.
As the needs of a single context vector income, the attention mechanism is
led by the code2vec guidance, obtaining a final result that does a weighted
average between the softmax-like function results with the attention matrix
and the combined context vectors resulting from the previous steps, summing
then the results weighted by the attention weight obtained before.

attentionWeght αi = exp (CV T
i · α)∑n

j=1 exp (CV T
j · α)

Figure 3.9: Computation of the attention weight, where alpha is the attention
matrix and CV are the context vectors

codeV ector υ =
n∑

i=1
(αi · CVi)

Figure 3.10: Computation of the final snippet representation

The resulting codeVector is suitable as a final snippet representation. As
Appalaraju et. al. [34] suggest, adding a source of non-linearity can lead
to overall improvements in deep metric learning techniques. A Multi-layer
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perceptron is then applied to the model with ReLU functions as an activation
function, gaining the non-linearity mentioned before. The network with the
non-linear projection head is structured as shown below:

fc → ReLU → fc → ReLU → fc → ReLU → fc

Figure 3.11: structure of the MLP head where fc is a fully connected layer

This structure aims to gain non-linearity, stated this, it’s important to not
compress the data in its dimensionality. The dimension chosen in the first
layer is the same as the overall dimension used in the model; the dimensions
of the hidden layer are then doubling the inner dimension, closing the model
with a final layer projected on the initial dimension.

Figure 3.12: Code2vec model adapted with code2seq improvements.

Training loss
The loss choice leads to different approaches over various factors, as we move
on to deep metric learning techniques, different losses must use different
batching processes.

The loss exploited in this work is derived from the infoNCE loss proposed by
Oord et al. [20], modified by Zang et. al. [35] exploiting the cosine similarity
notion:
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⟨vi, ui⟩ = vT
i ui

||vi|| ||ui||

Figure 3.13: Cosine similarity between two different code embeddings(u,v),
exploiting the L2 norm

Used in the following loss function:

ℓ
(
i
v→u) = − log exp(⟨vi, ui⟩/τ)∑N

k=1 exp(⟨vi, uk⟩/τ)

ℓ
(
i
u→v) = − log exp(⟨ui, vi⟩/τ)∑N

k=1 exp(⟨ui, vk⟩/τ)

Loss = 1
N

N∑
i=1

(ℓ(
i
v→u) + ℓ

(
i
u→v))/2

Figure 3.14: InfoNCE loss function modified by Zang et. al.

The final loss is the average between the two losses obtained before as Radford
et. al. [36] settled. The τ represents the temperature parameter which controls
the range of logits in the softmax function.

As the negative and positive samples are driven by the batch, customizing
the sampler to obtain only different classes is mandatory to avoid adversarial
labels. This poses a constraint in terms of batch dimensionality during
training, imposing the max batch dimension as the number of total classes
present in the dataset.

34



Figure 3.15: Computation of cosine similarity over a batch of N elements; the
ground truth is highlighted in green

Classification baseline
In order to obtain a metric of comparison aiding to evaluate the deep metric
learning model performances, it has been developed a model which has a
classification head on top of the final M.L.P. module. The classification
baseline is implemented with the CrossEntropy as a loss function over the
softmax function measuring the dissimilarity between the predicted probability
distribution and the true probability distribution, with the goal of minimizing
this dissimilarity:

ℓ(x, y) = L = {l1...lN}T , ln = − log exp(xn,yn)∑C
c=1 exp(xn,c)

ℓ(x, y) =
∑N

n=1 ln
N

Figure 3.16: Cross entropy loss function having C as the class number and N
as the batch dimension.
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Data pre-processing
The data pre-processing step tackles data-transformation-related problems; A
main goal is to render the input in a model-readable form. Since the input
encoder works with code tokens and AST paths, the source code previously
mined needs to be parsed, obtaining a token representation of the code’s AST.

Both of the most used snippet encoders work with AST tokens, but from
code2vec[8] to code2seq[13] the usage paradigm has changed, adopting tech-
niques that take into account differently the position of terminal nodes within
the AST. Code2vec based models work with AST paths between two random
terminal nodes connected to each other, represented and embedded in a
monolithic string format, instead, code2seq works with the same kind of path,
but embeds each node separately, exploiting an LSTM technique for a further
reprojection.

Taking into account the main differences between these approaches, data-
balancing the Corpus is another fundamental step for further training; as
we move into metric learning, the batch creation process needs to work over
N differentiated samples, belonging to different authors. This process has
a model-design-related problem too, indeed, batches should be instantiated
by taking into account the contrastive loss exploited over the training phase.
Recent works[14] showed how the loss over metric learning could impact
the overall convergence of the model, old fashioned triplet losses tend to
get one positive sample closer to the one taken into account, and push one
negative sample away. These kinds of approaches don’t handle other negative
samples, slowing the time of convergence. These are the main factors that
we should look into for both data preprocessing(batch-making process) and
model design(loss choice).

As we move through the data transformation in a model readable form, we
can distinguish two main steps:

• Code tokenization

• Code vectorization

During the code tokenization step, the goal is, as we can infer by the name,
to split the code into pieces, obtaining a set of three different outputs lists
returned as a triplet; the first is given by the subtokenization of the first
terminal node over the path, the second is the list of nodes in the A.S.T. path
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and the third is the list of subtokens for the ending terminal node in the path.

Algorithm 1 Function definition → ProcSnip(snippet,numContext):

# initial snippet parsing to retrieve the A.S.T.
Tree = ast.parser(snippet)

#T as list of terminal nodes
T = ast.retrieveTerminal(Tree)

# PathCouples as list of couples containing indexes for T list
PathCouples = getRandomCouples(len(T),numContext)

# mineT and mineAST respectively as terminal node extractor
# and AST node extractor
for all PathCouples do

Result.append((mineT(T[path[0]]),mineAST(path[0],path[1],T),
mineT(T[path[1]])))

end for
return Result

This process starts by parsing the code as the first step, obtaining a tree
containing terminal and non-terminal nodes already tokenized. Given the
complete tree, the next step is meant to retrieve all the terminal nodes, listing
them for further random picking. As mentioned by Alon et. al. [8], exploiting
random terminal nodes for path picking leads to a regularization effect during
training. The parser, apart from the entire A.S.T. representation, lists all the
terminal tokens; the resulting list is used both to get the overall number of
terminal nodes, generating valuable couples for the path picking and to move
further in the algorithm with the terminal and non-terminal token mining.
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Algorithm 2 Function definition → mineT(terminalNode):

# initial node filtering, pruning strings and numerical values
if terminalNode is string || terminalNode is numericalV alue then

terminalNode = filter(terminalNode)
else

terminalNode = regexSubTokenization(terminalNode)
end if
terminalNode = lowerCasing(terminalNode)
return terminalNode

The terminal nodes are extracted by a node abstractor which at first filters
comments, strings and numbers rendering them as:

• comment

• string

• integer

• float

Simplifying the vocabulary by pruning the natural language and unifying all
the numbers in the script as integers or float as the Python AST abstracts.

Then an initial subtokenization process is applied exploiting regex functions
that split the word with camel notation and underscore as explained before.
The resulting list of tokens is then lowercased to normalize words.
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Algorithm 3 Function definition → minePath(T1,T2,TerminalList):
Path1 = [ ]
Path2 = [ ]
node1 = TerminalList[T1].getParent()
node2 = TerminalList[T2].getParent()
if node1 then

Path1.append(node1)
end if
if node2 then

Path2.append(node2)
end if
# seeking for the lowest common ancestor
while !((node1 in path2) || (node2 in path1)) && (node1||node2) do

if node1 then
node1 = node1.getParent()

end if
if node2 then

node2 = node2.getParent()
end if
if node1 then

Path1.append(node1)
end if
if node2 then

Path2.append(node2)
end if

end while
return merge(Path1,Path2)

The AST path between the two addressed terminal nodes is then retrieved
by looking for the lowest common ancestor between them in the tree, moving
up from the leaves, and seeking the nodes’ parent. The two resulting lists of
paths are then merged keeping the order from the first terminal node to the
ending one.

The number of paths to retrieve from each snippet is given a priori such as
Alon. et. al.[8] proposed.
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After the paths have been retrieved, the tokens have to be rendered as
vectors, gaining a model-readable form. The vectorization of the input has
been handled by the usage of a vocabulary for the Not terminal tokens,
associating each token present in the corpus with a unique number. The
terminal tokens vectorization has been handled instead with the Byte pair
encoding technique explained above, creating a further fragmentation of the
subtokens obtained with the initial regex usage, and then, as the non terminal
vocabulary, assigning a unique value to the subtokens.

Evaluation phase
The first comparison term highlights the embedding quality differences be-
tween a standard classifier and our metric learning-based one. Obtaining
good cosine similarity top-1 ranked accuracy results, is by far the first key
point to look into, showing the embedding-by-style capabilities of the model.

Another strategy of evaluation is given by Caliskan et. al. [2] introducing the
concept of relaxed classification. In these terms, the utility is to check if the
correct class is present over the top 5 results, giving a chance to shrink the
search space. In a scenario with hundred of different programmers, this usage
would have therefore a beneficial impact.

As the evaluation is embedding quality driven, the overall accuracy will be
directed to evaluate the retrieval properties of the model, checking with a
query vector if in the top-k element ranked per similarity is present at least
one element which belongs to the correct class. This evaluation term is
introduced by Jégou et. al.[37] as Recall@k and it has been used to compare
it with the acc@1 and acc@5 relaxed classification introduced by Caliskan by
testing the Recall@1 and Recall@5 accuracies.

Addressing then our approach to a zero-shot capable classification model sets
the need for a different evaluation phase than the classic ones. The training-
validation-test approach needs to be redesigned for an in and out-distribution
analysis. It’s important, in order to evaluate the zero-shot capabilities of the
model, to keep a set of authors as an out-distribution test set, allowing us to
evaluate no anymore ’unseen data’, but ’unseen classes’. We can in this way
assess the model by comparing results over two different test sets, one with
authors’ snippets belonging to the training set and one with authors’ snippets
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out of the training set, obtaining a full picture of the model performances.

Furthermore, the chance to experience an ’outlier’ misclassification by adopt-
ing this technique, poses an open problem; thresholding a ’cosine similarity’
level to obtain a ’not in the shown sample’ level, could lead to other multi
authors’ related problems too, misclassifying a snippet written by two different
authors to a ’not in the list’ class, placing the work in a trade-off for the
zero-shot use case.

Cosine similarity as embedding evaluation
As the loss function indicates, the tightening of the cosine similarity between
similar classes is the main goal of the model, underlying how snippets from
the same author style should be placed on the latent space.

The evaluation phase working with the top 1 and top 5 relaxed retrieval
embeds the snippets in the latent space exploiting the trained encoder and, as
a further computation, all the cosine similarities are calculated, seeking then
for the highest values for each snippet. What we do obtain is a representation
of the embedding goodness resulting from the encoder; this solution can lead
to a search space by which, having samples from the classes, an authorship
distance metric could be settled, gaining information about the possible
authors in the search space, with and without the need of fine-tuning the
model.

Given the snippets samples S: S1, ...., Sn with the encoder E, the cosine
similarity is computed at first normalizing the embeddings with an L2 norm:

Cosine similarities matrix : CS = E(S)T · E(S)
||E(S)|| · ||E(S)||

Figure 3.17: Notion of cosine similarities in the latent space

After the cosine similarities computation, the final step consists in checking if
correct classes are present over the top 1 and top 5 most similar embeddings,
assessing the goodness of the model. When it comes to evaluating the baseline,
the same procedure has been applied, but this time the classification head
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has to be removed, obtaining the same latent space dimensionality as the
deep metric learning trained model.
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Chapter 4

Results

The Results chapter’s aim revolves around posing a disambiguation term over
the methodologies, tackling the highlighted problem in a concrete way by
showing the experiments’ outcomes. As deepening into the results, the first
step must show how the methodologies have been handled by highlighting
the work hyperparameters.

As the work moves through two main phases, the chapter is split into two
main sections:

• Dataset

• Stylometry task

These two sections will be split then into two different subsections, showing
at first the hyperparameters setup and later, the results obtained with the
experiments. The discussion of outcomes will be discussed in the latest
chapter, showing the strengths and weaknesses of the methodologies applied.
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Dataset
The data mining process posed the fundamentals for the tackled code stylom-
etry task. Obtaining a dataset with enough data from different projects per
author was, as highlighted before, one of the main cornerstones to dive into.

Hyperparameters
The first step leverages over where to span for the initial lookup, and it gains
importance as the first retrieved repositories and authors are the ones that
should lead the data mining phase.

First stage

Using libraries.io APIs as the first lookup space simplifies the process. The
first hyperparameter to set for this stage is the number of overall pages to
look up. In the first stage, repositories that don’t belong to the GitHub
platform will be pruned, shrinking the resulting URL list. The number of
pages retrieved from the libraries.io API is 10 with 100 results per page.

Second stage

The second stage, meant to retrieve a list of valuable authors for the further
process, seeks the top contributors over the previous project list, sorting them
by the percentage of contribution over the project itself. In this phase, the
hyperparameter to fix is the maximum number of authors per project to
retrieve, settled as 10 authors per project.

Third stage

The third stage is the one that tackles the expansion of the URLs list by
looking for projects on each mined author’s GitHub personal page. Projects
need to be sorted by a quality metric, assessed as the number of stars. Given
the list of repositories retrieved with the GitHub APIs, the maximum number
of repositories mined per author is settled to 4.
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Fourth stage

The fourth stage handles the repositories’ cloning, it doesn’t have hyperpa-
rameters that influence the results of the experiments. The usage of the bare
command for the repositories cloning doesn’t affect the overall results, but it
only lights the space in the local memory.

Fifth stage

The fifth stage is the one, as mentioned above, responsible for the snippets
manipulation, filtering them for the further saving and labelling process. As
this stage moves on with the aid of the Pydriller APIs, part of the setup is
addressed to filter the results in the exploited framework. Pydriller moves
through commits in time, giving us a first customization chance that doesn’t
really affect the final result, which is if the commits should be ordered from
the oldest to the newest or vice-versa. For our purpose, the miner has been
settled to work in reverse mode, which means moving from the oldest commit
to the newest one.

The Mining process’ slowness is an important step to tackle, pydriller APIs
offer the chance to check directly if, in the commit, modifications over the
code for a specific language are present, lightening the search process by
pruning all the files that don’t belong to the addressed language. In this case,
the file extension for the commit lookup is settled to .py.

Another important hyperparameter that can be settled during this stage is
the minimum amount of lines to be present for addressing a fragment as valid.
Settling this hyperparameter can lead to avoiding functions that work as
placeholders or, getter and setter functions which are not majorly beneficial
in identifying the author’s fingerprint. The minimum length for a fragment is
settled to an amount of 3 lines.

Sixth stage

The sixth stage aims to prune the authors that don’t have enough data, this
process is useful even for addressing authors who tend to have data from
multiple projects, increasing the overall class data variance. The minimum
number of snippets per author is settled to 1100.
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To differentiate authors for the zero-shot dataset, a different range of snippets
has been used, assuring to have zero overlap results over the authors. In this
case, all the authors with a number of snippets between 500 and 700 have
been kept.

Dataset dimensions
In this subsection, final results have been highlighted, showing how each step
leads to obtaining a certain number of authors and repositories to look into.

Following the steps described during the methodology, the initial schema has
been reproposed:

Figure 4.1
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As mentioned in figure 4.1, the step 1 produced a list of 1060 repositories’
URLs ranked with the libraries.io standard rank, mined from the PyPi
platform and filtered with the Python language.

The step 2 produced a list of 10326 authors, obtained with the lookup
over the initial repositories’ URLs, having the authors sorted by overall
participation, pruning the ones after the 10 th element.

The initial repositories list, expanded with the step 3, reaches an overall
dimension of 22320 units, used for further repositories cloning.

Step 4 tracks down all the repositories that have been cloned, listing the
invalids in a specific list. The cloning stage, lighted with the –bare command,
worked over 22065 repositories writing down on a local file each valid one
cloned, with its cloning timestamp.

Moving through step 5, tackling indeed the data mining phase, determines the
most important stage, extracting data from the cloned repositories, obtaining
snippets from 42554 different authors that will be filtered after. As in the
previous step, all the repositories invalid for the data mining procedure will
be tracked into the invalid repositories list.

The resulting RAW dataset shows a huge amount of noisy authors in terms
of not having a sufficient amount of data; step 6 works by pruning all the
authors with less than 1100 snippets, gaining the chance to obtain authors
with more variance in terms of the number of projects by which the data has
been extracted. The resulting authors are 300 for the training validation and
testing set.

As mentioned in the methodologies, another dataset has been extracted from
the RAW one, in order to test the zero-shot capabilities of the model. Tackling
the step 6 with boundaries between 500 and 700 fragments per author, the
resulting dataset contains 70 different classes that don’t overlap with the
previous ones.
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Stage Results
Stage 1 1060 repositories
Stage 2 10326 authors
Stage 3 22320 repositories
Stage 4 22065 cloned repositories
Stage 5 42554 authors dataset
Stage 6 300 authors dataset

Figure 4.2: Summary table for the data mining process’ results

Balancing and splitting the dataset

Both the regular dataset and the zero-shot one have been balanced following
the random undersampling technique, lowering the dataset dimensionality to
1100 snippets of code per author and splitting it by keeping respectively:

Type of set Authors Dataset portion(%) code fragments per author
Training 300 80 880

Validation 300 10 110
Test 300 10 110

Figure 4.3: Dataset dimensionality after the splitting phase

The dataset for the zero-shot testing has been under-sampled as the previous
test set to 110 snippets per author, keeping the same testing dimensionality.
The number of authors has been randomly undersampled to reach the amount
of 70 different authors, obtaining the same number of classes as the problem
stated by [7,9]

Type of set Authors code fragments per author
Zero-shot test 70 110

Figure 4.4: Zero shot test set dimensionalities
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Stylometer
In this section, the results of the code stylometry task have been tackled,
the first part, following the former section’s pattern, highlights the hyper-
parameters settled during the training phases, showing how different types of
training require different setups. The second part of this section’s aim is then
to show the overall results, gaining evidence for the discussion in the next
chapter.

Hyperparameters
Batch contruction

Given the loss involved during the training phase, the batch dimensionality
directly influences the results by setting how many negative labels to drive
away for each iteration. As said in the methodology chapter, the ideal scenario
is to drive away every negative class per iteration while getting the positive one
closer, fastening the convergence of the model and gaining full advantages over
the old triplet losses[14]; due to memory constraints, the batch dimensionality
exploited during training is of 64 elements per batch, which involves 128
different snippets encoded at a time. Experiments with a higher number
of elements per batch have been tackled, but bigger batches led to a lower
overall dimensionality, restraining the learning capabilities of the model.

For the classification baseline, the same batch dimension of 64 elements has
been used

Model dimensionalities

The model learning capacity is correlated to the overall dimensionality of the
model, starting from the embeddings to the final representation dimension, the
designing process of the dimensionality is moved by a tradeoff between high
learning capabilities that could lead to overfitting, where bigger models need
more memory, and lighter models that could lead to shallow generalization
capacities, directing to poor results.

Following what outstands from code2seq[13] in the high learning capabilities
setup, the embeddings of both vocabularies and LSTM hidden sizes are kept
all with the same dimension, fixing it at 256 weights in Single-precision
floating-point format as the whole model’s weights formats. The final MLP
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head is then maintaining the same dimensionality, doubling it in the two
hidden layers to 512 and resizing it over the last one to 256.

Vocabulary compression with the B.P.E.

The model introduced in this work shows a novel usage of the byte pair
encoding technique [31] over the code2seq model, modified to produce a
vector, to embed the terminal tokens then summated.

In order to check the differences between different terms of compression, the
B.P.E. vocabulary has been designed with 32000, 64000 different tokens
and without compression, keeping the non-terminal tokens vocabulary to
its initial dimensionality of 147967 embeddings. The non-terminal tokens
vocabulary isn’t compressed with the B.P.E. technique and the overall amount
of non-terminal tokens is of 174.

Path bounding and overall number of context paths

As Bogomolov et. al. [9] stated, paths of a higher length are less frequent
and cause the model to overfit. As the models exploited in the Bogomolov
work are simpler and more inclined to overfit, an ablation study has been
tackled, working with boundaries:

Model max path-width distance A.S.T. max path length
Model bounded 4 7

Model not bounded - -

Figure 4.5: Levels of settled boundaries

Where the term max path-width distance, refers to the maximum distance
between two terminal nodes, and A.S.T. max path length refers to the
maximum distance in terms of path lengths between the first two non-terminal
nodes of the terminal ones addressed.

Later, over the model results, the constrained models will be referred to as
bounded.

As code2vec and code2seq[8,13] highlight, sampling randomly arbitrary paths
from the snippets covers the representativess of the snippet itself, working even
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as a regularization factor during training. Gained by scientific evidence[13],
using a number of paths of 200 is enough for the sampling process.

Temperature parameter, dropout and other hyperparameters

Working with the infoNCE loss poses the need for a temperature parameter τ
as Wu et al.[21] suggests; the temperature parameter controls the concentra-
tion level of the distribution[38], for this process, the work of Zhang et al.[35]
has been followed, using a temperature parameter of 0.1.

During the training phase, as a regularization factor, dropout over the L.S.T.M.
and over the context path embeddings has been applied, using values of 0.50
for the L.S.T.M. and 0.25 for the context embeddings. These values follow
the results obtained in the code2seq[13] work.

Metric learning training processes have been tackled differently from the clas-
sification baseline, highlighting how different losses led to distinct solutions to
the problem with different convergence times. Starting from the optimization
algorithm, the model trained with the baseline cross-entropy loss showed
a lack of convergence using the Adam algorithm, settling the need to try
different optimization algorithms. From the initial tests, the two models
followed immediately different training patterns, obtaining the best results
with Adam as the optimization algorithm for the deep metric learning model,
and the stochastic gradient descent when it comes to the classification
baseline.

Both models have been trained with a learning rate scheduler which starts
from a learning rate of 0.01 and decreases itself by multiplying the value
every 50 epochs by a gamma value of 0.95, helping to find the best local
minima during training.
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Hyperparameter M.L. model Classifier baseline
Terminal Vocabulary 32000,64000,147969 32000,64000,147969

Non Terminal Vocabulary 174 174
Optimization algorithm Adam S.G.D.

Path-contexts 200 200
Loss InfoNCE Cross Entropy

τ 0.1 −
Boundaries ablation yes yes

l.r. 0.01 with scheduler 0.01 with scheduler
Batch dimension 64 64

Each model has been trained for 700 epochs, taking as the optimal, the one
with the lowest loss during validation. Early stopping was not a valuable
solution due to unstable validation results and slow convergence times during
the training process.

Figure 4.6: Training process of the Metric learning bounded model for the
64000 terminal-vocabulary. Example of high convergence instability.
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Stylometer results
In this section, the results of the experiments are outlined, trying to highlight
a path to answer the research question posed in the introduction:

Is it possible to achieve effective latent space representations that group snippets
of code closer by stylistic terms exploring metric learning techniques?

In order to tackle the "effectiveness" point, models have been confronted
with their standard classification counterparts, gaining a practical term of
comparison. Given all the random sources that appear during the experiment,
the training was performed by fixing the random seeds in order to ensure
reproducibility, with a seed value of 7. The tests follow the same procedure,
but, are repeated three times as the snippets paths are sampled randomly. A
set of three random seeds {7,8,9} has been used. Outcomes are then displayed
as mean and standard deviation. As a metric of comparison, the Recall@k
has been used on both metric learning models and classification models by
which, to obtain the same embedding dimensionality, the classification head
has been pruned.

Recall@k = PQO

Q

Figure 4.7: Recall@k where PQO stands for positive query occurrences, i.e.
if in a query result of k elements, at least one positive sample appears. Q is
instead the overall number of queries

All the experiments are carried out on the test set, which is a subset of the
initial dataset, containing known authors; outlying the model capabilities to
generalize over already seen classes but unseen snippets of code. The second
test aim is to check the zero-shot capabilities of the model, looking for the
ability to generalize over unseen snippets of unseen authors. During the
querying phase(higher rates of cosine similarity between query embedding and
target embeddings), all the encoded snippets have been L2 normalized in both
metric learning and classification model. The design of this procedure has been
applied to follow the training pattern for what concerns the metric learning
model, and as the Horiguchi et al[17] outlines to obtain better representation
over softmax-driven(classification) models.
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In figure 4.8, the table shows the outcomes for the metric learning model
over the testing set, highlighting the ablation study over the vocabulary
compression and the bounded models in terms of A.S.T. path length and
terminal nodes distance. The table shows the Recall@k accuracies, indicating
the goodness of the models for k=1 and for k=5.

T. vocab dimension Recall@1 Recall@5 Bounded
32000 0.253(±0.002) 0.422(±0.004) no
32000 0.262(±0.001) 0.471(±0.001) yes
64000 0.249(±0.001) 0.412(±0.002) no
64000 0.311(±0.001) 0.526(±0.001) yes

147967 no B.P.E. 0.246(±0.001) 0.417(±0.001) no
147967 no B.P.E. 0.324(±0.001) 0.544(±0.001) yes

Figure 4.8: Recall@1 and Recall@5 results over the deep metric learning
models for the test set

As expected from the results obtained by Bogomolov et. al. [9], boundaries
on context paths, taking into account the A.S.T. path length and the distance
from terminal nodes, lead to better snippet representation when it comes to
diving stylometry tasks. Lowering compression terms (rising the merging in
the B.P.E .algorithm) increases the overall model’s generalization capabilities.
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The table in figure 4.9 highlights instead the results of the models pruned of
their classification head and trained with a standard softmax, cross entropy-
based classification technique. Even here, the outcomes confirm the Bogomolov
et. al. results when it comes to bounded models, but in this case, more and
less compressed models have closer Recall@k values than the deep metric
learning ones.

T. vocab dimension Recall@1 Recall@5 Bounded
32000 0.215(±0.002) 0.361(±0.001) no
32000 0.257(±0.001) 0.450(±0.001) yes
64000 0.218(±0.002) 0.364(±0.002) no
64000 0.255(±0.001) 0.449(±0.001) yes

147967 no B.P.E. 0.166(±0.001) 0.317(±0.001) no
147967 no B.P.E. 0.185(±0.001) 0.359(±0.001) yes

Figure 4.9: Recall@1 and Recall@5 results over the baseline classification
models for the test set

The evidence from the test set experiments shows that deep metric learning
models can obtain better results than classification baselines when it comes to
generalizing over already-seen authors, outlying better retrieval performances
over the Recall@1 and Recall@5 metrics. In this case, rising the terminal
tokens vocabulary led to better generalization results.

In figure 4.10 the same experiments as in figure 4.08 have been tackled,
this time up to unseen authors, tackling out-of-distribution data and so
highlighting the zero-shot capabilities of the model.
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T. vocab dimension Recall@1 Recall@5 Bounded
32000 0.272(±0.002) 0.476(±0.007) no
32000 0.297(±0.001) 0.503(±0.001) yes
64000 0.234(±0.003) 0.438(±0.002) no
64000 0.320(±0.001) 0.522(±0.001) yes

147967 no B.P.E. 0.315(±0.005) 0.502(±0.004) no
147967 no B.P.E. 0.311(±0.001) 0.517(±0.003) yes

Figure 4.10: Recall@1 and Recall@5 results over the deep metric learning
models for the zero-shot set

As can be seen, results take benefit from the vocabulary compression, obtaining
the best Recall@1 and Recall@5 accuracies over the 64000 BPE bounded
model. This could be due to a major presence of unseen tokens(mostly out of
vocabulary in models without BPE) that in the case of the BPE model lead
to more fragmented and semantically meaningful embeddings.

An important factor that needs to be taken into account is the difference
in terms of classes number between the two datasets. For instance, higher
accuracy over the zero-shot testing set is achieved by almost all the zero-shot
experiments, but the dataset contains 70 classes instead of 300, gaining a
comparison value between the old accuracies results in the state-of-the-art
models, but easing the task if compared to the initial dataset which is trained
for 300 different authors.

T. vocab dimension Recall@1 Recall@5 Bounded
32000 0.335(±0.003) 0.511(±0.002) no
32000 0.369(±0.001) 0.566(±0.001) yes
64000 0.346(±0.002) 0.532(±0.004) no
64000 0.371(±0.002) 0.569(±0.002) yes

147967 no B.P.E. 0.231(±0.002) 0.404(±0.004) no
147967 no B.P.E. 0.296(±0.002) 0.467(±0.003) yes

Figure 4.11: Recall@1 and Recall@5 results over the baseline classification
models for the zero-shot set
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The table in figure 4.11 keeps slight differences between BPE models dif-
ferentiated by the vocabulary dimension but still maintains an interesting
gap between the unbounded models and the bounded ones. The absence
of the BPE led to a high weakness in the baseline zero-shot embedding,
highlighting even this time the strengths of the BPE technique when it comes
to generalising over unseen, out-of-distribution authors.

Surprisingly, comparing the baseline and metric learning models show inverted
results when it comes to generalizing over out-of-distribution classes, leading
to better results over the softmax classification-based models.

Figure 4.12: Snippets test-set Embeddings of five different authors using as an
encoder the metric learning bounded model without the BPE technique (first
image) and the baseline classification bounded model with 32000 Terminal
tokens vocabulary(second image)

57



Figure 4.12 shows an embedding representation, using the Principal Compo-
nent Analysis (PCA), projected to the first two principal components. The
representation has been obtained by getting five random authors from the
test set with an overall amount of 200 different snippets randomly picked
from the five selected authors.

Figure 4.13: Snippets of zero-shot authors from five different authors using as
an encoder the metric learning bounded model with 64000 Terminal tokens
vocabulary(first image) and the baseline classification bounded model with
64000 Terminal tokens vocabulary(second image)

Figure 4.13 shows the embeddings of five different authors coming from the
zero-shot dataset, outlying the still good capabilities of the model to generalize
over unseen, out-of-distribution data.
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Chapter 5

Discussion

This section’s aim is to analyze the results outlined in the previous chapter,
moving through the advantages and disadvantages of the novelties introduced
over the new dataset and authorship attribution technique, keeping an eye
on the State of the art results. The second, but not ranked for importance
aim of this chapter, is to answer the research question:

Is it possible to achieve effective latent space representations that group snippets
of code closer by stylistic terms exploring metric learning techniques?

An initial background for this answer has been tackled in the results chapter,
here the answer is led to put in the discussion of the exploited technique.

Dataset
Obtaining a dataset which respects the constraint given by Caliskan et. al.[2]
was one of the main properties to take into account; as the data-mining
process outlines, this first constraint has been tackled spanning through
several repositories from different authors. The data pruning phase then
assures to keep only authors with a sufficient amount of snippets, which rise
up the probability to have in these terms a higher overall variance. The
results obtained during the zero-shot testing for the stylometry task are
proof of the goodness of the dataset in this sense. The model indeed kept the
retrieval ability even over unseen authors, highlighting that the first Caliskan’s
constraint has been tackled.
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The final resulting dataset, compared to the GCJ dataset, used by most of the
SOTA models[2,9,7] for the stylometry task, gains notability as it deals with
open world real problems. This approach of mining the data from real-world
projects has been tackled previously by Dauber et. al. [4] keeping the data
over fragments of code as this work does, and crawling it from GitHub.

In this work the spotlight was turned to gaining more valuable seed authors;
the libraries.io API drives the work over projects with a higher level of quality
of code, differentiating this work from the one outlined by Dauber et. al.

This work differentiates itself not only from the seed authors’ importance but
even by the main mining technique, indeed, Dauber et al. extracted the data
exploiting the git blame command; in this work, we benefit from the novelty
use of the git diff. technique, supporting the data’s univocity with an AST
hashing persistence technique, assuring to not obtaining semantically and
syntactically equal fragments of code which could result in an involuntary
preliminary data augmentation. This technique helped obtain a higher amount
of data compared to Dauber’s work, given the chance to mine snippets from
the whole project exploiting all the commits.

Dataset Number of authors Training snippets per author
This work 300 880

Dauber et. al. 104 100

Figure 5.1: Summary for dataset dimensionalities

Having a higher amount of data compared to the GCJ dataset and the one
from the Dauber et al work gives us a chance to tackle the stylometry problem
with models that are more data-hungry than others. Bogomolov et. al.[9]
showed that Random forest techniques gained a big gap in terms of general
accuracies compared to code2vec models when it comes to training over a
little amount of data, dealing with the data sparseness problem highlighted
by Alon et. al.[8].
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Threats to Validity
The proposed data-mining technique is based on syntactic data reduction
discussed above, which prunes all the data having the same AST, leading to
a data deletion that doesn’t take into account comments. Indeed, the same
snippet with or without comments would be collapsed into one single snippet;
this could lead to an earlier, not commented version of the same fragment
having the mining phase starting from the first commits in terms of temporal
order.

This technique is also based on the author’s username labelling, which leads to
a possible non-univocity term, obtaining the same label for different authors,
heading to adversarial labels that could affect the final result when it comes
to the stylometry task.

Stylometer
Aiming to answer the Research question posed at the beginning of this work,
a comparison between the baseline classification model aids answering to the
’effectiveness’ point of the proposed training methodology. As this work settles
itself as a novelty in terms of code stylometry, approaching these results to
the ones proposed by previous metric learning works over other tasks[16,22] is
a possibility that would not gain valuable evidence to be discussed. However,
the model, having a set of snippets as ground truth from different authors,
can be used as a classificator looking for the closest snippets in terms of
cosine similarity. For this reason, the zero-shot dataset has been created
with 70 different authors as the GCJ python dataset used in the latest SOTA
stylometry papers and gaining the chance to compare the current setup to
the SOTA classification works.

The experiments moved through two different datasets, testing the model’s
capability of generalizing in-distribution data and out-distribution data; initial
evidence can be highlighted:

Different terms of compression work differently between different datasets
and training techniques, but data boundaries show, as Bogomolov et. al.[9]
describes, a clear strength in this task, obtaining almost everywhere better
results over the used Recall@k metric and faster convergence times.
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The metric learning technique driven by the infoNCE loss works better than
the classification baseline when it comes to in-distribution code retrieval capa-
bilities, showing higher capacities to handle bigger terminal token vocabularies
than the classification baseline, which, without the byte pair encoding out-
lines a gap between models with the compressed vocabularies. The difference
between compressed and uncompressed vocabularies in the classification base-
line highlights a potentially key point for models trained with classification
softmax techniques, posing a point for future work.

Out-of-distribution data leads to different results, outlying how compressed
vocabularies over unseen authors work better than uncompressed ones, this
could be due to better semantic properties for unknown tokens’ embeddings
that, with the byte pair encoding technique are handled differently, exploiting
fragments that keep higher semantically relevance than the unknown ones.
This evidence is more relevant over the classification baseline which shows
a bigger gap between compressed and uncompressed models. The model
trained with the infoNCE loss is less affected even this time by the vocabulary
compression, keeping good results even with the uncompressed models.

The BPE works therefore better where in-vocabulary tokens are less frequent;
the zero-shot testing set hence, lights up the strengths of this technique and
poses itself as a milestone in the baseline models, showing how, as in language
models works as a foundation for the State of the art results [29,30] even
for code2vec and code2seq models could become a major point of interest,
updating the former designs.

Metric learning-based models, when it comes to in-distribution authors’
testing, highlight a big gap between baseline models, showing capabilities to
generate more effective representations after L2 normalization. The models’
convergence is though slower and unstable when compared to classification
baselines. Classification baseline representations, after an L2 normalization,
outline better representations over out-distribution authors and shows higher
efficiency in terms of stability and time of convergence.

Comparing the model’s retrieval techniques Recall@1 as a classification
method to the SOTA accuracies reveals still a big difference, which could be
due to the higher difficulty of the acquired dataset. Methodology’s strengths
can be spotted as the zero-shot chance, which allows the final user to not
fine-tune the model. The usage of the metric learning training technique can
lead to other paths which will be discussed in the future work chapter.
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Future works

This work has presented a new author-labelled dataset with a model that
produces snippets embeddings as code2vec, and heads to the novelties of
code2seq, engaging the B.P.E. exploited over the newest SOTA work on
language models.

Given these novelties, an outlined path comes to attention, highlighting the
need for a comparison between this newly proposed model, the code2vec
structure, random forest model proposed by Bogomolov et. al.[9] and the
LSTM-based model proposed by Alsulami et. al.[7], showing how results
differ with the mined dataset.

Our results show that using the metric learning technique over the code
stylometry task leads to different and in some cases more effective embeddings.
As Jain et. al.[22] shows, metric learning could improve the overall model
accuracies if exploited as a pretraining method for downstream tasks. Trying
the model as a pretraining for downstream tasks is one of the future work to
take into account. Few-shot training is then an interesting possible gained
capability that the metric learning pre-trained model could have achieved,
showing the possibility to obtain effective results with little amounts of data.
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Conclusions

In this work, we dived into the task of code stylometry by moving on to three
principal components:

• The introduction of the new author-labelled dataset

• The modified code2vec model

• The novelty use of metric learning for the code stylometry task

The introduction of the new author-labelled dataset

Capturing the author’s style has always been a fundamental task to detect
plagiarism, deanonymizing authors or simply easing the task of migrating
the source code and trying to address it quickly. Several works outlined the
possibility to tackle this task by operating on a dataset that resembles the
real-world scenario but keeping the constraints mentioned by Caliskan et. al.
for a good code stylometry environment. The work of Dauber et. al. headed
to a more realistic dataset, obtaining a model that can generalize over real
use case scenarios. In this work, the resulting dataset is inspired by Dauber
et. al.’s aim, exploring different mining techniques that give the chance to
extract bigger amounts of data from the same project, keeping the snippets
univocity.

The results obtained by the stylometer in the zero-shot setting highlight that
the major Caliskan’s constraint of differentiating the author’s data through
different projects have been tackled effectively, showing that the model trained
with the new dataset is capable of generalizing over unseen authors, outlying
a high variance in terms of author’s project differentiation.
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The modified code2vec model

The Code2vec model has shown high capabilities for snippets representation
over the latent space, placing itself with the SOTA models for several tasks.
As the code2seq paper highlighted, the code2vec model showed weaknesses in
its design, tackled by the code2seq model as a natural evolution of the former
design. In this work, we adapted the code2seq idea to represent a vector
as output, and it has been tested for modification over the terminal tokens
tokenization, exploiting the B.P.E. technique. Other minor adjustments have
been applied to the model, using the ReLU activation function instead of
the tanh to speed up the model convergence which with the metric learning
trained models didn’t occur.

In order to test the goodness of the model, an ablation study over this major
adjustment has been done, highlighting how rising the vocabulary compression
by modifying the number of overall merges in the byte pair encoding algorithm
could lead to a loss of information or a gain in generalization when it comes
to the stylometry task.

As mentioned in the discussion chapter, the Byte pair encoding technique
showed its strengths mostly over the classification baseline model and over
the out-distribution authors’ test set. We obtained for instance evidence that
BPE can lead to improvements in latent space representation opening the
path for future works models’ design which involves this method.

A comparison between the newly designed model and the previous techniques
needs to be done, inspecting the strengths of the BPE and code2seq novelties
over the other techniques with the new dataset.
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The novelty use of metric learning for the code stylometry task

In the presented work, the use of metric learning led the experiments ablation
study, being the subject of the research question posed in the introduction.
Given the outcomes, the potentiality of this technique has been acknowledged,
outlying how metric learning can lead to better snippets representations.

The efficacy of the methodology has been experimented showing how the
infoNCE loss works over different model designs, gaining efficacy in terms
of Recall@k metrics, but slowing the convergence time in comparison to the
classification baseline for the in-distribution authors. The model proposed
could be then a valuable solution when it comes to looking up code authorship
by style, easing the investigation when it comes to search spaces with several
different authors. As models showed good capabilities with out-of-distribution
data, the strength of this technique is headed by the possibility of not fine-
tuning the model for further authors, obtaining a flexible tool for the code
authorship investigation.

The lack of accurateness of the proposed technique compared to the SOTA
models has been acknowledged but keeping an eye on testing the other designs
with the proposed dataset, indeed, diving into real-world problems could lead
to a harder stylometry task to solve than the typical GCJ dataset.
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