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Abstract

In this thesis, we explore constraints that can be put on the primordial power
spectrum of curvature perturbations beyond the scales probed by anisotropies
of the cosmic microwave background and galaxy surveys. We exploit present
and future measurements of CMB spectral distortions, and their synergy with
CMB anisotropies, as well existing and future upper limits on the stochastic
background of gravitational waves. We derive for the first time phenomenological
templates that fit small-scale bumps in the primordial power spectrum generated
in multi-field models of inflation. By using such templates, we study for the first
time imprints of primordial peaks on anisotropies and spectral distortions of
the cosmic microwave background and we investigate their contribution to the
stochastic background of gravitational waves. Through a Monte Carlo Markov
Chain analysis, we infer for the first time the constraints on the amplitude, the
width and the location of such bumps using Planck and FIRAS data. We also
forecast how a future spectrometer like PIXIE could improve FIRAS constraints.
The results derived in this thesis have implications for the possibility of primordial
black holes from inflation.
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Introduction

The pioneering COBE/FIRAS mission in the early 1990s proved that the cosmic microwave
background (CMB) has a nearly perfect black body intensity spectrum [1] and determined
its temperature. On top of such a nearly uniform and isotropic spectrum, the CMB displays
very tiny anisotropies of order of δT/T0 ∼ 10−5, generated by inhomogeneities in the photon-
baryon plasma before photon decoupling. The initial conditions for these anisotropies are set
by inflation, a stage of accelerated expansion before the onset of the Hot Big Bang evolution.
During such stage, quantum vacuum fluctuations were stretched outside the Hubble radius,
where they became classical. Therefore, CMB anisotropies can constrain the shape of the
primordial power spectrum (PPS) set by inflation. In particular, the simplest models of
Slow-Roll (SR) inflation produce a near scale invariant PPS, which is in good agreement
with the latest measurements of CMB anisotropies by Planck [2] and data from Large Scale
Structure (LSS) surveys. However, such experiments only constrain very large cosmological
scales in the range k ∈ [10−4, 1]Mpc−1. Upcoming CMB experiments, as the ground-based
Simons Observatory [3] and CMB-S4 [4], complemented by the space mission LiteBIRD [5],
will map the CMB sky with improved precision and resolution, but will hardly extend the
probed scales beyond 1Mpc−1. It is therefore interesting to explore other cosmological or
astrophysical observables to test Inflation beyond the log(104) ∼ 9 e-folds probed by CMB
and galaxy surveys. Indeed, the PPS at smaller scales is poorly known and only indirect
and very model dependent constraints exist.

There are however observables that can probe the PPS at smaller scales, such as the
Lyman-α lines and 21 cm intensity mapping, CMB spectral distortions (SDs) and a stochastic
gravitational wave background. In this thesis we concentrate on the last two cases. SDs are
tiny departures of the CMB frequency spectrum from the black body shape and they are a
unique and independent way to study cosmology in the range [10−1, 10−4] Mpc−1. There are
several SDs signals predicted by the standard ΛCDM cosmological model and so a precise
measurement of the CMB frequency spectrum will test this model at scales never probed
before. For this reason, SDs are a target for experimental efforts from ground, such as TMS
[6] and COSMO [7], up to space concepts as PIXIE [8], Pristine [9], Fossil [10] and the one
described to answer the ESA call Voyage 2050 [11]. A particular mechanism that generates
SDs is the Silk damping effect [12], i.e. the diffusion of photons from hotter to colder regions
of the primordial plasma. Such superposition of black bodies at different temperatures
smooths the temperature fluctuations of the CMB, in turn damping its anisotropies at small
scales, and generating SDs, since it creates a black body with a temperature larger than the
average plus some distortion terms. SDs due to Silk damping depend on the pattern of CMB
temperature fluctuations and so on the PPS.
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4 Introduction

At small scales the PPS could deviate from the nearly scale invariant law tightly con-
strained by CMB and LSS. In particular, several models of inflation predict a significant am-
plification of power at such scales. Furthermore, large primordial overdensities can collapse
into primordial black holes (PBHs) upon horizon re-entry during the radiation dominated
era. PBHs have recently seen a surge of interest after they were proposed as an explanation
(see Refs. [13, 14, 15]) for the LIGO first detection of a merger of two black holes of about
30 solar masses [16]. Even if the latest O3 catalog of the LIGO/VIRGO/KAGRA collabora-
tion [17] suggests that a population of PBHs, if existing, must be subdominant and cannot
constitute the whole abundance of cold dark matter, their existence can still have interesting
astrophysical and cosmological implications. The standard mechanism to seed PBHs forma-
tion requires the amplification of the PPS of about 7 orders of magnitude with respect to
its value measured by Planck [18] at large scales. This motivates the exploration of a large
amplification of power at small scales and its imprints on cosmological observables. As many
models of inflation generically predict a transient amplification, i.e. a localized bump rather
than a systematic amplification, we focus on such localized features in this thesis.

Specifically, we use CMB anisotropies and SDs to constrain the shape of small-scale
bumps produced in multi-field models of inflation. We derive phenomenological templates
that capture their shape and study their imprints on CMB observables. Another interesting
consequence of large scalar overdensities is the generation of tensor perturbations at horizon
re-entry, due to second order perturbation theory effects. If the bump is at scales testable
by SDs, the resulting Stochastic Gravitational Wave Background (SGWB) can be tested by
current and future PTA [19, 20] and even planned space-based observatories [21], provided
its width is large enough. For this reason, we also study the contribution of large bumps in
the PPS to the SGWB.

We finally run a Monte Carlo Markov Chain (MCMC) simulation to infer how current
SDs data from FIRAS constrains the PPS. We derive the constraints on a PPS with a
broad bump near to the SDs sensitivity range in order to extend the upper limits found
in the literature, that are valid for peaks with no width, e.g a Dirac δ bump. We further
explore how the synergy between CMB anisotropies and SDs improves such constraints and
we forecast the possibility of a future spectrometer like PIXIE.

This thesis is organized as follows. In the first chapter we present the standard Hot
Big-Bang Model. In the second chapter we review the physics of CMB spectral distortions.
In the third chapter we discuss the problems of the Hot Big bang model, how inflation is the
most elegant solution to them and a short list of the simplest inflationary models. In the
fourth chapter we study the three observables, i.e. anisotropies and spectral distortions of
the cosmic microwave background and scalar-induced small-scale gravitational waves, that
we use for our analysis. In particular we derive their dependence on the shape of the PPS.
In the fifth chapter we derive the phenomenological templates that match the theoretical
predictions of some multi-field models of inflation and we show their effects on the observables
aforementioned. In the last chapter we present the results of the MCMC analysis.



I

The Hot Big-Bang Model

Cosmology is the branch of physics that studies the origin and the evolution of our Universe
and it is based on two main assumptions: the Universe can be treated as a four-dimensional
spacetime described with the general theory of relativity and the cosmological principle
holds.

In the first section we present the key ingredients of General Relativity that are used in
cosmology and we introduce the cosmological principle. In the second section, we discuss the
kinematic and dynamic properties of the metric describing the Universe. Since it is impossi-
ble to follow the evolution of each particle of the Universe, statistical mechanics is necessary
to study how the different components of the Universe evolve. Recent observations show
that the early Universe was approximately in thermal equilibrium and so equilibrium ther-
modynamics is sufficient to study the thermal history of the Universe. In the third section,
equilibrium thermodynamics is applied to study the evolution of the different components
of the Universe.

1 Preliminaries

1.1 General Relativity

The dynamics of the Universe on large scales is mostly determined by gravity. Any cosmolog-
ical model requires a consistent theory of gravitation. The most accepted theory describing
gravity is the General Theory of Relativity (GR), which is based on two principles: the
Principle of General Relativity, which implies that the physical laws should have the same
form in every frame of reference, and the Equivalence Principle, that states that it is always
possible to find a locally inertial frame of reference where physical laws are those predicted by
the Special Theory of Relativity. In GR framework, an event is a point of the 4-dimensional
spacetime manifold labelled with some coordinates xµ = (x0, x1, x2, x3, x4) ≡ (t, x, y, z). Dis-
tances and vector lengths on such manifold are defined through the symmetric rank-2 metric
tensor gµν(x). For each couple of points (xµ, xµ + dxµ) on the manifold we define the proper
distance ds or the proper time interval as dτ as

ds2 = −dτ 2 = gµν(x)dxµdxν . (1.1)

In this thesis we use the "mostly plus" convention and the metric signature is (−,+,+,+)
and we set c = ~ = 1. Once the metric tensor is defined, we can find how test particles move
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6 Chapter I. The Hot Big-Bang Model

on the manifold. The trajectories are solutions of the so-called geodesic equations

d2xµ

dλ2 + Γµσρ
dxσ
dλ

dxρ
dλ = 0, (1.2)

where λ is an affine parameter describing the curve and where the Chrystoffel symbols are
given by

Γµλρ = gµα

2

(
∂gλα
∂xρ

+ ∂gαρ
∂xλ

− ∂gλρ
∂xα

)
. (1.3)

The metric tensor gµν is in general obtained by solving Einstein field equations

Rµν −
1
2gµνR− Λgµν = 8πGTµν , (1.4)

where Rµν and R are the Ricci tensor and scalar respectively and they are defined in terms
of the Riemann tensor

Rρ
µλν

def=Γρµν,λ − Γρµλ,ν + ΓκµνΓ
ρ
λκ − ΓκµλΓρνκ, (1.5)

as

Rµν
def=Rλ

µλν , R
def=Rµ

µ. (1.6)

By introducing the energy-momentum tensor associated with the cosmological constant Λ

T (Λ)
µν = Λ

8πGgµν
def= ρΛgµν , (1.7)

and by contracting both sides by gµν , we can write Einstein equations as

Rµν = 8πG
(
T (tot)
µν − 1

2gµνT
(tot)λ

λ

)
def= 8πGSµν . (1.8)

1.2 Cosmological Principle

The Cosmological Principle states that our Universe is spatially homogeneous and isotropic.
To study the consequences of this principle we have to choose a coordinates system. We
choose spatial coordinates xi that have origin at the center of the Milky Way and whose
directions are fixed by the lines of sight from our galaxy to some typical distant galaxies.
It is believed that the Universe is filled by several monotonically decreasing scalar fields,
like its proper energy density ρ. We can choose as cosmic standard coordinate time t any
decreasing function of such scalar fields, say S: t = t(S). Suppose that we measure in the
cosmic standard coordinates system xµ = (t,x) the tensors gµν(x) and Tµν(x). Another set
of coordinates x′µ is equivalent to the cosmic standard one if the transformation xµ → x′µ is
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an isometry or equivalently if gµν and Tµν are form-invariant under such transformation:

gµν(y) = g′µν(y), Tµν(y) = T ′µν(y); ∀y. (1.9)

In general, a n-parameters isometry of metric implies the existence of n independent Killing
vectors, which can be obtained by considering infinitesimal transformations. All the cosmic
fields have to be form-invariant, even the scalar field S used to define the standard cosmic
time. The form-invariance of S at y = x′ and the scalars defining property S ′(x′) = S(x)
imply

S(t′) = S ′(t′) ≡ S(t) =⇒ t′ = t. (1.10)

We conclude that all coordinates systems equivalent to the cosmic standard one must use
the same standard cosmic time.

Isotropy means that all spatial directions of the Universe are equivalent. This hypothesis
requires the existence of a 3-parameters family of coordinates x′µ(xµ; θi) equivalent to the
cosmic standard one, that shares the same origin with them and that is an isometry of the
metric. We can interpret θi as the Euler angles expressing the orientation of x′i with respect
to the xi.

Homogeneity implies the existence of a family of 3-parameters coordinates x̄′µ(x; a),
equivalent to the cosmic standard ones, that have the origin on some fundamental tra-
jectory xi = X i(t; a) - which are determined by the motion of the members of the ensemble
of galaxies near the Earth and that fill up all space occupied by the ensemble of galaxies
at any t - and which is an isometry of the metric. Homogeneity assumption applies only to
portions of the Universe that include a large number of fundamental trajectories, for example
cells with a diameter of 108 to 109 light years.

Consider a N -dimensional spacetime and a M -dimensional subspace. Let ui be the
M coordinates describing the subspace and va the N −M ones describing the rest of the
spacetime. The subspaces defined by va = constant is said to be maximally symmetric if the
metric of the whole space is invariant under a group of infinitesimal transformations

u
i → u′i = ui + εξi(u, v),
va → v′a = va,

(1.11)

with M(M + 1)/2 independent Killing vectors ξi. In this case, the most generic metric in
such spacetime is [22]

dτ 2 = −gabdvadvb − f(v)
[
du2 + k(u · du)2

1− ku2

]
, (1.12)

where f(v) is positive and k can be only −1, 0, 1.
The Cosmological Principle implies that the metric of the Universe is invariant under the
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transformations x
i → x′i = xi + εξi(t,x), i = 1, 2, 3
t→ t′ = t,

(1.13)

where the Killing vectors ξi are 6 (3 due to isotropy and 3 to homogeneity). We recognize the
analogy va ↔ t(a = 1), ui ↔ xi(i = 3) and we conclude that our Universe has a maximally
symmetric 3-dimensional subspace defined by the family of hypersurfaces t = constant and
that the most general metric describing it is

dτ 2 = −g(t)dt2 − f(t)
[
dx2 + k(x · dx)2

1− kx2

]
, (1.14)

where t is some time coordinate equivalent to the standard cosmic time and xi the spatial
ones. We introduce the new time coordinate

t′
def=
∫

dt
√
−g(t), (1.15)

so that the final form of the metric becomes

dτ 2 = dt′2 − a2(t′)
[
dx2 + k(x · dx)2

1− kx2

]
, (1.16)

with a(t′) =
√
f(t). This is the so-called Friedman-Lemaitre-Robertson-Walker (FLRW)

metric. The FLRW metric has g00 = −1 and it is such that the Christoffel symbol Γi00

vanishes always. For this reason, (t, xi) are called comoving coordinates [22]. From now on,
the prime on t′ will be omitted. The Cosmological Principle set constraints also on the form
of the energy-momentum tensor of the cosmic matter. As aforementioned, all cosmic fields
should be form-invariant, in the sense of equation (1.9), under the set of transformations
(1.11), which are purely spatial transformations. As a consequence, they transform T 00, T 0i

and T ij as a scalar, a vector and a rank-2 tensor respectively. It is possible to prove that in
this case T µν must be in the perfect fluid form [22]

Tµν = Pgµν + (P + ρ)uµuν , where uµ
def=(1, 0). (1.17)

ρ and P are the energy density and the pressure of the fluid.

2 Background Cosmology

The FLRW metric (1.16) can be written in a compact form [22]

ds2 = −dt2 + a2(t)γijdxidxj, (2.1)
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where
γij = δij + k

xixj
1− k(xkxk)

. (2.2)

By using the conformal time
dη def= dt

a(t) . (2.3)

the FLRW metric becomes conformally equivalent to a flat spacetime:

ds2 = a2(t)
[
−dη2 + γijdxidxj

]
. (2.4)

The only two free parameters of the FLRW metric are a(t) and k. The parameter k
entering in the FLRW metric (2.1) defines three different spacetimes

k =


0 Euclidean or flat,
+ 1 spherical or closed,
− 1 hyperbolic or open,

(2.5)

because γijdxidxj becomes the three-dimensional Euclidean line element for k = 0 and so on.
The three-dimensional curvature of the Universe is defined as 3K(t) = k · a−2(t). Clearly,
for k = −1, 0 the spacetime is infinite, while for k = +1 it is finite though unbounded.
In this case, one defines its proper circumference 3L(t) = 2πa(t) and its proper volume
3V (t) = 2π2a3(t). For k = +1, the spatial part of the Universe can be interpreted as a sphere
or radius a(t) embedded in a four-dimensional spacetime. Neither for k = 0 or k = −1 such
interpretation is possible, but still a(t) represents some scale factor that describes if the
Universe is expanding, contracting or it is stationary.

2.1 Kinematics

Redshift

Particles, in absence of other non-gravitational forces, move along the geodesics of the un-
derlying spacetime, which are the solutions of the geodesic equation

d2xµ

dλ2 + Γµσρ
dxσ
dλ

dxρ
dλ = 0, (2.6)

where λ is an affine parameter describing the curve. For massive particles, the most simple
choice for λ is the proper time τ . In a FLRW spacetime, the 0-th component of the geodesic
equations is

d2x0

dτ 2 + Γ0
αβ

dxα
dτ

dxβ
dτ = d2x0

dτ 2 + Γ0
00

(
dx0

dτ

)2

+ Γ0
ij

dxi
dτ

dxj
dτ = 0. (2.7)
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The Christoffel symbols in a FLRW Universe are

Γ0
00 = 0, Γ0

0i = 0, Γ0
ij = a(t)ȧ(t)γij,

Γi00 = 0, Γk0i = ȧ

a
δki , Γkij = γkm

2 (γim,j + γmj,i − γij,m),
(2.8)

so that equation (2.7) reduces to

d2x0

dτ 2 + a(t)ȧ(t)γij
dxi
dτ

dxj
dτ = 0. (2.9)

It is better to write this equation in terms of the four-momentum, which is defined as

P µ def=mUµ ≡ m
dxµ
dτ ≡ (P 0,P ), (2.10)

and normalized as

− gµνP µP ν ≡ (P 0)2 − a2γijP
iP j ≡ −m2gµν

dxµ
dτ

dxν
dτ = m2. (2.11)

The amplitude of the physical three-momentum p is defined by

p2 def= gijP
iP j = a2γijP

iP j. (2.12)

This momentum is physical in the sense that it is the one measured in a local inertial
coordinates system:

ηµνp
µpν = −m2 = gµνP

µP ν , (2.13)

where pµ = (E, pi). This condition implies P 0 = E. P µ is the "comoving" four-momentum
because it is the conjugate momentum of the comoving coordinate xµ. In the case of a flat
Universe, γij = δij, the physical three-momentum pi is related to the comoving one P i by a
factor a. The 0-th component of the geodesic equation in terms of p is

dp
dt + ȧ

a
p = 0 =⇒ p ∝ 1

a(t) . (2.14)

Massless particles move along null-geodesics dτ = 0 and the momentum normalization is

(P 0)2 − a2γijP
iP j = 0. (2.15)

It follows that the amplitude of the physical three-momentum in the massless case is simply
E. In the massive case we have instead

P i = m
dxi
dτ = m

dt
dτ v

i, (2.16)
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where vi = ẋi. From the normalization condition−1 = gµν(dxµ/dτ)(dxν/dτ) we have further

dt
dτ

[
1− a2γijv

ivj
]

= 1, (2.17)

and so in the massive case

p =
√
−gijP iP j =

√
m2a2γijvivj(dt/dτ)2 = mv√

1− v2
, (2.18)

where v2 = −gijvivj = a2γijv
ivj. To sum up,

p =


E massless particle,
m|v|√
1− |v|2

particle with mass m. (2.19)

Equation (2.14) suggests that the energy of a massless particle scales as a−1. As a
consequence, also the wavelength of a massless particle λ = h/E = h/p scales with a(t).
In particular, a photon emitted at t1 with wavelength λ1 will be detected at t0 > t1 with
wavelength λ0 = λ1a(t0)/a(t1). If our Universe is expanding, a(t0) > a(t1), then photons are
redshifted λ0 > λ1, while if it is contracting light is blueshifted λ0 < λ1. It is conventional
to define the redshift/blueshift parameter z as

z
def= λ0 − λ1

λ1
, (2.20)

and in a FLRW spacetime it is equal to

z = a(t0)
a(t1) − 1. (2.21)

Once a(t) is known, the previous equation is a sort of conversion between the redshift and
the cosmic time. Sometimes, cosmologists normalize a(t) so that it is equal to one at the
present day t0: a(t0) = 1.

Distances

The proper distance is defined as the distance between two events measured in the frame of
reference where they occur simultaneously:

s(t) def=
∫

ds|dt=0
def=
∫ √
−dτ 2|dt=0 =

∫ √
gµνdxµdxν

∣∣∣
dt=0

=
∫ √

gijdxidxj. (2.22)

In a FLRW Universe it is conventionally computed in polar coordinates

ds2 = −dτ 2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)
]
. (2.23)
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If the two events occur at r = 0 and r = r1 with fixed angles θ and φ, s is given by:

s(t) =
∫ √

gµνdxµdxν
∣∣∣
dt=dθ=dφ=0

=
∫ r1

0

√
grrdr = a(t)×


sin−1 r1 k = +1
sinh−1 r1 k = −1
r1 k = 0

(2.24)

Another type of distance that can be defined in the FLRW Universe is the comoving, or
coordinate, distance χ:

dχ2 def= γijdxidxj (2.25)

In polar coordinates and with dθ = dφ = 0, χ is equal to

χ ≡
∫ r1

0

√
grr

a(t) dr = s(t)
a(t) . (2.26)

χ is the distance between two events as measured by a comoving observer that does not feel
the expansion/contraction of the Universe. The comoving distance is equal to the change in
conformal time: ∆χ = ∆η.

Horizons

A consequence of the constancy of the speed of light is that not all events are in causal
contact. In particular, only time-like or null-like separated events (dτ 2 ≥ 0 or ds2 ≤ 0) are
causally connected. The boundaries of the causally connected region are set by the condition
for photon propagation dτ = 0. In a FLRW Universe, this condition corresponds to:

∫ dt
a(t) =

∫ √
γijdxidxj. (2.27)

If the photon is radially emitted at (t = 0, rH) and the comoving observer is placed at
(t, r = 0), then rH has to satisfy

∫ t

0

dt
a(t) = 1

a(t0)

∫ rH

0

√
grrdr. (2.28)

for the photon to reach the observer. The proper distance to the horizon is

sH(t) = a(t)
∫ t

0

dt
a(t) ≡ a(t)

∫ a

0

da
a2H(a) ≡ a(t)

∫ rH

0

dr√
1− kr2

, (2.29)

where it was assumed that a(0) = 0. sH(t) is called particle horizon and it sets the boundaries
between the visible Universe and the regions from which light signals have not reached us.
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By using equation (2.24), one can write the particle horizon as

sH(t) = a(t)×


sin−1 rH k = +1,
sinh−1 rH k = −1,
rH k = 0.

(2.30)

The particle horizon should not be confused with the Hubble radius 1/H(t), which represents
the distance traveled by particles during one expansion time. The Hubble radius is a different
way to know whether two particles are causally connected or not. If they are separated by a
proper distance larger than 1/H(t) at time t, they cannot be causally connected at that time.
The difference between the particle horizon and Hubble radius is the following. Particles
separated by a proper distance larger than sH(t) have never been in causal contact, while if
they are separated by a distance larger than H−1(t) then they cannot communicate at t.

The comoving particle horizon is instead defined as

rH(t) def=
∫ t

0

dt
a(t) =

∫ a

0

da
a2H(a) =

∫ a

0
d ln(a) 1

aH(a) , (2.31)

where (aH)−1 is the comoving Hubble radius. rH can be obtained by inverting equation
(2.30):

rH =


sin−1

(∫ t
0

dt
a(t)

)
k = +1,

sinh−1
(∫ t

0
dt
a(t)

)
k = −1,(∫ t

0
dt
a(t)

)
k = 0.

(2.32)

The physical meaning of the comoving particle horizon rH is that particles separated by
comoving distances larger than rH do not talk to each other. On the other hand, if at some
time t two particles were separated by a comoving distance larger than (aH)−1 then they
cannot communicate at that time.

2.2 Dynamics

One of the main goals of cosmological theories is to describe the evolution of the Universe,
that is to find how the scale factor a(t) evolves. The evolution of the scale factor is determined
by Einstein field equations:

In a FLRW spacetime with Λ = 0, the components of the Ricci tensor are given by [22]

R00 = 3 ä
a
,

R0i = 0,
Rij = −

[
2k + 2ȧ2 + a(t)ä

]
a2γij,

(2.33)
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while the source term takes the form

Sµν = Tµ −
1
2gµνT

λ
λ = 1

2(ρ− P )gµν + (P + ρ)uµuν , (2.34)

where uµ is given in equation (1.17). The components of Sµν are

S00 = 1
2(ρ+ 3P ), (2.35a)

S01 = 0, (2.35b)

Sij = 1
2(ρ− P )a4γij, (2.35c)

and so Einstein equations read

(00)-component : 3ä = −4πG(ρ+ 3P )a, (2.36a)
(0i)-components : 0 = 0, (2.36b)
(ij)-components : aä+ 2ȧ2 + 2k = 4πG(ρ− P )a2. (2.36c)

These equations can be combined into a single equation, the so-called Friedmann equation:

ȧ2 + k = 8πG
3 ρa2. (2.37)

Furthermore, the energy momentum tensor Tµν has to satisfy the continuity equation T µν;ν =
0. In a FLRW spacetime the µ = i components of the continuity equation are trivially
satisfied, while the µ = 0 one gives

dρ
dt + 3 ȧ

a
(ρ+ P ) = 0. (2.38)

To close the system it is necessary to specify an equation of state P = P (ρ).
However, it is possible to find some characteristics of the scale factor a(t) even without

specifying an equation of state. For example, the time-time component of Einstein equations
(2.36) suggests that as long as ρ + 3P is positive, the quantity ä/a is negative. Present
observations measure redshift or equivalently ȧ/a > 0 - see equation (2.21) - and by definition
a(t0) > 0.

Then, as long as ρ+ 3P is positive, a(t) versus t must be a concave downward curve and
must have reached a(t∗) = 0 at some time t∗ in the past. This instant of time is set equal to
zero by definition and is called Big-Bang singularity.

Our Universe is expanding and the expansion is described by the temporal evolution of
the scale factor a(t). The rate of expansion is measured by the so-called Hubble parameter

H(t) def= ȧ(t)
a(t) , (2.39)



2. Background Cosmology 15

which can be defined also in conformal time

H(η) def= a′(η)
a(η) ≡ aH, (2.40)

where the prime indicates a derivative with respect to the conformal time. Recent experi-
ments try to measure the Hubble parameter today H0 (Hubble constant)†. The Hubble rate
is determined by the Friedmann equation, which can be written directly as an equation for
H:

k

H2a2 = 8πG
3H2 ρ− 1 def=Ω− 1 or H2 = 8πG

3 ρ− k

a2 , (2.41)

where Ω is the ratio between the total density of the Universe ρ and the critical density
defined as

Ω = ρ

ρc
with ρc

def= 3
8πGH

2. (2.42)

Equation (2.41) determines the geometry of the Universe. Indeed, since H2a2 > 0, there
is a correspondence between the value of k and the sign of Ω − 1: if k = −1, 0,+1 then
Ω− 1 negative, zero or positive respectively. To solve the Friedmann equation, an equation
of state has to be specified. All the equations of state can be written as

P = wρ. (2.43)

The most simple choice is a time-independent w. Given this generic equation of state,
equation (2.38) gives

ρ ∝ a−3(1+w) =⇒ ρ = ρ0

(
a

a0

)−3(1+w)
. (2.44)

The Universe is not filled by one single fluid. In the standard cosmological model, the
three sources that fill the Universe are:

• Matter: particles that have a pressure negligible with respect to the energy density.
Examples are baryons, leptons and dark matter. In the matter case w = 0 and ρm ∝
a−3.

• Radiation: particles that are ultrarelativistic/massless Their equation of state is given
by P = (1/3)ρ or w = 1/3 Then ρr ∝ a−4. Examples are photons, neutrinos and
gravitons (if they exist).

• Dark energy. Radiation and matter are not sufficient to describe the present-day
Universe evolution, which is dominated by an unknown source, called dark energy,
which satisfies the equation of state P = −ρ. In this case w = −1 and the energy
density remains constant during the evolution of the Universe: ρΛ ∝ a0.

This model is called ΛCDM model because it includes cold dark matter and dark energy
(Λ). In figure 1, we present the behavior of the energy density for the three different sources.
† from now on the subscript 0 means that the considered quantity is evaluated at the present day.
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In general, the total energy density of the Universe is the sum of the contributions coming
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Fig. 1 – Behavior of the energy density for radiation, matter and dark energy in log-log scale.
These lines are drawn by considering the present day abundances of matter, radiation and dark
energy [18]: Ωr,0 = 8.99× 10−5,Ωm,0 = 0.32,ΩΛ,0 = 0.68. The curvature density is neglected since
|Ωk,0| < 0.005. The green region on the left represents the radiation-dominated era. A dashed grey
vertical line separates such region from the matter-dominated era (blue area). The purple region is
instead the dark-energy-dominated epoch. The matter-radiation equivalence occurs when ρm = ρr,
i.e. at a(t) = aeq(teq) = a0Ωr,0/Ωm,0 ≈ 2.9 × 10−4, where the convention a0 = 1 was assumed.
The corresponding redshift is zeq = 1/aeq − 1 ≈ 3500. Similarly, the transition from the matter-
dominated Universe to the dark-energy-dominated one happens at amΛ(tmΛ) = a0(Ωm,0/ΩΛ,0)1/3 ≈
0.77 or zmΛ ≈ 0.3. The solid black vertical line centered on a(t) = a0 = 1 indicates the present day.

from each source:
Ω = Ωm + Ωr + ΩΛ. (2.45)

Figure 1 suggests that at early times, when a(t) was small, the energy density of the Universe
was dominated by radiation, while at later times the main contribution to the total ρ came
from matter. Finally, today the Universe is dominated by dark energy. The cosmic time
when the energy density of the radiation was equal to those of the matter is called equivalence
time teq. Well before and after the equivalence, the Universe can be considered as dominated
by a single component, which is radiation for t < teq or matter for t > teq. Around the
equivalence we should treat the Universe as a two-components fluid. This is true also during
the transition from the matter-dominated era to the dark-energy one.

Taking into account all the possible matter sources, the Friedmann equation (2.41) be-
comes:

H2(a) =
∑
w

8πG
3 ρ

(w)
0

(
a

a0

)−3(1+w)
− k

a2 , (2.46)

where ∑w runs over all the possible values of w and where ρ(w)
0 is the present-day value of
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the energy density of the source parametrized by w. The previous equation in terms of the
parameters Ωw introduced in equation (2.42) is

H2(a) = H2
0

[∑
w

Ωw,0

(
a

a0

)−3(1+w)
+ Ωk,0

(
a

a0

)−2
]
, (2.47)

where we introduced a curvature density parameter Ωk,0
def=−k/(a0H0)2. The Hubble param-

eter as a function of the redshift is

H2(z) = H2
0

[∑
w

Ωw,0 (1 + z)3(1+w) + Ωk,0 (1 + z)2
]
. (2.48)

In a flat radiation-dominated Universe, i.e. Ωm = ΩΛ = Ωk = 0 and so Ωr = 1, the solution
of the Friedmann equation is simply given by

H(a) ≡ ȧ

a
= H0

(
a0

a

)2
=⇒ a(t) = a0

√
2H0
√
t ∝ t1/2, (2.49)

while in the matter-dominated case it is

H(a) ≡ ȧ

a
= H0

(
a0

a

)3/2
=⇒ a(t) = a0

(3
2H0

)2/3
t2/3 ∝ t2/3. (2.50)

Finally, in a vacuum-energy-dominated Universe, a(t) is given by

H(a) ≡ ȧ

a
= H0 =⇒ a(t) = eH0t ∝ et. (2.51)

The equation describing the acceleration of the Universe is the (00) - Einstein equation
(2.36), which in terms of the Hubble parameter (2.39) can be written as

dH
dt = ä

a
− ȧ2

a2 ≡ −
4πG

3 (ρ+ 3P )−H2 def=−H2(1 + q), (2.52)

where we defined the so-called deceleration parameter

q
def=− ä

H2a
≡ 4πG

3H2 (ρ+ 3P ). (2.53)

Its present-day value is given by

q0 = 1
2
∑
w

(1 + 3w)Ωw,0 ≡
1
2 (Ωm,0 + Ωr,0 + ΩΛ,0) . (2.54)

Recent observations suggest q0 < 0 implying that the Universe is accelerating.
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3 Brief Thermal History of the Universe

The standard cosmological model which is nowadays favored by many cosmological data (al-
though with some cracks due to re-known tensions) is based on the fact that when a(t) = 0,
all the energy and the matter of the Universe were compressed in a really small region. At
that time, the energy scale of the Universe, or equivalently its temperature, was really high.
As the Universe expanded, the temperature dropped down, as it happens for example in an
adiabatic expansion, and the energy got diluted. The story of the Universe is then a cooling
history that can be studied using some concepts of statistical mechanics and thermodynam-
ics. In this section, we study the evolution of cosmic sources with thermodynamics.

3.1 The Primordial Plasma

The first phases of the hot Big Bang model depend on the particle interaction laws, which
are well known up to few hundred GeV. Under this energy scale, particle fundamental
interactions are described by the so-called Standard Model.

At t = 0 the scale factor was zero and all the matter and energy of the universe were
confined in a tiny region at a temperature larger than the Planck mass (1019GeV). Above
the TeV scale there are many ways to extend the Standard Model and so there is a huge
uncertainty on the Universe matter content in the very first instants after the Big Bang.
As the Universe expanded, the temperature of the Universe decreased until the scale of the
Standard Model of particles is reached. From that instant, the physics of the Early Universe
can be studied pretty accurately.

Equilibrium Thermodynamics

In the Early Universe, the interactions between the particles were so fast and efficient that
all the particles were kept in local thermal equilibrium in a sort of ’primordial plasma’ †.

Each component of the primordial plasma can be treated as a diluted, weakly-interacting
gas of particles with g degrees of freedom. For this kind of gas, one can define its number
density n, energy density ρ and pressure p in terms of the phase space distribution f(x, p),
which tells how many particles there are in a given volume of the phase space at t.

Since the Universe evolved from a small hot and really dense point, one may ask in
which epochs the phase-space description of the primordial plasma is possible. Presumably,
this is possible as long as the de Broglie wavelength λ = ~/p of the particles is small
compared to the size of the Universe [23]. If T is the temperature of the Universe, then
λ ≈ 1/T . In a radiation-dominated Universe, the size of the Universe is roughly Mpl/T

2,
where Mpl = (8πG)−1/2 is the reduced Planck mass in natural units. So, the phase-space
description is valid as T < Mpl, which is almost always except near the Big Bang singularity.

† The empirical proof of the thermal equilibrium of the primordial plasma of particles lies in the spectrum
of the relic photons that are detected today, as it will be explained in subsection 3.2.
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To rigorously introduce f , consider a spacelike surface dσ, whose normal vector dSµ is
defined so that

dSµ = (a3(t)dxdydz, 0, 0, 0). (3.1)

The phase space distribution of a given species in the primordial plasma f(x, P ) is defined
so that the number of world-lines that penetrate dσ is given by

dN = −f(x, P )P µdSµ2δ(+)(P 2 +m2)d4Pa3, (3.2)

where P 2 def= gµνP
µP ν ≡ −(P 0)2 +a2γijP

iP j as usual. The quantity δ(+)(P 2 +m2) is defined
by the relation

δ(−(P 0)2 + a2γijP
iP j +m2) =

δ
(
P 0 −

√
a2γijP iP j +m2

)
+ δ

(
P 0 +

√
a2γijP iP j +m2

)
2P 0 =

def= δ(+)(P 2 +m2) + δ(−)(P 2 +m2). (3.3)

To study a gas of weakly-interacting particles it is necessary to determine how f(x, P ) varies
along a world-line characterized by an affine parameter λ. In absence of interactions, the
equation that determines such evolution is the collision-less Boltzmann equation

L̂[f ] = 0. (3.4)

where the Liouville operator in a FLRW spacetime is:

L̂[f ] = ∂f

∂t
− ȧ

a
pi
∂f

∂pi
, (3.5)

A derivation of the Boltzmann equation can be found in [23].
f allows to define some macroscopic quantities that characterize the gas, such as the

particle current density
Nµ def= g

∫
d3p

(2π)2f
pµ

p0 , (3.6)

where g is an additional factor that takes into account the degrees of freedom of the particle
species. Isotropy implies that the only non-vanishing component of Nµ is the particle number
density N0 ≡ n:

n = g
∫ d3p

(2π)3f, (3.7)

The covariant divergence of Nµ is

Nµ
;µ = g

a3
∂

∂t

(
a3
∫

d3p

(2π)3f

)
= 3g ȧ

a

∫
d3p

(2π)3f + g
ȧ

a

∫
d3p

(2π)3pi
∂f

∂pi
+ g

∫
d3p

(2π)3 L̂[f ]. (3.8)
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By integrating by parts and dropping boundary terms, the previous equation reduces to

1
a3
∂(a3n)
∂t

=
∫

d3p

(2π)3 L̂[f ](p). (3.9)

In the collision-less case equation (3.4) holds and the conservation of the particle number
density becomes

1
a3
∂(a3n)
∂t

= 0 −→ n ∝ a−3. (3.10)

The energy momentum-tensor of the gas is defined as

T µν = g

∫
d3p

(2π)3
pµpν

p0 f(p), (3.11)

and the energy density is given by

T 00 = g

∫
d3p

(2π)3p
0f(p) = g

∫
d3p

(2π)3E(p)f(p) def= ρ. (3.12)

In an isotropic Universe, T ij does not depend on the direction and T ij can be integrated
along the direction to obtain the pressure of the gas

T ij = gij

3

∫
d3p

(2π)3
def= gijP. (3.13)

To sum up, the number density, the energy density and the pressure of a weakly-
interacting gas of particles can be expressed also in terms of the energy of the particle

n = g
∫ d3p

(2π)3f(p) = g
∫ d3p

(2π)3f(p), (3.14a)

ρ = g

g

∫ d3p

(2π)3f(p)E(p) = g
∫ d3p

(2π)3f(p)E(p), (3.14b)

P = g
∫ d3p

(2π)3f(p) p2

3E(p) = g
∫ d3p

(2π)3f(p) p2

3E(p) , (3.14c)

where E(p) = p2 +m2.
A particle species is in thermodynamic equilibrium if its distribution function feq is a

solution of the collision-less equation

L̂[feq] = 0. (3.15)

It is possible to show [23] that in a FLRW Universe there is no solution to this equation,
basically because the FLRW metric does not have a timelike Killing vector. There are only
two limiting cases in which an equilibrium distribution exists: whenm→ 0 (ultra-relativistic
gas) and when m→∞ (non-relativistic gas). However, if the interactions between particles
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were faster than the expansion of the Universe, particles had enough time to set a state of
local thermal equilibrium. The basic rule to determine if a particle species was in thermal
equilibrium with the primordial plasma is to compare the Hubble rate H with the interaction
efficiency

Γ def=nσ|v|, (3.16)

where n is the density of the target particle species and σ|v| the cross section times the
relative velocity properly averaged. As long as Γ > H, the interactions are occurring rapidly
enough to maintain the local thermal equilibrium. When Γ < H, the interactions are ’frozen’,
in the sense that they are negligible compared to the Universe expansion, and the particle
species decouples from the plasma. The temperature at which Γ = H is called ’freeze-out’
temperature. These little departures from thermal equilibrium are fundamental to explain
the present structure of the Universe. Indeed, if the Universe would have been always in
thermal equilibrium, it will be filled with a plasma of particles and there will be no com-
plex structures like galaxies, stars, planets and us. A careful treatment of non-equilibrium
processes requires the inclusion of interactions between particles in the Boltzmann equation.

The form of the phase space distribution is known both for fermions (+) and bosons (−)
when they are in thermal equilibrium within the primordial plasma:

f(t, p) =
[
exp

(
E(p)− µ

T

)
± 1

]−1

. (3.17)

The phase space distribution is determined by the temperature T and the chemical potential
µ of the considered gas. In an expanding Universe, the temperature evolves with time and
so f(t, p) depends implicitly on t. The chemical potential describes the response of a system
to a change in particle number and it can be temperature dependent. In the non-relativistic
limit (T � m), both fermionic and bosonic phase space distributions reduce to the Maxwell-
Boltzmann one

f(t, p) = exp
(
−E(p)− µ

T

)
. (3.18)

Each particle species has its distribution function fi that depends on (mi, Ti, µi). Species in
thermal equilibrium share the same temperature T and so they differ only because of their
different masses and/or chemical potentials.

By inserting equation (3.17) into (3.14), we find implicit relations between ρ, n, P and
the temperature T . In the relativistic limit T � m and for T � µ these relations are

n =
(ζ(3)/π2)gT 3, bosons

(3/4)(ζ(3)/π2)gT 3, fermions
(3.19a)

ρ =
(π2/30)gT 4, bosons

(7/8)π2/30)gT 4, fermions
(3.19b)

P = ρ/3, (3.19c)
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where ζ(x) is the Riemann zeta function:

ζ(s) def= 1
Γ(s)

∫ ∞
0

dx xs−1

ex − 1 where Γ(s) def=
∫ ∞

0
dxxs−1e−x. (3.20)

In the non-relativistic case these relations are instead:

n = g
(
mT

2π

)3/2
exp[−(m− µ)/T ], (3.21a)

ρ = mn, (3.21b)
p = nT � ρ. (3.21c)

At early times chemical potentials of all particles were much smaller than the shared
temperature [24]. Then, the total energy density and pressure of a collection of different
species in thermal equilibrium at temperature T were [25]

ρt = T 4 ∑
i=all species

(
Ti
T

)4 gi
2π2

∫ ∞
xi

du u
2(u2 − x2

i )1/2

exp(u− yi)± 1 , (3.22a)

Pt = T 4 ∑
i=all species

(
Ti
T

)4 gi
6π2

∫ ∞
xi

du (u2 − x2
i )3/2

exp(u− yi)± 1 , (3.22b)

where xi def=mi/T, yi
def=µi/T . However, the energy density and pressure of a non-relativistic

species are exponentially smaller than that of a relativistic one. This is evident from the
comparison of equations (3.19a) and (3.21). So, a good approximation is to include only the
relativistic species in the previous summations:

ρt = π2

30g∗T
4 ≡ ρR, (3.23a)

Pt = ρt/3 ≡ pR, (3.23b)

where g∗ is the effective number of degrees of freedom

g∗
def=

∑
i=bosons

gi

(
Ti
T

)4
+ 7

8
∑

j=fermions
gj

(
Tj
T

)4
. (3.24)

The factor (7/8) comes from equation (3.19a) and relates to the different contribution to ρ of
relativistic fermions with respect to bosons. When all particles are in thermal equilibrium,
i.e. Ti = T,∀i, g∗ is determined only by the type of particles present in the plasma. When
a particle species decouples from the Plasma, the effective number of degrees of freedom
changes.

In the early Universe all the Standard Model particles and antiparticles - with all the
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possible flavors - were present and in thermal equilibrium and so

g∗ = gγ + 3gW±,Z0 + 8gg + gH + 7
8 (6gl + 36gq + 6gν) = 106.75. (3.25)

As the energy decreased, some particle species became non-relativistic and they annihilated.
The first particle species to annihilate was the top quark because it is the heaviest. This
happened at T ≈ (1/6)mt ≈ 30Gev†. After the top quark annihilation, the effective number
of degrees of freedom became g∗ = 106.75 − (7/8) ∗ 6 ∗ gq = 96.25. Next, Higgs and other
gauge bosons annihilated (at T ≈ 10GeV) and so g∗ = 86.25. Later on, the bottom and
charm quark and the tau leptons annihilated and g∗ turned into 61.75. Before the strange
quarks had time to annihilate, the QCD phase transition occurred (Tqh ≈ 200MeV) in which
the remaining quarks in the plasma combined into hadrons, including protons, neutrons and
pions. All of these particles, except the pions (which carry gπ = 1), are non-relativistic
at a temperature below Tqh and so they should not be included in the computation of g∗,
which thus dropped down to g∗ = 17.25. After the QCD phase transition, pions and muons
annihilated and g∗ = 10.75.

Temperature of decoupled species

We now derive the evolution of the temperature of a particle species that decouples from
the plasma. Consider a massless particle species, initially in local thermal equilibrium, that
decouples from the thermal bath at time tD when the temperature is TD and the scale factor
is a(tD) = aD. The phase space distribution at decoupling is given in (3.17) with T = TD

and µ = 0 for simplicity. After the decoupling, the momentum - and so the energy - of each
massless particle is redshifted: E(t) = E(tD)(aD/a(t)). The number density of the massless
species goes instead as n ∝ a−3 after the decoupling. Thus, the phase space distribution
is the same of a species in local thermal equilibrium, but with a redshifted temperature
T (t) = TDaD/a(t). For a non-relativistic massive particle species the temperature is like a−2

- not a−1 - because the energy E = |p|2/2m and not E = |p| as in the massless case. In the
massive case, also the chemical potential has to vary like µ(t) = m + (µD −m)T (t)/TD in
order to have n ∝ a−3. To sum up

T (t) =


TD

(
aD
a(t)

)1

∝ (1 + z) decoupled massless species,

TD

(
aD
a(t)

)2

∝ (1 + z)2 decoupled massive species.

(3.26a)

(3.26b)

† the 1/6 factor takes into account that the transition from the relativistic to the non-relativistic behavior
is not instantaneous.
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3.2 Recombination and the Cosmic Microwave Background

Three minutes after the Big Bang the lightest nuclei of the known atoms - hydrogen and
helium - formed. As long as the temperature is above 1 eV, the plasma is made of electrons,
positrons, photons and the lightest nuclei in thermal equilibrium. In particular, photons
are kept in thermal equilibrium mainly via Compton scattering with the electrons. The
few hydrogen atoms produced in this period are rapidly destroyed by energetic photons.
However, when T < 0.3eV, electrons and nuclei can combine permanently in hydrogen and
helium atoms. This is the so-called recombination. As atoms form, the fraction of free
electrons decreases and the Compton scattering becomes less efficient and photons decouple
from the plasma. Relic photons form the cosmic microwave background.

Recombination

When a generic 1 + 2 ↔ 3 + 4 reaction is in chemical equilibrium, the chemical potentials
of the species involved satisfy the condition µ1 + µ2 ↔ µ3 + µ4. Furthermore, when the
number of a given particle species is not conserved, its chemical potential vanishes. In the
e− + p↔ H + γ reaction, the chemical potentials satisfy

µe + µp = µH , (3.27)

because photon number is not conserved [26]. This is valid only in full thermal equilibrium,
thus neglecting recombination into excited states of hydrogen. A more refined treatment of
recombination needs to consider the helium fraction and the multi-level atomic structure of
hydrogen. This requires non-equilibrium thermodynamics and usually it is done numerically.
However, a roughly correct treatment of recombination can be still done with equilibrium
thermodynamics. In thermal equilibrium at T < 0.3eV, electrons, protons and hydrogen
atoms are non-relativistic and their number densities are given by equation (3.21). The
Universe is electrically neutral, ne = np, and chemical potentials satisfy ne+np = nH . Thus:

n2
e

nH
= nenp

nH
= gegp

gH

(
memp

mH

T

2π

)3/2
exp

(
−me +mp −mH

T

)
. (3.28)

The degrees of freedom are ge = gp = 2, gH = 4 and mp is roughly equal to mH . The
quantity me +mp −mH

def=∆ = 13.6eV is the binding energy of the hydrogen. The previous
equation is equivalent to

n2
e

nH
=
(
meT

2π

)3/2
e−∆/T . (3.29)

It is convenient to introduce the free electron fraction

Xe
def= ne
np + nH

≡ ne
ne + nH

. (3.30)
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A full ionized Universe has Xe = 1, while a Universe with no free electrons at all has Xe = 0.
We write

X2
e

1−Xe

= n2
e

(nH + np − ne)(np + nH) ≡
n2
e

nH(np + nH) , (3.31)

where np + nH = nb is the baryon density. Furthermore, nb = ηnγ, where η ≈ 5.5× 10−10 is
the baryon-to-photon ratio. By using equation (3.29), we can write

X2
e

1−Xe

= 1
ηnγ

n2
e

nH
= 1
ηnγ

(
meT

2π

)3/2
e−∆/T . (3.32)

By using the expression for the number of density of photons in thermal equilibrium (3.19a),
we can write the previous as

X2
e

1−Xe

= π2

2ηζ(3)

(
me

2πT

)3/2
e−∆/T . (3.33)

This is the Saha equation. Notice that for T ∼ ∆, the right hand side of the Saha equation
is of order 1015 and the equation can be satisfied only for Xe very close to 1, that is when
all hydrogen is ionized. The time of recombination is conventionally defined as the moment
when Xe = 0.5. This is possible only when T � ∆. Saha equation is not exact, but it is
valid only in the hypothesis that recombination proceeded in full thermal equilibrium. This
cannot be true since as long as Xe falls, also the rate of the interaction between electrons
and photons drops and thermodynamic equilibrium is difficult to maintain [27]. To follow
the free electron fraction accurately, non-equilibrium thermodynamics is necessary and this
will be done in section 4.2.

The Saha equation allows making a good estimation of the recombination temperature,
which is Trec = 0.335eV. The corresponding redshift can be computed by assuming that
shortly after Trec photons decouple from the plasma and from that moment their temperature
evolves as a−1. Then, we can project backward in time the present day photon temperature
T0 = 2.725 48 K [28] until recombination: Trec = T0(1 + zrec). This gives zrec = 1425.

The end of recombination is defined as the moment when the free electron fraction is the
10%. The Saha equation is not able to find the corresponding redshift because it fails as
Xe drops down. It is still possible to estimate the end of recombination by comparing the
interaction efficiency of the reaction e− + p↔ H + γ, which is [26]

ΓR = npσR|v| = Xe

(
0.75nb
nγ

)
nγσR|v| =

≈ Xe

(
0.75nb
nγ

)
nγ4.7× 10−24

(
T

1eV

)−1/2
cm2 =

≈ 2.1× 10−10cm−1
(
T

1eV

)7/4
e−∆/2T (Ωbh

2)1/2, (3.34)

where Ωb is the ratio between the density of baryons and the critical one, with the Hubble
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rate, that can be obtained from equation (2.46) by assuming a matter-dominated flat universe

H2 = 8πG
3 ρ = 8πG

3 ρ0

(
a0

a

)3
= 8πG

3 Ωmρc(t0)
(
T

T0

)3
. (3.35)

The recombination freeze out temperature Tg is defined as ΓR(Tg) = H(Tg) and it is obtained
from (

Tg
1eV

)1/4
e−∆/2Tg ≈ 1.4× 10−13

(
Ωm

Ωb

)1/2

. (3.36)

From [18] one has Ωm ≈ 6.4Ωb and thus Tg ≈ 0.24 eV. The corresponding redshift is
zg ≈ 1010.

Photon Decoupling

The main interaction that keeps photons in equilibrium with the plasma is Compton scatter-
ing with electrons, whose interaction efficiency is given by Γγ ≈ neσT (photons have |v| = 1),
where σT = (8π/3)α2m−2

e ≈ 2× 10−3MeV−2 is the Thomson cross section. This interaction
efficiency depends on the temperature since ne does. Indeed, by using ne = Xenb = Xeηnγ

and equation (3.19a) for nγ we can write

Γγ(T ) = σTXe(T )η2ζ(3)
π2 T 3. (3.37)

The photon decoupling temperature is

Xe(Tdec)T 3/2
dec = π2

2ζ(3)ησT

√√√√8πGΩmρ(t0)
3T 3

0
=⇒ Tdec ≈ 0.25eV. (3.38)

This temperature corresponds to the redshift zdec ≈ 1100. So, photon decoupling occurs
during recombination.

This redshift is also called ’last scattering surface’. This definition is related to the one
of optical depth. In general, light emitted with intensity I0, travelling in a medium, will
be observed at distance r with intensity I(r) = I0e

−τ(r). The function τ is called optical
depth of the medium: if τ � 1 the medium is transparent or optically thin, while if τ � 1
the medium is said to be optically thick. In cosmology, the Thomson scattering between
electrons and photons is a sort of medium and we can define the Thomson optical depth

τ(t) =
∫ t0

t
dt′Γγ(t′) =

∫ t0

t
dt′σTne(t′). (3.39)

e−τ(t) is the probability for a photon to not scatter between t and t0. Then, the probability
for a photon to scatter for the last time between t and t+ dt is

d
dt
(
1− e−τ(t)

)
dt = e−τ(t) dτ(t)

dt dt = σTne(t)e−τ(t) def= g(t)dt. (3.40)
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g(t) is called visibility function and it is the probability density of last scatter between t and
t+ dt. In redshift space such probability is expressed as

g(z)dz = g(t(z)) dt
dzdz = σTne(z)e−τ(z)

(1 + z)H(z) dz, (3.41)

where the relation between t and z

t ≡
∫

dt′ ≡
∫ a

0

da
ȧ
≡
∫ a

0

da
aH(a) ≡

∫ ∞
(1+z)−1

dz
(1 + z)H(z) . (3.42)

was used. The last scattering redshift zls corresponds to the maximum of the function g(z):
at this redshift photons have the highest probability to scatter for the last time.

Reionization

In the hypothesis that Xe = 1 always, equation (3.38) suggests that photons still could
decouple from the plasma due to the expansion of the Universe. In this case, the decoupling
redshift z′dec is given by

1 + z′dec = T−1
0

 π2

2ζ(3)ησT

√√√√8πGΩmρ(t0)
3T 3

0

2/3

. (3.43)

Current observations show that at zreio ≈ 6 the Universe was reionized. If the Universe
was reionized at very early times before z′dec, the observables linked to CMB would be
dramatically affected. Since zreio � z′dec, the alteration is slight.

CMB spectrum

If photons were in local thermal equilibrium at decoupling, their present phase space distri-
bution is expected to have a black body shape (see equation (3.26) and the discussion above
it). A measure of such distribution would be able to prove if the primordial plasma was
really in local thermal equilibrium.

Actually, the phase space distribution is not observable, but we measure the CMB spectral
intensity u(ν), which is the flux of energy per unit of volume and per unit of frequency †:

u(ν) def= ∂ρ(hν)
∂ν

=⇒ ρ =
∫ ∞

0
dνu(ν). (3.44)

By using equations (3.14),(3.17) and the fact that photons satisfy E(p) = c|p| = hν, we find

ρ(ν) = g

h3

∫
d3p

E(p)
exp

(
E(p)
kBT0

)
− 1

= 4πgh
c3

∫ ∞

0

dν ν3

exp
(

hν
kBT0

)
− 1

. (3.45)

† only for this computation the standard units are temporarily restored
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We performed an integration over the solid angle. Since photons have g = 2, one gets

u(ν) = 8πh
c3

ν3

exp
(

hν
kBT0

)
− 1

. (3.46)

The intensity, or spectral radiance, is defined as

I(ν) = c

4πu(ν) ≡ 2h
c2

ν3

exp
(

hν
kBT0

)
− 1

. (3.47)

In figure 2 we plot the data measured by the COBE/FIRAS mission and the theoretical
prediction of the black body intensity (3.46) at temperature [28]

T0 = (2.72548± 0.00057)K. (3.48)

The data agree with the black body prediction. Deviations from a pure black body spectrum
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Fig. 2 – CMB intensity spectrum as measured by COBE/Firas mission [28]. The solid represents
the theoretical prediction for a blackbody at temperature T0 given by (3.48). Error bars are not
visible since their order of magnitude is kJy sr−1.

are parametrized with two adimensional parameters µ and y. These parameters are strictly
constrained by the FIRAS mission [1]:

|µ| < 9× 10−5, |y| < 1.5× 10−5. (3.49)



II

CMB Spectral Distortions

The early Universe was in thermal equilibrium because the CMB spectrum has an almost
perfect black body shape. However, even in the standard cosmological model, we expect
deviations from the black body shape, called spectral distortions (SDs). There are mainly
two types of SDs, whose (adimensional) amplitudes are usually written as µ and y. The
latest measurement of the CMB spectrum is due to the COBE/FIRAS mission in the early
90’s, which did not detect any deviations from the black body shape and set tight constraints
on µ and y (3.49). Every cosmological model has to satisfy these constraints.

With present-day technology, a future space-based spectrometer, like Pixie [8] or the
one proposed to answer the ESA Voyage 2050 call [11], could improve by three orders of
magnitude the constraints on µ and y. This could be a crucial test for the ΛCDM model
because it predicts SDs of the order of 10−8. Furthermore, ΛCDM SDs are generated at
small scales, where this model has never been tested before. CMB SDs can also constrain
exotic scenarios, such as primordial black hole evaporation or annihilating dark matter.

Most of the work made in this thesis was devoted to understanding the physics behind
CMB SDs, how they are generated and how they can be used to test different cosmological
models. In this chapter, we present a review of SDs physics. In the first section, the ther-
malization problem, which tries to understand how CMB reacts to deviations from thermal
equilibrium, is introduced. In the second section, we describe the characteristics of SDs.
Finally, in the last section of the chapter, we list some causes of SDs. To be more precise, a
particular source of SDs, which provide the case of interest for this thesis, will be examined
in depth in chapter IV.

4 Formulation of the thermalization problem

4.1 Black body radiation

When the temperature of the Universe was between me and the recombination temperature
Trec, the primordial plasma contained mainly photons and electrons/positrons that inter-
acted mostly via Compton scattering (CS), e + γ → e + γ, double Compton scattering
(DCS), e + γ → e + 2γ, and Bremsstrahlung (BR), e + X → e + X + γ, where X is an
atomic nucleus, usually a helium-4 or hydrogen nucleus. In particular, CS is a process that
redistributes photons/electrons in energy while DCS and BR are photons-number-changing
interactions. As long as these three interactions were efficient, they were able to smooth out

29
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any departure from thermal equilibrium in the photons-electrons/positrons bath. This effect
is called thermalization of the CMB.

To understand naively how thermalization works, forget for a while about the Universe
and consider a box with a hole filled with electrons and photons in thermal equilibrium.
Since photons are in thermal equilibrium, their intensity spectrum will have the shape of
a Planckian spectrum. Imagine now heating one side of the box for a small time. In this
time interval, photons that hit the hot wall of the box heated up. Equivalently, we can say
that there is an energy-release in the photons-electrons bath that causes a departure from
thermal equilibrium and thus a distortion of the photons black body spectrum. However,
thanks to the Compton scattering between electrons and high energetic photons, most of
the injected energy is redistributed among electrons and lower energetic photons. If there
are too many energetic photons, number changing processes, like the BR or DCS, transform
these photons in lower energy one until the black body shape is restored. Of course, due
to the conservation of energy, the temperature of the black body increases, so that the final
spectrum is still Planckian but with an increased temperature.

When CS, DCS and BR stop being efficient, energy releases do not simply translate into
a temperature shift of the Planckian spectrum. Indeed, if the box expands, as the Universe
does, the interactions become less efficient because the mean free path between electrons and
photons increases. As a consequence, energy releases could not be fully thermalized causing
the so-called SDs of the photons spectrum.

4.2 Beyond thermal equilibrium

To formalize the thermalization problem, it is necessary to include collisions in the context of
the Boltzmann equation and to follow the evolution of the photon phase space distributions.

When collisions are not negligible, the collision-less Boltzmann equation (3.4) is modified
as

L̂[f ] = C[f ], (4.1)

where C is the collision operator and includes all the interactions between the considered
species and all the other ones. Its form depends on the specific interactions considered. In the
case of thermal equilibrium, both sides of the Boltzmann equation are zero. By integrating
the Boltzmann equation over gd3p/(2π)3 and by using equation (3.9), we get

dn
dt + 3Hn = g

(2π)3

∫
d3pC[f ]. (4.2)

Consider for example a species ψ that undergoes to the process ψ+a+b+· · · ←→ i+j+. . . .
The integrated collision operator in this case is

g

(2π)3

∫
d3pψC[fψ] =

∫
dΠψdΠadΠb . . . dΠidΠj · · · ×

×(2π)4δ4(pψ + pa + pb · · · − pi − pj . . . )×
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×
[
|M|2i+j+···→ψ+a+b+...fifj . . . (1± fa)(1± fb) . . . (1± fψ)

− |M|2ψ+a+b+···→i+j+...fafb . . . fψ(1± fi)(1± fj) . . .
]
, (4.3)

where + (−) applies for bosons (fermions) and where the phase space volume element is
defined as

dΠ = g

(2π)3
d3p

2E . (4.4)

We then identify the collision operator C[fψ] as

C[fψ] = 1
2Eψ

∫
dΠadΠb . . . dΠidΠj · · · ×

×(2π)4δ4(pψ + pa + pb · · · − pi − pj . . . )×
×
[
|M|2i+j+···→ψ+a+b+...fifj . . . (1± fa)(1± fb) . . . (1± fψ)

− |M|2ψ+a+b+···→i+j+...fafb . . . fψ(1± fi)(1± fj) . . .
]
. (4.5)

The 4-dimensional delta function ensures momentum conservation, while |M|2ψ+a+b+···→i+j+...

is the module squared matrix element for the process ψ+ a+ b+ · · · → i+ j + . . . averaged
over initial and final spin states. M includes also an appropriate symmetry factor. The
first term in the squared brackets of C[fψ] represents the production of ψ particles while the
second one represents their destruction.

In the primordial plasma there were more than one particle species, say n. The evolution
of each species is determined by a set of n Boltzmann equations coupled via the collision
operators Ci. This set of integral-partial differential equations is difficult to be solved and
to simplify calculations it is common to consider equilibrium distributions for those species
that rapidly interact with the other ones. We also assume CP invariance so that the previous
system becomes |M|2ψ+a+b+···→i+j+... = |M|2i+j+···→ψ+a+b+...

def= |M|2 and thus

C[fψ] = 1
2Eψ

∫
dΠadΠb . . . dΠidΠj · · · ×

×(2π)4δ4(pψ + pa + pb · · · − pi − pj . . . )|M|2×
× [fifj . . . (1± fa)(1± fb) . . . (1± fψ)
− fafb . . . fψ(1± fi)(1± fj) . . . ] . (4.6)

When the temperature of the system is smaller than E−µ, it is possible to use the Maxwell-
Boltzmann distribution instead of the Fermi-Dirac or Bose-Einstein ones. This gives 1±f ≈ 1
and so [fifj · · · − fafb . . . fψ].

In the case of a 1 + 2↔ 3 + 4 process, the Boltzmann equation for the species ”1” is

ṅ1 + 3Hn1 =
∫

dΠ1dΠ2dΠ3dΠ4(2π)4δ4(p1 + p2 − p3 − p4)|M|2×

× [f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)] . (4.7)
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Notice that the left-hand side of the previous equation is nothing but a−3 d(nψa3) /dt and
clearly in absence of interaction - |M| = 0 - the solution is nψ ∝ a−3 as expected. By
considering systems at temperatures smaller than E − µ, the squared brackets on the left
hand side are equal to

[f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)] = e−(E1+E2)/T
[
e(µ3+µ4)T − e(µ1+µ2)T

]
, (4.8)

where we used the energy conservation E1 +E2 = E3 +E4 condition. The number densities
ni are linked to µi through

ni = gie
µi/T

∫ d3p

(2π)3 e
−Ei/T (4.9)

so that equation (4.8) becomes

[f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)] = e−(E1+E2)/T
[
n3n4

n
(0)
3 n

(0)
4
− n1n2

n
(0)
1 n

(0)
2

]
, (4.10)

where n(0)
i is ni in the case of µi = 0. Defined the thermally averaged cross section 〈σv〉 as

〈σv〉 = 1
n

(0)
1 n

(0)
2

∫
dΠ1dΠ2dΠ3dΠ4(2π)2δ4(p1 + p2 − p3 − p3)|M|2e−(E1+E2)/T , (4.11)

we can finally write the Boltzmann equation (4.7) as

ṅ1 + 3Hn1 = 〈σv〉n(0)
1 n

(0)
2

[
n3n4

n
(0)
3 n

(0)
4
− n1n2

n
(0)
1 n

(0)
2

]
. (4.12)

The order of the left hand side of the previous equation is Hn1 while the right hand side is
of order 〈σv〉n1n2. The right hand side dominates the left one as long as 〈σv〉n2 � H. In
this case, the only way to keep thermal equilibrium is that all the terms on the right hand
side cancel. For large interactions the equilibrium can be achieved if the following condition
is satisfied

n3n4

n
(0)
3 n

(0)
4

= n1n2

n
(0)
1 n

(0)
2
. (4.13)

This is nothing but the Saha equation found when studying recombination as a consequence
of chemical equilibrium (see equation (3.33)).

The Boltzmann equation formalism can be applied to prove the rule that states that
particles are kept in thermal equilibrium in the plasma as long as Γ� H. Consider the new
variable

Y
def=n/s, (4.14)

where s is the entropy density that, given a set of species in thermal equilibrium, is equal to
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s = ∑
i(ρi + pi)/T . The Boltzmann equation (4.12) can be rewritten as

d ln Y1

d ln a = −Γ1

H

1−
Y (0)

1 Y
(0)

2

Y
(0)

3 Y
(0)

4

 Y3Y4

Y1Y2

 , (4.15)

where
Γ1

def=n2〈σv〉 (4.16)

is the interaction efficiency. The bracket in front of Γ1 describes the deviation from thermal
equilibrium. Since the Universe expansion can be considered as adiabatic, the entropy density
remains constant: s ∝ a−3. When thermal equilibrium is satisfied the number of particles
scales as a−3 and thus Y remains constant. Given that Γ1 � H, if Y1 � Y

(0)
1 and Yi � Y

(0)
i

for i = 2, 3, 4, the right hand side of (4.15) is negative and there will be a destruction of
particles of type ”1” to decrease Y1 towards Y (0)

1 . Vice versa, for Y1 � Y
(0)

1 there will be a
production of particles "1" to have Y1 → Y

(0)
1 . When the interaction efficiency drops down

the Hubble parameter, Γ1 � H, the right hand side of equation (4.15) is approximately zero
and thus the comoving density Y1 approaches a constant relic density which survived until
the present day.

Recombination revisited

We can now give a more precise treatment of recombination. The Boltzmann equation (4.12)
in the case of the e− + p↔ H + γ process is

1
a3

d(a3ne)
dt = n(0)

e n(0)
p 〈σv〉

(
nH

n
(0)
H

− n2
e

n
(0)
e n

(0)
p

)
, (4.17)

provided that ne = np and nγ = n(0)
γ . By introducing Xe and using equation (3.32), the

previous relation turns into

dXe

dt =
[
(1−Xe)β −X2

enbα
(2)
]
, (4.18)

where
α(2) def=〈σv〉 β = α(2)

(
meT

2π

)3/2
e−∆/T . (4.19)

The superscript (2) in the recombination rate α indicates recombination to Hydrogen first
excited state (n = 2). Recombination to the ground state (n = 0) has a zero net effect
because it produces high energy photons able to immediately ionize a neutral atom.

Recombination can proceed only via thencapture to one of the excited states of hydrogen.
α(2) is approximately [27]

α(2) = 9.78 α
2

m2
e

(
∆
T

)1/2

ln
(

∆
T

)
. (4.20)
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Fig. 3 – Comparison of the free electrons fraction
predicted by the Saha and Boltzmann equations
(3.33), (4.18).

The detailed evolution of Xe is determined
by integrating numerically equation (4.18).
The comparison between numerical results
and Saha approximated ones is shown in fig-
ure 3. The figure suggests that Saha equa-
tion estimates the redshift zrec for which
Xe = 0.5 (zrec = 1353) well. However, it
overestimates the redshift for which Xe =
0.1, which is correctly computed with the
full Boltzmann equation z′rec = 1070. This
value is almost the same as the recombina-
tion freeze out redshift obtained in equation
(3.36).

4.3 Photon Boltzmann equation

The thermalization problem consists in following the photon phase space distribution evo-
lution in presence of energy release. The evolution is determined by the photon Boltzmann
equation, in which electrons and positrons are involved. We assume that electrons and
positrons have a thermal distribution but their temperature Te can be different from the
photons one Tz = T0(1 + z).

The collision operator appearing in the full Boltzmann equation (4.1) is the sum of the
contributions coming from CS, BR and DCS interactions

C[f ] = C[f ]|CS + C[f ]|DC + C[f ]|BR + C[f ]|S , (4.21)

where C[f ]|S represents an energy release source term.

Compton Scattering

The Compton scattering is schematized as

e−(p) + γ(k)←→ e−(p′) + γ(k′) γ

e− γ

e−

k

p

p′

k′

α′

Θ

α
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The associated collision operator is fully derived in [29] and the result is the famous Kom-
paneets equation

∂f

∂τ

∣∣∣∣∣
CS
≈ θe
x2
e

∂

∂xe

(
x4
e

[
∂f

∂xe
+ f(1 + f)

])
≡ θe
x2

∂

∂x

(
x4
[
∂f

∂x
+ Tz
Te
f(1 + f)

])
, (4.22)

where τ is the Thomson optical depth

∆τ = σTNe∆t, (4.23)

and
x

def= ν/(kBT ), xe
def= ν/(kBTe), θe

def= kBTe/me, (4.24)

We used the approximation Te ≈ Tz in the second equality.

Bremsstrahlung

Thermal Bremsstrahlung is the radiative correction to Coulomb scattering with a changing
photons number. It can be schematized as

e−(p) +H+(h)←→ e−(p′) +H+(h′) + γ(k)

e−

H+

γ

e−

p p′

k

b

Actually, H+ can be a generic gas of N ions with charge Ze+. b is the impact parameter and
it is the closest distance between the passing electron and H+. The BR collision operator is
[29]

∂f

∂τ

∣∣∣∣∣
BR
≈ KBRe

−xe

x3
e

[1− f(exe − 1)], (4.25a)

KBR
def= α

2π
λ3
e√

6πθ7/2
e

∑
i

Z2
iNigff(Zi, Te, ν) ≈ 1.4× 10−6

[
gff

3.00

] [Ωbh
2

0.022

]
(1 + z)−1/2. (4.25b)

where λe = 1/me ≈ 2.43× 10−10 cm is the Compton wavelength and α = 2πe2 = 1/137
the fine-structure constant. In the previous equation we introduced the thermally averaged
Gaunt factor that can be numerically approximated as [29]:

gff(xe) ≈


√

3
π

ln
(2.25
xe

)
, for xe ≤ 0.37

1, otherwise
(4.26)
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Double Compton scattetring

DCS can be interpreted as the radiative correction to Compton scattering

e−(p) + γ(k)←→ e−(p′) + γ(k′) + γ(k2)

γ

e−

γ

e−

γ

k

p p′

k′

k2

By assuming that γ(k2) is a soft photon, i.e. with nu2 � ν ∼ ν ′, and that ν � me, DCS
collision operator has a form similar to the BR one:

∂f

∂τ

∣∣∣∣∣
DCS
≈ KDCS

x3 [1− f(exe − 1)] (4.27a)

KDCS
def= gDCS

4α
3π θ

2
γ

∫
dxx4f(x)[1 + f(x)] ≈ 1.7× 10−20gDCS(1 + z)2. (4.27b)

where [30]:

gDCS ≈
1 + 3

2x+ 29
24x

2 + 11
16x

3 + 5
12x

4

1 + 19.739θγ − 5.5797θe
. (4.28)

Final equation and time-scales

We can now write the full Boltzmann equation for photons. We change the physical momen-
tum p into the adimensional frequency x in the Boltzmann equation to absorb the −Hp∂ρf
term present in the Liouville operator. We further compute the derivatives with respect to
the Thomson time, dτ = σTNedt. The final equation is

∂f

∂τ
≈ θe
x2

∂

∂x
x4
[
∂

∂x
f + Tz

Te
f(1 + f)

]
+ KBRe

−xe

x3
e

[1− f (exe − 1)]

+ KDCSe
−2x

x3 [1− f (exe − 1)] + S(τ, x), (4.29)

where

KBR = α

2π
λ3
e√

6πθ7/2
e

∑
i

Z2
iNiḡff (Zi, Te, Tz, xe) , (4.30a)

KDCS = 4α
3π θ

2
γgDCS (Te, Tz, x)

∫
dxx4f(x)[1 + f(x)], (4.30b)

ḡff (xe) ≈

√

3
π

ln
(

2.25
xe

)
, for xe ≤ 0.37

1, otherwise
(4.30c)

gDCS ≈
1 + 3

2x+ 29
24x

2 + 11
16x

3 + 5
12x

4

1 + 19.739θγ − 5.5797θe
. (4.30d)
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To numerically solve this equation it is necessary to follow the evolution of the electron
temperature Te in presence of energy injections, which is [30]

dρe
dτ

def= dTe/Tz
dτ = tTQ̇

αhθγ
+ 4ρ̃γ
αh

[ρeqe − ρe]−
4ρ̃γ
αh
HDCS,BR (ρe)−HtTρe, (4.31)

where Te is the matter temperature. We introduced the heat capacity of the medium

αh = 3
2[Ne +NH +NHe] ≡

3
2NH [1 + fHe +Xe], (4.32)

the energy injection rate Q̇, the energy density of the photon field in units of the electron
mass ρ̃e = ργ/me and where ρeqe = T eqe /Tz. We also introduced the BR/CDS heating integrals

HDCS,BR = 1
4G3θz

∫
dx [1− f(x) (exe − 1)]×KDCS,BR (x, θz, θe) , (4.33)

where
G3 =

∫
dxx3f(x). (4.34)

The Compton scattering time-scale is defined as

∂ργ
∂t

∣∣∣∣∣
CS
∝ 1
tCS

ργ, (4.35)

or analogously
∂ργ
∂τ

∣∣∣∣∣
CS
∝ tT
tCS

ργ. (4.36)

It represents the typical time interval during which electrons transfer energy to photons. In
case of Te = Tz, it is equal to

teγ = tT
4θe
≈ 1.2× 1029 (1 + z)−4s, (4.37)

where tT def=(σTNe)−1 is the Thomson rate. By comparing this rate with the Hubble one, one
finds that Comptonization becomes inefficient at

zK ≈ 5× 104. (4.38)

The time-scale on which BR emission and absorption bring the photons field distribution
in thermal equilibrium with electrons is

∂f

∂τ

∣∣∣∣∣
BR
∝ tT
tBR

f, (4.39)
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and at any frequency xe it is given by

tBR = tTx
3
e

KBR(1− e−xe) ≈ 1.4× 10−6
[
gff

3.00

] [Ωbh
2

0.022

]
x3
e

1− e−xe (1 + z)−5/2s. (4.40)

The BR time-scale depends not only on the redshift as in CS case but also on the (adimen-
sional) frequency xe. In particular, BR is particularly efficient at high redshift or at low
frequencies.

The typical time-scale for the double Compton scattering is

tDCS = tTx
3e2x

KDCS(exe − 1) , (4.41)

and as in the BR case it depends on the frequency. By assuming xe = x, we have that for
z & 103

KBR = 1.4× 106
[
gff

3.0

] [Ωbh
2

0.022

]
(1 + z)−1/2, (4.42a)

KDCS = 1.7× 10−20(1 + z)2. (4.42b)

BR and DCS are comparable at

zDCS,BR = 3.7× 105
([

gff

3.0

] [Ωbh
2

0.022

])2/5

. (4.43)

At z > zDCS,BR, DCS is more efficient than BR while at lower redshift BR dominates. Both
BR and DCS are efficient at z & 2× 106.

To sum up, the relevant redshifts are

1. zth ≈ 2× 106 both BR and DCS become inefficient for high energy photons. They are
however efficient for soft photons.

2. zK ≡ zµy ≈ 5× 104, Compton scattering becomes inefficient.

For z > zth all the collision processes are efficient and energy injections occurring above zth

are fully thermalized leading to a simple temperature shift (g) of the black body spectrum.
As the Universe expands, these processes become inefficient and energy releases cannot be
fully thermalized generating SDs. At early times, for zK < z < zth, BR and DCS are not
efficient anymore and the number of photons is almost frozen. However, CS is still efficient
and can restore the equilibrium after an energy release. Since CS does not change the number
of photons, the resulting spectrum will be a Bose-Einstein distribution, characterized by a
frequency-dependent chemical potential µ(x). These are the so-called chemical potential,
or µ-type, CMB SDs. At late times z < zK also Compton scattering becomes inefficient
and thus energy injections may produce the so-called Compton y-distortions. The transition
from the µ-era to the y-one is not instantaneous but gradual. During the transition from the
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µ- to the y-era, not all CMB SDs can be simply parametrized as a µ+y distortion, but there
is a small residual (r-type) distortion that contains information on the time-dependence of
the energy release [31].

5 Spectral distortions characteristics

In this section we analyze SDs characteristics. We also present the linearized thermalization
problem and its Green’s function solution which allows a fast and precise computation of
SDs. The Green’s function method is particularly important because it is the one numerically
implemented in the Einstein-Boltzmann solver CLASS [32], [33], [34].

5.1 Shapes

To model the shape of spectra distortions, we split the photon phase space distribution
f(t, x) as

f(t, x) = B(x) + ∆f(t, x), (5.1)

where B(x) is the phase space distribution of a black body at the temperature Tz: B(x) =
[ex − 1]−1. ∆f(t, x) represents the SDs. This separation allows to include SDs due to
deviation of the radiation temperature Tγ from the simple Tz ∝ (1 + z) law. In this case,
the distortion has the shape of a black body but with a different temperature. This type of
spectral distortion is called temperature shift. Since temperature shifts are really hard to
be observed, as it will be soon shown, keeping them separated from other SDs is crucial for
the forecast of future experiments.

When f(t, x) has not a simple black body shape, the definition of temperature is not
unique. In this thesis, the photon temperature Tγ is the one of a black body that would
share the same number density of the distorted photon phase space distribution.

Temperature shift

For z < zth ≈ 2× 106, all energy injections are thermalized and the photon phase space
distribution at first order is

f(x) = B(p/Tγ) = B

(
x

1 + ∆T/Tz

)
≈ B(x)− x∂B(x)

∂x

∆T
Tz

def=B(x) +G(x)∆T
Tz

, (5.2)

where ∆T = Tγ − Tz � Tz. The shift of the phase space distribution is

∆f(x) = G(x)∆T
Tz

. (5.3)
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G represents the shape of a temperature shift and it is equal to

G(x) def= = −x∂B(x)
∂x

= xex

(ex − 1)2 . (5.4)

The difference of the chosen reference temperature T0 = Tz(z = 0) with the true one Tγ(z =
0) determines the amplitude of the temperature shift. In practice it is always possible to
readjust the reference temperature to coincide with the observed one. For this reason, it is
hard to detect temperature shifts.

Chemical potential distortion

For zK < z < zth, CS is very efficient and so C[f ]|CS = 0. The Kompaneets equation (4.22)
gives

θe
x2

∂

∂x

(
x4
[
∂f

∂x
+ Tz
Te
f(1 + f)

])
= 0. (5.5)

This equation is satisfied ad long as f is a solution of the equation[
∂f

∂x
+ Tz
Te
f(1 + f)

]
= 0. (5.6)

The physically relevant solution to this equation is a Bose-Einstein distribution

f(x) = 1
ex̃+C − 1 , where x̃ = xTz/Te, (5.7)

and where C is an integration constant representing the chemical potential. When DCS and
BR scatterings are efficient, C must vanish because the photon number is not conserved,
otherwise a µ-type spectral distortion is created. x̃ can be replaced with x because their
difference is a simple temperature shift and it is not relevant for µ-distortions. By defining
C with µ0, the shape of this type distortions can be easily found in the limit of a small µ0:

f(x) = B(x+ µ0) = 1
ex+µ0

≈ B(x)− µ0
G(x)
x

+O(µ2
0). (5.8)

The naive definition of the µ-type shape would be

M̃(x) = −G(x)
x

, (5.9)

but this is not correct since this type of distortion does not conserve the number of photons
as it should. Indeed, the definition of M̃ can be seen as a temperature shift plus a pure
µ-distortions [34]. The shape of the pure µ-distortion is then obtained by subtracting to M̃
the temperature shift contribution:

M(x) = M̃(x)− αµG(x) = −G(x)
(1
x
− αµ

)
, (5.10)
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where αµ is an integration constant obtained by imposing that µ-type distortions conserve
photon number, i.e.

∆n =
∫

d3pδf(t, p) ≡ 4πT 3
z

∫
dxx2∆f(x) = 0. (5.11)

We can easily check that
∫

dxx2M(x) =
∫

(−x+ αµx
2)G(x) = −G1 + αµG2 = 0, (5.12)

where Gk
def=
∫

dxdkG(x) = (k + 1)!ζ(k + 1). Therefore

αµ = G1/G1 ≈
1
3
ζ(2)
ζ(3) ≈ 0.4561. (5.13)

In the end, the µ-distortion shape is

M(x) = G(x)
[
0.4561− 1

x

]
, (5.14)

and we can write
∆f(x) = µM(x). (5.15)

A positive amplitude µ implies that there are fewer photons than in a black body at tem-
perature Te, while µ < 0 means that there are more photons. µ > 0 is achieved by an energy
injection, while µ < 0 is caused by an energy extraction. If µ = 0 the photon field is in full
thermal equilibrium with electrons and it has a black body shape.

Compton distortion

A Compton, or y-type, distortion occurs for z < zK when CS still takes place but it is not
very efficient. To find its shape and amplitude, we have to solve the Kompaneets equation
when it does not reach the equilibrium solution:

∆f
∆τ ≈

Te
me

1
x2

∂

∂x

(
x4
[
∂B(x)
∂x

+ Tz
Te
B(x)(1 +B(x))

])
= Tz − Te

me

1
x2

∂

∂x

(
x3G(x)

)
, (5.16)

where it was assumed that the photon field started with a black body distribution. The shift
∆f is then

∆f(x) ≈ ∆τ Te − Tz
me

[
1
x2

∂

∂x

(
x3G(x)

)] def= yY (x), (5.17)

where the y-type shape is determined by

Y (x) = − 1
x2

∂

∂x

(
x3G(x)

)
= G(x)

[
x
ex + 1
ex − 1 − 4

]
. (5.18)
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The photon number is already conserved by a y-distortions:

∆n ∝
∫

dxx2Y (x) = 0. (5.19)

The amplitude of y-type distortions is determined by the Compton parameter

y
def=
∫ τ

0
dτ ′ kB

me

(Te − Tz) =
∫ t

0
dt kB
me

(Te − Tz)σTNe, (5.20)

which depends on the number of scattering (via τ) and on the net energy exchange ∆ν/ν ≈
4(θe− θγ). If electron and photon temperatures are equal, the Compton parameter vanishes.
On the other hand, a positive y indicates that a Comptonization occurred: the overall energy
was transferred from electrons to photons. Vice versa, if y < 0 there was an energy transfer
from photons to electrons.

The inefficiency of CS is not the only way to produce a y-type SD. Indeed, by expanding
temperature shift (5.2) at second order one finds

B

 x

1 + ∆T
Tz

 ≡ F

(
∆T
Tz

)
≈

≈ F (0) + F ′(0)∆T
Tz

+ 1
2F
′′(0)

(
∆T
Tz

)2

+ · · · =

= B(x) + xex

(ex − 1)2
∆T
Tz

+ 1
2

xex

(ex − 1)2

[
x
ex + 1
ex − 1 − 2

] (∆T
Tz

)2

+ · · · ≡

≡ B(x) +G(x)
∆T
Tz

+
(

∆T
Tz

)2
+ 1

2Y (x)
(

∆T
Tz

)2

+ . . . . (5.21)

It is important to include the second-order contribution of temperature shifts because it can
add to the total y-type amplitude a term up to around 2× 10−8, which is not negligible since
it is above the target sensitivity of future experiments [8],[11]. Terms of order g3 are instead
negligible since they are of order 10−12.
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Fig. 4 – SDs shapes compared to CMB black
body spectrum.

Actually, B(x), G(x), M(x) and Y (x) are
the shapes at the level of the phase space
distribution. To translate them in terms of
the spectral radiance intensity, it is neces-
sary to multiply them by Nx3, where N =
2(kBT0)3. We plot the SDs shapes compared
to the CMB black-body spectrum detected
by FIRAS in figure 4. Notice that we plotted
SDs for large amplitudes in order to high-
light the different shapes, but FIRAS set
very tight constraints on these parameters.
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5.2 Amplitudes

At this stage, the disturbed spectral radiance spectrum of the CMB is written as

I(x) = I0(x) + ∆I(x) = I0(x) + ∆IT (x) + ∆Iµ(x) + ∆Iy(x), (5.22)

where I0 = Nx3B(x) is the black body intensity and

∆IT (x) = Nx3
[
g(1 + g)G(x) + (g2/2)Y (x)

]
(5.23a)

∆Iµ(x) + ∆Iy(x) = Nx3 [B(x)µM(x) + yY (x)] . (5.23b)

We recall that the shapes are given by

B(x) = 1
ex − 1 , G(x) = xex

(ex − 1)2 ,

Y (x) = G(x)
[
x
ex + 1
ex − 1 − 4

]
, M(x) = G(x)

[
0.4561− 1

x

]
.

(5.24)

The amplitudes µ and y can be roughly computed as follows. Consider the case in which a
µ distortion is completely generated by an energy release occurring only in the µ-era. Then:

∆ργ
ργ

∣∣∣∣∣
µ

=
∫

dxx3∆f(x)∫
dxx3B(x) =

∫
dxx3µM(x)∫
dxx3B(x) = µ

1.401 =⇒ µ = 1.401 ∆ργ
ργ

∣∣∣∣∣
µ

. (5.25)

Similarly, for the y-type case one finds

∆ργ
ργ

∣∣∣∣∣
y

=
∫

dxx3∆f(x)∫
dxx3B(x) =

∫
dxx3yY (x)∫
dxx3B(x) = 4y =⇒ y = 1

4
∆ργ
ργ

∣∣∣∣∣
y

. (5.26)

These are the 0-th order expressions for µ and y.
Also photon injections create SDs. In general, the correct treatment of photon injections

requires the solution of the full Boltzmann equation, which can be only performed numeri-
cally with a tool such as CosmoTherm [35]. If the injected photons are highly energetic,
they can be treated as a pure energy release [36]. More discussion about photon injections
can be found in [37]. For this thesis, only energy-releases are relevant. We want to derive a
generic expression for the amplitudes. We define the the effective heating rate Q̇ as

Q̇
def=
∫

d3pEC[f ] = ∂ργ
∂t

+ 4πHργ, (5.27)

where the second equality holds thank to the Boltzmann equation (4.1). We can rewrite the
previous equation as

∂(a4ργ)
∂t

= a4Q̇. (5.28)

The general solution of this equation is the sum of a homogeneous solution and a particular
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one: ργ = ρ0 + ∆ργ. The particular solution can be easily found as

∆ργ
ργ

=
∫ ∞

0
dt′ Q̇

ργ(t)
≡
∫ ∞

z

dz Q̇

(1 + z)Hργ(t)
≡
∫

dzdQ/dz
ργ

. (5.29)

This is the total energy release. We can decompose it into a sum of different contributions
to SDs:

∆ργ
ργ

∣∣∣∣∣
tot

≡
∫

dQ/dz
ργ

≡ ∆ργ
ργ

∣∣∣∣∣
T

+ ∆ργ
ργ

∣∣∣∣∣
µ

+ ∆ργ
ργ

∣∣∣∣∣
y

+ ∆ργ
ργ

∣∣∣∣∣
r

. (5.30)

Therefore, the expression for a generic spectral distortion amplitude a is

a = Ca
∆ργ
ργ

∣∣∣∣∣
a

≡ Ca

∫
dzdQ/dz

ργ
Ja(z), (5.31)

where Ca is a normalization factor, that was already computed for µ- and y-distortions:
Cµ = 1.401, Cy = 1/4. In the temperature shift case, it is given by

∆ργ
ργ

∣∣∣∣∣
g

=
∫

dxx3gG(x)
dxx3B(x) = 4g ≡ g/Cg =⇒ Cg = 1/4. (5.32)

The distortions visibility functions Ja(z) determine how much of the injected energy con-
tributes to a as a function of the redshift. At the 0-th order, the visibility functions are
Heaviside step functions ΘH(x):

Jg(z) = ΘH(z − zth), (5.33a)
Jµ(z) = ΘH(zth − z)ΘH(z − zK), (5.33b)
Jy(z) = ΘH(zK − z). (5.33c)

The 0-th order expressions were found by making two assumptions. The first was to neglect
photon production in the µ-era due to BR and DCS. By relaxing this hypothesis, one has
that µ is non constant anymore, but it is both time and frequency dependent [38]. This
dependence is usually decomposed as [39]

µ(t, x) = µ0(t)e−xc(t)/x, (5.34)

where xc(t) is the critical frequency of the BR and DCS processes, usually of order 10−3,
and where µ0 obeys the differential equation

dµ0

dτ = 1.401 Q̇
ργ
− γN

Tγxcµ0

me

, (5.35)

with γN def=(4/3)(1.401/G2). This equation says that the chemical potential is exponentially
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decaying and the decay time is roughly

τµ(z) ≈ γN

∫
dτ Tγxc

me

≈ (z/zth)5/2. (5.36)

This defines a more precise visibility function for µ-distortions:

Jµ(z) def= e−τµ(z)ΘH(z − zK) ≈ exp
(
−(z/zth)5/2

)
ΘH(z − zK). (5.37)

The new set of visibility functions is then

Jg(z) = 1− exp
(
−(z/zth)5/2

)
ΘH(z − zK), (5.38a)

Jµ(z) = exp
(
−(z/zth)5/2

)
ΘH(z − zK), (5.38b)

Jy(z) = ΘH(zK − z). (5.38c)

The second approximation is that the transition from the µ- to the y-era occurs instan-
taneously at z = zK. A more refined treatment of SDs requires a gradual transition. This
has been studied in [40] by using the full Green’s function of the thermalization problem.
The result, valid at each redshift, is

Jg(z) = 1− exp
(
−(z/zth)5/2

)
, (5.39a)

Jµ(z) =
{

1− exp
[
−
( 1 + z

5.8× 104

)]1.88}
exp

(
−(z/zth)5/2

)
, (5.39b)

Jy(z) =
[
1 +

( 1 + z

6.0× 104

)2.58]
. (5.39c)

Notice that the visibility functions do not add up to unity. This means that the total
injected energy is not fully stored in g-, µ- and y-distortions. The missing energy can be
found in residual distortions, which will be introduced in the next subsection. To ensure
energy conservation while neglecting residual distortions, it is possible to redefine Jµ =
[1− Jy] exp

[
(−z/zth)5/2

]
, as suggested in [41].

5.3 Green’s function of the thermalization problem

Current constraints on µ and y (3.49) set an upper bound on the amplitude of energy release
in the Early Universe ∆ργ/ργ < 6× 10−5. Since this value is small, the thermalization
problem can be linearized and solved by using a Green’s function approach, as suggested in
[40].

Given a linear differential equation with a differential operator D, Dy(x) = f(x), its
solution can be always written as y(x) =

∫
dx′f(x′)G(x, x′), where the Green’s function

G(x, x′) is the particular solution of the equation DG(x, x′) = δ(x−x′). Notice that G(x, x′)
does not depend on f(x).
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In the SDs case the Green’s function of the thermalization problem is the solution of
the equation DGth(x, x′) = δ(x− x′), where D represents all the possible interactions. The
Green’s function property for which it does not depend on f(x) implies that Gth solves
the thermalization problem for arbitrary heating histories. This is true only as long as
the thermalization problem is a linear differential equation and this is verified only at first
order in the distortions of the photon phase space distribution. Therefore, we exclude the
second-order contribution in g. We can then write the total distortion term as

∆Itot(x) = gG(x) + µM(x) + yY (x). (5.40)

∆I is easily computed once we know Gth and the heating history

∆Itot(x, z) =
∫

dz′Gth(x, z, z′)dQ(z′)/dz′
ργ(z′)

. (5.41)

The Green’s function Gth was numerically computed in [40] by following the evolution of the
full photon phase space distribution with CosmoTherm

d(Q/ργ)
dz ≈ ∆ργ,h

ργ,h

exp(−(z − zh)2/(2σ2
z))√

2πσ2
z

, (5.42)

where σz ≈ 0.01 and ∆ργ,h/ργ,h ≈ 10−6.
At very early times, when the thermalization process is efficient, the Green’s function has

the shape of a temperature shift Gth ∝ Nx3G(x). Later, photon production by DCS and
BR at low frequencies becomes less efficient while CS is still very fast and distortions have a
µ-type shape. Finally, in the regime for z << zK, SDs will have the shape of y-distortions.
The form of the Green’s function can be found at all redshifts by inserting equation (5.31)
into (5.41) and comparing the result with equation (5.40):

Gth(x, z′) = (1/4)G(x)Jg(z′) + (1/4)Y (x)Jy(z′) + 1.401M(x)Jµ(z′). (5.43)

To ensure energy conservation we should add a term ∆IR(x), that represents the so-called
residual distortions, to equation (5.40). Residual distortions provide a tool to investigate
the time and frequency dependence of the energy release. Therefore, we write

∆Itot(x, z) =
∫

dz′Gth(x, z, z′)dQ(z′)/dz′
ργ(z′)

+R(x, z′), R(x, z′) = εR(x), (5.44)

where
ε =

∫
dz′Cε

dQ(z′)/dz′
ργ(z′)

Jr(z′), (5.45)

with Jr(z′) = 1− Jg(z′)− Jµ(z′)− Jy(z′) and Cε is a normalization constant. Numerically
it is simpler to compute directly R(x, z′) from the full Green’s functions, which now has the
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form

Gth(x, z′) = (1/4)G(x)Jg(z′) + (1/4)Y (x)Jy(z′) + 1.401M(x)Jµ(z′) +R(x, z′). (5.46)

The visibility functions Ja(z′) are numerically computed by least-squares fitting the nu-
merical Green’s function with the shapes {G(x), Y (x),M(x)} appearing in the analytic ex-
pression (5.46). Ja(z′) are then the branching ratios and R(x, z′) the residual of Gth. Nu-
merically, it is better to discretize in frequency space all the quantities involved A = A(νi)
and replace the least-squares fitting with the Grams-Schmidt orthogonalization. Let G, Y ,
M be an orthonormal basis of distortion shapes and

eg = G⊥/|G⊥|, eµ = M⊥/|M⊥|, ey = Y /|Y |, (5.47)

the corresponding basis vector. The perpendicular components are defined as

M⊥ = M −Myey, G⊥ = G−Gyey −Gµeµ, (5.48)

with My = M · ey and so on. The discretized Green’s function is

Gth(z) = (1/4)GJg(z) + (1/4)Y Jy(z) + 1.401MJµ(z) +R(z), (5.49)

where the branching ratios are computed as

Jg(z) = (eg ·Gth(z))/(G⊥), (5.50a)
Jµ(z) = (eµ ·Gth(z)−GµJg(z))/|M⊥|, (5.50b)
Jy(z) = (ey ·Gth(z)−MyJµ(z)−GyJg(z))/|Y |, (5.50c)
JR(z) = 1− Jg(z)− Jy(z)− Jµ(z), (5.50d)

and where the residual R(z) is given by the difference between the full Green’s function and
the sum of the G, M , Y shapes weighted by the branching ratios.

Principal Components Analysis

The principal components analysis is useful to understand the physical origin of residual
distortions. It consists in decomposing R(z) into shapes S(k) and amplitudes µk:

∆IRi =
∑
α

R̂iαdQα, (5.51)

where i refers to the frequency νi, α to the redshift zα and where we defined R̂iα =
R(xi, zα)∆ ln(zα) and dQα = [(dQ/d ln z)/(ργ)]|zα . As argued in [41], the shapes S(k) are
defined so that the signal to noise ratio (SNR) of a given experiment is maximum. The
SNR of a given experiment is quantified from the Fisher-information matrix, which in the
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diagonal-noise-covariance case is a symmetric matrix given by

Fαβ =
∑
i

1
δI2

noise(νi)
∂∆IRi
∂dQα

∂∆IRi
∂dQβ

=
∑
i

R̂iαR̂iβ

δInoise(νi)2 . (5.52)

The amplitudes µk and the shapes S(k) are computed from the orthonormal eigenvectors
E(k)
α of F :

µk =
∑
α

E(k)
α dQα, S(k) =

∑
α

E(k)
α R̂α. (5.53)

Hence, residual distortions are
∆IR ≈

∑
k

µkS
(k). (5.54)

With a similar approach one can compute the ε parameters of equation (5.45):

ε =
∑
k

C
(k)
S µk (5.55)

where C(k)
S = ∑

i S
(k)(xi)∆xi/

∑
iB(xi)∆xi represent the normalization Cε.

In the end, SDs computed with the Green’s function machinery are detector dependent.
Indeed, to compute the branching ratio it is necessary to discretize all quantities in frequency
space, which is naturally binned once the detector specifications {νmin, νmax,∆νc} are known.
Furthermore, to compute the shapes and to decompose the residual distortions with the
principal components analysis it is necessary to know the detector noise δInoise(νi). This
method is the one implemented in CLASS and it provides a fast and precise tool to compute
CMB SDs due to energy release.

6 Some causes of CMB spectral distortions

We now discuss the heating rate Q̇, which is the last missing ingredient to compute SDs
amplitudes. First, it is necessary to distinguish between injected and deposited energy. The
injected energy is the energy released in the intergalactic medium. The deposited energy in
the intergalactic medium is instead the fraction of injected energy that affects the medium
after the radiative transfer and the electron cooling. The energy can be deposited in various
deposition channels c. The deposition function fc(z) quantifies the injected energy that is
deposited in the channel c at redshift z. fc(z) can be further decomposed into an injection
efficiency function feff(z) times a deposition fraction χc(z). feff determines how much injected
energy is deposited regardless of the form and usually depends on the emitting process and
the characteristics of the Universe. Moreover, feff may not be simply the electromagnetically
released energy fem since electromagnetically particles can lose energy through redshifting
or secondary processes before depositing energy into the medium: feff = fem(1− floss). floss

is particularly important during Dark Ages. The on-the-spot approximation assumes that
the deposition occurs instantaneously and so floss = 0. A more detailed calculation can be
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performed numerically with tools such as DarkHistory[42].
The deposition fraction is normalized over all the deposition channels ∑c χc(z) = 1.

The deposited energy in the channel c is given by the injected energy times the deposition
function:

dE

dtdV

∣∣∣∣∣
dep,c

= dE

dtdV

∣∣∣∣∣
inj,c

fc ≡
dE

dtdV

∣∣∣∣∣
inj,c

feffχc
def= Q̇χc. (6.1)

For computing SDs, the only interesting channel is the one that corresponds to the heating of
the photon field and intergalactic medium. In Class there are several models implemented
to approximate the deposition fraction χc.

Energy injections can heat up photons or baryons. In both cases, SDs could be produced.
Even when no energy is injected, the photon field spectrum could deviate from the black
body shape. This occurs for example when the energy is internally redistributed between
photons and baryons. Examples are provided by the adiabatic cooling of electrons and
baryons and the dissipation of acoustic waves. In general, the total heating rate Q̇ can be
split as

Q̇ = dE

dtdV

∣∣∣∣∣
dep,h

+ Q̇non−inj = Q̇χh + Q̇non−inj, (6.2)

where the first term represents the heating generated by a direct injection of energy (h stands
for ’heating’ channel), while the second one is due to an internal redistribution of energy.

6.1 Heating mechanisms in ΛCDM model

Dissipation of acoustic waves and adiabatic cooling of baryons are two processes of energy
re-distribution predicted by the standard cosmological ΛCDM model. Here, only the sec-
ond process is briefly discussed. Acoustic waves dissipation will be discussed in-depth in
section 10. Other examples of standard mechanisms generating SDs are the cosmological
recombination radiation, CMB multipoles and reionization.

Adiabatic cooling

Temperature of non-relativistic matter scales as Tm ∝ (1 + z)2, while photon temperature
changes roughly as Tγ ∝ (1 + z). Due to the tight coupling between photons and baryons
at high redshifts, matter continuously extracts energy from photons to maintain Tm ≈ Tγ.
The cooling rate associated with this process is [34]:

Q̇non−inj = −HαhTγ, (6.3)

where αh is the intergalactic medium heat capacity (4.32).
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Cosmological recombination radiation

The cosmological recombination radiation represents the emission and absorption of photons
due to the recombination of H and He. The relevant redshift interval for the transition
HII→ HI is 500 < z < 2000, while for HeII→ HeI is 1600 < z < 3500 and 5000 < z < 8000
for HeIII → HeII. The cosmological recombination radiation can be precisely computed
with CosmoRec[43] and CosmoSpec[44]. Its total contribution to SDs is small ∆Itot ≈
0.01− 1Jy sr−1, but it can be reached with futuristic spectrometers [11].

CMB multipoles

COBE/FIRAS measured a difference of 3.381(7) mK between the all-sky averaged tempera-
ture and the dipole one. This difference is caused by the relative motion of the Earth with
respect of the CMB rest frame (Doppler effect). Then, the all-sky averaged temperature
Tref does not correspond to the intrinsic temperature Tγ(z = 0) ≈ T0 ≡ Tz(z = 0) and this
induces a temperature shift distortion, that at second order is

I(x, θ)− Iref(x) = ε(θ) [1 + ε(θ)]G(x) +
[
ε(θ)2/2

]
Y (x), (6.4)

where ε(θ) = ∆T/Tref and ∆T = T (cos θ) − Tref . T (cos θ) is the Doppler-shifted dipole
temperature

T (cos θ) = T0

γ[1− β cos θ] . (6.5)

β and γ are the usual relativistic velocity and Lorentz factor. Tref can be computed as

Tref = 1
4π

∫ 2π

0
dφ
∫ π

0
dθ sin θT (cos θ) = 1

2

∫ 1

−1
d cos θT (cos θ) = T0

2γβ ln
(

1 + β

1− β

)
. (6.6)

Reionization

The y-distortions are created both at early- and late times (for z < 5× 104). Reionization
and structure formation are examples of late-time processes that create y-distortions. Reion-
ization contributes to SDs with the so-called Sunyaev-Zeldovich (SZ) effect, which describes
the interactions between photons and the free electrons through inverse Compton scatter-
ing. Such an effect is present also in galaxy clusters where free electrons are hot due to the
galactic dynamics and CS might occur, creating SDs. The total y contribution is roughly
[45]:

∆Ireio(x) = Nx3ySZY (x) where ySZ ≈ 1.77× 10−6 (6.7)

6.2 Heating mechanisms in exotic scenarios

There are also exotic processes that create SDs, which can then be used to study exotic sce-
narios beyond the standard model, such as dark matter annihilation, decaying or interacting
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with other particles, and Primordial Black Holes accretion or evaporation.

Dark matter annihilation

If a dark matter candidate χ with mass Mχ annihilates, it injects energy in the primordial
plasma with an effective heating rate given by

Q̇ = ρ2
cdmffracfeff

〈σv〉v
Mχ

def= ρ2
cdmpann. (6.8)

ffrac is the fraction of annihilating dark matter with respect to total dark matter content,
while 〈σv〉 is the annihilation cross section. feff is the same parameters comparing in equation
(6.1).

Dark matter decay

A dark matter particle χ that decays with a given lifetime τχ injects energy with an effective
heating rate given by

Q̇ = ρcdmffracfeffΓχe−Γχt, (6.9)

where Γχ = 1/τχ is the decay width of χ.

Primordial Black Holes evaporation and accretion

Primordial Black Holes are subjected to Hawking evaporation which causes their mass to
decrease as [34]:

dM
dt = −5.34 g

sec ×F(M)M−2, (6.10)

where F(M) is the number of effective species in the Hawking radiation. The energy injection
rate was computed in [46] and it is equal to

Q̇ = ρcdmffracfeff
Ṁ

M
, (6.11)

Another mechanism that is able to modify the mass of a Primordial Black Hole is the
accretion of matter into it. This could also modify the thermal history of the Universe. Fur-
thermore, the accreting matter could heat up, ionize and hence radiate high-energy photons
that distort the CMB black body spectrum. Before recombination, the accretion is assumed
to be spherical and this does not produce an appreciable level of SDs.
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Inflation

The Hot Big-Bang model as explained in chapter I is not perfect and indeed it presents some
problems. The most accepted solution to these problems predicts the existence of a very early
phase of exponential expansion of the Universe, called inflation. There are different models
of inflation, but in the most simple one the rapid expansion is driven by a single scalar field
coupled to gravity, called inflaton, whose dynamics determines the Universe evolution during
inflation. Quantum fluctuations in the inflaton field during inflation seed the formation of
inhomogeneities in the Early Universe and therefore of CMB temperature anisotropies.

In this chapter, a brief review of inflation is presented. In the first section, the Hot Big-
Bang problems and the standard inflationary solution are described. In the second section,
quantum fluctuations of the inflaton field are discussed.

7 The Standard Inflationary Universe

7.1 The problems of the Hot-Big Bang Model

The Hot-Big bang model has mainly three problems.

Flatness

Present measurements show that the curvature parameter Ωk = −k/ȧ2 is smaller than
unity. In the matter-dominated era, the expansion factor increased as t2/3 (2.50) and also
Ωk grew as t2/3. In order to have |Ωk,0| < 1, Ωk should have been of order 10−4 at the
equivalence. At earlier times, in the radiation-dominated epoch, a ∝ t1/2 and Ωk ∝ t. To
have |Ωk(teq)| ≈ 10−4, it is necessary that |Ωk| was roughly 10−16 at time of electron-positron
annihilation. Near t = 0, |Ωk| was even smaller. We conclude that the very early Universe
was basically flat. This is not a paradox, but physicists want to try to explain why Ωk has
to be extremely fine tuned to zero in the past. A possible explanation is that before the
radiation-dominated era, where a ∝ t1/2, there was an earlier period - inflation - when the
energy density of the Universe was dominated by vacuum energy and H remained constant.
This implies that Ωk = −k/(H2a2) has varied as a−2 making it vanishing at the end of
inflation. A de Sitter phase, where a(t) grows exponentially† is a possible model of inflation.
† An early phase of exponential expansion was proposed in 1979 by Starobinsky, which noted that quantum
corrections to general relativity lead to a solution of the Einstein equations with an effective cosmological con-
stant, which is equivalent to a de Sitter expansion. See: A.A. Starobinsky. “Spectrum of relict gravitational
radiation and the early state of the universe”. In: Soviet Journal of Experimental and Theoretical Physics

52
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In general, one defines the number of e-foldings during inflation as

N def=
∫ a(tf )

a(ti)
d ln(a) =

∫ tf

ti
dtH. (7.1)

In the case of an exponential expansion the scale factor varies as

a(t) = a(ti) exp(HI(t− ti)) ≡ a(tf ) exp(−HI(tf − t)). (7.2)

with H = HI = constant and N is equal to HI(tf − ti). An exponential expansion phase
solves the flatness problem in the following way. Suppose that Ωk was larger than 1 at the
beginning of inflation. During inflation, the curvature parameter decreased as e−2N :

|Ωk,0| = e−2N
(
a(tf )HI

a0H0

)2

. (7.3)

Given a proper N , Ωk can be arbitrary small at the end of inflation:

eN >
a(tf )HI

a0H0
, (7.4)

To have |Ωk| ≈ 10−16 at the time of e± annihilation or |Ωk,0| < 1, N should be larger than 62
[47]. To compute this number Weinberg assumed that the end of inflation coincided with the
beginning of the radiation-dominate era (denoted with the subscript 1), i.e a(tf )HI = a1H1.
Inflation is not the only explanation for the flatness problem. The most simple hypothesis
is that k = 0 now and always.

The de Sitter phase is not the only way to solve the flatness problem. To make Ωk small,
it is sufficient to impose that the comoving Hubble radius (aH)−1 shrinks during inflation

d
dt(aH)−1 < 0, (7.5)

In a Universe filled by a single-component fluid with constant equation of state w = P/ρ =
constant, the comoving Hubble radius is given by

(aH)−1 = H−1
0 a

1
2 (1+3w). (7.6)

This condition is satisfied by non-ordinary sources that violates the strong energy condition
(SEC) w > 1/3, that is that have negative pressure An example is the vacuum energy
(w = −1). The negative pressure condition can be formulated also as:

(i) Accelerated expansion.
d

dt
(aH)−1 = − ä

ȧ2 < 0 =⇒ ä > 0 (7.7)

Letters 30 (Dec. 1979), p. 682. url: https://ui.adsabs.harvard.edu/abs/1979JETPL..30..682S

https://ui.adsabs.harvard.edu/abs/1979JETPL..30..682S
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(ii) Slowly-varying Hubble parameters.

d
dt(aH)−1 = − ȧH + aḢ

(aH)2 = −1− ε
a

< 0 =⇒ ε
def=− Ḣ

H2 < 1. (7.8)

ε is the so-called slowly-varying Hubble parameter. Since dN = Hdt, the condition
ε < 1 is equivalent to require that the change of the Hubble parameter per e-fold (dN )
is small. If ε = 0, inflation is said to be perfect and the spacetime during inflation is
the de Sitter one: a(t) = eHt, where H = ∂t ln(a) = constant. Inflation has to end and
so a perfect de Sitter phase is not admitted. For a small but non-zero ε, the de Sitter
metric is still a good approximation for the inflationary background and we refer to
inflation as a quasi-de Sitter period.

The fact that N should be sufficiently large in order to solve the flatness problem
means that inflation should have been lasted enough time, i.e. ε must have been less
than 1 for a sufficiently large number of e-folds or of comoving Hubble times. This
condition is measured by a second parameter

η̃
def= d ln(ε)

dN = ε̇

Hε
. (7.9)

η̃† is the second slowly-varying Hubble parameter. For η̃ < 1, the fractional change of
ε per Hubble time is small and inflation persists.

For later convenience, equation (7.6) can be written in terms of the first slowly rolling
Hubble parameter

a ∝ η1+b, with b = 1− 3w
1 + 3w. (7.10)

b = 0 corresponds to a radiation-dominated Universe (w = 1/3), while b < 0 indicates
a fluid that violates the SEC condition.

There can be higher order slowly-rolling Hubble parameters. In literature, these are
defined as

ε0
def= Hin

H
, εi+1

def= ε̇i
Hεi
≡ 1
H

dεi
dN for i = 0, 1, 2, . . . , (7.11)

where Hin is some initial value of H during inflation. In particular, ε1 ≡ ε and ε2 ≡ η̃.
Notice also that the first slowly-rolling Hubble parameter is related to the equation of
state as

ε1 = 3
2(1 + w). (7.12)

To sum up, inflation solves the flatness problem if the following conditions are satisfied

ε1 = − Ḣ

H2 < 1, ε2 = ε̇

Hε
< 1. (7.13)

† The˜is used to disntinguish this parameter from the conformal time.
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Horizon

CMB looks almost the same from every directions. This is possible only if the entire Universe
was in casual contact at the last scattering surface. In this case, atomic interactions smoothed
out all temperature fluctuations. However, it is not possible for the entire Universe to be in
causal contact due to the existence of the proper particle horizon (2.29). The particle proper
horizon at the time of last scattering was

sH(tls) = a(tls)
∫ tls

0

dt
a(t) = a(tls)

∫ a(tls)

0

da
a2H(a) , (7.14)

where equation (2.46) and the condition a(0) = 0 were used. By using equation (2.47) and
the variable x = a/a0 = (1 + z)−1, the previous integral becomes

sH(zls) = 1
H0(1 + zls)

∫ (1+zls)−1

0

dx

x2
√[∑

w Ωw,0 (x)−3(1+w) + Ωk,0 (x)−2
] . (7.15)

At this redshift the Universe can be treated as filled only by matter and with zero curvature.
Therefore, the previous integral gives

sH(zls) = 1
H0(1 + zls)

∫ (1+zls)−1

0

dx
x2
√
x−3

= 2
H0(1 + zls)3/2 ∝

1
H0(1 + zls)3/2 . (7.16)

To easily compare the horizon at last scattering with observations, it is useful to convert
it in an angular distance. To define the angular diameter distance, consider a source placed
at (t = t1, r = r1) with proper diameter D that emits two photons detected later at (t =
t0, r = 0). It is always possible to find a coordinates system where the center of the source
is at θ = 0 and the light travels from its edges towards the observer defining a cone with
half-angle θ = δ/2. The edges of the source are at fixed angle φ, cosmic time t1 and radial
coordinate r1. From the FLRW metric (2.23) it is easy to compute the proper diameter:

s ≡ D =
∫ √

gµνdxµdxν
∣∣∣
dt=dr=dφ=0

= a(t1)r1

∫ δ/2

−δ/2
dθ = a(t1)r1δ. (7.17)

The angular distance is then defined as

dA def= D

δ
= a(t1)r1 ≡

a(t0)r1

1 + z1
, (7.18)

To compute dA at last scattering it is necessary to compute the radial coordinate distance at
the last scattering surface rls. Since, CMB is made up by photons one can use the condition
dτ = 0 to compute rls as a function of tls (or zls). The result is the same of equation (2.32),
but with different labels. In a flat Universe with zls ≈ 1100� 1, the result is rls ≈ (a0H0)−1.
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The angular diameter distance at the last scattering surface is then

dA(zls) = a0rls

1 + zls
∝ 1
H0(1 + zls)

. (7.19)

Finally, the horizon at last scattering now subtends an angle or order

θhor = sH(zls)
dA(zls)

∝ (1 + zls)−1/2 = 1.6°. (7.20)

Thus, only the portions of sky that are now separated by an angle smaller than 1.6° were in
causal contact at last scattering. So, Compton scattering was able to smooth the temperature
fluctuations only in the regions of the Universe that are now inside an angle of 1.6°. The
large-scale (θ > 7°) isotropy of the CMB is a problem that cannot be explained using the
standard Hot-Big Bang model.

The inflationary solution solves the horizon problem in the following way. During the
inflationary expansion, the proper particle horizon at last scattering changed as

sH(tls) = a(tls)
∫ tls

ti

dt
a(t) , (7.21)

By accepting that this integral is much larger than the contribution coming from the time
interval [tls, tf ], we can change the upper extreme of the previous integral into tf . Then, by
inserting equation (7.2) in the previous integral, we get

dH(tls) = a(tls)
a(tf )

∫ tf

ti
dt exp(HI(tf − t)) = a(tls)

a(tf )HI

[exp(N )− 1)] . (7.22)

Since it is necessary to have eN large, the −1 can be neglected. The angular diameter
distance did not change and it is still given by equation (7.19), where (1 + zls)−1 ≡ a0/als.
CMB isotropy on large scales is mathematically translated to the condition dH(tls) > dA(tls)
or equivalently

eN >
a(tf )HI

a0H0
. (7.23)

This is the same condition required to solve the flatness problem. To sum up, the accelerated
inflationary expansion allows those regions that in the standard cosmological evolution are
not in causal contact to be causally connected near the physical singularity. Figure 5 shows
schematically the horizon problem and its solution.

The horizon problem can be described also by comparing a physical scale λ with the
Hubble radius H−1 (see figure 6). Suppose that λ is the distance at last scattering between
two photons detected today. The horizon problem means that such distance was larger than
the Hubble radius at last scattering.
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Fig. 5 – Schematic representation of the horizon problem (left) and of the corresponding infla-
tionary solution (right). The black lines are the past light cone from the present back to the
last scattering surface. P and Q represent the two furthest points of the last scattering surface
that we can see now. In the standard Hot-Big-Bang model, the (blue) light cones drawn from
these points never intersect. The inflationary solution "adds more conformal time" before the
last scattering surface so that P and Q have the chance to get in causal contact (red region).
During inflation (slightly grey region), the conformal time is negative. The singularity of the
standard Big-Bang model is replaced by the reheating surface, which represents the transition
from inflation to the standard Big-Bang model. The physical singularity is now at η = −∞.

However, to explain why these photons look so similar, it is necessary that they were in
causal contact at last scattering. In a matter-dominated or radiation-dominated universe
any physical distance λ starts below the Hubble radius and crosses it only once since λ ∝ a1,
while H−1 ∝ a2(RD) or H−1 ∝ a3/2(MD). So, only when λ = H−1 the two particles
separated by λ are in causal contact. In the standard Hot Big-Bang model, λ crosses the
Hubble radius H−1 after the last scattering.

log(a)

= H 1

H 1 a2(RD)
H 1 a3/2(MD)

a1

log(a)End Inflation

= H 1

H 1 a2(RD)
H 1 a3/2(MD)

H 1 an
(n 1)

a1

Fig. 6 – Schematic representation of the evolution of physical scales λ and of the Hubble radius
H−1 in the standard hot Big-Bang model (left) and in an inflationary Universe (right).

The inflationary solution predicts an early period where the Hubble radius H−1 grew
slower than a (see equation (7.5)). Then, λ starts smaller than H−1, exits from the Hubble
radius and then re-enters it later on.
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Monopoles

Many high energy particle physics models predict the existence of magnetic monopoles and
other stable relics coming from spontaneously broken gauge symmetries. In particular, the
simplest predictions say that there should be 1 magnetic monopoles per nucleon in the
Universe [47], which in strong disagreement with the current observations which show a
monopoles density of 10−30 per nucleon. The naive solution to this problem is that there
may be no gauge group spontaneously broken to the standard model one so that stable relics
were never produced. The other solution is given by inflation, which could have diluted
sufficiently the monopoles in the Universe. A simple estimation says that the number of
e-foldings necessary to have 10−30 monopoles per nucleon or less should be greater than 23.

Among the three problems aforementioned, the most serious is the horizon one since
the others two can be solved without introducing the inflationary phase. However, it is
interesting to notice that the number of e-foldings necessary to solve the horizon problem
automatically solves also the flatness and the monopoles problems.

7.2 Single Field Inflation

The simplest model of inflation is the one where the energy density of a minimally coupled
single scalar field φ(t,x), called inflaton, dominates the total energy density of the Universe.
The action of this model is

S[φ] def=
∫

d4x
√
−gL = −

∫
d4x
√
−g

[1
2g

µν∂µφ∂νφ+ V (φ)
]
, (7.24)

where g is the determinant of gµν . The energy-momentum tensor is

Tµν
def=− 2√

−g
δ(√−gL)
δgµν

= ∂µφ∂νφ+ gµνL. (7.25)

This has the same form as the energy-momentum tensor of a perfect fluid (1.17) with

ρ = −1
2g

µν∂µφ∂νφ+ V (φ) (7.26a)

P = −1
2g

µν∂µφ∂νφ− V (φ) (7.26b)

uµ = −
[
−gαβ∂αφ∂β

]−1/2
gµρ∂ρφ (7.26c)

In a FLRW spacetime (2.1), the pressure and the energy density become

ρ = 1
2 φ̇

2 + 1
2

(∇φ)2

a2 + V (φ), P = 1
2 φ̇

2 − 1
2

(∇φ)2

a2 − V (φ) (7.27)

where (∇φ)2 = γij∂
iφ∂jφ. From now on we assume that φ is spatially homogeneous as the

background FLRWmetric so that φ depends only on the cosmic time. Thus, (∇φ)2 = 0. The
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conservation of the energy momentum tensor T µν;ν = 0 is equivalent to ρ̇ = −3H(ρ + P ),
where H = ȧ/a. By inserting the equations for ρ and P into this relation, one gets the
equation of motion for φ:

φ̈+ 3Hφ̇+ V ′(φ) = 0. (7.28)

During inflation, the Hubble rate is given by

H =
√

8πGρ
3 ≡

√
8πG

3

(1
2 φ̇

2 + V (φ)
)
, (7.29)

where the Universe was taken to be flat. By deriving the square of the previous equation
and using equation (7.28), one gets

Ḣ = −4πGφ̇2. (7.30)

Equations (7.29) and (7.30) allow to write the slowly-varying Hubble parameters (7.11) as

ε1 = − Ḣ

H2 =
3
2 φ̇

2

1
2 φ̇

2 + V (φ)
≡ 4πG φ̇2

H2 ≡= 4πG
(

dφ
dN

)2

, (7.31a)

ε2 = ε̇

Hε
= 2

(
φ̈

Hφ̇
− Ḣ

H2

)
= 2 (ε1 − δ) , (7.31b)

where δ def=− φ̈

Hφ̇
is the dimensionless acceleration per Hubble time. Clearly, the inflation

conditions (7.13) are equivalent to {ε1, |δ|} � 1.

Slow-roll approximation

Equation (7.31) translates the inflation condition ε1 � 1 into

3
2 φ̇

2 � 1
2 φ̇

2 + V (φ) =⇒ φ̇2 � V (φ) or 1
2M2

pl

(
dφ
dN

)2

� 1, (7.32)

and the Hubble rate during inflation (7.29) is approximately

H
.=
√

8πG
3 V (φ). (7.33)

The symbol .= means that the equality is true only in the slow-roll regime. This is the
so-called slow-roll approximation or ’new-inflation’, which is an inflationary model proposed
by Linde† and Steinhardt, Albrecht‡.

† A.D. Linde. “Scalar field fluctuations in the expanding universe and the new inflationary universe scenario”.
In: Physics Letters B 116.5 (1982), pp. 335–339. issn: 0370-2693. doi: https://doi.org/10.1016/0370-
2693(82)90293-3. url: https://www.sciencedirect.com/science/article/pii/0370269382902933.
‡ Andreas Albrecht and Paul J. Steinhardt. “Cosmology for Grand Unified Theories with Radiatively
Induced Symmetry Breaking”. In: Phys. Rev. Lett. 48 (17 Apr. 1982), pp. 1220–1223. doi: 10.1103/
PhysRevLett.48.1220. url: https://link.aps.org/doi/10.1103/PhysRevLett.48.1220.

https://doi.org/https://doi.org/10.1016/0370-2693(82)90293-3
https://doi.org/https://doi.org/10.1016/0370-2693(82)90293-3
https://www.sciencedirect.com/science/article/pii/0370269382902933
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1103/PhysRevLett.48.1220
https://link.aps.org/doi/10.1103/PhysRevLett.48.1220
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If the slow-roll approximation holds, the equation of state of the scalar field is roughly
P = −ρ, i.e. w ≈ −1 < −1/3 as required. The condition |δ| � 1, or equivalently |φ̈| � Hφ̇,
allows to neglect the term φ̈ in the equation of motion for φ (7.28), which then becomes

φ̇
.= −V

′(φ)
3H . (7.34)

The time derivative of the Hubble rate (7.30) is then approximated to

Ḣ
.= −4πG

9H2 V
′2 ≈̇ − 1

6
V ′2

V
(7.35)

We can roughly write the slowly-varying Hubble parameters (7.31) as

ε1
.= 1

16πG

(
V ′

V

)2
def= εV (7.36a)

ε2
.= −4πGV

′′V − V ′2

V 2 = 4εV − 2ηV where ηV
def= 8πGV

′′

V
(7.36b)

The parameters εV , ηV are called potential slow-roll parameters. Similarly, it is possible to
define higher order potential slow-roll parameters. Inflation conditions (7.13) in the slow-roll
approximation become constraints on the inflaton potential

εV = 1
16πG

(
V ′

V

)2

� 1, |ηV | =
1

8πG

∣∣∣∣∣V ′′V
∣∣∣∣∣� 1. (7.37)

Inflation ends when the inflaton accelerates and the condition (7.32) is no longer true. Then,
the inflaton starts oscillating around its minimum in the so-called reheating phase.. An
example of inflaton potential that presents such dynamics is given in figure 7.

V( )

Slow-Roll Inflation

Reheating

Fig. 7 – Schematic inflationary process.

Under these ’slow-roll’ conditions, the expansion
is not strictly exponential, but it can be easily
made exponentially large. Indeed, suppose that
φ(t) grew from φi = φ(ti) to φf = φ(tf ) with
0 < V (φf ) < V (φi). Then, εV � 1 implies that
the expansion factor is exponentially large

a(tf )
a(ti)

= exp
[∫ φf

φi
dφH

φ̇

]

≈ exp
[
−
∫ φf

φi
dφ
(

8πG V

V ′

)]
� 1. (7.38)

The number of e-foldings in the slow-roll approx-
imation is

N def=
∫ tf

ti
dtH ≡

∫ φf

φi
dφH

φ̇

.=
∫ φf

φi
dφ V
V ′
≡Mpl

∫ φf

φi

dφ√
2εV

(7.39)
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8 Quantum Fluctuations during Inflation

Until now, the Universe was considered to be a perfectly homogeneous and isotropic manifold
described by the FLRW metric. However, to explain the most interesting things in the
present universe, like galaxy clusters, galaxies, stars and even us, deviations from the perfect
homogeneity are needed. In the standard hot Big-Bang model, no mechanism explains the
origin of these fluctuations, but quantum effects of the inflaton field are a valid explanation
for their origin.

Quantum field theory predicts that a quantum field oscillates with all possible wave-
lengths maintaining zero average on a sufficient macroscopic time. During inflation the total
energy density of the Universe is dominated by the inflaton potential energy and so quantum
fluctuations in the inflaton field result in perturbations of the energy-momentum tensor. Due
to the coupling between the energy-momentum tensor and the metric provided by Einstein
equations, fluctuations of Tµν induce metric perturbations. Thus, quantum oscillations in
the inflaton field generate both energy density perturbations and metric inhomogeneities:

δφ⇒ δTµν ⇒ δgµν .

On the other hand, metric perturbations induce a back reaction on the evolution of the
inflaton field:

δgµν ⇒ δφ.

Before analyzing cosmological perturbation, we introduce the following nomenclature.
Let k ∝ λ−1 be the typical comoving wavenumber of cosmological fluctuations (λ is the
typical wavelength). Then, one defines sub-Hubble-radius fluctuations as those perturbations
whose wavenumber is much larger than the comoving Hubble radius: k � aH. Similarly,
super-Hubble-radius perturbations are those such that k < aH.

Because of the rapid inflationary expansion, the wavelengths of energy density fluctua-
tions can be stretched from short scales to cosmological ones, eventually making them exit
from the Hubble radius. On super-Hubble-radius scales perturbations are frozen. Gravity
drags these perturbations until they re-enter the Hubble-radius in the radiation- or matter-
dominated era (see plot 6). Density perturbations that re-enter the Hubble radius seed
the formation of the Large Scale Structures (LSS) and CMB anisotropies. In this sense,
cosmological observables can be directly linked to quantum fluctuations of the inflaton field.

8.1 Cosmological Perturbations

To study how cosmological observables are affected by quantum fluctuations, it is necessary
to know how the tensors involved are perturbed.
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Metric perturbations

The perturbed FLRW metric can be decomposed as [48]:

g00 = −a2(η)
[
1 + 2

∞∑
n=1

A(n)

n!

]
(8.1a)

g0i = a(η)
∞∑
n=1

B
(n)
i

n! (8.1b)

gij = a2(η)
δij +

∞∑
n=1

h
(n)
ij

n!

 , (8.1c)

where A(n), B(n)
i , h(n)

ij are the n-th order perturbations of the metric. These quantities can be
decomposed into scalar, vector and tensor perturbations according to their transformation
properties under the group of 3-translations and 3-rotations. In particular, the Helmholtz
theorem allows decomposing any vector object into a solenoidal (or transverse) and longitu-
dinal part

Bi = ∂iB
‖ +B⊥i ≡ ∂iB + B̂i, (8.2)

where B̂i is solenoidal in the sense that ∂iB̂i = 0. Similarly, hij can be expressed as

hij = −2Cδij + 2Eij. (8.3)

Eij can be further decomposed as

Eij = E
‖
ij + E⊥ij + ET

ij
def= ∂〈i∂j〉E + ∂(iÊj) + ÊT

ij , (8.4)

where the operators ∂〈i∂j〉, ∂(iÊj) are defined as

∂〈i∂j〉
def= ∂i∂j −

1
3δij, ∂(iÊj)

def= 1
2
(
∂iÊj + ∂jÊi

)
. (8.5)

The component E‖ij is longitudinal, i.e. irrotational, εijk∂j∂jE
‖
ij. Êi is transverse, i.e. diver-

genceless, ∂iÊi = 0. ET
ij is both traceless and transverse: ÊT

ii = 0, ∂iÊT
ij = 0. Anˆ indicates

a transverse quantity. A,B,C,E are the scalar perturbations of the metric, while B̂i and
Êi are the vector ones. Tensor perturbations are the traceless and transverse tensor ÊT

ij and
they correspond to gravitational waves. The apex (n) was omitted for simplicity. From now
on, when a perturbation is written without any apex, then it is of the first-order.

This decomposition is particularly useful since at linear order scalar, vector and tensor
perturbations evolve independently. Vector perturbations cannot be created during inflation
[49] and they decay with the expansion of the Universe. Thus, they will be ignored. Scalar
perturbations will result in energy density fluctuations, while tensor ones will be observed
as gravitational waves.
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Gauge transformation

The spacetime interval is gauge-invariant, i.e. it is invariant under any coordinates transfor-
mation xµ → x̃µ. Consider the generic gauge transformation

t→ t̃ = t+ α, xi → x̃i = xi + ∂iβ + εi. (8.6)

To have
dτ 2 = −gµνdxµdxν = −g̃µνdx̃µdx̃ν , (8.7)

the perturbations should transform as

A→ Ã =A− α′ −Hα, (8.8a)
B → B̃ =B + α− β′, (8.8b)
C → C̃ =C + (1/3)∇2β +Hα, (8.8c)
E → Ẽ =E − β, (8.8d)

B̂i → ˆ̃Bi =B̂i − ε′i (8.8e)

Êi → ˆ̃Ei =Êi − εi (8.8f)

ÊT
ij →

ˆ̃ET
ij =ÊT

ij
†. (8.8g)

By fixing α and β, one makes a gauge choice. There are many different possible gauge
choices. Two of the most used are the synchronous and the conformal Newtonian gauge. In
general, the Newtonian, or longitudinal, gauge, is obtained by setting that both g0i and gij
are transverse. This would corresponds to B = E = 0 and Êi = 0. A restricted version of
this gauge, valid at linear order, is obtained by setting also B̂i = 0 and ÊT

ij = 0. Indeed, at
higher order vector and tensor modes can be induced and could not be set to zero at the
beginning. To be consistent with [48] it is necessary to redefine A = Ψ, C = Ψ so that the
Newtonian gauge at linear order implies that the metric has the form

ds2 = a2(η)[−(1 + 2Ψ)dη2 + (1− 2Φ)δijdxidxj] (8.9)

The synchronous gauge is obtained with the conditions A = B = 0 and B̂i = 0, i.e. by
imposing that all perturbations are confined in the spatial part of the metric. In this case,
the metric becomes

ds2 = a2(η)[−dη2 + (δij + hij)dxidxj]. (8.10)

Notice that to compare the notation used in this work with the one in [48], one should
redefine 2E = µ and −2C = h/3. In Fourier space, the perturbations hij can be expanded

† This means that at linear order tensor perturbations are gauge-invariant.
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in terms of two scalar functions h and χ (in [48] the function χ is labelled with η):

hij(η,x) =
∫

d3keik·x
[
k̂ik̂jh(k, η) +

(
k̂ik̂j −

1
3δij

)
6χ(k, η)

]
, k = kk̂. (8.11)

Matter perturbations

In general, a perturbed energy-momentum tensor can be written at the first-order as

T 0
0 = −(ρ0 + δρ), (8.12a)

T 0
i = (ρ0 + P0)vi def=(δq),i = −T i0 , (8.12b)

T ij = δij(P0 + δP ) + Σi
j, (8.12c)

where vi = dxi/dη, Σi
j

def=T ij − δijT kk /3 is the traceless anisotropic shear perturbation to T ij
and where (δq),i is the momentum density. In Fourier space, it is useful to introduce the
variables θ and σ defined by

θ
def= ikjvj (ρ0 + P0)σ def=−

(
k̂ik̂

j − 1
3δ

j
i

)
Σi

j (8.13)

and the variable
δ

def= δρ

ρ0
(8.14)

At linear, order these quantities in the synchronous and Newtonian gauges are related by

δ(Syn) = δ(Newt)− αρ
′
0
ρ0
, (8.15a)

θ(Syn) = θ(Newt)− αk2, (8.15b)
δP (Syn) = δP (Newt)− αP ′0 (8.15c)
σ(Syn) = σ(Newt) (8.15d)

Initial conditions

By perturbing Einstein equations and Boltzmann one, it is possible to derive the differential
equations that describe the evolution of density and velocity perturbations of the matter
or radiation components present in the primordial plasma. Inflation provides the initial
conditions to solve such equations. By measuring the various perturbed quantities, it is
possible to select between different inflationary scenarios. An example of this will be provided
in section 9 where the temperature fluctuations of the CMB are studied.

In general, there are two different types of initial conditions: isocurvature and adiabatic
initial conditions. To define these variables, consider the matter-radiation plasma in the
early Universe. The entropy per matter particle is given by Γ = T 3/nm, where nm is the
number density of matter particles. It is possible to define the entropy perturbation for a
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system of two barotropic fluids, each with an equation of state wi = Pi/ρi, as

Sij def= δΓi
Γi
− δΓj

Γj
≡ δi

1 + wi
− δj

1 + wj
. (8.16)

In the case of a fluid with only matter and radiation, it becomes:

S = 3
4δr − δm. (8.17)

By taking into account all the possible radiation/matter components. entropy perturbation
vanishes if

δγ ≈ δν ≈
4
3δCDM ≈

4
3δb. (8.18)

Perturbations that satisfy the previous relationship are said to be adiabatic, or curvature,
perturbations. The name curvature suggests that a local geometric perturbation is asso-
ciated with the matter one. If the entropy term does not vanish, perturbations are called
isocurvature perturbation. In case of isocurvature perturbations, the matter perturbations
do not induce any metric perturbations. Isocurvature perturbations are very constrained
by the current data. In general, isocurvature perturbations are not produced in single-field
inflationary scenarios, but they can arise in multi-field models. Finally, it is possible to build
a gauge-invariant entropy perturbation:

S def=H

(
δP

ṗ
− δρ

ρ̇

)
. (8.19)

Curvature perturbation

Pressure fluctuations are related to the density ones as

δP = c2
sδρ+ δPnot−ad (8.20)

where
c2
s =

(
δP

δρ

)∣∣∣∣∣
Γ

(8.21)

is the adiabatic speed of sound and

δPnot−ad =
(
δP

δΓ

)∣∣∣∣∣
ρ

Γ. (8.22)

is the non-adiabatic contribution to the total pressure. The latter is related to the entropy
perturbation by

S = H
δPnot−ad

Ṗ
. (8.23)
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Similarly, it is possible to introduce a gauge-invariant variable, called comoving curvature
perturbation, defined as

R def=Φ− H

ρ0 + P0
δq ≡ Φ +H θ

k2 . (8.24)

The second equivalence holds in Newtonian gauge and in Fourier space. Geometrically, R
measures the spatial curvature of comoving hypersurfaces. During inflation R and −ζ are
equal because δρ/ρ̇0 = δφ/φ̇0 and T 0

i = ∂iδq = −φ̇0∂iδφ. The evolution of R is determined
by the linearized Einstein equations in Fourier space:

R′ = H
ρ0 + P0

δPnot−ad + k2 H
(4πGa2(ρ0 + P0))

[(
c2
s −

1
3Ψ + 1

3Φ
)]

(8.25)

This equation suggests that for adiabatic perturbations, δPnot−ad = 0, the curvature per-
turbation is conserved on super-Hubble-radius scales. This is why, adiabatic perturbations
are called also curvature perturbations. During inflation the energy density and pressure
are dominated by the inflaton contribution. Then, quantum fluctuations in the inflaton field
δφ leads to perturbations in ρ, P and hence they generate curvature perturbations. The
latter is frozen on super-Hubble-radius scales. When R re-enters the Hubble radius during
the radiation-dominated era, it provides the initial conditions for the perturbed Universe
observed today. Hence, to relate observables with inflation, it is necessary to compute the
curvature perturbation produced during inflation at the Hubble-radius crossing.

Notice that in presence of isocurvature perturbations, the evolution of R is more com-
plicated since it is not frozen anymore on super-Hubble-radius scales

Statistics

Consider a generic random field g(t,x), e.g. the comoving curvature perturbations R. To
characterize the properties of g it is useful to introduce the power spectrum. Consider the
Fourier expansion of the field g

g(t,x) =
∫

d3k

(2π)3/2 e
ik·xgk(t). (8.26)

The dimensionless power spectrum Pg(k) is defined as

〈gk1 , g
∗
k2〉

def= 2π2

k3 Pg(k)δ3(k1 − k2), (8.27)

where 〈. . . 〉 denotes the ensemble average. The power spectrum measures the amplitude of
the fluctuation at a given mode k. From the definitions it is trivial to find that

〈g2(t,x)〉 =
∫ dk

k
Pg(k), (8.28)
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which tells that Pg(k) is the contribution to the variance of g per unit logarithmic interval
in wave-number k. The scale dependence of the power spectrum is quantified by the scalar
spectral index (or tilt)

ng − 1 def= d lnPg(k)
d ln k , (8.29)

where scale-invariance corresponds to ng = 1. Furthermore, one introduces also the running
of the spectral index

αg
def= d lnng

d ln k (8.30)

and the running of the running d2ng/d ln k2, so that the power spectrum can be phenomeno-
logical parametrized as

Pg(k) = Ag

(
k

k0

)ng−1+ 1
2

d lnns
d ln k ln(k/k0)+ 1

6
d2ng

d ln k2 (ln(k/k0))2+...

, (8.31)

where k0 is some arbitrary pivot scale. If g(t,x) is a Gaussian field, its power-spectrum con-
tains all the statistical information. Non-Guassianity is measured by higher-order correlation
functions of g.

8.2 Scalar Fluctuations

Consider a real scalar field (e.g. the inflaton) minimally coupled to gravity. The action for
this system is

S = −
∫

d24x
√
−g

[1
2g

µν∂µφ∂νφ+ V (φ)− 1
16πGR

]
. (8.32)

To study quantum fluctuations it is convenient to split the metric and inflaton fields as

gµ → gFLRWµν + δgµν , φ→ φ0 + δφ, (8.33)

where gFLRWµν is the FLRW (background) metric and φ0 is the classical solution for the
homogeneous and isotropic equation of motion for the inflaton field (7.28). To study only
scalar perturbations, the most elegant gauge choice is

δφ = 0, gij = a2[(1− 2R)δij + hij], (8.34)

where all the scalar degrees are parametrized by R and tensor ones by hij. Tensor modes will
be neglected in this paragraph. The other scalar perturbations are related to R by Einstein
equations. This choice is particularly clever because R does not evolve on super-Hubble-
radius scales and so its statistical properties, such as the power spectrum, can be computed
at the horizon crossing only. The action at second order in this gauge is

S(2) = −1
2

∫
d4xa3 φ̇

2
0

H2

[
Ṙ2 − a−2(∂iR)2

]
. (8.35)
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The complete proof requires the 3 + 1 (or ADM) decomposition formalism and can be found
in appendix B of [49]. Notice that this action still depends on the inflaton potential. Indeed,
φ0 is the solution of the background equation (7.28) in which the potential appears. So,
different choices for V (φ) will result in different background evolutions and hence different
spectra for scalar perturbations.

By introducing the so-called Mukhanov-Sasaki variable:

σ = zR where z
def= a

φ̇0

H
≡ a2 φ̇0

ȧ
≡ a2φ

′
0
a′
≡ a

φ′0
H
, (8.36)

and by using the conformal time η, the action S(2) becomes

S(2) = −1
2

∫
dηd3x

[
σ′2 − (∂iσ)2 + z′′

z
σ2
]
, (8.37)

where the apex ′ indicates a partial derivative with respect to the conformal time. By varying
S(2) one finds the equation of motion for the field σ:

σ′′ −∇2σ − z′′

z
σ = 0, (8.38)

which in terms of the Fourier transform of σ

σ(η,x) =
∫

d3k

(2π)3/2σk(η)eik·x, (8.39)

is simply

σ′′k +
(
k2 − z′′

z

)
σk = 0. (8.40)

This is the Mukhanov-Sasaki equation. Formally, it is equivalent to an oscillator with a
time-dependent effective mass m2

eff = −z′′/z. Since σ ∈ IR, σ∗k = σ−k. Given that the
equation of motion for σ′′k depends only on |k| ≡ k, one can expand the Fourier modes σk as

σk(η) = 1√
2
[
a−k v

∗
k(η) + a+

−kvk(η)
]
, (8.41)

where a±∓k are integration constants. v∗k, vk are linearly independent solutions of equation

v′′k + ω2
kvk = 0 where ω2

k = k2 +m2
eff , m2

eff
def=−z′′/z, (8.42)

which is obtained by inserting the expansion (8.41) into equation (8.40). This solution is
compact but exact at linear order. No slow-roll approximations were made so far. When v∗k,
vk are normalized such that

v∗kv
′
k − vkv′∗k = −i. (8.43)
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they are called mode functions. Note that σ∗k = σ−k implies (a−k )∗ = a+
k . Therefore:

σ(η,x) = 1√
2

∫
d3k

(2π)3/2

[
a−k v

∗
k(η)eik·x + a+

−kvk(η)e−ik·x
]
. (8.44)

Finally, the canonical momentum is

π = ∂L
∂σ′

= σ′. (8.45)

Quantization of scalar perturbations

To quantize the perturbations in the canonical quantization scheme, one has to promote π
and σ to operators on a Hilbert space obeying the equal time commutation relations

[σ̂(η,x), σ̂(η,y)] = [π̂(η,x), π̂(η,y)] = 0, (8.46a)
[σ̂(η,x), π̂(η,y)] = iδ3(x− y). (8.46b)

In general, these commutation relations should be evaluated on a timelike surface. Fortu-
nately, in the FLRW case the surface η = const is timelike, exactly as it happens in the
Minkowski case. Equivalently, to quantize the system a±∓k should be promoted to operators.
Starting from equations (8.46), one can prove that they obey the commutation relations

[
â−k , â

−
k′

]
=
[
â+
k , â

+
k′

]
= 0, (8.47a)[

â−k , â
+
k′

]
= δ3(k − k′), (8.47b)

and for this reason they are creation and annihilation operators. The states of the Hilbert
space are constructed by defining a vacuum |0〉 such that

â−k |0〉 = 0, ∀k (8.48)

and by acting upon it with creation operators

|mk1nk2 . . .〉 = (m!n!)−1/2
(
(â+
k1)m(â+

k2)n . . .
)
|0〉 (8.49)

As it often happens in the quantization in curved spacetime, the vacuum is not uniquely
defined. Indeed, one can perform the Bogolyubov transformation

uk(η) = αkvk(η) + βkv
∗
k(η) whit |αk|2 − |βk|2 = 1 (8.50)

and expand the field operator σ as

σ̂(η,x) = 1√
2

∫
d3k

(2π)3/2

[
b̂−k u

∗
k(η)eik·x + b+

−kuk(η)e−ik·x
]
, (8.51)
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where b̂±k are creation/annihilation operators linked to â±k by the transformations

â−k = α∗kb̂
−
k + βkb̂

+
−k, â+

k = αkb̂
+
k + β∗kb̂

−
−k; (8.52)

or equivalently
b̂−k = αkâ

−
k − βkâ+

−k, b̂+
k = α∗kâ

+
k − β∗kâ−−k. (8.53)

Of course, mode functions uk, u∗k are another set of linearly independent solutions of equation
(8.42). Both â±k and b̂±k can be used to build an Hilbert space:

â−k |0〉a = 0, |mk1nk2 . . .〉a = 1√
m!n!

(
(â+
k1)m(â+

k2)n . . .
)
|0〉a ; (8.54a)

b̂−k |0〉b = 0, |mk1nk2 . . .〉b = 1√
m!n!

(
(b̂+
k1)m(b̂+

k2)n . . .
)
|0〉b . (8.54b)

If the Bogolyubov transformation is not trivial, i.e. βk 6= 0, the b-vacuum contains 0 b-
particles but it contains some a-particles (and viceversa). Indeed, it is possible to prove
that

〈0|b N̂a
k |0〉b

def= 〈0|b â+
k â
−
k |0〉b = |βk|2 〈0|b b̂−−kb̂

+−k |0〉b = |βk|2δ3(0), (8.55)

where the divergent factor δ3(0) is due the infinite spatial volume. However, the number
density of a-particles in b-vacuum is nak = |βk|2 so that the total density is

na =
∫

d3k|βk|2. (8.56)

Vacuum and boundary conditions

The particle interpretation depends on the choice of the vacuum, or equivalently of the mode
functions. One may ask which is the physical vacuum among all the possible ones. When
quantizing in Minkowski spacetime, the vacuum is time independent and it is the eigenstate
of the Hamiltonian with minimum energy. In analogy with this, in curved spacetime one
can compute the Hamiltonian Ĥ associated with the field σ and search for the lowest energy
eigenstate. This will fix mode functions and the physical vacuum. In the case under study,
the Hamiltonian is given by

Ĥ = 1
2

∫
d3k

[
â−k â

−
−kF

∗
k + â+

k â
+
−kFk +

(
2â+
k â
−
k + δ(0)

)
Ek
]
, (8.57)

where
F ∗k

def= v′2k + ω2
kv

2
k, Ek

def= |v′k|2 + ω2
k|vk|2. (8.58)

The physical vacuum |0〉v is the one for which the expected energy value, that is equal to

〈0|v Ĥ |0〉v = δ(0)
2

∫
d3kEk, (8.59)



8. Quantum Fluctuations during Inflation 71

is minimum. Clearly, 〈0|v Ĥ |0〉v is the lowest possible when Ek is minimum and this condi-
tion fixes the mode functions vk. By expanding

vk(η) = πk(η)eiαk(η), (8.60)

the equation (8.58) becomes

Ek = (π′k)2 + 1
4π2

k

+ ω2
kπ

2
k. (8.61)

This energy has to be minimized

dEk
dk

= 0 =⇒ π′k = 0, (8.62a)
dEk
dη = 0 =⇒ πk = (2|ωk|)−1/2, (8.62b)

where k def= |k|. Further, the normalization condition Im{v′v} = 1/2 implies that α′kπ2
k = 1/2

and so
αk =

∫
dη 1

2π2
k(η) = |ωk|η. (8.63)

Finally, the mode functions that define the physical vacuum at some time η0 are

vk(η0) = 1√
|ωk(η0)|

ei|ωk(η0)|η0 , (8.64)

for which the Hamiltonian is diagonal since Ek = |ωk| and Fk = 0. There are still many
vacua, one per each possible η0. One of the most common choices is η0 → −∞. In this case,
the mode functions become

v
(BD)
k = lim

η0→−∞
vk(η0) = eikη√

|2k|
. (8.65)

The vacuum defined by such mode functions is called Bunch-Davies vacuum. Equation
(8.65) is nothing but the initial conditions for equation (8.42). Note that |kη| = k/(aH)
is directly proportional to the ratio between the background curvature L and the physical
wavelength of the mode λ. Therefore, in the-so called ultraviolet limit k � aH or −kη � 1,
the background curvature is much larger than the typical size of the mode. Thus, in the
early universe mode functions are not affected by the spacetime curvature and they behave
as in flat spacetime, where mode functions are plane waves eikη/

√
2k. This is the physical

meaning of the Bunch-Davies vacuum.
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Slow-roll solution

Now, it is possible to solve equation (8.42) during slow-roll inflation, i.e. in a quasi-De Sitter
spacetime, with boundary conditions (8.65). The z parameter (8.36) can be written in terms
of the slow-roll Hubble parameters (7.11) as

z ≡ a2 φ̇0

ȧ
= a
√

2ε1√
8πG

. (8.66)

In the second equality, equation (7.31) was used. After some computations, one finds:

z′ = aHz
(

1 + ε2
2

)
. (8.67)

Then
z′′ = z(aH)2

[
2− ε1 + 3

2ε2 + ε22 + ε1ε2
2 + ε2ε3

2

]
. (8.68)

In a quasi De Sitter space the scale factor is such that:

aH = −1/(η(1− ε)) ≈ −(1 + ε)/η. (8.69)

Indeed
d
dη

( 1
aH

)
= − a′

a2H
− H ′

aH2 ≡ −1 + ε1 =⇒ 1
aH

= (ε1 − 1)η. (8.70)

Hence, by neglecting second-order slow-roll Hubble parameters, one gets

z′′

z
= 1
η2 (1 + ε)2

(
2− ε1 + 3

2ε2 + ε22 + ε1ε2
2 + ε2ε3

2

)
≈ 1
η2

(
2 + 3ε1 + 3

2ε2
)
. (8.71)

Equation (8.42) now reads

v′′k +
[
k2 − 1

η2

(
ν2 − 1

4

)]
vk = 0, where ν2 def= 9

4 + 3ε1 + 3
2ε2. (8.72)

Clearly, for small slow-roll parameters, ν is given by

ν ≈ 3
2 + ε1 + ε2

2 . (8.73)

The solution of equation (8.72), when ν is real, is a linear combination of Hankel functions
of the first H(1)

ν and second H(2)
ν kind:

vk(η) =
√
−η

[
c1(η)H(1)

ν (−kη) + c2(η)H(2)
ν (−kη)

]
. (8.74)

The integration constants c1,2 are fixed by the Bunch-Davies boundary condition (8.65).



8. Quantum Fluctuations during Inflation 73

Given that

H(1)
ν (x� 1) ≈

√
2
πx
ei(x−(π/2)ν−π/4), (8.75a)

H(2)
ν (x� 1) ≈

√
2
πx
e−i(x−(π/2)ν−π/4), (8.75b)

the integration constants are forced to c1 = 0 and c2 =
√
π/2. Finally, the mode functions

are
vk(η) =

√
π

2
√
−ηH(2)

ν (−kη). (8.76)

Note that this analytical solution was found in the slow-roll approximation. In the case of
non-slow-roll inflation, the Mukhanov-Sasaki equation should be integrated numerically.

Power spectrum

As already mentioned, cosmological observables are affected by curvature perturbations R
once they re-enter the Hubble-radius. Since these perturbations are frozen on super-Hubble
radius scales (8.25), their power spectrum is completely determined at the Hubble-radius-
crossing, i.e. when k = aH.

At quantum level, R is an operator that looks like R̂ = z−1σ̂. The power spectrum of
Rk corresponds to the vacuum expectation value of the corresponding operator:

〈0| R̂kR̂k′ |0〉 = 1
z2 〈0| σ̂kσ̂k′ |0〉 =

= 1
z2 〈0|

[
â−k vk + â+

−kv
∗
k

] [
â−k′vk′ + â+

−k′v∗k′

]
|0〉 =

= 1
z2 〈0| â

−
k â

+
k′vkv

∗
k′ |0〉 =

= 1
z2 〈0| â

+
k′ â−k +

[
â−k , â

+
k′

]
︸ ︷︷ ︸
=δ3(k+k′)

|0〉 vkv∗k′ =

= δ3(k + k′) |vk|
2

z2 . (8.77)

The comparison between this equation and equation (8.27) gives

PR = k3

2π2
|vk|2

z2 . (8.78)

The solution (8.76) on super-Hubble-radius scales is:

vk
k�aH≈

√
π

k

2ν−1

π
Γ(ν)

(
k

aH

) 1
2−ν

. (8.79)

Given the expression (8.66), one has that the power spectrum of curvature perturbations on
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super-Hubble-radius scales is

PR = 8πG H2

2π3ε1
22ν−3Γ2(ν)

(
k

aH

)3−2ν

. (8.80)

For ν ≈ 3/2 + . . . , one has Γ2(ν) ≈ π/4 and 22ν−3 ≈ 1 and so

PR(k � aH) = 8πG H2

8π2ε1

(
k

aH

)3−2ν

. (8.81)

At the comoving Hubble radius crossing k = aH is

PR = 8πG
2ε1

(
H2

2π

)∣∣∣∣∣
k=aH

. (8.82)

In slow-roll inflation H and ε1 vary slowly and so one expects a scale invariant power spec-
trum, i.e. a power spectrum that does not depend on k. However, since H and ε1 can be
functions of time, there can be a little deviation from scale invariance. To measure this
deviation one, the power spectrum is parameterized as in equation (8.31) and the index tilt
is computed as

ns − 1 = d lnPR
d ln k = d lnPR

dN
dN

d ln k . (8.83)

The derivative with respect to the e-folds number N is

dPR
dN = d

dN
8πG
2ε1

(
H2

2π

)∣∣∣∣∣
k=aH

= 2d lnH
dN − d ln ε1

dN . (8.84)

The first term is nothing but −2ε1 and the second one is −ε2. By using the fact that d lnPR
d ln k

should be computed at k = aH, one can expand ln k = N + lnH so that

dN /d ln k = (d ln k/dN )−1 =
(

1 + d lnH
dN

)−1

≈ 1 + ε1. (8.85)

The tilt is then equal to

ns − 1 = −2ε1 − ε2 ≡ −6εV + 2ηV . (8.86)

Finally, by comparing equation (8.82) with the generic scale-invariant parametrization (8.31),
one recognizes the amplitude AR and the tilt ns of the primordial power spectrum

AR = 8πG H2

8π2ε1
≡ 8πG H2

8π2εV
(8.87a)

ns − 1 = −2ε1 − ε2 ≡ −6εV + 2ηV . (8.87b)

At second order in the Hubble slow-roll parameters, the scalar tilt ns and its running
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dns/d ln k are given by:

ns − 1 = −2ε1 − ε2 − 2ε21 − (2C + 3)ε1ε2 − Cε2ε3, (8.88a)
dns/d ln k = −2ε1ε2 − ε2ε3, (8.88b)

where C def= ln 2 + γE − 2 ≈ −0.7296 (γE is the Euler-Mascheroni constant). The potential
slow-roll parameters εV and ηV can be written in terms of εi at second order as [50]:

εV = ε1
(1− ε1/3 + ε2/6)2

(1− ε1/3)2 , (8.89a)

ηV = 2ε1 − ε2/3− 2ε21/3 + 5ε1ε2/6− ε22/12− ε2ε3/6
1− ε1/3

, (8.89b)

ξ2
V

def= 1
(8πG)2

V ′V ′′′

V 2 = ε1
1− ε1/3 + ε2/6

(1− ε1/3)2

[
4ε21 − 3ε2ε3 + ε2ε3

2 − ε1ε22 + 3ε21ε2+

−4
3ε

3
1 −

7
6ε1ε2ε3 + ε22ε3 + ε2ε

2
3 + ε2ε3ε4
6

]
, (8.89c)

where ξV is an higher order slow-roll potential parameter. The amplitude does not change
at second order. The running appears only as a second-order effect. The running of the
running is a third-order effect and it will be not mentioned anymore.

Measuring with high precision the primordial power spectrum of scalar perturbations
means to know with precision AR and the various slow-roll potential parameters and hence
to select between different inflationary models.

8.3 Tensor Fluctuations

To study tensor perturbation consider the action (8.32) written in the convenient gauge
(8.34). By considering only tensor perturbations hij, one can expand the action at second
order as:

ds2 = a2(η)
[
dη2 + (δij + hij) dxidxj

]
. (8.90)

The perturbed action (8.32) at first order in tensor modes is

S(2) = 1
64πG

∫
dηd3xa2

[
(h′ij)2 − (∇hij)2

]
. (8.91)

Since hij is traceless and transverse, it has only two physical polarizations, corresponding to
gravitational waves. If it propagates along x3, it can be expanded as

hij =


h+ hx 0
hx −h+ 0
0 0 0

 ≡∑
λ

e
(λ)
ij h

(λ), where λ = +,× (8.92)
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and where e(λ)
ij e

(λ′)
ij = δλλ′ . The action S(2) can now be written as

S(2) = 1
64πG

∑
λ

∫
dηd3xa2

[(
h(λ)′

)2
−
(
∇h(λ)

)2
]
. (8.93)

By defining the canonical variable

σ(λ) = a

2
√

8πG
h(λ), (8.94)

the perturbed action takes a simple form

S(2) = 1
2
∑
λ

∫
dηd3x

[(
σ(λ)′

)2
+ a′′

a
(σ(λ))2 −

(
∇σ(λ)

)2
]
. (8.95)

This action is identical to the one for scalar perturbation (8.37) except by the fact that the
effective mass z′′/z is replaced by a′′/a. Thus, the results for tensor perturbations are the
same for scalar ones, except for the effective mass, which can be generally expanded as

a′′

a
def= 1
η2

[
ν2
T −

1
4

]
. (8.96)

Thus, all the results for tensor perturbations are the same for the scalar ones, except for the
index ν. The expression for such index in a slowly-rolling background follows from equation
(8.69). Indeed, the integration of that equation gives a = η−(1+ε1) and so

a′′

a
= 2 + 3ε1 +O(ε21)

η2 . (8.97)

Thus, in the tensorial case, the index νT is

ν2
T = 9

4 + 3ε1 (8.98)

and in the slow-roll approximation is

νT ≈
3
2 + ε1. (8.99)

Then, one has to expand σ(λ) (or similarly h(λ)) in Fourier space. The expansion will
look similar to (8.44) and the equation for corresponding tensorial mode functions v(λ)

k are
immediately obtained by replacing the new effective mass into the equation of the scalar
case (8.42):

v
(λ)′′
k +

(
k2 − a′′

a

)
v

(λ)
k ≡ v

(λ)′′
k +

(
k2 − 1

η2

[
ν2
T −

1
4

])
v

(λ)
k = 0, νT ≈

3
2 + ε1. (8.100)
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The solution on super-Hubble-radius scales is

v
(λ)
k (η) ≡ a

2
√

8πG
h

(λ)
k

k�aH≈
√
π

k

2νT−1

π
Γ(νT )

(
k

aH

) 1
2−νT

. (8.101)

Finally, the power spectrum for tensorial perturbations on super-Hubble-radius scales is

PT (k � aH) = k3

2π2

∑
λ

|h(λ)
k |2 = k3

π2
16πG
a2

∑
λ

|v(λ)
k |2 = 8πG2H2

π2

(
k

aH

)3−2νT
. (8.102)

At the Hubble-radius crossing, the power spectrum is equal to

PT = 8πG2H2

π2

∣∣∣∣∣
k=aH

. (8.103)

Usually the tensor power spectrum is parametrized as

PT ≡ AT

(
k

k∗

)nt+ 1
2 dnt/d ln k ln(k/k∗)+...

(8.104)

where the scale invariance case now corresponds to nt = 0. At first order in the slow-roll
approximation, the tensor amplitude and tilt are

AT = 8πG2H2

π2 (8.105a)

nt
def= d lnPT

d ln k = 2d lnH
dN

dN
d ln k =

= −2ε1
(

d ln k
dN

)−1

= −2 ε1
1− ε1

=

≈ −2ε1 +O(ε21) ≡ −2εV . (8.105b)

Notice that there is an additional factor 2 coming from the summation over λ. The main
difference between AR and AT is that the latter does not depend on ε1. This is because
in the tensorial case the canonical variable σ(λ) is proportional to a−1 and not to z−1, that
depends on ε1, as in the scalar case. This explains also the difference between ns and nt.

The running of the tensor tilt is a second-order parameter. At second order, the tensor
tilt and its running are given by

nt = −2ε1 − 2ε21 − 2(C + 1)ε1ε2, (8.106a)
dnt/d ln k = −2ε1ε2. (8.106b)

Again εi are linked to εV , ηV , ξ2
V by equations (8.89).
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Consistency relation

The obtained amplitudes for the scalar and tensor perturbations allow us predicting a consis-
tency relation which holds for the single-field models of inflation studied so far. It is possible
to define a tensor-to-scalar ratio

r(k) def= PT (k)
PR(k) . (8.107)

For single-field models of inflation this ratio is simply

r(k∗) ≡ r∗ = 16εV = −8nt. (8.108)

If r∗ deviates from −8nT , then the inflationary phase was not driven by a single scalar field.
The consistency relation helps in understanding how r is connected to the evolution of the
inflaton [51]:

∆φ
Mpl

≈ 1√
8

∫ N
0

dN
√
r. (8.109)

This relation is called Lyth bound and it implies that inflaton variations of the order of the
Planck mass cause r & 0.01. This threshold is used to broadly and approximately classify
large (small) field models of inflation, where φ > Mpl (φ < Mpl). Notice however that large
field models predicting r ∼ 10−4 exist.

8.4 Short catalog of inflationary models

In this section, all the inflationary models that can be described by the primordial power
spectrum parameters AR, ns, r (all defined at the pivot scale k∗), are examined. It is assumed
a negligible running of the spectral index and its independence on the wave number k.

Measurement of AR, ns, r are the only way for constraining slow-roll inflation. The
current constraints on AR and ns are taken from [18] and they are

ln
(
1010AR

)
= 3.044± 0.014, ns = 0.9649± 0.0042. (8.110)

The constraint on the tensor-to-scalar ratio comes from the Planck 2018 data combined with
those of the BICEP-Keck Array (BK18) [52]:

r0.002 Mpc−1 < 0.035. (8.111)

Such data allows constraining many different inflationary models, which are briefly re-
viewed in this section.
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Fig. 8 – Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination
with BICEP/Keck Array 2018 and 2015 data compared to the theoretical predictions of selected
inflationary models with the uncertainty in the number of e-folds N ≡ N∗ in the range (50, 60).
Image taken from [52].

Power law potential and chaotic inflation

The simplest inflationary models are those characterized by a monomial potential of the
form

V (φ) = λM4
pl

(
φ

Mpl

)n
. (8.112)

This class of potentials contains large field models, also called chaotic models of inflation.
This class of potential predicts

ns = 1− 2 n+ 2
4N∗ + n

r = 16n
4N∗ + n

, (8.113)

where N∗ is the number of e-foldings.
In figure 8, taken from [52], the marginalized joint 68% and 95% confidence level regions

for ns and r0.002 from Planck in combination with BICEP/Keck Array (BK) 2015 and 2018
data are presented and compared with the theoretical predictions of selected inflationary
models. This class of potentials is now disfavored by the Planck and BK18 data.
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Exponential potential and power law potential

When the inflaton potential is the exponential one

V (φ) = Λ4 exp
(
−λ φ

Mpl

)
(8.114)

the scale factor can be found analytically and the result is a(t) = t2/λ
2 . This model is

incomplete since it does not predict inflation to end. However, even if it exists a mechanism
for stopping inflation, the prediction r = −8(ns − 1) lies outside the allowed regions (see
figure 8).

Hilltop models

This class of potentials predicts that the inflaton rolls away from an unstable false vacuum
as in the old inflation model:

V (φ) ≈ Λ4
(

1− φp

µp
+ . . .

)
. (8.115)

The dots indicate higher-order terms that are negligible during inflation but ensure the
potential to be positive. This class of models predicts at first order in the slow-roll ap-
proximation the following quantities: r = 8p2(Mpl/µ)2x2p−2/(1 − xp)2, nS = 1 − 2p(p −
1)(Mpl/µ)2xp−2/(1− xp)− 3r/8, where x = φ∗/µ.

In figure 8, a Hilltop model with p = 4 is shown for different values of µ. This model is
not ruled out by the data for super-Planckian values of µ: µ > 101.05Mpl.

Natural inflation

The origin of natural inflation models lies in some symmetry-breaking theories, which at-
tempted to naturally give rise to the extremely flat potentials required for inflationary cos-
mology. The effective one-dimensional potential in natural inflation has the form

V (φ) = Λ4 [1 + cos(φ/f)] , (8.116)

where f is the scale representing the slope of the potential. Depending on such scale f , the
natural inflation models can be either large field models or small field ones. In particular,
for f > 1.5Mpl the model is a large field one while for f < 1.5Mpl it is a small field one.
Planck and BK18 data now disfavor this model [52].

Hybrid inflation and spontaneously broken SUSY

Hybrid inflation models are multi-field inflationary models where a second field χ, coupled
to the inflaton φ, undergoes a symmetry breaking. The simplest example of this class of
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models is
V (φ, χ) = Λ4

(
−χ

2

µ2

)
+ U(φ) + g2

2 φ
2χ2. (8.117)

Over most of their parameter space, these models behave as a single-field model. The field
χ is close to the origin during the slow-roll regime for φ. Inflation ends either when the
slow-roll parameters of the inflaton become

εφ = M2
pl

(
dU/dφ

Λ4 + U(φ)

)2

≈ 1 (8.118)

or when the waterfall transition of χ occurs. The simplest model with U(φ) = m2φ2/2 is
ruled out by the data. Models with U(φ) ≈ Λ4 are disfavoured due to the high tensor-to-
scalar ratio, while models with U(φ)� Λ4 predict ns > 1 which is not observed.

An example of a hybrid inflation model in which ns < 1 is the spontaneously broken
SUSY model

U(φ) = αhΛ4 ln
(
φ

µ

)
, (8.119)

that predicts ns = 1− (1 + 3αh/2)N−1
∗ and r ≈ 8αhN−1

∗ . If αh � 1 and N∗ ≈ 50, ns ≈ 0.98
is excluded by the data.

R2 inflation

Inflationary models can derive also from extended theories of gravity. One of the first inflation
models proposed was based on higher-order terms in gravitational action, e.g.

S =
∫

d4x
√
−g

M2
pl

2

(
R + R2

2M2

)
, (8.120)

originally included in the action to take into account semi-classical quantum effects. This
model corresponds to the potential

V (φ) = Λ4
(

1− e−
√

2/3φ/Mpl

)2
(8.121)

This is the so called Starobinsky potential and it predicts ns ≈ 1 − 2N∗ and r ≈ 12/N 2
∗ .

Since r scales with N 2
∗ , it predicts a tiny amount of tensor modes, i.e. gravitational waves.

For N∗ = 55, the tilt predicted by this model is 0.963 which is perfectly consistent with the
Planck data.

α-attractors

There are two categories of α-attractors models of inflation. The first one comes from
supergravity theories in which the inflaton it is associated with vector field super-partner
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(instead of o chiral multiplet). The resulting potential is

V (φ) = Λ4
(
1− e−

√
2φ/(Mpl

√
3α)
)2
. (8.122)

The predictions for the tilt and the tensor-to-scalar ratio are ns = 1−8(1+e
√

2φ/(Mpl

√
3α))/[3α(1−

e
√

2φ/(Mpl

√
3α)2)] and r = 64/[3α(1− e

√
2φ/(Mpl

√
3α)2)].

The second class is called super-conformal α attractors. It can be understood as origi-
nating from a different generating function with respect to the first class. To this class it
corresponds the potential

V (φ) = Λ4 tanh2m
(

φ

Mpl

√
6α

)
(8.123)

and for α = m = 1 it reduces to a model with spontaneous symmetry breaking of conformal
symmetry. The slow-roll prediction of this class of models are

ns = 1− 8mN + 6αm+ 2g(α,m)
4mN 2 + 2N g(α,m) + 3αm, where g(α,m) def=

√
3α(4m2 + 3α) (8.124a)

r = 48αm
4mN 2 + 2N g(α,m) + 3αm (8.124b)

Non-minimally coupled inflation

Other models of inflation arisea when one considers the inflaton field non-minimally coupled
to gravity. The action for this system is

S =
∫

d4x
√
−g

[
M2

pl + ξφ2

2 − 1
2g

µν∂µφ∂νφ−
λ

4 (φ2 − φ2
0)2
]
. (8.125)

In the case of a massless inflaton, φ0 = 0, the model agree with data for ξ > 0. The
amplitude of scalar perturbations is proportional to λ/ξ2 for ξ � 1. Therefore, the UV
sensitivity problem can be alleviated in this class of models. The small field case φ � Mpl

is allowed and, in particular, φ can be the Standard Model Higgs boson. The Higgs case
with ξ � 1 has the same predictions of the R2-inflation in terms of N∗ and thus it is
consistent with the current data. When ξ < 0, only the large field case is not excluded by
the observations.



IV

CMB anisotropies, Silk damping Spectral
Distortions and scalar-induced

Gravitational Waves

The main purpose of this thesis is to study the consequences of small-scale large peaks in the
primordial power spectrum of curvature perturbations (PPS). We use different cosmological
observables to constrain such peaks. In particular, we consider anisotropies and spectral
distortions of the cosmic microwave background and scalar-induced primordial gravitational
waves. In this chapter, a short review of these observables is given and the equations that
determine their dependence on the form of the PPS are derived.

9 Anisotropies of the cosmic microwave background

Perturbations of the metric field generate fluctuations in CMB temperature, which reflect
how photons propagate in a perturbed Universe. Metric perturbations are generated during
inflation and so CMB anisotropies can be used to test different inflationary scenarios. In
this section, we describe the dependence of CMB anisotropies on the PPS.

9.1 Photons Boltzmann equation in a perturbed Universe

We study CMB anisotropies by following the evolution of the photon phase space distribution
in a perturbed Universe.

For simplicity, we consider the conformal Newtonian gauge (8.9). The derivation of
the perturbed Boltzmann equation in the synchronous gauge can be found in [48]. In the
Newtonian gauge, the Liouville operator is [27]:

L̂f = ∂f

∂t
+ ∂f

∂xi
p̂i

a
− p

(
H − ∂Φ

∂t
+ ∂Ψ
∂xi

p̂i

a

)
∂f

∂p
, (9.1)

where p̂i and p are the direction and the amplitude of pi respectively. We split the phase
space distribution function as

f(t, p,x, p̂) = f̄(t, p) + Υ(t, p,x, p̂). (9.2)

83
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For photons, the expansion looks like

f(t, xi, p, p̂i) =
[
exp

(
p

T̄ (1 + Θ(t, xi, p, p̂i))
− 1

)]−1

, (9.3)

where Θ = (T − T̄ )/T̄ is the local temperature perturbation. Here T̄ indicates the temper-
ature in absence of perturbations. By expanding f for small Θ we can recognize

Υ(t, p,x, p̂) = −Θp∂f̄
∂p
. (9.4)

The 0-th order Liouville operator is

L̂f̄ = ∂f

∂t
−Hp∂f̄

∂p
, (9.5)

while the 1-st order one is

L̂Υ = −p∂f̄
∂p

[
∂Θ
∂t

+ p̂i

a

∂Θ
∂xi
− ∂Ψ

∂t
+ p̂i

a

∂Φ
∂xi

]
. (9.6)

The first two terms are those responsible for the free streaming, while the last two account
for the effects of gravity.

The interaction that is mainly able to modify CMB anisotropies is Compton scattering,
which is a first-order effect. Indeed, at the 0-th order photons are in thermal equilibrium
and their collision operator vanishes. At first order, one has instead [27]:

C[Υ]|CS = −p2∂f̄

∂p
neσT [Θ0 −Θ(p̂) + p̂ · vb], (9.7)

where vb is the electron bulk velocity and Θ0 is the anisotropy monopole, defined as

Θ0(t,x) = 1
4π

∫
dΩΘ(p̂, t,x). (9.8)

If vb = 0 and if the Compton scattering is efficient, it drives Θ to the monopole solution,
which means that the temperature in the sky is uniform.

By equating (9.6) and (9.8), we find the equation that determines CMB anisotropies:

∂Θ
∂t

+ p̂i

a

∂Θ
∂xi
− ∂Φ

∂t
+ p̂i

a

∂Ψ
∂xi

= neσT [Θ0 −Θ(p̂) + p̂ · vb]. (9.9)

This equation simplifies in Fourier space:

Θ(x) =
∫ d3k

(2π)3 e
ik·xΘ(k). (9.10)

A useful quantity is the cosine of the angle between the Fourier wavevector k and the
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momentum direction p̂:
µ = p̂ · k

k
. (9.11)

In Fourier space, the baryon bulk velocity vb is simply vb = ivbk/k if it is curl-less. The
first-order Boltzmann equation in Fourier space is then

∂Θ
∂t

+ ikµ

a
Θ− ∂Φ

∂t
+ ikµ

a
Ψ = neσT

[
Θ0 −Θ + iµvb −

3µ2 − 1
4 Π

]
, (9.12)

where Π is the quadrupole of Θ

Π = −1
2

∫ 1

−1
dµ3µ2 − 1

2 Θ ≡ Θ2. (9.13)

Multipoles expansion

To get a simpler set of equations, we expand the µ-dependence of Θ in Legendre polynomials
P`(µ)

Θ(t, k, µ) =
∞∑
`=0

2`+ 1
i`

Θ`(t, k)P`(µ), (9.14)

where Θ` are the multipoles, or photon transfer functions, defined as

Θ`(t, k) = i`

2

∫ 1

−1
dµΘ(t, k, µ)P`(µ). (9.15)

Until now, we encountered only the monopole Θ0 and the quadrupole Θ2 ≡ Π. The monopole
is linked to the density perturbation of the photon field δγ = δργ/ρ̄γ by the relation: δγ =
4Θ0. Θ1 is the dipole momentum and it is linked to photon velocity by vγ = −3Θ1. Higher-
order momenta describe other kinds of anisotropies.

The Legendre polynomials can be computed with P0 = 1, P1 = µ, P2 = (3µ2 − 1)/2 and
the use of the Bonnet’s recursive formula

µP` = `+ 1
2`+ 1P`+1 + `

2`+ 1P`−1, ` > 0. (9.16)

With this formula, equation (9.12) splits into

Θ′0 = − k
H

Θ1 + Φ′ (9.17a)

Θ′1 = k

3HΘ0 −
2k
3HΘ2 + k

3HΨ + τ ′[Θ1 + vb/3] (9.17b)

Θ′` = `k

(2`+ 1)HΘ`−1 −
`+ 1
2`+ 1

k

H
Θ`+1 + τ ′

[
Θ` −

1
10Πδ`,2

]
, l ≥ 2 (9.17c)

where H is given in equation (2.40) and where the prime now indicates a derivative with
respect to the variable x = log a. Notice that the δ`,2 is a Kronecker delta. The first (second)
equation is the perturbed version of the continuity (Euler) equation.



86 CMB anisotropies, Silk damping SDs and scalar-induced GWs

If polarization is included, one has to add two more equations to the previous set of
equations:

Θ′P0 = −ck
H

ΘP1 + τ ′
[
ΘP0 −

1
2Π

]
, (9.18a)

Θ′P` = `ck

(2`+ 1)HΘP`−1 −
(`+ 1)ck
(2`+ 1)HΘP`+1 + τ ′

[
ΘP
` −

1
10Πδ`,2

]
, 1 ≤ `, (9.18b)

and Π has to be modified in Π = Θ2 + ΘP0 + ΘP2.
These equations are coupled to those for the evolution of baryons, neutrinos and cold

dark matter. To close the system it is necessary to keep track of the evolution of Φ and Ψ by
solving the perturbed Einstein equations δGµν = 8πGTµν . The system can be numerically
integrated once initial conditions for perturbations are given. In case of adiabatic initial
conditions, they are completely determined by the values of Φ and Ψ, or analogously R, at
Hubble-radius re-entering. Since R is constant outside the horizon, its PPS at Hubble-radius
re-entering coincides to those at Hubble-radius crossing set up in the very early Universe by
inflation. Therefore, CMB anisotropies can be used to test different inflationary models. We
summarize the equations and the adiabatic initial conditions for all species in appendix A.

9.2 CMB angular power spectra

Experiments measure CMB temperature as a function of the direction T (n̂), i.e. δT/T =
Θ(x, p̂, t), where x is the observer position, p̂ the direction of observation and t = t0 the
time of the observation. Θ can be expanded in spherical harmonics

Θ(x, p̂, t) =
∞∑
`=1

l∑
m=−l

a`m(t,x)Y`m(p̂), (9.19)

where the coefficients a`m are given by

a`m(t,x) =
∫

dΩp̂Y
∗
`m(p̂)Θ(x, p̂, t) ≡

∫ d3k

(2π)3 e
i~k·~x

∫
dΩp̂Y

∗
`m(p̂)Θ(k, p̂, t), (9.20)

and normalized as
〈a`ma∗`′m′〉 = δ``′δmm′C`. (9.21)

C`
def=〈|a`m|2〉 is the angular power spectrum of CMB anisotropies. The angular brackets

denote an ensemble average, where the ensemble is made by different realizations of our
Universe. Since we measure a particular realization of the Universe and since for each `

there are 2`+ 1 possible values of m, we can estimate the angular power spectrum as

Ĉ` = 1
2`+ 1

∑̀
m=−`

|a`m|2. (9.22)
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The error done by approximating C` with Ĉ` is the so-called cosmic variance

∆C` =
√

2
2`+ 1C`. (9.23)

Obviously, ∆C`/C` is large at small `. By using the multipoles expansion of Θ, we write the
expression for a`m as

a`m(x, t) =
∑
`

(2`+ 1)(−i)`
∫ d3k

(2π)3 e
i~k·~x

∫
dΩp̂Y

∗
`m(p̂)P`(µ)Θ`(k, t). (9.24)

Photon perturbations Θ`(k, t) depend on the initial conditions set during inflation by the
quantum fluctuations of the inflaton field. Such dependence is usually decomposed as

Θ`(k, t) = R(k)Θ`(k, t0), (9.25)

where Θ`(k, t0) are solutions of equation (9.17) with R = 1 evaluated today t = t0. They are
called photon transfer functions and they determine the evolution of photon multipoles from
the Hubble-radius re-entering of inflationary quantum fluctuations until today. Therefore,
the angular power spectrum of CMB anisotropies is linked to the PPS by the equation

C` = 4π
∫ dk

k
|Θ`(k, t)|2PR(k). (9.26)

Line of sight integration

To compute the CMB angular power spectrum it is necessary to know the transfer functions
Θl. Their expressions are found by solving the full set of equations present in appendix A
given the initial conditions R = 1. Today, the angular power spectrum is measured until
` ∼ 2500. Numerically, it is demanding to solve a system with ∼ 2500 coupled partial
differential equations. The line-of-sight integration, introduced in [53], allows to compute
photon transfer functions as

Θ`(k, x = 0) =
∫ 0

−∞
dxS̃(k, x)j`[k(η0 − η)], (9.27)

where S̃(k, x) is a source function defined as

S̃(k, x) = g̃
[
Θ0 + Ψ + 1

4Π
]
+e−τ [Ψ′ + Φ′]− 1

ck

d
dx(Hg̃vb)+ 3

4c2k2
d

dx

[
H d

dx(Hg̃Π)
]
. (9.28)

and where x = log a. The function g̃ is nothing but the visibility function defined in equa-
tion (3.40) times H: g̃ = −(dτ/dx)e−τ = Hg. j` are spherical Bessel functions and project
temperature anisotropies from recombination to the present day. Line-of-sight integration
requires to know only Π, Φ, Ψ, Θ0 and vb and the respective derivatives. To accurately com-
pute the highest necessary multipole (Θ2) it is sufficient to truncate Boltzmann equations.



88 CMB anisotropies, Silk damping SDs and scalar-induced GWs

This reduces significantly the dimension of the set of equations and all Einstein-Boltzmann
solvers, like CLASS, use such integration technique.

Polarization

The number of photon polarizations is gγ = 2 and so we can split the phase space distribution
as fγ = f (1)

γ +f (2)
γ . Each contribution gets a perturbation Θ(i). The equation for polarization

presented in (9.18) is roughy valid for ΘP = 0.5(Θ(1) −Θ(2)).
To discuss in general CMB polarization, consider a monochromatic electromagnetic plane

wave propagating in the z-direction. The electric field is

E(z, t) = Re
{

(Exx̂+ Eyŷ)eik(z−t)
}
. (9.29)

The complex amplitudes of the electric field are Ex = |Ex|eiφx and Ey = |Ey|eiφy . The
electric field at z = 0 is an ellipse in the xy plane described by the equation

E(t) = |Ex| cos(ωt)x̂+ |Ey| cos(ωt− φ)ŷ, with φ = φy − φx. (9.30)

For φ = 0, π the radiation is said to be linearly polarized because the x and y field components
oscillate in phase (or anti-phase) and the ellipse collapses into a line. Similarly, for φ = ±π/2
the wave is circularly polarized since the ellipse reduces to a circle. The electromagnetic
radiation polarization can be described with the Stokes parameters

I
def= |Ex|2 + |Ey|2 Q

def= |Ex|2 − |Ey|2

U
def= 2|Ex||Ey| cosφ V

def= 2|Ex||Ey| sinφ.
(9.31)

I measures the intensity of the radiation, while Q, U , V describe its polarization state. In
particular, for a linear polarized wave V = 0. In the Early Universe and in the standard
cosmological model, only linear polarization is expected to be generated and so we set V = 0
from now on. Under a rotation by an angle ϕ in the xy plane, Stokes parameters transform
as

I ′ = |E ′x|2 + |E ′y|2 ≡ I, Q′ ± iU ′ = e∓2iϕ(Q± iU). (9.32)

We recognize that I is a scalar, while Q± iU are spin-2 fields. We can replace Q and U with
two scalar fields describing the so-called E and B polarization modes. These modes have
coefficients

aE`m = −1
2
(
a

(2)
`m + a

(−2)
`m

)
, aB`m = − 1

2i
(
a

(2)
`m − a

(−2)
`m

)
, (9.33)

where a(±2)
`m are defined in the Q± iU spherical harmonics expansion

(Q± iU)(n̂) =
∞∑
`=0

∑̀
m=−`

a
(±2)
`m Y

(±2)
`m (n̂). (9.34)
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The final expressions for E ad B modes are

E(n̂) =
∞∑
`=0

∑̀
m=−`

aE`mY
(±2)
`m (n̂) (9.35a)

B(n̂) =
∞∑
`=0

∑̀
m=−`

aB`mY
(±2)
`m (n̂) (9.35b)

and their power spectra are defined as usual

〈aT`maE∗`′m′〉 = CTE
` δ``′δmm′ (9.36a)

〈aE`maE∗`′m′〉 = CEE
` δ``′δmm′ (9.36b)

〈aB`maEB∗`′m′ 〉 = CBB
` δ``′δmm′ (9.36c)

where we introduced the superscript T to distinguish the temperature angular power spectra
discussed previously from the polarization ones.

CMB is expected to become polarized via Thomson scattering, whose angular dependence
is

dσ
dΩ = 3

8πσT |ê
′ · ê|2, (9.37)

where ê′ and ê are the incident and scattered directions. The Stokes parameters Q, U in
this case are

Q(ẑ) ∝
∫

dΩ′f(n̂′)
2∑
j=1

(
|x̂ · ê′j|2 − |ŷ · ê

′
j|2
)
, (9.38a)

U(ẑ) ∝ −
∫

dΩ′f(n̂′) sin2 θ′ sin 2φ′. (9.38b)

where f is the photons phase space distribution and it includes temperature fluctuations Θ.
We write the previous equations in Fourier space by using E and B according to [24]:

E(ẑ,k) ∝ 4π
5 sin2 ΘkΘ2(k), (9.39a)

B(ẑ,k) ∝ 0. (9.39b)

We deduce that scalar perturbations induce only E-modes. On the other hand, B-modes are
sourced by are primordial tensorial fluctuations. Future measurements of B-modes will prove
the existence of primordial gravitational waves generated during inflation. The EE-power
spectrum generated by scalar perturbations during inflation is

CEE
` = 4π

∫ dk
k
|ΘE

` (k, t)|2PR(k), (9.40)
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where the transfer function ΘE
` are given by [24]:

ΘE
` (k) ∝ k

ΓG∗(k) `2

(kτ0)2 j`(kτ0), (9.41)

where τ0 is the conformal time today, Γ is the mean free path of photons and G∗ = vb/R(k)
the baryon transfer function. Similarly, it is possible to compute the CTE

` spectrum. We
show in figure 9 the CMB angular power spectra measured by the Planck collaboration.
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Fig. 9 – TT (top), EE (bottom left) and TE (bottom right) angular power spectra measured by
Planck. The plotted quantities are D(XY )

` = `(` + 1)T 2
0C
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` /2π. The blue solid lines are the

ΛCDM best fit theoretical spectra and in the bottom panels the residuals with respect to this
model are shown. Figures are taken from [18].
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Dependence on cosmological parameters

The power of the ΛCDM cosmological model is that it can fit cosmological data with only 6
free parameters, whose measured values by the Planck mission are [18]:

1. Present-day baryons energy density: h2Ωb,0 = 0.02237± 0.00015.

2. Present-day cold dark matter density: h2ΩCDM,0 = 0.1200± 0.0012.

3. Angular scale of the comoving sound horizon θs, defined as

θs = rs
DA(arec)/arec

, (9.42)

where rs = s(ηrec) and DA is the angular diameter distance. This parameter depends
on Ωb,0, ΩCDM,0, ΩK,0, ΩΛ,0 and on the effective number of relativistic species Neff in
the primordial plasma. Only neutrinos were present but since they decoupled in a
slightly different moment, the value of Neff is 3.046. θs is a way to measure the Hubble
parameter H0. Planck measured 100θs = 1.04092± 0.00031.

4. Optical depth at reionization τ = 0.0544± 0.0073.

5. Amplitude of the PPS As, which determines the amplitude of primordial scalar fluc-
tuations from inflation: ln(1010As) = 3.044± 0.014.

6. Tilt of the PPS ns = 0.9649 ± 0.0042. The PPS is slightly red with respect to scale
invariance and so perturbations at large scales are larger than those at small scales.

The quantity As and ns are computed at the reference scale k∗ = 0.05 Mpc−1 or k∗ =
0.002 Mpc−1. Another important parameter of the ΛCDM model is the tensor-to-scalar
ratio r, which has not been detected yet. Therefore, the existence of tensor modes is not
proved yet.

The shape of CMB angular power spectra strongly depends on cosmological parameters.
At large angular scales, precisely for ` / 20, the CMB angular power spectra has an almost
constant value:

`(`+ 1)CTT
` /2π = As|(Θ0 + Ψ)ini|2 = constant. (9.43)

This effect is known as Sachs-Wolf plateau and the constant is a measure of As. The location
of the first three peaks in CTT

` depends on present-day densities and on Θs. In particular,
θs is completely determined by the location of the first peak ` ∼ 200. At small scales, Silk
damping takes place. This effect arises from the fact that at small scales photons diffuse
from hot regions of the plasma to colder ones. The superposition of black bodies smooths
temperature fluctuations. So, CMB anisotropies show a decreasing behavior at small scales.
The Silk scale, which represents the scale under which Silk damping occurs, is computed as
ak−1

S ≈
√
t/(neσT ) and at recombination is roughly 8 Mpc−1. For k > kS, i.e for ` ' 800,

CTT
` is proportional to `ns−1 and this allows to measure ns. CEE

` allows to measure τ
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because for ` ≤ 10 CEE
` shows a bump whose amplitude is roughly proportional to τ 2. The

tensor-to-scalar ratio can be measured from the B-mode power spectra.
The Sachs-Wolf plateau, acoustics peaks and Silk damping are said to be primary sources

of anisotropies. All of them occur for ` ≥ 2. ` = 0 is the monopole term and it is related to
the average temperature of CMB. The dipole (` = 1) is dominated by the kinematic effect
caused by the relative motion of Earth with respect to CMB. It is the largest contribution
to temperature fluctuations.

As the name suggests, primary anisotropies are not the only sources for CMB anisotropies.
Indeed, there are also the so-called secondary sources of fluctuations:

• Integrated Sachs-Wolf effect. This effect is due to the time-varying gravitational po-
tentials that CMB encounters along the line of sight.

• Reionization. Around z ∼ 7, the formation of the first stars caused the reionization
of the plasma and hence an increment of the optical depth τ . Reionization affects the
amplitude of the CMB power spectra which is proportional to Ase−τ . If one does not
include CMB polarization power spectra, τ and As are degenerate parameters: they
cannot be measured independently. Fortunately, CMB polarization power spectra
break this degeneracy since the first peaks of the EE power spectrum depend only on
τ .

• SZ effect. Free electrons present inside galaxy clusters cause distortions of the CMB
black body due to the inverse Compton scattering with CMB photons. This affects
also CMB temperature fluctuations.

• Gravitational lensing. The presence of structures along the line of sight to the last
scattering surface deflects photons. This effect is known as gravitational lensing and
it is one of the most important predictions of General Relativity. At the CMB level,
the gravitational lensing generates a smoothing of the acoustic peaks in the TT -power
spectra and it creates B-mode polarization. Thus, we observe B modes but not those
to tensor fluctuations.

10 Silk damping spectral distortions

The presence of primordial fluctuation generated during inflation causes some regions of
the primordial plasma to be hotter and denser than others. The various regions of the
plasma at different temperatures are all represented by a black body spectrum. Photons
diffuse from overdense regions to underdense ones and vice versa. This superposition of
black bodies at different temperatures, known as Silk damping, generates an isotropization
of the photon phase space distribution at small scales but also CMB SDs because, in general,
the superposition of two or more black body spectra does not simply result in another black
body at different temperature. We will prove that SDs generated by Silk damping depend
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on the PPS and so they can be used to constrain its shape. This is one of the standard
mechanisms in the ΛCDM model that predicts SDs and it provides a scientific goal for future
experiments. Indeed, a measure of SDs due to Silk damping would provide an independent
test of the ΛCDM model at scales never tested before.

10.1 Superposition of black bodies

Consider a black body radiation. Its spectral intensity is described by the Planck law (3.47).
Similarly, its energy per unit of frequency and the total energy integrated over frequencies
are given by

Eν = 8π ν3

eν/(kBT ) − 1 , E = aRT
4, (10.1)

where the radiation constant is defined as aR def=(8π5/15)k4
B. The number of photons for such

black body is
N = bRT

3, where bR = 16πk3
Bζ(3). (10.2)

Finally, the entropy is
S = 4

3
E

T
= 4

3aRT
3. (10.3)

Consider now the CMB with its temperature fluctuations Θ = ∆T/T . The photon phase
space distribution of a black body at temperature T+∆T at second order in Θ is (see (5.21))

B

(
ν

kBT̄ (1 + Θ)

)
≈ B(x̄) +G(x̄)

[
Θ + Θ2

]
+ 1

2Y (x̄)Θ2 +O
(
Θ3
)
, (10.4)

where T̄ def=〈T 〉 is the spatially averaged temperature. We now take the ensemble average
and by using the fact that 〈Θ〉 = 0, we get

〈
B

(
ν

kBT̄ (1 + Θ)

)〉
≈ B(x̄) +G(x̄)

〈
Θ2
〉

+ 1
2Y (x̄)

〈
Θ2
〉

+O
(
Θ3
)

(10.5)

The term representing the temperature shift can be absorbed in the first one by introducing
a new reference temperature:

Tnew = T̄
[
1 + Θ2

]
. (10.6)

Indeed, the ensemble average of B(xnew) at second order in Θ is exactly equal to the first
two terms of equation (10.5). Therefore, we get

〈
B

(
ν

kBT̄ (1 + Θ)

)〉
≈ B(xnew) + 1

2Y (x̄)
〈
Θ2
〉

+O
(
Θ3
)
. (10.7)

The y-type distortion term cannot be absorbed by any re-definition of the reference temper-
ature and so Silk damping produces a black body at higher temperature Tnew > T̄ plus a
y-type CMB spectral distortion with amplitude y = 0.5 〈Θ2〉.

To understand why Silk damping produces SDs, consider two black body spectra with
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temperatures T1 = T + ∆T and T2 = T − ∆T . Their average temperature is T . The
total energy, number of photons and entropy of a black body at temperature T are given
in equations (10.1), (10.2), (10.3). The average initial total energy, number of photons and
entropy of the two not super-imposed black bodies are instead given by

Einitial = aR
T 4

1 + T 4
2

2 ≈ aRT
4

1 + 6
(

∆T
T

)2
 > aRT

4 (10.8a)

Ninitial = bR
T 3

1 + T 3
2

2 ≈ bRT
3

1 + 3
(

∆T
T

)2
 > bRT

3 (10.8b)

Sinitial = 4aR
3
T 3

1 + T 3
2

2 ≈ 4aR
3 T 3

1 + 3
(

∆T
T

)2
 > 4aR

3 T 3 (10.8c)

The spatially-averaged superposition of these two black bodies gives a black body whose final
temperature is given in equation (10.6) plus a y-type distortion term. The final temperature
is the one of a black body that has the same number of photons as the initial average one
Ninitial:

Tfinal =
(
Ninitial

bR

)1/3
≈ T

1 +
(

∆T
T

)2
 ≡ Tnew. (10.9)

Thus, the number of photons of the final black body coincides with the initial average. Since
the entropy scales with T 3 as the number of photons, also the final entropy is equal to the
initial average one. However, the energy changes:

Efinal = aRT
4
final ≈ aRT

4

1 + 4
(

∆T
T

)2
 < Einitial. (10.10)

The final black body has a lower energy than the average initial one. The missing energy
goes into SDs. To quantify how much is the missing energy that contributes to SDs, we
multiply equation (10.7) by ν3 and we integrate over frequencies. The result is [54]:

Efinal − aRT 4 = 2/3(Einitial − aRT 4) (10.11a)

1/3(Einitial − aRT 4) = 2Θ2aRT
4 ∝ 1

2Θ2
∫
dxx3Y (x). (10.11b)

2/3 of the initial average energy goes in the final black body spectrum, while 1/3 goes into
the distortion term.

Comptonization

If the Compton scattering is efficient during the superposition of black bodies, it can comp-
tonize the final spectrum, i.e. the new black body plus a y-type distortion, and create
a Bose-Einstein spectrum with some temperature TBE and chemical potential µ. These
two parameters can be computed by equating the average initial number of photons Ninitial



10. Silk damping spectral distortions 95

and energy Einitial with the number of photons and energy of a Bose-Einstein spectrum
fBE(x) =

[
exp

(
ν

kBTBE
+ µ

)
− 1

]−1
. The result is

µ = 1.401
[
1/3(Einitial − aRT 4)

]
= 2.8Θ2 (10.12a)

δTBE
def= TBE − Tnew

Tnew
= µ

2.19 = 1.278Θ2. (10.12b)

We would get the same result if we add an energy ∆E = 1/3(Einitial−aRT 4) to a black body
at temperature Tnew.

10.2 Dissipation of primordial acoustic waves

The angular average energy in CMB anisotropies is equal to [55]:

∆E
Eγ

= 4〈Θ2〉 ≈ 9.6× 10−9, (10.13)

where Eγ is the energy density of CMB photons. 1/3 of this energy creates a y-type dis-
tortion with magnitude y = 0.5〈Θ2〉 = 8× 10−10, which eventually comptonize in a µ-type
distortion. The dissipated energy by the Silk damping in Fourier space is given by

∆E
Eγ

∣∣∣∣∣
Silk

= 4〈Θ2〉 = 6
∫ d3k

(2π)3 e
ik·x

∫ d3k′

(2π)3 〈Θ(k′,n′)Θ(k − k′,n)〉 =

= 6
∫ dk

d
PR(k)

[ ∞∑
`=0

(2`+ 1)Θ2
`(k)

]
(10.14)

where the multipoles expansion of Θ was used. As mentioned above, only 1/3 of this energy
creates distortions.

For z ∼ 6000, electrons and baryons are tightly coupled and ` > 2 modes can be neglected.
Furthermore, the relation between the monopole and the dipole in the tightly coupled regime
Θ1 = Θ0/

√
3 can be used. Hence, in this regime the dissipated energy that contributes to a

y-type SD, which immediately is comptonized into a µ-one, is:

∆E
Eγ

∣∣∣∣∣
distortion

= 2
∫ dk

d
PR(k)

[
Θ2

0 + 3Θ2
1

]
= 2

∫ dk
d
PR(k)

[
12Θ2

0

]
(10.15)

To compute the amplitudes of the various CMB SDs created by the Silk damping, one
has to take the time derivative of equation (10.14):

d
dt

∆E
Eγ

∣∣∣∣∣
distortion

= d
dt

1
3

∆E
Eγ

∣∣∣∣∣
Silk

=

= 4τ̇σT
∫ dk

d
PR(k)

[
(3Θ2

1 − vb)2

3 +

+9
2Θ2

2 −
1
2Θ2

(
ΘP

2 + ΘP
0

) ∞∑
`=3

(2`+ 1)Θ2
`

]
. (10.16)
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The derivation is easily performed by using the first-order Boltzmann equation for Θ, pro-
vided that we ignore metric perturbations and imposes gauge invariance. Another derivation
that is manifestly gauge invariant, but that uses second order Boltzmann equation, can be
found in [56]. The previous quantity is the rate of the injected energy in the plasma due to
the Silk damping. In chapter II we label such quantity with Q̇non−inj. To simplify the previ-
ous equation, we apply the tight-coupling approximation. In this limit, baryons and photons
velocities are almost equal and Θ`≥2 = ΘP

`≥0 ≈ 0. Furthermore, the dipole on sub-horizon
scales is roughly equal to

Θ1 = vγ/3 ≈ A
c2
s

(1 +R)1/4 sin(krs)e−(k/kD)2
, R

def= 4ργ
3ρb

(10.17)

where the normalization constant A is given by

A ≈
(

1 + 4
15fν

)−1
def=
(

1 + 4
15
ρν
ργ

)−1

(10.18)

and the damping scale kD is defined as

kD
def= 2π
rD

= 2π
[∫

dz c2
S

2τ̇H

(
R2

1 +R
+ 16

15

)]−1/2

. (10.19)

fν can be expressed also in terms of the effective number of ultra-relativistic species Neff in
the primordial plasma as

fν
def= fν
fγ

=
(

1 + 8
7

( 4
11

)−1/3 1
Neff

)−1

. (10.20)

Finally, cs is the speed of sound of the primordial plasma and rs(z) is the comoving sound
horizon. Putting all this together, we get the final expression for the rate of injected energy
due to Silk damping

Q̇non−inj = 4A2ργ

∫ dk
k
PR(k)k2(∂tk−2

D )e−2(k/kD)2
. (10.21)

Once we know Q̇non−inj through equation (10.21), we can compute spectral distortion
amplitudes with equation (5.31). The result depends on which approximation we use for the
branching ratios. The most precise possibility is to use the Green’s functions method and
PCA decomposition, even if the resulting amplitudes are detector-dependent. However, to
roughly estimate the SDs due to the Silk damping, one can use the approximation (5.39) for
branching ratios. This approximation is accurate at the level of ∼ 20% with respect to the
Green’s function calculation [41]. In this approximation, the µ and y amplitudes are given
by [57]:

µ =
∫ ∞
kmin

dk
k
PRWµ(k), y =

∫ ∞
kmin

dk
k
PRWy(k) (10.22)
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where Wµ and Wy are the µ- and y- window functions:

Wµ(k) ≈ 2.27
exp

− (k̂/1360)2

1 + (k̂/260)0.3 + k̂/340

− exp
(
−(k̂/32)2

) (10.23a)

Wy(k) ≈ 0.45 exp
[
−(k̂/32)

]2
. (10.23b)
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Fig. 10 – Window functions for CMB SDs due
to Silk damping.

In the previous expressions, we used k̂ to de-
note k/[Mpc−1]. The cut-off scale kmin is usu-
ally set equal to 1 Mpc−1. This scale is intro-
duced because for k < kmin the approxima-
tion used for the photons transfer functions
is not valid anymore. The window functions
(10.23) are plotted in figure 10. As the plot
suggests, the two window functions have sup-
port in the range [1, 104 − 105]Mpc−1. This
is roughly the range of comoving wavenum-
bers on which CMB SDs can test the PPS
and it is complementary to those tested by
CMB anisotropies, which is roughly k ∼
[1× 10−4, 5× 10−1]Mpc−1.

11 Primordial gravitational waves

Transverse and traceless tensor modes of metric perturbations that propagate in the FLRW
spacetime are gravitational waves (GWs). Gravitational waves that have an inflationary
origin are called primordial gravitational waves and they contribute to the so-called stochas-
tic gravitational waves background. Other contributions to this irreducible background of
gravitational waves come from standard processes like black holes mergers. Future space-
and ground-based interferometers, such as LISA [21] or Einstein Telescope [58], will be in
principle able to measure the stochastic gravitational waves background.

In this chapter, primordial gravitational waves are briefly reviewed. In the first sec-
tion, gravitational waves coming from primordial tensor modes are discussed. In the second
section, second-order perturbation theory is studied. At second order in cosmological fluctua-
tions, tensor and scalar modes are not decoupled. Hence, scalar modes can induce primordial
gravitational waves. We will prove that the power of the scalar-induced GWs depends on
the PPS and so they can be used to constrain its shape.
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11.1 Gravitational waves from inflation

The primordial power spectrum of tensor modes at the Hubble radius crossing is given in
equation (8.103). As it happens for scalar perturbations, inflation stretches tensor wave-
lengths to super-Hubble-radius scales, making their amplitude frozen. Then, these pertur-
bations re-enter the Hubble radius in the radiation- or matter-dominated era. Modes that
re-enter the Hubble radius start to oscillate and the amplitude is damped by a factor 1/a.
So, once tensor modes re-enter the Hubble radius, the equation they satisfy (8.101) turns
into a Bessel equation, whose solution in terms of hk(η) is:

hk(η) = hk,∗j0(kτ), hk(η) = hk,∗

(
3j1(kη)
kη

)
(11.1)

where hk,∗ is the amplitude at Hubble radius crossing. Bessel functions represent the transfer
functions for the tensor modes from the Hubble radius re-enter until η (usually today). This
solution tells that the damping factor is greater for high-frequency gravitational waves.

A GWs detector measures the gravitational wave strain at a given time and frequency.
In the case of the stochastic gravitational waves background, one measures the time and
ensemble average of the superposition of all the incoming signals. Usually, cosmologists use
the energy density fraction of GWs as observable. In general, it is not easy to associate an
energy density to GWs because in general relativity it is always possible to go to a local
inertial frame of reference where there is no sign of gravity and hence it is not possible to
associate an energy density to the gravitational field. However, GWs carry energy and mo-
mentum, or they would not have been detected by the Ligo-Virgo collaboration [16]. Indeed,
the energy of GWs can be defined in some limits of interest. Consider GWs propagating
in vacuum. It satisfies Einstein equations in vacuum Gµν = 0. In the weak field limit the
metric can be split as gµν = ḡµν + hµν , with hµν � 1. In this limit, GWs hµν are treated
as high-frequency perturbations up to the background metric ḡµν . Since gravity is highly
non-linear, GWs backreact on the background metric. Indeed, by expanding the Einstein
tensor Gµν at second order one finds that quadratic terms in hµν can be treated as a source
of the gravitational field and Einstein equations become:

Ḡµν [ḡµν ] = M−2
pl Gt

GW
µν [hµν ]. (11.2)

tGW
µν is the pseudo-energy-momentum tensor of GWs and it is given by

tGW
µν =

M4
pl

4

〈
∂µh

αβ∂νhαβ −
1
2 ḡµν∂ρh

αβ∂ρhµν

〉
, (11.3)

where all the contractions are performed with the background metric. The angular brackets
indicate a volume and/or time averaging of all the GWs going through a small box.
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In general, there are other matter-energy sources Tµν and Einstein equations are

Gµν = M−2
p (Tµν + tGW

µν ). (11.4)

However, it is always possible to write the energy-momentum of GWs tGW
µν as in equation

(11.3), where now the averaging operation is performed on a box which is much smaller
than the Hubble radius but large enough to contain several GWs. This is because only
tensor modes with k � aH behave as GWs, as explained before, while modes with k � aH

are frozen. Furthermore, we should also average over all possible small boxes with such
characteristics to compute the energy-momentum tensor of the stochastic gravitational waves
background. In the FLRW case, the 00-th component of tGW

µν (in other words, the energy
density) of the stochastic gravitational waves background is [59]:

ρGW = M2
pl

∫
d ln k k3

16π2

[
〈ḣ(λ)
k ḣ

(λ)
−k〉! + k2

a2 〈h
(λ)
k h

(λ)
−k〉!

]
, (11.5)

where ˙≡ d/dt and the notation ! indicates that a Dirac delta was factorized out:

〈h(λ)
k h

(λ)
k′ 〉 def=〈h(λ)

k h
(λ)
k′ 〉!(2π)3δ3(k + k′). (11.6)

In particular 〈h(λ)
k h

(λ)
−k〉! is directly linked to the dimensionless primordial power spectrum of

tensor perturbations
〈h(λ)
k h

(λ)
−k〉! = 2π2

k3 P
(λ)
T (k). (11.7)

Then, the GWs power per logarithm of a given wavenumber k, defined as

ΩGW(k) def= 1
3M2

plH
2

dρGW

d ln k ≡
1
ρc

dρGW

d ln k , (11.8)

is equal to
ΩGW(k) = k2

12a2H2

∑
λ

P(λ)
T ≡ k2

12a2H2PT (k) (11.9)

where it was used the fact that for a freely propagating wave

ḣ
(λ)
k ≈

k

a
h

(λ)
k , (11.10)

Hence, the power of the stochastic gravitational waves background depends on the primordial
power spectrum of tensor fluctuations.

11.2 Scalar induced gravitational waves

An equation of motion for the transverse and traceless modes (i.e. of primordial gravitational
waves) at second order in cosmological perturbation theory can be derived starting from the
action, as suggested in [59]. A more classical derivation for this equation can be found in
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[60]. It is convenient to work in a Newtonian gauge with an exponential notation

ds2 = gµνdxµdxν = −e2Ψdt2 + a2(t)e−2ΦYijdxidxj. (11.11)

In the flat FLRW background case Yij = δij. Yij contains only the transverse and traceless
degrees of freedom and it satisfies the condition

∂

∂t
detY = Y ij ∂

∂t
Yij = 0. (11.12)

The action of the inflaton field coupled to the gravitational one is given in equation (8.32).
In the (3 + 1) conformal decomposition, after some integration by parts and some algebra,
the action becomes

S =
∫

d3xdt
[
aeΨ−Φ

(
R(3)[Yij]
16πG + 2Y ijDiDjΦ− Y ijDiΦDjΦ−

Y ij

2 DiφDjφ

)
+

+ a3e−(3Φ+Ψ)
(

1
8Y

ijY klẎikẎjl − 3(H − Φ̇)2 + φ̇2

2

)
− a3eΨ−3ΦV (φ)

]
, (11.13)

where R(3)[Yij] and Di are respectively the 3-dimensional Ricci scalar and the covariant
derivative associated with Yij.

At second order, Yij is decomposed as

Yij
def=(eh)ij = δij + hij + 1

2δ
klhikhjl +O(h3). (11.14)

hij are the usual transverse and traceless tensor modes representing GWs. The inverse is
simply Y ij = δikδjl(e−h)kl. The 3-dimensional scalar is given by

R(3)[eh] = −1
4∂ihkl∂

ihkl +O(h3). (11.15)

Metric perturbations Φ and Ψ are not expanded, while the inflation field split as usual:
φ = φ̄ + δφ. The expanded action contains a lot of terms. Scalar-induced GWs correspond
to those with two scalar and one traceless and transverse tensor modes:

S ⊂
∫

d3xdt
[
a3

8 ḣ
ijḣij −

a

8∂ihkl∂
ihkl + 2ahij∂i(Ψ− Φ)∂jΦ + ahij∂iΦ∂jΦ + a

2h
ij∂iδφ∂jδφ

]
.

By varying the previous action with respect to hij, we get the equations of motion for
scalar-induced GWs:

ḧij + 3Hḣij − a−2∇2hij = a−2P ab
ij {8∂a(Ψ− Φ)∂bΦ + 4∂aΦ∂bΦ + 2∂aδφ∂bδφ} , (11.16)
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with the transverse and traceless projection operator P ab
ij given by

P ab
ij

def=
(
δ

(a
i − ∂i∂(a∆−1

) (
δ
b)
j − ∂j∂b)∆−1

)
− 1

2
(
δij − ∂i∂j∆−1

) (
δab − ∂a∂b∆−1

)
, (11.17)

where the parenthesis in the indexes denotes normalized symmetrization. Equations of mo-
tion simplify if we use the condition Φ−Ψ = 0, obtained from linearized Einstein equations.
Furthermore, we can write the term containing δφ in terms of the energy-momentum tensor
associated to the inflaton field (7.25):

ḧij + 3Hḣij − a−2∇2hij = a−2P ab
ij {4∂aΦ∂bΦ + 2(ρ+ P )∂av∂bv} , (11.18)

where v is such that ui = ∂iv and ui is defined in (7.26). Perturbations in the inflaton field
δφ are related to Φ by the relation

δφ =
√

2
ε1

(
Φ + Φ′

H

)
(11.19)

and so we can solve for scalar degrees of freedom Φ only. Here the ′ indicates a derivative
with respect to the conformal time. To solve the equation for Φ we work in Fourier space
and we split it in some initial value Φk times a transfer function TΦ(k, η) that relates the
initial value to those measured at η

Φ(k, η) = TΦ(k, η)Φk. (11.20)

The initial value Φk is set on super-Hubble-radius scales (kη � 1) by quantum fluctuations
during inflation. We can now write the equations of motion for scalar-induced GWs as

h
(λ)′′
k + 2Hh(λ)′

k + k2h
(λ)
k = S

(λ)
k , (11.21)

where the source term S is given by

S
(λ)
k = 4

∫
d3q

(2π)2 e
(λ)
ij q

iqjΦqΦ|k−q|f(η, q, |k − q|) (11.22)

and

f(η, q, |k − q|) = TΦ(qη)TΦ(|k − q|η)+

+ 1 + b

2 + b

(
TΦ(qη) + T ′Φ(qη)

H

)(
TΦ(|k − q|η) + T ′Φ(|k − q|η)

H

)
, (11.23)

where ε1 was written in terms of the parameter b defined in equation (7.10) by using the
equation (7.12). The tensor e(λ)

ij is defined in equation (8.92). We also used the fact that
eijP ab

ij = eab.
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The Green’s function solution to such equations with initial conditions h(λ)
k = h

(λ)′
k = 0 is

h
(λ)
k (η) =

∫ η

ηi
dη̃Gh(η, η̃)S(λ)

k (η̃). (11.24)

In Fourier space, the Green’s function solves

G
(λ)′′
k (η, η̃) + 2HG(λ)′

k (η, η̃) + k2G
(λ)
k (η, η̃) = δ(η − η̃). (11.25)

We can write Gh in terms of two homogeneous solutions h1,2, Gh:

G(η, η̃) = h1(η)h2(η̃)− h1(η̃)h2(η)
W (h1, h2, η̃) , (11.26)

where the Wronskian is defined as

W (h1, h2, η̃) def=h′1(η̃)h2(η̃)− h1(η̃)h′2(η̃). (11.27)

We want to compute the scalar-induced GW power Ωind
GW. Equation (11.9) suggests that

we have to know the scalar-induced primordial power spectrum of tensor perturbations. We
first compute the 2-point correlation function of the scalar-induced tensor modes hλk by using
the Green’s function solution (11.24):

〈hλk(η)hλk′(η)〉 =
∫ η

0
dη1

∫ η

0
dη2G(η, η1)G(η, η2)〈S(λ)

k (η1)S(λ)
k′ (η2)〉. (11.28)

We neglected non-trivial tensor-scalar-scalar interactions in the inflaton potential for sim-
plicity so that the 2-point correlation function is due only to the coupling at second order
in cosmological perturbation theory. We calculate the 2-point function for the source term
S with equation (11.22):

〈S(λ)
k (η1)S(λ)

k′ (η2)〉 = 16
∫ d3q

(2π)3

∫ d3q′

(2π)3 e
(λ)
ij (k)qiqje(λ)

mn(k′)q′mq′n×

× f(η1, q, |k − q|)f(η2, q
′, |k′ − q′|)〈ΦqΦ|k−q|Φq′Φ|k′−q′|〉. (11.29)

In the hypothesis that all scalar fluctuations are Gaussian, the Wick theorem allows us to
easily compute the 4-points correlation function appearing in the last equation:

〈
ΦqΦ|k−q|Φq′Φ|k′−q′|

〉
= 2π2

q3 PΦ(q) 2π2

|k − q|3
PΦ(|k − q|)

× (2π)6δ3 (q + q′) δ3 (k + k′ − q − q′) + (q ↔ k − q). (11.30)

Then, we time average the induced primordial power spectrum of tensor modes

P ind
T = 8

∫ ∞
0

dv
∫ 1+v

|1−v|
du
(

4v2 − (1− u2 + v2)2

4uv

)2

I2(η, k, v, u)PΦ(ku)PΦ(kv), (11.31)
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where the variables v, u are defined as

v
def= q

k
, u

def= |k − q|
k

. (11.32)

All the time dependence is contained in a kernel, or transfer function, defined as

I(η, k, u, v) def=
∫ η

ηi
dη̃G(η, η̃)f(η̃, k, u, v). (11.33)

Once we know P ind
T , we can compute Ωind

GW with equation (11.9). Finally, we want to constrain
the shape of the primordial power spectrum of curvature perturbations and so we have to
relate Φ with R. At linear order in Newtonian gauge we have

R = − 5 + 3w
3(1 + w)Φ = −2b+ 3

b+ 2 Φ. (11.34)

and therefore the two primordial power spectra are related by a simple numerical factor

PΦ =
(
b+ 2
2b+ 3

)2

PR. (11.35)

Analytical solutions.

For a constant equation of state w, we can analytically compute the kernel I. The equation
for the Newtonian potential reads

Φ′′ + 3H(1 + c2
w)Φ′ + (2H′ + (1 + 3c2

w)H2)Φ + c2
sk

2Φ = 0, (11.36)

where c2
w = Ṗ /ρ̇ and c2

s = δP/δρ. A perfect fluid has c2
w = c2

s = w, while in the single
field inflationary model we have c2

w = w and c2
s = 1. cs represents the speed of propagation

of perturbations. In the single-field case, it is equal to the speed of light. There are some
inflationary models where cs < 1. For a review of these models, see [61]. The solution of
equation (11.36) with initial condition Φ→ Φk for cskη � 1 is

Φ(kη) = Φk2b+3/2Γ(b+ 5/2)(cskη)−b−3/2Jb+3/2(cskη), (11.37)

where J is a Bessel function of the first kind. We can now recognize the transfer function
TΦ and so, by using some properties of Bessel functions, compute the function f defined in
equation (11.23):

f(x, u, v) =22b+3Γ2[b+ 5/2]
(2b+ 3)(b+ 2) (x)−2b−1 (uv)−b−1/2

×
(
Jb+1/2 (csvx) Jb+1/2 (csux) + b+ 2

b+ 1Jb+5/2 (vx) Jb+5/2 (csux)
)
, (11.38)
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where x = kη. The two homogeneous solutions h1,2 are instead given by

h1(x) = (x)−b−1/2Jb+1/2(x) and h2(x) = (x)−b−1/2Yb+1/2(x), (11.39)

where Y is the Bessel function of the second kind. Given these solutions, the Green’s function
is equal to

G(η, η̃) = π

2k
(x̃)b+3/2

(x)b+1/2

(
Jb+1/2(x̃)Yb+1/2(x̃)− Jb+1/2(x)Yb+1/2(x)

)
. (11.40)

The kernel I (11.33) is finally equal to

I(x, u, v) = π4bΓ2[b+ 3/2]2b+ 3
b+ 2

(
c2
suvx

)−b−1/2 (
Jb+1/2(x)IY − Yb+1/2(x)IJ

)
, (11.41)

where the function IJ/Y are defined as

IJ,Y (u, v) def=
∫ x

0
dx̃x̃1/2−b

 Jb+1/2(x̃)
Yb+1/2(x̃)


×
(
Jb+1/2 (csvx̃) Jb+1/2 (csux̃) + b+ 2

b+ 1Jb+5/2 (csvx̃) Jb+5/2 (csux̃)
)
. (11.42)

Inflation is expected to be followed by the radiation-dominated era. Thus, in the previous
equations we can set b = 0, which corresponds to w = 1/3.

In this case, the present-day scalar-induced GW power (11.9) is

Ωind
GW (η0, k) = Ωr,0

36

∫ 1√
3

0
dd
∫ ∞

1√
3

ds
[

(d2 − 1/3) (s2 − 1/3)
s2 − d2

]2

×

× PR
(
k
√

3
2 (s+ d)

)
PR

(
k
√

3
2 (s− d)

) [
IJ(d, s)2 + IY (d, s)2

]
,

(11.43)

where we introduced the new variables

d = 1√
3
|u− v|, s = 1√

3
(u+ v), (d, s) ∈ [0, 1/

√
3]× [1/

√
3,∞]. (11.44)

and where the analytical expressions for IJ,Y are [62]:

IJ(d, s) = −36π (s2 + d2 − 2)2

(s2 − d2)3 ΘH(s− 1), (11.45a)

IY (d, s) = −36(s2 + d2 − 2)
(s2 − d2)2

[
(s2 + d2 − 2)

(s2 − d2) log (1− d2)
|s2 − 1| + 2

]
. (11.45b)

Ωr,0 ≈ 8.6× 10−5 is the density of radiation today.
Equation (11.43) suggests that Ωind

GW(k) ∝ PR(k) and therefore Ωind
GW has the same spectral

dependence on model parameters of the PPS.



V

Small-scale Primordial Feautures

The simplest single-field slow-roll inflationary scenarios predict a near scale invariant pri-
mordial power spectrum consistent with CMB data. However, there exist many models of
inflation that predict features at small scales, where the primordial power spectrum is not
constrained.

The purpose of this thesis is to investigate the imprints of small-scale bumps in the pri-
mordial power spectrum on several cosmological observables. In the first part of this chapter
we introduce two inflationary models that predict a peak in the primordial power spec-
trum. Then, we derive phenomenological templates that capture their shape. We end this
chapter by investigating the imprints by varying the template parameters on cosmological
observables.

12 Primordial black holes formation from large over-
densities

In the ’60s-’70s, it was realized that the gravitational collapse of very large primordial over-
densities could form the so-called Primordial Black Holes [63, 64]. It was later proposed
that primordial black holes may constitute a large fraction of the total dark matter of the
Universe and seed the formation of the supermassive black holes at the center of galaxies [65,
66]. Recently, interest in primordial black holes has been revived after the LIGO detection
[16] of a binary black hole merger, Several groups proposed primordial black holes as an
explanation of that event [13, 14, 15]. The latest O3 catalog of the LIGO/VIRGO/KAGRA
collaboration consists of nearly 100 detection and it is widely accepted that a population of
primordial black holes, if existing, must be subdominant and cannot constitute the whole
abundance of cold dark matter. Nevertheless, even a small abundance of primordial black
holes can have interesting astrophysical and cosmological implications.

As we will see, the amplitude of the primordial power spectrum needed for primordial
overdensities to collapse into primordial black holes is of order 1× 10−2. Given that tem-
perature fluctuations of the CMB constrain its amplitude to As ∼ 1× 10−9, this requires an
amplification of about 7 orders of magnitude from CMB scales. Several single- [67, 68] and
multi-field [69, 70, 71, 72] models of inflation have been proved to generate such amplification
in the primordial power spectrum. Investigating imprints of such bumps on cosmological ob-
servables has therefore become an important topic in the literature independently from its
original motivation to form primordial black holes.
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As mentioned before, a primordial black hole forms when an overdensity δ that re-enters
the Hubble radius during radiation domination exceeds some critical value δc and collapses.
The mass of the produced primordial black hole M is proportional to the mass inside the
Hubble volume at the time of formationMH = (4/3)πρH−3. The proportionality constant is
labeled with γ and it depends on the specific model of gravitational collapse. A common value
that can be found in literature is γ = 0.2, but γ can be seen as a varying phenomenological
parameter. It is possible to find a relation between the comoving wavenumber k at which
an overdensity creates a PBH and its mass by using the conservation of entropy. The result
is [67]:

M(k) = γMH(eq)

(
g∗ (Tf )
g (Teq)

)1/2 (
g∗S (Tf )
gs (Teq)

)−2/3 (
k

keq

)−2

, (12.1)

where the subscript eq and f refer to the times of matter-radiation equality and primordial
black hole formation. MH(eq) is the mass inside the Hubble volume at matter-radiation
equality. The previous result can be written as

M(k)
M�

= 30
(
γ

0.2

)(
g∗ (Tf )
10.75

)−1/6 (
k

2.9× 105 Mpc−1

)−2

. (12.2)

We stress that this is the primordial black hole mass at the formation, while the observed
one depends on accretion of matter into the black hole or the merging with other compact
objects. Furthermore, the dependence on γ and g∗ (Tf ) is small compared to the one on k.
Thus, a good approximation is to set γ = 0.2 and g∗ (Tf ) = 10.75 so that M(k) depends
exclusively on k.

We now claim to provide a rough estimate for the magnitude of overdensities that can
lead to primordial black holes formation. The formation of primordial black holes is a causal
process. In the Press-Schechter model of gravitational collapse, the fraction β(M) of the
universe collapsing into primordial black holes of mass M is

β(M) =
∫ ∞
δc

dδP (δ,M). (12.3)

where P is the probability that an overdensity larger than some critical value δc collapses.
From β(M), we compute the abundance of primordial black holes of mass M , denoted with
ΩPBH(M). Dividing this value by ΩDM, one has

fPBH(M) def= ΩPBH

ΩDM
= 2.7× 108

0.2
γ

M

M�

√
g∗(Tf )
10.75

−1/2

β(M). (12.4)

Finally, the total fraction of primordial black holes against dark matter is obtained by
integrating the previous functions over all the possible mass values

f tot
PBH

def= ΩPBH

ΩDM
=
∫ dM

M
fPBH(M). (12.5)
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The computation of f tot
PBH is strongly model dependent. Indeed, it depends on the arbitrary

threshold value δc, on the details of the collapsing model through γ and on the probability
distribution for δ. All these phenomenological parameters reflect the fact that the details
of primordial black hole formation are not known. By assuming a Gaussian probability
distribution, one has that

β(M) = 1
2 Erfc

(
δc√
2σ

)
, (12.6)

where
σ2(M) =

∫ ∞
0

d ln kW 2(kR)16
81(kR)4PR(k) (12.7)

is the variance of δ. W is a smoothing window function and R = 1/kf is the scale at
which the primordial black hole is produced. The previous equations suggest that β(M) is
exponentially sensitive to δc and PR. Therefore, small variations of these parameters can
result to very different values of fPBH. For δc = 0.45, one has that fPBH = 1 is achieved
when the amplitude of the primordial power spectrum is around 0.01. If the distribution is
non-Gaussian, the amplitude can vary significantly.

For this reason, we decide to focus only on the primordial power spectrum imprints
on cosmological observables. Nevertheless, in some figures we will show the mass of the
possibly produced primordial black holes, since it depends almost exclusively on the comoving
wavenumber at which the primordial power spectrum exceeds the model-dependent threshold
value.

13 Small-scale features in two-field models of inflation

In this section we introduce two examples of multi-field models of inflation that predict a
small-scale bump in the primordial power spectrum. An in-depth discussion of these models
is given in [71, 73, 72].

We choose to focus on bumps predicted by multi-field inflationary scenarios because they
can be easily described in a model-independent way with semi-analytical templates. Bumps
generated in single-field scenarios including an ultra-slow-roll phase are often preceded by
a dip [67, 68], that is not easily captured by a semi-analytical template and that generates
important effects on observables. Indeed, the comoving wavenumbers of the dip and of the
peak are related by kdip/kpeak ≈ 10−2 [74]. Hence, a peak at SDs scales would be preceded
by a dip at anisotropies scales and this scenario is excluded by the recent Planck data. If the
peak is at smaller scales, the dip affects spectral distortions, leading to a rich phenomenology
discussed for example in [74, 75, 76].



108 Chapter V. Small-scale Primordial Feautures

13.1 Two-stage inflation

The first multi-field model is described by the following action (see e.g. [71], [77])

S[φ, χ] =
∫
d4x
√
−g

[
M2

pl

2 R− 1
2∂µφ∂

µφ− f(φ)
2 ∂µχ∂

µχ− V (φ, χ)
]
. (13.1)

where two fields interact through the non-canonical kinetic term 0.5f(φ)(∂χ)2. We choose
the model parameters to obtain two stages of inflation as in the double inflation scenario
described in [78].

The first (second) stage is driven by the effectively heavier (lighter) field φ (χ). The
coupling f(φ) is crucial to generate a bump in the curvature spectrum.

As in Refs. [79, 80] we define f(φ) = e2b(φ). In a smooth FLRW background, the
equations of motion are

φ̈+ 3Hφ̇+ V,φ = b,φe
2bχ̇2, (13.2a)

χ̈+
(
3H + 2b,φφ̇

)
χ̇+ e−2bV,χ = 0, (13.2b)

where ,φ/χ denotes a derivation with respect to φ/χ as usual. The Friedmann equations are

H2 = 1
3M2

pl

[
φ̇2

2 + e2b χ̇
2

2 + V

]
(13.3a)

Ḣ = − 1
2M2

pl

[
φ̇2 + e2bχ̇2

]
(13.3b)

To study the dynamics of the inflaton field, it is useful to keep track of the Hubble slow roll
parameters (7.11) because they define the slow-roll regime (ε1 � 1, ε2 � 1) and the end
of inflation (ε1 = 1) as in the single-field case. In particular, the first Hubble parameter is
equal to

ε1 = − Ḣ

H2 = 1
2M2

pl

( dφ
dN

)2

+
(
eb

dχ
dN

)2
 (13.4)

Linear perturbations

Now, we briefly examine the dynamics of perturbations around the background solutions.
The gauge used is the Newtonian one (8.9), with Φ = Ψ because of the absence of anisotropic
stresses. A common practice is to decompose the scalar fields’ perturbations, δφ and δχ,
along parallel and orthogonal directions to the trajectory in the field space:

δσ = cos θδφ+ sin θebδχ, δs = − sin θδφ+ cos θebδχ, (13.5)

with
cos θ = φ̇

σ̇
, sin θ = eb

χ̇

σ̇
, σ̇2 = φ̇2 + e2bχ̇2. (13.6)
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δσ and δs correspond to the instantaneous adiabatic and isocurvature perturbations. The
equations describing the evolution of θ and σ are derived from the background equations

σ̈ + 3Hσ̇ + Vσ = 0, θ̇ = −Vs
σ̇
− b,φσ̇ sin θ, (13.7)

where the quantities

Vσ = −V,φ sin θ + e−bV,χ sin θ, Vs = −V,φ sin θ + e−b cos θ (13.8)

were defined. Other quantities that will be useful are

Vσσ = V,φφ cos2 θ + e−bV,φχ sin 2θ + e−2bV,χχ sin2 θ, (13.9a)
Vss = V,φφ sin2 θ − e−bV,φχ sin 2θ + e−2bV,χχ cos2 θ, (13.9b)
Vσs = −V,φφ cos θ sin θ + e−bV,φχ(cos2 θ − sin2 θ) + e−2bV,χχ cos θ sin θ. (13.9c)

To treat perturbations in a gauge-invariant way, we introduce the Mukhanov-Sasaki
variable associated with δσ, Qσ = δσ + (σ̇/H)Φ. δs is already gauge invariant. We set
Bunch-Davies initial conditions when the modes are deep inside the Hubble-radius

Qσ(η) ≈ δs(η) ≈ 1
a(η)

eikη√
2k
. (13.10)

It is also useful to introduce the curvature and isocurvature variables

R = H

σ̇
Qσ, S = H

σ̇
δs, (13.11)

whose equations of motion are

R̈+
(
H + 2 ż

z

)
Ṙ+ k2

a2R = −2Vs
σ̇
Ṡ − 2

(
−e−bb,φ cos2 θ V,χ + sin θb,φVσ

+ Vσs + σ̇

HM2
pl
Vs

)
S, (13.12a)

S̈ +
(
H + 2 ż

z

)
Ṡ +

{
k2

a2 − 2H2 − Ḣ + Hż

z
+ z̈

z
− θ̇2 − σ̇2b2

φ cos2 θ − σ̇2b,φφ + Vss

+ b,φ
[
4 sin θ Vs + (1 + sin2 θ)V,φ

]}
S = 2Vs

σ̇
Ṙ, (13.12b)

where z def= aσ̇/H.

Generating a bump

Once the potential V (φ, χ) and the kinetic term b(φ) are chosen, the background equations
can be integrated numerically. As usual, it is convenient to use the number of e-foldings as
a time variable. We assume that the pivot scale k = 0.05 Mpc−1 exits the Hubble radius
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at N = 50 before the end of inflation. Once the background quantities are known, it is
possible to solve the equations for curvature and isocurvature perturbations. To compute
the primordial power spectra ofR and S, the integration for the perturbations are integrated
twice [81, 79, 80]. The first set of solutions corresponds to imposing Bunch-Davies initial
conditions on Qσ while the initial value of S is set to zero. When the equations are integrated
the second time, the initial conditions on R and S are switched. By denoting the two sets of
solutions as (R1,S1) and (R2,S2), the primordial power spectrum of curvature perturbations
is

PR(k) = k3

2π2 (|R1|2 + |R2|2) = PR1(k) + PR2(k) (13.13)

and it is calculated at the end of inflation.
To generate a bump in the primordial power spectrum of curvature perturbations, con-

sider the potential

V (φ, χ) = V0
φ2

φ2
0 + φ2 +

m2
χ

2 χ2 def=U(φ) +W (χ). (13.14)

and the cases
fA(φ) ≡ e2bA(φ) def= e2b1φ, fB(φ) ≡ e2bB(φ) def= e2b2φ2 (13.15)

as in [71]. The potential parameters are chosen so that the field φ is effectively heavier than
χ. The effective mass of φ is defined as m2

φ = V,φφ|φ=0 = V0/(3M2
pl). In particular, we choose

φ0 =
√

6Mpl, V0/(mχMpl)2 = 500. The numerical integration of the background equations
in the case for the model fA is presented in figure 1 of [71].
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Fig. 11 – Numerical spectrum produced by the two-stage model of inflation described in 13.1.
This curve corresponds to the red one of figure 2 in [71]. The blue curve is the numerical fit of the
bump with the modified log-normal template given in equations (14.3)-(14.4).

The result clearly shows two stages of inflation. The first stage, lasting about 65 e-folds,
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is driven by the effectively heavier field φ that rolls down its potential while the lighter
field χ remains frozen. At the end of the first stage, φ undergoes a few damped oscillations
around its effective minimum before setting there. In the second stage lasting ∼ 20e-folds,
the energy density is dominated by the second field χ which slowly rolls down its potential.
Between the two phases, the slow-roll parameters ε1, ε2 are larger than 1 indicating that slow-
roll conditions are temporarily violated. The numerical result for the curvature primordial
power spectrum is plotted with a black solid line in figure 11, where we can see a bump in the
primordial power spectrum. This specific case is obtained by assuming b1 = 8.4 and initial
conditions φi = 7.0Mpl, χi = 9.3Mpl so that the bump falls into the sensitivity range of
the Square Kilometer Array (SKA) experiment. With different choices of initial conditions,
the bump occurs at smaller or larger scales. In particular, the power spectrum can peak at
spectral distortions scales, or at scales accessible to present and future gravitational waves
interferometers such as LISA or ET, see [71].

The physical mechanism that leads to this bump is the following. Given a large enough
coupling f1(φ), the isocurvature effective mass, defined as

m2
eff = Vss + 3θ̇2 + b2

,φg(t) + b,φf(t)− b,φφσ̇2 − 4V
2
s

σ̇2 , (13.16)

where the functions g and f are

g(t) def= σ̇2(1 + 2 sin2 θ) f(t) def=V,φ(1 + sin2 θ)− 4Vs sin θ, (13.17)

becomes temporarily negative during the transition between the two stages of inflation. This
causes a tachyonic amplification of isocurvature perturbations together with an enhancement
of the coupling between curvature and isocurvature perturbations †. The amplification of
isocurvature perturbations is transferred to the curvature ones leading to a large peak in
PR.

13.2 Hybrid inflation α-attractors

Hybrid inflation is a two-field inflationary scenario where the kinetic terms of the two fields
are canonically normalized and the effective potential has the form [82]

V (χ, φ) = 1
4λ(M2 − λχ2)2 + m2

2 φ2 + g2

2 φ
2χ2. (13.18)

The effective mass of χ is V,χχ = −M2 + g2φ2. Hence, when the field φ is larger than the
critical value φc def=M/g, the only minimum of the effective potential with respect to the
so-called hybrid field χ is at χ = 0. Furthermore, at large φ, the curvature of the effective
potential is much larger in the χ-direction with respect to the φ-direction. Hence, in the
first stage of inflation, χ is expected to roll down towards χ = 0, while the inflaton field goes
† Also in single-field inflation, curvature and isocurvature perturbations are coupled. See equation (8.25).
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along the φ-direction. In this regime, the potential of the inflaton field is V (φ) ≡ V (χ =
0, φ) = m2

2 φ
2 + M2

4λ
def= m2

2 φ
2 + Vuplift.

When φ . φc, the effective squared mass at χ = 0 of χ becomes negative (tachyonic),
quantum fluctuations of χ begin to grow, and a transition with symmetry breaking occurs
(waterfall phase). For a proper choice of parameters, this phase transition occurs rapidly
and inflation ends. However, there are cases where inflation continues driven by the hybrid
field. In this second inflationary stage the amplitude of perturbations can be extremely large
and a peak in the primordial power spectrum can be produced.

The perturbations can be so large to induce a process of eternal inflation inside some
regions of the observable Universe. To regularize such fluctuations, a linear term in χ (µ3χ)
can be added to the original potential, which is written in a slightly different, but more
convenient, form:

V (χ, φ) = M2
[

(χ2 − χ2
0)2

4χ2
0

+ m̃2

2 φ2 + g̃2

2 φ
2χ2 + dχ

]
, (13.19)

where g̃ = g/M , m̃ = m/M and d = µ3/M2. This linear term can control the amplitude
generated during the second stage of inflation. Here we use units so that Mpl = 1.

Hybrid inflation suffers from another problem. In particular, the simplest hybrid inflation
models predicting large bumps in the primordial spectrum also imply a spectral index ns =
1 + 2m2/Vuplift > 1, which do not match Planck data. This problem can be solved in the
α-attractors version of hybrid inflation.

In the α-attractors version of hybrid inflation, the kinetic term of the field φ is not
canonically normalized:

L√
−g

= R

2 −
1
2
∂µφ∂

µφ(
1− φ2

6α

)2 −
1
2∂µχ∂

µχ− V (χ, φ). (13.20)

By properly setting α, it is possible to have a red tilt index ns < 1.
To produce a bump feature in the primordial power spectrum, we choose M ∼ m ∼ µ ∼

g ∼ d ∼ 10−5. It is possible to perform a transformation φ → ϕ, where ϕ is a canonically
normalized field. Upon this transformation, the potential becomes

V (χ, ϕ) = M2
[

(χ2 − χ2
0)2

4χ2
0

+ 3α(m̃2 + g̃2χ2) tanh2 ϕ√
6α

+ dχ

]
. (13.21)

This potential evaluated at χ = 0 provides the simplest example of α-attractor model de-
scribed briefly also in 8.4, plus an uplift term M2χ2

0/4.
Given a Lagrangian with two canonically normalized fields ϕ and χ and the potential

(13.21), the procedure to compute the power spectrum of curvature and isocurvature per-
turbations is the same described in the previous subsection.

The mechanism to produce the large peak in the primordial power spectrum is the fol-
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lowing. The effective square mass of χ at χ = 0 is

M2
χ = V,χχ(χ = 0) = M2

(
−1 + 6αg̃2 tanh2 ϕ√

6α

)
. (13.22)

We consider the case where 6αg̃2 > 1, so that M2
χ > 0 for ϕ > ϕc, where the critical value

of the canonical field ϕ is defined by

tanh2 ϕc√
6α

= 1
6αg̃2 . (13.23)

For ϕ < ϕc the effective mass of the hybrid field becomes negative, causing a tachyonic
instability. For χ0 � 1 the tachyonic instability is very fast to develop and this leads to the
end of inflation when ϕ ≈ ϕc. To produce a bump in the primordial power spectrum, the
opposite regime χ0 & 2

√
3 should be considered. In this situation, the tachyonic instabil-

ity is very slow to develop and the isocurvature perturbations start to grow exponentially.
Furthermore, the coupling between isocurvature and curvature perturbations increases so
that the exponentially growing of isocurvature perturbations is transmitted to the curvature
ones. The result is a large peak in the primordial power spectrum of curvature perturbations.
Given the parameters

M = 9.48× 10−6, α = 1, g̃ = 1, m̃ = 1, χ0 = 2.58, d = −1× 10−5 (13.24)

as in Ref. [72], the numerical result for PR is presented in figure 12.

10 3 101 105 109 1013 1017 1021

k [Mpc 1]

10 9
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10 5

10 3

(k
)

Numerical Spectrum
Smoothly broken power law

Fig. 12 – Numerical spectrum produced by the hybrid α-attractor model of inflation described in
[72]. The black curve corresponds to the spectrum given in figure 5 in [72]. The blue curve is the
numerical fit of the bump with the smoothly broken power law template given in equation (14.10).
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14 Phenomenological templates

In this section we present two semi-analytical templates able to mimic the shape of the pri-
mordial power spectra introduced in the previous section. Then, we present also an analytical
formula for a primordial spectrum with oscillatory features. The use of phenomenological
templates allows investigating the effects of small-scale bumps in a model-independent way
without focusing on a specific inflationary scenario.

The templates are formally decomposed as

PR(k) = P0
R(k) + Pbump

R (k) (14.1)

where P0
R(k) represents the near scale invariant background contribution measured by Planck

PR(k) = As (k/k∗)ns−1, while Pbump
R (k) describes the bump. However, this simple choice is

not able to correctly reproduce the behavior of the full power spectrum at very small scales.
Indeed, inflationary models could predict a different amplitude and tilt after the bump.
An example is given in figure 11. To capture this behavior, it is necessary to modify the
background assumption into

P0
R(k) = AR

(
k

k∗

)ns−1 [
1− ε arctan

(
k

kloc

)]
(14.2)

where ε is the parameter that measures the change of slope before and after the peak and
kloc is the comoving wavenumber at which the feature is centered. Therefore, all the phe-
nomenological templates can be written as

PR(k) = AR

(
k

k∗

)ns−1 [
1− ε arctan

(
k

kloc

)]
+ Pbump

R (k) (14.3)

14.1 Modified log-normal bump

The power spectrum presented in figure 11 can be captured by a lognormal distribution with
an ultraviolet cutoff α:

Pbump
R (k) = A · exp

{
β

[
1− k

kloc
+ ln2

(
k

kloc

)]
− α ln2

(
k

kloc

)}
. (14.4)

A is the amplitude of the bump, while α and β describe its width. The blue curve in figure 11
represents the fit of the numerical spectrum with the template (14.3)-(14.4). This template
depends on a few parameters (As.ns, A, kloc, α, β).

The fit parameters are

ln
(
1010As

)
= 3.044, ns = 0.918, ε = 0.85 (14.5a)

log10A = −1.418, log10 kloc = 6.341 (14.5b)
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log10 α = −0.601, log10 β = −0.070 (14.5c)

The value of the scalar tilt ns does not match Planck measure, but it is chosen only to
fit the numerical spectrum also at large scales. Indeed, multi-field inflationary scenarios
often predict a slightly redder spectral index than those measured by Planck [72] unless the
bump is at sufficiently small scales. However, with fine tuning of the model parameters,
it is possible to predict a power spectrum with both the correct value of ns and a large
peak at smaller scales. Therefore, in studying the effects of these templates on cosmological
observables we set the latest value of ns provided by Planck data (8.110) since we are only
interested in the phenomenological effects of the bump.

Notice that the small oscillation at the end of the bump is not captured by these simple
templates. However, the considered observable are mainly affected by the amplitude and the
width of the peak.

14.2 Smoothly broken power law bump

The second analytical template considered is a smoothly broken power law:

Pbump
R (k) = a

(
k

kb

)−α1
1

2

1 +
(
k

kb

)1/∆


(α1−α2)∆

. (14.6)

kb represents the comoving wavenumber at which we have a transition from the first to the
second power law. a is the model amplitude at the breaking point. α1 represents the spectral
index for k � kb, while α2 is the spectral index for k � kb. ∆ is the parameter that smooths
the transition at kb. Indeed, the change of slopes occurs between two comoving wavenumbers
k1 and k2 so that

log10
k2

kb
= log10

kb
k1
≈ ∆. (14.7)

For k . k1 (k & k2) the template has spectral index α1 (α2). To describe a bump, it is
necessary to have α < 0. Then, we redefine the power law tilts as

n1
def= = −α1, n2 = α2. (14.8)

The log-normal template is particularly convenient since in that case A represents the
value of the maximum and kloc its location. In the case of the smoothly broken power law,
the transition point kb is not the wavenumber at which the maximum is located and a is not
the maximum value of the function. To avoid these issues, we introduced two parameters
kloc, A in the following way:

kb = kloc

(
n1

n2

)−∆
, a = A(

n1
n2

)n1∆ [1
2

(
1 + n1

n2

)]−(n1+n2)∆ . (14.9)
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In the new parametrization, the smoothly broken power law looks like

Pbump
R (k) = A[

1
2

(
1 + n1

n2

)]−(n1+n2)∆

(
k

kloc

)n1
1

2

1 + n1

n2

(
k

kloc

)1/∆

−(n1+n2)∆

. (14.10)

The new parametrization is motivated by the fact that in the original form the maximum is
located at kb(n1/n2)∆ and has value a

(
n1
n2

)n1∆ [1
2

(
1 + n1

n2

)]−(n1+n2)∆
. The new parametriza-

tion shifts the maximum at kloc with value A. At the end, this template depends only the
parameters (As.ns, A, kloc, n1, n2,∆).

The parameters that fit the numerical spectrum given in figure 12 are:

ln
(
1010As

)
= 3.044, ns = 0.965, ε = 0.90 (14.11a)

log10A = −2.145, log10 kloc = 9.719 (14.11b)
log10 n1 = 0.460, log10 n2 = 0.098, log10 ∆ = 1.081 (14.11c)

14.3 Oscillating bump

Another interesting case where the primordial power spectrum is described by a rather simple
analytic expression that depends only on few parameters can be found in [83, 73], where a
power spectrum with an oscillatory bump is studied. The oscillatory bump is presented in
figure 13. In this case, the template is parametrized as

PR(k) = P0
R(k) · Pbump

R (k), (14.12)

where Pbump
R must tend to 1 at large scales to be consistent with Planck data.
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Fig. 13 – Example of power spectrum with an oscillatory bump. Figure taken from [83].
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The bump factor depends on three parameters: the location at which oscillations start
kloc and two parameters governing the number and the amplitude of the oscillations δN , λ0.
Generically, this factor can be written as

Pbump
R (k) = ∆(k, kloc, δN, λ0)

∆(kloc · 10−9, kloc, δN, λ0) (14.13)

where the denominator is a normalization constant chosen so that Pbump
R (k � 1 Mpc−1) ≈ 1.

The function ∆ is defined as

∆(k, kloc, δN, λ0) = k3

2π3

(
|aζ |2 + |aψ|2

)
(14.14)

The dependence of kloc, δN and λ0 is hidden inside the coefficients aζ and aψ, that are equal
to

aζ =ie
2i k
kloc

sinh δN
2

2
√

2k3

[
cos

(
ω+δN

kloc

)
− i

k2
loc + k2 + ω2

+
2kω+

sin
(
ω+δN

kloc

)
+

−i
e

2i k
kloc

e−
δN
2 (k + ikloc)2 − ω2

+
kω+

sin
(
ω+δN

kloc

)+ same but with ω+ ↔ ω− (14.15)

aψ =e
2i k
kloc

sinh δN
2

4
√

2k3

{(
2 + k2

loc
k2

)
cos

(
ω+δN

kloc

)
−
k2(ik + kloc)− ω2

+(−ik + kloc)
ω+k2 sin

(
ω+δN

k0

)
+

−e2ie−
δN
2 k
kloc ·

[
kloc
−2ik + kloc

k2 cos
(
ω+δN

kloc

)
+ (−ik + kloc)(ω2

+ − k2)
ω+k2

]
sin

(
ω+δN

kloc

)}
+

− same but with ω+ ↔ ω− (14.16)

where
ω±

def=
√
k2 ± kklocλ0 (14.17)

For a complete derivation of such power spectrum refer to [83, 84]. Even if the spec-
trum is described by a rather complicated expression, it depends only on a few parame-
ters: (As, ns, kloc, δN, λ0). This template is particularly interesting since it allows to look at
imprints of large oscillations in the power spectrum on cosmological observables.

15 Impact on observables

In this section we show the effects of a large bump at small scales in the primordial power
spectrum on CMB anisotropies, spectral distortions and scalar-induced gravitational waves.
Effects on the first two observables are computed with a modified version of CLASS, where
we implemented the three analytical templates described in the previous section. CLASS
computes CMB anisotropies with the line-of-sight integration, while CMB SDs are computed
with the Green’s functions technique, described in section 5. We show only the contribution
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to SDs due to Silk damping, which can be computed by inserting the corresponding effective
heating rate (10.21) into the generic expression for the amplitudes (5.31), where the branch-
ing ratios are computed assuming a specific detector †. As a reference detector, we choose
FIRAS. This methodology to compute spectral distortions is slightly more accurate than the
approximated formula that uses the window function (10.23). To compute scalar-induced
gravitational wave power we solved numerically the double integral (11.43).

A similar work where multi-messenger effects of large bumps in the primordial power
spectrum are studied can be found in [85]. However, in [85], the authors use the approxi-
mated formula with the Window function for µ-distortions and they do not take into account
y-type distortions. We choose to take into account y-distortions, even if the late time con-
tribution ySZ ∼ 2× 10−6 is larger than the typical early time contribution because future
spectrometers like PIXIE will in principle be able to distinguish between the two different
contributions. The most important difference between this work and [85] is that we do not
discuss primordial black holes formation, which is very model-dependent. For this reason
we do not take into account other effects related to primordial black holes, such as SDs due
to evaporation and accretion of matter into primordial black holes. In order to do that we
choose to fix the maximum amplitude allowed for our peak to 1× 10−3, which is a conser-
vative threshold value for the formation of primordial black holes [72]. Furthermore, in the
next section we present for the first time an MCMC forecast analysis to show the prospects
of constraining the primordial power spectrum with SDs.

This section is divided into three subsections, one for each template. In each subsection,
we present the chosen baseline parameters for the primordial power spectrum. We then
vary one parameter, while keeping fixed the others, and we plot the corresponding effects
on observables. Each figure contains 5 plots. In all plots there are at least three curves.
One corresponds to the baseline parameters, while each of the other two refers to a different
value of the considered parameter. In the first plot on the top left we show the primordial
power spectrum as a function of the comoving wavenumber. The TT and TE CMB angular
spectra are shown in the top center and top right plots, respectively. In particular, we choose
to plot the difference between the computed angular spectra with those computed by using
the Planck baseline parameters [18]. The grey scatter points present in this plot represent
the difference between the angular power spectra computed with Planck baseline parameters
and the real data of Planck. The corresponding error bars are the uncertainties of the real
data. We do not plot the coefficients C`, but a related quantity:

DXX
` = T 2

CMBC
XX
` `(`+ 1)/2π, X = T,E (15.1)

In the bottom left panel, SDs are plotted. The solid lines refer to the µ-distortion contri-
bution, while the dashed ones represent the y-type distortions. We also plot the sensitivity
of FIRAS and of future spectrometers such as PIXIE [8] and PRISTINE. To get an insight

† In CLASS it is also possible to use the approximated analytical expressions (5.39) for the branching ratios.
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on how much the primordial power spectrum affects µ- or y-type distortions, we plot the
supports of the µ and y window functions (10.23). We also plot the total astrophysical fore-
grounds for CMB radiance intensity. Finally, the power of scalar-induced gravitational waves
is shown in the bottom center panel. In that plot, we also show the sensitivities area of fu-
ture experiments able to probe the stochastic gravitational waves background, e.g SKA [20],
LISA [21] and Big Bang Observer (BBO) [86]. We also plot a small black star representing
the recent claim of a detection from the NANOgrav collaboration [87]. However, since there
is no evidence yet that the signal is a sign of the stochastic gravitational waves background,
we interpret this point as an upper bound. In the plot, the galactic and extra-galactic fore-
grounds of gravitational waves are plotted. These foregrounds are computed according to
[88]. We summarize the information in a legend and write the parameters generating the
curves in the figure caption.

15.1 Modified log-normal template

The baseline parameters for the modified log-normal template are

ln
(
1010As

)
= 3.0448, ns = 0.96605, ε = 0, (15.2a)

log10A = −3, log10 kloc = 6.5, (15.2b)
log10 α = −0.9, log10 β = −0.07. (15.2c)

Since we are interested in the effects of the bump, we set ε = 0 for simplicity. Indeed,
the different slope of the primordial power spectrum after the bump does not affect the
observables we studied. Furthermore, we choose the values of As, ns according to Planck
best fit ones, even if the fit parameters of theoretical models presented before are different
(14.5). This choice is motivated by the fact that at large scales the primordial power spectrum
has to be consistent with Planck data and because the parameters of the theoretical model
can be fine-tuned in order to reproduce the correct behavior. Hence, CMB anisotropies are
used to constrain only the location and the width of the bump and not the parameters of
the background scale invariant spectrum.

Varying A

To show the effect of the amplitude A we generated three different spectra where the ampli-
tude takes the values

log10A1 = −3, log10A2 = −4, log10A3 = −5, (15.3)

while the other parameters are set equal to the baseline ones (15.2b) in all three cases.
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Fig. 14 – Impact of the amplitude A of the modified log-normal template on observables. The
orange, purple and cyan curves correspond to the cases A = A1, A2, A3, respectively.

The effects on the different observables are shown in figure 14 In all cases, there are no
effects on CMB anisotropies. The kink at the beginning of the bump is placed in the middle
of the µ-window function. Spectral distortions are tiny because the power spectrum is not
large within the windows functions. Nevertheless, a PIXIE-like experiment could be able to
detect such signal. For the case A = A1 a future detection of gravitational waves by SKA is
possible.

Varying kloc

The location of the bump kloc varies as

log10 kloc,1 = 4.5, log10 kloc,2 = 6.5, log10 kloc,3 = 8.5, (15.4)

while the other parameters are again set equal to the baseline ones (15.2b). The case with
kloc = kloc,2 corresponds to the baseline spectrum. The effects on the different observables
are shown in figure 15
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Fig. 15 – Impact of the peak location kloc of the modified log-normal template on observables.
The cyan, orange and purple curves correspond to the cases log10 kloc = 4.5, 6.5, 8.5, respectively.

Clearly, as the peak moves at smaller scales the effects on gravitational waves move at
higher frequencies. In particular, a spectrum like the purple curve in figure 15 is expected to
give a contribution to the stochastic gravitational waves background that could be detected
by SKA. Notice also that the cyan spectrum has large enough values in the µ-window function
to be already excluded by FIRAS data.

Varying α

In the modified log-normal templates, the width of the bump is controlled by α and β. To
show their effects on the width, it is necessary to keep fixed one of them and to vary the
other one. In figure 16, we show effects on observables when α takes the values

log10 α1 = −2.9, log10 α2 = −0.9, log10 α3 = 1.1, (15.5)

while β and the other parameters are fixed.
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Varying parameter: log10

Fig. 16 – Impact of α (modified log-normal template) on observables. The cyan, orange and purple
curves correspond to the cases log10 α = −2.9,−0.9, 1.1, respectively.

Again, the orange curve corresponds to the baseline spectrum. α mainly affects the slope
of the rising part of the peak. In particular, for small α the peak is wide and the kink is
shifted at large scales. In the figure, the cyan curve corresponds to the case log10 α = −2.9
and it is a case excluded by Planck (of course, given the particular combination with the
other baseline parameters). A wider peak could enter more consistently in the µ window
function and hence could leave an imprint on CMB SDs. For example, the cyan curve is
a case excluded also by FIRAS data. Given the baseline location of the bump, no evident
effects on gravitational waves are seen in this case. This is because the shape of the bump
at small scales is almost the same in the three cases. However, the purple curve, which
corresponds to a narrow peak, leads to a particular shape of ΩGW. If the peak would have
been located at a wavenumber larger by one order of magnitude than the baseline case, there
could have been a unique imprint on gravitational wave power.

Varying β

When α is fixed and β varies, the effect on the bump width is completely different. Indeed,
one could expect only the slope of the right part of the peak to change. However, figure
17 shows that β affects the overall width of the bump. The three curves in the figures
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correspond to the values:

log10 β1 = −2.07, log10 β2 = −0.07, log10 β3 = 1.93. (15.6)
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Varying parameter: log10

Fig. 17 – Impact of β (modified log-normal template) on observables. The cyan, orange and purple
curves correspond to the cases log10 β = −2.07,−0.07, 1.93, respectively.

The smaller β is, the wider the bump. The discussion on the effects is analogous to the
previous case.

15.2 Smoothly broken power law template

The baseline parameters for the bumps described by the smoothly broken power law are

ln
(
1010As

)
= 3.0448, ns = 0.96605, ε = 0, (15.7a)

log10A = −3, log10 kloc = 9, (15.7b)
log10 n1 = 0.75, log10 n2 = 0.10, log10 ∆ = 0.85. (15.7c)

The motivation for the background parameters is the same given for the previous template.

Varying A

The amplitude is varied as in the previous case (15.3) and the result is given in figure 18
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Fig. 18 – Impact of the amplitude A of the smoothly broken power law template on observables.
The orange, purple and cyan curves correspond to the cases log10A = −3,−4,−5, respectively.

Since the baseline location of the peak is at smaller scales than in the previous case, a
larger effect on gravitational waves is produced. In particular, for log10A = −3 a signal in
the range of sensitivity of BBO is generated.

Varying kloc

As in the modified log-normal case, we vary the location of the peak of two orders of mag-
nitudes with respect to the baseline value:

log10 kloc,1 = 7, log10 kloc,2 = 9, log10 kloc,3 = 11. (15.8a)

One expects that in the case of log10 kloc = 7 the effect on ΩGW could be detected only by
SKA, while for log10 kloc = 11 the signal lies in the LISA window. The results are given in
figure 19
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Fig. 19 – Impact of the peak location kloc of the smoothly broken power law template on observ-
ables. The cyan, orange and purple curves correspond to the cases kloc = 7, 9, 11, respectively.

Only for log10 kloc = 7 there is an interesting imprint on SDs. In the other two cases, the
generated spectral distortions are the same as in the ΛCDM case.

Varying n1 or n2

In the original formulation of the smoothly broken power law template (14.6), the parameter
α1 represents the slope of the rising part of the bump. In our parametrization, n1 controls
mainly the slope of the left curve of the bump, as α1 does, but it has also a slightly effect on
the slope of the descending power law. Figure 20 shows this behavior. The plotted values
of n1 are log10 n1 = 1.25, 0.75, 0.25.

Similarly, the quantity n2 mainly affects the slope of the power law after the peak but it
has also a small effect on the slope of the power law before the bump. In figure 21 we show
the impact on observables when n2 takes the value

log10 n2,1 = −0.15, log10 n2,2 = 0.10, log10 n2,3 = 1.10, (15.9)

while other parameters are fixed to the baseline values (15.7).
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Varying parameter: log10 n1

Fig. 20 – Impact of n1 (smoothly broken power law template) on observables. The cyan, orange
and purple curves correspond to the cases log10 n1 = 1.25, 0.75, 0.25, respectively.
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Fig. 21 – Impact of n2 (smoothly broken power law template) on observables. The cyan, orange
and purple curves correspond to the cases log10 n2 = −0.15, 0.10, 1.10, respectively.
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Varying ∆

The smoothness parameter ∆ affects both slopes. In figure 22 we show three different spectra
where ∆ takes the values

log10 ∆1 = 0.45, log10 ∆2 = 0.85, log10 ∆3 = 1.20, (15.10)

and the corresponding effects on observables

10 2610 1710 810110101019
MPBH/M

10 2610 1710 810110101019
MPBH/M

10 2610 1710 810110101019
MPBH/M

10 2 103 108 1013 1018 1023

k [Mpc] 1

10 10

10 8

10 6

10 4

10 2

(k
)

PPS

0 500 1000 1500 2000 2500

150

100

50

0

50

100

150

D
TT

[
K2 ]

DTT DTT
, baseline

0 500 1000 1500 200020

15

10

5

0

5

10

15

20

D
EE

[
K2 ]

DEE DEE
, baseline

101 102 103

Frequency  [GHz]

10 1

101

103

105

107

|
|[J

y/
sr

]

SDs

10 9 10 6 10 3 100

Frequency  [Hz]

10 17

10 15

10 13

10 11

10 9

10 7

h2
GW

GW

 window [  solid]
y window [y  dashed]
FIRAS sensitivity
Pristine sensitivity
Pixie sensitivity
SD total foregrounds
NANOGrav point
BBO sensitivity
LISA sensitivity
SKA sensitivity
Galactic binaries foreground
Extragalactic binaries foreground
D , Planck data D , baseline

Varying parameter: log10

Fig. 22 – Impact of the smoothness parameter ∆ (smoothly broken power law template) on
observables. The cyan, orange and purple curves correspond to the cases log10 ∆ = 0.45, 0.85, 1.20,
respectively.

15.3 Oscillating bump template

The analysis of the oscillating bump is slightly different with respect to the previous tem-
plates. This is because the amplitude of the feature is not described by a simple parameter A
as in the previous cases but by the combination of δN and λ0 (14.13). Thus, we present three
different spectra, each of them with different combinations of (δN, λ0) but with roughly the
same amplitude. The amplitude is not affected by kloc and thus we placed the three spectra
at different kloc in order to observe the impact of this parameter on observables. We present
the results for three different amplitudes so that the overall number of spectra examined is
nine.

For example, three possible combinations of (δN, λ0) - and kloc - that gives an overall
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amplitude of 1× 10−3 are

δN
(A)
1 = 0.1, λ

(A)
0,1 = 200, log10 k

(A)
loc,1 = 6, (15.11a)

δN
(A)
2 = 0.3, λ

(A)
0,2 = 68, log10 k

(A)
loc,2 = 2, (15.11b)

δN
(A)
3 = 0.6, λ

(A)
0,3 = 34, log10 k

(A)
loc,3 = 10. (15.11c)

The effects on observables of these three spectra are given in figure 23.
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Fig. 23 – Effects on observables of three different spectra with an oscillating bump. The cyan,
orange and purple curves correspond to the combinations of parameters with subscript 1, 2, 3 of the
case A (15.11) respectively. The combinations of parameters are such that the overall amplitude is
roughly 1× 10−3.

The impact of kloc on observables is almost the same as the previous cases. The figure
shows also how the number of oscillations is related to (δN, λ0). Notice that the power of
gravitational waves ΩGW depends on template parameters qualitatively in the same way as
the power spectrum does. For example, both of them have a peak with oscillations and the
number of the latter, as well as the shape of the peak, is similar. This is obvious because
equation (11.43) suggests that ΩGW(k) ∝ P2

R(k). Hence, a feature of PR located at k will
be translated into a feature in ΩGW at k. In this sense, gravitational waves are a unique
signal because they are sensitive to the spectral shape of PR(k). In other words, they are
a cumulative effect and they are not able to capture the behavior of the features in the
primordial power spectrum located at k.
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The other combinations of parameters that we analyzed are those giving an amplitude
roughly equal to 1× 10−4:

δN
(B)
1 = 1.0 λ

(B)
0,1 = 18 log10 k

(B)
loc,1 = 2, (15.12a)

δN
(B)
2 = 1.5 λ

(B)
0,2 = 12 log10 k

(B)
loc,2 = 10, (15.12b)

δN
(B)
3 = 0.5 λ

(B)
0,3 = 35 log10 k

(B)
loc,3 = 6. (15.12c)

The results are given in figure 24.
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Fig. 24 – Effects on observables of three different spectra with an oscillating bump. The cyan,
orange and purple curves correspond to the combinations of parameters with subscript 1, 2, 3 of
the case B (15.12) respectively. The combinations of parameters are so that the overall amplitude
is roughly 1× 10−4.

The last case we present is

δN
(C)
1 = 0.25 λ

(C)
0,1 = 60 log10 k

(C)
loc,1 = 10, (15.13a)

δN
(C)
2 = 0.75 λ

(C)
0,2 = 20 log10 k

(C)
loc,2 = 2, (15.13b)

δN
(C)
3 = 1.25 λ

(C)
0,3 = 12 log10 k

(C)
loc,3 = 6. (15.13c)
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Fig. 25 – Effects on observables of three different spectra with an oscillating bump. The cyan,
orange and purple curves correspond to the combinations of parameters with subscript 1, 2, 3 of
the case C (15.13) respectively. The combinations of parameters are so that the overall amplitude
is roughly 1× 10−5.



VI

Constraints on the Primordial Power
Spectrum from the CMB

In this chapter we present current and forecast constraints on the primordial power spectrum
from CMB spectral distortions alone and in combination with anisotropies data at large
scales. To do so, we perform a Bayesian analysis to infer constraints on the primordial
power spectrum parameters by sampling suitably built mock likelihoods with a Monte Carlo
Markov Chain (MCMC) algorithm. The use of a mock likelihood for COBE/FIRAS as
implemented within the MontePython code version which includes SD [Refs] instead of real
data is justified because it reproduces the COBE/FIRAS constraints on µ and y (3.49). †

As a working example, we assume a primordial power spectrum with a bump described
with the smoothly broken power law template (14.10) on top of the near scale invariant
spectrum (14.2)‡. We derive constraints on the amplitude, width and location of the bump.
For simplicity we fix log10 n1 = 1.0, log10 n2 = 0.75 so that the width of the bump depends
only on ∆, which we vary in our analysis together with the overall amplitude A and the
bump-location kloc Indeed, we can see from figure 22 that varying ∆ while keeping fixed n1,2

is equivalent to changing the width of the bump.

16 Methodology

Theoretical models have to be compared with observations of the phenomena they describe.
Since data have always uncertainties associated with them, statistics is the necessary tool to
dig out information about physical quantities from measurements. In our specific case, we
are interested in statistically inferring the parameters of small-scale bumps in the PPS from
current and future data.

16.1 Basics of Bayesian inference

Statistical inference proceeds in general by maximizing the probability of obtaining the
observed data. Let d be such data and θ a collection of parameters parametrizing a model
that tries to explain the data. The probability of getting d as a function of θ is given by the

† According to Jens Chluba (private communication) the use of the COBE/FIRAS publicly available mea-
surements and errors of spectral energy density in frequency in a simple χ2 would lead to more stringent
limits on µ and y than those officials in (3.49).‡ We set ε = 0 in the background term since it has no effects
on observables.

131
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so-called likelihood function:
L(θ) def=P (d|θ), (16.1)

The Bayes theorem relates the likelihood function to the posterior distribution P (θ|d)

P (θ|d) = P (d|θ)P (θ)
P (d) , (16.2)

which represents what we know about the parameters after seeing the data. Suppose that
the model has n parameters θ = {θ1, . . . , θn}. The posterior distribution for the parameter
θ1 is obtained by marginalization, that is an integration of the posterior distribution over
the other parameters

P (θ1|d) ∝
∫

dθ2 . . . dθnP (θ|d) ∝
∫

dθ2 . . . dθnL(θ)π(θ). (16.3)

The quantity P (θ) ≡ π(θ) appearing in the Bayes theorem is called prior distribution and
it represents our knowledge about the parameters before seeing the data. In this thesis we
choose uniform priors, as usual, so that posterior and likelihood are simply proportional.
Finally, the evidence P (d) is a factor that normalizes the posterior to 1:

P (d) =
∫

dθL(θ)π(θ). (16.4)

Bayesian inference proceeds by updating the posterior knowledge on parameters as new
data flows in. First, it is necessary to build the likelihood function, that reflects the way
the data are obtained, and to specify the prior distributions of the parameters. Then, we
compute the posterior distributions of the parameters through the Bayes theorem. In most
cases this can be done only numerically due to the complexity of likelihood functions.

Monte Carlo Markov Chain (MCMC) is a class of algorithms used to numerically compute
the posterior distribution. The general purpose of these algorithms is to construct a sequence
(or chain) of points (or samples) in parameter space whose density is proportional to the
posterior distribution. It can be proved that Markov Chains converge to a stationary state
so that the successive elements of the chain are samples from the posterior distribution. The
generation of the chain elements is probabilistic and described by the so-called transition
probability T to go from the point of the parameter space θ(t) to the point θ(t+1). Such
transition probability is obtained by imposing the detailed balance condition

T (θ(t), θ(t+1))
T (θ(t+1), θ(t)) = P (θ(t+1)|d)

P (θ(t)|d) . (16.5)

Once the posterior distribution is sampled with Markov Chains, it is possible to obtain
Monte Carlo estimation of useful quantities, such as the mean E of the posterior

E[θ] =
∫

dθθP (θ|d) ≈ 1
M

M−1∑
t=0

θ(t), (16.6)
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or the the marginalized posterior probability (16.3) of a single parameter, say θ1. This
quantity can be computed directly from the Markov Chain by dividing the range of θ1 in
a series of bin and counting the number of samples falling within each bin while ignoring
the other parameters θ2, . . . , θn. Similarly, we compute 2-dimensional posteriors and the α%
credible intervals.

The Metropolis-Hastings algorithm is the simplest MCMC algorithm and it is the one
we use in our analysis. The algorithm starts from a random point θ(0), proposes a candidate
point θ(c) drawn from an arbitrarily chosen probability distribution q(θ(0), θ(c)) and evaluates
the quantity

α = min
(
P (θ(c)|d)q(θ(c), θ(0))
P (θ(o)|d)q(θ(0), θ(c)) , 1

)
. (16.7)

Then, it generates a uniform random number µ ∈ [0, 1) and if µ < α the candidate θ(c)

is accepted, otherwise it is rejected. In particular, if the posterior of the candidate point
is larger than the posterior at the starting point, the candidate is always accepted. If the
candidate point is accepted it is added to the chain and the algorithm is repeated starting
from such points. If it is rejected, the algorithm draws another candidate point.

16.2 CMB likelihoods

We perform a Bayesian analysis to infer constraints on the primordial power spectrum pa-
rameters. Our fiducial model is described by a near scale invariant PPS with

ln 1010As = 3.0448 ns = 0.96605 (16.8)

like the plik best fit of Planck TT,TE,EE+lowE+lensing data [18]. The other remain-
ing cosmological parameters are fixed as follows: Ωbh

2 = 0.022383, Ωcdmh
2 = 0.12011,

100θs = 1.04091, τreio = 0.0543. Using class, we generate the fiducial observables, i.e. the
anisotropies angular power spectra and the spectral distortions in each frequency bin for a
given detector (FIRAS or PIXIE).

Starting from these observed quantities, we built the SDs likelihood as follows [34, 89]

lnL = −1
2
∑
i

(
∆Iobs(νi)−∆Ipred(νi)

δI(νi)

)2

, (16.9)

where δI(νi) is the detector sensitivity in the i-th frequency bin and ∆Ipredicted are SDs
computed with class for a given set of parameters (A, kloc,∆). The spectral distortion term
∆I consists in the sum of the late-time reionization y-contribution (6.7), temperature shift
(5.23) and foreground map:

∆I(x) = ∆ISilk(x) + ∆IT (x) + ∆Ireio(x) + ∆Iforegrounds(x), (16.10)

where ∆ISilk(x) is the distortion due to Silk damping, which is the only contribution de-
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pending on the PPS. The main contribution to the foreground term ∆Iforegrounds comes from
Galactic thermal dust and the Cosmic Infrared Background (CIB), as well as synchrotron,
free-free, spinning dust, and integrated CO emissions. Expressions for these contributions
can be found in [89]:

∆Ii(x) = Ai

(
xi
xi,ref

)βi+3 exp(xi,ref)− 1
exp(xi)− 1 , and νref = 545 GHz (16.11a)

∆Isync(x) = AS

(
xref

c

)αS+0.5ωS log2(x(xref)
where νref = 100 GHz (16.11b)

∆Ifree-free (x) = AffNTe (1− exp (−τff ))

τff ≈ 0.05468EM
(
Te
K

)−3/2 ( ν

GHz

)−2
gff

gff ≈ log
{
e+ exp

[
5.96−

√
3
π

log
((

ν

GHz

)(
Te

104K

)−3/2)]} (16.11c)

where i ∈ {thermal dust, CIB}. Contributions from spinning dust and integrated CO emis-
sion are modeled by using spectral templates. As can be seen, 16 nuisance parameters are
needed to model foregrounds and they are

1. ∆T : temperature shift amplitude;

2. TD: temperature of thermal dust;

3. βD: exponent appearing in equation (16.11a);

4. AD: amplitude of the SD due to thermal dust;

5. TCIB: CIB temperature;

6. βCIB: exponent appearing in equation (16.11a);

7. ACIB: amplitude of the SD due to CIB;

8. αsync: exponent appearing in equation (16.11b);

9. ωsync: exponent appearing in equation (16.11b);

10. Async: amplitude of the SD due to synchrotron emission;

11. Te: temperature of electron plasma;

12. EM: emission measure;

13. νspin: parameter for the shape of distortion due to spinning dust;

14. Aspin: amplitude of the SD due to spinning dust;

15. ACO: amplitude of the SD due to CO emission;



16. Methodology 135

16. yreio: amplitude of y-distortion due to reionization;

All our results are obtained by marginalizing over such nuisance parameters.
Given a set of parameters (A, kloc,∆) and the rest of the cosmological parameters, we

also compute the TT-TE-EE spectra of the CMB anisotropies and compare them with
Planck data. In order to use the Planck data constraining power for CMB anisotropies in
this work we use a mock likelihood data based on blue book sensitivity implemented in
MontePython in TT-TE-EE based on an inverse Wishart (see for instance [90]). The use
of Planck DR3 likelihood in this context has been problematic, probably because of its use
in combination with FIRAS-like data, and we have therefore turned to a mock likelihood
for Planck data as in [34, 89]. This mock Planck likelihood covers a range of multipoles
`min = 2, `max = 2500, use the blue book sensitivity for the nominal survey for the frequency
channels 100, 143 and 217 GHz and use a fraction of the sky fsky = 0.65. We plan to revisit
the use of Planck real data in the future.

We sample the likelihood with a Metropolis-Hastings MCMC algorithm by using Mon-
tePython [91, 92]. We assume no correlation between SDs and anisotropies and therefore
likelihoods are simply multiplied. We use the Gelman-Rubin convergence criterion stopping
the MCMC when the R− 1 coefficient of each sampled parameter is less than 0.001.

16.3 Semi-analytical constraints

Previous constraints on the PPS from SDs were derived in [93, 94, 95]. The authors of [95]
derive SDs constraints by assuming a PPS growing as k4 or with a Dirac delta function peak
and by considering µ-distortions only. The constraints in the two cases are not so different.
They also use an approximated equation for µ involving the window function (see e.g (10.22))
and not the quasi-exact solution obtained with the Green’s function technique. We review
their results in the delta Dirac case to compare them with those from our analysis. We
consider a PPS given

PR(k) = Aδ

[
log

(
k

k∗

)]
(16.12)

and we plug it into equation (10.22). The delta Dirac function allows us to analytically solve
the integral

µ = A ·Wµ(k̂∗). (16.13)

The FIRAS/PIXIE upper limit on the PPS amplitude Aupper at a chosen k∗ is computed as

Aupper(k∗) = |µ|
Wµ(k̂∗)

, (16.14)

where µFIRAS = 9× 10−5 and µPIXIE = 2× 10−8. The FIRAS and PIXIE upper limits on A
in the range of comoving wavenumbers k ∈ [10−1, 106] Mpc−1 are shown in figure 26.
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Fig. 26 – FIRAS and PIXIE upper limits on PPS amplitude using equation (10.22) and a Dirac
delta PPS (see also [95]). We also plot the ΛCDM fiducial when the running of the tilt αs and
its running dαs/d ln k are zero (black), the ΛCDM fiducial when αs = 0.008 and dαs/d ln k = 0
(blue), the ΛCDM fiducial when αs = 0 and dαs/d ln k = 0.03 (red). The grey curve is an example
of PPS with a bump described by the smoothly broken power law template (14.10).

17 Results

We now present the results obtained with our original implementation of class and Mon-
tePython in the framework described in the previous section.

17.1 FIRAS and Planck constraints

We consider first the case applied to existing data from FIRAS and Planck. To get an
intuition about the typical amplitude of the PPS to which FIRAS is sensitive to, we fix
kloc = 102 Mpc−1, and vary only the amplitude and width of the peak in the ranges

log10A ∈ [−10,−2.5], log10 ∆ = [0, 1.5], (17.1)

We fix the six ΛCDM parameters to their Planck plik bestfit values: Ωbh
2 = 0.022383,

Ωcdmh
2 = 0.12011, 100θs = 1.04091, τreio = 0.0543. ln(1010As) = 3.0448, ns = 0.96605. To

consistently take into account the effects of foregrounds in our analysis, we vary the nuisance
parameters of the FIRAS likelihood†, and, as stated above, we marginalize over them. The
resulting 1D and 2D posterior distributions are shown in figure 27.

† In the Planck mock likelihood there are no nuisance parameters
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Fig. 27 – 1D and 2D (68% and 95% CL) posterior distributions of A and log10 ∆ obtained with
FIRAS in the case of a fixed bump location log10 kloc[Mpc−1] = 2.

In this case FIRAS only sets an upper limit on the amplitude, while the width of the bump
is not constrained at all. The 95% CL upper limit on A is

A < 3.6× 10−5 (FIRAS, kloc = 102 Mpc−1, 95% CL). (17.2)

Then we let also kloc in the range

log10 kloc[Mpc−1] = [−1, 6]. (17.3)

FIRAS does not constrain both the width and location of the bump but sets only an upper
limit on its amplitude. Therefore, if we compute the upper limit on the amplitude by
marginalizing over these parameters, we would get prior-dependent results. In particular,
since we vary kloc in a range wider than the SDs sensitivity window†, we would get a large
value that does not represent the real constraining power of FIRAS. In this case, the best
way to understand the constraints is to plot the so-called predictive posterior distribution,
namely the constraints on the template (14.10) given the posterior distribution derived on
the model parameters [96, 97]. We show the predictive posterior distribution in figure 28,
where we plot 1σ (dark-shaded regions) to 3σ (light-shaded regions) constraints on the PPS.
The purple color map refers to FIRAS constraints. Analogous results were obtained for other

† Figure 10 suggests that SDs are sensitive to the PPS in the range k ∈ [1, 104]Mpc−1.
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phenomenological templates for PR(k) in [95]. In figure 28 we also plot the constraints from
figure 26.
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Fig. 28 – Comparison between FIRAS (purple) and FIRAS+Planck (blue) predictive posterior
distributions. The solid curve is the contour obtained in literature [95] with a Dirac δ PPS and
shown in figure 26.

We note that for large comoving wavenumbers k ∼ 104 − 106 the upper bound on the
amplitude is only very weak log10PR ∼ −3. On the other hand, we see that in the sensitivity
range of SDs, FIRAS constrains the amplitude down to log10PR ∼ −4,−5, in agreement
with the upper limit found by fixing kloc = 102 Mpc−1 (17.2). Furthermore, our results are
similar to figure 26, but they are extended in a wider range of comoving wavenumbers. This
is due to having a broad bump that affects SDs even away from its peak at kloc, as opposed
to the δ function considered in Fig. 26.

We then combine Planck data with FIRAS one. In this case, we vary also the amplitude
As and scalar tilt ns of the nearly scale-invariant background power law (with unbounded
uniform priors centered in the Planck plik best fit values aforementioned). When we consider
FIRAS alone, these parameters are degenerate because they both contribute to the total SD
amplitude and so we fix their values. We know that Planck constrains both As and ns and
therefore we choose to vary them when we add anisotropies data. We plot the 1D and 2D
posterior distributions of the combination of Planck and FIRAS data and of FIRAS data
only in figure 29. By looking at the 2D contours involving kloc and at the 1D posterior
distribution of the latter, we deduce that Planck data sets a lower bound on kloc. Since
kloc has a lower limit, we expect that the marginalized upper limit on A improves with
respect to the FIRAS-only case. Indeed, we find an upper limit to be the same order of
magnitude of the Dirac δ contours 26 in the SDs sensitivity range. Notice however that our
limit is obtained by marginalizing over the bump width and location, while contours 26 are
not marginalized. Indeed, in the SDs sensitivity range we find an upper limit tighter than
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in the Dirac δ case 26. As before, this is due to consider a broad bump in the PPS. The
combination of FIRAS and Planck also sets an upper limit on the width (log10 ∆ < 0.84),
but only at the 68% CL. This is because a too-large width would affect Planck data even for
a large kloc.
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Fig. 29 – 1D and 2D (68% and 95% CL) posterior distributions of ln
(
1010As

)
, ns, A, log10 ∆ and

log10 kloc obtained in FIRAS+Planck case.

To sum up, the constraints on bump parameters in the FIRAS+Planck case are

A < 1.5× 10−4 (FIRAS+Planck, 95% CL), (17.4a)
log10 kloc[Mpc−1] > 1.1 (FIRAS+Planck, 95% CL), (17.4b)

ln
(
1010As

)
= 3.0452± 0.0015 (FIRAS+Planck, 68% CL), (17.4c)

ns = 0.9673± 0.0022 (FIRAS+Planck, 68% CL). (17.4d)

The errors on these parameters are roughly half the ones reported in the latest analysis by
Planck [18]. This is because we fix the other 4 ΛCDM parameters, while Planck results are
obtained by marginalizing over them. We plan to repeat the analysis by varying all the 6
ΛCDM parameters to see the differences with respect to this case. The 2D contours in figure
29 suggest also that As, ns are not degenerate with any of the bump parameters.

To help the reader understanding the constraints on the PPS, we plot the predictive
posterior distribution of the FIRAS+Planck case in figure 28. The FIRAS+Planck contours
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in figure 28 interpolate between the large-scale constraints on the PPS presented by the
Planck collaboration in [98] and the small-scale bounds from FIRAS. From this plot, it is
clear that an entire region of the parameter space for k . 1Mpc−1 is ruled out when Planck
data are combined with FIRAS one.

17.2 Forecast for PIXIE

We now go on to present our constraints from PIXIE, considered as a spectrometer and not
a polarimeter [8]. We first compare the upper limit on the amplitude obtained with PIXIE
and FIRAS in the case of a fixed bump location kloc = 102 Mpc−1. We assume the priors
given in equation (17.1) also in this case. We show the corresponding 1D and 2D posterior
distributions of A and ∆ in figure 30 and we compare them with FIRAS results.
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Fig. 30 – Left. 1D and 2D (68% and 95% CL) posterior distributions of A and log10 ∆ obtained
with PIXIE in the case of a fixed bump location log10 kloc[Mpc−1] = 2. Right. Comparison with
FIRAS contours shown in figure 27.

The marginalized upper limit on A at 95% CL is improved by roughly four orders of mag-
nitude with respect to FIRAS (17.2):

A < 9.9× 10−10 (PIXIE, kloc = 102 Mpc−1, 95% CL). (17.5)

We then let kloc vary in the range (17.3). As before, to have an intuition on the constraints
we plot the predictive posterior distribution in figure 31 in comparison with FIRAS contours.
We note that PIXIE improves FIRAS constraints of about four orders of magnitude in a
wider range of k and not only at the fixed bump position tested before.
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Fig. 31 – Comparison between FIRAS (purple) and PIXIE (orange) predictive posterior distribu-
tions. The solid curves are the analogous upper limits obtained in literature [95] with a Dirac δ
PPS and shown in figure 26.

As in the FIRAS+Planck case, combining anisotropies data to SDs one sets a lower
bound on the location of the bump, an upper limit on its width - though only at 68% CL
- and improves the upper limit on the amplitude with respect to SDs only case. In the
PIXIE+Planck case the limits are

A < 1.2× 10−9 (PIXIE+Planck, 95% CL), (17.6a)
log10 kloc[Mpc−1] > 0.72 (PIXIE+Planck, 95% CL), (17.6b)

ln
(
1010As

)
= 3.0450+0.0018

−0.0014 (PIXIE + Planck, 68% CL), (17.6c)

ns = 0.9670+0.0025
−0.0020 (PIXIE + Planck, 68% CL). (17.6d)

There are no significant differences between the values ofAs and ns inferred in the PIXIE+Planck
and FIRAS+Planck case (17.4c), (17.4d). This confirms that As and ns are mainly deter-
mined by Planck data, while SDs play a marginal role. We plot the corresponding 1D and
2D posterior distributions in figure 32 and the predictive posterior distribution of this case
in figure 33. In this case, the synergy of CMB anisotropies and SDs rules out entire regions
of the parameter space both at low and high k.
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Fig. 33 – Comparison between PIXIE (orange) and PIXIE+Planck (green) predictive posterior
distributions. The solid curves are the analogous contours obtained in literature [95] with a Dirac
δ PPS and shown in figure 26.
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18 Discussion

The main results of this thesis are shown in figures 28, 31, 33, where we plot the constraints
from CMB data on the shape of a PPS with a broad bump at small scales. We derive
phenomenological templates that fit different large peaks produced in multi-field models
of inflation, we choose one template and we infer the constraints from CMB anisotropies
(Planck) and SDs (FIRAS or PIXIE) data with an MCMC analysis performed an original
modification of class and MontePython. Figure 31 suggests that FIRAS constrains the
PPS amplitudes to be less than roughly 10−4 in the range log10 k[Mpc−1] ∈ [−0.75, 4.5].
PIXIE improves such upper limit by approximately four orders of magnitude. We compare
our constraints with simple analytical limits shown in figure 26 and present in the literature
[95]. In particular, the upper limit on the amplitude is roughly the same in the two cases,
but our result is extended on a wider range of comoving wavenumbers. This is because
the upper limits in figure 26 are derived considering a Dirac-δ PPS, which is characterized
only by the peak amplitude and location, while we consider a broad bump that affects SDs
even when the peak location is far away from the SDs sensitivity range. The authors of [95]
derived similar constraints also for the case

PR(k) =


4A

(
k

kloc

)4

, fork < kloc

0, otherwise
(18.1)

which is motivated in the context of single-field models of inflation. The constraints obtained
for such PPS are roughly the same as those for the Dirac-δ case as they depend on the same
parameters. Therefore, our analysis extends previous constraints to broad bumps produced
in multi-field models of inflation and we explore the effects of the width.
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Fig. 34 – "Box" PPS given by equation (18.2) in the case of ka = 1 Mpc−1, kb = 104 Mpc−1 and
B = 10−3.
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The effects of a broad bump can be naively understood by considering the following "box"
PPS

PR(k) =


B, for ka < k < kb

As

(
k

k∗

)ns−1

, otherwise
(18.2)

We plot such PPS in figure 34 in the case ka = 1 Mpc−1, kb = 104 Mpc−1 and B = 10−3.
For a fixed value of the box width, we vary its center in the range k ∈ [10−1, 106]Mpc−1 and
we numerically integrate equation (10.22) to derive SD constraints on the box amplitude
B in the range of comoving wavenumbers considered. Such constraints, shown in figure 35,
extend on a wider range of k than those derived in the δ PPS case due to the broadness of
the bump.
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Fig. 35 – FIRAS (purple) and PIXIE (orange) upper limits on the amplitude of the "Box" (18.2)
and the Dirac δ (16.12) bump. The "Box" bump has a fixed width of 104 Mpc−1.

The contours in figure 35 are similar to the posterior predictive probability distributions 31.
However, we obtain such predictive probability distributions by marginalizing over all the
parameters, while we assume a fixed width to find the contours in figure 35.

We further explore the synergy between CMB anisotropies and SDs by combining Planck
data with FIRAS one. We show how such combination of data improves the constraints on
the PPS in figures 28 and 33. In particular, anisotropies data disfavors a bump located at
log10 kloc[Mpc−1] < 1.1 at 95% CL and a too broad bump when the latter is closed to SDs
window. These limits, although expected, are not present in the literature yet.



Conclusions

In this thesis, we have explored constraints which can be put on large bumps in the primordial
power spectrum of curvature perturbations beyond the scales probed by anisotropies of the
cosmic microwave background and galaxy surveys. These large bumps in the primordial
power spectrum of curvature perturbations produced during inflation is one of the standard
mechanisms to seed primordial black hole formation, a topic which has drawn a great interest
in the scientific community following the first detection of gravitational waves from black
holes merging.

The aim of this thesis is to constrain these bumps with current and future data. For
the first time we have derived phenomenological templates by employing modified lognor-
mal, smoothly broken power-law and oscillatory shapes that match accurately the theoretical
predictions obtained in multi-field models of inflation. We have also derived their imprints on
anisotropies and spectral distortions of the cosmic microwave background and their contri-
bution to the stochastic gravitational waves background induced by curvature perturbations
at second order.

We have performed a Monte Carlo Markov Chain analysis to infer constraints on PPS
from the latest Planck data for CMB anisotropies and FIRAS data for the CMB spectrum.
In particular, we have derived the constraints on a PPS with a broad bump described by
the smoothly broken power-law template. We accurately compared our results with toy
models for the bump, such as the previously used Dirac δ function or a box function, the
latter originally introduced in this thesis. We have found that FIRAS data sets an upper
limit on the amplitude of the bump. In particular, we have found that the upper limits on
the amplitude of a broad bump extends on a wider range of comoving wavenumbers than
those obtained with a peak with no width, e.g a Dirac δ PPS. Indeed, the width of the
bump, although not very well constrained, affects CMB SDs even when the maximum of the
peak is not inside the SDs sensitivity range. When we fold in the information from CMB
anisotropies, we derive a lower limit on the location of the bump. We also forecast that a
future spectrometer could improve FIRAS constraints of about four orders of magnitude.

We find that FIRAS+Planck constrain the amplitude of the peak below ×10−4 on the
whole range of comoving wavenumbers considered (see figure 28). We can then conclude
that within the assumptions described in section 12 - i.e. the probability that an overdensity
δ larger than some critical value δc collapses forming a PBH is Gaussian and δc = 0.45 -
there is no significant production of PBHs in such range of k. Indeed, the PPS threshold
value required to produce a significant fraction of PBHs within these assumption is one
order of magnitude larger than such upper limit. Different assumptions on δc and/or non-
Gaussianities in the probability distribution for δ could obviously alter these conclusions.
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146 Conclusion

This thesis, which contains several original results, can be extended in several directions.
Beyond investigating templates different from the smoothly broken power-law studied here,
a quantitative synergy with existing and future measurements on the SGWB is ongoing.



A

Cosmological perturbations

The full set of equations for the cosmological perturbations in Newtonian gauge is [27]:

photons



δ′γ = 4
3

(
k

H
vγ + 3Φ′

)

v′γ = − k

4Hδγ + 2k
3HΘ2 −

k

3HΨ− τ ′[Θ1 + vb/3]

Θ′` = `kΘ`−1

(2`+ 1)H −
(`+ 1)kΘ`+1

(2`+ 1)H + τ ′
[
Θ` −

1
10Πδ`,2

]
, l ≥ 2

(A.1)

γ polarization


Θ′P0 = − k

H
ΘP1 + τ ′

[
ΘP0 −

1
2Π

]
Θ′P` = `kΘP`−1

(2`+ 1)H −
(`+ 1)kΘP`+1

(2`+ 1)H + τ ′
[
ΘP
` −

1
10Πδ`,2

]
, ` ≥ 1

(A.2)

neutrinos



δ′ν = 4
3

(
k

H
vν + 3Φ′

)

v′ν = − k

4Hδν + 2k
H
N2 −

k

H
Ψ

N ′` = `k

(2`+ 1)HN`−1 −
`+ 1
2`+ 1

k

H
N`+1 l ≥ 2

(A.3)

cold dark matter


δ′CDM = k

H
vCDM + 3Φ′

v′CDM = −vCDM −
k

H
Ψ

(A.4)

baryons


δ′b = k

H
vb + 3Φ′

v′b = −vb −
k

H
Ψ + τ ′R(vb − vγ)

(A.5)

where N` is the analogous of Θ` for neutrinos R = 4Ωγ,0/(3Ωb,0a) and Π = Θ2 + ΘP0 + ΘP2.
Notice that for massive particles it is sufficient to stop at ` = 1. Einstein equations close the
previous system of equations. In Newtonian gauge they are

− Φ′ = Ψ + k2

3HΦ + 1
2 [ΩCDM(a)δCDM + Ωb(a)δb + Ωγ(a)δγ + Ων(a)δν ]

Ψ = Φ− 12H2

k2 [Ωγ(a)Θ2 + Ων(a)N2]
(A.6)

To solve all these coupled differential equations it is necessary to give initial conditions.
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148 Appendix A. Cosmological perturbations

Adiabatic initial conditions are

Ψ = 1
3
2 + 2fν

5
(A.7)

Φ =
(

1 + 2fν
5

)
Ψ (A.8)

δCDM = δb = −3
2Ψ (A.9)

vCDM = vb = − k

2HΨ (A.10)

Θ0 = −1
2Ψ (A.11)

Θ1 = + k

6HΨ (A.12)

Θ2 =
 −

8k
15Hτ ′Θ1, (with polarization)
− 20k

45Hτ ′Θ1, (without polarization)
(A.13)

Θ` = − `

2`+ 1
k

Hτ ′
Θ`−1 (A.14)

Θ0P = 5
4Θ2 (A.15)

Θ1P = − k

4Hτ ′Θ2 (A.16)

Θ2P = 1
4Θ2 (A.17)

Θ`P = − `

2`+ 1
k

Hτ ′
ΘP
`−1 (A.18)

N0 = −1
2Ψ (A.19)

N1 = + k

6HΨ (A.20)

N2 = −c
2k2a2(Ψ− Φ)

12H2
0 Ων0

(A.21)

N` = k

(2`+ 1)HN`−1, ` ≥ 3 (A.22)

where fν = Ων0
Ωγ0+Ων0

.
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