
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Sistemi Digitali M

COPY-PASTE DATA AUGMENTATION FOR
DOMAIN TRANSFER ON TRAFFIC SIGNS

CANDIDATE SUPERVISOR

Pierpasquale Colagrande Prof. Stefano Mattoccia

CO-SUPERVISORS

Dr. Maheen Rashid-Engström

Eng. Marco Rovinelli

Academic year 2021-2022

Session 3rd

Contents

Abstract 5

1 Introduction 7

1.1 Data-hungry machine learning 7

1.2 Object detection . 9

1.3 Traffic sign recognition . 13

1.4 Data augmentation . 14

1.4.1 Basic image augmentations 15

1.4.2 Image masking augmentations 18

1.4.3 Image mixing augmentations 19

1.4.4 GAN-based image augmentation 21

1.4.5 Effectiveness of image augmentation 22

1.5 Copy-paste data augmentation 23

1.6 Domain transfer . 27

1.7 Thesis assumption . 27

1.8 Thesis structure . 29

2 Background 31

2.1 Traffic sign recognition . 31

2.2 Standard augmentation for traffic sign recognition 33

2.3 Copy-paste augmentation for traffic sign recognition 34

2.3.1 Non realistic copy-paste 38

2.3.2 Realistic copy-paste 44

2

3 Methods 50

3.1 Copy-paste augmentation . 50

3.1.1 Signs to paste . 52

3.1.2 Number of signs per image 52

3.1.3 Position . 53

3.1.4 Scale . 54

3.1.5 Rotation along the three axes 54

3.1.6 Brightness . 56

3.1.7 Contrast . 58

3.1.8 Gaussian noise . 59

3.1.9 Motion blur . 59

3.1.10 Edge blur . 62

3.2 Domain transfer . 62

4 Material 68

4.1 Datasets . 68

4.1.1 Sign classes . 69

4.1.2 Training data . 69

4.1.3 Validation and testing data 71

4.2 Model . 71

4.3 Tools . 71

5 Experiments and results 72

5.1 Training with real yellow signs 72

5.2 Training with synthetic yellow signs 75

5.2.1 Realistic copy-pasted training data 76

5.2.2 Ablation studies on realistic augmentations 77

5.2.3 Ablation studies on non-realistic augmentations 79

5.3 Training with real and synthetic yellow signs 82

5.4 Training with domain-transferred yellow signs 84

5.4.1 Ablation studies on domain transfer 85

3

5.5 Validating with synthetic yellow signs 86

5.5.1 Realistic copy-pasted validation datawith non-realistic

copy-pasted train data 88

5.5.2 Non-realistic copy-pasted validation data with non-

realistic copy-pasted train data 88

5.5.3 Domain-transferred validation data with non-realistic

copy-pasted train data 89

5.5.4 Realistic copy-pasted validation data with real train data 90

5.5.5 Non-realistic copy-pasted validation datawith real train

data . 90

5.5.6 Domain-transferred validation data with real train data 91

6 Conclusion 92

6.1 Discussion of experiments results 92

6.1.1 Training experiments 92

6.1.2 Validation experiments 96

6.2 Future developments . 98

Bibliography 100

4

Abstract

City streets carry a lot of information that can be exploited to improve the

quality of the services the citizens receive. For example, autonomous vehicles

need to act accordingly to all the element that are nearby the vehicle itself,

like pedestrians, traffic signs and other vehicles. It is also possible to use such

information for smart city applications, for example to predict and analyze the

traffic or pedestrian flows.

Among all the objects that it is possible to find in a street, traffic signs are

very important because of the information they carry. This information can in

fact be exploited both for autonomous driving and for smart city applications.

Deep learning and, more generally, machine learning models however need

huge quantities to learn. Even though modern models are very good at gener-

alizing, the more samples the model has, the better it can generalize between

different samples.

Creating these datasets organically, namely with real pictures, is a very

tedious task because of the wide variety of signs available in the whole world

and especially because of all the possible light, orientation conditions and con-

ditions in general in which they can appear. In addition to that, it may not be

easy to collect enough samples for all the possible traffic signs available, cause

some of them may be very rare to find.

Instead of collecting pictures manually, it is possible to exploit data aug-

mentation techniques to create synthetic datasets containing the signs that are

needed. Creating this data synthetically allows to control the distribution and

the conditions of the signs in the datasets, improving the quality and quantity

5

of training data that is going to be used. This thesis work is about using copy-

paste data augmentation to create synthetic data for the traffic sign recognition

task.

6

Chapter 1

Introduction

1.1 Data-hungry machine learning

Modern machine learning techniques like Deep Learning are notoriously data

hungry: this means that in order for these systems to reach high performances,

they need to be trained with huge quantities of data. In fact, these systems

need to work in test environments in which there is no standard condition, so

they may encounter data that is very different from the type of data they have

been shown during the training phase. In order thus for these systems to be

robust to the majority of testing conditions, they need to be shown, during

the training phase, all the possible conditions in which data can appear in the

testing environment. This is of course impossible: even if humans had the

capabilities to collect and store data in all the possible conditions, there will

still be outlier situations, rare conditions or conditions that were not taken

into account when the dataset was built. Thankfully, deep learning and, more

generally, modern machine learning models do not need to be shown data in

all the possible situations because they have generalization capabilities: their

design and their learning nature allows them to cover a larger number of testing

conditions with respect to the ones displayed during the training. However,

the harder the task, the more difficult is to collect high-quality data for these

systems to learn and generalize well. So, for extension, the lower the quality

7

of the data, the lower the generalization capabilities of these systems is.

Therefore, in order to improve the generalization ability and, by extension,

the performances of these systems, there are three main possibilities:

• improve the model architecture: this solution requires a huge human ef-

fort, because experts in the domain need to study and design newmodels

that better suit the desired task in order to improve the generalization

abilities of the model; for example, Khan et al. made a comparison

study between different architectures in the task of image classification

on different datasets [1]

• improve the quality and quantity of the data: this solution also requires

a huge human effort, because the data that is collected needs to be anno-

tated, which is a time consuming task, needs to cover a huge amount of

possible testing conditions and in general needs to be high in quantity

and have high quality;

• improve the training process: the generalization of the model can be im-

proved by using techniques like dropout regularization [2], batch nor-

malization [3], hyperparameter tuning [4], transfer learning [5] and pre-

training [6]

All these techniques also help with preventing the overfitting problem,

namely the problem of a machine learning problem to stick too much to the

training data such that it becomes unable to work properly in a testing envi-

ronment.

If we have very bad data, no amount of modeling will help us since we

still do not have models that reach very high performances with very bad data.

On the other hand, with an awful model it is not possible to do anything, for

example applying a linear classifier to the raw pixels of an image to classify it

is not enough. This means that depending on the starting point for model and

data, it would make sense to improve either the model or the data, or maybe

8

both of them. For example, if we start from a SVM model, it makes sense

to improve the model itself. On the other hand, while improved models are

publicly available and are often suited for many domains, data for a specific

task is not publicly available in quality and quantity.

In addition to that, models that are too big will require more data in general

and so in that situation it might be best to reduce the model size if it is not

feasible to reach huge amounts of data, so depending on the situation wemight

want to change the model or the data.

We thus need a way to improve our training data without requiring too

much human effort while doing this. The solution to this is a technique called

data augmentation.

1.2 Object detection

Object detection consist in localization and classification of objects in images.

One of the first commercial application of machine learning to the object

detection task was the Viola-Jones object detection framework [7], developed

by Paul Viola and Michael Jones. Their system was using Haar features and

a learning-based approach to detect multiple object classes. Other approaches

used SIFT features [8] or HOG features [9] combined with a machine learning

algorithm.

Since the advent of deep learning, many networks have been designed and

developed to solve object detection task. As in other computer vision tasks,

deep learning proved to be very effective and more powerful with respect to

non-deep approaches. The training of such networks is done by feeding them

datasets that consist in images carefully annotatedwith bounding boxes, which

are boxes that are drawn around each instance in the image that define where

in the image the instance is and how big it is. The network then digests the

patches surrounded by the bounding boxes and learns to find similar instances

of objects in the images. The output of the inference phase is a bounding box

9

surrounding an area in the input image, so the network learns to draw bound-

ing boxes around the objects in the images by using bounding boxes in the

training set, however it also learns to classify the instances that it detects into

the object classes to which they belong and to do this, a class label is assigned

to each instance in the training set. These network thus have generally two

heads (a head is an output layer producing a certain output), one head produc-

ing the bounding box output, the output of the detection phase, and one head

producing the classification output, the output of the classification phase.

Figure 1.1: Object detection task using YOLOv3 [10] network trained on
COCO [11]. Picture from Wikipedia [12].

Lots of datasets for object detection are available, some of them have also

been already mentioned in the previous sections. Famous object detection

datasets are COCO [11], KITTI [13] and Pascal [14].

On the other hand, among the most successful object detection networks

there are networks based on Region Proposal mechanisms like R-CNN [15],

Fast R-CNN [16] and Faster R-CNN [17]. While having some differences, all

these networks share the same core idea of a mechanism that proposes Region

of Interest inside the input image, namely regions that can contain an object.

10

Moreover, all these R-CNN variants share the same two-stage detection idea:

the network can be divided into two main stages, the stage that runs an expen-

sive backbone once per image to produce region proposals and a second stage

that is executed once per proposal area that produces the bounding box and the

classification output for each proposal area (the Regions of Interest proposed

by the first stage of the network).

A further improvement in detectors was made with one-stage detectors

that, differently from two-stage detectors, removed the second stage and ex-

panded the first stage to produce also bounding boxes and classifications. Very

famous examples of one-stage detectors are the SSD network [18], the FCOS

network [19] and the very famous YOLO network, which has now come to its

fifth version [20, 21, 10, 22, 23]. Other famous detectors are RetinaNet [24]

and EfficientDet [25]. The research in this field is still going on and new net-

works are being developed every year, allowing to reach higher performances

every time, being this indicative of the fact that while data augmentation is a

key part of the entire learning procedure, the architecture of the network and

improvements in this architecture also make the difference.

Model Training set VOC 2007 FPS
R-CNN [15] 07 66.0 % -
Fast R-CNN [16] 07 66.9 % -
Fast R-CNN [16] 07+12 70.0 % 0.5
Faster R-CNN [17] 07+12 73.2 % 7
SSD 300 [18] 07+12 74.3 % 46
SSD 512 [18] 07+12 76.8 % 19
YOLOv1 [20] 07+12 63.4 % 45
YOLOv2 288 × 288 [21] 07+12 69.0 % 91
YOLOv2 352 x 352 [21] 07+12 73.7 % 81
YOLOv2 416 × 416 [21] 07+12 76.8 % 67
YOLOv2 480 × 480 [21] 07+12 77.8 % 59
YOLOv2 544 x 544 [21] 07+12 78.6 % 40

Table 1.1: Performance comparison between different architectures on the ob-
ject detection task on Pascal VOC 2007 test set. In the training set colum, 07
means that the training set used is the VOC 2007 trainval set, 12 means VOC
2012 trainval and 07+12 means the union of both of them. Results are given in
terms of mAP percentage for the two validation set and FPS over VOC 2007.

11

From Table 1.1, it is possible to see how each architecture improves the

mAP score, while also improving the frames per seconds that the architecture

can process. We can see that in some cases, like with YOLOv1, the perfor-

mance compared to, for example, Faster R-CNN, is lower in terms of mAP

but much higher in term of FPS. Moreover, we can see that architectures that

are bigger in scale improve the mAP scores at the expense of FPS. This is

indicative of the fact that there must be a trade-off between the mAP score,

namely the performance of the architecture in the object detection task, and

the FPS at which the architecture operates. Depending on the device on which

we want to deploy our object detection system and on the goal we would like

to accomplish, we may choose an architecture that reaches a lower mAP but

higher FPS or viceversa.

For example, another class of networks called MobileNet [26] was devel-

oped by Google for mobile applications. This network is generally suited for

deployment on smartphones and mobile devices which do not have an hard-

ware that is as powerful as the non-mobile counterpart, meaning that they

cannot run more advanced networks at real-time performances. Moreover,

this network trades slightly lower mAP scores for real-time inference on mo-

bile devices. As it is possible to see from table 1.2, MobileNet has a slightly

Framework
Resolution Model mAP Billion

Mult-Adds
Million

Parameters
VGG 21.1 % 34.9 33.1

SSD 300 Inception V2 22.0 % 3.8 13.7
MobileNet 19.3 % 1.2 6.8
VGG 22.9 % 64.3 138.5

Faster-RCNN 300 Inception V2 15.4 % 118.2 13.3
MobileNet 16.4 % 25.2 6.1
VGG 25.7 % 149.6 138.5

Faster-RCNN 600 Inception V2 21.9 % 129.6 13.3
MobileNet 19.8 % 30.5 6.1

Table 1.2: COCO object detection results comparison using different frame-
works and network architectures. mAP is reported with COCO primary chal-
lenge metric (AP at IoU=0.50:0.05:0.95). Table 13 from [26].

12

lower mAP score but a much lower number of parameters compared to bigger

architectures like VGG and Inception V2 in the task of object detection on

COCO.

More studies and comparisons can be found on the papers of the various

architectures, but these studies give us the idea that in general architectures

are also important, depending on the situation in which we are and on what

we want to achieve.

1.3 Traffic sign recognition

The task of traffic sign recognition consists in an object detection task in which

the objects to detect and classify are traffic signs. In this task, there are various

challenges to deal with:

• heterogeneous conditions: as with general object detection, the condi-

tions in which traffic signs appears are very different; in a real environ-

ment, wemay have differences in brightness, contrast, noise, orientation

and position with respect to the camera (and thus scale in the image),

saturation and many more; this is an important thing to deal with since

the absence of representation of some of them in the training set may

negatively influence the performances of the detector

• different signs: signs have different colors, shapes and icons that are

associated to different meanings and the detector must be able to rec-

ognize all of them and distinguish them; some signs may appear very

similar because of their shape and color while meaning two different

things, the detector must be able to deal with these differences

• country differences: each country has its signswith differences in colours,

shapes and icons; for example, Swedish traffic signs have a yellow

background, while Italian traffic signs have a white background; more-

over, even when the signs are pretty similar (e.g. Italian and Swiss signs

13

are very similar in color, shape and icons), they may still have some

slight differences that may harm the robustness of the detector

To summarize, traffic signs may be very different from situation to sit-

uation, depending on the country in which we operate, the context and the

environment. In order to make our detector robust to all these differences, we

must train in a way that allows to reach high generalization capabilities and to

do this, as we saw before, we can either work on the architecture or work on

the training set, or we can do both things. In Picture 1.2 we can see various

traffic signs in different conditions and states.

Figure 1.2: Different traffic signs in various conditions. Picture from [27].

1.4 Data augmentation

Data augmentation is a technique, now widely used in deep learning, to im-

prove the training data by either improving existing data or by creating syn-

thetic training samples. Data augmentation was introduced in deep learning

applied to computer vision [28] in the first place and was exploited to increase

sufficiency and diversity of training sets by creating new training images start-

ing from the real ones, however it quicklymoved to other domains, like natural

14

language processing because of its effectiveness [29]. The very first applica-

tion of data augmentation on Image Classification tasks can be found in LeNet

[28], where data augmentation was introduced in the form of data warping.

1.4.1 Basic image augmentations

The very first application of data augmentation as we know it today was done

in AlexNet [30], where the images used to train the network were augmented

by cropping 224 x 224 patches from ImageNet, by applying to those patches

random horizontal flips and by changing the intensity of the RGB channels

using PCA color augmentation.

The most simple image augmentation techniques are thus the ones involv-

ing basic image manipulation techniques in which new samples are generated

by changing the geometric features (e.g. shape, size, orientation with respect

to the camera etc.) and photometric features (e.g. brightness, contrast, hue,

saturation etc.) of the training images. Additional augmentations that can be

in some way included in the photometric ones are the quality deficit augmen-

tations that aim to reproduce synthetically the quality deficit characteristic that

digital images have like noise, blur etc.

Figure 1.3: Some basic geometric, photometric and quality deficit augmenta-
tions. Picture from [31].

15

These kind of augmentations should affect the image appearance while

keeping the label consistent with the content of the image, but this may not

be a standard behavior. Depending on the dataset, the type of transformation

applied and the degree of this transformation, the label after the augmentation

phase may not be preserved anymore. For example, if we consider a dataset

like ImageNet, there is a very low possibility of invalidating a label by apply-

ing an augmentation. If we take for example the image of a cat from ImageNet,

we rotate it, flip it and change the brightness and contrast of the image, in the

end the image will still be an image of a cat, as long as the augmentation is

reasonable and does not alter completely the picture by, for example, turning

it to a picture that is completely black. On the other hand, if we take a digit

image fromMNIST dataset, there is a very high possibility that the application

of certain image augmentation techniques will invalidate the label. For exam-

ple, by taking an image representing the digit ”6”, rotating it by 180 degrees

will turn the image from a picture representing a ”6” to a picture representing

a ”9”, invalidating the label. In that case, we need to change the label of the

augmented image accordingly in order to make the sample valid. However, if

we flip the image of the 6 vertically, it will not represent a number at all, so we

cannot even correct the label because there will not be a valid corresponding

label. This means that depending on the dataset we are using, we should also

choose the augmentation type and amount accordingly, in order to avoid these

kind of problems.

Figure 1.4: Label invalidation of MNIST ”6” digit with standard geometric
augmentations.

16

Geometric augmentations

Geometric augmentations consist in generating new training samples starting

from the available ones by changing the geometric features of these. The most

used geometric augmentations are:

• Rotation: consists in rotating the image right or left by a certain degree

amount and cropping the image accordingly

• Flipping: consists in flipping the image with respect to one of the two

axes

• Cropping: consists in cropping the image in order to extract and use

only a patch of the original image

• Translation: consists in shifting the images left, right, up or down while

filling the remaining space with either noise, with a fixed color or with

the closest pixel color

• Scale: consists in scaling the image, changing its original size, while

filling the remaining space with either noise, with a fixed color or with

the closest pixel color, in order to keep the actual dimension of the im-

ages the same

• Shearing: consists in shearing the image along one axis while filling the

remaining space with either noise, with a fixed color or with the closest

pixel color

Geometric augmentations also include any other type of perspective or affine

transformation that modifies the original image. At the same time, the remain-

ing space is filled with either noise, with a fixed color or with the color of the

closest pixel.

17

Photometric augmentations

Photometric augmentations, instead, consist in generating new training sam-

ples, starting from the available ones, by changing their photometric features

of these. The most used photometric augmentations are:

• Brightness: consists in changing the brightness of the image

• Contrast: consists in changing the contrast of the image

• Saturation: consists in changing the saturation of the image

• Hue: consists in changing the hue of the image

Photometric augmentations also include any other modification to the color

channels, such as channel isolation, histogram equalization, exposure etc.

Other photometric augmentations are the ones that aim at generating new

training samples, starting from the available ones, by degrading the quality of

these images. These include:

• Noise injection: consists in injecting any kind of noise (Gaussian, speckle,

salt & pepper, Poisson etc.) in the image

• Blur: consists in applying any kind of blur (Gaussian, motion blur etc.)

to the image

• Sharpen: consists in applying any kind of kernel that sharpens the image

1.4.2 Image masking augmentations

Another very common augmentation technique consists in creating new train-

ing samples, starting from real ones, by occluding or masking parts of the

image. In this case, we are applying some kind of dropout regularization di-

rectly on the image, by masking part of it, forcing the network to focus on

other areas of the image.

The most common image masking techniques are:

18

• Random Erasing [32]: consists in removing parts of the image of ran-

dom size and shape and in random positions and replacing them with

noise or with a flat color; random erasing; it is called CutOut [33] when

the area of the image that is masked is a square

• Hide and Seek [34]: the image is divided into a grid of NxN patches and

each patch has a probability of being masked and is masked according

to that probability

• Grid Masking [35]: the image is masked in a grid-like fashion, so sim-

ilarly to hide and seek, but in this technique the areas that are actually

masked follow a grid-like pattern (visual example in Picture 1.5)

Figure 1.5: Image occluding augmentation techniques.

1.4.3 Image mixing augmentations

Differently from the previously seen basic augmentations, which were aug-

menting the training set by preserving label consistency, image mixing aug-

mentation aim at creating new training samples bymixing two ormore training

images using different methods. Moreover, in this case, the label is changed

19

accordingly to the mixed images. This creates totally new training samples

both visually and semantically speaking because, differently from the previous

augmentation techniques, the new images will have more than one meaning:

for example, if we mix an image of a cat and an image of a dog, accordingly to

the percentage of the total image area occupied by the two images, we should

also change the label accordingly. If the cat image occupies 80% of the output

augmented image and the dog image occupies the remaining 20%, the label

of the output augmented image will not be a standard encoding in which the

represented class has value 1 while all the others have value 0 (the one-hot

encoding), but rather a modified version in which the class cat will have value

0.8 and the class dog will have value 0.2, while all the other classes will have

value 0. This way, the label values for all the classes still sum up to one as

with one-hot encoding, however a different weight is given to the two classes

represented in the image accordingly to the area that the two classes occupy

in the image.

The most common image mixing techniques are:

• MixUp [36]: consists in multiple (usually two) training images that are

blended together, regulating their opacity level and changing the label

accordingly to this opacity level (e.g. a picture of a cat at 80% opac-

ity and a dog at 20% opacity will have 0.8 value in the label for the

”cat” class and 0.2 value for the ”dog” class in the label, while the other

classes will have value 0)

• CutMix [37]: similar to CutOut, however instead of removing patches

from the images, random patches in the image are replaced with patches

of the same size from other images; in this case, the label is changed

according to the percentage of the image occupied by the class (e.g.

20% of the image is cat and 80% of the image is dog, so ”cat” class will

have 0.2 value and ”dog” class will have 0.8 value in the label while the

other classes will have value 0)

20

• Mosaic [22]: similarly to CutMix, this technique combines 4 training

image by taking a single patch from each of these images and by com-

bining them into a new training image; as with CutMix, the label is

changed according to the percentage of the image occupied by the class

While not being intuitive at all and while also being the resulting image not

useful for a human observer, these techniques have proved to be very effective.

Figure 1.6: Image mixing augmentation techniques.

1.4.4 GAN-based image augmentation

Since the introduction of GANs [38] in 2014, these networks have then been

used as an augmentation technique to generate new synthetic training samples

to use in various deep learning tasks. For example, in the medical field, GANs

have been used to synthesize new training samples for image segmentation

[39]. GANs can thus be used in any deep learning tasks to create synthetic

data to use for training. Shorten et al. [40] made a very detailed survey on

the history and usage of the various data augmentation techniques, including

GAN-based augmentation techniques.

21

1.4.5 Effectiveness of image augmentation

Shorten et al. [40] conducted a survey study on data augmentation for deep

learning. Table 1.3, which corresponds to Table 1 of their paper, shows the

effectiveness of different basic data augmentation techniques on the task of

image classification on Caltech101 dataset. It is possible to see that the us-

age of each augmentation technique improves the accuracy with respect to the

baseline, namely the network without any augmentation. The network archi-

tecture is explained in Section 3 of the paper by Taylor et al. [41]. Table 1.3,

in fact, also corresponds to Table 3 of [41].

Method Top-1 accuracy (%) Top-5 accuracy (%)
Baseline 48.13 % 64.50 %
Flipping 49.73 % 67.36 %
Rotating 50.80 % 69.41 %
Cropping 61.95 % 79.10 %
Color Jittering 49.57 % 67.18 %
Edge Enhancement 49.29 % 66.49 %
Fancy PCA 49.41 % 67.54 %

Table 1.3: Table 1 from [40] showing the effects of various basic augmentation
techniques on image classification task on dataset Caltech101. Results are
given in terms of accuracy percentage.

In the same paper, we can find a similar study about the CutOut technique.

Table 1.4, which corresponds to Table 2 of [40], shows the effectiveness of

CutOut augmentation techniques on top of basic augmentation techniques on

the task of image classification on datasets CIFAR10, CIFAR100 and Street

View House Numbers datasets. It is possible to see that when using CutOut,

the same network reaches a lower error rate.

Moreover, Humza [42] conducted a survey on image mixing and masking

augmentations in the task of image classification and object detection. In Table

1.5, which is an extract of Table 2 of [42], it is possible to see how mixing and

masking augmentations allow to reach higher mAP in object detection task

compared to a baseline method without these augmentations on COCO 17

and VOC 07 datasets, using Faster-RCNN model.

22

Method C10 C10+ C100 C100+ SVHN
ResNet-l8 10.63 % 4.72 % 36.68 % 22.46 % –
+ CutOut 9.31 % 3.99 % 34.98 % 21.96 % –
WideResNet 6.97 % 3.87 % 26.06 % 18.8 % 1.60 %
+ CutOut 5.54 % 3.08 % 23.94 % 18.41 % 1.30 %
Shake-shake
regularization – 2.86 % – 15.85 % –

+ CutOut – 2.56 % – 15.2 % –

Table 1.4: Table 2 from [40] showing the effects of CutOut augmentation
on image classification task on CIFAR10, CIFAR100 and Street View House
Numbers datasets. Results are given in terms of error percentage. These re-
sults also include regular augmentation techniques.

Method Faster-RCNN
backbone

Baseline
(mAP)

Augmented
(mAP)

Test
Set

CutOut ResNet-50 76.71 % 77.17 % VOC07
CutMix ResNet-50 76.71 % 78.31 % VOC07
MixUp ResNet-50 76.71 % 77.98 % VOC07
GridMask ResNet-50 + FPN 37.4 % 38.3 % COCO17
Random
Erasing

VGG-16 74.8 % 76.2 % COCO17

Table 1.5: Extract of Table 2 from [42] showing the effects of mixing and
masking augmentations on the object detection task on COCO 17 and VOC
07 datasets. Results are given in terms of mAP percentage.

This results prove that the use of data augmentation helps both in the image

classification and object detection tasks. As said before, this is mainly due to

the fact that increasing the number of training sample and the variance between

those training samples helps reducing overfitting, because the network will

be shown more and more samples in more and more situations, reducing the

distance between the training set and the validation/test sets.

1.5 Copy-paste data augmentation

The augmentation techniques showed in the previous section are now consid-

ered a standard for computer vision tasks. These techniques have proved to be

extremely effective in a variety of computer vision tasks and for this reason

23

they are being used widely by researchers to the point that famous frameworks

like PyTorch [43] or TensorFlow [44] now include methods in their codebase

to provide the possibility of augmenting the training sets when training for

any task. Those basic, masking and mixing augmentation techniques are thus

considered now a must have for each deep learning research project in order

to improve the results of their methods. However, research is also continuing

in the field of data augmentation and new augmentation techniques are tested

constantly.

A recent augmentation technique is copy-paste augmentation [45]. The

goal of this technique is still to produce new training samples to use during

training, in order for the network to have more samples and situations to di-

gest during the training, but this technique achieves this objective in a different

way: copy-paste augmentation, as the name suggests, copies instances of ob-

jects from one image and pastes those instances onto another image. This

technique thus works similarly to the previously specified image mixing aug-

mentation techniques, like CutMix [37], MixUp [36] and Mosaic [22], but

instead of combining or blending rectangular/square patches from different

images, it directly combines two or more images by copying the instances of

objects from one or more images to another, which will serve also as a back-

ground image.

This technique was introduced by Ghiasi et al. [45] which studied the use

of copy-paste augmentation in the task of instance segmentation. They found

out that creating new training samples by copying instances from one image

to another helped in the task of image segmentation. When copying instance

from an image to another, the previously showed augmentation techniques can

also be applied at an instance level by changing the position, scale, rotation,

brightness, contrast and all the photometric/geometric features of the pasted

instance in order to generate more than one training sample from the same pair

of original training images. They used this technique to create plenty of new

synthetic training samples to use to train a network for image segmentation.

24

In Figure 1.7 it is possible to see how using two images with their instance

segmentation masks allows to create multiple synthetic training samples, by

simply copying the instances from an image to another and by varying the

instance geometric features as scale, position, orientation etc. Another degree

of freedom in this operation is the subset of instances that we are copying from

an image to the other. Moreover, we still have photometric and quality deficit

augmentations that we can apply to the copied instances, so we have various

degrees of freedom at instance-level when applying copy-paste augmentation,

but we also have degrees of freedom at an image-level.

Figure 1.7: Copy-paste augmentation allows to obtainmultiple synthetic train-
ing samples with two original training images. Picture from [45].

As we can see, this is a very strong augmentation technique because, in

combination with the standard augmentations, allows us to create a huge quan-

tity of synthetic training samples to use that can also look useful and under-

standable to a human eye. Moreover the research work from Ghiasi et al. [45]

proves that this is very effective for image segmentation: their paper proved

that this technique is robust to backbone initialization, to training schedules, to

backbone type and image sizes, along with being addictive to large scale jitter-

ing. In all the experimental settings, the addition of copy-paste augmentation

increased the AP score for both the object detection and instance segmentation

tasks on COCO dataset.

The work by Ghiasi et al. [45], apart from proving the effectiveness of

25

copy-paste augmentation, also proves that paying more attention to data aug-

mentation helps in improving the performances regardless the used architec-

ture (the backbone) and the scale of it, suggesting that exploring and research-

ing more in the data augmentation field may help in improving the perfor-

mances of already available architectures in many tasks, without the need of

designing and developing new fancy and complex architectures or scaling al-

ready available ones to dimensions in which the increase in performance will

not be worth compared to the computing power that they will require to be

trained. Table 1.6 from [45] shows the robustness of copy-paste augmenta-

tion to different backbones, showing how this augmentation technique is ef-

fective regardless the backbone. More result tables are available in Chapter 4

of [45], showing the robustness of the method to all the previously mentioned

situations.

Model Box AP Mask AP
Res-50 FPN (1024) 47.2 % 41.8 %
w/ Copy-Paste (+1.0) 48.2 % (+0.6) 42.4 %
Res-101 FPN (1024) 48.4 % 42.8 %
w/ Copy-Paste (+1.4) 49.8 % (+0.8) 43.6 %
Res-101 FPN (1280) 49.1 % 43.1 %
w/ Copy-Paste (+1.2) 50.3 % (+1.1) 44.2 %
Eff-B7 FPN (640) 48.5 % 42.7 %
w/ Copy-Paste (+1.5) 50.0 % (+1.0) 43.7 %
Eff-B7 FPN (1024) 50.8 % 44.7 %
w/ Copy-Paste (+1.1) 51.9 % (+0.5) 45.2 %
Eff-B7 FPN (1280) 51.1 % 44.8 %
w/ Copy-Paste (+1.5) 52.6 % (+1.1) 45.9 %
Cascade Eff-B7 FPN (1280) 52.9 % 45.6 %
w/ Copy-Paste (+1.1) 54.0 % (+0.7) 46.3 %

Table 1.6: Table 1 from [45] showing the effects of Copy-Paste augmentation
on the task of object detection and instance segmentation on COCO dataset.
Results are given in terms of AP percentage.

Copy-paste data augmentation is also useful to re-balance unbalanced datasets.

In case of underrepresented classes, in fact, it is possible to generate new train-

ing samples for those classes in order to re-balance the datasets or create new

26

data that appears in situations that are rarely appearing in the dataset.

1.6 Domain transfer

Domain transfer is the task of changing the domain of certain data. For ex-

ample, regarding traffic sign images, domain transfer consists in changing the

traffic signs of one image with other traffic signs, like equivalent traffic signs

of another country, so namely by changing Italian traffic signs with Swedish

traffic signs or viceversa.

1.7 Thesis assumption

This thesis is about the use of copy-paste augmentation for domain transfer

on traffic signs recognition. In this work, we want to prove that copy-paste

data augmentation is very useful to solve all the problems mentioned in the

previous section, especially the one of domain transfer: since collecting pic-

tures that contain traffic signs is a very tedious and time-consuming task, we

can use copy-paste data augmentation to generate new synthetic data that we

can use to train an object detection network. Copy-paste augmentation can

help us in solving all the three challenges listed in Section 1.2 because we

can create new synthetic training samples by pasting traffic signs icons on

background images that we already have. Moreover, we can apply standard

augmentation techniques to those icons to simulate the different conditions in

which the signs can appear, augmenting the pasted signs at an instance level.

We can also use many icons such that we can represent all the possible traffic

signs we are interested in recognizing and we can also paste icons of traffic

signs from different countries to train the system to recognize the differences

between various countries. By changing all these parameters when applying

copy-paste augmentation, namely the background image we use, the icons we

are pasting and the augmentations we are applying to the pasted icons, we can

27

create thousands of new synthetic images to use for our training. Moreover,

we can build fully synthetic training sets in which we can control the distri-

bution of the various signs and the various conditions, or we can use those

degrees of freedom to re-balance some training sets that we already have and

that appear unbalanced. On top of that, we can also apply some realism when

augmenting the pasted icons such that they are augmented accordingly to the

context in which they are being pasted, resulting in images looking more re-

alistic to the human eye but also more context-aware.

Copy-paste thus has potentially a lot of advantages when applied to the

domain of traffic signs recognition and can help us in solving all the chal-

lenges this tasks has without the need to experiment or come up with new

detection architectures. Applying augmentations is in fact much simpler that

coming up with new effective and high performing architectures. In Picture

1.8 it is possible to see the process of copy-paste augmentation for traffic sign

recognition.

Figure 1.8: Copy-paste augmentation for traffic sign recognition. The original
icon of the traffic sign (left image) is then augmented with standard augmen-
tations (middle image) and then pasted on a background image to get a new
synthetic training image (right image). In the last image, it is possible to see
in the bottom right the pasted augmented icon with its syntethically produced
annotation, consisting in the bounding box and the class label

This thesis was developed during a collaboration period at Univrses [46],

28

a Stockholm-based company working with machine learning. Univrses pro-

vided a network developed by them that was left unchanged and that we as-

sume being good enough since it works well on real data. Univrses also pro-

vided an annotated dataset for a country and wanted to domain transfer this

dataset to another country for which they did not have a dataset for training

but had a dataset for testing. The results of our technique will be measured

in terms of best achieved validation f1 score averaged per class. Moreover,

to avoid measuring noise, multiple runs will be conducted for each experi-

ment with different training seeds and the results will then be averaged per

run. More details are available in Chapter 5.

Univrses also provided all the datasets used as a starting point for the var-

ious tests, along with the training code and the computing resources.

1.8 Thesis structure

This thesis will be structured as it follows:

1. we will first explore the research literature

(a) wewill explore the research background of architectures andmod-

els used for traffic sign recognition

(b) wewill explore the research background of standard augmentation

techniques used in the domain of traffic sign recognition

(c) we will explore the research background of copy-paste augmenta-

tion used in the domain of traffic sign recognition

2. we will then show the methods used to implement copy-paste augmen-

tation and domain transfer

3. we will explore the available material, namely the data, the model and

the used tools

29

4. we will illustrate the executed experiments and the achieved results;

more particularly, we will show the following experiments and results:

(a) training with real data and validating with real data

(b) training with synthetic data and validating with real data

(c) training with both synthetic and real data and validating with real

data

(d) training with domain-transferred data and validating with real data

(e) validating with synthetic data while training with real data

(f) validating with domain-transferred data while training with real

data

(g) validating with synthetic data while training with synthetic data

(h) validating with domain-transferred data while training with syn-

thetic data

5. finally, we will discuss the obtained results and conclude with some

future developments

30

Chapter 2

Background

2.1 Traffic sign recognition

Regarding the use of improved architectures for traffic sign recognition, for

example, Wang et al. [47] tested an improved YOLOv5 architecture for traffic

sign detection, consisting in a YOLOv5 architecture with an improved FPN,

named AF-FPN, which uses the Adaptive Attention Module (AAM) and Fea-

ture EnhancementModule (FEM) to reduce the information loss in the process

of feature map generation and enhance the representation ability of the feature

pyramid. Moreover, they used a set of default augmentations in combination

with a search strategy to find the most useful augmentations. They were re-

porting that their network was reaching higher performances with respect to a

vanilla YOLOv5 architecture in the task of traffic signs recognition on dataset

TT100K. A comparison with YOLOv5 and other architectures is available in

Table 1 of their paper [47]. Moreover, from Table 2.1, which is Table 2 of

[47], it is possible to see how all the techniques used by them improved the

scores with respect to a standard YOLOv5s network. This gives us the idea

that exploring new architectures may also be useful, even though this is not

the main focus of this thesis work. In Picture 2.1 from [47] it is possible to see

the task of traffic sign detection and the output produced from the detector.

Liang et al. [48] explored the use of an improved sparse R-CNN for traffic

31

Figure 2.1: Traffic signs recognition using improved YOLOv5. The images
on top are the original images that are fed to the network while the images on
bottom represent the results produced by the network (the bounding boxes).
Picture from [47].

signs recognition, by adding attention and other modules to the architecture,

improving the results compared to other architectures. The comparison of

their system with others can be found in Tables 4 and 5 of [48], while in Table

2 it is possible to see an ablation study over the components of their system.

They also applied augmentation, which we will discuss in the next section.

Tabernik et al. [49] proposed a slightly improved Mask R-CNN for traffic

sign detection and recognition that consisted in adapting the network to the

task of traffic sign detection. In Table 2.2 we can see how the network adapta-

tion applied by them improves the baseline Mask R-CNN without adaptation.

These papers show that both model architecture and data augmentation

can affect performances, even when starting from good, modern baselines like

YoloV5.

32

2.2 Standard augmentation for traffic sign recog-

nition

The literature also includes experiments about the usage of augmentation to

train networks for traffic signs recognition. For example, Park et al. [50] pro-

posed a system to update HD maps on autonomous vehicles. In this system,

they trained a YOLOv3 model for real-time detection of many street features,

including traffic signs. They used standard augmentation techniques to in-

crease the training samples, working at an image level. The used augmen-

tations were brightness, contrast, translation, rotation, affine transformations,

Gaussian blur and random erasing. As shown in Table 8 and 9 of [50], a com-

bination of original and augmented datasets for training increased mAP, recall

and F1 scores. They reported an increment of 1.9 % on mAP, 2.4 % on recall

and 1.3 % on F1 score when not using grouping, while reporting an increment

of 11 % on mAP, 11 % on recall and 16.5 % on F1 score when using grouping,

solely with the use of additional augmented data.

On another paperwork, Singh et al. [51] trained a CNN based model for

traffic signs recognition. While training this model, they also used data aug-

mentation techniques like shearing, rotation, scaling, flipping, shadowing etc.

They also used Gaussian blur and medial blur. They were however not show-

ing any comparison to non-augmentation methods.

Wang et al. [47] also used a sophisticated learning strategy to learn which

augmentations are the ones contributing the most and thus to learn which aug-

mentations to apply. The search space included Mosaic, SnapMix, Erasing,

CutMix, Mixup and Translate X/Y, for a total of 15 operations. In Table 2.1,

it is possible to see the contribute of augmentation on mAP score.

Lian et al. [48] applied augmentations on an image level. These were

mainly standard augmentations applied to the entire image to create new train-

ing samples, like augmentations to simulate different lightning, weather and

noise conditions. They also applied sepia, grayscale, blur, channel dropout,

33

Method Model Params FLOPs FPS mAP
YOLOv5s 14.6M 7.193M 17.9G 105 60.18 %

YOLOv5s + augmentation 16.3M 7.193M 17.9G 105 61.31 %
YOLOv5s + AF-FPN 14.6M 8.039M 17.9G 95 62.67 %

Final 16.3M 8.039M 17.9G 95 65.14 %

Table 2.1: Table 2 from [47]. Results given in term of mAP percentage on
TT100k dataset. The final model includes both the use of AF-FPN and data
augmentation strategy.

CLAHE, color jitter, glass blur, Gaussian blur, horizontal flip, perspective,

rain, random erasing, snow simulation, mosaic, fog, brightness, contrast, gamma,

sun flare simulation, shadow simulation and low light simulation. They re-

ported that, when applying image level augmentations, AP increased from

61.3 % to 63.8 % and AP50 increased from 92.7 % to 94.8 % when train-

ing a RetinaNet-based model, while AP increased from 70.2 % to 72.4 % and

AP50 increased from 94.7 % to 96.1 % when training a model based on Faster

R-CNN. These results are illustrated on Table 3 of their paper.

2.3 Copy-paste augmentation for traffic sign recog-

nition

Many experiments have already been conducted on the use of copy-paste aug-

mentation for traffic signs recognition. Different researchers tried different

techniques based on pasting traffic signs into background images in order to

produce synthetic datasets.

By reiterating copy-pasting multiple times with different templates, it is

possible to create many realistic images with different traffic signs.

We can divide these experiments in two major categories, non realistic

copy-paste and realistic copy-paste.

In non realistic copy-pasting, the copy-paste operation happens in a non-

realistic way, meaning that the traffic signs are pasted without taking into ac-

count the background and the context on which the signs are being pasted.

34

This means that each traffic sign will be mostly pasted on a random position

in the background picture and its brightness, contrast, orientation, noise etc.

will be changed randomly, without considering the brightness, contrast, noise

etc. of the image (and the position in the image) in which the template sign

will be pasted. This technique will produce, visually speaking, images that

do not look very realistic, because the signs will have different visual features

compared to the area in which they are being pasted and they may also appear

in positions of the image in which they will never appear in reality. However,

in most cases, this is more than enough because the network will still learn the

features of the signs and because copy-paste augmentation will anyway create

a pretty balanced dataset with many traffic signs in many conditions, but the

effectiveness of this random augmentation also depends on howmuch context

around the traffic sign the detector uses.

In realistic copy-paste the signs are pasted and augmented accordingly to

the background and context in which they are being pasted. In this case anno-

tated datasets are usually used as a reference for the augmentation: the anno-

tated signs in the datasets are used as a reference for the augmentation, namely

the real signs in the real images are used as a reference for realism embedding

in the augmentations. In this case, the images will be more realistic visu-

ally speaking, because the template signs will be pasted in positions in which

they normally would appear and their visual features will match the context in

which they are pasted. Again, the usefulness of these realistic augmentations

depends on howmuch context around the sign the network uses. The challeng-

ing part is the copy and paste of the style from the image to the template and

the realistic selection of the pasting positions and orientations for the traffic

sign templates. A good compromise between complexity of implementation

and quality of results can be achieved with an algorithmic approach, mean-

ing that for photometric features like brightness and contrast, it is possible to

compute the average brightness or contrast of the area in which the sign will

be pasted and then applying these computed brightness and contrast levels to

35

the template. For geometric features like the position of the template in the

image, it is possible to ignore certain areas of the image in which usually signs

do not appear: for example, the top of the image is usually the sky, while the

bottom part is usually the road, so these areas can be ignored because signs

rarely appear here. It is also possible to just use the annotated traffic signs

of some datasets to find realistic positions in which to paste the sign, for ex-

ample by replacing the existing signs in the real images or just pasting new

signs near to the existing ones. Another approach to find the position can be

computing the centroids of the signs cluster in order to find positions in the

images in which the signs are present on average. For the orientation, instead,

it is possible again to use the annotated traffic signs and their corresponding

template icons to compute SIFT [8] features, then by using feature matching

and homography estimation it is possible to compute a rotation matrix to apply

to the template to paste, in order to give it a realistic rotation based on the rota-

tion of the annotated traffic signs. Moreover, it is possible to use the internal

parameters of the camera that has been used to capture the background im-

ages, if known, in combination with the real world sizes of the signs to define

the position, the distance from the camera (the scale) and the orientation with

respect to the camera (the rotation) of the signs. Some works extracting photo-

metric and geometric features algorithmically from annotated traffic signs in

order to generate new synthetic traffic signs are [48, 49]. Other sophisticated

methods consist in training and using Generative Adversarial Networks like

StyleGANs [52] or CycleGANs [53] to transfer the style automatically from

the image to the templates [54, 55]. In any case, the core process for realistic

augmentation consists in using images of datasets already available as back-

ground and using the annotated traffic signs as a reference for the realism of

the templates.

In order to generate images with traffic signs, we need two things, traffic

sign templates, namely traffic signs icon that will be used for the copy-paste

operation, and background images that will be used as a background for the

36

pasted signs.

Based on the templates, we can define two categories of experiments, the

ones using traffic sign templates from real images and the one using traffic sign

icons. The first category consists in experiments using datasets of road images

in which traffic signs are annotated. In fact, these datasets usually provide

annotations for the traffic signs like bounding boxes or segmentationmasks, so

the extraction of the traffic sign templates is straightforward. Once extracted,

the signs can be normalized in geometry and appearance and then augmented

to create synthetically generated new signs that will be used for the copy-paste

operation. The second category consists in experiments using traffic sign icons

taken from the web. In fact, by law, most states need to provide traffic signs

icons that are already standardize in appearance and geometry since they are

usually vector icons. In any case it is possible to get such icons from the

web and use them as a starting point for the augmentation; these icons can be

augmented to create synthetically generated new signs that can then be used

for the copy-paste augmentation and that will be pasted on the background

images.

Another categorization can be defined based on the nature of the used

background images. We can use both images from the domain of interest and

images from other domains. The former consists in experiments using back-

ground images taken from the domain of interest, namely images of streets

and roads and any setting in which traffic signs can appear. The latter consists

in experiments using background images taken from everywhere but the do-

main of interest, namely any image that does not represent streets or roads or

any setting in which traffic signs can appear. These images can be taken from

the web or from some famous datasets like ImageNet. In this case, again, the

first method can be more useful depending on how much context around the

traffic signs the detector uses.

In any of these cases, the core of the copy-paste augmentation procedure

is the same: obtaining traffic sign templates, augmenting them and pasting the

37

augmented signs on background images. The resulting images will be used to

train the detectors.

2.3.1 Non realistic copy-paste

One of the components of the system by Liang et al. [48] was copy-paste data

augmentation. In fact, they trained their system using a training set that was

augmented both on an image-level, by applying standard augmentations to the

whole image as discussed in Section 2.2, and on a box-level. The augmenta-

tion technique used was thus copy-paste augmentation: what they were doing

to create new training images was taking two training samples from the orig-

inal dataset and copy-pasting some traffic signs with their annotations from

one of the two images to the other, to create a new training sample contain-

ing new pasted traffic signs that looked semi-realistic. The copy-pasted signs

were replacing the original signs in the background image. Moreover, a ge-

ometric transformation was applied to the signs that were being copied from

one image to another in order to proportion it to the sign they were replacing.

On top of that, a Gaussian blur was applied to the border of the patch in order

to better blend it with the background. More details can be found in Section

3.3 of [48]. Moreover, Picture 2.2 represents the result of their augmentation

procedure.

In Table 2 and 3 of [48] we can see how both image-level and box-level

augmentations improved the score for traffic sign detection on dataset BCTSDB

(Beijing Union University Chinese Traffic Sign Detection Benchmark) both

for their custom improved sparse R-CNN architecture and for standard archi-

tectures like RetinaNet or Faster R-CNN, demonstrating the effectiveness of

augmentation and copy-paste augmentation in the task of traffic signs recog-

nition and its robustness to the used architecture. From these tables, we can

see that box-level augmentations, when applied to RetinaNet, improved AP

score from 63.8 % to 64.1 %, while AP50 improved from 94.8 % to 95.2

38

Figure 2.2: Image-level and box-level augmentations used in [48]. In the top,
we can see the image-level augmentations, while in the bottom the box-level
copy-paste augmentation. Picture from [48].

%. Moreover, when applying box-level augmentations to Faster R-CNN, AP

score improved from 72.4 % to 72.7 %, while AP50 improved from 96.1 %

to 96.5 %. When applying both image-level and box-level augmentations to

their baseline, instead, AP50 improved from 95.8 % to 98.1 %, while AP75

improved from 92.5 % to 94.2 %. In this work, so, the icons or templates, or

the signs used for the copy-paste augmentation were directly extracted from

the training images and pasted onto other signs in other training images, using

their annotations (their bounding boxes) as a reference for the extraction and

39

replacement. No extra augmentation was applied to the boxes, apart from a ge-

ometric transformation to match the dimensions of the sign being copied and

the sign being replaced and apart from a Gaussian blur the border of the patch

to better blend the patch with the image. This paper thus uses only original

training images for the copy-paste augmentation phase. The different light-

ning, weather and noise conditions were thus addressed not on a box level but

rather on an image level by applying regular augmentations on top of copy-

paste augmentation to the whole image rather than to the single boxes. Since

they were using the bounding box to extract the signs, this means that the patch

being extracted will also contain the background of the image, meaning that

in the pasting operation we will also paste some background from the source

image.

Apart from proposing a slightly modified Mask R-CNN architecture, the

core of the work by Tabernik et al. [49] was the usage of copy-paste data

augmentation to produce new training samples. In fact, they were extracting

traffic sign templates from the training images using their segmentation mask

in order to perfectly extract only the sign from the image. The dataset used

to extract the traffic sign from was DFG traffic sign dataset. Then, they were

normalizing the extracted traffic signs such that they could have a normalized

geometry and appearance and finally they were applying transformations and

augmentations to the normalized signs in order to produce new signs with

different lightning and orientation conditions. As last step, the augmented

signs were pasted to street-environment-like background images taken from a

subset of the BTS traffic signs dataset, so the background images were actually

domain-related images. In Picture 2.3 we can see the result of the generation

of synthetic augmented traffic signs performed by [49].

In Table 2.2 we can also see how copy-paste data augmentation improves

the performances of the adapted Mask R-CNN network from [49].

In this paper thus, copy-paste augmentation was achieved by using only

training images already annotated and by, again, extracting signs from one

40

Figure 2.3: Copy-paste data augmentation used in [49]. On the left, we have
the original signs extracted from DFG traffic signs dataset. On the center,
the same signs normalized in geometry and appearance, while on the right we
have the augmented templates generated with synthetic distortions applied to
the normalized templates. Picture from [49].

Mask R-CNN
(ResNet-50)

No adaptation With adaptation With adaptation
and augmentation

mAP 50 93.0 % 95.2 % 95.5 %
mAP 50:95 82.3 % 82.0 % 84.4 %
Max recall 94.6 % 96.5 % 96.5 %

Table 2.2: Results of [49] on traffic sign segmentation on DFG traffic sign
dataset. Results are given in percentages. Table 3 from [49].

training image and pasting them onto another training image, like the work

by Liang et al. [48] but, differently from the latter one, augmentation is done

on a box-level, by augmenting the template (the extracted sign) instead of the

whole image. Moreover, templates and background images were not taken

from the same dataset. Templates in fact were taken from images of the DFG

dataset while the background images are taken from BTS dataset so, instead of

using just one dataset for the whole augmentation procedure, two were used.

In addition to that, they were using the sign segmentation mask to extract the

template sign, so no background was copied from the source image to the

target image, differently from the previous work.

41

Tabelini et al. [56] produced another study about copy-paste augmentation

in the domain of traffic signs recognition. What they did was to train a network

for traffic signs recognition by using a dataset that was augmented using copy-

paste data augmentation. In this case, templates of traffic signs were taken

from the internet or from available traffic sign datasets. In fact, country-wise,

templates of traffic signs must be available to the public. The used templates

were thus icons that were all already normalized in terms of lightning condi-

tions, orientation etc., since they were vector icons. After selecting the icon

to paste, this icon was augmented by applying standard augmentations such

as brightness and contrast, rotation and geometric transformations and noise.

The augmented template was then pasted on a background image by first ap-

plying a Gaussian blur to fade the border of the icon and blend it better with the

background image. Background images were taken from Microsoft COCO,

so the background images were not domain-related. The authors claimed that

is better to use non domain-related background images because using back-

ground images from the domain of interest is not required and, moreover, us-

ing domain-related images may introduce unwanted noise in the training data

if these images are not carefully annotated. Images from the domain of interest

might eventually present the objects of interest (namely, traffic signs) that if

not being annotated will introduce noise in the network prediction. In Picture

2.4 we can see the copy-paste augmentation used by [56], while in Picture 2.5

we can see the images resulting from the augmentation procedure.

In Table 2.3 we can see the results of the application of this augmenta-

tion technique. We can see that training the network with a fully synthetic

data allowed to reach performances, in terms of mAP, close to the ones of

the network trained with real data. On some datasets, moreover, the network

trained only with synthetic images was also more performant than the network

trained only with real images. However the best performances were achieved

when training the network with both synthetic and real data, indicating that

augmentation in general is useful when used to augment already existing data,

42

Figure 2.4: Copy-paste data augmentation used in [56]. Picture from [56].

Figure 2.5: Copy-paste augmented images from [56]. Picture from [56].

not when replacing it.

In this work, differently from the previous two, the templates were actu-

ally icon taken from the web and not extracted from other training images.

Moreover, the used background images were images not from the domain

of interest, so images of anything but roads and streets. However, the net-

work trained on this synthetic data proved to be very effective, confirming

that copy-paste data augmentation is also useful in the domain of traffic signs

recognition. The photometric and geometric augmentations are also applied

on a box-level (directly to the templates) instead of an image-level.

In all these three works, the augmentations applied were mostly random,

43

mAP
Training set BTSD TT100K GTSD

Real 85.50 % 89.28 % 79.50 %
Synthetic 80.28 % 83.12 % 91.75 %

Synthetic + real 89.64 % 92.25 % -

Table 2.3: Results of copy-paste augmentation used in [56] on traffic sign
recognition on real data. Table is an extract of Table III from [56].

apart from few of them like the size and position of templates when replacing

traffic signs in [48] or the position of the signs in [56]. Everything else as

brightness, contrast, noise etc. was randomly chosen, meaning that it was

not meeting the context of the position in which the signs were being pasted.

However, this technique still proved to be very effective, especially because

this way it is possible to control the distributions both of the augmentations

and of the pasted signs.

2.3.2 Realistic copy-paste

Horn et al. [54] created a system to replace traffic signs in real world images

in a fully automatic way. Their method consisted in using the GTSRB (Ger-

man Traffic Sign Recognition Benchmark) dataset as a base for the realistic

copy-paste augmentation procedure. The copy-paste process consists in two

pipelines, the extraction pipeline and the composition pipeline.

The extraction pipeline consists in taking an annotation from the dataset

(a real sign patch) and feeding it to a CycleGAN [53] to produce a cartoonized

version of the real sign. This cartoon version facilitates the extraction of the

binary background segmentation masks, which in turn facilitates the calcula-

tion of the traffic sign pose (the homography) by using ORB features [57],

feature matching and RANSAC [58] method to estimate the homography by

matching features between the cartoonized sign and the straight icon of the

corresponding sign (the vector icon of the sign).

Once the homography has been computed, the composition pipeline starts.

Starting from a straight traffic sign icon, namely the icon of the sign that we

44

want to paste, we apply to it the previously computed homography to gener-

ate a tilted icon that matches the orientation of the original sign in the dataset.

After that, the previously computed segmentation mask is used to extract the

cartoonized background from the cartoonized traffic sign. This cartoonized

background is then pasted behind the generated tilted icon to produce a recon-

structed cartoonized sign with the sign we want to paste. Once the cartoonized

version is produced, this reconstructed cartoon sign is fed to the same Cycle-

GAN as before to generate a realistic version of it. The background segmen-

tation mask is used again to extract the real background from the real original

sign and to extract the generated realistic sign from the cycled patch. These

two are then combined together. During this process, borders are crossfaded

to avoid artifacts. The resulting composed imaged is put in place of the orig-

inal sign patch, producing an augmented realistic image. In Picture 2.6 is is

possible to see these two pipelines and the result of the entire procedure from

the original sign to the synthetic realistic one.

As a baseline for the experiments, the authors trained a SVM on the GT-

SRB dataset, namely the dataset containing only real images. Once again,

training the same classifier with a mixture of real data and synthetic data, in

order to balance the underrepresented classes, increased the accuracy of the

classifier from 88.01 % to 89.75 %. More details can be found in Tables III,

IV, V, VI and VII of [54], including class specific and sign specific accu-

racy. This work mainly showed the contribution of their method in the task

of traffic sign classification, not detection. From their results, however, it is

not clear howmuch realism contributed with respect to the use of non-realistic

copy-paste augmentation.

Konushin et al. [55] tested another approach for realistic copy-paste aug-

mentation in the task of traffic sign recognition. Their method allows for re-

alistic embedding of rare traffic signs classes which are absent in the training

set.

The core of their work was to create a functional method to paste traffic

45

Figure 2.6: Pipelines used in [54] for realistic copy-paste replacement of traf-
fic signs. The resulting patch is substituted to the original patch in the original
image. Picture from [54].

signs in real images in a realistic way in order to re-balance the original dataset

and embed rare traffic signs. To do this, they explored two approaches, re-

placement of existing real traffic signs with synthetic ones by inpainting at

the place of the real signs, like in [54], and embedding of additional artificial

signs in new positions by learning how to find the most suitable position for

the new traffic signs.

In both of the cases, a processing of artificial signs is needed in order to

make it realistic. To do this, they proposed threemethods based onGANs [38],

the first two based on CycleGANs [53] and the third based on StyleGANs [52].

In the first approach, called ”pasted”, networks are trained together both for

inpainting an processing of embedded traffic sign. In the second approach,

46

called ”cycled”, the network is similar to the first one but with an additional

data stream. In the third approach, called ”styled”, a more advanced generator

was used.

These three networks were used to embed the traffic signs. However, au-

thors also trained a neural network that would find appropriate places for ad-

ditional traffic signs on road images. So, instead of replacing and inpainting

the existing real signs, using this network, additional traffic signs were added

to the original images and the position in which to paste these signs was com-

puted by this last neural network. From Picture 2.7 we can see the results of

their copy-paste augmentation.

Figure 2.7: Results of the copy-paste augmentation of [55]. Picture from [55].

To check the effectiveness of their methods, the authors used RTSD (Rus-

sian Traffic Sign Dataset) dataset both for the the training, by augmenting the

training set of RTSD, and for the testing, by using the testing set of RTSD as

47

test set. Additionally, they tested both replacement of original signs and past-

ing of additional signs. They also compared their augmentation method with

already existing augmentation methods for traffic signs. These methods were:

• synt: method consisting in sign embedding on the background and ran-

dom transformation of signs with random parameters to the icon like

brightness, contrast, gaussian blur, motion blur etc., namely what we

called before non-realistic copy-paste augmentation

• cgi: training images augmented by rendering three-dimensoinal models

of traffic signs on pillars in real road images

• cgi-gan: using CycleGAN on top of cgi method to improve the realism

of the cgi pictures

• inpaint: synthetic data is created by simply drawing an icon of a traffic

sign in the image wihtout any processing

From Table 9 and 10 of [55], we can see how, generally speaking, the use

of augmented realistic data improves a little bit the detection performances

compared to the use of augmented data without realism. From the tables it

is also possible to see how copy-paste augmentation helps compared to using

raw data, especially in case of rare classes.

Soufi et al. [59] made another system based on GAN to create copy-paste

augmented data in the domain of traffic sign recognition. They were using

a GAN-based network called pix2pix to apply realism to copy-pasted traffic

sign icons. This work is interesting because it proves that, compared to non-

realistic augmentation, realism can also be non useful. From Tables I and II

of [59], we can see how the use of their GAN-based realistic augmentation

surely helps compared to not having copy-paste augmentation at all, but we

can also see how the performances of a classifier trained on data augmented

with their technique is pretty close, if not a little worse in some cases, than

48

the performances of a classifier trained with copy-paste augmentation with-

out realism but instead with standard random non-realistic augmentations. In

Figure 2.8 we can see some results of their realistic copy-paste augmentation.

Figure 2.8: Results of the copy-paste augmentation of [59]. Picture from [59].

What we can see from these works is thus that realism may and may not

help. Although some of the resulting images from these systems are excep-

tionally realistic to a human eye, they may not help that much when it comes

to traffic signs recognition. Moreover, these GAN-based systems are very

complicated to implement and especially to train; in fact, GANs are known

to be highly unstable when being trained. So it may not be necessary such an

effort to embed some realism into the augmented images, it may be possible

to obtain similar results by embedding realism in an algorithmical way. The

effectiveness of realism of course, as said before, also depends on how much

context around the sign the detector uses or may depend on the technique used

to embed realism itself.

49

Chapter 3

Methods

The first step of copy-paste augmentation was to implement the copy-paste

augmentation operation in a non-realistic way. In doing this, we had various

degrees of freedom, namely we had to decide what augmentations and how to

implement them. In order to make experiments easier, we decided to use the

hydra framework [60] to create YAML configurations file for the augmenta-

tion procedure. These configuration files are very handy in order to decide the

various parameters of the augmentations and what kind of augmentations to

apply.

3.1 Copy-paste augmentation

The various augmentations that we implemented for the traffic signs to paste

include photometric and geometric augmentations, as well as quality deficit

augmentations like noise or blur. We implemented a non-realistic version of

each of these augmentations, that modifies these features randomly according

to certain parameters defined for each one of these box-level augmentations

in the configuration file, and a realistic version which applies the augmenta-

tions mainly based on features that we can extract programmatically from the

background images.

In Figure 3.1 is is possible to see the difference between our copy-paste

50

Figure 3.1: Qualitative results of our copy-paste augmentationwithout realism
(top) and with realism (bottom).

augmentation without and with realism. As it is possible to see, the realistic

augmentation meets the context in which the sign is pasted. However, as it

is possible to see, in the realistically augmented image some signs are nearly

transparent or barely visible. The solution to this problem will be described

in the sections related to realistic augmentations.

51

3.1.1 Signs to paste

In order to choose the signs to paste, we defined a parameter in the augmen-

tation configuration that allows us to define the probability that each class of

signs will appear in the augmented image. This parameter thus controls the

probability distribution of the sign classes in the augmented dataset. By de-

fault, each class of signs has the same probability of appearing in an image,

but we can use this parameter in the configuration file to define custom proba-

bilites per each sign class. When doing this, the probabilities of the remaining

classes are changed accordingly to the ones customly defined such that all the

probabilities sum up to 1. This way, we are controlling the distribution of the

synthetic signs in the augmented dataset, such that we can re-balance a dataset

in case of poorly represented sign classes.

3.1.2 Number of signs per image

Non-realistic

The first parameter of the augmentation procedure consists in the number of

traffic signs per image. We need a parameter to decide how many traffic signs

per image to paste. Instead of implementing this parameter as a simple num-

ber that defines the number of pasted traffic signs per image, we decided to

implement this as a foreground/background ratio threshold: before pasting a

sign, we compute the ratio between the number of foreground pixels (the num-

ber of pixels in the augmented image covered by a traffic sign icon) and the

number of background pixels (the number of pixels in the augmented image

covered by everything but traffic signs icon). In computing this ratio, we also

consider the pixels occupied by the traffic signs that were already annotated

in the image, if any. After computing this ratio, we check if this is lower or

equal to the threshold defined in the augmentation configuration file and if yes,

we paste a sign and repeat the operation until the ratio exceeds the threshold.

Of course this method does not define a precise number of traffic signs per

52

image because, accordingly to the size of the pasted traffic signs,to the num-

ber and size of traffic signs already annotated in the images and to the size

of the image itself we will end up with a different number of traffic signs per

image, however a foreground/background ratio is more useful to control the

space occupied by negatives in the image. The foreground/background ratio

is configurable in the augmentation configuration file.

Realistic

No realistic version of this augmentation has been implemented because we

want to control the percentage of occupied area precisely and we have no need

to apply realism to this parameter.

3.1.3 Position

Non-realistic

When pasting the signs, we also have to decide where in the image to paste

the templates. The position in which to paste signs is chosen randomly at

each pasting operation. In doing this, the major challenge is avoiding overlaps

between traffic signs. In order to avoid them, thus, while pasting signs, we

keep track of the areas occupied by the traffic signs and we select a position

in the image randomly but if the area in which the sign is going to be pasted

is already occupied by a sing, we repeat the operation until a free position

is selected. In addition to this, a special parameter that controls the padding

around the already pasted icons has been used. This parameter defines how

many pixels around the already pasted signs we must consider as occupied

when selecting a random position for a new sign. This is useful to give a little

bit of white space between the signs and to avoid signs being pasted precisely

one next to the other. In addition to this, at each pasting operation, we also

ignored as much rows of pixels as the height of the sign on the bottom part

of the image and as much columns of pixels as the width of the sign on the

53

right part, in order to avoid signs being pasted fully or half outside the image.

For example, if a sign has width 10 pixels and height 15 pixels, we ignore 15

rows of pixels in the bottom of the image and 10 columns of pixels in the left

of the image. The only parameter that is configurable in the configuration file

for positioning is this padding value around the pasted signs.

Realistic

The position was kept random for all the signs so no realistic positioning was

implemented.

3.1.4 Scale

Non-realistic

Before pasting the signs, we scaled them randomly according to a minimum

and maximum scale size defined on the augmentation configuration in order

to introduce variance in the scale of the pasted signs.

Realistic

No realistic version of scaling was implemented because, again, we want to

fully control the scale of the pasted signs since the dimension of the pasted

signs also affects the number of pasted signs according to the foreground/background

ratio.

3.1.5 Rotation along the three axes

Non-realistic

The signs are also augmented by applying a perspective rotation along the

three axes. The template is in fact rotated among the three axes according

to a random degree of rotation, that can be either positive or negative. The

rotation is implemented as a perspective transformation. The minimum and

54

maximum degree of rotation per axes is a parameter that can be controlled in

the configuration file. Moreover we also decided to add another parameter

for each axes which is the probability distribution of the various degrees of

rotation. We used four possible values:

• uniform probability distribution: each degree of rotation in the range

defined in the augmentation configuration file has the same probability

of being selected

• low probability distribution: consists in a Gaussian probability with

mean 0 and a very low sigma; this will produce the effect that most

of the signs will not be rotated along the current axis or will have a very

low degree of rotation, cause the Gaussian will give a high probability

to the degrees around 0

• medium probability distribution: consists in a Gaussian probability with

mean 0 and a medium sigma; this gives a little higher chance to degrees

higher than 0 to be selected, in order to keep a high probability to the

degrees 0 but also include higher rotations more often

• high probability distribution: consists in a Gaussian probability with

mean 0 and a very high sigma; while still being a Gaussian with mean on

0, this distribution is closer to a uniform one giving more probability of

being selected to high degrees of rotation, still giving however a higher

probability to rotation degrees in the range the closer they are to 0

With this probability distribution value, which is also another parameter that

can be changed in the configuration file, we can kinda control the number

of pasted signs that will be rotated. By changing it, in fact, we can change

the probability of the rotation degrees in the range to be selected, changing

basically the probability that a sign will be rotated or not.

55

Realistic

No realistic version of rotation has been applied because the signs can appear

very rotated in any possible position of the image. Rotation is not something

that is really affected by the context in which the sign is pasted, e.g. a sign can

be rotated with respect to the camera in any position in which the sign appears,

according to the car movement.

3.1.6 Brightness

Non-realistic

The brightness level of the pasted signs can be controlled in the configura-

tion file by defining the minimum and maximum possible brightness value of

the sign, from a minimum of 0, meaning a black image, to a maximum of 1,

meaning a white image. Moreover, as with rotation, we defined four possi-

ble probability distributions for the brightness levels, that are uniform, low,

medium and high. The principle is similar to the rotation, but the difference is

that for low, medium and high the sigma is always a very low value, such that

the Gaussian distribution is very pronounced, but what changes is the mean:

low probability has the mean on the minimum possible brightness value (the

lower bound of the interval), medium has the mean on the average of mini-

mum and maximum possible value (the center of the interval) and high has

the mean on the maximum possible brightness value (the upper bound of the

interval). This controls the probability that the signs will be darker or brighter.

These three parameters (min, max and probability distribution) can be config-

ured in the configuration file. The brightness level of the pasted sign is chosen

randomly according to these parameters.

Realistic

The realistic version of this augmentation consists in computing the average

brightness of the area that will be occupied by the sign. Once computed, this

56

brightness level is applied to the template. When doing this operation, another

parameter can be configured, which is a parameter controlling the number of

pixels around the area in which the sign will be pasted to also include in the

computation of the average brightness level. For example, if this parameter is

set to 10, a border of 10 pixels around the area in which will be pasted is also

included in the estimation of the brightness value. Namely, if the patch (the

area of the image in which the sign will be pasted) to consider for the com-

putation of the brightness level goes from point (50, 50) to point (100, 100),

with this parameter set to 10, the actual patch of the image used to compute

the brightness level will be the patch going from point (40, 40) to point (110,

110). We also added another parameter that is a boolean allowing to hard cap

the estimated level to a minimum and a maximum. If this parameter is true,

the estimated brightness value will be capped to the min level defined in the

brightness configuration if it is smaller than the min value, while it will be

capped to the max level defined in the brightness configuration if it is bigger

than the max value. The reason why we defined such parameter is because it

happens that when the sign is pasted into an area of very low/very high bright-

ness, the estimation parameter returned by the estimation is very low/very

high, sometimes making the sign very dark or very bright to the point that

is not possible to see colours or the icons/text in the sign. Adding this hard

capping parameter prevents this situation while still estimating the brightness

level based on the position in which it is pasted. In Figure 3.2 it is possible to

see the effect of hard capping in realistic brightness. In Figure 3.3 it is instead

possible to see the effect of different estimation border sizes (without capping)

in realistic brightness.

57

3.1.7 Contrast

Non-realistic

The contrast level of the pasted signs can be controlled in the configuration file

by defining the minimum and maximum possible contrast value of the sign,

from a minimum of 0, meaning a image with a flat gray colour (the minimum

contrast possible) to a maximum of 1, meaning an image with maximum pos-

sible contrast. As with brightness, we also defined four possible probability

distributions for the contrast levels that are the same and work the same as

for brightness. This controls the probability that the signs will have higher

or lower contrast. These three parameters (min, max and probability distri-

bution) can be configured in the configuration file. The contrast level of the

pasted sign is chosen randomly according to these parameters.

Realistic

The realistic version of this augmentation consists in computing the average

contrast of the area that will be occupied by the sign. Once computed, this

contrast level is applied to the template. The same parameter that can control

the border around the patch for the estimation to include in the estimation

that we defined for the brightness was also defined for the contrast. The same

capping parameter defined for brightness was also defined for contrast because

the same thing that happened with brightness happened when pasting the sign

in a low contrast area, so the cap parameter helps in mitigating this effect. In

Figure 3.2 it is possible to see the effect of hard capping in realistic contrast. In

Figure 3.3 it is instead possible to see the effect of different estimation border

sizes (without capping) in realistic contrast.

58

3.1.8 Gaussian noise

Non-realistic

It is also possible to add Gaussian noise to the pasted signs. In the configura-

tion file, in fact, it is possible to control the maximum and minimum possible

mean and variance of the Gaussian noise to apply to the pasted signs. Then,

these two parameters are chosen randomly accordingly to these min and max

limits defined in the configuration. We also defined for possible probabil-

ity distributions that works the same way of the probability distributions of

brightness and contrast, though in this case these distributions only work on

the variance range of the noise, not on the mean. The mean range has always a

uniform distribution. These parameters control the amount of Gaussian noise

that the traffic signs will have and can be configured in the configuration file.

The amount of Gaussian noise of the pasted sign is chosen randomly according

to these parameters.

Realistic

The realistic version of this augmentation consists in estimating the sigma of

the noise in the area that will be occupied by the sign. The estimation is done

by convolving this area with a particular 3x3 kernel. Once computed, this

sigma level is used as sigma value of the Gaussian noise that is applied to

the template. The parameter that controls the border around the pasting area

to include the estimation that we defined for brightness and contrast has also

been defined for the Gaussian noise.

3.1.9 Motion blur

Non-realistic

It is also possible to add some motion blur to the pasted signs. Since images of

the domain of traffic sign are usually taken by moving cars, many signs may

59

appear blurred because of the motion. Moreover, considering that in our case

the images were taken by phones mounted on moving cars, the only kind of

blur that these cameras can capture is motion blur (due to themotion of the car)

since the focus of phone cameras is usually to infinity. In the configuration

file, it is possible to control the minimum and maximum possible amount of

motion blur that will be applied to the traffic signs. These two parameters

control the size of the kernel that will be applied when applying motion blur to

the sign. Moreover, it is possible to control the probability distributions of the

various blur levels in the defined range, as with the previous augmentations.

The amount of motion blur is chosen randomly according to these parameters

and the direction of the motion blur is chosen randomly between four possible

directions, horizontal, vertical and the two diagonals.

Realistic

In case of blur, estimation algorithms are more complicated that the previous

ones. It is possible to use variance of Laplacian method to detect whether an

image is blurry or not and its blur level, however this method may be affected

by noisy images. Moreover, this method does not return as a blur value the

size of the blur kernel, since the more blurry the image, the closer to 0 the

returned value will be, so it is nearly impossible to use this method to estimate

a kernel size to apply to the template as we did for previous methods. More

complex estimation algorithms involve the use of particular transforms (e.g.

the Fourier transform) or the use of Deep Neural networks just to estimate the

size of the blur kernel, however these are very complex algorithms and we

wanted to keep things as simple as possible for the realistic implementations.

Moreover, motion blur requires the estimation not only of the kernel size but

also of the blur direction, which is something not easy to do. Since we wanted

to keep things simple for the realistic augmentations, what we did was not

implementing any estimation algorithm, but rather applying some motion blur

to the traffic signs based on their dimension in the image. The smaller the

60

template, the smaller the kernel size of the blur filter will be so the less it will

be blurred. This is based on the assumption that when capturing images from

a moving car, the images will be in most cases blurry, but in some cases the

blur will be so small that is nearly not visible to a human eye. Phone cameras

have focus to infinity so the blur of the images mainly concerns motion and,

in particular, the amount of blur a sign has is mainly related to the distance

of the sign with respect to the camera: signs that are closer to the camera,

so that appear bigger in the image, will be more blurry than signs appearing

very distant from the camera, namely signs that appear smaller in the images,

because they will move faster with respect to the camera compared to signs

that are far from the camera. What we did was thus compute the kernel size

based on the dimension of the sign in the image such that smaller signs will

have motion blur with a smaller kernel sizes and will appear less blurred than

bigger signs. Moreover, depending on the position of the sign in the image

with respect to the point at infinity corresponding to the road, the direction

of the blur will change. In general, if we consider a car moving on a road,

the car will move towards the point at infinity given by the road lines. For

this reason, no matter the position of the sign in the image, the motion blur

direction of the sign will point to this point at infinity. In order to decide the

direction of the motion blur, thus, we considered the center of the image as

the point at infinity corresponding to the road and based on the position of the

template with respect to this point, we decided the direction of the motion blur

to apply. The reason why we considered the center of the image as this point

to infinity is that we can imagine that in most cases images will be captures

from a car moving on a straight road and since the camera is placed usually

on the dashboard of the car pointing towards the road, we can assume that the

points at infinity of the road will be placedmore or less around the center of the

image. In case the sign is placed at the center of the image, no blur is applied,

since the car is supposed to be moving towards the sign and thus the camera

will not capture motion blur on that sign. This realistic motion blur is also

61

based on the assumption that in general even if not visible immediately to the

human eye, blur is still present in the images, so this way the blur will not pop

out in the image but will still be there, imitating what happens in reality. The

range of the possible motion blur kernel size was defined by using the same

min and max parameters for the kernel size in the augmentation configuration

that are used for the non-realistic augmentation. The amount of motion blur

applied to the signs will thus be related to its size in the image from a min to a

max defined into the configuration file. These two parameters are not an hard

cap on the motion blur but rather the definition of the range of possible kernel

sizes to select based on the dimension of the various signs. We did not add

the estimation border and hard cap parameters for this realistic augmentations

since there is no estimation, the only information from the image that is used

is the position in which the sign will be pasted.

3.1.10 Edge blur

In order to better blend the image with the background, we blurred the alpha

channel (the transparency channel of the template) with a Gaussian blur with

kernel size of 3x3. There is no realistic or unrealistic version to this augmen-

tation since it is done just to blend the template with the background.

3.2 Domain transfer

When using domain-related background images, wemay end up in having traf-

fic signs that are already present and annotated in the image. Depending on

the domain of these traffic signs and on the target domain of our traffic signs,

we would like to remove or replace these signs in order to have a dataset com-

posed only of signs in which we are interested. For example, if we are using

background images of streets and roads from Italy but we would like to gener-

ate a dataset with Swedish traffic signs, we must replace all the Italian signs in

the background images with the corresponding Swedish signs before actually

62

Figure 3.2: Qualitative results of our realistic copy-paste augmentation with-
out hard capping (top) and with hard capping (bottom).

augmenting it. In fact, while Italian signs have a white background, Swedish

signs have a yellow background and present some differences in terms of used

font, images and proportions of the various elements characterizing the sign

icon. For this reason, when moving from one country to another, we must re-

place the signs in order to perform a domain transfer from the domain of one

country to our desired target domain. We thus implemented a domain trans-

fer technique that allows to specify the source domain and the target domain

(source and target countries) that uses the annotated signs in the background

63

images and finds the equivalent signs for the target domain. Then, we ap-

ply augmentations to these signs such that they imitate the appearance of the

original signs in order to replace it as accurately as possible.

The configuration file thus includes parameters that we can use to control

the domain transfer. First, we have the source and target domains: by speci-

fying these two parameters, the algorithm uses the annotation of the original

signs and a mapping to find the equivalent signs for the target domain. We also

need to transfer the photometric and geometric features of the original sign to

the target sign. For the size of the sign, we scale the target sign template ac-

cordingly to the original one, by using the annotation size as a measure for it,

in order to meet the original sign dimension, and we use the annotation coordi-

nates as the position for the pasting. The homography, namely the orientation

of the sign with respect to the camera, was not transferred. To transfer the

various photometric features such as brightness, contrast, noise and blur, we

use the realistic version of the augmentations that we described in the previous

section and we use as the area of the estimation the annotation area without

any estimation border such that we perfectly meet the features of the original

sign. As said before for realistic blur, we did not use any estimation algorithm,

thus the blur for the transferred signs was computed as described before, based

on the signs position with respect to the point at infinity of the road and with

respect to its size in the image (namely, the distance from the camera).

This must be done also when transferring from countries whose signs are

similar (e.g. from Switzerland to Italy) since the signs might present some

differences even if they look very close. Moreover, when moving from one

country to another, we may end up in signs that are shared between the two

countries and for this reason they are very similar if not the same sign (for

example, the parking sign is basically the same in all countries). To address

this situation, we decided to include another parameter in the configuration

that allows to choose if the shared signs must be replaced anyway by a target

domain template or if the original version can be kept.

64

In case we do not want to apply domain transfer for various reasons, it

is possible to configure a hydra configuration file for the training that allows

to exclude some sign classes from the loss, such that we can train on a non-

transferred dataset by ignoring certain classes and considering only others. For

example, if we are augmenting an italian dataset with Swedish traffic signs but

we do not apply domain transfer, we will have both white and yellow signs in

the image, but since our target domain is Sweden, we want to train a detector

only for yellow signs. What we do in this case is thus configuring this file by

specifying only the yellow sign classes as the classes to use, while ignoring

the white classes. The detector will still find white signs, because they will

remain annotated and their annotation cannot be removed since it may create

noise, but once it finds one of these ignored signs in the training samples, it

will ignore them in the loss.

We added the hard cap parameter we described when talking about real-

istic augmentations also to the domain transfer phase: it is highly unexpected

that when transferring from one country to another we will end up in signs

being nearly unreadable, because we are using exactly the patches of the im-

ages corresponding to the original signs and these signs are usually readable,

otherwise they will not be annotated at all, but since we cannot assume that all

the annotations are perfectly readable, we decided to add the possibility of a

hard capping also when transferring signs from one country to another. There

is no need to add the estimation border parameter however because we want

to transfer exactly the features of the patch corresponding to the sign.

We also applied the same edge blurring technique described before in order

to better blend the transferred signs with the background.

The transferring operation also changes the existing annotations in other

to meet the dimensions of the new sign and the new class.

65

Figure 3.3: Qualitative results of our realistic copy-paste augmentation with
different estimation borders.

66

Figure 3.4: Results of our domain transferring operation. On top, we can see
the original image with a white 60 speed limit sign from Switzerland, while
on bottom we can see the domain-transferred image with a yellow 60 speed
limit sign from Sweden. We can also see how the annotation was changed
accordingly to the new sign.

67

Chapter 4

Material

For the copy-paste augmentation, we need background images and sign tem-

plates in order to compose the synthetic data that we will use for the training

operation. Moreover, we need a network to test if this technique is actually

efficient and a test set consisting of real data that we can use in combination

with this network to test our model performances when trained on synthetic

data.

4.1 Datasets

The organic datasets that we used consist in road and street images with an-

notated traffic signs in it. We used custom built datasets consisting of images

taken in a single country by phones mounted on moving vehicles. We used

three datasets in total:

• empty traffic sign dataset: a dataset split into train, validation and test

sets that contains non-annotated images of roads and streets without any

traffic sign

• Sweden traffic sign dataset: a dataset split into train, validation and test

sets that contains annotated images of road and streets with Swedish

traffic signs

68

• Switzerland traffic sign dataset: a dataset split into train, validation and

test sets that contains annotated images of road and streets with Swiss

traffic signs

4.1.1 Sign classes

The most notable difference between the signs of different countries is the

background color, which is either white or yellow. For example, Sweden

uses signs with yellow background while Switzerland uses white background.

However, some signs are shared between all the countries, like the parking

sign for example, so we have a single class for all the countries for these shared

signs. These classes are organized in a parent-child structure in order to group

classes by category, where the parent categories are the following

• speed_sign

• warning_sign

• roadwork_sign

• prohibitory_sign

• information_sign

• traffic_camera_sign

• pedestrian_crossing

The sign annotation consists in an id which represents the class of the sign and

a bounding box representing the area of the image that contains the sign.

4.1.2 Training data

The training data can be, depending on the experiment, either synthetic data

or real data. When using real data, we simply used one of the two annotated

sets mentioned before, while when using synthetic data, we augmented one of

69

the three sets by copy-pasting sign templates, the actual sign icons, on their

images. In synthetic data generation, the images in these datasets are used as

a background image for the copy-paste operation, preserving the annotations

that are already there, if any. More details in Chapter 5.

Background images

Background images are thus JPEG images of road and streets that may or may

not contain already annotated signs.

Template images

As templates, we decided to use sign icons taken from the web, mainly from

Wikipedia. Wikipedia provides pages containing vector icon of signs for each

country, so we can download all the icons from Wikipedia and use them as

templates for the augmentation. For example, we can find all the traffic signs

of Sweden onWikipedia [61]. However, theseWikipedia pages do not provide

all the traffic signs from the various countries, for example they only provide

usually one example for the speed limit signs, but we need all of them. Fortu-

nately, we have equivalent pages from Wikimedia that instead contain all the

signs the remaining signs [62]. To find and define equivalences between signs

for the domain transfer, we used again Wikipedia which has a page showing

all the equivalences between various European countries [63].

The template images that we retrieved satisfy the requirement of trans-

parent border and high resolution, which are mandatory requirements for a

high-quality copy-pasting. The templates were then grouped and renamed ac-

cordingly to the classes defined in Section 4.1.1.

If templates of some signs were not available, we recreated them through

image editing programs.

70

4.1.3 Validation and testing data

The validation and testing data consists, as the training data, in images of roads

and streets with annotated signs. We also used, in some experiments, synthetic

validation datasets in which the signs in the dataset were all synthetic copy-

pasted signs. More details are available in Chapter 5.

4.2 Model

The usedmodel for traffic sign recognition is an SSD-like detector without any

FPN using MobileNetV3 as backbone. that was developed by Univrses. We

used this network to test the augmentation technique and its effectiveness in

the task of traffic sign recognition. The reason why MobileNetV3 was chosen

is because the images used to train our detectors were taken by smartphones

mounted on moving cars, meaning that in order to deploy this system on mo-

bile phones, we need an efficient and lightweight network, so it makes sense to

test copy-paste augmentation on this network. Moreover, MobileNetV3 was

designed for mobile deployment and, although being small, it proved to be

able to perform the chosen task very well when provided with enough good

quality data.

4.3 Tools

The programming language we used is Python, in combination with Tensor-

Flow library to create the model and manage datasets. For the copy-paste

augmentation, we used libraries as Numpy, Scipy, PIL, OpenCV, Pandas and

Hydra to code the augmentation methods. For the training, the tuning of

the various parameters and the model testing, we used Wandb. As IDE, we

used PyCharm, in combination with the collaborative developing tools Git and

GitHub.

71

Chapter 5

Experiments and results

5.1 Training with real yellow signs

As the baseline, namely the model use for all the comparisons, we trained

a model detecting yellow Swedish signs that was trained only on real yel-

low Swedish traffic signs. We did this because we wanted to compare mod-

els trained with synthetic data with models trained on real data. The base-

line experiment thus consisted in training our model using the Swedish non-

augmented training set, while evaluating it on the Swedish non-augmented

validation set. The training set contains 8360 images while the validation set

contains 1874 images. We trained our model for 100 epochs with early stop-

ping and with a batch size of 16. While training the model, we also tuned

some training hyperparameters as the initial learning rate, the decay steps and

the regularization l2 factor. We launched a grid hyperparameter search over

these hyperparameters, while using 0.01, 0.001 and 0.0001 as initial learning

rate values. For the learning rate decay, we used exponential decay with step

values 522, 1045, 2090, 4180 and 8360 which are, respectively, the number of

steps for each training epoch (the number of batches) multiplied by 1, 2, 4, 8

and 16. The first number was actually 522,5 (8360/16 = 522,5) so we rounded

it. For the regularization l2 factor, we used values 1e-4, 1e-6 and 1e-8.

We chose the best hyperparameters based on the best validation f1 score

72

averaged per class that the model was reaching on the Swedish validation set.

We kept the training seeds to 0 among all these runs to enable reproducibility

and avoid measuring differences in the results due to different seeds. In Table

5.1 it is possible to see the first 10 runs with the highest best val f1 score. As

it is possible to see, the model with the highest best val f1 score was the one

having initial learning rate of 0.001, decay steps of 4180 and regularization l2

factor of 1e-8. However, when looking at their val f1 score graph we could see

that all these models were more or less noisy. Models trained with a higher

learning rate were more noisy, especially in the first epochs so, since the dif-

ference in best val f1 score among these models is very small, we decided to

choose the hyperparameters corresponding to the model which was the less

noisy among all of these. In the table, it is possible to see the chosen model

as the one in bold. We did this because we will be using these hyperparame-

ters also for the tests with synthetic data and since these tests are usually more

noisy than the ones with real data, especially in the first epochs, we decided

then to pick the hyperparameters producing the less noise. In Figure 5.1 we

can see the difference in noise between the best model, the first in the table,

and the model that we selected. The orange model is the one that we selected

while the brownish one is the best one. The chosen hyperparameters where

thus an initial learning rate of 0.001, a number of decay steps of 2090 and a

regularization l2 factor of 1e-8.

As it is possible to see from Table 5.1, the hyperparameter that was influ-

encing the most the performances was the initial learning rate, as expected.

After doing this and selecting the best model, we launched the training

again for 4 times by keeping everything the same while only changing the

training seeds in order to measure better the performances of the model and

get a better sense of the noise between different runs. We executed 4 runs with

seeds 0, 1507, 2307 and 3425. The results of these experiments are in Table

5.2.

73

best val f1 initial learning rate decay steps regularization l2 factor
0.7697 0.001 4180 1e-8
0.7646 0.001 2090 1e-4
0.7638 0.001 8360 1e-8
0.7636 0.001 4180 1e-4
0.7626 0.01 522 1e-8
0.7621 0.001 2090 1e-8
0.7567 0.001 1045 1e-6
0.7552 0.001 2090 1e-6
0.7545 0.001 4180 1e-6
0.7534 0.01 4180 1e-4

Table 5.1: Results of the sweep on the model trained on real yellow Swedish
signs. These are the first 10 most performing models in terms of best val f1
score averaged per class.

Figure 5.1: Val f1 score averaged per class of the best model compared to the
selected one. An exponential moving average smoothing of 0.3 is applied to
the graph to make it more clear.

training seed best val f1
0 0.7545

1507 0.7488
2307 0.7560
3425 0.7709
mean 0.7575

variance 0.0088

Table 5.2: Results of the seeds sweep on the model trained on real yellow
Swedish signs. The best val f1 score is averaged per class.

74

5.2 Training with synthetic yellow signs

We also created synthetic datasets and trained models with synthetic data. In

these experiments, we created the training sets containing only copy-pasted

yellow Swedish traffic signs, without any real sign. We used as base for our

synthetic training sets a dataset consisting of images of Swedish roads and

streets which did not contain any traffic sign. We also made sure that all the

images did not contain any traffic sign that was not annotated in order to avoid

introducing noise while training and in order to avoid using any real Swedish

yellow traffic sign. This dataset of empty images consists in 13030 images,

but in order to keep consistency and to have a fair comparison with the base-

line, we augmented and kept only the first 8360 images in order to have the

same number of training images as with the baseline. As with the baseline ex-

periment, we trained our models for 100 epochs with early stopping and with

a batch size of 16, while keeping the same hyperparameters that we selected

from the baseline experiment in order to compare these models as fairly as

possible. We thus used initial learning rate of 0.001, 2090 decay steps and

1e-8 as regularization l2 factor.

While training, we evaluated the model using the same validation set used

for the baseline experiment.

To avoid measuring only noise, we also executed multiple runs for each

experiment by only changing the training seeds between the various runs. We

launched 4 runs per experiment with seeds 0, 2307, 1507, 3425, as we did with

the baseline. As the seed for the augmentation phase, instead, we used 1507

for all experiments.

75

5.2.1 Realistic copy-pasted training data

As first experiment, we created a synthetic training set by applying copy-paste

augmentation with all sign augmentations. While applying per-sign augmen-

tations, we used realism where possible, so we used the following configura-

tion:

• signs/background ratio to 1.6 % of the whole image

• no overlap padding to 5px

• scale of the pasted signs from 5 % to 12 % of the original template icon

size (all the icons are standardized in size), using step size 1 %

• rotation of the pasted signs over axis x from -30° to 30°, with step size

1° and probability distribution to low

• rotation of the pasted signs over axis y from -60° to 60°, with step size

1° and probability distribution to low

• rotation of the pasted signs over axis z from -10° to 10°, with step size

1° and probability distribution to low

• realistic contrast of the pasted signs computed using an estimation

neighborhood of 50px, minimum capping to 10 % and maximum cap-

ping to 90 %

• realistic brightness of the pasted signs computed using an estimation

neighborhood of 50px, minimum capping to 10 % and maximum cap-

ping to 90 %

• realistic motion blur of the pasted signs

• realistic gaussian noise of the pasted signs computed without the use

of an estimation neighborhood (set to 0px)

• edge blurring enabled

76

The augmentations to the single traffic sign were applied in the following or-

der: scale, rotation, contrast, brightness, motion blurring, gaussian noise and

edge blurring. Since we were not performing domain transfer, the used es-

timation patch for the realistic augmentations was the patch of the image in

which the sign was pasted. We also did not use a custom probability distribu-

tion for the sign classes so each sign class had the same probability of being

pasted to the image.

The results of this experiment are in Table 5.3.

training seed best val f1
0 0.3638

1507 0.4197
2307 0.4083
3425 0.4117
mean 0.4009

variance 0.0634

Table 5.3: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with realism. The best val f1 score is averaged per
class.

5.2.2 Ablation studies on realistic augmentations

We executed some ablation studies to see how much realism actually con-

tributes to the performances of the whole system. We run these tests by dis-

abling realism one by one for the augmentations that have the possibility of

being also realistic. We created these training sets by following the same pro-

cedure of Section 5.2 but we disabled realistic augmentations one by one by

turning one of the realistic augmentations to its non-realistic version in each

experiment. More specifically, we did the following experiments:

• a training with all the realistic augmentations but with non-realistic

brightness, using a minimum value of 10 %, a maximum value of 90

%, a step size of 5 % and probability distribution to medium

77

• a training with all the realistic augmentations but with non-realistic

contrast, using a minimum value of 10 %, a maximum value of 90

%, a step size of 5 % and probability distribution to medium

• a trainingwith all the realistic augmentations but with non-realisticmo-

tion blur, using a minimum kernel size of 4, a maximum kernel size of

10, a step size 1 and probability distribution low

• a training with all the realistic augmentations but with non-realistic

gaussian noise, using minimum and maximum mean of 0, minimum

variance of 5, maximum variance of 60, step size for variance of 1 and

probability distribution high

The results of these experiments are, respectively, in Tables 5.4, 5.5, 5.6

and 5.7.

Another experiment that we did was training a model using a dataset with

only synthetic copy-pasted signs without any form of realism. In this setting,

we were creating the synthetic training set following the same procedure of

Section 5.2 but we disabled all realistic augmentations by setting brightness,

contrast, motion blur and gaussian noise as follows:

• non-realistic brightnesswithminimum value of 10%, maximum value

of 90 %, step size of 5 % and probability distribution to medium

• non-realistic contrast with minimum value of 10 %, maximum value

of 90 %, step size of 5 % and probability distribution to medium

• non-realistic motion blur with minimum kernel size of 4, a maximum

kernel size of 10, step size 1 and probability distribution low

• non-realistic gaussian noise with minimum and maximum mean of 0,

minimum variance of 5, maximum variance of 60, step size for variance

of 1 and probability distribution high

The results of this experiment are in Table 5.8.

78

training seed best val f1
0 0.3585

1507 0.4014
2307 0.3733
3425 0.3938
mean 0.3818

variance 0.0521

Table 5.4: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with realism but with non-realistic brightness. The best
val f1 score is averaged per class.

training seed best val f1
0 0.4385

1507 0.4178
2307 0.4506
3425 0.4046
mean 0.4279

variance 0.0424

Table 5.5: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with realism but with non-realistic contrast. The best
val f1 score is averaged per class.

training seed best val f1
0 0.3884

1507 0.4031
2307 0.4098
3425 0.4027
mean 0.4010

variance 0.0081

Table 5.6: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with realism but with non-realistic motion blur. The
best val f1 score is averaged per class.

5.2.3 Ablation studies on non-realistic augmentations

Just as we did with realism ablation studies, we executed some ablation stud-

ies on each sign augmentation, this time by starting from a setting with all

augmentations in their non-realistic version and proceeding by completely

disabling one by one all augmentations, including the ones that never had a

realistic version. In this setting, we were creating the synthetic training set

79

training seed best val f1
0 0.4054

1507 0.4024
2307 0.4085
3425 0.3970
mean 0.4033

variance 0.0024

Table 5.7: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with realism but with non-realistic gaussian noise. The
best val f1 score is averaged per class.

training seed best val f1
0 0.3929

1507 0.4181
2307 0.4302
3425 0.3951
mean 0.4091

variance 0.0328

Table 5.8: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with no realism. The best val f1 score is averaged per
class.

following the same procedure of the final experiment of Section 5.2.1, using

only non-realistic augmentation, but we completely disabled them one by one

for each experiment. More specifically, we did the following experiments:

• a training with all non-realistic augmentations but without scale aug-

mentation

• a training with all non-realistic augmentations but without rotation

augmentation

• a training with all non-realistic augmentations but without contrast

augmentation

• a training with all non-realistic augmentations but without brightness

augmentation

80

• a training with all non-realistic augmentations butwithout motion blur

augmentation

• a training with all non-realistic augmentations but without gaussian

noise augmentation

• a training with all non-realistic augmentations but without edge blur-

ring augmentation

The results of these experiments are, respectively, in Tables 5.9, 5.10, 5.11,

5.12, 5.13, 5.14 and 5.15.

training seed best val f1
0 0.2802

1507 0.2904
2307 0.2969
3425 0.2846
mean 0.2880

variance 0.0052

Table 5.9: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with no realism and without scale. The best val f1 score
is averaged per class.

training seed best val f1
0 0.3755

1507 0.3518
2307 0.3570
3425 0.3392
mean 0.3559

variance 0.0227

Table 5.10: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with no realism and without rotation. The best val f1
score is averaged per class.

81

training seed best val f1
0 0.3962

1507 0.4267
2307 0.3991
3425 0.3947
mean 0.4042

variance 0.0276

Table 5.11: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with no realism and without contrast. The best val f1
score is averaged per class.

training seed best val f1
0 0.1613

1507 0.1409
2307 0.1612
3425 0.1896
mean 0.1633

variance 0.0401

Table 5.12: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with no realism and without brightness. The best val f1
score is averaged per class.

training seed best val f1
0 0.3923

1507 0.3912
2307 0.4040
3425 0.3870
mean 0.3936

variance 0.0053

Table 5.13: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with no realism and without motion blur. The best val
f1 score is averaged per class.

5.3 Training with real and synthetic yellow signs

Another experiment that we designed was to train models with a mixture of

real signs and synthetic signs. In this setting, we augmented a dataset con-

taining already annotated traffic signs. In particular, we augmented the same

82

training seed best val f1
0 0.4104

1507 0.4140
2307 0.4198
3425 0.3942
mean 0.4096

variance 0.0120

Table 5.14: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with no realism and without gaussian noise. The best
val f1 score is averaged per class.

training seed best val f1
0 0.4072

1507 0.4203
2307 0.4175
3425 0.4095
mean 0.4136

variance 0.0039

Table 5.15: Results of the seeds sweep on the model trained on copy-pasted
yellow Swedish signs with no realism and without edge blurring. The best val
f1 score is averaged per class.

dataset that we used to train the baseline, namely the training set of real non-

augmented Swedish yellow signs. This dataset consists of 8360 training im-

ages. We trained our models for 100 epochs with early stopping and with a

batch size of 16, while keeping the same hyperparameters that we selected

from the baseline experiment in order to compare these models as fairly as

possible, so we used initial learning rate of 0.001, 2090 decay steps and 1e-8

as regularization l2 factor.

While training, we evaluated the model using the same validation set used

for the baseline, namely the validation set of real non-augmented Swedish

yellow signs, consisting in 1874 validation images.

In order to avoid measuring noise, we also executed multiple runs for each

experiment by only changing the training seeds between the various runs. We

launched 4 runs per experiment with seeds 0, 2307, 1507, 3425. As augmen-

tation seed, instead, we used 1507 for all experiments.

83

We created the training set by using the same configuration that we used

for the experiment described in Section ??, so we used all the augmentations

in their non-realistic way.

The results of this experiments are in Table 5.16.

training seed best val f1
0 0.7438

1507 0.6965
2307 0.7123
3425 0.7433
mean 0.7240

variance 0.0552

Table 5.16: Results of the seeds sweep on the model trained on real and copy-
pasted yellow Swedish signs with no realism. The best val f1 score is averaged
per class.

5.4 Trainingwith domain-transferred yellow signs

The final training experiment consisted in training a model using a dataset of

domain transferred Swedish yellow signs. In this setting, we created the train-

ing set by augmenting a dataset of white signs. We applied domain transfer to

these images in order to convert the white signs to yellow signs. The dataset

of white signs that we used consisted in 2624 images with annotated white

sign from Switzerland. However, some of these images did not contain any

traffic sign. While augmenting this dataset, we skipped the empty images and

we kept only the images containing annotated traffic signs. By skipping the

empty images, we obtained a dataset of 1747 images with real white signs.

In order to do a fair comparison with the baseline, we needed however 8360

training images. We only have 1747 images in this dataset, so in order to have

a higher number of images we simply augmented each image in the training

set 5 times so we obtained 1747*5=8735 augmented training images, of which

we used the first 8360 images.

While domain transferring, we both replaced white signs, including signs

84

of shared classes between yellow and white domains, and copy-pasted new

synthetic yellow signs. In this setting, we were using copy-pasting to both

replace the white signs in the images and, at the same time, pasting new signs.

Since we were replacing all the white signs we were thus using only synthetic

data to train the model.

We trained our models for 100 epochs with early stopping and with a batch

size of 16, while keeping the same hyperparameters that we selected from the

baseline experiment in order to compare these models as fairly as possible, so

we used initial learning rate of 0.001, 2090 decay steps and 1e-8 as regular-

ization l2 factor.

We evaluated the model using the same validation set used for the base-

line, namely the validation set of real non-augmented Swedish yellow signs,

consisting in 1874 validation images.

In order to avoid measuring noise, we also executed multiple runs for each

experiment by only changing the training seeds between the various runs. We

launched 4 runs per experiment with seeds 0, 2307, 1507, 3425. As augmen-

tation seed, instead, we used 1507 for all experiments.

We created the training set by using the same configuration that we used

for the experiment described in Section ??, so we used all the augmentations

in their non-realistic way. When applying domain transfer, we replaced signs

also for common classes and we did not use any capping on the augmentation

parameters for the replaced signs.

The results of this experiments are in Table 5.17.

5.4.1 Ablation studies on domain transfer

The second experiment was about running ablation studies on domain trans-

fer, namely by training models by using only replacement when creating the

domain-transferred training set and then by using only copy-pasting. When

using only replacement, we are training with fully-synthetic data since all the

85

training seed best val f1
0 0.4860

1507 0.4838
2307 0.4790
3425 0.4563
mean 0.4763

variance 0.0185

Table 5.17: Results of the seeds sweep on the model trained on domain-
transferred data using replacement of white signs and pasting of new yellow
signs. The best val f1 score is averaged per class.

real signs have been replaced, while when training with only copy-pasting we

were using a mix of real and synthetic data to train our model because we

were not replacing the original white signs. We were however ignoring all the

white classes in the loss, in order to avoid introducing noise, while keeping

the classes that were shared between yellow and white domains.

The results of these experiments are available, respectively, in Tables 5.18

and 5.19.

training seed best val f1
0 0.3071

1507 0.3115
2307 0.3044
3425 0.3132
mean 0.3090

variance 0.0016

Table 5.18: Results of the seeds sweep on the model trained on domain-
transferred data using only replacement of white signs. The best val f1 score
is averaged per class.

Table

5.5 Validating with synthetic yellow signs

Another experiment that we designed was about using copy-pasted data for

validating a model trained on some training data. We tested both models

86

training seed best val f1
0 0.4359

1507 0.4459
2307 0.4442
3425 0.4381
mean 0.4410

variance 0.0023

Table 5.19: Results of the seeds sweep on the model trained on domain-
transferred data using only copy-pasting of new yellow signs. The best val
f1 score is averaged per class.

trained on real data and on synthetic data. In this setting, we created a val-

idation set by augmenting the dataset of empty Swedish road images. In order

to have comparable results with the validation set of real yellow Swedish im-

ages, we augmented only 1874 images. We also used the same number of

training images that we used in the baseline both with real and synthetic train-

ing data, namely we used 8360 training images. Moreover, we also created

a validation set by domain transferring from white signs to yellow Swedish

signs.

We trained our models for 100 epochs with early stopping and with a batch

size of 16, while keeping the same hyperparameters that we selected from the

baseline experiment in order to compare these models as fairly as possible, so

we used initial learning rate of 0.001, 2090 decay steps and 1e-8 as regular-

ization l2 factor.

In order to avoid measuring noise, we also executed multiple runs for each

experiment by only changing the training seeds between the various runs. We

launched 4 runs per experiment with seeds 0, 2307, 1507, 3425. As augmenta-

tion seed, instead, we used 1507 for all experiments when creating the training

set, while we used 4468 as seed when augmenting to create validation data.

87

5.5.1 Realistic copy-pasted validation datawith non-realistic

copy-pasted train data

In this experiment, we trained a model with non-realistic copy-pasted yellow

signs and we validated the same model on realistic copy-pasted yellow signs.

We created the training data by following the configuration used in the exper-

iment described in Section ??, while we created validation data by following

the configuration used in the experiment described in Section 5.2. We created

both training and validation sets by augmenting the set of empty Swedish road

images. In order to avoid using the same background images both for train-

ing and validation, we augmented the first 8360 training images to create the

training set while we augmented the following 1874 training images to create

the validation set.

The results of this experiment are in Table 5.20.

training seed best val f1
0 0.9775

1507 0.9760
2307 0.9768
3425 0.9775
mean 0.9770

variance 0.0001

Table 5.20: Results of the seeds sweep on the model trained on non-realistic
copy-pasted yellow signs and validated on realistic copy-pasted yellow signs.
The best val f1 score is averaged per class.

5.5.2 Non-realistic copy-pasted validation datawith non-realistic

copy-pasted train data

In this experiment, we trained a model with non-realistic copy-pasted yellow

signs and we validated the same model on non-realistic copy-pasted yellow

signs. We created the training data by following the configuration used in the

final experiment described in Section 5.2.2, while we also created validation

data by following the configuration used in the last experiment described in

88

Section 5.2.2. We created both training and validation sets by augmenting the

set of empty Swedish road images. In order to avoid using the same back-

ground images both for training and validation, we augmented the first 8360

training images to create the training set while we augmented the following

1874 training images to create the validation set.

The results of this experiment are in Table 5.21.

training seed best val f1
0 0.9923

1507 0.9929
2307 0.9920
3425 0.9941
mean 0.9928

variance 0.0001

Table 5.21: Results of the seeds sweep on the model trained on non-realistic
copy-pasted yellow signs and validated on non-realistic copy-pasted yellow
signs. The best val f1 score is averaged per class.

5.5.3 Domain-transferred validation data with non-realistic

copy-pasted train data

In this experiment, we trained a model with non-realistic copy-pasted yellow

signs and we validated the same model on domain-transferred data from the

domain of white signs. We created validation data by only replacing white

signs and not by copy-pasting new yellow signs, in the same way we were

doing when performing ablation studies for domain transfer in Section 5.4.

Since we needed 1874 images, we augmented each image in the white traffic

signs dataset 2 times and then kept only the first 1874 augmented images.

The results of this experiment are in Table 5.25.

89

training seed best val f1
0 0.4634

1507 0.4686
2307 0.4701
3425 0.4654
mean 0.4669

variance 0.0009

Table 5.22: Results of the seeds sweep on the model trained on non-realistic
copy-pasted yellow signs and validated on domain-transferred data from the
domain of white signs. The best val f1 score is averaged per class.

5.5.4 Realistic copy-pasted validation data with real train

data

In this experiment, we trained a model with real Swedish yellow signs and we

validated the same model on realistic copy-pasted Swedish yellow signs. We

created validation data by following the configuration used in the experiment

described in Section 5.2. We created the validation set by augmenting the first

1874 training images of the set of empty Swedish road images.

The results of this experiment are in Table 5.23.

training seed best val f1
0 0.6706

1507 0.7196
2307 0.6536
3425 0.6978
mean 0.6854

variance 0.0851

Table 5.23: Results of the seeds sweep on the model trained real yellow signs
and validated on realistic copy-pasted yellow signs. The best val f1 score is
averaged per class.

5.5.5 Non-realistic copy-pasted validation datawith real train

data

In this experiment, we trained a model with real Swedish yellow signs and

we validated the same model on non-realistic copy-pasted yellow signs. We

90

created validation data by following the configuration used in the experiment

described in Section ??. We created the validation set by augmenting the first

1874 training images of the set of empty Swedish road images.

The results of this experiment are in Table 5.24.

training seed best val f1
0 0.7129

1507 0.7179
2307 0.6877
3425 0.6835
mean 0.7005

variance 0.0303

Table 5.24: Results of the seeds sweep on the model trained on real yellow
signs and validated on non-realistic copy-pasted yellow signs. The best val f1
score is averaged per class.

5.5.6 Domain-transferred validation datawith real train data

In this experiment, we trained a model with real Swedish yellow signs and

we validated the same model on domain-transferred data from the domain of

white signs. We created validation data by using the same configuration used

in experiment described in Section 5.4 to create the validation set and since

we needed 1874 images, we augmented each image in the white traffic signs

dataset 2 times and then kept only the first 1874 augmented images.

The results of this experiment are in Table 5.25.

training seed best val f1
0 0.5332

1507 0.5199
2307 0.5137
3425 0.5068
mean 0.5184

variance 0.0126

Table 5.25: Results of the seeds sweep on the model trained on real yel-
low signs and validated on domain-transferred data from the domain of white
signs. The best val f1 score is averaged per class.

91

Chapter 6

Conclusion

6.1 Discussion of experiments results

As is it possible to see, we runmultiple experiments in various training/validation

settings. In this section, we are going to discuss all the results we obtained for

each category of experiments. Moreover, we are going to compare the various

results with the baseline method and between them. Finally, we will list some

possible future improvements.

6.1.1 Training experiments

These experiments have been performed on various different training sets,

consisting however in the same number of images, namely 8360, while using

the same validation set consisting of 1874 images with real yellow Swedish

signs.

As we can see from Table 6.1, the best validation f1 score on average over

the 4 experiments is achieved when training using only real data, with an av-

erage best val f1 score of 0.7575. It is possible to see that this average value

drops to 0.4009 when training using only realistic copy-pasted yellow signs,

while it drops to 0.4091 when training using only non-realistic copy-pasted

92

Experiment Validation F1-score
baseline (real training data) 0.7575 ± 0.0094
realistic copy-paste training data 0.4009 ± 0.0252

with non-realistic brightness 0.3818 ± 0.0228
with non-realistic contrast 0.4279 ± 0.0206
with non-realistic motion blur 0.4010 ± 0.0090
with non-realistic gaussian noise 0.4033 ± 0.0049

non-realistic copy-paste training data 0.4091 ± 0.0181
without scale 0.2880 ± 0.0072
without rotation 0.3559 ± 0.0151
without contrast 0.4042 ± 0.0166
without brightness 0.1633 ± 0.0200
without motion blur 0.3936 ± 0.0073
without gaussian noise 0.4096 ± 0.0110
without edge blurring 0.4136 ± 0.0062

non-realistic copy-paste and real training data 0.7240 ± 0.0235
domain transferred training data 0.4763 ± 0.0136

by only replacement 0.3090 ± 0.0040
by only copy-pasting 0.4410 ± 0.0048

Table 6.1: Comparison in terms of best validation f1 score (averaged per class
and per seed run) between the baseline and the various training experiments.

yellow signs. This is indicative of the fact that using only synthetic data cre-

ated with copy-paste augmentation, both in its realistic and non-realistic form,

is not entirely a valid replacement of real data, though still being a valid com-

promise when no data or few data is available. It is also possible to see that the

difference in performance between non-realistic data and realistic data is very

small, since there is no measurable difference given the standard deviation of

the validation f1 score between the different runs, indicating that for the train-

ing task using a realistic or unrealistic version of the augmented data does not

make too much of a difference, especially because this difference is so little

that it can be due to a difference in noise between the two experiments.

It is also possible to see that when training with a combination of real data

and non-realistic copy-pasted data, the average best validation f1 score does

not improve, instead it drops to 0.7240. This is due to the fact that adding

copy-pasted data to the real data may introduce some additional noise in the

93

training and add some confusion to the detector. In fact, in this scenario, copy-

paste augmentation should be used only to re-balance classes that are poorly

represented in the training data, by changing the probabilities that the vari-

ous traffic sign classes have to be selected when copy-pasting, while in this

experiment, we used the same probabilities for all the classes.

When training with domain-transferred data, we achieved an average best

validation f1 score of 0.4763, which is still lower than the baseline, but is

higher than the score achieved when using copy-paste augmentation without

domain transfer. We suspect that this is due to the fact that while domain trans-

ferring, we are both replacing the real white signs existing in the dataset, thus

imitating the distribution of signs and their photometric and geometric charac-

teristic in reality, but at the same time we are pasting new yellow signs which

are going to re-balance classes that are underrepresented in reality. These

results can be further improved by pasting new signs accordingly to the dis-

tribution of the dataset used for domain transfer, in order to re-balance under-

represented classes even better and have a dataset that is even more balanced.

By looking at the results over ablation studies on realism, we can also see

that realistic brightness helps compared to non-realistic brightness. In fact, we

can see that, when disabling realism on brightness, the average best validation

f1 score drops to 0.3818, indicating that realistic brightness helps more with

respect to non-realistic brightness. We can also see how non-realistic contrast

helps more than realistic contrast: in fact, we can see that when disabling

realism for contrast, we obtain an average best validation f1 score of 0.4279.

On the other hand, disabling realism for motion blur and gaussian noise does

not change too much the performances of the detector since the average best

validation f1 score goes to 0.4010 in the former case and 0.4033 in the latter

case. In these two cases, the score is still higher than when using all realistic

augmentations (in this case, the score is 0.4009), but the difference is so little

that it might just be due to a difference in noise between the two experiments.

94

From ablation studies on the augmentations, we can see how when re-

moving scale, average val f1 score drops to 0.2880, while it drops to 0.3559

when removing rotation, to 0.1633 when removing brightness, indicating that

these three augmentations are the most helpful ones. On the other hand, when

removing motion blur, validation f1 score drops to 0.3936. When disabling

contrast, instead, we obtain an average val f1 score of 0.4042, while we obtain

a score of 0.4096 when disabling gaussian noise. It is not clear, then, if motion

blur, contrast and gaussian noise are useful, since the difference in the mean

validation f1 score with respect to the experiment using all augmentations is

more or less 0.001 , which is not significant given the standard deviation val-

ues of these three ablation studies which are 0.0073 for motion blur, 0.0166 for

contrast and 0.0110 for gaussian noise. Another thing that we can see is that

disabling edge blurring increases the score to 0.4136. This might be due to

the fact that we are still using motion blur, so when applying motion blur and

edge blurring together, the pasted signs may appear too blurry in some cases

because we are blurring a border that has already been blurred by motion blur,

especially when the amount of applied motion blur is already enough to blur

the border and blend the sign with the background, so not applying edge blur-

ring on top of motion blur helps while at the same time still allowing us to

blend the pasted signs with the background because of the presence of motion

blur. However, again, the difference is too little, so it can be due just to noise.

Regarding domain transfer, we can see how using both replacement and

copy-pasting helps, because when using only replacement the average best

val f1 score drops to 0.3090 while it drops to 0.4410 when using only copy-

pasting. This happens because using only the original distribution of the dataset

from which we are domain transferring, so applying only replacement, is not

enough, especially because some traffic sign classes may be completely miss-

ing because of the domain difference. For example, some white signs may

not have an equivalent yellow sign, so when transferring from white signs in

this state to yellow signs, some signs may be missing and thus not replaced.

95

This is the reason why we apply copy-paste on top of replacement, in order

to allow us also to represent also these missing classes, if any. On top of this,

we are not transferring the homography of the signs when replacing, so all of

our replaced signs will appear not rotated, meaning that this is another feature

that will be missing if using only replacement, while it is present when using

also copy-pasting. Another interesting result is the fact that when training on

data that has been domain-transferred by only using copy-pasting, we achieve

a score of 0.4410, which is lower than the score we achieved when we were

applying both replacement and copy-pasting, but is still higher than the score

we achieved when training only with realistic/non-realistic copy-pasted data.

This happens because while ignoring the white sign in the loss, we are still

using some real signs which are the signs of the classes shared between the

white and yellow domains (for example pedestrian crossings, parking signs

etc.). This limited amount of real data is used on top of copy-pasted data, so it

helps in achieving a higher score with respect to using only copy-pasted data.

6.1.2 Validation experiments

These experiments have been performed on various different training and val-

idation sets, consisting however in the same number of images, 8360 for train-

ing and 1874 for validation. We designed these experiments to see if synthetic

data can be a good replacement for real validation data in cases in which the

available data is too poor to create both a training and a validation set.

From Table 6.2 we can see that the use of a synthetic validation set created

with copy-paste augmentation is appropriate only when training with real data.

In fact, we can see that when training with real data, validating with a dataset

of real yellow signs gives us an average best val f1 score of 0.7575, while when

we obtain a score of 0.6854 when validating with a dataset of realistic copy-

pasted yellow signs and a score of 0.7005 when validating with a dataset of

non-realistic copy-pasted yellow signs. In this setting, however, a validation

96

Experiment Validation F1-score
real training data

baseline (real validation data) 0.7575 ± 0.0094
realistic copy-pasted validation data 0.6854 ± 0.0292
non-realistic copy-pasted validation data 0.7005 ± 0.0174
domain-transferred (only replacement) validation data 0.5184 ± 0.0112

non-realistic copy-pasted training data
real validation data 0.4091 ± 0.0181
realistic copy-pasted validation data 0.9770 ± 0.0010
non-realistic copy-pasted validation data 0.9928 ± 0.0010
domain-transferred (only replacement) validation data 0.4669 ± 0.0030

Table 6.2: Comparison in terms of best validation f1 score (averaged per class
and per experiment) between the various validation experiments.

set of domain-transferred yellow signs is not enough since we may not have

enough samples per class in order to correctly evaluate a trainedmodel because

of the transferring operation from one domain to another. We did not test with

a domain-transferred dataset with both replacement and copy-pasting because

the results would have been similar to the results obtained when using only

non-realistic copy-pasted validation data, since the majority of the signs in the

validation dataset would have been copy-pasted signs.

On the other hand we can see that when validating with copy-pasted val-

idation data, both realistic and non-realistic, we get a score that is close to

the score that we obtained when validating with real data. There is still a no-

ticeable gap between scores when validating with real data and synthetic data

and this is due to the fact that copy-pasting does not lead to the same distri-

bution of real data, nor it represents all the variability of real world data (e.g.

occlusions).

When training with non-realistic copy-pasted data, copy-pasted data can-

not be used for validation both in case of realistic and non-realistic copy-paste.

In fact, as we can see, when validating with realistic copy-pasted data, we get

an average best val f1 score of 0.9770, while we get a score of 0.9928 when

validating with non-realistic copy-pasted data. This happens because, regard-

less of being realistic or not being realistic, synthetic data in both the training

and validation sets will be basically the same. Moreover, when validating

97

with non-realistic copy-pasted data, the distribution of training data and vali-

dation data will be exactly the same, and this is the reason why we get a score

that is very close to 1.00 when both training and validating with non-realistic

copy-pasted data. A synthetic validation dataset is not a good replacement of

a real validation set when training with synthetic data. A domain-transferred

validation dataset, instead, can be a good replacement for a real validation set.

In fact, we can see that when validating with a domain-transferred set that is

built using only replacement, we obtain a score of 0.4669. The reason why

this happens is because the data that we are using for validation is in some way

closer to real data: in fact, by performing domain transfer, we are replacing

real signs with some synthetic signs but we are also transferring the geomet-

ric and photometric features of the real signs to the synthetic ones, meaning

that the replaced signs will be closer to real world samples than to synthetic

samples. This happens only if we apply domain transfer only as replacement

because if we apply it as both replacement and copy-paste, we will get simi-

lar results as when we were validating with copy-pasted data. However, this

still results in an overestimation of the performances of the model on real data,

since we have a difference of around 0.06 and this is due to the fact that, again,

copy-pasting does not lead to the same distribution of real data neither it rep-

resents all the variability of real world data.

From the results of copy-paste augmentation on training and validation

data, however, it is very hard to justify copy paste augmentation as validation

set since it works so poorly for training.

6.2 Future developments

We saw how synthetic data can be used to train traffic sign detectors and, in

some cases, also to evaluate them. We also identified some future develop-

ments and improvements that can be applied to this system in order to further

improve the results:

98

• when domain transferring, it is possible to also transfer the homography

(the rotation) of the source sign by computing SIFT [8] features between

the real sign and its template and then, by using feature matching and

homography estimation, compute an homography to apply to the tem-

plate of the target sign to paste in order to also reproduce the rotation of

the original sign

• it is possible to use GANs to create synthetic signs that look even more

realistic when being pasted in a certain context

• GANs can also be used when applying domain transfer to transfer pho-

tometric and geometric features from source signs to target signs tem-

plates in order to get a target sign that looks as similar as possible to

the source sign; for example, we can think of an approach based on Cy-

cleGANs or StyleGANs to directly transfer the style from the real sign

to the template sign or to move from the domain of templates to the

domain of real signs

• it is possible to use other neural networks to predict the position of the

signs when being pasted

• it is possible to develop an algorithm that pastes signs accordingly to

the actual distribution of the dataset we are augmenting, thus automat-

ically rebalancing the dataset without the need to manually specify a

distribution for the pasted signs

99

Bibliography

[1] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi. A survey of the

recent architectures of deep convolutional neural networks. Artificial

Intelligence Review, 53(8):5455–5516, April 2020. DOI: 10 . 1007 /

s10462 - 020 - 09825 - 6. URL: https : / / doi . org / 10 . 1007 %

2Fs10462-020-09825-6.

[2] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov. Dropout: a simple way to prevent neural networks from overfit-

ting. Journal of Machine Learning Research, 15(56):1929–1958, 2014.

URL: http://jmlr.org/papers/v15/srivastava14a.html.

[3] S. Ioffe and C. Szegedy. Batch normalization: accelerating deep net-

work training by reducing internal covariate shift, 2015. DOI: 10.48550/

ARXIV.1502.03167. URL: https://doi.org/10.48550/arxiv.

1502.03167.

[4] P. Probst, B. Bischl, andA.-L. Boulesteix. Tunability: importance of hy-

perparameters of machine learning algorithms, 2018. DOI: 10.48550/

ARXIV.1802.09596. URL: https://doi.org/10.48550/arxiv.

1802.09596.

[5] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He.

A comprehensive survey on transfer learning, 2019. DOI: 10.48550/

arxiv.1911.02685. URL: https://doi.org/10.48550/arxiv.

1911.02685.

100

https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007%2Fs10462-020-09825-6
https://doi.org/10.1007%2Fs10462-020-09825-6
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/arxiv.1502.03167
https://doi.org/10.48550/arxiv.1502.03167
https://doi.org/10.48550/ARXIV.1802.09596
https://doi.org/10.48550/ARXIV.1802.09596
https://doi.org/10.48550/arxiv.1802.09596
https://doi.org/10.48550/arxiv.1802.09596
https://doi.org/10.48550/arxiv.1911.02685
https://doi.org/10.48550/arxiv.1911.02685
https://doi.org/10.48550/arxiv.1911.02685
https://doi.org/10.48550/arxiv.1911.02685

[6] K. He, R. Girshick, and P. Dollár. Rethinking imagenet pre-training,

2018. DOI: 10.48550/ARXIV.1811.08883. URL: https://doi.

org/10.48550/arxiv.1811.08883.

[7] P. Viola and M. Jones. Rapid object detection using a boosted cascade

of simple features. 1:I–I, 2001. DOI: 10.1109/CVPR.2001.990517.

URL: https://doi.org/10.1109/CVPR.2001.990517.

[8] D. G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, November

2004. ISSN: 1573-1405. DOI: 10 . 1023 / B : VISI . 0000029664 .

99615.94. URL: https://doi.org/10.1023/B:VISI.0000029664.

99615.94.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. 1:886–893 vol. 1, 2005. DOI: 10.1109/CVPR.2005.177.

URL: https://doi.org/10.1109/CVPR.2005.177.

[10] J. Redmon and A. Farhadi. Yolov3: an incremental improvement, 2018.

DOI: 10.48550/arxiv.1804.02767. URL: https://doi.org/10.

48550/arxiv.1804.02767.

[11] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,

P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár. Microsoft coco:

common objects in context, 2014. DOI: 10 . 48550 / arxiv . 1405 .

0312. URL: https://doi.org/10.48550/arxiv.1405.0312.

[12] Object detection. Wikipedia. URL: https://en.wikipedia.org/

wiki/Object_detection.

[13] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driv-

ing? the kitti vision benchmark suite:3354–3361, 2012. DOI: 10.1109/

CVPR.2012.6248074. URL: https://doi.org/10.1109/CVPR.

2012.6248074.

101

https://doi.org/10.48550/ARXIV.1811.08883
https://doi.org/10.48550/arxiv.1811.08883
https://doi.org/10.48550/arxiv.1811.08883
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.48550/arxiv.1804.02767
https://doi.org/10.48550/arxiv.1804.02767
https://doi.org/10.48550/arxiv.1804.02767
https://doi.org/10.48550/arxiv.1405.0312
https://doi.org/10.48550/arxiv.1405.0312
https://doi.org/10.48550/arxiv.1405.0312
https://en.wikipedia.org/wiki/Object_detection
https://en.wikipedia.org/wiki/Object_detection
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074

[14] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-

serman. The pascal visual object classes (voc) challenge. International

Journal of Computer Vision, 88(2):303–338, June 2010.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierar-

chies for accurate object detection and semantic segmentation, 2013.

DOI: 10.48550/arxiv.1311.2524. URL: https://doi.org/10.

48550/arxiv.1311.2524.

[16] R. Girshick. Fast r-cnn, 2015. DOI: 10.48550/arxiv.1504.08083.

URL: https://doi.org/10.48550/arxiv.1504.08083.

[17] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: towards real-time

object detectionwith region proposal networks, 2015. DOI: 10.48550/

ARXIV.1506.01497. URL: https://doi.org/10.48550/arxiv.

1506.01497.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and

A. C. Berg. SSD: single shot MultiBox detector:21–37, 2016. DOI: 10.

1007/978-3-319-46448-0_2. URL: https://doi.org/10.1007%

2F978-3-319-46448-0_2.

[19] Z. Tian, C. Shen, H. Chen, and T. He. Fcos: fully convolutional one-

stage object detection, 2019. DOI: 10.48550/arxiv.1904.01355.

URL: https://doi.org/10.48550/arxiv.1904.01355.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look

once: unified, real-time object detection, 2015. DOI: 10.48550/arxiv.

1506.02640. URL: https://arxiv.org/abs/1506.02640.

[21] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger, 2016.

DOI: 10.48550/arxiv.1612.08242. URL: https://doi.org/

10.48550/arxiv.1612.08242.

102

https://doi.org/10.48550/arxiv.1311.2524
https://doi.org/10.48550/arxiv.1311.2524
https://doi.org/10.48550/arxiv.1311.2524
https://doi.org/10.48550/arxiv.1504.08083
https://doi.org/10.48550/arxiv.1504.08083
https://doi.org/10.48550/ARXIV.1506.01497
https://doi.org/10.48550/ARXIV.1506.01497
https://doi.org/10.48550/arxiv.1506.01497
https://doi.org/10.48550/arxiv.1506.01497
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007%2F978-3-319-46448-0_2
https://doi.org/10.1007%2F978-3-319-46448-0_2
https://doi.org/10.48550/arxiv.1904.01355
https://doi.org/10.48550/arxiv.1904.01355
https://doi.org/10.48550/arxiv.1506.02640
https://doi.org/10.48550/arxiv.1506.02640
https://arxiv.org/abs/1506.02640
https://doi.org/10.48550/arxiv.1612.08242
https://doi.org/10.48550/arxiv.1612.08242
https://doi.org/10.48550/arxiv.1612.08242

[22] A. Bochkovskiy, C.-Y.Wang, andH.-Y.M. Liao. Yolov4: optimal speed

and accuracy of object detection, 2020. DOI: 10.48550/arxiv.2004.

10934. URL: https://doi.org/10.48550/arxiv.2004.10934.

[23] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y.Kwon,

TaoXie, J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar,

Laughing, tkianai, yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati,

L. Mammana, AlexWang1900, D. Patel, D. Yiwei, F. You, J. Hajek, L.

Diaconu, and M. T. Minh. ultralytics/yolov5: v6.1 - TensorRT, Tensor-

Flow Edge TPU and OpenVINO Export and Inference, version v6.1,

February 2022. DOI: 10.5281/zenodo.6222936. URL: https://

doi.org/10.5281/zenodo.6222936.

[24] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for

dense object detection, 2017. DOI: 10.48550/arxiv.1708.02002.

URL: https://doi.org/10.48550/arxiv.1708.02002.

[25] M. Tan, R. Pang, and Q. V. Le. Efficientdet: scalable and efficient object

detection, 2019. DOI: 10.48550/arxiv.1911.09070. URL: https:

//doi.org/10.48550/arxiv.1911.09070.

[26] A.G.Howard,M. Zhu, B. Chen, D.Kalenichenko,W.Wang, T.Weyand,

M. Andreetto, and H. Adam. Mobilenets: efficient convolutional neu-

ral networks for mobile vision applications, 2017. DOI: 10.48550/

arxiv.1704.04861. URL: https://doi.org/10.48550/arxiv.

1704.04861.

[27] S. Kala. Traffic signs recognition: cnn, July 2020. URL: https://

medium.com/swlh/traffic-signs-recognition-cnn-ebaa0d18f6ad.

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learn-

ing applied to document recognition.Proceedings of the IEEE, 86(11):2278–

2324, November 1998. DOI: 10.1109/5.726791. URL: https://

doi.org/10.1109/5.726791.

103

https://doi.org/10.48550/arxiv.2004.10934
https://doi.org/10.48550/arxiv.2004.10934
https://doi.org/10.48550/arxiv.2004.10934
https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.48550/arxiv.1708.02002
https://doi.org/10.48550/arxiv.1708.02002
https://doi.org/10.48550/arxiv.1911.09070
https://doi.org/10.48550/arxiv.1911.09070
https://doi.org/10.48550/arxiv.1911.09070
https://doi.org/10.48550/arxiv.1704.04861
https://doi.org/10.48550/arxiv.1704.04861
https://doi.org/10.48550/arxiv.1704.04861
https://doi.org/10.48550/arxiv.1704.04861
https://medium.com/swlh/traffic-signs-recognition-cnn-ebaa0d18f6ad
https://medium.com/swlh/traffic-signs-recognition-cnn-ebaa0d18f6ad
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

[29] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura,

and E. Hovy. A survey of data augmentation approaches for nlp, 2021.

DOI: 10.48550/ARXIV.2105.03075. URL: https://doi.org/10.

48550/arxiv.2105.03075.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification

with deep convolutional neural networks. Commun. ACM, 60(6):84–

90, May 2017. ISSN: 0001-0782. DOI: 10 . 1145 / 3065386. URL:

https://doi.org/10.1145/3065386.

[31] What is image augmentation and how it can improve the performance of

deep neural networks. albumentations.ai. URL: https://albumentations.

ai/docs/introduction/image_augmentation/.

[32] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random erasing data

augmentation, 2017. DOI: 10 . 48550 / ARXIV . 1708 . 04896. URL:

https://doi.org/10.48550/arxiv.1708.04896.

[33] T. DeVries and G. W. Taylor. Improved regularization of convolutional

neural networks with cutout, 2017. DOI: 10.48550/ARXIV.1708.

04552. URL: https://doi.org/10.48550/arxiv.1708.04552.

[34] K. K. Singh, H. Yu, A. Sarmasi, G. Pradeep, and Y. J. Lee. Hide-and-

seek: a data augmentation technique for weakly-supervised localiza-

tion and beyond, 2018. DOI: 10.48550/ARXIV.1811.02545. URL:

https://doi.org/10.48550/arxiv.1811.02545.

[35] P. Chen, S. Liu, H. Zhao, and J. Jia. Gridmask data augmentation, 2020.

DOI: 10.48550/ARXIV.2001.04086. URL: https://doi.org/10.

48550/arxiv.2001.04086.

[36] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. Mixup: beyond

empirical risk minimization, 2017. DOI: 10.48550/ARXIV.1710.

09412. URL: https://doi.org/10.48550/arxiv.1710.09412.

104

https://doi.org/10.48550/ARXIV.2105.03075
https://doi.org/10.48550/arxiv.2105.03075
https://doi.org/10.48550/arxiv.2105.03075
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://albumentations.ai/docs/introduction/image_augmentation/
https://albumentations.ai/docs/introduction/image_augmentation/
https://doi.org/10.48550/ARXIV.1708.04896
https://doi.org/10.48550/arxiv.1708.04896
https://doi.org/10.48550/ARXIV.1708.04552
https://doi.org/10.48550/ARXIV.1708.04552
https://doi.org/10.48550/arxiv.1708.04552
https://doi.org/10.48550/ARXIV.1811.02545
https://doi.org/10.48550/arxiv.1811.02545
https://doi.org/10.48550/ARXIV.2001.04086
https://doi.org/10.48550/arxiv.2001.04086
https://doi.org/10.48550/arxiv.2001.04086
https://doi.org/10.48550/ARXIV.1710.09412
https://doi.org/10.48550/ARXIV.1710.09412
https://doi.org/10.48550/arxiv.1710.09412

[37] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: reg-

ularization strategy to train strong classifiers with localizable features,

2019. DOI: 10.48550/ARXIV.1905.04899. URL: https://doi.

org/10.48550/arxiv.1905.04899.

[38] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks,

2014. DOI: 10.48550/ARXIV.1406.2661. URL: https://doi.org/

10.48550/arXiv.1406.2661.

[39] V. Thambawita, P. Salehi, S. A. Sheshkal, S. A. Hicks, H. L. Ham-

mer, S. Parasa, T. d. Lange, P. Halvorsen, and M. A. Riegler. Singan-

seg: synthetic training data generation for medical image segmentation.

PLOS ONE, 17(5):1–24, May 2022. DOI: 10.1371/journal.pone.

0267976. URL: https : / / doi . org / 10 . 1371 / journal . pone .

0267976.

[40] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmen-

tation for deep learning. Journal of Big Data, 6:60, 1, July 2019. ISSN:

2196-1115. DOI: 10 . 1186 / s40537 - 019 - 0197 - 0. URL: https :

//doi.org/10.1186/s40537-019-0197-0.

[41] L. Taylor and G. Nitschke. Improving deep learning using generic data

augmentation, 2017. DOI: 10 . 48550 / ARXIV . 1708 . 06020. URL:

https://doi.org/10.48550/arxiv.1708.06020.

[42] H. Naveed. Survey: image mixing and deleting for data augmentation,

2021. DOI: 10.48550/arxiv.2106.07085. URL: https://doi.

org/10.48550/arxiv.2106.07085.

[43] Pytorch. URL: https://pytorch.org/.

[44] Tensorflow. URL: https://www.tensorflow.org/.

105

https://doi.org/10.48550/ARXIV.1905.04899
https://doi.org/10.48550/arxiv.1905.04899
https://doi.org/10.48550/arxiv.1905.04899
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.1371/journal.pone.0267976
https://doi.org/10.1371/journal.pone.0267976
https://doi.org/10.1371/journal.pone.0267976
https://doi.org/10.1371/journal.pone.0267976
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.48550/ARXIV.1708.06020
https://doi.org/10.48550/arxiv.1708.06020
https://doi.org/10.48550/arxiv.2106.07085
https://doi.org/10.48550/arxiv.2106.07085
https://doi.org/10.48550/arxiv.2106.07085
https://pytorch.org/
https://www.tensorflow.org/

[45] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V.

Le, andB. Zoph. Simple copy-paste is a strong data augmentationmethod

for instance segmentation, 2020. DOI: 10.48550/arxiv.2012.07177.

URL: https://doi.org/10.48550/arxiv.2012.07177.

[46] Univrses. URL: https://univrses.com/.

[47] J. Wang, Y. Chen, M. Gao, and Z. Dong. Improved yolov5 network

for real-time multi-scale traffic sign detection, 2021. DOI: 10.48550/

arxiv.2112.08782. URL: https://doi.org/10.48550/arxiv.

2112.08782.

[48] Traffic sign detection via improved sparse r-cnn for autonomous vehi-

cles. Journal of Advanced Transportation, March 2022. ISSN: 0197-

6729. DOI: 10.1155/2022/3825532. URL: https://doi.org/10.

1155/2022/3825532.

[49] D. Tabernik andD. Skočaj. Deep learning for large-scale traffic-sign de-

tection and recognition. IEEE Transactions on Intelligent Transporta-

tion Systems, 21(4):1427–1440, 2020. DOI: 10.1109/TITS.2019.

2913588. URL: https://doi.org/10.1109/TITS.2019.2913588.

[50] Y.-K. Park, H. Park, Y.-S. Woo, I.-G. Choi, and S.-S. Han. Traffic land-

mark matching framework for hd-map update: dataset training case

study. Electronics, 11(6), 2022. ISSN: 2079-9292. DOI: 10 . 3390 /

electronics11060863. URL: https://doi.org/10.3390/electronics11060863.

[51] K. Singh and N. Malik. Cnn based approach for traffic sign recogni-

tion system. Advanced Journal of Graduate Research, 11(1):23–33,

September 2021. DOI: 10.21467/ajgr.11.1.23-33. URL: https:

//journals.aijr.org/index.php/ajgr/article/view/3851.

[52] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for

generative adversarial networks, 2018. DOI: 10.48550/ARXIV.1812.

04948. URL: https://doi.org/10.48550/arxiv.1812.04948.

106

https://doi.org/10.48550/arxiv.2012.07177
https://doi.org/10.48550/arxiv.2012.07177
https://univrses.com/
https://doi.org/10.48550/arxiv.2112.08782
https://doi.org/10.48550/arxiv.2112.08782
https://doi.org/10.48550/arxiv.2112.08782
https://doi.org/10.48550/arxiv.2112.08782
https://doi.org/10.1155/2022/3825532
https://doi.org/10.1155/2022/3825532
https://doi.org/10.1155/2022/3825532
https://doi.org/10.1109/TITS.2019.2913588
https://doi.org/10.1109/TITS.2019.2913588
https://doi.org/10.1109/TITS.2019.2913588
https://doi.org/10.3390/electronics11060863
https://doi.org/10.3390/electronics11060863
https://doi.org/10.3390/electronics11060863
https://doi.org/10.21467/ajgr.11.1.23-33
https://journals.aijr.org/index.php/ajgr/article/view/3851
https://journals.aijr.org/index.php/ajgr/article/view/3851
https://doi.org/10.48550/ARXIV.1812.04948
https://doi.org/10.48550/ARXIV.1812.04948
https://doi.org/10.48550/arxiv.1812.04948

[53] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image

translation using cycle-consistent adversarial networks, 2017. DOI: 10.

48550/ARXIV.1703.10593. URL: https://doi.org/10.48550/

arxiv.1703.10593.

[54] D. Horn and S. Houben. Fully automated traffic sign substitution in

real-world images for large-scale data augmentation:465–471, 2020.

DOI: 10 . 1109 / IV47402 . 2020 . 9304547. URL: https : / / doi .

org/10.1109/IV47402.2020.9304547.

[55] A. Konushin, B. Faizov, and V. Shakhuro. Road images augmenta-

tion with synthetic traffic signs using neural networks, 2021. DOI: 10.

48550/arxiv.2101.04927. URL: https://doi.org/10.48550/

arxiv.2101.04927.

[56] L. Tabelini, R. Berriel, T. M. Paixão, A. F. De Souza, C. Badue, N.

Sebe, and T. Oliveira-Santos. Deep traffic sign detection and recogni-

tion without target domain real images, 2020. DOI: 10.48550/ARXIV.

2008.00962. URL: https://doi.org/10.48550/arxiv.2008.

00962.

[57] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an efficient al-

ternative to sift or surf:2564–2571, 2011. DOI: 10.1109/ICCV.2011.

6126544. URL: https://doi.org/10.1109/ICCV.2011.6126544.

[58] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated

cartography. Commun. ACM, 24(6):381–395, June 1981. ISSN: 0001-

0782. DOI: 10.1145/358669.358692. URL: https://doi.org/

10.1145/358669.358692.

[59] N. Soufi and M. Valdenegro-Toro. Data augmentation with symbolic-

to-real image translation gans for traffic sign recognition, 2019. DOI:

10.48550/arxiv.1907.12902. URL: https://doi.org/10.

48550/arxiv.1907.12902.

107

https://doi.org/10.48550/ARXIV.1703.10593
https://doi.org/10.48550/ARXIV.1703.10593
https://doi.org/10.48550/arxiv.1703.10593
https://doi.org/10.48550/arxiv.1703.10593
https://doi.org/10.1109/IV47402.2020.9304547
https://doi.org/10.1109/IV47402.2020.9304547
https://doi.org/10.1109/IV47402.2020.9304547
https://doi.org/10.48550/arxiv.2101.04927
https://doi.org/10.48550/arxiv.2101.04927
https://doi.org/10.48550/arxiv.2101.04927
https://doi.org/10.48550/arxiv.2101.04927
https://doi.org/10.48550/ARXIV.2008.00962
https://doi.org/10.48550/ARXIV.2008.00962
https://doi.org/10.48550/arxiv.2008.00962
https://doi.org/10.48550/arxiv.2008.00962
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.48550/arxiv.1907.12902
https://doi.org/10.48550/arxiv.1907.12902
https://doi.org/10.48550/arxiv.1907.12902

[60] Hydra. URL: https://hydra.cc.

[61] Road signs in sweden. Wikipedia. URL: https://en.wikipedia.

org/wiki/Road_signs_in_Sweden.

[62] Road signs in sweden.Wikimedia. URL: https://commons.wikimedia.

org/wiki/Road_signs_in_Sweden.

[63] Comparison of european road signs. Wikipedia. URL: https://en.

wikipedia.org/wiki/Comparison_of_European_road_signs.

108

https://hydra.cc
https://en.wikipedia.org/wiki/Road_signs_in_Sweden
https://en.wikipedia.org/wiki/Road_signs_in_Sweden
https://commons.wikimedia.org/wiki/Road_signs_in_Sweden
https://commons.wikimedia.org/wiki/Road_signs_in_Sweden
https://en.wikipedia.org/wiki/Comparison_of_European_road_signs
https://en.wikipedia.org/wiki/Comparison_of_European_road_signs

	Abstract
	Introduction
	Data-hungry machine learning
	Object detection
	Traffic sign recognition
	Data augmentation
	Basic image augmentations
	Image masking augmentations
	Image mixing augmentations
	GAN-based image augmentation
	Effectiveness of image augmentation

	Copy-paste data augmentation
	Domain transfer
	Thesis assumption
	Thesis structure

	Background
	Traffic sign recognition
	Standard augmentation for traffic sign recognition
	Copy-paste augmentation for traffic sign recognition
	Non realistic copy-paste
	Realistic copy-paste

	Methods
	Copy-paste augmentation
	Signs to paste
	Number of signs per image
	Position
	Scale
	Rotation along the three axes
	Brightness
	Contrast
	Gaussian noise
	Motion blur
	Edge blur

	Domain transfer

	Material
	Datasets
	Sign classes
	Training data
	Validation and testing data

	Model
	Tools

	Experiments and results
	Training with real yellow signs
	Training with synthetic yellow signs
	Realistic copy-pasted training data
	Ablation studies on realistic augmentations
	Ablation studies on non-realistic augmentations

	Training with real and synthetic yellow signs
	Training with domain-transferred yellow signs
	Ablation studies on domain transfer

	Validating with synthetic yellow signs
	Realistic copy-pasted validation data with non-realistic copy-pasted train data
	Non-realistic copy-pasted validation data with non-realistic copy-pasted train data
	Domain-transferred validation data with non-realistic copy-pasted train data
	Realistic copy-pasted validation data with real train data
	Non-realistic copy-pasted validation data with real train data
	Domain-transferred validation data with real train data

	Conclusion
	Discussion of experiments results
	Training experiments
	Validation experiments

	Future developments

	Bibliography

