Antibody-Antigen Interface Characterization with Contextualized Pre-trained Embeddings

Tudosie, Serban Cristian (2023) Antibody-Antigen Interface Characterization with Contextualized Pre-trained Embeddings. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

Artificial Intelligence (AI) has substantially influenced numerous disciplines in recent years. Biology, chemistry, and bioinformatics are among them, with significant advances in protein structure prediction, paratope prediction, protein-protein interactions (PPIs), and antibody-antigen interactions. Understanding PPIs is critical since they are responsible for practically everything living and have several uses in vaccines, cancer, immunology, and inflammatory illnesses. Machine Learning (ML) offers enormous potential for effectively simulating antibody-antigen interactions and improving in-silico optimization of therapeutic antibodies for desired features, including binding activity, stability, and low immunogenicity. This research looks at the use of AI algorithms to better understand antibody-antigen interactions, and it further expands and explains several difficulties encountered in the field. Furthermore, we contribute by presenting a method that outperforms existing state-of-the-art strategies in paratope prediction from sequence data.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Tudosie, Serban Cristian
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
nlp,computer vision,transformers,antibody,antigen,protein,protein embeddings,bert,esm,artificial intelligence,lead optimization,protein-protein interactions,sabdab,machine learning,graph neural networks,embeddings,paratope prediction,natural language processing,language of life
Data di discussione della Tesi
3 Febbraio 2023
URI

Altri metadati

Gestione del documento: Visualizza il documento

^