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Abstract

Axion like particles (ALPs), i.e., pseudo-scalar bosons interacting via derivative couplings, are a generic
feature of many new physics scenarios, including those addressing the strong-CP problem and/or the
existence of dark matter. Their phenomenology is very rich, with a wide range of scales and interactions
being directly probed at very different experiments, from accelerators to observatories. In this thesis,
we explore the possibility that ALPs might indirectly affect precision collider observables. In particular,
we consider an ALP that preferably couples to the top quark (top-philic) and we study new-physics
one-loop corrections to processes involving top quarks in the final state. Our study stems from the
simple, yet non-trivial observation that one-loop corrections are not infrared divergent even in the
case of negligible ALP masses and therefore can be considered on their own. We compute the one-
loop corrections of new physics analytically in key cases involving top quark pair production and then
implement and validate a fully general next-to-leading-order model in MadGraph5_aMC@NLO, which
allows to compute virtual effects for any process of interest. A detailed study of the expected sensitivity
to virtual ALPs in top-quark pair production at the LHC is performed.
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Chapter 1

Introduction

Research in particle physics has achieved many fundamental results in the last fifty years culminating
with the Higgs boson discovery in 2012 at the Large Hadron Collider (LHC) at CERN. The Higgs
boson was the last particle predicted by the Standard Model (SM) left to be observed. A new era
towards identifying what is beyond the SM has therefore started. The SM, as it is, presents theoretical
limitations and leaves several open questions vis-à-vis observations, that will be faced in the next
decades. A concise summary of these problems can be found in [1]. Among them, the strong CP
problem emerges as a long-standing puzzle. Several solutions have been proposed in the literature,
including the existence of a new particle, an axial pseudo-goldstone boson, coupling derivatively to
the SM particles. Generic particles with this property are commonly referred to as ALPs (Axion Like
Particles). While we will discuss the strong CP problem and the characteristic of these particles later
in the introduction, it is worth mentioning ALPs could also play a role in the Dark Matter (DM)
problem: in some scenarios, ALPs could contribute to a fraction or all of the cold DM.

ALPs can be searched for in a wealth of experiments, from accelerator based ones, such as fixed
target experiments at high intensity, to astroparticle observatories, to astrophysical and cosmological
observations. It is also possible to look for ALPs in collider experiments. In this case, ALPs could
either introduce new exotic signatures (via real radiation) or modify SM predictions (via loops). The
simplest possibility is looking for missing transverse energy or momentum in events. This implies a
very precise reconstruction of the energy and momentum of the particles in the process. A second
possibility is to look for indirect effects in high-precision observables, i.e., look for loop effects that
modify observables such as the invariant mass or the pseudo-rapidity, or other distribution of final
states that can be easily measured in colliders. The top-quark, as we will see later in this chapter,
is a perfect probe to look for ALPs, mainly because it is produced with large rates at the LHC and
it has a very distinctive signature, allowing almost background-free and very precise measurement of
kinematic distributions. Top-quark-related measurements are so precise that have been proposed to
indirectly constrain the Higgs Yukawa coupling at LHC, something that has been achieved recently by
the CMS collaboration [2]. It is possible to look at EW loops containing the Higgs in the tt̄ production
in order to theoretically predict how different values of the Yukawa coupling would change top-quark
kinematic distributions. One of the purposes of this work is to motivate doing a similar analysis for
constraining the ALPs, considering a more general spin-0 particle, interacting with the top-quark as

Lint = −X0t̄(g + ig̃γ5)t . (1.0.1)
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The CP odd coupling to the fermion in Yukawa interaction is the distinctive sign of ALPs. To
work in full generality and make connections with known results for the CP-even coupling, we consider
the more general coupling above. This is also the approach followed in the literature in the context of
the Higgs CP properties characterization [3] [4]. The choice of focusing on the top-quark interactions
stems from the reasons stated before, on its rich phenomenology at the LHC, and from the possibility of
accessing a lot of information from the final states, including measuring the top-quark spin correlation
and studying how new physics (NP) next-to-leading order (NLO) processes would change it. There
are also reasons from the model-building point of view, that are currently investigated[5].

In this chapter, we will be giving a brief introduction about ALPs particles. Later in the chapter,
we will introduce top-quark properties and the key role it plays in Electroweak (EW) theory and in
collider physics.

In the second chapter, we will analyze in detail the real-emission processes for vector, scalar and
pseudoscalar particles, computing them in the soft limit. We will also run simulations to confirm our
calculations.

In the third chapter, we will analyze in detail the virtual corrections to the process qq̄ → tt̄ due
to the interaction in the Lagrangian (1.0.1). We will compute, in particular, the new-physics one-
loop corrected amplitude in the scalar (g̃ = 0) and in the pseudoscalar case (g = 0), with particular
attention to the limit mX0

→ 0, that will be related to the same limit in the real emission processes.
In order to study the kinematical distribution of the tt̄ in the process pp→ tt̄ we have realized a UFO
model, which is the standard way for implementing in Madgraghp5_aMC@NLO input parameters and
Feynman rules for new interactions, including UV counterterms. For its validation, we will use the
result for the one-loop corrected amplitude obtained from the qq̄ → tt̄ calculation.

In the fourth and final chapter, we will analyze the new-physics virtual correction to the process
pp → tt̄. To this end, we will plot for different benchmark points of our model parameters g and g̃
the invariant mass distribution of the tt̄ pair, the distribution of the transverse momentum pT (t), the
distribution of the top-quark rapidity yt and the distribution of the difference between yt − yt̄. For
each different benchmark point, we will discuss the new-physics NLO corrections, their implications
and in particular their behaviour with respect to mX0

.

1.1 ALPs, axial current and couplings
ALPs are one of the possible solutions to the strong CP problem, which consists of the fact that in the
QCD Lagrangian it is possible to introduce a charge-parity (CP) violating term, but the experiments
do not measure its phenomenological consequences: a non-vanishing neutron dipole moment. In the
following we start describing the strong CP problem: in a general Lagrangian, any term allowed by
the underlying symmetry group should be present. Defining the gluon field strength tensor Gµνa =
∂µAνa − ∂νAµa and the gluon dual field strength tensor G̃µν = 1

2ε
µνρσGρσ, where Aµa is the gluon field,

it is possible to adds in the QCD Lagrangian the term

θQCD

32π2
TrGµνG̃µν .

This term was initially discarded because it is a total derivative [6]

TrGµνG̃µν = ∂µTr
[
εµνλσAν(∂λAσ +

2

3
AλAσ)

]
.
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We know that in general total derivatives in Lagrangians can be neglected because the fields vanish
at the boundaries. On the other hand, certain field configurations in non-abelian theories do not
decrease fast enough at the boundaries to allow the removal of the total derivative. These configurations
are non-trivial topological solutions to the field equations and are called solitons. It is possible to show
[7] that the CP-violating term can be rewritten in terms of the quarks field. Doing this we obtain a
new CP violating term in the Lagrangian

δLCP = q̄f1iγ5θf1,f2qf2,

where θf1,f2 is a hermitian matrix with the indices indicating the quarks flavours, which contains the
θQCD dependence.

The CP-violating term implies the existence of a non-vanishing neutron electric dipole moment
given by the effective Lagrangian

LEDM = −dN
2
(ψ̄Niγ

5σµν)ψNFµν ,

that is related to θQCD through

dn = (2.4± 1.0)θQCD 103e fm.

It is possible to experimentally measure the neutron electric dipole moment and the best current
measurement leads to the bound [8]:

|θ|QCD < 1.3 10−10. (1.1.1)

In order to explain this unnaturally low value of θQCD, Peccei and Quinn proposed that this term
arises from a spontaneously broken U(1)A [9]. Weinberg and Wielzeck noted that this spontaneously
broken symmetry can lead to a new pseudo-Nambu-Goldstone boson: the axion a. The axion-gluon
interaction term will be

Lgga = −αs
8π

TrGµνG̃µν
a

fa
,

where fa is a parameter related to the scale of the spontaneously broken symmetry. All the other
terms in which a appears in the Lagrangian are of a derivative type so, except for the gluon term,
we have a shift symmetry: a → a + fa. We can use this shift symmetry to reabsorb θQCD in the
original Lagrangian, this will leave a/fa = θ(t, x) as a dynamical phase. Vafa and Witten proved that
in absence of other CP-violation sources, the QCD vacuum energy has an absolute minimum at θ = 0
[10], so given enough time θ will relax to the minimum of its potential solving the so-called CP strong
problem (the absence of the neutron dipole electric moment).

The tree-level potential of the QCD axion can be calculated with the methods developed in chiral
perturbation theory, giving

VQCD(θ) = −(mπfπ)
2

√
1− 4

mumd

(mu +md)2
sin2

(
θ

2

)
, (1.1.2)

where mumd are the up quark and down quark masses, mπ is the pion mass and fπ ≈ 93MeV is the
pion decay constant. The oscillatory behaviour of the axion potential makes it a very good candidate
for cold dark matter. We will not enter the details here but the general idea is that if we take a
large fA, the axion will be a very weakly coupled field and due to its oscillating potential will form an
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axion-condensate with the exact same properties of dark matter. The QCD axion does not exhaust all
the possibilities of axion-like particles (ALPs) and in the next paragraphs, we will present some toy
models in which the pseudoscalar coupling arises. In particular, we will show that this coupling can
arise in chiral theory with broken axial symmetry and that it can be written in two different ways that
are equivalent for on-shell fermions.

1.1.1 Axial current in sigma models
Let’s consider the following Lagrangian [11], in which a fermion ψ interacts with two spin-0 particles
π and σ

L = iψ̄∂µγ
µψ +

1

2
∂µπ∂

µπ +
1

2
∂µσ∂

µσ − ψ̄(gσ + igγ5π)ψ − V (σ, π), (1.1.3)

where we can realize the following field transformations:
δψ = i

2αγ5ψ,

δψ̄ = i
2αψ̄γ5,

δσ = απ,

δπ = −ασ.

Using (A.0.6), the kinetic part of L transforms as

δLkin =iδψ̄∂µγ
µψ + iψ̄∂µγ

µδψ + ∂µπ∂
µδπ + ∂µσ∂

µδσ =

=− 1

2
αψ̄∂µγ5γ

µψ − 1

2
αψ̄∂µγ

µγ5ψ − ∂µπ∂µσ + ∂µσ∂
µπ =

=− 1

2
αψ̄∂µγ5γ

µψ +
1

2
αψ̄∂µγ5γ

µψ = 0, (1.1.4)

while the interaction part, considering δV (σ, π) = 0, transforms as

δLint =− 2ψ̄(gσ + igγ5π)δψ − ψ̄(gδσ + igγ5δπ)ψ − δV (σ, π)

=− aψ̄(igσ − gγ5π)γ5ψ − αψ̄(gπ − igγ5σ)ψ =

=− igασψ̄γ5ψ + agπψ̄ψ − απgψ̄ψ + igασψ̄γ5ψ = 0. (1.1.5)

Of course, for this equality to work, we had to assume a potential that is invariant under the transform-
ation in (1.1.1). The axial transformation we have written can then be associated with a conserved
axial current. From Noether’s theorem we have

Jµ =
∂L

∂∂µφn

δφn
δα

, (1.1.6)

which for our Lagrangian this means

Jµ =
1

2
ψ̄γ5γ

µψ + π∂µσ − σ∂µπ. (1.1.7)

Using Noether theorem we know that ∂µJµ = 0, so

0 =
1

2
∂µ(ψ̄γ5γ

µψ) + (∂µπ∂
µσ − ∂µπ∂µσ)− σ�π + π�σ =

1

2
∂µ(ψ̄γ5γ

µψ)− σ�π + π�σ = 0.
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If the scalars are massless, using the equation of motion we find:

0 = ∂µ(ψ̄γ5γ
µψ). (1.1.8)

Now we can break this symmetry to obtain an effective theory in which only the effects of the
pseudoscalar are visible up to a certain energy. Choosing the potential such that the minimum enforces
〈π〉 = 0, 〈σ〉 = −v, we can make a field redefinition σ = σ′−v. We then can keep only the pseudoscalar
interaction up to a certain energy choosing the scalar potential in such a way that σ′ has a large mass.
With the new field, we obtain

Leff =iψ̄∂µγ
µψ +

1

2
∂µπ∂

µπ + Lσ′ − ψ̄(gv + igγ5π)ψ − V (π), (1.1.9)

Lσ′ =
1

2
∂µσ

′∂µσ′ − gσ′ψ̄ψ − V (σ′). (1.1.10)

With this mechanism, fermions obtain masses with value m = gv. Choosing a large value for the σ
mass implies that it is possible to see the scalar σ or its effects only at very high energy. In this way,
we have started with a Lagrangian that had a U(1)A symmetry and we have ended up with an effective
low energy Lagrangian Leff that has lost this symmetry. Neither to say, if we keep the whole Leff +Lσ′

the U(1)A symmetry is still intact.

1.1.2 Pseudoscalar interaction arising from chiral interaction
We can consider a different type of model in which the pseudoscalar originates in a totally natural
way. Consider a complex scalar H interacting with a fermion ψ with the following Lagrangian

L = ∂µH∂
µH∗ + iψ̄L∂µγ

µψL + iψ̄R∂µγ
µψR − y(H∗ψ̄LψR +Hψ̄RψL)− V (H).

We can consider a U(1)A transformation for which
δψL = −iqαψL,

δψR = +iqαψR,

δH = 2iqαH.

Using (1.1.6) we can find the conserved current

Jµ = 2(H∂µH∗ −H∗∂µH)− i(ψ̄Lγ
µψL − ψ̄Rγ

µψR),

which implies
∂µ(ψ̄Lγ

µψL − ψ̄Rγ
µψR) = 0.

We can now promote the transformation parameter to a field:
ψ′
L = e−iq

π(x)
f ψL

ψ′
R = e+iq

π(x)
f ψR

H ′ = e2iq
π(x)
f H,

the interaction Lagrangian remains the same, but we have a new kinetic term

L′
kin = ∂µH∂

µH∗ + iψ̄L∂µγ
µψL + iψ̄R∂µγ

µψR +
q

f
(∂µπ)(ψ̄Lγ

µψL − ψ̄Rγ
µψR).
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This term represents the interaction of the Goldstone boson π with the fermion ψ. We can rewrite
this term in order to make explicit a U(1)A-like current in the interaction

q

f
(∂µπ)(ψ̄Lγ

µψL − ψ̄Rγ
µψR) =

q

f
(∂µπ)(ψ̄γ

µ 1− γ5
2

ψ − ψ̄γµ 1 + γ5
2

ψ) =

=− q

f
(∂µπ)ψ̄γ

µγ5ψ. (1.1.11)

This gradient operator has dimension 5, so the interaction is not renormalizable, but, as we will see in
the next section, it is possible to connect it to a dimension-4 Yukawa-like operator that is the same
present in the CP-odd part of our model Lagrangian (1.0.1).

1.1.3 Gradient model and Yukawa model connection
Without considering any Goldstone boson or any connection to other theories we can simply insert in
the Lagrangian a Yukawa interaction with a pseudoscalar coupling

Lyuk = −igπψ̄γ5ψ, (1.1.12)

this term is in some way connected to the gradient term we have presented in the previous section

Lgrad = − q
f
(∂µπ)ψ̄γ

µγ5ψ. (1.1.13)

These two interactions are not the same and will, in general, give us different amplitudes. We can
simply see this by writing down the Feynman rules for the two models

p

p1 p2
= gγ5

p

p1 p2
= − q

f
/pγ5

Figure 1.1.1: Feynman rules for the two vertices. Yukawa left, gradient right

However, these interactions can be related using the equations of motion (A.0.21) and (A.0.22)

− q
f
(∂µπ)ψ̄γ

µγ5ψ =
q

f
π∂µ(ψ̄γ

µγ5ψ) =
q

f
π[(∂µψ̄)γ

µγ5ψ − ψ̄γ5γµ(∂µψ)] =

=
2iqm

f
πψ̄γ5ψ, (1.1.14)

that is the same term of (1.1.13) if we define

g ≡ −2qm

f
.
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In (1.1.14) we have used the equation of motion for a free fermion, this only makes sense if we
look at external legs, if we want an always valid relation we should look at the full Lagrangian and so
the relation between the two operators is not valid anymore. Nevertheless, we can consider a process
such as the real emission of a pseudoscalar from a fermion anti-fermion couple. In the soft momentum
limit, the off-shell leg from which the pseudoscalar is emitted is almost on-shell and so the relation
(1.1.14) is almost exact. We can consider now a general emission process of a particle π, from a fermion
anti-fermion couple. In the case of π being a vector or a scalar, the real emissions process will induce
an effect of order

g2π ln
s

m2
π

(1.1.15)

after the integration over the π momentum, where g2π is the interaction coupling of π with the fermion,
mπ is the mass of π and s is the fermion pair invariant mass. The case of a massless π case implies
infrared divergences, and in general, the smaller mπ, the larger will be the effect of the emission.

The situation in the case of a pseudoscalar π is different. In this section, we have seen that the
associated Feynman rule for a pseudoscalar interacting via a CP-odd Yukawa coupling is equivalent
to another one with an overall factor p in front. For this reason, in the soft limit (p → 0) the related
real emission amplitude should vanish or give a constant term and therefore we expect the absence
of infrared divergences. This property can be exploited from a phenomenological point of view: the
mass of the pseudoscalar can be taken as small as we want without having divergent amplitudes, or
equivalently large corrections due to real emission.

The behaving mentioned here will be the argument of the chapter 2, in which we will compute in
detail real emission in the soft momentum approximation for the vector, scalar and pseudoscalar case.

1.2 Top-quark phenomenology
The top-quark t is the up-type quark of the third SM fermion family, which includes the bottom quark
b, the tau lepton τ and the tau-neutrino ντ . It was discovered in 1995 by the CDF and D/O experiments
[12] [13], the present measured mass value is 172.69 ± 0.30GeV [14]. To make the discovery the two
experiments studied pp̄ collisions at

√
s = 1.8TeV looking for the process t̄t→ W+bW−b̄ and for the

subsequent decays W+bW−b̄→ `νqq̄bb̄ and W+bW−b̄→ `ν`′ν′bb̄.

t
W+

q

b̄

q̄′

t
W+

`+

b̄

ν`

Figure 1.2.1: Representative Feynman diagrams of the two top-quark decay processes taken in consideration
for its discovery.

The top-quark phenomenology [15] [16] is very rich, and due to the large top-quark mass a perfect
playground for the search of new physics. Before putting our nose inside top-quark phenomenology,
we will take a look at top-quark production modes and decays.
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1.2.1 Top-quark production at hadron colliders
The are two partonic processes in hadron colliders, depicted in figure 1.2.2, that can generate a tt̄ pair.

q

tq̄

t̄

t

t̄

t

t̄ (1.2.1)

Figure 1.2.2: Partonic processes producing a tt̄ pair final state.

At low energy, the quark annihilation channel is the favoured one, while at high energy it is the
contrary. At the Tevatron (

√
s = 1.96 TeV) 85% of the production cross section is from the quark

annihilation, with the remainder from gluon-gluon fusion, at the LHC at
√
s = 13TeV(

√
s = 7TeV),

about 90% (80%) of tt̄ production is from gluon-gluon fusion. Predictions for the cross section are
computed at the next-to-next-to-leading order (NNLO), meaning two-loop corrections and resumming
at all order a class of the logarithmic-enhanced contribution [17]. This is sufficient to give us an idea
of how precise the top-quark physics is.

Besides gluon fusion and quark annihilation that produces a tt̄ couple, it is possible to produce a
single top-quark via EW interactions

q

q̄′

W
t

b̄

b t

q q′
W

b W

g t

t̄

Figure 1.2.3: EW processes producing a single top-quark from an initial QCD state.

the process are qq̄′ → tb̄, qb→ tq′ and bg →Wt, the so-called associated W production.
The top-quark decays almost immediately due to its large mass, the dominant process is t→ bW+

with a branching ratio BR = 0.998. As we will repeat later the b quark can be experimentally tagged,
making the collision event reconstruction very precise. This allows a very accurate measurement of
kinematical distributions of the original tt̄ couple, in which we can search new-physics signs. The decay
chain branching ratios are:

t̄t→W+bW−b̄→ qq̄′bq′′q̄′′′b̄ (45.7%)

t̄t→W+bW−b̄→ qq̄′b`−ν̄`b̄ (43.8%)

t̄t→W+bW−b̄→ `+ν`b`
′−ν̄`′ b̄ (10.5%)
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Even if the first process has the highest rate, it is not necessarily the easiest channel to look at,
this because in hadron colliders there is a lot of QCD background coming from jet production. For
this reason, even if the second and third processes have lower rates, they were considered the golden
channels for top-quark discovery.

1.2.2 Relevance of top-quark in EW physics
Although we do not study the top-quark mass in this thesis, we want to motivate why the study
of top-quark physics is very important not only for the top-quark sector itself. For this reason, we
consider the relation of the top-quark mass with the electroweak sector. Due to its large mass, the
top-quark gives the dominant contribution in EW loops, because yt ∼ mt/v (where v is the Higgs vev
and v ≈ 246 GeV) is by far the largest Yukawa coupling between all the SM fermions. In order to
understand how the top-quark corrects the EW observables, we can consider, for example, the two
diagrams involving Z and W vector bosons and b and t quarks in figure 1.2.4.

Z

t̄

t

Z Z
t

b

t̄

W

b̄

(1.2.2)

Figure 1.2.4: Top-quark loop correction to Z boson two-point function and to Z decay into a bb̄ couple.

Due to the Higgs mechanism, we know that:

ρ ≡ m2
W

m2
Z cos2 θW

→ ρtree = 1, (1.2.3)

where ρtree is the theoretical value of ρ at the tree-level and cos θW = mW /mZ . The relation ρ = 1 is
not anymore true once we take into consideration loop corrections

∆ρ =
1− ρ
ρ

=
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

, (1.2.4)

where ΠV V is the real part of the transverse component of the self-energy of the vector boson V . The
top-quark, due to its large mass, plays a key role in the correction to mZ through the Z self-energy.
This dependence makes the top-quark the game-changer in the whole electroweak precision observable
sector, in fact, the parameter ∆ρ depends almost exclusively on its mass. It has been calculated that

∆ρ =3xt[1 + ∆ρQCD +∆ρEW], (1.2.5)

xt =
Gµm

2
t

8
√
2π2
≈ 0.3%. (1.2.6)

In equation (1.2.5), ∆ρQCD contains the higher order (NNLO, NNNLO) QCD corrections and ∆ρEW

the twoloop electroweak corrections (neglecting the Higgs mass ∆ρEW ∼ −xt) [18].
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H

t

t

H

H t

t

H (1.2.8)

Figure 1.2.5: Fermionic-loop correction to the Higgs 4-point function.

Another important observable in the EW sector is the branching ratio BR(Z → bb̄) and so from
a theoretical point of view Zbb̄ vertex corrections are of fundamental importance. Z decay into bb̄ is
a well-measured process because the b-quark is experimentally distinguishable from light quarks and
gluon jets due to its relatively large mass and lifetime. The effect of the one-loop correction to the Zbb̄
vertex can be written by shifting the vector coupling to the fermion by a quantity (∆b/4 sin θW). The
correction ∆b is proportional to the mass squared of the fermion running inside the loop in the second
diagram of 1.2.4, so maximum for the top-quark [18].

∆b = −
Gµ

4
√
2π2

(
m2
t +

1

3
m2
W (1 + cos2 θW) ln

m2
t

m2
W

)
. (1.2.7)

Another electroweak process in which the top-quark plays a prominent role is the one in figure 1.2.5.
This diagram corrects the Higgs self-coupling λ. Renormalizing the EW Lagrangian, the parameter
λ runs with the energy Q. Looking at the running of this parameter it is possible to put constraints
on the Higgs boson mass assuming the scale in which new physics should emerge. Of course, it is also
possible to do the contrary, and find at which scale we expect new physics given the measured Higgs
mass. In order to do this is useful to look at what happens at small λ values, where λ� λt, g1, g2. In
this case, the RGE for the Higgs self-coupling give us [18]

λ(Q2) = λ(v2) +
1

16π2

[
−12m

4
t

v4
+

3

16
(2g42 + (g22 + g21)

2)

]
ln
Q2

v2
. (1.2.9)

If λ becomes negative at a certain energy the Higgs vacuum becomes unstable because it has no
minimum anymore. In order to avoid this we can assume the existence of new physics at the scale
where this happens, having in mind that this new physics could correct this behaviour. The energy scale
at which this happens is strongly dependent on the top-quark mass, in fact for mt = 173.1± 2.1GeV,
the error on top-quark mass allows this scale to vary by six orders of magnitude: 108 GeV < µneg <
1014 GeV [19].

1.2.3 Top-quark decays, hadronization and spin correlation
There is another reason the top-quark mass plays a key role in phenomenology and it is related to the
top-quark decays and hadronization. We can roughly estimate the hadronization time as the inverse
of ΛQCD, because it is the characteristic energy for which non-perturbative effects become dominant
in a QCD process. A better estimate can be carried out using Non-Relativistic Quantum Mechanics
(NRQM), justified by the high top-quark mass. The NRQM QCD potential can be modelled as a
Coulomb plus linear potential

V (r) = −4

3

αs
r

+ kr, (1.2.10)
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where the parameter k is independent on the energy scale and can be extracted by fitting the energy
levels given by this potential in the Schrödinger equation with the ones measured experimentally in
the charmonium (cc̄) or in the bottomonium (bb̄) mesons. The reason why we discuss it here, will be
more clear at the end of this section.

For the first bound state we have a negative energy eigenvalue, this means that the Coulomb-
like potential dominates the linear one; the greater the mass and αs, the better this approximation
becomes. So only for the ground state let’s suppose that

V0(r) ' −
4

3

αs
r
. (1.2.11)

The Schrödinger equation for this potential is analytically solvable, and the ground state energy
results to be

E1 = −µ
2

(
4

3
αs

)2

, (1.2.12)

where µ is the mass of the quarkonium taken into consideration.
We can now use the virial theorem, which for the Coulomb potential leads to

〈T 〉 = −E =
µ

2

(
4

3
αs

)2

, (1.2.13)

and because our treatment is non-relativistic, by (1.2.13) we find that

v =
4

3
αs. (1.2.14)

From the hydrogen atom theory, we also know that the average radius of the ground state is

R0 =
3

4µαs
=

1

µv
. (1.2.15)

Using this information, with a simple approximation

τform =
2πr1S
v1S

=
9π

8µtt̄α2
s

≈ 1

0.6
GeV−1. (1.2.16)

The lifetime of a bounded tt̄ state is instead: 1/2Γt ≈ 1/2.8GeV−1 and so much smaller than the
formation time. Toponium (tt̄ bounded state) formation and detection play a key role in the search
for new physics, the exchange of new particles could change the formation time, for example at LHC,
in which the gg → tt̄ process production mode is the dominant one, we have, between the others, the
virtual diagrams in figure 1.2.6.
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X0 X0

(1.2.17)

Figure 1.2.6

Virtual exchanged particles change the formation time and so the production rate of toponium,
these quantities can be measured in order to put constraints on the intensity of new-physics interaction.

The non-hadronization of the top-quark can be exploited for other measurements. The top-quark
decay almost exclusively semi-weakly as t → W+b, the fact that the top-quark decays before inter-
acting, makes it possible to measure very accurately the CKM value |V |tb. New-physics effects could
then be searched in anomalies in this coupling.

Yet another way to exploit this property is by studying top-quark pair spin correlation. Light
quarks hadronize before decaying allowing depolarization and spin flip. The same does not happen to
top quarks. In order to understand why this is the case let’s look back at the possible way in which
we can produce a tt̄ pair in 1.2.2.

In the first diagram, we have qq̄ → tt̄. The sub-process qq̄ → g implies the exchange of a spin 1
particle. Due to this fact, the only allowed combinations in the final state are: qLq̄R, qRq̄L and the
spins of the two produced top-quark must be aligned [20].

The initial state gluon fusion processes are more complicated: only in one case the s-channel forces
the previous situation, but this is not the case for the u and t-channels. We have two possibilities
in the initial state: gLgR interaction, producing spin-aligned quarks and gLgL, gRgR interactions, in
which spins are in opposite directions [21].

A good observable for this quantity is the correlation

C =
σ(tRt̄R + tLt̄L)− σ(tLt̄R + tRt̄L)

σ(tRt̄R + tLt̄L) + σ(tLt̄R + tRt̄L)
. (1.2.18)

Both these quantities have been measured at Tevatron and LHC, the interesting differences arise
from the fact that at Tevatron the qq̄ → tt̄ dominates over the gg → tt̄ process, while at LHC it is
exactly the opposite. At the threshold, at Tevatron, the tt̄ pair has zero angular momentum, so it is
in the state 3S1, spin eigenstates are:

|−−〉,
1√
2
(|+−〉+ |−+〉),

|++〉.
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Since the t and the t̄ move oppositely in the couple centre-of-mass frame, they have opposite helicities
if they have the same spin. At the threshold the correlation will be:

C =
1

3
− 2

3
= −33%.

At high energies, helicity conservation gives instead C = −100%. Adding the gluon contribution
and considering PDFs, in average C ≈ −40%

At LHC the tt̄ pair near the threshold is in the 1S0 state

1√
2
(|+−〉 − |−+〉)

and C = +100%. At high energies, helicity conservation imposes opposite helicities again. Averaging
and considering PDFs, C ≈ 31% [22].

NLO contributions enter into the computation of these quantities and can change more or less
significantly the spin correlation. This is of course also the case for new-physics interactions. The
diagrams shown in figure 1.2.6 are exactly those we are going to calculate in this thesis. We will not
investigate and study their impact on spin polarization or on the correlation C, but this kind of study
is an example of possible future developments of the results obtained in this thesis. This is the reason
why we have introduced this section here.
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Chapter 2

Infrared divergences in real
emissions

As we have said in the previous chapter, the first possibility to search for new physics consisting of
invisible particles is looking at missing transverse energy or momentum. In hadronic colliders due
to the partonic structure of the incident particles, the total momentum along the collision axis is
unknown. What is known is that the total initial transverse momentum (~pT,i) is equal to zero. Due
to the momentum conservation

~pT,i = ~pT,f = 0, (2.0.1)

where ~pT,f is the total final transverse momentum. However, the measured ~pT,f can be different from
zero, because particles that do not interact via QED and QCD, are not visible to detectors. In this
case, we will have a missing transverse momentum (~pT,missing). If in the process pp→ tt̄X0, X0 is an
ALP, it will be invisible to the detectors and we will have ~pT,missing. We can determine its value using
(2.0.1).

~pT,X0 = ~pT,missing = −~pT,f,visible = −~pT,t − ~pT,̄t. (2.0.2)

Measuring the pT,missing it is possible to set bounds on new physics parameters related to the decay of
SM particles into invisible particles. The first difficulty, in this kind of procedure, is to obtain a precise
measurement of the final transverse momentum in the context of the event reconstruction. Besides
this, in colliders, we never detect the produced t and t̄ directly, but the product of their decay. The
top-quark mainly decays as t → W+b and the following W+ → `+ν` produces neutrinos, which are
invisible particles. In this case, (2.0.2) must be revised and becomes

~pT,missing = ~pT,X0
+ ~pT,invisible,SM = −~pT,f,visible. (2.0.3)

To overcome this problem we need to simulate the pp → tt̄X0 process and the top-quark decays in
order to predict the transverse momentum distribution of the final invisible SM particles.

As we have said in the introduction, real emission processes like ff̄ → ff̄π, for π scalar-like or
vector-like particle, are characterized by the dependence:

σff̄π ∝ g2π ln
(

s

m2
π

)
, (2.0.4)
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where gπ is the coupling of the π particle to the fermion f and mπ is the π particle mass. The existence
of new physics in real emission processes is bounded by experimental measurements, so we cannot have
too much large NP effect, because they are excluded by existing measures. Looking at (2.0.4) this
implies having a small value of gπ or a large value of the mπ. This well-known behaviour presents an
exception for the case of pseudoscalar particles for which, as we will show later, we have no logarithmic
infrared divergences when the mass goes to zero, and, in fact, in that limit, the cross section goes like
a constant.

In this chapter, we will review the process of real emission for the case of vector, scalar and
pseudoscalar particles, and the different behaviours with regard to the energy of the processes, in
order to verify in a formal way what we have said before.

In order to make the discussion more fluent here we will only present the main results , the details
of the calculations can be found in appendix B.

2.1 Soft vector emission
The interaction Lagrangian for a vector boson Aµ and a fermion ψ is

Lint = −gψ̄ /Aψ. (2.1.1)

We want to inspect the emission of the vector particle for low momenta, we consider here the following
sub-process

f −→ f + γ,

where f is a generic fermion and γ is the massless vector boson. For this process we have two Feynman
diagrams:

p
f

p′

k

f f

γ

(2.1.2)

p

f

p′

k

f f

γ

(2.1.3)
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Following [23], we can compute the amplitude as

iM = (ig)ū(p′)

[
M0(p

′, p− k)
(

/p− /k +m

(p− k)2 −m2

)
γµε∗u+

+ γµε∗u

(
/p
′ + /k +m

(p′ + k)2 −m2

)
M0(p

′ + k, p)

]
u(p). (2.1.4)

We are interested in the infrared emission case, so taking into account
∣∣∣~k∣∣∣ � |~p− ~p′|, we will have

M0(p
′ + k, p) 'M0(p

′, p− k) 'M0(p
′, p) and the momentum /k will be negligible in the numerators.

With these tricks and using the fact that k2 = 0 and p2 = p′2 = m2, we are able to write

iM = (ig)ū(p′)

[
M0(p

′, p)

(
−/
p+m

2p · k

)
γρε∗ρ + γµε∗µ

(
/p
′ +m

2p′ · k

)
M0(p

′, p)

]
u(p). (2.1.5)

Then we can work on the numerator to obtain

iM = (ig)ū(p′)M0(p
′, p)u(p)

[(
−
pµε∗µ
p · k

)
+

(
p′µε∗µ
p′ · k

)]
. (2.1.6)

In this way, we have obtained a factorization of the process, in which the massless vector emission
part stands alone. We now choose a frame in which p0 = p′0 = E and we define the 4-vectors explicit
as:

kµ = (Ek,~k), pµ = E(1, ~v), p′µ = E(1, ~v′). (2.1.7)

Summing over polarization and spins we obtain

1

(2π)3
d3k

2Ek
|M|2 = |M0|2 dFf→fγ . (2.1.8)

The differential form factor in this frame is

dFf→fγ =
d3k

2Ek

g2

(2π)3

[
− m2

(p · k)2
− m2

(p′ · k)2
+

2p · p′

(p · k)(p′ · k)

]
=

α

2π
dEk

1

Ek
Iγ(~v,~v

′), (2.1.9)

where the full form of I(v, v′) and all the calculations can be found in appendix B .
The Iγ(~v,~v

′) term does not depend on Ek, so we can integrate the momentum of the vector boson
that should go from 0 to ∆E = |~p− ~p′|

dFf→fγ ∝
∫ ∆E

0

1

Ek
dEk →∞. (2.1.10)

This is the term that contains the infrared divergence. In order to obtain a finite result one can regulate
the integral giving the photon a small mass mγ . This can be done at the end of the calculation because
if we consider high energetic processes, the kinetic part dominates over the mass in the denominator
of (2.1.4)

dFf→fγ ∝
∫ ∆E

mγ

1

Ek
dEk = log

(
∆E

mγ

)
. (2.1.11)
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Now we look at the term Iγ(~v,~v
′). We consider the case in which E � m, so that

Iγ(~v,~v
′) '

∫
d(cos θ)

[
2(1− ~v~v′)

(1− k̂~v′)(1− k̂~v)

]
. (2.1.12)

The integral peak when k̂ is parallel to ~v or ~v′ so we can compute it around that value choosing to
integrate from k̂~v = ~v~v′ to cos θ = 1 and from k̂~v′ = ~v~v′ to cos θ = 1.

Iγ(~v,~v
′) ' 2

[∫ t=1

k̂~v=~v~v′
dt

(1− ~v~v′)
(1− v′t)(1− k̂~v)

+

∫ t=1

k̂~v′=~v~v′
dt

(1− ~v~v′)
(1− k̂~v′)(1− vt)

]
. (2.1.13)

In order to compute this integral we can substitute the lower extreme of integration inside it and
use the fact that v ' v′ so that p ' p′ ' E, obtaining

Iγ(~v,~v
′) ' 4

v
log

[
2p · p′

(E2 − p2)

]
=

4

v
log

[
2p · p′

m2

]
≈ 4

v
log

(
∆E2

m2

)
, (2.1.14)

where ∆E2 = (p′ − p)2. We can now write the cross section of the event as

σf→fγ ≈ σf→f
α

vπ
log

(
∆E2

m2
γ

)
log

(
∆E2

m2

)
, (2.1.15)

where the dependence on ∆E2 is called Sudakov double logarithm and it is a very well-known result.

2.2 Soft scalar emission
The interaction Lagrangian for a scalar φ and a fermion ψ is

Lint = −gψ̄ψφ. (2.2.1)

We want to inspect the emission of the scalar for low momenta, we consider here the following sub-
process:

f −→ f + φ,

where f is a generic fermion and φ is the massless scalar. For this process we have two Feynman
diagrams:

p
f

p′

k

f f

φ

(2.2.2)
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p

f

p′

k

f f

φ

(2.2.3)

and we can compute the amplitude as

iM = (ig)ū(p′)

[
M0(p

′, p− k)
(

/p− /k +m

(p− k)2 −m2

)
+

+

(
/p
′ + /k +m

(p′ + k)2 −m2

)
M0(p

′ + k, p)

]
u(p). (2.2.4)

We are interested in the infrared emission case, so taking into account
∣∣∣~k∣∣∣� |~p− ~p′|, we will have

M0(p
′ + k, p) 'M0(p

′, p− k) 'M0(p
′, p) and the momentum /k will be negligible in the numerators.

With these tricks and using the fact that k2 = 0 and p2 = p′2 = m2, we are able to write

iM = (ig)ū(p′)

[
M0(p

′, p)

(
−/
p+m

2p · k

)
+

(
/p
′ +m

2p′ · k

)
M0(p

′, p)

]
u(p), (2.2.5)

we can now compute

|M|2 = |M0|2 g2
[

m2

(p · k)2
+

m2

(p′ · k)2
− 2m2

(p · k)(p′ · k)

]
. (2.2.6)

We proceed now with the same parametrization of (2.1.7), the differential form factor becomes

dFf→fφ =
d3k

2Ek

g2

(2π)3

[
m2

(EkE − ~k~vE)2
+

m2

(EkE − ~k~v′E)2
− 2m2

(EkE − ~k~vE)(EkE − ~k~v′E)

]
=

=
dk

Ek

α

2π

m2

E2
Iφ(ṽ, ṽ′), (2.2.7)

again for the detailed calculations and the full form of Iφ(ṽ, ṽ′) we refer to the appendix B. Now we
need to spend again some words on (2.2.7): first all we can see again that Iφ(ṽ, ṽ

′) does not depend
on k so we can integrate the momentum out and we will obtain the same logarithmic divergences as
before, regulated by a fictional low scalar mass.

dFf→fφ ∝
∫ ∆E

mφ

1

Ek
dEk = log

(
∆E

mφ

)
. (2.2.8)

This form factor differs from the one in (2.1.9) from another point of view: here the whole term is
suppressed by m2

E2 term.
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The integration of Iφ(v, v′) is almost identical to the vector case, here we will put only the result,
while the procedure is in appendix B.

Iφ(ṽ, ṽ
′) ≈ 2

1− v2
+

2

1− v′2
+

1

1− ~v~v′
4

v
log

(
∆E2

m2

)
. (2.2.9)

We can look again at the asymptotic behaviour in ∆E, for which we obtain again the Sudakov double
logarithm suppressed by a multiplicative factor m2/E2.

σf→fφ ∝ σf→f
m2

E2

1

1− ~v~v′
α

vπ
log

(
∆E2

m2
φ

)
log

(
∆E2

m2

)
. (2.2.10)

2.3 Soft pseudoscalar emission
The interaction Lagrangian for a pseudo-scalar φ̃ and a fermion ψ is:

Lint = −gψ̄γ5ψϕ̃. (2.3.1)

We want to inspect the emission of the pseudoscalar for low momenta, we consider here the following
sub-process

f −→ f + ϕ̃,

where f is a generic fermion and ϕ̃ is the massless pseudoscalar. For this process, we have two Feynman
diagrams

p
f

p′

k

f f

ϕ̃

(2.3.2)

p

f

p′

k

f f

ϕ̃

(2.3.3)
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We can compute the amplitude as

iM = (ig)ū(p′)

[
M0(p

′, p− k)
(

/p− /k +m

(p− k)2 −m2

)
γ5 + γ5

(
/p
′ + /k +m

(p′ + k)2 −m2

)
M0(p

′ + k, p)

]
u(p).

(2.3.4)

We are interested in the infrared emission case, so taking into account
∣∣∣~k∣∣∣ � |~p− ~p′|, we will have

M0(p
′ + k, p) 'M0(p

′, p− k) 'M0(p
′, p) and the momentum /k will be negligible in the numerators.

With these tricks and using the fact that k2 = 0 and p2 = p′2 = m2, we are able to write

iM = (ig)ū(p′)

[
M0(p

′, p)

(
−/
p+m

2p · k

)
γ5 + γ5

(
/p
′ +m

2p′ · k

)
M0(p

′, p)

]
u(p). (2.3.5)

Mow we can use (A.0.6) to transform the amplitude as

iM = (ig)ū(p′)

[
M0(p

′, p)γ5

(
/p−m
2p · k

)
+

(−/p′ +m

2p′ · k

)
γ5M0(p

′, p)

]
u(p) = 0, (2.3.6)

where in the last step we have used the equation of motion (A.0.21). We have no divergence in the soft
emission case for the pseudoscalar massless particle, this is also true for the massive particles because
only the denominator changes.

2.4 Numerical checks for scalar and pseudoscalar
In order to check the results expressed in the previous section we have simulated the process

pp→ tt̄X0, (2.4.1)

at
√
s = 13TeV for the X0 scalar and X0 pseudoscalar cases.

The results of the simulations are shown in figure 2.4.1. In the left plot, the cross section of the
real scalar emission process is plotted as a function of the logarithm of the scalar mass mX0 . The
behaviour is the one predicted above: for small masses, the cross section diverges in a logarithmic
way. In the right plot, we consider instead a pseudoscalar particle; for small masses the cross section
remains constant, giving no infrared divergences.
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Figure 2.4.1: Cross section for the emission of a scalar (left) and a pseudoscalar particle (right) at
√
s =

13TeV, on the x-axis we have put a logarithmic scale.

For this and all the other simulations, we have used MadGraph5_aMC@NLO [24, 25] an open-
source framework that provides tools for computing cross sections and simulating collision events at
LO, and in some cases, at NLO accuracy. One of the many good features of MadGraph5_aMC@NLO
is the possibility to import user-defined models in the UFO (Universal FeynRules Output) format to
include new interactions. We have produced our own UFO model based on the Lagrangian

Lmodel = LQCD + Lint, (2.4.2)

where Lint is the one in (1.0.1), which we report for simplicity here:

Lint = −t̄(g + ig̃γ5)tX0.

The corresponding Feynman rules for Lint is

X0

t t
= −ig + g̃γ5 (2.4.3)

The UFO model was produced using FeynRules[26][27], a dedicated MATHEMATICA package,
and validated at the tree-level in the way exposed in appendix C. For our model, the scalar case is
obtained setting g̃ = 0, while the pseudoscalar one setting g = 0.

2.5 ALP emission with top antitop
We will analyze here the process pp→ tt̄X0, where X0 is an ALP. As we have said in the introduction
to this chapter, it is possible to put constraints on the X0 interaction with the top by looking at the
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transverse missing momentum in this kind of process. There are four types of diagrams in the process,
shown in figure 2.5.1

g
q

q̄
t̄

t

X0

g
g

g
t̄

t

X0

g

X0

t̄
g

t

t
g

t̄
g

X0

(2.5.1)

Figure 2.5.1

The first analysis we have realized is the behaviour of the cross section with respect to the mass of
the particle mX0

and the coupling g̃ in the process pp → tt̄X0 at
√
s = 13 TeV. To compute the full

cross section we have used MadGraph5_aMC@NLO[24]. We report the results we have obtained in
table 2.5.1.

g̃ σtt̄X0
(pb) σtt̄X0,g̃/σtt̄X0,g̃=mt/v

mt/v 0.457 1
2mt/v 1.836 4.02
3mt/v 4.131 9.04
5mt/v 11.47 25.1

g̃ σtt̄X0
(pb) σtt̄X0,g̃/σtt̄X0,g̃=mt/v

mt/v 0.0054 1
2mt/v 0.0216 4
3mt/v 0.0486 9
5mt/v 0.1356 25.1

Table 2.5.1: Dependence of the cross section with respect to the coupling g̃ at fixed mass. In the first table
mX0 = 10GeV, in the second one mX0 = 700GeV. The third column, in both tables, is the ratio between the
cross section in the row and the one in the first row.

The dependence of the cross section with respect to the couplings is σtt̄X0
∝ g̃2, we have chosen as

reference the value mt/v ≈ 0.7 because it has the same strength of the coupling of the top-quark to
the Higgs boson in the SM.

In 2.5.2 we have plotted the dependence of the cross section of the process pp→ tt̄X0 on mX0 for
different values of g̃ and of the mass mX0 . The same kind of plot is presented both with the linear and
logarithmic scale for both axes, in order to stress again the constant behaviour for small mX0

masses,
and the dependence on the squared coupling.

In figure 2.5.3 we have computed the cross section at different energies for both the scalar and the
pseudoscalar case. The cross section increases by increasing the energy and decreases by increasing
mX0 . We have compared the scalar and pseudoscalar processes in order to underline two important
differences: for the same coupling mt/v, the cross section of the scalar is more than one order of
magnitude greater than the one of the pseudoscalar. In addition, the pseudoscalar cross section is less
sensitive to the emitted particle mass with respect to the scalar one, we want to underline this behaviour
because we will see it again in the last chapter, where we will present results for the counterpart from
the virtual corrections.
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Figure 2.5.2: Plot of the cross section for different couplings g̃ with respect to the mass. Left: linear scale
on the x-axis. Right: logarithmic scale on the x-axis.
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Figure 2.5.3: Cross section of X0 emission for different masses and different centre-of-mass energies keeping
g̃ = mt/v constant. Left: pseudoscalar case. Right: scalar case.
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Chapter 3

NLO calculation and model
validation

As we have said in the introduction new physics can also be searched by looking at how virtual
corrections would affect the kinematic distribution of a specific production process.

The final aim of this thesis is to be able to look at the effect of the virtual contribution of new
physics on the kinematical distributions for the process pp → tt̄. All the diagrams that contribute to
the process at the NLO in NP are depicted in appendix G. Our work has moved in parallel along two
directions: writing a MATHEMATICA code using FeynRules and NLOCT [28] packages to produce
the final UFO format to use in MadGraph5_aMC@NLO, and the handmade calculation of the one-
loop corrections to the process qq̄ → tt̄ due to the presence of a X0 spin-0 particle with the coupling
of equation (1.0.1) to the top-quark. We will later use the result of this calculation to validate the
produced UFO model.

We have chosen the qq̄ → tt̄ process because it contains only two one-loop diagrams: the corrections
to the three-point and to the two-point functions shown in figure 3.0.1 together with the tree-level
diagram. The calculation becomes even easier in the on-shell renormalization scheme in which the
external legs do not receive any correction due to the two-point function.

γ

q

q̄

t̄

t

γ

X0

q

q̄
t̄

t

γ
X0

q

q̄

t̄

t

(3.0.1)

Figure 3.0.1: Tree-level and one-loop X0 Feynman diagrams for the process qq̄ → tt̄ process.

In the diagrams, we have chosen a photon instead of a gluon in the s-channel for convenience. The
reason is explained at the beginning of the next section.
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3.1 On-shell renormalization
In order to calculate the process

qq̄ → tt̄

at NLO with X0 running through the loops we need to proceed with choosing a renormalization
scheme and apply it to our theory. In renormalizing the Lagrangian (2.4.2) we will need to compute
the correction to the three-point function due to the Aµt̄γut interaction term. For the sake of clarity
in the notation, in this chapter we will denote the fermion field t as ψ. Moreover, in order to simplify
the calculations we will consider the vector Aµ as a photon, instead of a gluon, avoiding the colour
matrices in the amplitudes. When we will need them, we will reintroduce colour factors inside the
computations to obtain the right value for the amplitudes. The most suitable renormalization scheme
for the computation of this process is the on-shell one for what we have stated in the introduction to
this chapter about the two-point function. In order to renormalize the Lagrangian we need to connect
the bare fields and couplings to the renormalized ones:

ψ0 =
√
Zψψ = (1 + 1

2δψ)ψ,

A0 =
√
ZAA = (1 + 1

2δA),

mX0
= Zmm = (1 + δm)m,

e0 = Zee = (1 + δe)e,

Z1 =
√
ZAZeZψ,

δ1 = 1
2δA + δe + δψ.

The renormalized Lagrangian relevant for the diagrams in figure 3.0.1 is:

L ⊃=iZψψ̄ /∂ψ − ZψZmψ̄∂ψmr − eZe
√
ZAZψψ̄γ

µψAµ

=LR + iδψψ/∂ψ − (δψ + δm)mRψ̄ψ − eδ1ψ̄γµψAµ. (3.1.1)

Because there are no tree-level interaction between X0 and Aµ, Aµ two-point function will receive no
correction from new physics at one-loop, the same is valid for the electric charge, so we expect δ1 = δψ.
This is also expected considering the Ward-Takahashi identity in combination with the conservation
of the U(1)em symmetry. The counterterms for the photon(gluon) are the ones of QED(QCD), for the
moment we are not interested in them, we want to look at counterterms useful for the diagrams in
figure 3.0.1 .

= i(/pδψ − (δψ + δm)mR), (3.1.2)
µ

= −ieRδ1γµ

. (3.1.3)
Looking at the two-point function, at one loop the full propagator is

iG(/p) =
i

/p−mR +Σ(/p)
, (3.1.4)
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where:
Σ(/p) = ΣX0(/p) + /pδψ − (δψ + δm)mR. (3.1.5)

The two on-shell renormalization conditions are

Σ|/p=mt
= 0,

d

d/p
Σ|/p=mt

= 0, (3.1.6)

using (3.1.5) these conditions, following [29], become

Re
(
ΣX0
|/p=mt

)
= δmmt, Re

(
d

d/p
ΣX0
|/p=mt

)
= −δψ. (3.1.7)

In the three-point function, the one-loop interaction corrected term can be written as

Γµ(p) = (1 + f1(p
2))γµ, (3.1.8)

if we want to have the electric charge as the one measured by the Coulomb law at large distances we
need to put

Γµ(0) = γµ → f(0) = −δ1. (3.1.9)

3.1.1 FF two-point function
We start computing the correction to the 2-point function of the fermion using the Feynman rule in
(2.4.3).

p

k − p

k p (3.1.10)
we write this in a general form not asking the fermion outside being on-shell. In this context, we can
write this diagram as:

iG0(/p)
[
iΣX0(/p)

]
iG0(/p) (3.1.11)

and
iΣX0(/p) =

∫
d4k

(2π)4
(−ig + g̃γ5)

i(/k +mt)

k2 −m2
t + iε

(−ig + g̃γ5)
i

(p− k)2 −m2
X0

+ iε
(3.1.12)

the result of this integral, computed in dimensional regularization will be (detail in appendix E)

ΣX0
(/p) =

1

(4π)2

∫ 1

0

dx[(g2 − g̃2)mt + 2igg̃mtγ5 + (g2 + g̃2)x/p]

[
1

ε
+ log

(
µ̃2

∆(x)

)]
=

=
1

(4π)2

[
[(mt +

/p

2
)g2 + (

/p

2
−mt)g̃

2 + 2igg̃mtγ5]
1

ε
+

+

∫ 1

0

dx[(mt + /px)g
2 + (/px−mt)g̃

2 + 2igg̃mtγ5] log

(
µ̃2

(1− x)(m2
t − p2x) +m2

X0
x

)]
(3.1.13)
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As usual, we have a UV-divergent part and a scale-dependent logarithm. We know that, in the
on-shell scheme, both the scale dependence and the UV term will disappear once we will add the
counterterm to the diagram.

3.1.2 Three-point function VFF
In general, the three-point function can be put in the form

iū(q2)Γ
µ
γu(q1) = (−ie)ū(q2)[F1(p

2)γµ + i
σµν

2mt
pνF2(p

2)]u(q1), (3.1.14)

where
F1(p

2) = 1 + f(p2). (3.1.15)
is the tree-level term, plus all the loop contributions inside f(p2). The UV divergent terms are in
f(p2), this is quite reasonable for the fact that we have defined the counterterm in (3.1.9) by it.

The other term in the decomposition is F2(p
2), we expect this term not to be UV divergent because

there are no terms proportional to σµνpν in the Lagrangian, from which we could extract a counterterm.
The F2(p

2) term plays a key role in lepton physics, it is in fact responsible for the anomalous magnetic
moment. The Hamiltonian of an elementary particle with spin different from 0 in a magnetic field ~B,
contains a term of the type:

H ⊃ e

2m
gem ~B · ~S,

where the term gem is called magnetic moment and it is corrected by F2, at one-loop, in the following
manner:

gem = 2 + 2F2(0).

Measuring the value of (g− 2) is a way to test SM. This means that, although we do not study it, our
model will lead to a modification of the g − 2 of the top.

In order to find f(p2) and F2(p
2) we can compute the correction to the three-point function in

dimensional regularization.

p

p+ kk

q1 − k

q1 q2

µ

(3.1.16)
We consider the photon off-shell and the two fermions on-shell, the amplitude for the virtual X0

exchange, in this case, will result in

iMµ
X0

=

∫
d4k

(2π)4
i

(q1 − k)2 −m2
X0

+ iε
ū(q2)(−ig + g̃γ5)

i(/p+ /k +mt)

(p+ k)2 −m2
t + iε

(−ieγµ)

i(/k +m)

k2 −m2
t + iε

(−ig + g̃γ5)u(q1).

(3.1.17)
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Solving this integral we find the function f(p2) and F2(p
2) in the decomposition(3.1.14).

f(p2) =
1

16π2

[∫ 1

0

dxdydzδ(1− x− y − z)g
2[(z + 1)2m2

t + xyp2] + g̃2[(z − 1)2m2
t + xyp2]

m2
t (1− z)2 − p2yx+m2

X0
z

+

+(g2 + g̃2)

∫ 1

0

dxdydzδ(1− x− y − z)
[
−1 + 1

ε
+ log

(
µ̃2

m2
t (1− z)2 − p2yx+m2

X0
z

)]]
.

(3.1.18)

We can look at the massless X0 limit in the f(p2) piece. We know that IR divergent terms come
from the part proportional to m2

t . For simplicity consider p2 = 0, because the term proportional to p2
does not carry infrared divergences.

f(0)|mX0
=0 =

1

16π2

∫ 1

0

dz

∫ 1−z

0

dy

[
g2m2

t (z + 1)2 + g̃2m2
t (z − 1)2

m2
t (1− z)2

]
=

=
1

16π2

∫ 1

0

dz

[
g2

(z + 1)2

z − 1
+ g̃2(1− z)

]
=

=
1

16π2

[
−g2 1

2

(
7− 6z − z2 − 8 log(z − 1)

)
|10 +

g̃2

2

]
=

=
1

16π2

[
g2
(
7

2
+ 4 log(z − 1)|10)

)
+
g̃2

2

]
. (3.1.19)

This confirms our intuition, the scalar part, proportional to g presents an IR divergence represented
by the logarithm in (3.1.19), while the pseudoscalar part, proportional to g̃ gives a constant value.

The σµν term proportional to F2(p
2) vanishes in the high energy limit due to the absence of a p2

term in the numerator. From the integral we obtain

F2(p
2) =

m2
t

8π2

∫ 1

0

dxdydz δ(1− x− y − z)
[
g2(1− z2)− g̃2(z − 1)2 + 2igg̃γ5(1− z)

]
m2
t (1− z)2 − p2xy +m2

X0
z

. (3.1.20)

The contribution to (g − 2) is given by:

F2(0) =
m2
t

8π2

∫ 1

0

dxdydz δ(1− x− y − z)
[
g2(1− z2)− g̃2(z − 1)2 + 2igg̃γ5(1− z)

]
m2
t (1− z)2 +m2

X0
z

. (3.1.21)

As we can see there are no UV-divergences. The reason for which it happens is how this term appears
in dimensional regularization. To look at the detailed calculations we refer to appendix E.

3.1.3 Explicit counterterms
If we define

α =
g2

4π
, α̃ =

g̃2

4π
,
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we can write δψ and δm combining (3.1.7) and (3.1.13) and δ1 combining (3.1.9) and(3.1.18) as

δψ = − 1

4π

[
(α+ α̃)

1

2ε
+

∫ 1

0

[(1 + x)α+ (x− 1)α̃]
2m2

tx(1− x)
m2
t (1− x)2 + xm2

X0

+

+ (α+ α̃)x log

(
µ̃2

m2
t (1− x)2 + xm2

X0

)
dx

]
, (3.1.22)

δm =
1

4π

[
(3α− α̃) 1

2ε
+

∫ 1

0

dx[(1 + x)α+ (x− 1)α̃] log

(
µ̃2

m2
t (1− x)2 + xm2

X0

)]
, (3.1.23)

δ1 = − 1

4π

[∫ 1

0

dz

∫ 1−z

0

dym2
t

α(z + 1)2 + α̃(z − 1)2

m2
t (1− z)2 +m2

X0
z

+

+ (α+ α̃)

(
1

2ε
− 1

2
+

∫ 1

0

dz

∫ 1−z

0

dy log

(
µ̃2

m2
t (1− z)2 +m2

X0
z

))]
. (3.1.24)

We expect the integrals in δψ and δ1 to give the same results in order to have the equality δ1 = δψ.
Unfortunately solving them is not so easy, but we can see this equality by looking at an approximate
form. Considering mX0

small it is possible to perform the integration and then expand in m2
X0
/m2

t

obtaining simpler expressions:

δψ =− 1

4π

[
α

(
1

2ε
+

1

2
log

µ̃2

m2
t

− 2 log
m2
X0

m2
t

− 7

2

)
+ α̃

(
1

2ε
+

1

2
log

µ̃2

m2
t

+
1

2

)]
, (3.1.25)

δm =
1

4π

[
α

(
3

2ε
+

3

2
log

µ̃2

m2
t

+
7

2

)
+ α̃

(
− 1

2ε
− 1

2
log

µ̃2

m2
t

− 1

2

)]
, (3.1.26)

δ1 =− 1

4π

[
α

(
−7

2
− 2 log

m2
X0

m2
t

+
1

2
log

µ̃2

m2
t

+
1

2ε

)
+ α̃

(
1

2
+

1

2ε
+

1

2
log

µ̃2

m2
t

)]
. (3.1.27)

As expected, for all the reasons we have stated at the beginning, we have found δ1 = δψ. Also in
this approximation is immediate to see that the terms proportional to α̃ (related to the pseudoscalar
interaction) in the counterterms do not carry any infrared divergence, while the counterterms δ1 and
δψ proportional to α (related to the scalar interaction) have a log(m2

X0
/m2

t ) in it, divergent for mX0
=0.

3.2 NLO computation for the qq̄ → tt̄ process
We want to look at

qq̄ → tt̄,
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at NLO considering the X0 virtual exchange. We do not need to take into account the diagrams as the
second of figure3.0.1 because the corrections are in the external legs. The three diagrams involved are

p1

p2

p

p4

p3

+
p1

p2 p

p4

p3

+
p1

p2
p p4

p3
(3.2.1)

where the third one includes the vertex counterterm. We write the amplitude as

iM = i
eqet
p2

v̄(p2)γµu(p1)ū(p3)Γ
µ
γv(p4). (3.2.2)

and we split it into the tree-level amplitude plus the one-loop corrected amplitude: M =M0 +MX0
.

When we square the amplitude, stopping at the next-to-the-leading, order we find

|M|2 = |M0|2 + 2Re
[
M†

X0
M0

]
+ h.o. (3.2.3)

whereM0 is the tree-level amplitude andMX0
is the renormalized one loop amplitude. Using (A.0.29)

and (A.0.30) and the property of γ-matrices traces, we find that:

∑
s

M†
X0
M0 =

e2qe
2
t

p4

(
Tr
[
/p2γρ/p1γµ

]
− 4m2

qgρµ

)(
Tr
[
/p3γ

ρ
/p4
(
f∗1 (p

2)γµ
)]
− 4m2

tf
∗
1 (p

2)gρµ+

+
i

2
Tr
[
/p3γ

ρF †
2 (p

2)σµν − γρ/p4F
†
2 (p

2)σµν
]
pν

)
, (3.2.4)

where we have defined
f1(p

2) = f(p2) + δ1.

The details of the calculation can be found in F
This expression, and in particular the counterterm, is easier to compute in the high energy limit

p2 � m2, for which the (3.2.4) becomes

∑
s

M†
X0
M0 =

e2qe
2
t

p4
f∗1 (p

2)Tr
[
/p2γρ/p1γµ

]
Tr
[
/p3γ

ρ
/p4γ

µ
]

(3.2.5)

In this way (3.2.3) becomes

|M|2 =
1

4

∑
s

|M0|2
(
1 + 2Re[f1(p2)]

)
+ h.o. (3.2.6)

This formula does not take into account the F2(p
2) term because as we have said in the previous

section it vanishes in the high energy limit, if we want an expression valid at all energy we need to
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compute the full correction from (3.2.4)

|M|2 =
1

4

∑
s

|M0|2(1 + 2Re[f1(p2)]) + h.o.

+
1

4

e2qe
2
t

p4

[(
Tr
[
/p2γρ/p1γµ

]
− 4m2

qgρµ

) i
2

Tr
[
/p3γ

ρF †
2 (p

2)σµν − γρ/p4F
†
2 (p

2)σµν
]
pν

)
+ h.c.

]
(3.2.7)

This term requires many calculations in order to be transformed in a proper way. A general treatment
can be done if the F2 term is simply a number and does not contain any other matrices. This is the
case of the scalar interaction (g̃ = 0) or of the pseudoscalar interaction (g = 0). With some patience
is possible to compute all the γ-traces to find

|M|2 =
1

4

∑
s

|M0|2(1 + 2Re[f1(p2) + F2(p
2)])+

+
2Re[F2]

p4
e2qe

2
t

(
−4sm2

t + s2 − t2 + 2tu− u2
)
+ h.o. (3.2.8)

In appendix F we have worked out this expression to obtain

|M|2 =
1

4

∑
s

|M0|2(1 + 2Re[f1(p2)]) + 2Re[F2(p
2)]e2qe

2
t

(
2 + 4

m2
q

s

)
. (3.2.9)

Note that the term proportional to m2
q is not present in the pp → tt̄ process, because in the parton

model quarks inside protons are considered massless.
We have a slightly different case if we have a mixed scalar-pseudoscalar term, in that case inside

F2 there is also a γ5 term, as can be seen in its general form written in (3.1.20). The same process in
QCD differs only by a overall multiplicative colour factor. We know by Fierz-identity for SU(N) that
the colour matrices T aij obey: ∑

a

T aijT
a
kl =

1

2
(δilδkj −

1

N
δijδkl). (3.2.10)

In the process qq → t̄t̄ when we square the amplitude and average over the initial colour, summing
over colours we find the colour factor

c =
1

9

∑
a,b

∑
i,j

∑
k,l

(T aT b)ij(T
aT b)kl =

2

9
,

the detail of this calculation can be found in appendix F.

3.2.1 Explicit expression of the form factors in the pseudoscalar case
The general expression of the photon-fermion vertex is given in (3.1.14). Adding the counterterm we
can write, taking g = 0:

f1(p
2) =− α̃

4π

[∫ 1

0

dz

∫ 1−z

0

dy log

(
m2
t (1− z)2 − p2(1− y − z)y +m2

X0
z

m2
t (1− z)2 +m2

X0
z

)
+

+
m2
t (1− z)2

m2
t (1− z)2 +m2

X0
z
− m2

t (1− z)2 + (1− y − z)yp2

m2
t (1− z)2 − (1− y − z)yp2 +m2

X0
z

]
. (3.2.11)
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First of all, we can look at this term in the high energy limit. The integral becomes:

fh.e.1 (p2) = − α̃

4π

[∫ 1

0

dz

∫ 1−z

0

dy log

(
−p2(1− y − z)y

m2
t (1− z)2 +m2

X0
z

)
+

2m2
t (1− z)2 +m2

X0
z

m2
t (1− z)2 +m2

X0
z

]
. (3.2.12)

Solving the integral, for high momenta we have:

fh.e.1 (p2) = − α̃

16π

[
2 log

(
− p2

m2
t

)
+
m2
X0

m4
t

(
m2
t − 3m2

X0
log

m2
X0

m2
t

− 4m2
t log

m2
t

m2
X0

+

+

2mX0

(
10m2

t − 3m2
X0

)(
tanh−1

(
mX0√

m2
X0

−4m2
t

)
− coth−1

(
mX0

√
m2

X0
−4m2

t

m2
X0

−2m2
t

))
√
m2
X0
− 4m2

t


 .

(3.2.13)

In the limit mX0
= 0 we finally find

fh.e.1 (p2)mX0
=0 = − α̃

8π
log

(
− p2

m2
t

)
, (3.2.14)

and again we can see that we have no infrared divergences. The minus sign in the logarithm needs
no additional discussion because it will disappear once we will take the real part of f1 as in (3.2.9).
In figure 3.2.1 we plotted fh.e1 on mX0 for α̃ = 8π with a linear scale on the x-axis. On the right, we
have plotted the same quantity with a logarithmic scale on the x-axis. For mX0 → 0 there is not an
infrared divergence and fh.e1 goes like a constant, as it happens in the real emission process.
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Figure 3.2.1: Left: dependence of f1(p
2) on mX0 in the high energy limit, for a centre of mass of 13 TeV

and mt = 172.5 GeV. Right: the behaviour of the same quantity for small X0 masses with a logarithmic scale
on the x-axis.
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We can go further and look how is the general form of f1(p2) without any approximation:

f1(p
2) = − α̃

4π

∫ 1

0

dz

2
(
p2(z − 1)2 − 2m2

X0
z
)
tan−1

(
p(z−1)√

4(z−1)2m2
t+4m2

X0
z−p2(z−1)2

)
p
√
4(z − 1)2m2

t + 4m2
X0
z − p2(z − 1)2

+
m2
X0

(z − 1)z

(z − 1)2m2
t +m2

X0
z
,

(3.2.15)
this integral is not easy to be solved, so we will compute it numerically using MATHEMATICA. In
figure 3.2.2 we have plotted f1(p2) for

√
s = 13 TeV with respect to mX0 , in the high energy limit and

in the general case. Looking at the relative difference one can see that the predictions are very similar
when m2

X0
� p2. In figure 3.2.3 the same comparison is plotted but now f1(p

2) is plotted against
√
p2

and mX0
= 0.

Being the top quark very heavy we cannot neglect the contribution given by F2.
We find (for mX0 = 0):

F2(p
2) = −g̃2 m

2
t

8π2
2
arctan

(
p√

4mt2−p2

)
(p
√
4m2

t − p2)
. (3.2.16)
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s = 13 TeV. Right: relative difference between the real part of

f1(p
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.
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3.2.2 Explicit expression of the form factors in the scalar case
In the scalar case g̃ = 0 we will have:

f1(p
2) =− α

4π

[∫ 1

0

dz

∫ 1−z

0

dy log

(
m2
t (1− z)2 − p2(1− y − z)y +m2

X0
z

m2
t (1− z)2 +m2

X0
z

)
+

+
m2
t (1 + z)2

m2
t (1− z)2 +m2

X0
z
− m2

t (1− z)2 + (1− y − z)yp2

m2
t (1 + z)2 − (1− y − z)yp2 +m2

X0
z

]
. (3.2.17)

At high energies the expression (3.2.17) becomes

fh.e.1 (p2) = − α

4π

[∫ 1

0

dz

∫ 1−z

0

dy log

(
−p2(1− y − z)y

m2
t (1− z)2 +m2

X0
z

)
+

2m2
t (1 + z2) +m2

X0
z

m2
t (1− z)2 +m2

X0
z

]
. (3.2.18)

The result of this integral reads

fh.e.1 (p2) =
α

8π

8 + log

(
−
m8
X0

p2m6
t

)
−

3m2
X0

m2
t

+
3m4

X0
log
(
mX0

mt

)
m4
t

+
12m2

X0
log
(
mt

mX0

)
m2
t

+

+

3
√
m2
X0
− 4m2

t

(
m3
X0
− 2mX0

m2
t

)(
tanh−1

(
mX0√

m2
X0

−4m2
t

)
− coth−1

(
mX0

√
m2

X0
−4m2

t

m2
X0

−2m2
t

))
m4
t

 .
(3.2.19)
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In this case, we cannot have a simple expression at mX0 = 0 because we have an infrared divergence.
What we can do is expand this expression around mX0/

√
p2, for which we obtain

f1 =
α

4π

[
1

2

(
8 + log−

(
m8
X0

p2m6
t

))
− 3π

mX0√
p2
− 3

2

(
4 log

mX0

mt
− 1

)
m2
X0

p2

]
+O

(
m3
X0√
p2

3

)
. (3.2.20)

fh.e1 is plotted in figure 3.2.4 for α̃ = 8π with respect to the mass mX0 . At the left we have plotted
the same quantity with a logarithmic scale on the x-axis, we can see that the infrared divergence is
present and it goes as the logm1/X0

as in the case of the real emission.
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Figure 3.2.4: Left: dependence of f1(p
2) on mX0 in the high energy limit, for a centre of mass of 13 TeV

and mt = 172.5GeV. Right: the behaviour of the same quantity for small X0 masses with a logarithmic scale
on the x-axis.

We can go further and look how is the general form of f1 without any approximation:

f1(p
2) =− α

4π

∫ 1

0

2
(
8zm2

t − 2m2
X0
z + p2(z − 1)2

)
tan−1

(
p(z−1)√

4(z−1)2m2
t+4m2

X0
z−p2(z−1)2

)
p
√
4(z − 1)2m2

t + 4m2
X0
z − p2(z − 1)2

+

+
(z − 1)z

(
m2
X0
− 4m2

t

)
(z − 1)2m2

t +m2
X0
z
dz. (3.2.21)

This integral is not easy to be solved, so we will compute it numerically with MATHEMATICA. In
figure 3.2.5 we have plotted f1(p

2) for
√
s = 13 TeV with respect to mX0

, in the high energy and in
the general case. Looking at the relative difference one can see that the predictions are very similar
when m2

X0
� p2. They are overall smaller than in the pseudoscalar case, we can argue that this will

imply that the high energy approximation in the case of the scalar works better. We will see this in
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practice in the next section. In figure 3.2.6 the same comparison is plotted but now f1(p
2) is plotted

against
√
p2 with mX0 = 10 GeV.
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Figure 3.2.5: Left: comparison between the real part of f1(p2) in the high energy approximation with the
exact f1(p

2) depending on mX0 mass at
√
s = 13 TeV. Right: relative difference between the real part of

f1(p
2) in the high energy approximation with the exact f1(p

2) depending on mX0 mass at
√
s = 13 TeV.
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Again the top quark is very heavy so we need also the consider the F2 term, for which we find:

F2(p
2) = g2

m2
t

8π2

∫
dz

4
(
z2 − 1

)
tan−1

(
p(z−1)√

4m2
X0
z+4m2

t (z−1)2−p2(z−1)2

)
p
√
4m2

X0
z + 4m2

t (z − 1)2 − p2(z − 1)2
(3.2.22)

3.2.3 NLO Validation
As we have stated at the beginning of the chapter our purpose is to validate the UFO model produced
with NLOCT in order to automatize the NLO computation for pp→ tt̄ and possibly other processes.

In order to do this, we can compare the corrections to the Born amplitude computed by MadGraph
using our UFO model and the corrections to the Born amplitude that we have computed theoretically
in this chapter. It is important to underline that the results of the theoretical computation and the
one obtained by MadGraph are totally independent.

In order to compare the results we define the quantity ∆M:

∆M =
2Re[M0M†

X0
]

|M|20
αs
2π

(3.2.23)

where the squared amplitudes are intended averaged and summed over the spins.
If we are at high energies, using (3.2.6), it is immediate to find

∆Mhe
=

2Re
[
f1(p

2)
]

αs
2π

(3.2.24)

As we have said, being the top very heavy, we will not have a precise result neglecting spin-
interactions, so it is needed to consider the full correction. In the parton model in which light quarks
masses are equal to zero the correction becomes:

∆M =
2π

αs

(
2Re

[
f1(p

2)
]
+ 2

2

9
(αs4π)

2 2Re
[
F2(p

2)
]

|M|20

)
(3.2.25)

The results we have found are reported in table 3.2.1 in which we have looked at the case g = 0 and
g̃ = 0.1 and in table 3.2.2in which we have looked at the case g = 0.1 and g̃ = 0 .
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√
s (GeV) ∆M MadGraph5_aMC@NLO (10−2) ∆Mhe

(10−2) ∆M(10−2)
∣∣∣∆Mhe

−∆M
∆Mhe

∣∣∣
500 −0.333918 −0.851680 −0.333918 0.602
1000 −1.005070 −1.237798 −1.005070 0.188
1500 −1.356298 −1.486193 −1.356298 0.130
2000 −1.585412 −1.668796 −1.585412 0.083
2500 −1.754552 −1.812970 −1.754552 0.032
3000 −1.888581 −1.931992 −1.888581 0.022
3500 −1.999640 −2.03329 −1.999640 0.017
4000 −2.094511 −2.121435 −2.094511 0.013
4500 −2.177356 −2.19944 −2.177356 0.010
5000 −2.250910 −2.269379 −2.25091 0.008
10000 −2.726512 −2.732085 −2.726512 0.002

Table 3.2.1: Pseudoscalar case (g = 0, g̃ = 0.1), mX0 = 0. In the first column ∆M automatically computed
by MadGraph5_aMC@NLO, in second and third columns the computation obtained using equation (3.2.24)
and (3.2.25) using f1(p

2) and F2(p
2) found in previous sections.

√
s (GeV) ∆M MadGraph5_aMC@NLO (10−1) ∆Mhe

(10−1) ∆M(10−2)
∣∣∣∆Mhe

−∆M
∆Mhe

∣∣∣
500 −1.771673 −1.61915 −1.771673 0.094
1000 −1.547723 −1.478421 −1.547723 0.046
1500 −1.445103 −1.406358 −1.445103 0.026
2000 −1.403109 −1.378219 −1.403109 0.018
2500 −1.384205 −1.366759 −1.384205 0.013
3000 −1.375607 −1.362639 −1.375607 0.010
3500 −1.372150 −1.362095 −1.372150 0.007
4000 −1.371452 −1.363406 −1.371452 0.006
4500 −1.372308 −1.365708 −1.372308 0.005
5000 −1.367061 −1.368542 −1.374063 0.004
10000 −1.400979 −1.399313 −1.400979 0.001

Table 3.2.2: Scalar case (g = 0.1, g̃ = 0), mX0 = 1GeV. In the first column ∆M automatically computed by
MadGraph5_aMC@NLO, in second and third columns the computation obtained using equation (3.2.24) and
(3.2.25) using f1(p

2) and F2(p
2) found in previous sections.

The results obtained by our model in MadGraph5_aMC@NLO (second column) and the ones
obtained by the theoretical computation (fourth column) are the same at least up to the seventh decimal
digit. Again we stress the fact that these two results are independent because the counterterms for the
UFO model are computed by the NLOCT package in MATHEMATICA instead of being inserted by
hand. Another interesting point is the fact that looking at the tables the spin corrections related to
F2 dominates the pseudoscalar case at low energies, while they are less important in the scalar case,
confirming our intuition of the previous section, made by looking at the relative difference between
fh.e.1 (p2) and the exact form of f1(p2). In particular, at 500 GeV ∼ 3mt the relative error made in the
high energy approximation for the scalar is only the 9.4% while for the pseudoscalar case the relative
error is 60.2%.
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Chapter 4

Kinematical Distributions

In this chapter, we present predictions for the cross section of pp → tt̄ at
√
s = 13 TeV. We show

differential distributions both at the tree level and including the effect of X0 from the loops, which
we call NLO corrections. To this aim, we have exploited the UFO model produced with NLOCT and
simulated the process pp→ tt̄ at NLO accuracy using MadGraph5_aMC@NLO. In particular, we have
considered the following observables:

• the invariant mass of the tt̄ pair (mtt̄);

• the top-quark transverse momentum (pT (t));

• the rapidity of the top-quark (yt);

• the difference in the rapidity between t and t̄ (∆ytt̄ = yt − yt̄).

We have briefly introduced pT as a key observable at hadron colliders in chapter 2, and we will
now briefly introduce the invariant mass and the rapidity.

The invariant mass of a pair of particles (in our case tt̄) is defined as:

m2
tt̄ = (pt + pt̄)

2 = (Et + Et̄)
2 − (~pt + ~pt̄)

2, (4.0.1)

where pt is the top-quark four-momentum.
The rapidity of a particle is defined as

y =
1

2
log

E + pz
E − pz

. (4.0.2)

The distributions were obtained simulating pp → tt̄ at
√
s = 13 TeV, with mt = 172 GeV, we have

used the built-in MadGraph5_aMC@NLO PDF set nn23nlo from NNPDF [30], the strong coupling
αs(mZ) = 0.1190. Factorization and renormalization scales are automatically set on event-by-event
basis by MadGraph5_aMC@NLO using the default dynamical scale HT /2 corresponding in this case
to
√
m2
t + p2T (t).

In the first part, the distributions are plotted keeping mX0 = 125 GeV, the same mass of the SM
Higgs, and changing the values of the parameters g and g̃. As a reference, we have used the Higgs
coupling to the top in the SM, mt/v ≈ 0.7. Several benchmark points are selected:
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• scalar (g = mt/v, g̃ = 0), short-noted as (1,0);

• pseudoscalar (g = 0, g̃ = mt/v), short-noted as (0,1);

• mixed, concordant signs (g = mt/v, g̃ = mt/v), short-noted as (1,1);

• mixed, discordant signs (g = mt/v, g̃ = −mt/v), short-noted as (1,-1).

Our motivation is twofold. First, we want to study in general what happens to the kinematical
distributions in different scenarios, both in the normalisation as well as in the shapes. To this aim, we
use the quantity

∆NLO =
σNLO − σLO

σLO
, (4.0.3)

namely the relative correction, which we will show in the inset of each plot in this chapter.
Second, starting from the four benchmark points, it will be straightforward to predict the more

generic cases, with (g, g̃) arbitrary. This can be done by looking at the analytic expression of the
relative correction ∆NLO

∆NLO = g2Fg2 + g̃2Fg̃2 + gg̃Finterference, (4.0.4)
with Fg2 , Fg̃2 , Finterference to be considered placeholders for the contribution from the full computation
(and not the ones computed in chapter 3), including both qq̄, gg → tt̄ partonic processes. The (1,0) and
(0,1) benchmark points provide us with the size of Fg2 and Fg̃2 . For example, in the case g = nmt

v and
g̃ = 0, ∆NLO|g=nmt

v ,g̃=0 = n2∆NLO|g=mt
v ,g̃=0. They also fully determine the component Finterference

via the relation
gg̃Finterference =

1

2
(∆NLO(1, 1)−∆NLO(1,−1)) , (4.0.5)

In the last part, we have investigated the effects of the variation of mX0
on the distributions in

each benchmark point, in order to verify the expectation that in the pseudoscalar case, there should
be almost no dependence on mX0 , as already observed in the case of the real-emission process plots in
chapter 2 and the f1(p2) function at 1-loop in chapter 3.

Before discussing the distributions it is important to note that the gg → tt̄ process at one loop
receives a contribution from the diagram in Fig. 4.0.1 containing the particle X0 in an s-channel.

t

t̄

t̄
X0

t

t̄

g

g

(4.0.6)

Figure 4.0.1

For resonant mX0
> 2mt, this process is dominated by the resonance X0 production with its

subsequent decay in tt̄. This is an interesting process by itself, and worth to be further investigated.
However, for the purpose of our analysis that wants to focus on indirect effects, we can defer it. In
order to avoid the region of direct X0 production, we limit mX0

to a maximum of 334 GeV, that is
2mt − (10GeV).
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Figure 4.0.2: Plots of the kinematical distributions for each beanchmark point at fixed mX0 = mH = 125 GeV. From left to right, going
downwards: the invariant mass distribution mtt̄, the transverse momentum distribution pT (t), the rapidity distribution yt, the difference
between rapidity distribution yt − yt̄ and the invariant mass distribution mtt̄ near the threshold at

√
s = 13 TeV. In the inset of each plot

is depicted the relative difference ∆NLO, as defined in (4.0.3).

We start by considering the Higgs mass benchmark point for which mX0 = mH . Our results are
collected in figure 4.0.2 where are plotted the different kinematical distributions, keeping mX0

fixed
but changing the couplings as explained above. We have chosen to study the case mX0

= mH = 125
GeV, in order to validate our results for the case of the Higgs in the SM, (1,0) benchmark point, with
the available literature [3]. The cases (0,1), (1,1), (1,-1) are also considered.
From the plots, we can see that the largest corrections are present when the top quarks are produced
near the threshold, meaning mtt̄ ' 2mt. Similarly, corrections are large, in absolute value, for pT (t) ' 0
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and ∆ytt̄ = 0, i.e. near the threshold (this is explicitly shown in appendix H). This behaviour is washed
out in the yt distribution, where the corrections do not peak around a specific value because there is
no direct link between the invariant mass and the rapidity of a single particle. For all basic benchmark
points, corrections are between 2% and a few per mill, in absolute value.
The different behaviour among the benchmark points is more pronounced for the mtt̄ distribution,
where at the threshold in the pseudoscalar (0,1) benchmark point we have a negative contribution,
while in the scalar (1,0) a positive one. Looking at the ∆ytt̄ distribution, in the pseudoscalar (0,1)
there is a negative correction to the central region, and the opposite happens for the scalar (1,0).
A last remark on the mixed term is appropriate: the (1, 1) and the (1,−1) benchmark points give almost
the same correction. Looking back at (4.0.5) we can conclude that the interference term Finterference is
very small compared to the other two.
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Figure 4.0.3: Plots of the kinematical distributions for the scalar (1,0) benchmark point for different values of mX0 . From left to right,
going downwards: the invariant mass distribution mtt̄, the transverse momentum distribution pT (t), the rapidity distribution yt, the
difference between rapidity distribution yt − yt̄ and the invariant mass distribution mtt̄ near the threshold at

√
s = 13 TeV. In the inset of

each plot is depicted the relative difference ∆NLO, as defined in (4.0.3).

The case of the scalar benchmark point, i.e. g = mt/v, g̃ = 0 changing the X0 mass by logarithmic
step, is shown in figure 4.0.3. All the kinematical distributions show a very strong dependence on the
mass of X0. The lower the mass of mX0 , the higher the corrections. This is not surprising: as now
mentioned several times, this is the effect of the term

log
s

m2
X0

,

that is present in the scalar case. Note, however, that for a scalar, the coefficient in front of the log
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is m2
t

s , as calculated in chapter 2. This is the reason why there is no growth for large mtt̄ = s value
within the distribution.
Corrections for small masses can reach up to the 40% of the LO value near the threshold. As we have
seen for the Higgs case, the corrections to yt are almost flat, because the tt̄ produced at the threshold
are not produced with a preferred rapidity. The pT (t) and ∆ytt̄ distributions show the same behaviour
as commented before.
We will comment on the behaviour at mX0 = 334 GeV in the discussion of the plots in figure 4.0.4 for
the pseudoscalar, where the peculiarity of the corrections for mX0 = 334 GeV is manifest.
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Figure 4.0.4: Plots of the kinematical distributions for the pseudoscalar (0,1) benchmark point for different values of mX0 . From left to
right, going downwards: the invariant mass distribution mtt̄, the transverse momentum distribution pT (t), the rapidity distribution yt, the
difference between rapidity distribution yt − yt̄ and the invariant mass distribution mtt̄ near the threshold at

√
s = 13 TeV. In the inset of

each plot is depicted the relative difference ∆NLO, as defined in (4.0.3).

We now consider the pseudo-scalar case, 4.0.4, (1,0), i.e. g = 0, g̃ = mt/v changing the X0 mass by
logarithmic step. The kinematical distributions show almost no dependence on the mass of X0. The
behaviour with respect to the mX0

is what is expected from our preliminary study on the real radiation
in chapter 2: in the limit mX0

→ 0 we have found a constant cross section. The same behaviour was
noted in the F1(p

2) computed in chapter 3. We therefore confirm what stated in the introduction
to chapter 2: in the case g = 0 the possible new physics effect that can be accommodated given the
present measurements depend only on g̃ and not on mX0 for mX0 < 2mt. This is the opposite situation
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of the scalar (g̃ = 0) for which large values of g imply large values of mX0 to not exceed experimental
constraints.
Corrections reach up to the 3% of the LO value near the threshold, which is one order of magnitude
smaller than the correction for the scalar case. The usual considerations on yt pT (t) and ∆ytt̄ are still
valid.
Let us now consider the case where mX0 = 334GeV = 2mt − (10GeV) . This region is important
because we are approaching the value of mX0 = 2mt where the X0 can be produced on shell and then
decay in tt̄, i.e., the diagram in 4.0.1 is becoming resonant. In the scalar case the effect is not visible
because the corrections for small masses are much higher than the correction given by the diagram
becoming resonant and the corrections become smaller for mX0

heavy. On the other hand, in the
pseudoscalar case, the corrections do not depend on mX0

and are way smaller than in the scalar case.
As a result, the corrections given by the resonance diagram is the dominant effect. It is important to
note that the effect is not zero in the scalar case, is only too small to be noted with the scale used in
the plot. Moreover, in the appendix I we have calculated the amplitude for the loop induced gg → X0

production, with X0 on-shell, and we have shown how the result is different for the scalar and the
pseudoscalar case.
The fact that the pseudoscalar case (0,1) does not depend on the mass implies that we do not need to
have a small g̃ for small mX0 . The corrections for a value g̃ = nmt/v will be, as mentioned before, n2
the corrections given here. Choosing, for example, g̃ = gs(mZ) (where gs =

√
4παs(mZ)), we find that

the corrections will be about 12 times larger than those shown here, leading to an overall correction of
24% at the threshold, which is experimentally well observable and therefore can be excluded. However,
we should notice that there is not dependence on the mass mX0

in the exclusion limits that could be
extracted. If we had extracted from an actual measurement of the tt̄ distributions a bound on g̃, we
could have set mX0 as small as we want without having an effect on the validity of the bound. This
is in contrast to the usual scenario, where larger values of the coupling implies larger values of the
mass of the new particle in order to accommodate the effects of new physics in the measurements of
kinematical distributions.
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Figure 4.0.5: Plots of the kinematical distributions for the mixed (1,1) benchmark point for different values of mX0 . From left to
right, going downwards: the invariant mass distribution mtt̄, the transverse momentum distribution pT (t), the rapidity distribution yt, the
difference between rapidity distribution yt − yt̄ and the invariant mass distribution mtt̄ near the threshold at

√
s = 13 TeV. In the inset of

each plot is depicted the relative difference ∆NLO, as defined in (4.0.3).
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Figure 4.0.6: Plots of the kinematical distributions for the mixed benchmark point (1,-1) for different values of mX0 . From left to
right, going downwards: the invariant mass distribution mtt̄, the transverse momentum distribution pT (t), the rapidity distribution yt, the
difference between rapidity distribution yt − yt̄ and the invariant mass distribution mtt̄ near the threshold at

√
s = 13 TeV. In the inset of

each plot is depicted the relative difference ∆NLO, as defined in (4.0.3).
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We now consider the kinematical distribution in the mixed (1,1) and (1,-1) benchmark points, i.e.
g = mt/v, g̃ = ±mt/v changing the X0 mass by logarithmic step. We have plotted the corresponding
results in figures 4.0.5 and 4.0.6.
The shapes of the ∆NLO are similar to the scalar case, the reason being that the scalar corrections are
dominant over the pseudoscalar ones. It is very interesting to note the behaviour at mX0

= 334 GeV.
In this case, both g and g̃ terms are present so, unlike the pure scalar case, at the threshold we have
a visible effect. Indeed the correction given by the resonant diagrams is not so small because of the
presence of the g̃ term.
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Conclusions

In this thesis, we have moved the first steps in the exploration of the phenomenology of a hypothetical
new pseudo-scalar state that preferentially couples to the top quark through a generic interaction

Lint = −t̄(g + ig̃γ5)tX0.

First of all, we have shown that an ALP, i.e. a pseudo-Goldstone boson coupling only derivatively,
i.e. at dimension 5, would lead to the same physics. Second, that due to this equivalence, emis-
sion of massless (small mass) ALPS, real or virtual, does not lead to any infrared divergence (the
soft enhancement). We have explicitly verified this general argument by direct calculation of the soft
limits of the real emission processes for vector, scalar and pseudoscalar particles, obtaining the ex-
pected results. We have then compared our analytical behaviours by implementing the model into
MadGraph5_aMC@NLO via FeynRules at leading order. Using MadGraph5_aMC@NLO package we
have simulated the emission processes of a scalar and a pseudoscalar. The simulations confirmed the
expectations: the cross section for the emission of a scalar particle has a logarithmic dependence on
the scalar mass of the type: σ ∝ log(s/m2

X0
), while the pseudoscalar cross section goes like a constant

for small mX0
masses. The same behaviour was found by studying the cross section for different

masses mX0
and varying the energy of the centre-of-mass: the mass dependence for the scalar is very

pronounced, unlike in the pseudoscalar case. After the validation of the picture in the real emission
scenario, we have considered the indirect effects of virtual exchanges of ALPs in pp→ tt̄ process. For
this purpose, we used NLOCT to create a UFO model containing all the ingredients to compute via
MadGraph5_aMC@NLO virtual corrections to any process involving top quarks in the final state.
To validate the model made with NLOCT, we have calculated analytically the virtual new-physics
corrections to the process pp → tt̄ and compared them with the model obtained from NLOCT. The
analytic calculation turned out to be useful to check that in virtual processes, the same mass depend-
ence is present as in real emission processes, and to assess how much the low-energy terms can be
neglected in the two cases. It turns out that in the scalar case, the approximation for high energies
in the calculation of virtual corrections provides a good estimate even for centre-of-mass energies up
to about 3mt. In the pseudoscalar case, on the other hand, the approximation at high energies for
virtual processes, leads to much larger uncertainties, as visible in table 3.2.1. Third, we have used
our NLOCT model in MadGraph5_aMC@NLO to simulate the virtual effects of new physics in the
process pp → tt̄. To this end, we have studied how key distributions, the invariant mass distribution
of the pair tt̄, the distribution of the transverse momentum pT (t) the distribution of the top rapidity
yt and the distribution of the difference yt − yt̄ depend on the parameters g and g̃. The results con-
firmed our expectations, i.e. that in the scalar interaction case, there is an obvious mass dependence
in the virtual corrections of new physics with respect to the LO. In the pseudoscalar case, on the
other hand, the corrections are insensitive to the mass, as long as one stays below the 2mt threshold.
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Above the threshold, well-known resonance and signal-background interfering effects arise that give
very striking signatures. Our implementation has also allowed studying the possible interference effects
by the scalar and pseudoscalar components, which are found to be small. Our work opens now the
possibility to make a full study of the sensitiveness of pp→ tt̄ to new physics effects and to constrain
the couplings/mass of the model comparing with available data. In addition, being fully general, the
implementation of the UFO model opens the possibility of studying direct and indirect effects in all
processes featuring a top in the final state. This is left for future work.
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Appendix A

Dirac algebra and spinors identities

In this appendix we will list some useful formulas in the context of Dirac algebra, we will follow the
treatment and the notation of [23] and [31] adding other formulae we found ourselves in the context
of our computations.

In order to treat spin 1
2 particles we need to introduce Pauli matrices

σµ =

((
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
, (A.0.1)

so we can define the 4× 4 Dirac matrices

γµ =

(
σµ

σ̄µ

)
, (A.0.2)

which satisfy the relation
{γµ, γν} = 2gµν . (A.0.3)

In addition to this we introduce Dirac and Dirac adjoint spinor:

ψ =

(
ψL
ψR

)
, ψ̄ = ψ†γ0.

Using gamma matrices is possible to build two projector operators, defining γ5 = iγ0γ1γ2γ3, namely

PL =
1− γ5

2
, PR =

1 + γ5
2

, (A.0.4)

so that
γ5 =

(
−1

1

)
, PL =

(
1

0

)
, PR =

(
0

1

)
.

The projectors act in the following way:

PLψ =

(
ψL
0

)
, PRψ =

(
0
ψR

)
.
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Gamma matrices have some important features useful in computing Feynman amplitudes, we list
them here:

γ25 = 1, (A.0.5)
{γ5, γµ} = 0, (A.0.6)

γµ† = γ0γµγ0, (A.0.7)
γµγ

µ = 4, (A.0.8)
γµγ

νγµ = −2γν , (A.0.9)
γµγ

νγργµ = 4gνρ, (A.0.10)
γµγ

νγργσγµ = −2γσγργν , (A.0.11)
/p/p = p2, (A.0.12)

/pγ
µ
/p = 2pµ/p− γµp2. (A.0.13)

There are also some useful identities involving gamma matrices traces:

Tr[odd number of γ] = 0, (A.0.14)
Tr[γµγν ] = 4gµν , (A.0.15)

Tr[γαγµγβγν ] = 4(gαµgβν − gαβgµν + gανgµβ), (A.0.16)
Tr[γ5] = 0, (A.0.17)

Tr[γ5γ
µγν ] = 0, (A.0.18)

Tr[γαγµγβγνγ5] = −4iεαµβν . (A.0.19)

At this point, we can define the Dirac Lorentz-invariant Lagrangian as

L = ψ̄(iγµ∂µ −m)ψ. (A.0.20)

Defining the contraction of a four vector with the gamma matrices as vµγµ = /v, the equations of
motion become

(i/∂ −m)ψ = 0, (A.0.21)

ψ̄(i
←−
/∂ +m) = 0. (A.0.22)

Using the spinor us(p) for particles and vs(p) for antiparticles, the equations of motion become:

(/p−m)us(p) = ūs(p)(/p−m) = 0, (A.0.23)

(/p+m)vs(p) = v̄s(p)(/p+m) = 0. (A.0.24)

Spinors can be combined using the following relations:
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ūs(p)us
′
(p) = 2mδss′ , (A.0.25)

v̄s(p)vs
′
(p) = −2mδss′ , (A.0.26)

u†s(p)us′(p) = 2Eδss′ , (A.0.27)
v†s(p)vs′(p) = 2Eδss′ , (A.0.28)

2∑
s=1

us(p)ūs(p) = /p+m, (A.0.29)

2∑
s=1

vs(p)v̄s(p) = /p−m. (A.0.30)

For on-shell spinors we have the Gordon identity:

ū(q1)γ
µu(q2) = ū(q1)

[
qµ1 + qµ2
2m

+ i
σµν(q1ν − q2ν)

2m

]
u(q2), (A.0.31)

where
σµν =

i

2
[γµ, γν ] . (A.0.32)

We need another kind of decomposition for our computations:
(qµ1 + qµ2 )ū(q1)γ5u(q2) = −iσµν(q1ν − q2ν)ū(q1)γ5u(q2). (A.0.33)

The proof is
ū(q1)iσ

µν(q1ν − q2ν)γ5u(q2) =ū(q1)[(−gµν + γνγµ)q1ν − (gµν − γµγν)q2ν ]γ5u(q2) =
=ū(q1)[(−qµ1 + /q1γ

µ)− (qµ2 − γµ/q2)]γ5u(q2) =
=ū(q1)[(−qµ1 +mγµ)− (qµ2 + γµm)]γ5u(q2) =

=(−qµ1 − q
µ
2 )ū(q1)γ5u(q2). (A.0.34)

We conclude this appendix by recalling the Feynman rules for external spinor lines:

= us(p)
, (A.0.35)

= ūs(p)
, (A.0.36)

= v̄s(p)
, (A.0.37)

= vs(p)
. (A.0.38)
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Appendix B

Detailed calculation of real emission
integrals

B.1 Vector emission
We can work out the numerator in the amplitude of equation (2.1.5)

ū(p′)

[
γµ(/p

′ +m)− (/p+m)γρ
]
u(p). (B.1.1)

Using (A.0.3) we can write this as

ū(p′)

[
p′ν(2g

µν − γνγµ) +mγµ − (2gρν − γργν)pν −mγρ)
]
u(p) =

=ū(p′)

[
(2p′µ − /p′γµ) +mγµ − (2pρ − γρ/p)− γρm

]
u(p) =

=2ū(p′)(p′µ − pρ)u(p) +
[
ū(p′)(−/p′ +m)

]
γµu(p) + ū(p′)γρ

[
(/p−m)u(p)

]
. (B.1.2)

Now the terms in square brackets in (B.1.2) vanish thanks to (A.0.23) and relabelling the dummy
indices, the amplitude becomes

iM = (ig)ū(p′)M0(p
′, p)u(p)

[(
−
pµε∗µ
p · k

)
+

(
p′µε∗µ
p′ · k

)]
. (B.1.3)

When we compute |M|2, summing over the massless vector polarizations we obtain the factorized term
as

g2
∑
µν

[(
−
pµε∗µ
p · k

)
+

(
p′µε∗µ
p′ · k

)][(
−p

νεν
p · k

)
+

(
p′νεν
p′ · k

)]
, (B.1.4)

and replacing
∑
µν εµε

∗
ν → −gµν we obtain

g2
[
− m2

(p · k)2
− m2

(p′ · k)2
+

2p · p′

(p · k)(p′ · k)

]
. (B.1.5)
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After summing over the polarization, the differential form factor for the cross-section can be written
using the parametrization

kµ = (Ek,~k), pµ = E(1, ~v), p′µ = E(1, ~v′), (B.1.6)

and will become

dFf→fγ =
d3k

2Ek

g2

(2π)3

[
− m2

(p · k)2
− m2

(p′ · k)2
+

2p · p′

(p · k)(p′ · k)

]
=

=
d3k

2Ek

g2

(2π)3

[
2E2 − 2~v~v′E2

(EkE − ~k~v′E)(EkE − ~k~vE)
− m2

(EkE − ~k~v′E)2
− m2

(EkE − ~k~vE)2

]
=

=
dφ

2Ek

g2

(2π)3
sin θdθE2

kdk
1

E2
k

[
2− 2~v~v′

(1− k̂~v′)(1− k̂~v)
− m2/E2

(1− k̂~v′)2
− m2/E2

(1− k̂~v)2

]
=

=
α

2π
dk

1

Ek
Iγ(~v,~v

′)

=
α

2π
dEk

1

Ek
Iγ(~v,~v

′), (B.1.7)

where the last equality is due to the fact that k2 = 0, so Ek =
∣∣∣~k∣∣∣. The integral is

Iγ(~v,~v
′) =

∫
dθ sin θ

[
2− 2~v~v′

(1− k̂~v′)(1− k̂~v)
− m2/E2

(1− k̂~v′)2
− m2/E2

(1− k̂~v)2

]
. (B.1.8)

In the high energy limit substituting the lower extreme of integration inside the integral we obtain

Iγ(~v,~v
′) '

∫ t=1

k̂~v′=~v~v′
dt

2

(1− v′t)
+

∫ t=1

k̂~v′=~v~v′
dt

2

(1− vt)
=

= −2
[
1

v′
log(1− v′t)

]1
t=~v~v′

~v′

− 2

[
1

v
log(1− vt)

]1
t=~v~v′

v

=

= 2

[
1

v′
log

(
1− ~v~v′

1− v′

)
+

1

v
log

(
1− ~v~v′

1− v

)]
. (B.1.9)

Now using the fact that v ' v′ so that p ' p′ , we can approximate the integral as

Iγ(~v,~v
′) ' 2

v
log

[
(1− ~v~v′)2

(1− v)(1− v′)

]
=

2

v
log

[
(E2 − ~p~p′)2

E2(E − p)2

]
=

=
4

v
log

[
(E2 − ~p~p′)
E(E − p)

]
. (B.1.10)

Now in equation (B.1.10), since p ' E, we can approximate the denominator as (E2 − p2)/2, in
fact E2 − p2 = 2E(E − p). In this way

Iγ(~v,~v
′) ' 4

v
log

[
2p · p′

(E2 − p2)

]
=

4

v
log

[
2p · p′

m2

]
≈ 4

v
log

(
∆E2

m2

)
, (B.1.11)

where ∆E2 = (p′ − p)2 and we can proceed as written in the main chapter.
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B.2 Scalar emission
Working on the amplitude (2.2.5) we can use again (A.0.23) in order to write /pu(p) = mu(p) and
ū(p′)/p

′ = mū(p′) so that

iM = (ig)ū(p′)M0(p
′, p)u(p)

[(
− 2m

2p · k

)
+

(
2m

2p′ · k

)]
, (B.2.1)

and we can now compute

|M|2 = |M0|2 g2
[(
− m

p · k

)
+

(
m

p′ · k

)]2
=

= |M0|2 g2
[

m2

(p · k)2
+

m2

(p′ · k)2
− 2m2

(p · k)(p′ · k)

]
. (B.2.2)

We need then to work on the form factor, using the same parametrization as before.

dFf→fφ =
d3k

2Ek

g2

(2π)3

[
m2

(EkE − ~k~vE)2
+

m2

(EkE − ~k~v′E)2
− 2m2

(EkE − ~k~vE)(EkE − ~k~v′E)

]
=

=
d3k

2Ek

g2

(2π)3
m2

E2

1

E2
k

[
1

(1− k̂~v)2
+

1

(1− k̂~v′)2
− 2

(1− k̂~v)(1− k̂~v′)

]
=

= dφ
dk

2Ek

g2

(2π)3
m2

E2

[
1

(1− k̂~v)2
+

1

(1− k̂~v′)2
− 2

(1− k̂~v)(1− k̂~v′)

]
=

=
dk

Ek

α

2π

m2

E2
Iφ(~v, ~v′). (B.2.3)

From which
Iφ(~v,~v

′) =

∫
dθ sin θ

[
1

(1− k̂~v)2
+

1

(1− k̂~v′)2
− 2

(1− k̂~v)(1− k̂~v′)

]
(B.2.4)

We now integrate Iφ(~v,~v
′) dividing it into two parts. THe first one is immediate, putting t = cos θ:∫ 1

−1

dt
1

(1− vt)2
+

∫ 1

−1

dt
1

(1− v′t)2
=

2

1− v2
+

2

1− v′2
, (B.2.5)

In order to solve the second part we can use the same tricks of the previous section, but we need
to keep in mind the fact that we do not have the numerator so the term with ~v~v′ product does not
cancel anymore, in addition to that, we have an overall minus sign. In this case, we need to choose k̂
anti-parallel with respect to v or v′.

Iφ(~v,~v
′) ' 2

1− v2
+

1

1− v′2
− 2

[∫ k̂~v=−~v~v′

t=−1

dt
1

(1 + v′t)(1− k̂~v)
+

∫ k̂~v′=−~v~v′

t=−1

dt
1

(1− k̂~v′)(1 + vt)

]

≈ 2

1− v2
+

2

1− v′2
+

1

1− ~v~v′
4

v
log

(
∆E2

m2

)
. (B.2.6)

and then we can proceed as explained in the main chapter.
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Appendix C

Tree-level validation

To validate the tree-level model we look at the process pp → tt̄X0 at
√
s = 13 TeV, this process

contains all the interaction diagrams and the possible emissions, so it is perfect for our purpose. The
cross-sections obtained using our UFO model are compared with the ones obtained by the HCC-NLO-
X0 UFO from [3]. The result are presented in table C.0.1, in which we have considered the scalar case
(g = mt/v, g̃ = 0) and the pseudoscalar case (g = 0, g̃ = mt/v) C.0.2

mX0 (GeV) σ HCC (pb) our σ (pb)
10−6 350.28±0.64 350.39±0.61
10−5 298.22±0.72 298.22±0.72
10−4 249.93±0.59 249.93±0.59
10−3 202.34±0.66 202.34±0.66
10−2 155.71±0.59 155.71±0.59
10−1 108.57±0.25 108.57±0.25
100 61.53±0.17 61.43±0.17
101 20.10±0.04 20.10±0.04

Table C.0.1: pp → tt̄X0 cross-section in the full scalar case, with g = mt
v
, g̃ = 0 at

√
s = 13 TeV

mX0
(GeV) σ HCC (pb) our σ (pb)

10−6 0.432±0.001 0.432±0.001
10−5 0.433±0.001 0.433±0.001
10−4 0.433±0.001 0.433±0.001
10−3 0.433±0.001 0.433±0.001
10−2 0.432±0.001 0.432±0.001
10−1 0.433±0.001 0.433±0.001
100 0.457±0.001 0.458±0.002
101 0.459±0.001 0.459±0.001

Table C.0.2: pp → tt̄X0 cross-section in the full pseudoscalar case, with g = 0, g̃ = mt
v

at
√
s = 13 TeV
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Appendix D

Dimensional regularization

We list here some useful formulae for dimensional regularization.
Feynman parametrization allows us to write

1

D1D2
=

∫ 1

0

dx
1

[D1 + (D2 −D1)x]2
, (D.0.1)

1

D1D2D3
=

∫ 1

0

dxdydzδ(x+ y + z − 1)
2

[xD1 + yD2 + zD3]3
. (D.0.2)

We need also to look at some important integrals in dimensional regularization, here we will use
d = 4− 2ε and then we will expand around small ε values, sending ε to zero at the end of the process.
We also call µ̃2 = 4πµ2eγE .

• µ4−d
∫

ddk

(2π)d
1

(k2 −∆+ iε)2
= µ4−d i

(4π)
d
2

1

∆2− d
2

Γ

(
4− d
2

)
=

=
i

(4π)2−ε
µε

∆ε
Γ (ε) = (D.0.3)

=
i

(4π)2

[
1

ε
+ log

(
µ̃2

∆

)]
.

• µ4−d
∫

ddk

(2π)d
k2

(k2 −∆+ iε)2
= −µ4−d d

2

i

(4π)
d
2

1

∆1− d
2

Γ

(
2− d
2

)
=

= µε(ε− 2)
i

(4π)2−ε
1

∆ε−1
Γ (ε− 1) = (D.0.4)

=
2i∆

(4π)2

[
1

ε
+

1

2
+ log

(
µ̃2

∆2

)]
.
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• µ4−d
∫

ddk

(2π)d
1

(k2 −∆+ iε)3
= µ4−d −i

2(4π)
d
2

1

∆3− d
2

Γ

(
6− d
2

)
=

= µε
−i

2(4π)2−ε
1

∆ε+1
Γ (ε+ 1) = (D.0.5)

=
−i

2(4π)2
1

∆
.

• µ4−d
∫

ddk

(2π)d
k2

(k2 −∆+ iε)3
= µ4−d d

4

i

(4π)
d
2

1

∆2− d
2

Γ

(
4− d
2

)
=

= µε
i

(4π)2−ε

(
1− ε

2

) 1

∆ε
Γ (ε) = (D.0.6)

=
i

(4π)2

[
1

ε
+ log

(
µ̃2

∆

)
− 1

2

]
.
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Appendix E

Diagram computations in detail

In this appendix, we report the explicit calculation made for the diagrams.

E.1 Mass renormalization
We want to work out the integral:∫

d4k

(2π)4
(−ig + g̃γ5)

i(/k +mt)

k2 −m2
t + iε

(−ig + g̃γ5)
i

(p− k)2 −m2
X0

+ iε
. (E.1.1)

The denominator with Feynman parametrization transforms into:
1

k2 −m2
t + iε

1

(p− k)2 −m2
X0

+ iε
=

=

∫ 1

0

dx
1

[(k2 −m2
t ) + ((p− k)2 −m2

X0
− k2 +m2

t )x]
2
. (E.1.2)

We work now on the denominator in order to write it in a useful way to apply dimensional regulariz-
ation,

[(k2 −m2
t ) + ((p− k)2 −m2

X0
− k2 +m2

t )x]
2 =

=[k2 −m2
t + p2x− 2p · kx−m2

X0
x+m2

tx+ p2x2 − p2x2]2 =

=[(k − px)2 + p2x− x2p2 +m2
tx−m2

t − xm2
X0

]2 =

=[(k − px)2 −∆]2, (E.1.3)

where:
∆ = x(xp2 − p2 −m2

t +m2
X0

) +m2
t = (1− x)(m2

t − p2x) +m2
X0
x. (E.1.4)

We need now to use (A.0.5) and (A.0.6) to work on the numerator, in order to obtain

− (−ig + g̃γ5)(/k +mt)(−ig + g̃γ5) = (E.1.5)
=−

[
(−ig + g̃γ5)

2mt

]
− |(−ig + g̃γ5)|2 /k =

=−
[
(−g2 + g̃2)mt − 2igg̃mtγ5 − (g2 + g̃2)/k

]
. (E.1.6)
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Using Feynman parametrization and performing the substitution: k → k + px we obtainE:∫ 1

0

dx

∫
d4k

(2π)4

[
(g2 − g̃2)mt + 2igg̃mtγ5 + (g2 + g̃2)(/k + x/p)

]
[k2 −∆+ iε]2

, . (E.1.7)

We then remove the odd terms in k and we proceed with dimensional regularization choosing d = 4−2ε.
The integral becomes

µ(4−d)
∫ 1

0

dx

∫
ddk

(2π)d

[
(g2 − g̃2)mt + 2igg̃mtγ5 + (g2 + g̃2)x/p

]
[k2 −∆+ iε]2

; (E.1.8)

after using (D.0.3) in (E.1.8) we obtain

ΣX0
(/p) =

1

(4π)2

∫ 1

0

dx[(g2 − g̃2)mt + 2igg̃mtγ5 + (g2 + g̃2)x/p]

[
1

ε
+ log

(
µ̃2

∆(x)

)]
.

E.2 Three point function
We want to work out the integral:

iMµ
X0

=

∫
d4k

(2π)4
i

(q1 − k)2 −m2
X0

+ iε
ū(q2)(−ig + g̃γ5)

i(/p+ /k +mt)

(p+ k)2 −m2
t + iε

(−ieγµ)

i(/k +m)

k2 −m2
t + iε

(−ig + g̃γ5)u(q1)

(E.2.1)

now, this amplitude needs some work to be computed, the first thing we need to do is to work on
denominators, using Feynman parametrization:

D1 =(k2 −m2
t ) + iε, (E.2.2)

D2 =[(p+ k)2 −m2
t ] + iε, (E.2.3)

D3 =[(k − q1)2 −m2
X0

] + iε. (E.2.4)

Now, exploiting the fact that the fermions are on-shell (q21 = q22 = m2
t ) and x+ y + z = 1 we find that

xD1 + yD2 + zD3 =

=xk2 − xm2
t + yp2 + yk2 + 2yp · k −m2

ty + zk2 +m2
t z − 2k · q1z −m2

X0
z + iε =

=(k + yp− zq1)2 − y2p2 − z2q21 + 2zyp · q1 + yp2 −m2
t + 2m2

t z −m2
X0
z + iε =

=(k + yp− zq1)2 −m2
t (1− z)2 + p2y(1− y) + 2zyp · q1 + iε =

=(k + yp− zq1)2 −m2
t (1− z)2 + p2yx+ p2yz + 2zyp · q1 −m2

X0
z + iε =

=(k + yp− zq1)2 −m2
t (1− z)2 + p2yx+ yz((p+ q1)

2 − q21)−m2
X0
z + iε =

=(k + yp− zq1)2 −m2
t (1− z)2 + p2yx+ yz(q22 − q21)−m2

X0
z + iε =

=(k + yp− zq1)2 −m2
t (1− z)2 + p2yx−m2

X0
z + iε =

=k2 −∆+ iε, (E.2.5)
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where in (E.2.5) we have made the substitution k → k − yp+ zq1 and

∆ = m2
t (1− z)2 − p2yx+m2

X0
z. (E.2.6)

Working on the numerator we obtain
Nµ

2e
=ū(q2)(g + ig̃γ5)(/p+ /k +mt)γ

µ(/k +mt)(g + ig̃γ5)u(q1) =

=ū(q2)(g + ig̃γ5)(/pγ
µ/k + /pγ

µmt + /kγµ/k + /kγµmt +mtγ
µ/k +m2

tγ
µ)(g + ig̃γ5)u(q1) =

=ū(q2)[(g
2 + g̃2)(/pγ

µ/k + /kγµ/k +m2
tγ
µ) + (g2 − g̃2 + 2igg̃γ5)(/pγ

µmt + 2kµmt)]u(q1).

To proceed with the calculation we will need many properties, in particular, we will use the equations
of motion (A.0.21) from which

ū(q2)/pū(q1) = 0, (E.2.7)
and some identities related to γ matrices (A.0.12),(A.0.13) and the usual trick kµkν → 1

dg
µνk2.

In order to put the amplitude in the desired form we have used two decompositions:

ū(q2)/pγ
µu(q1) =mū(q2)γ

µu(q1)− ū(q2)/q1γ
µu(q1) =

=2mū(q2)γ
µu(q1)− 2ū(q2)q

µ
1 u(q1) =

=2mū(q2)γ
µu(q1)− ū(q2)(qµ1 + qµ2 )u(q1) + ū(q2)p

µu(q1) =

=ū(q2)[iσ
µν(q2ν − q1ν) + pµ]u(q1) = ū(q2)[iσ

µνpν + pµ]u(q1), (E.2.8)

where the last lines equality follows from the Gordon identity (A.0.31).

ū(q2)[/pγ
µγ5]u(q1) =ū(q2)[/q2γ

µγ5]u(q1)− ū(q2)[/q1γ
µγ5]u(q1) =

=mū(q2)γ
µγ5u(q1)− 2qµ1 ū(q2)γ5u(q1)−mū(q2)γµγ5u(q1) =

=− 2qµ1 ū(q2)γ5u(q1) = (−qµ1 − q
µ
2 + pµ)ū(q2)γ5u(q1) =

=ū(q2)(p
µ + iσµνpν)γ5u(q1), (E.2.9)

in which we have used (A.0.33).
In order to work with the numerator we separate terms that are multiplied by g2, g̃2 and gg̃.

E.2.1 Scalar term
The g2 term can be computed starting from

g2ū(q2)[yγ
µp2 + z/pγ

µmt +
2

d
k2γµ − 2yzmtp

u + 2z2qµ1mt − γµk2 − y2p2γµ

−z2m2
tγ
µ + 2yzq1 · pγµ +m2

tγ
µ + /pγ

µmt − 2ypµmt + 2zqµ1mt]u(q1).
(E.2.10)

We need now to separate the equation into three parts:[
(1− y)yp2 −

(
1− 2

d

)
k2 +m2

t (1− z2)
]
ū(q2)γ

µu(q1)+

[imt(z + 1)]pν ū(q2)σ
µνu(q1)+

ū(q2)[2z
2qµ1mt + 2yzq1 · pγµ + 2zqµ1mt +mt(z + 1− 2y − 2yz)pµ]u(q1).

(E.2.11)
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The last line of (E.2.11) need some work

ū(q2)[(z + 1− 2yz − 2y)mtp
µ + 2z2qµ1mt + 2yzq1 · pγµ + 2zqµ1mt]u(q1) =

=ū(q2)
[
(z + 1− 2yz − 2y)mtp

µ + (z2 + z) (qµ1 + qµ2 − pµ)mt + yz[(p+ q1)
2 − q21 − p2]γµ

]
u(q1) =

=ū(q2)
[
(z + 1− 2yz − 2y)mtp

µ + (z2 + z)mt (2mtγ
µ − iσµνpν − pµ)− yzp2γµ

]
u(q1), (E.2.12)

and now rearranging the elements we obtain for the g2 term

g2
{[

(1− y − z)yp2 −
(
1− 2

d

)
k2 +m2

t (z + 1)2
]
ū(q2)γ

µu(q1)+

imt(1− z2)pν ū(q2)σµνu(q1)+

[−z2 + 1− 2yz − 2y]mtp
µū(q2)u(q1)

}
. (E.2.13)

E.2.2 Pseudoscalar term
The g̃2 term can be computed starting from:

g̃2ū(q2)(/pγ
µ/k + /kγµ/k +m2

tγ
µ − /pγµmt − 2kµmt)u(q1). (E.2.14)

We follow the same step as before:

g̃2ū(q2)[yγ
µp2 + z/pγ

µmt +
2

d
k2γµ − 2yzmtp

u + 2z2qµ1mt − γµk2 − y2p2γµ

−z2m2
tγ
µ + 2yzq1 · pγµ +m2

tγ
µ − /pγµmt + 2ypµmt − 2zqµ1mt]u(q1),

(E.2.15)

when we divide it in the three terms, we find:[
(1− y)yp2 −

(
1− 2

d

)
k2 +m2

t (1− z2)
]
ū(q2)γ

µu(q1)+

[imt(z − 1)]pν ū(q2)σ
µνu(q1)+

ū(q2)[(z − 1 + 2y − 2yz)mtp
µ + 2z2qµ1mt + 2yzq1 · pγµ − 2zqµ1mt]u(q1).

(E.2.16)

We need again to work on the last line in (E.2.16)

ū(q2)[(z − 1 + 2y − 2yz)mtp
µ + 2z2qµ1mt + 2yzq1 · pγµ − 2zqµ1mt]u(q1) =

=ū(q2)
[
(z − 1 + 2y − 2yz)mtp

µ + (z2 − z) (qµ1 + qµ2 − pµ)mt + yz[(p+ q1)
2 − q21 − p2]γµ

]
u(q1) =

=ū(q2)
[
(z − 1 + 2y − 2yz)mtp

µ + (z2 − z)mt (2mtγ
µ − iσµνpν − pµ)− yzp2γµ

]
u(q1). (E.2.17)

For the g̃2 term we find

g̃2
{[

(1− y − z)yp2 −
(
1− 2

d

)
k2 +m2

t (z − 1)2
]
ū(q2)γ

µu(q1)+

[imt(−z2 − 1 + 2z)]pν ū(q2)σ
µνu(q1)+

(2z − 1 + 2y − 2yz − z2)mtp
µū(q2)u(q1)

}
(E.2.18)
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E.2.3 Mixed term
The last part of the computation includes the mixed term gg̃:

2igg̃ū(q2)(/pγ
µmt + 2kumt)γ5u(q1) (E.2.19)

translating k and removing odd term this becomes:

ū(q2)(imtσ
µνpν +mtp

µ + 2zqµ1mt − 2ypµmt)γ5u(q1), (E.2.20)

we have no term with γµ but we still need some work on the term

ū(q2)[2zq
µ
1mt + (1− 2y)pµmt]γ5u(q1) =

=ū(q2)[z(q
µ
1 − pµ + qµ2 )mt + (1− 2y)pµmt]γ5u(q1) =

=ū(q2)[z(−pµ − iσµνpν)mt + (1− 2y)pµmt]γ5u(q1), (E.2.21)

so the final term will be

2igg̃

[
imt(1− z)σµνpν ū(q2)γ5u(q1)+

−(z + 2y − 1)pµū(q2)γ5u(q1)

]
.

(E.2.22)

E.2.4 Computing the integral
After the decomposition above we have the following expressions:

g2ū(q2)

{[
(1− y − z)yp2 −

(
1− 2

d

)
k2 +m2

t (z + 1)2
]
γµ + imt(1− z2)pνσµν

}
u(q1), (E.2.23)

g̃2ū(q2)

{[
(1− y − z)yp2 −

(
1− 2

d

)
k2 +m2

t (z − 1)2
]
γµ − imt(z − 1)2pνσ

µν

}
u(q1), (E.2.24)

2igg̃

[
imt(1− z)σµνpν ū(q2)γ5u(q1)

]
. (E.2.25)

In the previous equations, we have neglected the pµ terms. They should vanish due to the Ward
identity, but we can notice another fact, the integral measure∫

dxdydzδ(1− x− y − z), (E.2.26)

is symmetric with respect to the exchange x ↔ y and this is true also for the denominator. The pµ
term can be written as

g2(1 + z)(1− z − 2y) + g̃2(z − 1)(1− z − 2y) + 2igg̃(1− 2y − z) =
=g2(1 + z)(x− y) + g̃2(z − 1)(x− y) + 2igg̃(x− y), (E.2.27)

but this is clearly antisymmetric with respect to the x↔ y exchange.
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In order to put together the terms we need to perform the following transformation:(
1− 2

d

)
µ4−d

∫
ddk

(2π)d
k2

(k2 −∆+ iε)3
=

(
1− 2

d

)
µ4−d d

4

i

(4π)
d
2

1

∆2− d
2

Γ

(
4− d
2

)
=

=
1

2
(1− ε)µ2ε i

(4π)2−ε
1

∆ε
Γ(ε) =

i

(4π)2

[
1

2ε
+

1

2
log

(
µ̃2

∆

)
− 1

2

]
, (E.2.28)

where we have used (D.0.6) and expanded in ε. The terms proportional to m2
t , p2 and the σµν term

do not generate UV divergent contribution and can be computed in dimensional regularization using
(D.0.5). Putting together all these terms we find the integral as expressed in the main chapter.
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Appendix F

Detailed calculation of the NLO
corrected amplitude

The interference term in the qq̄ → tt̄ amplitude reads

∑
s

M†
X0
M0

e2qe
2
t

p4

∑
s

[
ū(p3)

[
f1(p

2)γµ + i
σµν

2mt
pνF2(p

2)

]
v(p4)v̄(p2)γµu(p1)

]†
ū(p3)γ

ρv(p4)v̄(p2)γρu(p1)

=
e2qe

2
t

p4

∑
s

ū(p1)γµv(p2)v̄(p4)

[
f∗1 (p

2)γµ − i σ
µν

2mt
pνF

∗
2 (p

2)

]
u(p3)ū(p3)γ

ρv(p4)v̄(p2)γρu(p1)

=
e2qe

2
t

p4
Tr
[
(/p2 −mq)γρ(/p1 +mq)γµ

]
Tr
[
(/p3 +mt)γ

ρ(/p4 −mt)

(
f∗1 (p

2)γµ − iF †
2 (p

2)
σµν

2mt
pν

)]
=

=
e2qe

2
t

p4

(
Tr
[
/p2γρ/p1γµ

]
− 4m2

qgρµ

)(
Tr
[
/p3γ

ρ
/p4
(
f∗1 (p

2)γµ
)]
− 4m2

tf
∗
1 (p

2)gρµ+

+
i

2
Tr
[
/p3γ

ρF †
2 (p

2)σµν − γρ/p4F
†
2 (p

2)σµν
]
pν

)
. (F.0.1)

We have seen in chapter 3 that

|M|2 =
1

4

∑
s

|M0|2(1 + 2Re[f(p2) + δ1 + F2(p
2)])+

+
2Re[F2]

p4
e2qe

2
t

(
−4sm2

t + s2 − t2 + 2tu− u2
)
. (F.0.2)
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Now we can work on the Mandelstam variables in the second part:

2Re[F2]
e2qe

2
t

s2
(
−4sm2

t + s2 − t2 + 2tu− u2
)
=

=2Re[F2]
e2qe

2
t

s2
(
−2t2 − 2u2 − 4sm2

t + s2 + (t+ u)2
)
=

=2Re[F2]
e2qe

2
t

s2
(
−2t2 − 2u2 − 4sm2

t + s2 + (s− 2m2
q − 2m2

t )
2
)
=

=2Re[F2]
e2qe

2
t

s2
(
−2t2 − 2u2 − 4sm2

t + 2s2 + 4(m2
q +m2

t )
2 − 4s(m2

q +m2
t )
)
=

=2Re[F2]
e2qe

2
t

s2
(
−2t2 − 2u2 + 2s2 + 4(m2

q +m2
t )

2 − 8s(m2
q +m2

t ) + 4sm2
q

)
=

=2Re[F2]

[
−1

4

∑
s

M2
0 +

e2qe
2
t

s2
(
2s2 + 4sm2

q

)]
.

(F.0.3)

Now we can put our result back inside (F.0.2) to obtain:

|M|2 =
1

4

∑
s

|M0|2(1 + 2Re[f(p2) + δ1]) + 2Re[F2(p
2)]e2qe

2
t

(
2 + 4

m2
q

s

)
. (F.0.4)

The colour factor in front of F2(p
2) can be understood by thinking about the fact that the two gqq̄

and gtt̄ vertices will give a T aijT bkl matrices. The gluon propagator takes with itself a δab term, so in
the final amplitude, we will have a term like T aijT akl. When we compute the squared amplitude and
take the average over the initial colours we find

1

9

∑
a,b

∑
i,j

∑
k,l

T aijT
a
klT

b
ijT

b
kl =

1

9
Tr(T aT b)Tr(T aT b) =

1

9

1

4
δabδab =

1

9

1

4
8 =

2

9
.
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Appendix G

NLO process diagrams

For the process qq̄ → tt̄ there is only one diagram:

g
X0

q

q̄

t̄

t

(G.0.1)

For the process gg → tt̄ there are eleven diagrams:

g
X0

g

g

t̄

t

(G.0.2)
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(G.0.3)
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t
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t

t
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(G.0.5)
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X0

t
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(G.0.6)
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Appendix H

Rapidity and transverse momentum
at the threshold

The rapidity
y =

1

2
log

E + pz
E − pz

, (H.0.1)

where z is the collision axis, can be used together with the transverse energy

ET =
√
m2 + p2T , (H.0.2)

to express the 4-momentum of a particle as

pµ = (ET cosh y, PT,x, PT,y, ET sinh y). (H.0.3)

We can now use this parametrization to express the invariant mass in the tt̄ production process

Mtt̄ = E2
T,t + E2

T,t̄ + 2ET,tET,t̄(cosh yt cosh yt̄ − sinh yt sinh yt̄), (H.0.4)

where we have used the fact that the total transverse momentum must be equal to zero. We can now
look at what happens at the threshold,

4m2
t = E2

T,t + E2
T,t̄ + 2ET,tET,t̄ cosh(yt − yt̄). (H.0.5)

Using the fact that pT,t = pT,t̄ = pT we have:

4m2
t = 2(m2

t + p2T )(1 + cosh(yt − yt̄)), (H.0.6)

from which
p2T (1 + cosh(yt − yt̄)) +m2

t (1− cosh(yt − yt̄)) = 0, (H.0.7)

for which the couple
pT = 0 cosh(yt − yt̄) = 1→ yt − yt̄ = 0 (H.0.8)

is a solution.
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Appendix I

Other 1-loop interesting diagrams

I.1 Fermionic-loop correction to X0 two-point function
We compute the correction for the 2-point function of the particle X0 with a fermion loop

p

k − p

k

p

(I.1.1)

The integral for the loop turns out to be∫
d4k

(2π)4
i

(p− k)2 −m2
t

i

k2 −m2
t

Tr[(g + ig̃γ5)(/k − /p+m)(g + ig̃γ5)(/k +m)], (I.1.2)

we start the computation looking at the trace and using (A.0.14),(A.0.15),(A.0.17):

Tr[(g + ig̃γ5)(/k − /p+m)(g + ig̃γ5)(/k +m)] =

=Tr[(g2 + g̃2)(/k − /p)(/k +m) + (g2 − g̃2 + 2igg̃γ5)(m/k +m2)] =

=(g2 + g̃2)(4k2 − 4p · k) + 4g2m2 − 4g̃2m2. (I.1.3)

We turn back at the denominator, using the Feynman parametrization (D.0.1) we have:

k2 −m2
t + [(p− k)2 −m2

t − k2 +m2
t ]x =

=k2 −m2
t + p2x− 2p · kx+ p2x2 − p2x2 =

=(k − px)2 −m2
t + p2x− p2x2 =

=(k − px)2 −∆, (I.1.4)

where:
∆ = m2

t − p2x(1− x). (I.1.5)
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In order to use dimensional regularization we need to make the substitution: kµ → kµ + pµx.
We can now can turn back to the full integral, with the substitution above, removing odd terms

we find: ∫ 1

0

dx

∫
d4k

(2π)4
4(g2 + g̃2)(k2 + p2x2 − xp2) + 4(g2 − g̃2)m2

t

(k2 −∆+ iε)2
. (I.1.6)

We need now to use (D.0.3) and (D.0.4) to obtain:

ΠX0
=

∫ 1

0

dx[4(α− α̃)m2
t − 4(α+ α̃)x(1− x)p2]

[
1

ε
+ log

(
ũ2

∆(x)

)]
+

+

∫ 1

0

dx8∆(α+ α̃)

(
1

ε
+

1

2
+ log

(
µ̃2

∆(x)

))
. (I.1.7)

Now integrating ∆ when it is possible:

ΠX0 = [2(6m2
t − p2)α+ 2(2m2

t − p2)α̃]
1

ε
+

+ (α+ α̃)

(
4m2

t −
2

3
p2
)
+

+

∫ 1

0

dx
[
12(m2

t − p2x(1− x))α+ 4(m2
t − 3p2x(1− x)α̃

]
log

(
µ̃2

m2
t − x(1− x)p2

)
(I.1.8)

I.2 Fermionic triangular diagram
We consider here the case of the X0 decay into two photons, the gluon case differs only for a colour
factor.

l + p

l − q
l

q

p

X0

εν

εµ

(I.2.1)

We can also exchange the position of the two photons, but the diagram is the same, so we can simply
multiply this diagram by a factor 2 in order to obtain the value of the full amplitude.

M = iε∗µε
∗
ν(−iet)2

∫
d4l

(2π)4
i(/l +mt)

l2 −m2
t

γµ
i(/l + /p+mt))

(l + p)2 −m2
t

(−g − ig̃γ5)
i(/l − /q +mt)

(l − q)2 −m2
t

γν . (I.2.2)

As usual, we start working on the denominator in order to pass to the form in (D.0.2). What we obtain
using the Feynman parametrization is

D1D2D3 = (l + px− qy)2 −m2
t + xym2

X0
. (I.2.3)
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We must now work on the numerator, neglecting the photon polarizations

N = Tr
[
(/l +mt)γ

µ(/l + /p+mt)(−g − ig̃γ5)(/l − /q +mt)γ
ν
]
, (I.2.4)

we use the γ-matrices identities in A in order to remove trace of odd number of γ-s and solve the other
ones:

N = −gTr
[
/lγµ(2/l + /p− /q)γνmt +mtγ

µ(l2 + /p/l − /l/q − /p/q)γν +m3
tγ
µγν

]
+

−ig̃Tr
[
/lγµ(/p+ /q)γ5γ

νmt +mtγ
µ(−l2 − /p/l + /l/q + /p/q)γ5γ

ν +m3
tγ
µγ5γ

ν
]
. (I.2.5)

We will work this out keeping the terms in g and g̃ separated. Using the identity with γ traces, we
finally obtain:

N = −4mtg

[
2lµlν + lνpν − lµqν − 2gµν l2 − gµν l · p+ gµν l · q + 2lµlν + lνpµ − lνqµ + l2gµν+

+pµlν − lµqν − pµqν − pν lµ + lνqµ + pνqµ + gµνp · l − gµν l · q − gµνp · q +m2
t g
µν

]
+

−4mtg̃

[
εαµβν(lαpβ + lαqβ + pαlβ − lαqβ − pαqβ)

]
, (I.2.6)

now we need to remember that for the Lorentz gauge: p·ε(p) = 0, and that being εαµβν anti-symmetric,
we have εαµβν(lαpβ + lβpα) = 0 so the numerator becomes much easier:

N = −4mtg

[
4lµlν −

m2
X0

2
gµν +m2

t g
µν − gµν l2 + pνqµ

]
+

+4mtg̃

[
εαµβν(pαqβ)

]
. (I.2.7)

Now the g part is the same one we obtain for the Higgs boson calculation, the result is well known
and therefore we will not compute it. Looking at the second term we have no dependence on l at all
in the numerator.

We focus only on the g̃ term because the scalar case is the same as the Higgs. What we obtain at
the end, shifting the denominator and multiplying by 2, in order to take into account both diagrams
is

M|g̃ = imtg̃ε
∗
µε

∗
ν(−iet)2

∫
d4l

(2π)4

∫
dxdy

8εαµβνpαqβ
(l2 −m2

t + xym2
X0

)3
. (I.2.8)

Now the integral in l using (D.0.5) give us

M|g̃ =g̃mtε
∗
µε

∗
ν

(−iet)2

32π2

∫
dxdy

8εαµβνpαqβ
m2
t − xym2

X0

(I.2.9)

=mtg̃ε
∗
µε

∗
ν

(−iet)2

32π2
8εαµβνpαqβ

Li2

(
2m0

m0−
√
m2

0−4m2
t

)
+ Li2

(
2m0√

m2
0−4m2

t+m0

)
m2

0

= (I.2.10)

m2
t�m2

X0−−−−−−→ mtg̃ε
∗
µε

∗
ν

(−iet)2

8π2
εαµβν

pαqβ
m2
t

. (I.2.11)
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Before continuing we compare the integrals in the amplitudes in the pseudoscalar and in the scalar
case:

Mg̃ =− g̃mtε
∗
µε

∗
ν

e2t
4π2

εαµβνpαqβ

∫
dxdy

1

m2
t − xym2

X0

, (I.2.12)

Mg =− gε∗µε∗νmt
e2t
4π2

(
gµνm2

X0
− 2pνqµ

) ∫
dxdy

1− 4xy

m2
t −m2

X0
xy
. (I.2.13)

It is interesting to look what happens at this term when we put mX0
= 2mt.

Mg̃ =−
g̃

mt
ε∗µε

∗
ν

e2t
4π2

εαµβνpαqβ
π2

8
, (I.2.14)

Mg =−
g

mt
ε∗µε

∗
ν

e2t
4π2

(
gµν4m2

t − 2pνqµ
) 1
2
. (I.2.15)

I.2.1 Differential decay rate
Now for the decay, we are interested in the quantity |M|2, for the rest of the computation we will
indicate the result of the integral in (I.2.9) as F (m2

t ,m
2
X0

). Summing over polarization we obtain

|M|2|g̃ =
m2
t g̃

2e4t
16π4

(εαµβνpαqβ)(ε
γδστpγqσ)gµδgντ

∣∣F (m2
t ,m

2
X0

)
∣∣2 =

=
m2
t g̃

2e4t
16π4

(εαβµνpαqβ)(εγσµνp
γqσ)

∣∣F (m2
t ,m

2
X0

)
∣∣2 =

=− m2
t g̃

2e4t
8π4

(δαβγσ pαqβp
γqσ)

∣∣F (m2
t ,m

2
X0

)
∣∣2 =

=− m2
t g̃

2e4t
8π4

∣∣F (m2
t ,m

2
X0

)
∣∣2 (p2q2 − (p · q)2) =

=
m2
t g̃

2e4t
32π4

m4
X0

∣∣F (m2
t ,m

2
X0

)
∣∣2 . (I.2.16)

We can finally write

dΓ =
1

2mX0

|M|2 dΠLIPS =
m2
t g̃

2e4t
32π4

m3
X0

∣∣F (m2
t ,m

2
X0

)
∣∣2 dΠLIPS (I.2.17)

m2
t�m2

X0−−−−−−→ g̃2e4t
128π4

m3
X0

m2
t

dΠLIPS . (I.2.18)
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