
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea in Matematica

A MULTILEVEL GRADIENT METHOD
FOR

OPTIMIZATION PROBLEMS

Tesi di Laurea in Ottimizzazione Numerica

Relatore:
Chiar.ma Prof.
MARGHERITA PORCELLI

Presentata da:
FEDERICO GRILLINI

Correlatore:
Chiar.ma Prof.
ELISA RICCIETTI

Anno Accademico 2021-2022

Contents

Introduzione i

Introduction iii

1 Multilevel Methods 1

1.1 Introduction . 1

1.2 Coarse model construction . 3

1.3 Step computation and step acceptance 4

2 Multilevel gradient method for a PDE problem 7

2.1 Introduction . 8

2.2 Space discretization . 9

2.3 Finite differences method . 10

2.4 Discretized problem . 11

2.5 Problem formulation . 12

2.6 Coarse model . 14

2.6.1 Interpolation operator 15

2.6.2 Restriction operator 16

2.7 Numerical results . 18

3 Image restoration problem 25

3.1 Observation model . 26

3.2 Blurring . 26

3.2.1 Boundary conditions 30

1

2 Contents

3.3 Noise . 32

3.4 Problem formulation . 33

3.5 Edge-Preserving regularization 35

3.6 Regularization parameter estimation 40

3.7 Numerical results . 42

Conclusions 49

A Line search methods for unconstrained optimization 51

A.1 Introduction . 51

A.2 Gradient direction . 52

A.3 Newton’s direction . 53

A.4 Quasi-Newton direction . 54

A.5 Armijo and Wolfe conditions 54

A.6 Backtracking strategy . 58

Bibliography 61

Introduzione

Il presente elaborato è la prosecuzione dell’attività di tirocinio di due

mesi, svolto presso la École Normale Supérieure di Lione, in collaborazione col

gruppo di ricerca DANTE e supervisionato dalle Professoresse Elisa Riccietti

e Nelly Pustelnik.

Lo stage si colloca all’interno delle fasi iniziali di un più ampio progetto

coordinato dal team DANTE. Il progetto si pone come obiettivo lo studio

dello schema multilivello per metodi numerici utilizzati nell’ambito della ri-

costruzione di immagini.

I problemi di ottimizzazione di dimensione finita di larga scala spesso

derivano dalla discretizzazione di problemi di dimensione infinita. È perciò

possibile descrivere il problema di ottimizzazione su più livelli discreti. Lavo-

rando su un livello, e quindi su una dimensione, più basso di quello del prob-

lema considerato, si possono calcolare soluzioni approssimate che saranno poi

punti di partenza per il problema di ottimizzazione al livello più fine. Ovvi-

amente, livelli più bassi implicano costi computazionali più bassi. Risolvere

quindi il problema di ottimizzazione in uno spazio di dimensioni ridotte fa si

che si calcoli un passo molto accurato ad un costo computazionale accettabile.

I metodi multilivello, già ampiamente presenti in letteratura a partire dagli

anni Novanta, sfruttano tale caratteristica dei problemi di ottimizzazione per

migliorare le prestazioni dei metodi di ottimizzazione standard.

L’obiettivo di questa tesi è quello di implementare una variante multiliv-

ello del metodo del gradiente (MGM) e di testarlo su due diversi campi: la

risoluzione delle Equazioni alle Derivate Parziali la ricostruzione di immagini.

i

ii Introduzione

L’elaborato è organizzato come segue: nel primo capitolo viene illus-

trata la teoria dei metodi multilivello dando particolare importanza alla

costruzione dei modelli “grossolani” e alle modalità di trasferimento dei

dati da un livello all’altro. Al termine del capitolo viene infine presentato

l’algoritmo del metodo del gradiente multilivello. Nel secondo capitolo viene

presentato un problema PDE, di cui si intende trovare la soluzione tramite

MGM. Viene successivamente mostrato come discretizzare il problema e il

suo spazio di definizione. Nell’ultima sezione del capitolo sono riportati i

risultati sperimentali ottenuti. Come sarà più avanti discusso, essi mostrano

un ottimo comportamento di MGM rispetto alla implementazione classica

ad un livello. Il terzo capitolo, infine, ha come punto di partenza la de-

scrizione del modello di degradazione dell’immagine e in base a questo si

rende possibile poi formulare il problema di minimo su cui vogliamo testare

il nostro metodo. La funzione da minimizzare è composta a sua volta da due

funzioni: una è legata alle caratteristiche del problema (termine di fedeltà),

mentre l’altra, la funzione regolarizzante, può essere scelta in base alle carat-

teristiche dell’immagine e al metodo di risoluzione adottato. Nel nostro caso,

avendo bisogno di una mappa sufficientemente regolare, si è scelta una “edge-

preserving function” liscia. Caratteristica del problema è la pressenza di

iperparametri. Un parametro fa parte della funzione regolarizzante mentre

l’altro bilancia i due termini che compongono la funzione. Questi parametri

sono stati calcolati servendosi di un algoritmo sviluppato in [15]. Il capitolo

si conclude con una esposizione dei risultati ottenuti per la ricostruzione di

immagini. Vedremo come, al contrario delle PDEs, MGM sia efficace solo in

determinate condizioni.

A partire da questo elaborato, lo studio dei metodi multilivello, all’interno

del progetto di DANTE, proseguirà concentrandosi su varianti multilivello di

proximal methods. Essi sono più vantaggiosi rispetto ai tradizionali metodi di

minimizzazione di primo ordine in quanto consentono di minimizzare funzioni

con condizioni di regolarità più deboli. Al contempo essi permettono l’utilizzo

di modelli più adatti al problema di ottimizzazione indagato.

Introduction

Large-scale finite-dimensional optimization problems often arise from the

discretization of infinite-dimensional problems. While the direct solution

of such problems for a discretization level is often possible using existing

packages for large-scale numerical optimization, this technique typically does

make very little use of the fact that the underlying infinite-dimensional prob-

lem may be described at several discretization levels; the approach thus

rapidly becomes cumbersome. The multilevel methods that we explore here,

are a class of algorithms which makes explicit use of this fact in the hope

of improving efficiency. The use of different levels of discretization for an

infinite-dimensional problem has been studied since the early 1990s. A sim-

ple first approach is to use coarser grids in order to compute approximate

solutions which can then be used as starting points for the optimization

problem on a finer grid.

The objective of this thesis is to implement a multilevel variant of the

gradient method (MGM) and test it on two different fields: solution of Partial

Differential Equations (PDEs) and image reconstruction.

The paper is organized as follows: in the first chapter, the theory of

multilevel methods is explained giving special emphasis on the construction

of coarse models and how to transfer data from one model to another. Finally,

the MGM algorithm is presented at the end of the chapter.

In the second chapter, the PDEs problem is presented. There, the dis-

cretization process of the problem and its domain is shown. In the last

section of the chapter, the experimental results obtained are illustrated. As

iii

iv Introduction

discussed later on, the results highlight the excellent behavior of MGM.

Finally, the third chapter devotes the first few sections to the descrip-

tion of the image degradation model. It comes then natural to formulate

the minimization problem we want solve. The function to be minimized is

composed of two functions: one is bounded to the model features (fidelity

term), while the other, the regularizing function, can be chosen according to

the characteristics of the image and the resolution method adopted. In our

case, considering the method we want to use, a regular map is needed. For

that reason, an edge-preserving function with smooth potential function is

chosen. The last unknowns we have to determinate are the hyperparameters

of the model. One is part of the regualrization function while the other bal-

ances the data fidelity and the amount of the regularization to the observed

image. These parameters were calculated through an algorithm developed

in [15]. The chapter concludes with an exposition of the performance results

of MGM in image restoration. We will see later that MGM is effective only

under certain conditions.

Chapter 1

Multilevel Methods

Outline: Here, an exposition of a general multilevel scheme is made fol-

lowing the papers [1, 2, 3]. At the end of the chapter we also show a multilevel

algorithm that exploits the backtracking gradient method seen in Appendix

A.

1.1 Introduction

Let us consider the unconstrained optimization problem of the form

min
x∈Rn

f(x) (1.1)

where f : Rn −→ R is a differentiable function, bounded below. The iter-

ative methods we are investigating produce a sequence {xk}k∈N of iterates

converging to a first-order critical point for the problem i.e. to a point x ∈ Rn

such that ∇f(x) = 0.

When (1.1) results from the discretization of some infinite-dimensional

problem on a relatively fine grid, the solution cost is often significant. In

what follows, we investigate what can be done to reduce this cost by ex-

ploiting the knowledge of alternative simplified expressions of the objective

function, when available. More specifically, we assume that we know a col-

lection of functions {fi}li=0 such that each fi is a twice-continuously differ-

entiable function from Rni to R (with ni ≥ ni−1) and we set nl = n and

1

2 1. Multilevel Methods

Figure 1.1: Illustration of a multilevel strategy with information transfer

between fine and coarse models taken from [6].

fl(x) = f(x) ∀x ∈ Rn. We will also assume that, ∀i = 1, . . . , l, fi it is

more costly to minimize than fi−1. This may be because fi has more vari-

ables than fi−1, as e.g. if fi represents increasingly finer discretizations of

the same infinite-dimensional objective.

The main idea is then to use fi−1 to construct an alternative model hi−1

for fi in the neighbourhood of the current iterate, that is cheaper than the

model at level i, and to use this alternative model to define each step of

the minimization at the i-th level. The convergence theory requires some

coherence properties between fi and its model hi−1. If fi−1 satisfies these

properties, the choice hi−1 = fi−1, is possible.

If more than two levels are available (l > 1), this can be done recursively.

When the iteration at the finer level starts, f is approximated with hl−1, if

it is convenient, that is used to find the step at each iterate. In order to do

it, a minimum for hl−1 has to be found. This can be done by approximating,

1.2 Coarse model construction 3

in turn, hl−1 and making a minimization on this new function.

In what follows, we use a simple notation where quantities of interest

have a double subscript i, k. The first, i, (0 ≤ i ≤ l), it is the level index

and the second, k, it is the index of the current iteration within level i, and

is reset to 0 each time level i is entered.

Notation 1.1. To make the notation less dense and confused, from now on

we will use the following notation

fi,k := fi(xi,k) .

1.2 Coarse model construction

Multilevel algorithms require information to be transferred between levels

as in Fig. 1.1. In the proposed algorithm we need to transfer information

concerning the incumbent solution, and gradient around the current point.

Supposing to be at i-th level, at iteration k, the proposed algorithm projects

the current solution xi,k from the fine level to the coarse level to obtain an

initial point for the coarse model denoted by xi−1,0. This is achieved using a

suitably designed matrix Ri called restriction operator as follows:

xi−1,0 = Rixi,k . (1.2)

In addition to the restriction operation, we also need to transfer information

from the coarse model to the fine model. This is done using the prolongation

operator Pi. The standard assumption in multigrid literature is to assume

that Ri = σP T
i , where σ ∈ R+.

Assumption 1.1. Let us assume there exists two full-rank linear opera-

tors Ri : Rni −→ Rni−1 and Pi : Rni−1 −→ Rni such that Pi = σRT
i

for a fixed scalar σ > 0. Let us assume that it exist κRi
> 0 such that

max{∥Ri∥, ∥Pi∥} ≤ κRi
, where ∥ · ∥ is the matrix norm induced by the Eu-

clidean norm at the fine level.

4 1. Multilevel Methods

In the following, we can assume σ = 1, without loss of generality, as the

problem can easily scaled to handle the case σ ̸= 1.

Now, let us see how to build the coarse model if we are at the i− th level.

The first task is to restrict xi,k to create the starting iterate xi−1,0 at level

i− 1, that is xi−1,0 = Rixi,k. Then we define the lower model by

hi−1(si−1)
def
= fi−1(xi−1,0 + si−1) + ⟨vi−1, si−1⟩ , (1.3)

where

vi−1 = Ri∇hi,k −∇fi−1,0 . (1.4)

By convention, we set vl = 0, such that, ∀sl ∈ Rnl happens that

hl(sl) = fl(xl,0 + sl) = f(xl,0 + sl) and ∇hl,k = ∇fl,k .

The function hi, therefore, corresponds to a modification of fi by a linear

term. It is easy to see that with the definition of vi given above, the following

first order coherency condition holds:

∇hi−1,0 = Ri∇hi,k . (1.5)

In fact, if si and si−1 satisfy si = Pisi−1, then:

∇hT
i,ksi = ∇hT

i,kPisi−1 = (Ri∇hi,k)
T si−1 = ∇hT

i−1,0si−1 .

1.3 Step computation and step acceptance

In this section we assume to have only two levels: the finest i and the

coarser i − 1. When, at each generic iteration k in the finest level, a step

si,k has to be computed, to define the new iterate, the first thing to do

is to choose whether is better to compute the step at the finer level or at

the lower level. Obviously, it is not always possible to use the lower level

model. For example, it may happen that ∇fi,k lies in the nullspace of Ri,

thus Ri∇fi,k = 0 while ∇fi,k is not. In this case, the current iterate appears

to be first-order critical at lower level while it is not at higher level. Using

1.3 Step computation and step acceptance 5

the model hi−1 is hence potentially useful only if ∥Ri∇fi,k∥ is large enough

compared to ∥fi,k∥. Therefore, we restrict the use of the lower model to

iterations where the condition below is satisfied:

Condition 1.1. A coarse correction iteration is performed when both con-

ditions below are satisfied

∥Ri∇fi,k∥ ≥ κi−1∥∇fi,k∥ (1.6a)

∥Ri∇fi,k∥ > ϵi−1 , (1.6b)

for some constant κi−1 ∈ (0,min{1, ∥Ri∥}) and where ϵi−1 ∈ (0, 1) is a

measure of the first-order criticality. This condition must be checked before

any attempt to compute a step at a lower level.

If the fine model is chosen, then we just compute a standard iteration.

While, if the lower level model is chosen, we minimize the model hi−1.

Note that for the convergence of the multilevel method an approximate

minimization is sufficient, so we stop when the following condition is satisfied.

∥∇hi−1,k∥ ≤ θ ∥si−1,k∥ . (1.7)

for some θ > 0.

When the iteration at the coarse level is finished, the coarse correction

term si−1,k is prolonged back on the fine level i.e. we define si,k = Plsi−1,k.

Then we can update the iterate as follows: xi,k+1 = xi,k + si,k.

Let see a sketch of a multilevel algorithm that is working at a generic level

i. To minimize the models a simple gradient methods with the backtracking

strategy is used at both the fine and coarse level.

6 1. Multilevel Methods

Algorithm 1: Multilevel Gradient method (MGM)

Input: xi,0 ∈ Rni , m ∈ N, maxit ∈ N, κi+1 > 0,

ϵi+1 > 0, toll > 0,

Output: xi,k

1: for k = 0, 1, . . . ,maxit do

2: Check Assumption 1 :

3: if ∥Ri∇hi,k∥ > κi−1∥∇hi,k∥ and ∥Ri∇hi,k∥ > ϵi−1 then

4: Set xi−1,0 = Rixi,k;

5: Construction of the coarse model:

6: vi−1 = Ri∇hi,k −∇fi−1,0;

7: hi−1(si−1) = fi−1(xi−1,0 + si−1) + ⟨vi−1, si−1⟩;
8: Set si−1,0 = 0;

9: Perform the minimization of the coarse model:

10: for j=0,. . . ,m do

11: pi−1,j = ∇hi−1,j;

12: si−1,j+1 = si−1,j − βjpi−1,j;

13: where [βj, IND] = backtracking(hi−1, si−1,j, β0, pi−1,j);

14: if IND=-1 then � Check if backtracking failed

15:

16: Prolong the step length:

17: si,k = Pisi−1,j;

18: Break;

19: if ∥∇hi−1,j+1∥ ≤ θ ∥si−1,j+1∥ then

20: si,k = Pisi−1,j+1;

21: Break;

22: si,k = Pisi−1,m;

23: else

24: si,k = −∇hi,k;

25: Update the current solution;

26: xi,k+1 = xi,k − αksi,k;

27: where [αk, IND] = backtracking(hi, xi,k, α0, si,k);

28: if IND=-1 then

29: Stop;

30: if ∥∇fi(xi,k+1)∥ ≤ toll then

31: Stop;

Chapter 2

Multilevel gradient method for

a PDE problem

In the this chapter we explore how the multilevel gradient method, dis-

cussed in Chapter 1, behaves in finding the solution of a particular partial

differential equation.

Outline: This chapter is structured as follows: we introduce our problem

with its assumptions. In the next three sections we discuss how to discretize

the proposed PDE (see [8]). Then, we present the problem formulation and

the coarse model construction. In the last section we report the numerical

results where the Multilevel Gradient Method (MGM) is compared with the

standard gradient method (GM) with backtracking and some other higher

order methods.

7

8 2. Multilevel gradient method for a PDE problem

2.1 Introduction

Definition 2.1. The Laplace operator in of u : Rn −→ R, calculated in a

point x0 where u is twice differentiable, is given by

∆u(x0) :=
n∑

i=1

∂2u

∂x2
i

(x0) .

Assumption 2.1. First of all let us set what is needed to define our problem:

• Ω ⊂ Rd is an open subset of Rd ;

• u : Rd −→ Rd, is supposed to be a twice-differentiable function;

• g : Rd −→ Rd is a function.

Under these assumptions we can define the following mildly nonlinear

elliptic PDE: −∆u(x) + eu(x) = g(x) in Ω

u(x) = 0 on ∂Ω
(2.1)

Assumption 2.2. We suppose to have the analytical solution of (2.1)

u∗ : Rd −→ Rd, so that the function g : Rd −→ Rd can be determined by

substituting u∗ in the equation.

In this section we tackle two instances of the problem:

d = 1 u∗(x) = cos(2πx(x− 1))− 1, Ω = (0, 1) ;

d = 2 u∗(x1, x2) = sin(2πx1(1−x1))sin(2πx2(1−x2)), Ω = (0, 1)×(0, 1).

2.2 Space discretization 9

2.2 Space discretization

Foremost, in order to use the MGM to solve (2.1), we need to rewrite the

problem in a discrete form. So, let us see how to do it for either cases d = 1

and d = 2. For d = 1 the domain of the problem Ω = [0, 1] is partitioned into

n subintervals by introducing the grid points xj = jh, where j = 0, . . . , n

and h = 1
n
is the constant width of the subintervals. This establishes the

grid shown in Fig. 2.1, which we denote by Ωh.

Figure 2.1: One-dimensional grid on the interval Ω = [0, 1]. The grid spacing

is h = 1
n
and the j-th grid point is xj = jh for j = 0, . . . , n.

As before, for d = 2, the problem may be cast in a discrete form by

defining the grid points (xi, yi) = (ih, jh), where h = 1
n
and i, j = 1, . . . , n.

This two-dimensional grid is, likewise, denoted by Ωh and is shown in Fig.

2.2.

Figure 2.2: Two-dimensional grid on the unit square. The solid dots indicate

the unknowns that are related at a typical grid point by the equations (2.5).

10 2. Multilevel gradient method for a PDE problem

2.3 Finite differences method

The last thing left before the multilevel method can be applied is how

to write the laplacian of u. In both dimensions, the negative Laplacian is

written replacing the derivatives by second-order finite differences, giving a

symmetric positive definite matrix A ∈ Rnd×nd
, that also take into account

the boundary conditions.

Theorem 2.1 (Taylor’s theorem)

Let the function u : R −→ R be twice continuously differentiable at the point

x0 ∈ R. Then, there exists R : R −→ R, lim
h→0

R(x+ h) = 0, such that

u(x0 + h) = u(x0) + u′(x0)h+
u′′(x0)

2
h2 +R(x0 + h)h2 ,

with h ∈ R and |h| << 1.

d=1 case Exploiting the Taylor’s theorem and forgetting for a moment of

R, when h → 0 the second derivatives of f in x0 can be written as follows:

u(x0 + h) ≈ u(x0) + u′(x0)h+
u′′(x0)

2
h2 ,

u(x0 − h) ≈ u(x0)− u′(x0)h+
u′′(x0)

2
h2 .

Multiplying the first equation by a and the second by b (a, b ∈ R), and then

summing up we obtain

au(x0 + h) + bu(x0 − h) ≈ (a+ b)u(x0) + (a− b)u′(x0)h+ (a+ b)
u′′(x0)

2
h2.

We want to vanish the first derivative and the coefficient of the second deriva-

tive to be 1, hence: a− b = 0

a+ b = 2
=⇒

a = 1

b = 1
.

2.4 Discretized problem 11

Then, we have that

∆u(x) = u′′(x) ≈
h→0

u(x− h)− 2u(x) + u(x+ h)

h2
.

This approximation is usually expressed via the following stencil

∆h =
1

h2

[
1 −2 1

]
. (2.2)

d=2 case Each second partial derivative needs to be approximated simi-

larly to the d = 1 case.

∆u(x, y) =
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y)

≈
h→0

u(x− h, y)− 2u(x, y) + u(x+ h, y)

h2
+

u(x, y − h)− 2u(x, y) + u(x, y + h)

h2

=
u(x− h, y) + u(x+ h, y)− 4u(x, y) + u(x, y − h) + u(x, y + h)

h2
,

which is usually given by the stencil

∆h =
1

h2


1

1 −4 1

1

 . (2.3)

2.4 Discretized problem

Thanks to what has just been said in the Sections 2.2 and 2.3, we can

write our discretized problem by replacing the derivatives by second-order

finite differences. As explained before, the set Ω is dicretized using a grid of

equispaced points. Hence, we have:

d=1

xj = jh , h =
1

n
,

uj = u(xj) , j = 1, . . . , n ,

∆uj = ∆u(xj) , j = 1, . . . , n .

12 2. Multilevel gradient method for a PDE problem

Then, writing the vectors, we obtain:

u = (u1, . . . , un)
T ,

u∗ = (u∗
1, . . . , u

∗
n)

T ,

g = (g1, . . . , gn)
T = (−∆u∗

1 + eu
∗
1 , . . . ,−∆u∗

n + eu
∗
n)T .


−uj−1+2uj−uj+1

h2 + euj = gj, ∀j = 0, . . . , n

u0 = un = 0
(2.4)

d=2

xi,j = (xi, yj) = (ihx, jhy) , hx = hy =
1

n
,

ui,j = u(xi, yj) = u(xi,j) , i, j = 1, . . . , n ,

∆ui,j = ∆u(xi, yj) , i, j = 1, . . . , n .

The grid function to be operated on should be “flattened” to a vector stacking

the columns to create vectors, as

u = (u1,1, . . . , u1,n, . . . , un,1, . . . , un,n)
T ,

u∗ = (u∗
1,1, . . . , u

∗
1,n, . . . , u

∗
n,1, . . . , u

∗
n,n)

T ,

g = (g1,1, . . . , g1,n, . . . , gn,1, . . . , gn,n)
T = (−∆u∗

1,1 + eu
∗
1,1 , . . . ,−∆u∗

n,n + eu
∗
n,n)T .

Now, we can finally write our discretized version of the problem
−ui−1,j−ui+1,j+4ui,j−ui,j−1−ui,j+1

h2 + eui,j = gi,j ∀i, j = 0, . . . , n

u0,j = ui,n = ui,0 = un,j = 0 ∀i, j = 0, . . . , n
(2.5)

2.5 Problem formulation

Expressing the systems (2.4) and (2.5) trough matrices and vectors, we

have:

Au+ eu = g , (2.6)

2.5 Problem formulation 13

where u, eu, g ∈ Rnd+1 and the discretized laplacian A ∈ Rnd+1 × Rnd+1

is a symmetric positive definite matrix and its pattern is described by the

stencils in (2.2) and (2.3).

d=1 The laplacian is a tridiagonal matrix with −2 on the main diagonal

and 1 on the lower and upper diagonal as showed in (2.2).

A = − 1

h2


−2 1

1 −2
. . .

. 1

1 −2

 .

To take into account the boundary conditions, a column of zeros must

to be added at positions 0 and n, given that u = 0 in ∂Ω. Otherwise, it is

possible to work without considering the first and the final element of u and

taking A ∈ Rnd−1 × Rnd−1 like above.

d=2 As in d = 1, the Dirichlet boundary conditions are used. The total

grid consists of n− 1 vertical strips of length n− 1, leaving out the values on

the boundary. Thus, since the state vector u is defined as the concatenation

of these vertical strips, the matrix operator A is a tridiagonal block matrix

as shown in Figure 2.3; it consists of (n − 1) × (n − 1) blocks of dimension

(n− 1)× (n− 1). The identity matrices in the lower and upper diagonal has

to be added because of the vectorization of Ω. To see more in detail how this

matrices are built, see at [5].

14 2. Multilevel gradient method for a PDE problem

Figure 2.3: Discretized laplacian with zero boundary conditions. Values have

to be scaled by 1
h2 , and • indicates zero entries.

The following nonlinear minimization is then solved (see [3]):

min
u∈Rnd

1

2
uTAu+ ∥eu/2∥2 − gTu , (2.7)

which is equivalent to solve the system Au+eu = g. Recalling the assumption

2.2 we imposed on the PDE problem, the vector g can be computed through

a more compact expression than the one in the Section 2.2: g = Au∗ + eu
∗
.

2.6 Coarse model

The coarse approximation of the objective function arise from a coarser

discretization of the problem. Supposing to work excluding the extremities of

the vectors as proposed in the previous paragraph and that the current iter-

ation at the fine level is the k-th, to find the objective function at the coarse

level it is not too hard. Calling h the finest level and H the lower, the Lapla-

cian operator has to be built in the coarse dimension: AH ∈ Rnd/2−1×nd/2−1.

Furthermore, as in the finer level, AHu
∗
H + eu

∗
H = gH ∈ Rnd/2−1 has to be

computed. Lastly, the current iterate needs to be restricted with an operator

2.6 Coarse model 15

that will be called R.

Rxh,k = xH,0, xH,0 ∈ Rnd/2−1 . (2.8)

To restrict the current iterate and prolong the step length two linear op-

erators have to be used. There are many possibilities in the choosing of

these operators; the ones we decided to use for our problem are the linear

interpolation operator and full weighting operator.

2.6.1 Interpolation operator

The linear interpolation operator will be denoted P . It takes coarse-grid

vectors vH and produces fine-grid vectors vh, according to the rule vh = PvH ,

where

d=1

vh2j = vHj ,

vh2j+1 =
1

2
(vHj + vHj+1), 0 ≤ j ≤ n

2
− 1 .

Figure 2.4 shows graphically the action of P . At even-numbered fine-grid

points, the values of the vector are transferred directly from ΩH to Ωh. At

odd-numbered fine-grid points, the value of vh is the average of the adjacent

coarse-grid values. We note also that P is a linear operator from Rnd

2
−1 to

Rnd

2
−1. In fact, we need to restrict the iterate without the extremities, since

they are zero because of the boundary condition. For the case n = 8, this

operator has the form

PvH =
1

2



1

2

1 1

2

1 1

2

1




v1

v2

v3


H

=



v1

v2

v3

v4

v5

v6

v7


h

= vh .

16 2. Multilevel gradient method for a PDE problem

d=2 For two-dimensional problems, the interpolation operator may be de-

fined in a similar way. If we let vh = PvH , then the components of vh are

given by

vh2i,2j = vHi,j ,

vh2i+1,2j =
1

2

(
vHi,j + vHi+1,j

)
,

vh2i,2j+1 =
1

2

(
vHi,j + vHi,j+1

)
,

vh2i+1,2j+1 =
1

4

(
vHi,j + vHi+1,j + vHi,j+1 + vHi+1,j+1

)
.

Figure 2.4: Interpolation of a vector on coarse grid ΩH to fine grid Ωh.

2.6.2 Restriction operator

The full weighting operator is denoted R and it is defined by Rvh = vH ,

where

d=1

vHj =
1

4
(vh2j−1 + 2vh2j + vh2j+1) , 1 ≤ j ≤ n

2
− 1 .

As Fig. 2.5 shows, the values of the coarse-grid vector are weighted aver-

ages of values at neighboring fine-grid points. However, in some instances,

injection may be a better choice than full weighting. The issue of intergrid

2.6 Coarse model 17

transfers, which is an important part of multigrid theory, is discussed at some

length in Brandt’s guide to multigrid [4]. The full weighting operator is a

linear operator from Rnd

2
−1 to Rnd

2
−1. For the case n = 8, the full weighting

operator has the form

Rvh =
1

4


1 2 1

1 2 1

1 2 1





v1

v2

v3

v4

v5

v6

v7


h

=


v1

v2

v3


H

= vH .

Figure 2.5: Restriction by full weighting of a fine-grid vector to the coarse

grid.

d=2 For the sake of completeness, we give the full weighting operator

in two dimensions. It is just an averaging of the fine-grid nearest neighbors.

Letting Rvh = vH , we have that

vHij =
1

16

(
vh2i−1,2j−1 + vh2i+1,2j−1 + vh2i−1,2j+1 + vh2i+1,2j+1+

+ 2
(
vh2i,2j−1 + vh2i,2j+1 + vh2i−1,2j + vh2i+1,2j

)
+

+ 4vh2i,2j

)
, 1 ≤ j ≤ n

2
− 1 .

18 2. Multilevel gradient method for a PDE problem

One of the most important reasons for our choice of full weighting as a

restriction operator is the important fact

P = σRT , σ ∈ (0,+∞) . (2.9)

The fact that the interpolation operator and the full weighting operator

are transposes of each other up to a constant is said variational property.

2.7 Numerical results

In this section we illustrate the numerical performance of the multilevel

gradient algorithm (see Algorithm 1) on both d = 1 and d = 2 dimensions

of the PDE problem (2.1). The optimization model used is the minimum

problem exposed in Section 2.7 and reported below:

min
u∈Rnd

1

2
uTAu+ ∥eu/2∥2 − gTu .

To restrict the current iterate and prolong the step, the full weighting

operator R and linear interpolation operator P , seen in the two Sections

2.6.1 and 2.6.2, are used. To build P we have to compute the Kronecker

product

P = P1 ⊗ P1 ,

where P1 =
[
1
2

1 1
2

]
.

Then, as usual, thanks to the variational property (2.9) we can easily

derive R:

R =
1

4
P.

For the backtracking technique we set c1 = 10−4, γ = 0.5, bmax = 20.

The condition to use the coarse model in MGM is specified in 1.1 and we

used κi = 0, 1 and ϵi = 10−7 ∀i = 1 . . . lmax in our implementation. For the

algorithm to terminate, stopping criteria must be set. Here is a summary:

2.7 Numerical results 19

• Maximum number of iteration ”maxit”: it varies in according to the

number of levels we decided to use.

• Relative error: if xk is the current iterate we end up the iteration when

∥xk − xk−1∥
∥xk−1∥

≤ ϵ .

Analogously to coarse model condition we fix ϵ = 10−10.

• Backtracking failure: Whether throughout its whole iteration the back-

tracking technique didn’t succeed in finding a stepsize that satisfies

both (A) and (W), then, the stepsize would be too small and therefore

it would be useless to calculate a new iterate.

We saw empirically that good values for maxit are:

d = 1: When we have four level maxiti = 5 with i = 1, 2, 3 , where i indicates

the level. When we have three levels instead, we set maxit2 = 20 and

maxit1 = 15. With only two levels we have to perform many iteration

in the coarse model to obtain a good step. For that reason we usually

fix maxit1 = 200.

d = 2: Similar to the case d = 1 , for lmax = 4 we have maxiti = 5, i = 1, 2, 3,

for lmax = 3 , maxit1 = 5, maxit2 = 10 and when there are only two

levels maxit1 = 20 .

We compare the performance of MGM with a first and a second order

method. For both orders we use Algorithm 3 in Appendix A. The descent

direction chosen for the first order method is pk = −∇f(xk) (GM) while for

the second order the descent direction pNk (NM) is defined by the Newton’s

system (A.4). We study the effect of the multilevel strategy on the conver-

gence of the method for problems of fixed dimension n. We consider the

solution of problem (2.1) in case d = 1 for n = 256 and n = 512, and in case

d = 2 for n = 32 and n = 64.

20 2. Multilevel gradient method for a PDE problem

(a) n = 256 . (b) n = 512 .

Figure 2.6: Comparison between MGM with 2, 3 and 4 levels and GM

through a CPU time - absolute error plot for d = 1.

(a) n = 32 . (b) n = 64 .

Figure 2.7: Comparison between MGM with 2, 3 and 4 levels and GM

through a CPU time - absolute error plot for d = 2.

2.7 Numerical results 21

(a) iteration - absolute error (b) CPU time - absolute error

Figure 2.8: Comparison between MGM and NM for d = 1 and n = 256.

(a) CPU time - absolute error (b) iteration - absolute error

Figure 2.9: Comparison between MGM and NM for d = 1 and n = 512.

22 2. Multilevel gradient method for a PDE problem

(a) CPU time - absolute error (b) iteration - absolute error

Figure 2.10: Comparison between MGM and NM for d = 2 and n = 32.

(a) CPU time - absolute error (b) iteration - absolute error

Figure 2.11: Comparison between MGM and NM for d = 2 and n = 64.

2.7 Numerical results 23

In Fig. 2.6 and Fig. 2.7 the comparison between MGM and GM is plotted

in terms of the decrease of the absolute error respect to the CPU time. The

numbers after MGM in the legend are referred to the number of level imple-

mented in each multilevel algorithm. Graphs in Fig. 2.6 and 2.7 highlight

how large the difference in performance is between the multilevel method

and the gradient method. The plots in Fig. 2.8b, 2.9b, 2.10b and 2.11b

show the decrease of the absolute error at each iteration while in 2.8a, 2.9a,

2.10a and 2.11a the absolute error is related to the CPU time. Comparing

the graphs in Fig. 2.6 and Fig. 2.7, those in Fig. 2.6a with Fig. 2.6b and

those in Fig. 2.7a with Fig. 2.7b no relevant differences emerge. It means

that the different dimension and the different way to discretize the space in

n subintervals does not affect the efficiency of MGM.

Looking at a boarder landscape than that of first-order methods we

wanted to further compare our method with a second-order method, the

Newton’s method. From Fig. 2.8, Fig. 2.9, Fig. 2.10, and Fig. 2.11, where

in MGM four levels are implemented, it is inferred that despite the excellent

results given by the multilevel gradient scheme, higher order methods lead

to far superior results. In facts, MGM finds a better step than GM at each

iteration but it is still far from being as accurate as Newton’s method. We

conclude that although MGM greatly improves the performance of GM it

cannot be compared with higher order methods.

24 2. Multilevel gradient method for a PDE problem

Chapter 3

Image restoration problem

Image deconvolution and reconstruction belong to the class of inverse

problems. They consist of recovering, from observed data, a signal/image

which is the most “similar” to the original one. This constitutes a difficult

task since the observed data are often degraded by various physical processes

(both linear and nonlinear) during their acquisition, storage, or transmission,

and they are subject to uncertainties related to the presence of random noises

and the fact that the image itself is unknown.

Outline: The first section of the chapter is an overview of the image ob-

servation model problems. The following two sections lead us to the problem

formulation, studying more in detail the image degradation process (blur and

noise). A focus on a particular regularization function is done in Section 3.5

and an estimation algorithm is proposed to find a good value for an impor-

tant parameter of the objective function in Section 3.6. Lastly, the numerical

results are reported in Section 3.7.

25

26 3. Image restoration problem

3.1 Observation model

Generally, it is possible to describe image deconvolution and reconstruc-

tion problems by the following generic observation model (see [7]):

b = Dβ(Ax) (3.1)

where

• b ∈ Rn2
is the vector containing the observed values, corresponding to

an image of size n× n,

• x ∈ Rn2
is the vector consisting of the unknown values of the original

image of size n× n arranged in a lexicographic order,

• A ∈ Rn2×n2
is the matrix associated to a linear degradation operator,

• Dβ : Rn −→ Rn models other degradations such as nonlinear ones or

the effect of the noise, parametrized by β.

For many image modalities such as optical remote sensing imaging and

microscopy, the observation model reduces to the linear additive noise model:

b = Ax+ η (3.2)

where A is a blurring operator corresponding to a square matrix and η is a

vector of realizations of a zero-mean noise with variance β, which is often

Gaussian distributed. A motion between the scene and the camera, the

defocus of an optical imaging system, lense imperfections, and atmospheric

turbulences lead to a blur in the acquired images. In such case, we say that

an image restoration problem has to be solved.

3.2 Blurring

In order to write the observation model (3.2), it is necessary know the

blurring operator A. Firstly, we introduce a continuous model of the image

degradation, as proposed in [8, 9, 10].

3.2 Blurring 27

Figure 3.1: Left: single bright pixel, Right: PSF of the bright pixel.

The images are taken from [3].

Assumption 3.1. We assume that the functionX : Ω −→ R, where Ω ⊂ R2,

is the image which should be recorded in the absence of degradation,

g : R2 −→ R is the image produced by the optical instrument before detection

(also called the noiseless image) and b : R2 −→ R is the detected image. We

denote by X(y, z) the intensity, at the point (y, z) of the object to be imaged.

In most imaging systems the noiseless image is approximately a linear

function of the object. Therefore, as in the equation (3.1) the imaging system

is defined by a linear operator A such that:

g = AX . (3.3)

If the imaging system (3.3) is isoplanatic, then it is described by a spatially-

invariant Point Spread Function (PSF)K, i.e. the PSF is the same regardless

of the location of the point source. K(y, z) is the image of a point source

located in the center of the image domain (see Fig. 3.1). In many examples,

the light intensity of the PSF is confined to a small area around the center

of the PSF (the pixel location of the point source), and outside a certain

radius, the intensity is essentially zero. In other words, the blurring is a local

28 3. Image restoration problem

phenomenon. Furthermore, if we assume that the imaging process captures

all light and that we are working with grayscale intensity images with values

in [0, 1] ⊂ R, then the pixel values in the PSF must sum to 1.

Assumption 3.2. K : R2 −→ R is a linear and continuous operator such

that

1. K(y, z) ≥ 0 ∀y, z ∈ R ,

2.
∫∫

R2 K(y, z)dy dz = 1 .

Under these assumptions the system (3.3) can now be rewritten:

g(y, z) :=

∫∫
(s,t)∈Ω

K(y − s, z − t)X(s, t) ds dt , (3.4)

i.e. the image g is the convolution product K ∗X. Comparing (3.3) and

(3.4) we can note that A is a convolution operator.

As a consequence of the linear and local nature of the blurring, to conserve

storage we can often represent the PSF using an array P of much smaller

dimension than the blurred image. We refer to P as the PSF array.

In some cases the PSF can be described analytically, and thus P can

be constructed from a function, rather than through experimentation. In

other cases, knowledge of the physical process that causes the blur provides

an explicit formulation of the PSF. When this is the case, the elements of

the PSF array are given by a precise mathematical expression. For example,

The PSF for blurring caused by atmospheric turbulence can be described as

a twodimensional Gaussian function, and the elements of the unsealed PSF

array are given by

pi,j = exp

(
− 1

2

[
i −k

j −l

]T [
s21 ρ2

ρ2 s22

]−1 [
i −k

j −l

])
, (3.5)

where the parameters s1, s2, and ρ determine the width and the orientation

of the PSF, which is centered at element (k, l) in P . Note that one should

3.2 Blurring 29

always scale P such that its elements sum to 1.

Coming back to the discrete model g ∈ Rn2
is still the result of the discrete

convolution product of x and P . Considering x no longer as a vector but as

a matrix, we have

g(i, j) =
n∑

i′ ,j′=1

x(i
′
, j

′
)P1(i

′ − i, j
′ − j) , (3.6)

where P1 is the matrix obtained by rotating the PSF array P , by 180

degrees. For instance, if P ∈ R9 is


p11 p12 p13

p21 p22 p23

p31 p32 p33

 ,

then its rotation is


p33 p32 p31

p23 p22 p21

p31 p12 p11

 .

Equation (3.6) is given letting match P1 with x by placing the center of P1

over the (i, j) pixel in x. Corresponding components are multiplied and the

results summed to compute gij. Continuing the previous example, we apply

the procedure to compute g22 (x and g are 3× 3 matrices). The shifting is


p33 · x11 p32 · x12 p31 · x13

p23 · x21 p22 · x22 p21 · x23

p31 · x31 p12 · x32 p11 · x33

 . (3.7)

g22 is the sum of all the elements of this matrix

g22 = p33x11+p32x12+p31x13+p23x21+p22x22+p21x23+p31x31+p12x32+p11x33 .

30 3. Image restoration problem

Though, we run into an issue when we get close to the bound of the image,

for example to calculate g21, we have to match P1 with x as follow
p33 · • p32 · x11 p31 · x12 x13

p23 · • p22 · x21 p21 · x22 x23

p31 · • p12 · x31 p11 · x32 x33

 . (3.8)

Hence, we have to decide how to replace the black dots above.

3.2.1 Boundary conditions

The most common technique for dealing with this missing information

at the boundary is to make certain assumptions about the behavior of the

sharp image outside the boundary. When these assumptions are used in the

blurring model, we say that we impose boundary conditions on the recon-

struction.

Zero boundary condition The simplest boundary condition is to assume

that the exact image is black (i.e., consists of zeros) outside the boundary.

This zero boundary condition can be pictured as embedding the image x in

a larger image:

xext =


0 0 0

0 x 0

0 0 0

 . (3.9)

where the 0 submatrices represent the border of zero elements.

The zero boundary condition is a good choice when the exact image is

mostly zero outside the boundary, as is the case for many astronomical images

with a black background.

Unfortunately, the zero boundary condition has a bad effect on recon-

structions of images that are nonzero outside the border. Hence, we must

often use other boundary conditions that impose a more realistic model of the

behavior of the image at the boundary but only make use of the information

available, i.e., the image within the boundaries.

3.2 Blurring 31

Periodic boundary condition The periodic boundary condition is fre-

quently used in image processing. This implies that the image repeats itself

(endlessly) in all directions. Again we can picture this boundary condition

embedding the image x in a larger image that consists of replicas of x:

xext =


x x x

x x x

x x x

 . (3.10)

Reflexive boundary condition In some applications it is reasonable to

use a reflexive boundary condition, which implies that the scene outside the

image boundaries is a mirror image of the scene inside the image boundaries.

Coming back to the 3×3 example, if we assume zero boundary conditions,

then the shifting (3.8) becomes



0 0 0 0 0

p33 · 0 p32 · x11 p31 · x12 x13 0

p23 · 0 p22 · x21 p21 · x22 x23 0

p31 · 0 p12 · x31 p11 · x32 x33 0

0 0 0 0 0


.

Hence,

g21 = p32x11 + p31x12 + x13 + p22x21 + p21x22 + p12x31 + p11x32 .

By carrying out this exercise for all the elements of g, it is straightforward

to show that for zero boundary conditions, g and x are related by

32 3. Image restoration problem



g11

g21

g31

g12

g22

g32

g13

g23

g33



=



p22 p12 p21 p11 0 0 0 0

p32 p22 p12 p31 p21 p11 0 0 0

0 p32 p22 0 p31 p21 0 0 0

p32 p13 0 p22 p12 0 p21 p11 0

p33 p23 p13 p32 p22 p12 p21 p21 p11

0 p33 p23 0 p32 p22 0 p31 p21

0 0 0 p23 p13 0 p22 p12 0

0 0 0 p33 p23 p13 p32 p22 p12

0 0 0 0 p33 p23 0 p32 p22





x11

x21

x31

x12

x22

x32

x13

x23

x33



, (3.11)

which is exactly the system blurring system (3.3)

g = Ax . (3.12)

We found that for zero boundary condition the blurring operator A is a

block-tridiagonal matrix made up of PSF elements.

3.3 Noise

In addition to blurring, observed images are usually contaminated with

noise. Noise can arise from several sources and can be linear, nonlinear,

multiplicative, and additive. In our model (3.2), a common additive noise is

considered. In this model, noise comes essentially from the following three

sources:

• Background photons, from both natural and artificial sources, cause

noise to corrupt each pixel value. This kind of noise is typically modeled

by a Poisson process, with a fixed Poisson parameter, and is thus often

referred to as Poisson noise.

• Analog-to-digital conversion of measured voltages result in readout

noise. Readout noise is usually assumed to consist of independent and

identically distributed random values; this is called white noise. The

3.4 Problem formulation 33

noise is further assumed to be drawn from a Gaussian (i.e., normal)

distribution with mean 0 and a fixed standard deviation proportional

to the amplitude of the noise. Such random errors are often called

Gaussian white noise.

• The analog-to-digital conversion also results in quantization error, when

the signal is represented by a finite (small) number of bits. Quantiza-

tion error can be approximated by uniformly distributed white noise

whose standard deviation is inversely proportional to the number of

bits used.

In (3.2) additive noise η is an n2 vector containing elements form a Poisson

or Gaussian distribution (or a sum of both). For example, Gaussian white

noise with standard deviation 0.01 is generated with the MATLAB command

\label{equation:noise} E = 0 . 01*randn (m, n).

3.4 Problem formulation

Once the image degradation process is been studied and that we are able

to reproduce the system (3.2) having a prior knowledge of blur and noise,

the goal is to find an estimate x̂(b) ∈ Rn2
of the ”clean” image x from the

measurements b.

Let us first assume that the image formation process is noise free. The

problem b = Ax is said to be well-posed if it fulfills the Hadamard conditions

[11] namely:

• existence of a solution, i.e. the range ranA of A is equal to Rn2
,

• uniqueness of the solution, i.e. the nullspace kerA of A is equal to {0},

• stability of the solution x̂ relatively to the observation i.e.

∀(b, b′) ∈ Rn2 × Rn2 ∥b− b′∥ → 0 ⇒ ∥x̂(b)− x̂(b′)∥ → 0 .

34 3. Image restoration problem

If the first condition is satisfied the existence of a solution of (3.12) is

guaranteed. The uniqueness condition make all the solutions to be equal

since they belongs to ker(A) = {0}. The stability condition allows us to

ensure that a small perturbation of the observed image leads to a slight

variation of the recovered image.

In case of a full rank square matrix, a solution always exists as ranA =

Rn2
. Moreover, it is unique as A is injective. However, A may be ill-

conditioned. Indeed, assuming A is invertible, x̂ can be evaluated by applying

the inverse degradation model to the observation b that is

x̂ = A−1(Ax+ b) = x+ A−1b .

However, if A is ill-conditioned , the inverse filtered noise A−1b may become

very large so that its effect becomes significant. Thus, the inverse filtering

amplifies the noise leading to an irregular image.

If A is not invertible and the recovery is good enough, the degraded

version of the solution can be expected to be close to the observed vector b.

Thus, the problem reduces to a least squares problem.

x̂ ∈ argmin
x∈Rn2

1

2
∥Ax− b∥2 . (3.13)

StudyingA we find out that if rank(A) < n2 the problem is under-determined,

A is a ”wide” matrix and the second Hadamard condition is not fulfilled.

Otherwise, if rank(A) > n2, A is a ”tall” matrix and the first Hadamard

condition is not fulfilled.

In conclusion, regardless of the rank of A, we need to stabilize the solution

and guarantee its uniqueness through the following problem formulation

x̂ ∈ argmin
x∈Rn2

{
fobj(x) :=

1

2
∥Ax− b∥2 + λϕ(x)

}
. (3.14)

where

• ∥Ax − b∥2 ensures x to be as close as possible to b and thus is known

as data fidelity.

3.5 Edge-Preserving regularization 35

• ϕ : Rn2 −→ (−∞,+∞] is the regularizer or penalty term. The reg-

ularizer is chosen to reflect prior knowledge about the original image

x. It enforces the relationship between the pixels and ensures that the

recovered image is neither blurred nor noisy.

• λ is a parameter that balance the two objectives and therefore is called

either regularization parameter or hyper parameter.

3.5 Edge-Preserving regularization

Knowledge of the imaging model, as we have just seen in section 3.4, is

not always sufficient to determine a satisfying solution, and it is necessary to

regularize the solution by imposing an a priori constraint. Mathematically,

this constraint is often expressed through a potential function. A simple and

well-known regularization supposes that images are globally smooth, and

enforces a roughness penalty on the solution. A quadratic potential function

yields oversmooth solutions.

A more realistic image model assumes that images are made of smooth

regions, separated by sharp edges [12]. This is called edge-preserving regu-

larization and requires a nonquadratic potential function.

The regularization term is defined as a sum of potentials which are, in

general, functions of a derivative of the image. We consider first-order dif-

ferences between pixels as showed in Fig.3.2. This leads to the following

expression for the regularization term:

ϕ(x) =
n∑

i,j=1

φ[(Dhf)ij] + φ[(Dvf)ij] , (3.15)

where

(Dhx)ij = (xi,j+1 − xi,j)/δ ,

and

(Dvx)ij = (xi+1,j − xi,j)/δ . (3.16)

36 3. Image restoration problem

Figure 3.2: The first image is the commonly used Cameramen image of

dimension 512 × 512 while the second and the third are respectively the

horizontal and vertical differences of the original image.

Dh and Dv are the horizontal and vertical differences, respectively, while δ

is a scaling parameter which tunes the value of the gradient above which a

discontinuity is detected. The potential function φ assigns a cost to every

value of the image gradient, and thus should have some obvious properties.

First, in designing a potential function, it is natural to assume that φ assumes

only positive values and that φ(t) is an increasing function for t ≥ 0. Second,

it is necessary to give the same importance to gradients of equal values but

opposite signs. Thus, φ is assumed to be an even function. We can then limit

our study to positive values of the gradient. In order to avoid introducing

instability into the reconstruction process, differentiability is desirable for

φ. In addition, we have to figure out what properties should the potential

function satisfy to define an edge-preserving regularization. Suppose that the

objective function in (3.14) has a minimum in x, then we have necessarily

1

2
f ′
obj(x) = 0 . (3.17)

A simple calculation (that we skip) shows that, (3.17) can be written as

ATAx− AT b− λ∆pondx = 0 , (3.18)

where ∆pond is a matrix that represents a weighted discrete approximation

of the Laplacian operator.Hence, the matrix-vector multiplication ∆pondx is

equivalent to a nonstationary filtering of by a 3×3 weighted Laplacian filter,

3.5 Edge-Preserving regularization 37


0 λN 0

λW −Σ λE

0 λS 0


λE =

φ′
(
xi,j+1−xi,j

)
2
(
xi,j+1−xi,j

) λW =
φ′
(
xi,j−xi,j−1

)
2
(
xi,j−xi,j−1

)
λS =

φ′
(
xi+1,j−xi,j

)
2
(
xi+1,j−xi,j

) λN =
φ′
(
xi,j−xi−1,j

)
2
(
xi,j−xi−1,j

)
Σ = λW + λN + λS + λE

Figure 3.3: Coefficients of the weighted Laplacian

around pixel (i, j) (first-order neighborhood).

shown in Fig. 3.3. The weights are given by the function φ′(t)/2t, which we

call the weighting function. Now, let us consider the case of a homogeneous

area of the image: All gradients around pixel (i, j) are close to zero. Suppose

that the weighting function is such that

φ′(t)

2t
−→
t→0+

M < +∞ . (3.19)

Then, all weights around pixel (i, j) are approximately equal to M and the

weighted Laplacian behaves as the usual Laplacian giving the usual normal

equations associated with Tikhonov regularization (see [13])

ATAx− ATx− λM∆x = 0 , (3.20)

where ∆x is discrete Laplacian of x. Now, supposing there is a discontinuity

in the neighborhood of pixel (i, j), for example in between pixel (i, j) and

pixel (i, j − 1). Then all the finite differences around pixel (i, j) are small,

except xi,j−1 − xi,j. Suppose that the weighting function is such that

φ′(t)

2t
−→
t→+∞

0 . (3.21)

Then, the corresponding weighting of the Laplacian vanishes and there is

no smoothing in this direction. Lastly, we suppose that φ′(t)
2t

is continuous,

because we do not want a small variation of the gradient to produce a large

change in the value of the weight. Also, it seems natural that there should

be a one-to-one correspondence between values of the gradient and values of

the weight. Therefore the weighting function must be strictly monotonous.

38 3. Image restoration problem

All the discussed conditions we impose on φ are summarized in the following

assumption.

Assumption 3.3. Basic assumptions:

1. φ(t) ≥ 0 ∀t with φ(0) = 0 .

2. φ(t) = φ(−t) .

3. φ is continuously differentiable.

4. φ′ ≥ 0 ∀t ≥ 0 .

Edge preservation:

5. φ′(t)/2t continuous and strictly decreasing on [0,+∞) .

6. lim
t→+∞

φ′(t)
2t

= 0 .

7. lim
t→0+

φ′(t)
2t

= M, 0 < M < +∞ .

Figure 3.4: Four edge-preserving potential functions and their associated

weighting functions.

3.5 Edge-Preserving regularization 39

Figure 3.5: Potential function in (3.22)with different values for α .

In Fig. 3.4 we give four examples of well known potential functions and

their corresponding weighting functions, but the one we use in our multilevel

algorithm is

φ(t) =
√
α + t2 , (3.22)

where α ∈ R+ is a parameter of the potential function. The function in

(3.22) is a smooth approximation of the l1 norm. The more the parameter

α is small and the more the function is close to the l1 norm as we can see

in Fig. 3.5.The potential functions have been normalized in order to have

M = 1 for all the weighting functions in Fig. 3.4.

In our discrete formulation of the imaging model, the difference operator

D can be expressed as a matrix of dimension 2n2×n2 by posing the horizontal

differences matrix Dv ∈ R2n2
over the vertical differences matrix Dv ∈ R2n2

in this way

D =

[
Dh

Dv

]
where Dh =

[
−1

1

]
, Dv

[
−1

1

]
. (3.23)

This representation of the difference operator D combined with the choice

of the potential function φ as in equation (3.22) lead us to a more specific

problem formulation than (3.14), that is

40 3. Image restoration problem

argmin
x∈Rn2

{
fobj(x) :=

1

2
∥Ax− b∥2 + λϕ(x)

}
, (3.24)

where ϕ(x) =
∑2n2

i=1

∑n2

j=1

(
φ[(Dx)i,j]

)
.

3.6 Regularization parameter estimation

So far we have defined the observation model (3.2) and its parts: the

blurring operator in (3.11) and the noise (White Gaussian). Furthermore,

we decided to solve the restoration problem by minimizing the objective

function (3.24). Now we only have to set all the parameters before letting

the algorithm perform.

In this section, we are going to illustrate a model, proposed in [14], to

estimate the regularization parameter λ, and an algorithm is proposed to

solve the model. It is critically important to have a good value of λ because

when it becomes larger, the restoration image becomes smoother, and more

noise is removed, but at the same time more edges are lost. On the con-

trary, smaller value of λ makes less noise removed and more edges preserved.

So in the edge-preserving regularization method choosing a proper value of

parameter λ is very important.

Our model is established based on the following conclusion. When λ is a

variable, the solution x̂ of problem (3.24) is a function of λ, which is proved

in the following theorem. We denote it as x(λ).

Lemma 3.1

When f : Rn −→ R is strictly convex and f ∈ C1(Rn), ∇f(x) = 0 has a

unique solution x∗, which is the minimizer of f(x).

Lemma 3.2

Suppose that ϕ(x) is strictly convex. Then fλ
obj is strictly convex.

Theorem 3.1

Suppose φ : R −→ R is strictly convex, φ ∈ C1(R). Then x(λ) is one-to-one

correspondence, otherwise x(λ) = b on [0,+∞) .

3.6 Regularization parameter estimation 41

Definition 3.1. Suppose minx F (x), minx G(x, λ) are two models for prob-

lem (3.2), where λ is a parameter of G, and x̂, x̂(λ) are their corresponding

solutions. We call x̃ a reference set of x̂(λ), when it is used to compute λ in

min
λ

∥x(λ)− x̃∥2 . (3.25)

For the given reference set x̃, there exists a solution λ∗ of (3.25), where

x̂(λ) is obtained by solving the problem (3.24). So the problem to estimate

λ could be expressed as

min
λ

∥x(λ)− x̃∥2 , (3.26a)

subject to 2(x(λ)− b) + λ∇ϕ(x) = 0 . (3.26b)

By the first-order necessary condition and Lemma 3.6, the constraints

(3.26b) are equivalent to the problem (3.24), which ensures that x̃(λ) is the

solution of the problem (3.24). If the reference set x̃ is a good approximation

to the original image, we can get a proper λ∗ in the problem (3.24), which

controls the noise removal and edge preserving. The ideal case is that the

reference set x̃ is the original image, and the best parameter value λ can

be obtained by problem (3.26). Though there are many methods to solve

an equality constrained optimization problem, they do not work efficiently

on our problem. Considering the specialities of problem (3.26), the authors

of [12] propose a method to solve it. The one-dimensional unconstrained

problem (3.25) with respect to λ is solved by Golden Section Method (Chap.

2, [15]). In this process of iterations, for each λ, x(λ) has to be got to satisfy

the constraints (3.26b). Considering the identification of (3.26b) and (3.24),

we get x(λ) by minimizing the problem (3.24), which is solved as a sub-

iteration process by a fitting optimization algorithm (e.g. gradient method,

Quasi-Newton method or Multilevel gradient method. For more details look

at Chap. A and 1). The algorithm is given below.

42 3. Image restoration problem

Regularization parameter estimation algorithm

Step 1: Given the reference set x̃, the initial value λ0 > 0 and ϵ > 0.

Step 2: Find an interval [λ1, λ2], which involves the solution of (3.25), by the

method of Advance and Retreat (Chap. 2, [15]). That is to say, there

exists λ ∈ [λ1, λ2] which satisfies ∥x̃ − x̂(λ)∥2 ≤ ∥x̃ − x̂(λ1)∥2 and

∥x̃ − x̂(λ)∥2 ≤ ∥x̃ − x̂(λ2)∥2, where x̂(λ) = argmin
x

fλ
obj and x̂(λi) =

argmin
x

fλi
obj for i = 1, 2 .

Step 3: Reduce the interval [λ1, λ2] and find the solution λ∗ of problem (3.25)

by the Golden Section Method (Chap. 2, [15]), until the length of the

interval is less than ϵ.

Step 4: Output λ∗.

From the work done in [12] it is being found heuristically that ∥x(λ)− x̃∥2

is a unimodal function (i.e. it exists a pint such that: to the left of that point

the function is monotonically increasing and to the right it is monotonically

decreasing) about λ in problem (3.25), so the global minimizer λ∗ of problem

(3.25) can be found by the regularization parameter estimation algorithm.

3.7 Numerical results

The image restoration problem we want to to solve consists in the opti-

mization model discussed in Section 3.4 and shown below:

min
x∈Rn2

{1
2
∥Ax− b∥2 + λϕ(x)

}
,

where ϕ is the edge-preserving function shown in Section 3.5 and the param-

eter λ is found exploiting the regularization parameter estimation algorithm.

The blurring operator A is based on a PSF generated by a gaussian filer of

variance β and zero boundary condition (see equation (3.11)) and the image

used is the cameramen image of dimensions 512 × 512. The interpolation

3.7 Numerical results 43

(a) (b) (c)

Figure 3.6: Gaussian kernels built for β = 1.7, 3, 9 from left to right respec-

tively.

and restriction operators R and P , stopping criteria and the multilevel pa-

rameters κ and ϵ are the same as those used in PDEs in Chapter 2.

As usual, the input image and the current iterate are restricted to the

coarse model by R. Instead, the blurring operator is restricted through a

standard choice in multigrid theory as explained in [16]. If we call Ah the

blurring operator that has to be restricted and AH the operator at the coarse

level, we have

AH = RAhP .

We set the maximum number of iteration at 20 for all the coarse levels.

We did three tests using the same original image blurred by three gaussian

kernels computed using the following values for the variance: β = 1.7, 3, 9.

In addition, for β = 9 we did a further test varying the hyperparameter λ

previously computed by the estimation algorithm.

We adapted the estimation algorithm to find an optimum value for the

couple (λ, α), where α is the parameter of the potential function. We com-

puted α and λ for β = 9 and found λ = 0.0065 and α = 10−4. We then

set these values of λ and α for all tests. MGM2 and MGM3 in the legend

represent the MGM implemented on two and three levels respectively. All

the graphs are plotted in terms of the the decrease of the objective function

at each iteration.

44 3. Image restoration problem

In these experiments, the noise level is evaluated with a signal-to-noise-

ratio (SNR) [7] measure defined as

10 log10

(
variance of x

variance of noise

)
.

The higher the SNR is and the more the restored image is considered a good

approximation of the original one.

(a) Original image (b) Degraded image

Figure 3.7: Illustration of the clean image on the left and the image corrupted

by a gaussian kernel for for β = 9 on the right.

3.7 Numerical results 45

(a) Restored image (b) Objective function

Figure 3.8: Results comparisons between MGM2, MGM3 and GM for β = 9

and λ = 0.0065.

(a) Restored image (b) Objective function

Figure 3.9: Results comparisons between MGM2, MGM3 and GM for β = 9

and λ = 0.01.

46 3. Image restoration problem

(a) Degraded image (b) Restored image (c) Objective function

Figure 3.10: Results comparison between MGM2, MGM3 and GM for β = 5.

(a) Degraded image (b) Restored image (c) Objective function

Figure 3.11: Results comparison between MGM2, MGM3 and GM for β = 3.

From Fig. 3.8b, 3.9b and 3.10c it is evident that the multilvel method

reduces the objective function more rapidly than GM and that MGM3 works

slightly better than MGM2. However, things change when we analyze the

plot in Fig. 3.11c. When the blur variance is low, GM reduces extremely well

the function and the multilvel scheme is almost useless. The only drawback

is that the computational cost increases and consequently the execution time

increases.

An experiment has also been done on the choice of λ. MGM works

efficiently both for λ = 0.01 and λ = 0.0065 as we can see in Fig. 3.8b

and 3.9b but comparing the SNR values shown in Fig. 3.8a and 3.9a, it

turns out that the value of λ computed by the hyperparameter estimation

algorithm leads to a better restoration of the image.

3.7 Numerical results 47

Finally, it should be said that GM and MGM has been compared only in

terms of decrease of the objective function and not in terms of CPU time.

Since we worked with a small image of dimensions 512 × 512, there would

have been no point in comparing the computational times. Instead, it is a

reasonable measure if we consider a problem of larger dimension and perhaps

try to use more levels.

48 3. Image restoration problem

Conclusions

We developed a Multilevel Gradient Method (MGM) for optimization

models for solving PDEs and image restoration problems. The key idea be-

hind MGM is to replace the fine approximation of the object function with a

coarse approximation. The coarse model is used to compute search directions

that are often superior to the search directions obtained using just gradient

information.

For the PDE case, our numerical experiments on a mildly nonlinar ellip-

tic PDE show that the proposed MGM algorithm is faster than the standard

Gradient Method (GM) and that increasing the number of levels, improves

both the speeds performance and the solution accuracy. So, it would be in-

teresting to test it on further PDE problems.

Regarding image restoration, on the other hand, we have seen that the

effectiveness of the MGM algorithm depends on the blurring operator. How-

ever, it should be pointed out that our experiments are not comprehen-

sive. The algorithm should be tested on a large set of images and on larger

dimensional problems (as mentioned in Section 3.7). Furthermore, MGM

could be improved in a number of ways. For example, we only considered

the most basic prolongation and restriction operators in approximating the

coarse model. The literature on the construction of these operators is quite

large, and there exist more accurate operators that return a better approxi-

mation of the current solution at the coarse level than the full weighting and

49

50 Conclusions

interpolation operator used here (e.g. Wavelets can be used to prolong and

restrict [8, 17, 18]). Other boundary conditions, such as the reflexive and

periodic boundary conditions exposed in Section 3.2, must be taken into ac-

count as well. Additionally, the choice of the regularization term is an other

important topic. For sake of simplicity, a smooth approximation of the l1

norm (the edge-preserving function) has been used in our algorithm. How-

ever, considering new types of non-smooth penalty term, such as TV [20],

make us to implement multilevel schemes on methods that can deal with

non-smooth functions (e.g. Multilevel Proximal Gradient Method [19]).

Since these initial results are promising and there is a paramount panorama

of possible improvements for MGM, we are hopeful that the multilevel frame-

work can improve the numerical performance of many other algorithms in

large scale optimization.

Appendix A

Line search methods for

unconstrained optimization

Outline: This Appendix is a brief introduction to unconstrained opti-

mization and was written following [21]. After an initial section where the

minimum problem is posed, we focus on some basic line search directions in

the next three sections. The last two sections are devoted to the backtrack-

ing strategy used to find the step length and the conditions that ensure the

success of this strategy.

A.1 Introduction

Numerical methods for unconstrained optimization aim at finding the

minimun of a given function f . Supposing f to be a smooth function from

Rn to R, we want to solve the problem

min
x∈Rn

f(x) . (A.1)

Let A be a set in Rn and x0 ∈ A be a initial iterate. Iterative methods for

(A.1) generally build a sequence {xk}k∈N converging to a stationary point

51

52 A.Line search methods for unconstrained optimization

x∗ ∈ A of the function f , that is

lim
k→+∞

xk = x∗

and

lim
k→+∞

∥∇f(xk)∥ = 0 .

There are several ways to define xk+1 from a given xk. Among these, we

mention the popular trust-region strategy and the line-search strategy. This

chapter is focused in the latter strategy.

Line search methods generate the iterates as follows:

xk+1 = xk + αkpk , (A.2)

where each step αkpk is composed by two parts: the stepsize αk and the

search direction pk. This kind of methods usually work by firstly defining

the step direction, and then its length. The terms αk and pk are found so

that

f(xk+1) = f(xk + αkpk) ≤ f(xk) . (A.3)

The direction can be determined in many different ways. Among these, the

steepest descent direction is the most common one, and we will deal with it

in the following section.

A.2 Gradient direction

The steepest descent direction for f in xk is given by

pk = −∇f(xk) .

Its name is due to the fact that it is the direction in which, starting from xk,

the value of f decrease the fastest. In fact, the steepest descent direction is

the one that minimizes the directional derivative of f in xk:

∂f

∂p
(xk) = ∥∇f(xk)∥ ∥p∥ cos(θ) ,

A.3 Newton’s direction 53

where θ ∈ [0, π] is the angle between ∇f(xk) and the vector p ∈ Rn. We can

assume without loss of generality that ∥p∥ = 1. Therefore minimizing the

second member of the equation corresponds to take θ = π that gives:

p =
−∇f(xk)

∥∇f(xk)∥
.

We note that, an iterative method that use the gradient direction has a low

computational cost stepwise, since it requires only the computation of the

gradient of f , but at the same time the convergence is usually very slow [21].

A.3 Newton’s direction

If f ∈ C2(Rn), we can consider the quadratic model of f in xk:

mk(p) = f(xk) +∇f(xk)
Tp+

1

2
pTH(xk)p ,

where the hessian of f that we call H(xk), is a positive definite matrix

(H(xk) ≻ 0). The Newton’s direction pNk is the global minimizer of mk(p).

In fact, since mk(p) is a strictly convex quadratic function, pNk is the solution

of the Newton’s system:

H(xk)p
N
k = −∇f(xk) . (A.4)

Thanks to the fact that H(xk) ≻ 0, we have that Newton’s system has

only one solution and also holds that pNk is a descent direction as shown in

[20]. In fact:

∇f(xk)
TpNk = ∇f(xk)

T
(
−H(xk)

−1∇f(xk)
)
= −∇f(xk)

TH(xk)
−1∇f(xk) < 0.

If it was not so, the Newton’s system could have more than one solution and

even if pNk is well-defined, it may not be a descent direction.

The Newton’s method is defined by setting xk+1 = xk+pNk . It usually has

fast local convergence, but it is expensive due to the computation of H(xk)

and the solution of Newton’s system at each iteration.

54 A.Line search methods for unconstrained optimization

A.4 Quasi-Newton direction

Let us consider now a quadratic model for f of the form

mk(p) = f(xk) +∇f(xk)
Tp+

1

2
pTBkp ,

where Bk is an approximation of H(xk) such that Bk ≻ 0. The Quasi-

Newton’s direction pQN
k is the minimizer of mk(p). Being mk(p) defined as

a positive definite quadratic function, pQN
k is the unique solution of quasi-

Newton’s system:

Bkp
QN
k = −∇f(xk) . (A.5)

A.5 Armijo and Wolfe conditions

In line search strategy after founding a direction we have to compute the

step length. We would choose an αk to have good reduction of f but at

the same time we do not want to spend too much time making this choice.

Furthermore, since the decrease condition (A.3) of f does not ensure the

convergence of these methods, it is vital to impose a condition on the step

length which guarantees the convergence.

We now introduce the conditions on the step length αk to ensure the

convergence of the overall line search method.

Armijo rule

The Armijo rule is given by the following inequality:

f(xk + αkpk) ≤ f(xk) + αkc1∇f(xk)
Tpk, c1 ∈ (0, 1) , (A)

where pk is a descent direction for f and usually c1 = 10−4.

Condition (A) is stronger than asking the simple decrease f(xk+1) ≤ f(xk)

because ∇f(xk)
Tpk < 0. To better understand (A) let us call

A.5 Armijo and Wolfe conditions 55

ϕ(α) = f(xk + αpk) ,

l(α) = f(xk) + αc1∇f(xk)
Tpk ,

ϕ
′
(α) = ∇f(xk + αpk)

Tpk , ϕ
′
(0) = ∇f(xk)

Tpk < 0 ,

l
′
(α) = c1∇f(xk)

Tpk , l
′
(0) = c1∇f(xk)

Tpk = c1ϕ
′
(0) < 0 .

Hence (A) requires ϕ(α) to be below the line l(α), i.e. that ϕ(α) ≤ l(α),

and the slope of ϕ and l to be negatives in zero. Fixing c1 ∈ (0, 1), it follows

c1∇f(xk)
Tpk > ∇f(xk)

T .

It means that for small values of α, l(α) lies above the graph of ϕ.

Choosing αk according to (A) avoids to take too large values of αk. But

it is not enough to guarantee that the algorithm makes real progress since

too small step can be taken. To avoid it we need to introduce the Wolfe rule.

Wolfe rule

Wolfe rule requires that

∇f(xk + αkpk)
Tpk ≥ c2∇f(xk)

Tpk, c2 ∈ (c1, 1) . (W)

where the first term of the inequality is the slope of ϕ(α). The condition force

ϕ
′
(α) ≥ c2∇f(xk)

Tpk and consequently avoids αk to be too small. Moreover,

if both (A) and (W) are required and recurring that c1 < c2 < 1 it holds:

c1∇f(xk)
Tpk > c2∇f(xk)

Tpk > ∇f(xk)
Tpk ,

i.e. the desired slope is between those of l(α) and ϕ(α).

Rules (A) and (W) allow to study the convergence of the iterative methods

that use the directions shown in Sections (A.2), (A.3) and (A.4), through the

following statements [21].

56 A.Line search methods for unconstrained optimization

Lemma A.1 (Wolfe lemma)

Let f : Rn −→ R, f ∈ C1(Rn) and bounded below in {xk + αpk s.t. α > 0},
with pk descent direction for f in xk, and let c1, c2 : 0 < c1 < c2 < 1. Then,

it exists I ̸= ∅, I ⊂ (0,+∞) such that ∀α ∈ I satisfies (A) + (W).

Wolfe lemma guarantees the existence of at least an α satisfying both (A)

and (W) conditions for a f ∈ C1(Rn).

Theorem A.1 (Zoutendijk’s theorem)

Let Ω = {x ∈ Rn s.t. f(x) ≤ f(x0)}, f ∈ C1(Ω) and lower bounded on Ω, pk

a descent direction for f , and assume that αk satisfies (A) and (W) and that

∇f(xk) is Lipschitz continuos in Ω. Let θk be the angle between −∇f(xk)

and the vector pk. Then:

+∞∑
j=0

(
cos(θj)∥∇f(xj)∥2

)
< +∞ .

The convergence of the series implies that

lim
k→+∞

cos(θk)∥∇f(xk)∥2 = 0 .

It is due to two reasons, both or only one of them:

i. lim
k→+∞

∇f(xk) = 0 .

In this case every accumulation point of {xk}k∈N, if it exists, is a sta-

tionary point;

ii. lim
k→+∞

cos(θk) = 0 .

It implies that

lim
k→+∞

∇f(xk)
Tpk = 0 .

It means that ∇f(xk) tends to be orthogonal to pk. Therefore, along pk

f is almost constant, for k ≫ 1. This can be avoided choosing a descent

direction pk such that cos(θk) > M for all k and for some M > 0.

A.5 Armijo and Wolfe conditions 57

Convergence of steepest descent method

Since pk = −∇f(xk) we have

cos(θk) = − ∇f(xk)
Tpk

∥∇f(xk)∥∥pk∥
=

∇f(xk)
T∇f(xk)

∥∇f(xk)∥2
= 1 .

Then, under the assumptions of Zoutendijk’s theorem and considered that

the possibility (ii) is excluded it holds: lim
k→+∞

∇f(xk) = 0.

Convergence of Newton and Quasi-Newton’s method

Taken Bk ≈ H(xk) the descent direction is pk = −B−1
k ∇f(xk).

cos(θk) = − ∇f(xk)
Tpk

∥∇f(xk)T∥∥pk∥
=

∇f(xk)
TB−1

k ∇f(xk)

∥∇f(xk)∥∥B−1
k ∇f(xk)∥

≥ ∇f(xk)
TB−1

k ∇f(xk)

∥∇f(xk)∥2∥B−1
k ∥

.

To bound this quantity we need some definition and a proposition.

Definition A.1. Given A ∈ Rn×n, A = AT , v ∈ Rn we call the Rayleigh

quotient associated to the matrix A and the vector v the following:

rA(v) :=
vTAv

vTv
.

Remark A.1. An important property of Rayleigh quotient is that ∀v ∈ Rn

λmin(Bk) ≤ rA(v) ≤ λmax(Bk) .

Proposition A.1

Let A ∈ Rn×n or A ∈ Cn×n be a symmetric positive definite matrix, and let

λmin and λmax be respectively the minimum and maximum eigenvalue of A

then:

∥A∥ = λmax and ∥A−1∥ = λmax(B
−1
k) = 1

λmin(Bk)
and also k(A) = λmax

λmin
.

Now we can conclude that:

cos(θk) ≥ rB−1
k
(∇f(xk))

1

∥B−1
k ∥

= rB−1
k
(∇f(xk))λmin(Bk)

≥ λmin(B
−1
k)λmin(Bk) =

λmin(Bk)

λmax(Bk)
=

1

k(Bk)

⇒ cos(θk) ≥
1

k(Bk)
.

58 A.Line search methods for unconstrained optimization

Then, if it exists M such that k(Bk) < M , we have cos(xk) >
1
M

and under

the assumptions of Zoutendijk’s Theorem, it holds, lim
k→+∞

∇f(xk) = 0 being

the situation (ii) excluded again. This condition means that the approxima-

tions of the Hessian matrix have a uniformly bounded condition number (the

bound is the same for any k).

A.6 Backtracking strategy

For gradient, Newton and quasi-Newton directions we know that if αk

satisfies (A)+(W) then the line-search method converges, form Theorem A.1.

Therefore, remains to show how to find the right step length αk. Several

techniques can be use to do it. One of these is the backtracking strategy of

which we see the algorithm below:

Algorithm 2: backtracking strategy

input : f, xk, α0, pk, bmax, c1 ∈ (0, 1), γ ∈ (0, 1)

output: αk, IND

for b = 0, 1, . . . , bmax do

if f(xk +αkpk) ≤ f(xk)+αk∇f(xk)
Tpk i.e. αk satisfies (A) then

IND=1;

stop;

else

αk = γαk;

IND=-1;

This can be used at each iteration of the line-search algorithm. The

backtracking algorithm works as follows: if αk = α0 does not satisfy (A), we

reduce αk by multiplying it with γ until the new αk satisfies (A). After a

finite number of reductions we will obtain an αk for which (A) holds. So, the

backtracking technique never fails. However, in the algorithm we decide to

do at most bmax backtracking steps. If after bmax iterations αk has not been

found, it means that the step in the line-search is too small, which will lead

to a really slow convergence.

A.6 Backtracking strategy 59

The parameter IND is used to see if the algorithm has found an αk satisfying

(A)+(W), assigning it the value 1. Otherwise, it returns IND=-1.

The backtracking wants a starting value α0 in input. One of the most

common choice when it is used in the gradient method is done by assuming

that the first-order change in the function at iteration k will be the same as

that obtained at the previous iteration.

α0∇f(xk)
Tpk = αk−1∇f(xk−1)

Tpk−1 ,

α0 = αk−1
∇f(xk−1)

Tpk−1

∇f(xk)Tpk
.

An other popular choice is called Barzilai-Borwein

sk−1 = xk − xk−1, yk−1 = ∇f(xk)−∇f(xk−1) ,

α0 =
sTk−1sk−1

sTk−1yk−1

.

For Newton’s or quasi-Newton method we choose α0 = 1.

We deduce then the algorithm for a line-search with backtracking tech-

nique:

60 A.Line search methods for unconstrained optimization

Algorithm 3: Line-search with backtracking strategy

input : f, x0,maxit, ϵ, α0, bmax, c1 ∈ (0, 1), γ ∈ (0, 1)

output: xk+1

for k = 0, . . . ,maxit do
1: Choose the descent direction pk for f in xk

2: Use the backtracking algorithm to find αk

[αk, IND] = backtracking(f, xk, α0, pk, bmax, c1, γ);

3: Check if the backtracking failed:

if IND=-1 then

return xk;

4: Update the current iterate

xk+1 = xk − αkpk;

5: Stop criterion:

if ∥∇f(xk+1)∥ ≤ ϵ then

return xk + 1 ;

Bibliography

[1] S. Gratton, A. Sartenaer and P. Toint. Recursive Trust-Region Methods

for Multiscale Nonlinear Optimization. SIAM Journal on Optimization,

vol. 19, iss.1, pp. 414-444, 2008

[2] Z. Wen and D. Goldfarb. A Line Search Multigrid Method for Large-

Scale Nonlinear Optimization. SIAM Journal on Optimization. vol. 20,

iss. 3, pp. 1478-1503, 2010.

[3] H. Calandra, S. Gratton, E. Riccietti, and X. Vasseur. On high-order

multilevel optimization strategies. SIAM Journal on Optimization, pp.

307-330, 2021.

[4] A. Brandt. Multigrid Techniques: 1984 Guide with Applications to

Fluid. Dynamics, GMD-Studien Nr. 85, Gesellschaft four Mathematik

und Datenverarbeitung, St. Augustin, Bonn, 1984.

[5] Bilbao, Stefan. Grid Functions and Finite Difference Operators in 2D,

ch. 10, 2009.

[6] T. Gerya. Introduction to Numerical Geodynamic Modelling, Cam-

bridge. Cambridge University Press, 2010.

[7] N. Pustelnik, A. Benazza-Benhayia, Y. Zheng, and J.-C. Pesquet.

Wavelet-based image deconvolution and reconstruction. Wiley Encyclo-

pedia of Electrical and Electronics Engineering, 2016.

[8] M. Bertero, P. Boccacci. Image Deconvolution.

61

62 BIBLIOGRAPHY

[9] Per Christiam Hansen, James G. Nagy, Dianne P.O’Leary. Deblurring

Images. Matrices, spectra and filtering, SIAM.

[10] M. Bertero, P. Boccacci, and C. De Mol. Introduction to Inverse Prob-

lems in Imaging. CRC Press, 2021.

[11] J. Hadamard. ”Sur les problemes aux derivees partielles et leur signifi-

cation physique”. Princeton Univ. Bull, vol. 13, pp. 49-52, 1902.

[12] P. Charbonnier,L. Blanc-Feraud, G. Aubert, M. Barlaud. Deterministic

edge-preserving regularization in computed imaging. IEEE Trans Image

Process, pp. 298-311, 1997.

[13] A. Tikhonov. “Tikhonov regularization of incorrectly posed problems”.

Soviet Mathematics Doklady, vol. 4, pp. 1624-1627, 1963.

[14] Xiaojuan Gu, Li Gao. A new method for parameter estimation of edge-

preserving regularization in image restoration. Journal of Computational

and Applied Mathematics, vol. 225, iss. 2, pp. 478-486, 2009.

[15] Wenyu Sun, Ya-xiang Yuan. Optimization Theory and Methods. Non-

linear Programming, Springer, 2006.

[16] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial.

SIAM, 2000.

[17] L. Jacques, L. Duval, C. Chaux, G. Peyré, Gabriel. A Panorama on

Multiscale Geometric Representations, Intertwining Spatial, Directional

and Frequency Selectivity. Signal Processing, 91, 2018.

[18] I. W. Selesnick, M. A. T. Figueiredo. Signal restoration with overcom-

plete wavelet transforms: Comparison of analysis and synthesis priors.

Wavelets XIII, vol. 7446, pp. 107-121, 2009.

[19] P. Parpas. A Multilevel Proximal Gradient Algorithm for a Class of

Composite Optimization Problems. SIAM Journal on Scientific Com-

puting, vol. 39. pp. 681-701. 2017.

BIBLIOGRAPHY 63

[20] L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise

removal algorithms. Physica D: Nonlinear Phenomena. vol. 60, pp. 259-

268, 1992.

[21] J. Nocedal and S. Wright. Numerical optimization. Springer Science and

Business Media, 2006.

