
ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA

Scuola di Scienze
Corso di Laurea Magistrale in Informatica

RED-Bridge: A Multiprotocol Tool Prototype for
IoT Sensors

Supervisor:
Prof. Marco Di Felice

Co-supervisor:
Dr. Luca Sciullo

Candidate:
Dr. Riccardo Maffei

Session II
Academic Year 2021/2022

https://orcid.org/0000-0002-6392-9701

Information about licenses and credits can be found in Appendix A.

ii

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.gnu.org/licenses/agpl-3.0.html

Ad meliora et maiora semper!

iii

iv

Abstract

The IoT is growing more and more each year and is becoming so ubiquitous
that it includes heterogeneous devices with different hardware and software
constraints leading to an highly fragmented ecosystem. Devices are using
different protocols with different paradigms and they are not compatible with
each other; some devices use request-response protocols like HTTP or CoAP
while others use publish-subscribe protocols like MQTT. Integration in IoT is
still an open research topic.
When handling and testing IoT sensors there are some common task that
people may be interested in: reading and visualizing the current value of
the sensor; doing some aggregations on a set of values in order to compute
statistical features; saving the history of the data to a time-series database;
forecasting the future values to react in advance to a future condition; bridging
the protocol of the sensor in order to integrate the device with other tools.
In this work we will show the working implementation of a low-code and flow-
based tool prototype which supports the common operations mentioned above,
based on Node-RED and Python. Since this system is just a prototype, it has
some issues and limitations that will be discussed in this work.

v

vi

| Contents

Introduction 1

1 General Concepts and Technologies 3
1.1 Node-RED . 3
1.2 InfluxDB . 3
1.3 Protocols . 4

1.3.1 HTTP . 5
1.3.2 CoAP . 7
1.3.3 MQTT . 8

1.4 W3C Web of Things . 9

2 Architecture and Functionalities 13
2.1 Goals and Use Cases . 13
2.2 Requirements and Functionalities . 13

2.2.1 Additional and Experimental Functionalities 14
2.2.1.1 Data Forecasting . 14
2.2.1.2 W3C Web of Things Support 15

2.3 Architecture Overview . 15
2.3.1 Frontend . 15
2.3.2 Backend . 16

3 Implementation 17
3.1 Backend . 17

3.1.1 Flow Overview . 17
3.1.2 Input Module . 18

3.1.2.1 MQTT . 18
3.1.2.2 CoAP . 19
3.1.2.3 HTTP . 19
3.1.2.4 WoT Property Read 20

3.1.3 Processing Module . 20
3.1.3.1 Passthrough Pipeline 21
3.1.3.2 Aggregation Pipeline 21
3.1.3.3 Forecasting Pipeline 22

3.1.4 Output Module . 22
3.1.4.1 File . 23
3.1.4.2 WebSocket . 24
3.1.4.3 MQTT . 24
3.1.4.4 CoAP . 24

vii

3.1.4.5 HTTP . 25
3.1.4.6 WoT Property Write 26
3.1.4.7 InfluxDB . 26

3.1.5 WoT Introduction . 27
3.2 Frontend . 28

3.2.1 Parameters and Configuration Handling 29
3.2.2 Flow Manipulation and Deploy 30
3.2.3 Console Handling . 31
3.2.4 Self Thing Description Generation 31

4 Testing and Evaluation 33
4.1 Manual I/O Testing . 33

4.1.1 MQTT . 33
4.1.2 CoAP . 33
4.1.3 HTTP . 34
4.1.4 WoT . 34
4.1.5 File . 34
4.1.6 WebSocket . 34
4.1.7 InfluxDB . 34

4.2 Manual Processing Testing . 35
4.2.1 Passthrough Pipeline . 35
4.2.2 Aggregation Pipeline . 35
4.2.3 Forecasting Pipeline . 35

4.3 Whole System Testing . 35
4.3.1 Edge Device Prototype . 36

4.3.1.1 TMP36 Sensor . 36
4.3.1.2 ESP32 Prototyping Board 37
4.3.1.3 Temperature Reading 37
4.3.1.4 MQTT, CoAP and HTTP Implementation 38

4.4 Bridging Performance Evaluation . 38
4.4.1 Evaluated Protocols . 39
4.4.2 Evaluation Scenario . 39
4.4.3 Results . 41

5 Issues and Improvements 45
5.1 Limiting Frontend . 45
5.2 I/O Format Assumption . 45
5.3 HTTP Server Port . 45
5.4 WoT: TD, Protocols and Authentication 45
5.5 CoAP Input Observe . 46
5.6 Naive Forecasting Implementation . 46
5.7 Single Flow Limit . 46

6 Conclusions and Future Works 47

Appendix A Licenses and Credits 49
A.1 Third-Party Content . 49

viii

Acknowledgments 51

References 53

ix

x

| List of Figures

1.1 Example of Node-RED flow. 3
1.2 InfluxDB GUI showing sample data. 4
1.3 Example of HTTP request-response. 5
1.4 CoAP message format. 7
1.5 Example of CoAP request-response with non-confirmable messages. . 8
1.6 Example of MQTT publish-subscribe architecture. 9
1.7 WoT interaction abstraction diagram. 10
1.8 Architectural aspects of a WoT Thing. 11
1.9 Abstract architecture of W3C WoT. 12

2.1 System architecture overview. 15

3.1 Flow overview diagram. 17
3.2 Flow input module configuration. 18
3.3 Flow processing module configuration. 20
3.4 Flow output module configuration. 23
3.5 “Get last data” subflow implementation. 25
3.6 WoT Introduction flow configuration. 27
3.7 RED-Bridge usage help. 29

4.1 Screenshot of InfluxDB data explorer during testing. 34
4.2 Screenshot of the test of the aggregation operation. 36
4.3 TMP36 output voltage vs. temperature. 36
4.4 Edge device prototype mounting diagram. 37
4.5 Performance evaluation diagrams. 40
4.6 Box plots of the performance evaluation results. 42
4.7 eCDF plots of the performance evaluation results. 43

xi

xii

| List of Listings

1 Code of the function node inside the forecasting pipeline. 22
2 Code of the function node inside the subflow. 25
3 Code of the function node that formats InfluxDB fields and tags. . . . 26
4 System’s self TD template. 28
5 Example of MQTT input JSON configuration. 30
6 Example of HTTP active output JSON configuration. 30
7 Example of InfluxDB JSON configuration. 30
8 get_temp() function implementation. 38
9 get_sample() function implementation. 38

xiii

xiv

| List of Tables

4.1 Performance evaluation results table. 41

xv

xvi

| Introduction

According to a report by Morrish and Arnott [1], “at the end of 2021 there were 11.3
billion active IoT devices, a figure which will grow to 29.4 billion in 2030, a com-
pound annual growth rate (CAGR) of 12%.”. More and more physical objects are
becoming “smart devices” connected to the internet including sensors and actuators
used, for example, in smart homes, smart agriculture [2] etc. IoT is becoming so
ubiquitous that it includes heterogeneous devices with different hardware and soft-
ware constraints leading to an highly fragmented ecosystem. In particular, devices
are using different protocols with different paradigms depending on constraints such
as computing power, power consumption and network capabilities; some devices use
request-response protocols like HTTP or CoAP [3] while others use publish-subscribe
protocols like MQTT [4]. At time of writing, there are several works and studies
about interoperability and bridging between these protocols such as the Eclipse
Ponte project [5], the work from Khaled and Helal [6] and the review by Tayur and
Suchithra [7]. Furthermore, the W3C is currently working on a set of standards,
mostly known as “Web of Things” [8], seeking “to counter the fragmentation of the
IoT by using and extending existing, standardized Web technologies” [9].

When handling and testing IoT sensors there are some common task that people
may be interested in. The most basic one is reading and visualizing the current
value of the sensor; another one is doing some aggregations on a set of values in
order to compute statistical features; one more can be saving the history of the
data, usually to a time-series database like InfluxDB [10]; another common task
could be forecasting the future values to react in advance to a future condition;
finally, one of the common task could be bridging the protocol of the sensor in order
to integrate the device with other tools.

The goal of this work is to present the design, implementation and testing of
a simple-to-use tool for IoT sensors supporting the common operations mentioned
above and minimizing the integration efforts. The system will be able to handle
sensors supporting HTTP, CoAP and MQTT protocol and also support consuming
W3C WoT Things. We will present a simple architecture where the backend is a
custom-built flow [11] running on a Node-RED [12] instance and the frontend is
a Python script providing a command line interface to let the user configure and
interact with the system. After going into the implementation details, we will discuss
the tests, all passed by the system, including tests using command line tools, ad-
hoc flows and simulated devices but also tests executed with the help of an IoT
sensor prototype we custom designed and built. We also wanted to evaluate the
performances of the protocol bridging measuring the transmission time in order to
estimate the overhead introduced by the system; we will present the evaluation
scenario and the analyzed results that confirmed that the overhead introduced by

1

the proposed implementation is minimum. As we will describe, the system we will
present is just a prototype and still has several issues that make it unsuitable for
production environment or important tasks.

The structure of this work is divided in chapters; in particular, in chapter 1 we
will briefly list and present the technologies and general concepts used in this work; in
chapter 2 we will describe the requirements, the architecture and the functionalities
of the system; in chapter 3 we will analyze the actual implementation; in chapter 4
we will discuss the testing phase and the evaluation conducted on the system; finally,
in chapter 5 we will describe the issues of the prototype and possible improvements
before drawing conclusions in chapter 6.

2

1 | General Concepts and Technologies

In this chapter we will briefly introduce general concepts and technologies used in
this work. For more details we advise to refer to the ample existing literature and
materials about these topics.

1.1 Node-RED

According to the official website [12]:

Node-RED is a programming tool for wiring together hardware devices,
APIs and online services in new and interesting ways. It provides a
browser-based editor that makes it easy to wire together flows using the
wide range of nodes in the palette that can be deployed to its runtime
in a single-click.

Node-RED allows flow-based development [11] connecting built-in, third-party and
custom nodes to easily create complex integrations and functionalities.

Figure 1.1: Example of Node-RED flow.

Suppose that we have some movement sensors in the garden that publish a message
through MQTT when triggered. We want to turn on the smart lampposts and porch
lights but they have to be controlled through HTTP and CoAP POSTs, respectively.
We want to limit this activation to one every 5 minutes and we want all the lights
to be turned off after 15 seconds. In Figure 1.1 is shown a small implementation of
this automation as a Node-RED flow.

1.2 InfluxDB

InfluxDB [10] is an open-source time-series database written in GO. It provides
a graphical user interface, a command line interface and HTTP APIs. Starting
from version 1.8, it supports Flux, a functional data scripting language designed for
querying, processing, analyzing, and acting on data.
Some of the most important elements in InfluxDB are:

3

• Bucket: a container for all data, combining the concept of a database and a
retention policy.

• Measurement: a container for fields, tags, and timestamps (similar to a table
in RDBMS).

• Timestamp: a timestamp associated with the data, stored in epoch nanosec-
ond format but shown in the format proposed in RFC 3339 [13].

• Field keys and values: names and values of actual data (similar to column
names and values in RDBMS).

• Tag keys and values: optional indexed metadata (strings).

• Series: a logical group of data defined by shared measurement, field key and
tag set.

Figure 1.2: InfluxDB GUI showing sample data.

Figure 1.2 shows a screenshot of the InfluxDB data explorer with sample data. In
particular, the bucket “MyBucket” contains a measurement named “airSensors”
with “co”, “humidity” and “temperature” as fields but the query filtered only the
humidity. The measurement has a tag named “sensor_id” whose value is the id of
the sensor. The plot shows the different series, one for each combination of field key
and tag set.

1.3 Protocols

4

1.3.1 HTTP
HTTP is probably one of the most known application layer protocol and the foun-
dation of the World Wide Web. This protocol uses a request-response interaction
model, as shown in Figure 1.3, and is usually used in IoT creating REST [14] APIs.

GET /sensors/temp HTTP/1.1

ServerClient

HTTP/1.1 200 OK …

Figure 1.3: Example of HTTP request-response.

As of version 1.1, a request message is composed of:

• a request line, like “GET /sensors/temp HTTP/1.1”, containing:

– the case-sensitive request method name followed by a space;
– the requested URL followed by another space;
– the protocol version followed by a CR and a LF.

• 1 or more headers, like “Host: www.example.com”, containing:

– the case-insensitive header name followed by a colon;
– the header value (with optional leading/trailing space) followed by a CR

and a LF.

• an empty line (CR and LF);

• an optional message body.

The protocol provides several request methods. Some of the most important for IoT
are, for example:

• GET: this method is used to retriever the state of the resource, including its
metadata; for example, this method can be used to retriever the value of a
sensor.

• HEAD: this method is used like the previous one but retrievers only the
metadata, without the content; for example, this method can be used to check
the last modification date of the resource.

• POST: this method is used to request that the target resource handles the
given representation according to its semantics; for example this method can
be used to ask an IoT device to execute an action.

5

• PUT: this method is used to update the state of the resource with the one in
the request; for example, it can be used to set the brightness of a smart light.

As of version 1.1, a response message is composed of:

• a status line, like “HTTP/1.1 200 OK”, containing:

– the protocol version followed by a space;

– the response status code followed by another space;

– an optional reason phrase followed by a CR and a LF.

• 0 or more headers, like “Content-Type: application/json”, containing:

– the case-insensitive header name followed by a colon;

– the header value (with optional leading/trailing space) followed by a CR
and a LF.

• an empty line (CR and LF);

• an optional message body.

The protocol provides several 3-digit response status codes that can be divided in 5
classes according to the first digit:

• 1xx: this class is used for informational responses; in this case the request was
received and understood.

• 2xx: this class is used for successful responses; in this case the request was
successfully received, understood, and accepted.

• 3xx: this class is used for redirection responses; in this case further actions
are necessary in order to complete the request.

• 4xx: this class is used for client error responses; in this case the request is not
valid and cannot be fulfilled.

• 5xx: this class is used for server error responses; in this case the server failed
to fulfill an apparently valid request.

The main advantage of using HTTP as IoT protocol is that interactions can be
done using widely available standard tools designed for the web. On the other
hand, HTTP was not designed to be used in constrained scenarios where the energy
efficiency and network availability and conditions must be taken in consideration.
Therefore, sometimes HTTP cannot be used as messaging protocol for constrained
IoT devices.

6

1.3.2 CoAP
Constrained Application Protocol is a lightweight application layer protocol for con-
strained devices, as defined by Shelby, Hartke, and Bormann [3]. The protocol has
been designed to be easily translated to HTTP using the same interaction model
while trying to minimize the requirements of the device and the network. For ex-
ample, the protocol has a smaller header, is asynchronous and is based on UDP [15]
but supports optional mechanisms to enhance reliability (e.g. confirmable messages
and retransmission).

Byte 0 1 2 3
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Field

Ver Type TKL Request/response code Message ID

Token (if any, TKL bytes)

Options (if any)
1 1 1 1 1 1 1 1 Payload (if any)

Figure 1.4: CoAP message format.

Unlike HTTP, CoAP uses a binary message format, shown in Figure 1.4, that can
be as small as 4 bytes.
In particular:

• Ver: indicates the CoAP protocol version;

• Type: indicates the message type that can be:

– 0: this message is a confirmable request and expects an acknowledgment;

– 1: this message is a non-confirmable request and doesn’t expect an ac-
knowledgment;

– 2: this message is an acknowledgment to a confirmable message;

– 3: this message indicates a “reset” because the received message couldn’t
be processed.

• TKL: indicates the length of the token (from 0 to 8 bytes);

• Request/response code: indicates the request method or the response code;

• Message ID: is a message identifier used to detect duplicates and to match
messages of type acknowledgment/reset to messages of type confirmable/non-
confirmable;

• Token: is a variable-length identifier used to match the requests with the
responses;

• Options: are additional options (e.g. the content format);

• Payload: is the actual payload of the message (e.g. the value of the sensor).

7

CoAP supports several request methods including GET, PUT and POST with similar,
but not identical, semantics to those of HTTP methods. CoAP response codes
relate to a small subset of HTTP status codes with some CoAP-specific additions.
A protocol extension [16] added support for resource observation. More information
about this protocol can be found in the RFC [3].

In Figure 1.5 is shown an example of a coap request-response using non con-
firmable messages: the client sends a non confirmable GET request with id 0x1234,
and token 0x42; the server, later, replies with a non confirmable response message
including the same token and the result.

NON 0x1234
GET /sensors/temp

Token 0x42
Client

NON 0x5678
Token 0x42
Payload 22.5

Server

…

Figure 1.5: Example of CoAP request-response with non-confirmable messages.

1.3.3 MQTT
Message Queue Telemetry Transport is a lightweight application layer messaging
protocol for resource-constrained environments standardized by OASIS [4]. Unlike
HTTP and CoAP, this protocol is based on the publish-subscribe interaction model
as shown in Figure 1.6. Clients connect to a mediator, an MQTT broker, and can
publish messages with a string topic and/or declare their interest in one (or more)
topic. The mediator allows many-to-many interactions and space/time decoupling.
The connections to the broker are usually based on TCP [17] which guarantees
delivery on the link between the client and the broker; however, messages can still
be lost (e.g. if the broker application crashes). For this reason, the protocol provides
3 different levels of quality of service:

• At most once (QoS level 0): with this configuration the message is sent
only once (fire and forget).

• At least once (QoS level 1): with this configuration the sender stores the
message and keeps resending it until an acknowledgment is received (acknowl-
edged delivery).

8

• Exactly once (QoS level 2): with this configuration the sender and the
receiver engage in four-part handshake to ensure that one and only one copy
of the message is received (assured delivery).

The protocol provides some basic security mechanism for authentication and confi-
dentiality but they mainly relies on lower layers or other components. The MQTT
standard provides other configurations which are not described in this document.

MQTT broker

Subscriber Msg. topic

Subscriber 1 X

Subscriber 2 Y

… …

Producers Consumers

Publisher 1

Publisher N

Subscriber 1

Subscriber M

… …

PUB topic X

PUB topic Y

SUB topic X

SUB topic Y

Figure 1.6: Example of MQTT publish-subscribe architecture.

1.4 W3C Web of Things

According to the official website [9]:

The Web of Things (WoT) provides a set of standardized technology
building blocks that help to simplify IoT application development by
following the well-known and successful Web paradigm. This approach
increases flexibility and interoperability, especially for cross-domain ap-
plications, as well as enabling reuse of established standards and tools.

The W3C published some normative deliverables, recommendations and drafts, with
more information about the WoT including: the Architecture [8], the Thing Descrip-
tion [18] and the Discovery [19].

9

Properties Actions Events

Interaction abstraction

Figure 1.7: WoT interaction abstraction diagram.

One of the most important concepts introduced by the W3C WoT is an interaction
abstraction, depicted in Figure 1.7, based on properties, actions and events:

• Properties are interaction affordances that expose some kind of state of the
Thing. Some examples are: configuration parameters, sensor values, compu-
tation results etc.

• Actions are interaction affordances used to invoke a function of a Thing like
starting a process (e.g. brewing a coffee), manipulating some hidden configu-
rations etc.

• Events are interaction affordances that describe a source of events asyn-
chronously sent by the Thing to the Consumer. Some examples are: alarms
(e.g. a fire alarm), events (e.g. door opened) etc.

Another important WoT concept used in this work is the WoT Thing Description,
one of the WoT central building blocks and the entry point of a Thing. A TD is a
JSON-LD [20], usually provided by the IoT device itself or by an external repository
(e.g. a TD Directory), describing the Thing and how it can be used. In particular,
a TD instance has 4 main components:

• textual metadata about the Thing;

• a set of interaction affordances that indicate how the Thing can be used;

• schemas for the data exchanged with the Thing;

• web links to express any relation to other Things or documents on the Web.

10

Thing

Behavior

Interaction Affordances

Data Schemas

WoT Thing
Description

Protocol Binding(s)

Security Configuration

Figure 1.8: Architectural aspects of a WoT Thing.

Figure 1.8 shows the main architectural aspects of a WoT Thing. In particular:

• the behavior of a Thing includes both the autonomous behavior and the im-
plementation of the handlers for the interaction affordances;

• the interaction affordances provide a model of how the Thing can be used
through abstract operations, but without reference to a specific network pro-
tocol or data encoding;

• the protocol bindings provide a mapping between the interaction affordances
and the concrete protocol messages along with additional details; in general, a
Thing may use different protocols to support different interaction affordances;

• the security configuration represents the access control mechanisms used to
access the interaction affordances and the management of related public secu-
rity metadata (e.g. the authentication mechanism) and private security data
(e.g.: secrets, private keys etc.).

Figure 1.9 shows the abstract architecture of the W3C WoT and how its concepts
can be applied and combined to address even the more complex use cases. In
particular [8]:

The concepts of W3C WoT are applicable to all levels relevant for IoT ap-
plications: the device level, edge level, and cloud level. This fosters com-
mon interfaces and APIs across the different levels and enables various
integration patterns such as Thing-to-Thing, Thing-to-Gateway, Thing-
to-Cloud, Gateway-to-Cloud, and even cloud federation, i.e., intercon-
necting cloud computing environments of two or more service providers,
for IoT applications.

11

Direct
Thing-to-Thing

Interaction

Existing Device

Complement
Existing Devices

+
Thing⇒

Edge
Cloud

Seamless
Web Integration

Remote Access
and Synchronization

Integration and
Orchestration

Intermediary / Thing
Behavior

Interaction Affordances

Protocol Bindings
Security Configuration

Intermediary / Thing
Behavior

Interaction Affordances

Protocol Bindings

Security Configuration

Thing
Behavior

Interaction Affordances

Protocol Binding

Security Configuration

Thing + Consumer
Behavior

Interaction Affordances

Protocol Bindings

Security Configuration

Protocol

Consumer
Behavior

Protocol Bindings

Security Configuration

Local Network

Thing-to-cloud
Thing-to-gateway

Data Schemas

Data SchemasData Schemas

Data Schemas

Figure 1.9: Abstract architecture of W3C WoT.

More information and details can be found in the normative deliverables.

12

2 | Architecture and Functionalities

In this chapter we will briefly describe the requirements, the functionalities and the
architecture of the system. More details about the implementation in chapter 3.

2.1 Goals and Use Cases

The goal of the system is to provide an easy to use command line tool to handle IoT
sensors that supports different protocols in order to support common tasks while
reducing integration efforts. Follows a small set of examples of use cases.

Data visualization The system can be used, for example, to quickly access and
visualize in real time the values coming from sensors with different protocols; this
could be useful especially for diagnostic purposes.

Data storage The system can be used when the user needs to save to a time-
series database the history of the values coming from sensors supporting different
protocols (e.g.: temperature sensors, door sensors etc.).

Data forecasting The system can be used to create a data flow that forecasts
the future value of a sensor in order to react in advance to a future condition.
For example, the tool can output, in any of the supported protocols, the future
temperature or humidity of a room (e.g. a wine cellar); in this way, a different
existing component can access that flow and trigger the HVAC system.

Protocol bridging The system can be used to bridge the protocol of a sensor
to another one supported by the existing IoT ecosystem; for example, an existing
automation system may support MQTT while the sensor may expose a CoAP end-
point. The two protocols can be easily bridged by the tool with a single, simple,
command.

2.2 Requirements and Functionalities

The system has some requirements and functionalities described in this section and
other additional and experimental functionalities described in their own subsection.
The most important requirements and assumptions are:

• the system should provide a CLI frontend;

13

• the frontend should be used to configure the system and to show the output,
when necessary;

• the system can assume that the input data format is a JSON [21] object
containing a property named “value” (e.g. {"value": ... });

• the system should support at least MQTT, HTTP and CoAP;

• the system should support the following basic operations:

– Data visualization: the system prints the JSON documents acquired
in real-time.

– Data aggregation: the system computes and prints the statistical fea-
tures of the sensory data, such as the maximum, minimum, average and
standard deviation, computed every n observations, where n is a custom
parameter provided by the user.

– Data storage: the system stores the data on an InfluxDB [10] database.
In this case, the user must provide a JSON file with the required config-
uration such as: the URL of the device hosting the InfluxDB instance,
the access token, the name of the bucket and additional tags. As a con-
sequence of this action, the time series of the data flow are automatically
sent to InfluxDB and stored there.

– Data bridging: the system bridges data between supported protocols.
In this case, the user must specify the destination protocol as well as the
protocol-specific parameters in a JSON configuration file. The system
produces a data flow in output using the target protocol. The system is
orthogonal compared to the input/output protocols, it’s able to acquire
data in input in any protocol and to produce a data flow in output in any
other protocol.

2.2.1 Additional and Experimental Functionalities
The systems supports some additional experimental functionalities but their imple-
mentation, shown in chapter 3, is just a Proof of Concept and should not be used
for important tasks.

2.2.1.1 Data Forecasting

As an additional functionality, the system supports data forecasting. In this case,
the system produces in output a data flow in the specified target protocol, however,
it returns the next value of the time series computed according to the ARIMA
model [22]. The statistical parameters of the ARIMA model (i.e. p, d, q parameters)
are defined by the users and passed as input of the command.

14

2.2.1.2 W3C Web of Things Support

As an additional functionality, the system experimentally supports W3C Web of
Things [8]. In particular, the system can interact with “Things” reading their prop-
erty as an input or writing to them as an output. In this case, the user should
provide the name of the property and the Thing Description [18]. In some user-
selected configurations the system exposes some endpoints that others can use to
push or pull data. In this case the system can act itself as a Thing generating and
exposing its TD [18, 19] including a property named “data”.

2.3 Architecture Overview

Frontend

Backend

run

configure
& deploy

CLI

CoAP

CoAP

InfluxDBHTTP

HTTP

MQTT MQTT

Figure 2.1: System architecture overview.

Figure 2.1 shows an overview of the architecture of the system along with some
dummy IoT devices, InfluxDB etc.

2.3.1 Frontend
One of the main components of the system is a frontend application written in
Python [23]. The application provides a command line interface used to configure
the system. For example, the user can use the command parameter to specify the
desired operation and provide all the necessary configurations (e.g.: ip addresses,
credentials, protocols etc.) as JSON [21] configuration files. After parsing all the
required configurations, the application generates and configure a Node-RED flow
and automatically deploys it on the backend that will handle the actual operations.
More information in chapter 3.

15

2.3.2 Backend
The backend is the core of the system. An instance of Node-RED [12] exposes its
deployment APIs and receives the generated flow configuration from the frontend.
The flow configuration is then executed in order to support the user-selected opera-
tions. If required, the backend can communicate with the frontend in order to show
output in console. More information in chapter 3.

16

3 | Implementation

In this chapter we will briefly describe the implementation of the system and its
additional components.

3.1 Backend

As stated in subsection 2.3.2, the backend has been designed creating a program,
“flow” in jargon, deployed on a running Node-RED [12] instance. In order to im-
plement all the functionalities, we used both built-in and third-party nodes. For
some functionalities we used the “function” node that allowed us to write custom
JavaScript [24] code. More details in the following sections.

3.1.1 Flow Overview
In order to implement all the functionalities and protocols, we decided to design a
single big Node-RED flow and let the frontend take care of the activation and con-
figuration of the appropriate nodes required to support the user-selected operations.

INPUT
MODULE

Inbound data

virtual channel

Outbound data

virtual channel

PROCESSING
MODULE

OUTPUT
MODULE

Figure 3.1: Flow overview diagram.

We designed the flow in a modular way. As shown in Figure 3.1, the flow has been
divided in 3 modules communicating through 2 virtual channels called “Inbound
data” and “Outbound data”. The first module, shown in Figure 3.2, handles the
input data and passes the result1 to the following module; the second module, shown
in Figure 3.3, handles the requested data processing (if necessary) and passes the
result to the following module; the last module, shown in Figure 3.4, handles all
kinds of data output2. This architecture aims to make modules independent from
each other.

1Note that Node-RED nodes exchange messages (objects). The parsed input data is stored in
the property “payload” of the message.

2Not limited to messaging protocols. This module supports also the InfluxDB, console etc.

17

3.1.2 Input Module
As mentioned before, this module handles the input of the data in all supported
protocols assuming that the data itself is a JSON object containing a property
named “value” (e.g. {"value": ... }). The obtained data is eventually pushed
in the virtual channel “inbound data”.
At time of writing, the following protocols are supported:

• MQTT;

• CoAP;

• HTTP;

• WoT property read;

More details in the following sections.

Figure 3.2: Flow input module configuration.

3.1.2.1 MQTT

Receiving data through MQTT essentially means subscribing to a topic and receiving
updates. We used 2 useful built-in nodes:

• a global configuration node “mqtt-broker”;

• a standard node “mqtt in”.

18

The former takes care of the connection to the input3 MQTT broker with the user
configuration (e.g.: the host, the credentials etc.); the latter actually subscribes
to the given topic with the give parameters (e.g. the QoS level) and emits a new
Node-RED message when a new message is published to the subscribed topic. The
payload of the message is the parsed JSON data.

3.1.2.2 CoAP

We decided to support input data through CoAP protocol both actively and pas-
sively. In the active way the system sends a GET request to the user-configured URL
polling periodically4. In the passive way the system exposes an endpoint on a local
CoAP server and handles incoming POST requests.

In order to implement this functionality, we used node-red-contrib-coap [25],
a third-party node set that adds CoAP support to Node-RED. In particular we used:

• a global configuration node “coap-server”;

• a standard node “coap in”;

• a standard node “coap response”;

• a standard node “coap request”;

• a standard node “inject”.

The global configuration node creates a locally running CoAP server with the user
configuration (e.g. the port) while the “coap in” node sets up the POST endpoint
with the given configuration (e.g. the path). The “coap request” node sends a GET
request to the configured host and path when triggered by the “inject” node. Both
the “coap request” and “coap in” node emit a Node-Red message with the parsed
JSON data as payload but the latter must send a response to the received request.
The response is handled by the “coap response” node and the status code is set to
2.04 Changed as described by Shelby, Hartke, and Bormann [3].

3.1.2.3 HTTP

We decided to support input data through HTTP protocol both actively and pas-
sively. The implementation is completely analogous to the CoAP one described in
subsubsection 3.1.2.2 and uses the following built-in nodes:

• a standard node “http in”;

• a standard node “http response”;

• a standard node “http request”;

The HTTP server hosting the endpoint is the default one used by Node-RED, more
information in chapter 5.

3Input and output can be done through different brokers if necessary.
4The node also supports the “observe” flag. More information in chapter 5.

19

3.1.2.4 WoT Property Read

As described in subsubsection 2.2.1.2, the system experimentally supports consum-
ing a WoT Thing and reading a property as input. In order to implement this
functionality, we used node-red-contrib-web-of-things [26], a third-party ex-
perimental node set that adds WoT consuming support to Node-RED. In particular
we used:

• a global configuration node “consumed-thing”;

• a standard node “read-property”;

• a standard node “template”.

The global configuration node holds the information about the consumed thing
including its TD and the credentials for basic authentication5, if enabled. The
“read-property” nodes actually reads the configured property from the consumed
thing6 and emits a Node-RED message. At time of writing, the “read-property”
nodes unwraps the value from the received JSON. To be consistent, the “template”
node wraps it back as {"value":...}.

3.1.3 Processing Module
This modules handles all kinds of data processing required to implement the func-
tionalities of the system described in chapter 2. We implemented different “pipelines”,
all of them receive data from the “Inbound data” channel and push the result to the
“Outbound data” channel. For this reason, only one of them should be enabled at
the same time.

Figure 3.3: Flow processing module configuration.

5Only basic type of authentication is currently supported. More information in chapter 5.
6Not all protocols are supported, more information in chapter 5.

20

3.1.3.1 Passthrough Pipeline

This pipeline is the one at the top in Figure 3.3 and is essentially a “no-op”. “Inbound
data” channel is directly linked to “Outbound data” channel. In this way all Node-
RED messages are just forwarded. This pipeline is used by the system to implement
the operations described in chapter 2 that doesn’t require a data processing such as:

• data visualization, data is printed as-is;

• data storage, data is saved as-is in an InfluxDB database along with addi-
tional user-defined tags;

• data bridging, data is bridged to a different protocol without any processing.

3.1.3.2 Aggregation Pipeline

This pipeline is shown in the middle in Figure 3.3 and is used to implement the
data aggregation operation as described in chapter 2. In particular the system
considers non-overlapping windows of size K, where K is configured by the user, and
computes the following statistical features:

• maximum;

• minimum;

• average;

• standard deviation.

In order to implement this functionality, we used node-red-node-smooth [27], a
node set that provides a node that implements several simple smoothing algorithms
for incoming data values. In particular we used:

• some standard nodes “change”;

• some standard nodes “smooth”;

• a standard node “join”.

The first “change” node is used to unwrap the value from the payload JSON as
required by the following nodes. The message is then quadruplicated and passed
to 4 “smooth” nodes. Those nodes are configured to automatically compute the
right statistical feature over the received payload of the previous K messages and
emit7 a new message with the result. Before the end of the pipeline, the 4 mes-
sages should be merged back in a single one. To do that, 4 “change” nodes set
the name of the statistical feature in the message property named “topic” and then
the messages are passed to a single “join” node. This last node is configured to
wait 4 messages and then combine their payload to create a key/value object using
the value of the topic as the key and the value of the payload as the value (e.g.
{"max":..., "min":..., "avg":..., "std"...}). Finally, the new message is
pushed to the “Outbound data” channel.

7one message for each non-overlapping window of K values.

21

3.1.3.3 Forecasting Pipeline

This pipeline is shown at the bottom in Figure 3.3 and is used to experimentally
implement the data forecasting operation as described in subsubsection 2.2.1.1.
This pipeline should produce in output the next value of the time series computed
according to the ARIMA [22] model with the statistical parameters p, d and q chosen
by the user. In order to implement this functionality, we used a standard “function”
node and a JavaScript library arima [28]. When a message arrives to the node, the
function code shown in Listing 1 is invoked.

//get the list of previous data (or create a new empty)
let allData = flow.get("allData") || [];
//push the new value and save the list
allData.push(msg.payload.value);
flow.set("allData", allData);
//set the options
let options = {p: P_VALUE, d: D_VALUE, q: Q_VALUE};
//train, predict and save to payload
[[msg.payload.value], [msg.payload.pError]] =

new ARIMA(options).train(allData).predict(1);
return msg;

Listing 1: Code of the function node inside the forecasting pipeline.

This implementation is experimental and naive, more information in chapter 5.
Whenever a new message arrive:

1. a list of previous data is retrieved from the flow context or created if it doesn’t
exist;

2. the received value is appended to the list and the context is updated;

3. the ARIMA model is trained on the whole dataset with the user-configured
given options;

4. the next value is predicted and saved in the message overwriting the received
value;

5. the prediction error is added to the payload;

6. the edited message is emitted.

Note that “P_VALUE”, “D_VALUE” and “Q_VALUE” are placeholders replaced by the
frontend with values provided by the user.

3.1.4 Output Module
This module handles all outputs of the system. Data is received from the previous
modules through the “Outbound data” channel and is handled to be outputted ac-
cording to the selected operation and given configuration. Regardless of the selected

22

operation, the message is passed to a “change” node configured to store the payload
in the flow context before forwarding the message. This “cached” value will be nec-
essary for those kinds of outputs that are asynchronous like the passive versions of
CoAP and HTTP output.
At time of writing, the following outputs are supported:

• File;

• WebSocket;

• MQTT;

• CoAP;

• HTTP;

• WoT property write;

• InfluxDB.

Figure 3.4: Flow output module configuration.

3.1.4.1 File

Following the philosophy that in UNIX “everything is a file descriptor or a pro-
cess” (Torvalds [29]) we decided to design the backend to be able to write to a file.

23

This output is extremely powerful especially when combined with synthetic file sys-
tems [30]. To implement this functionality we used a built-in “write file” node in
append mode. The frontend can configure the node with the path of a file that can
represent: a regular file, a pipe, a socket etc. More information in section 3.2.

3.1.4.2 WebSocket

In order to improve the console output implementation, more information in sec-
tion 3.2, we added the support for WebSocket [31] output using 2 useful built-in
nodes:

• a global configuration node “websocket-listener”;

• a standard node “websocket out”.

The former creates the WebSocket listener on the configured path; the latter actually
writes the payload of the received message to the WebSocket.

3.1.4.3 MQTT

Sending data through MQTT essentially means connecting to a broker and publish-
ing the data to a topic. We used 2 useful built-in nodes:

• a global configuration node “mqtt-broker”;

• a standard node “mqtt out”.

The former takes care of the connection to the output MQTT broker with the user
configuration (e.g.: the host, the credentials etc.); the latter actually publishes the
payload of the received message to the given topic with the given parameters (e.g.
the QoS level). The payload of the message is serialized as JSON.

3.1.4.4 CoAP

We decided to support output through CoAP protocol both actively and passively.
In the active way the system sends a POST request to the user-configured URL with
the data. In the passive way the system exposes a CoAP endpoint and handles
incoming GET requests.

In order to implement this functionality, we used the same third-party node set
used for the input as described in subsubsection 3.1.2.2. In particular we used:

• a global configuration node “coap-server”;

• a standard node “coap in”;

• a standard node “coap response”;

• a standard node “coap request”;

• a custom-built subflow node.

24

The “coap request” node executes the POST request to the configured path for the
active output. The global configuration node is the same used for the input and the
“coap in” node sets up the GET endpoint with the given configuration (e.g. the path)
for the passive output. The incoming requests are passed to our custom subflow
shown in Figure 3.5. This subflow encapsulate a single “function” node, shown in
Listing 2, that retrieves the last cached data and saves it inside the message payload.
If the data is not available (e.g. because we haven’t received anything in input yet)
a 404 status code is set inside the Node-RED message.

Figure 3.5: “Get last data” subflow implementation.

//get last data from parent flow context
msg.payload = flow.get("$parent.lastData");
//set 404 return return code if empty
msg.statusCode = (!msg.payload) ? "404" : msg.statusCode
return msg;

Listing 2: Code of the function node inside the subflow.

The response to the incoming request is handled by the “coap response” node. This
node sends back the JSON encoded data and sets the response status code according
to the value stored inside the received message8.

3.1.4.5 HTTP

We decided to support output through HTTP protocol both actively and passively.
The implementation is completely analogous to the CoAP one described in subsub-
section 3.1.4.4 and uses the following built-in nodes:

• a standard node “http in”;

• a standard node “http response”;

• a standard node “http request”;

• a custom-built subflow node.

The HTTP server is the same used for the input.
8Note that HTTP status codes are translated to the CoAP equivalent (e.g. a 404 code is sent

as a 4.04 Not Found [3]).

25

3.1.4.6 WoT Property Write

As described in subsubsection 2.2.1.2, the system experimentally supports consum-
ing a WoT Thing and writing a property as output. This is done using the same
node set used for the input and described in subsubsection 3.1.2.4. In particular we
used:

• a global configuration node “consumed-thing”;

• a standard node “write-property”;

The global configuration node holds the information about the consumed thing just
like the one used for the input9. The “write-property” nodes actually writes the data
to the configured property of the consumed thing.

3.1.4.7 InfluxDB

This output is used to implement the data storage operation described in chapter 2.
In order to implement this functionality, we used node-red-contrib-influxdb [32],
a third-party node set that provides nodes to save and query data from an InfluxDB
time-series database. In particular we used:

• a global configuration node “influxdb”;

• a standard node “function”;

• a standard node “influx out”.

The global configuration node handles the connection to the database with the user
configuration such as the connection details and the credentials while the “influx out”
writes the received data to the database. As described in chapter 2, we wanted to
support writing custom tags along with the data. According to the documentation if
the payload of the message received by the “influx out” node “is an array containing
two objects, the first object will be written as the set of named fields, the second
is the set of named tags” [32]. Listing 3 shows the code of a “function” node that
formats the payload as required. Note that “TAGS_HERE” is a placeholder and is
replaced by the frontend with tags provided by the user.

msg.payload = [
msg.payload,
TAGS_HERE

]
return msg;

Listing 3: Code of the function node that formats InfluxDB fields and tags.

9Things used for input and for output can be different.

26

3.1.5 WoT Introduction
As described in subsubsection 2.2.1.2, the system experimentally supports behaving
like a consumable W3C WoT Thing. Following the W3C Draft [19] we decided
to support the introduction mechanism through Well-Known URIs [33] creating an
HTTP GET endpoint at /.well-known/wot that returns the Thing Description [18]
of the system. The backend implementation, shown in Figure 3.6, is straightforward
and uses the following built-in nodes:

• a standard node “http in”;

• a standard node “http response”;

• a standard node “template”;

The “http in” node sets up the endpoint and passes the request to the “template”
node that simply adds the configured TD JSON to the message payload. Finally
the “http response” node sends the payload of the message as response setting the
Content-Type header as application/ld+json.

Figure 3.6: WoT Introduction flow configuration.

The TD is generated by the frontend starting from the template shown in Listing 4.
A property “data” is declared and the right interaction affordance forms are added
by the frontend according to the configuration of the enabled inputs and outputs.
No security is enabled.
Note that this TD uses fictional CoAP and MQTT Protocol Bindings as they are
not available at time of writing. The id of the thing is a fictional URI starting with
the real domain of the Computer Science department.

27

{
"@context": [

"https://www.w3.org/2022/wot/td/v1.1",
{

"cov": "http://www.example.org/coap-binding#",
"mqv": "http://www.example.org/mqtt-binding#",
"unibo_disi": "http://disi.unibo.it/"

}
],
"id": "unibo_disi:projects/RED-Bridge",
"title": "RED-Bridge",
"securityDefinitions": {

"nosec_sc": {
"scheme": "nosec"

}
},
"security": "nosec_sc",
"properties": {

"data": {
"description": "RED-Bridge data",
"type": "object",
"properties": {

"value": {
"type": "number"

}
},
"forms": []

}
}

}

Listing 4: System’s self TD template.

3.2 Frontend

As described in subsection 2.3.1, the frontend is a Python script that provides a
CLI to configure the system. The application handles the configurations provided
by the user in order to create and configure the flow before deploying it on the
Node-RED instance. In addition, the application handles the console output for
those operations that require it.
Schematically the application:

1. parses the command line arguments (e.g.: the selected operation, the configu-
ration files, the parameters etc.);

2. loads the specified configuration files (e.g. the protocols configuration);

28

3. configures the flow as required to support the selected operations and given
configurations;

4. deploys and start the flow on the backend;

5. waits for the signal SIGINT from the user before undeploying the flow and
terminating.

3.2.1 Parameters and Configuration Handling
As shown in Figure 3.7, the frontend application accept several arguments parsed
by argparse [23] module. Input, output and InfluxDB configuration should be
provided passing the path of a JSON file as parameter. Configuration file examples
are shown in Listing 5, 6 and 7.

Figure 3.7: RED-Bridge usage help.

29

{
"protocol": "mqtt",
"host": "test.mosquitto.org",
"port": "1883",
"user": "",
"password": "",
"topic": "ExampleTopic",
"qos": "0"

}

Listing 5: Example of MQTT input JSON configuration.

{
"protocol": "http",
"host": "example.org",
"port": "8080",
"path": "/data/path",
"method": "POST"

}

Listing 6: Example of HTTP active output JSON configuration.

{
"host": "example.org",
"port": "8086",
"token": "...",
"org": "Example Organization",
"bucket": "Example Bucket",
"measurement": "Example Measurement",
"tags": {

"Example Tag Name": "Tag Value"
}

}

Listing 7: Example of InfluxDB JSON configuration.

3.2.2 Flow Manipulation and Deploy
In order to dynamically configure the flow, we disabled most nodes (e.g. the entry
point for the processing pipelines and I/O nodes) then we exported the entire flow
to a JSON file. The application:

1. loads the entire flow from the JSON file;

2. according to the user requirements:

30

• enables all required nodes;

• configure all required nodes;

3. deploys the configured flow to the Node-RED instance using its HTTP API.

For example, if the selected input is MQTT, the node for the input MQTT broker
and the one for the MQTT subscription are enabled and configured with the user
configurations; if the aggregation operation is selected, the nodes for the aggregation
pipeline are enabled and configured with the given window size; if the selected output
is passive CoAP, the global CoAP server node and the CoAP GET endpoint node are
enabled and configured with the user configurations.

All the flow configurations for all the supported operations and inputs/outputs
are done in a similar way.

3.2.3 Console Handling
Originally, the console output was implemented leveraging the file output sup-
port of the backend. At time of writing, the console output is implemented us-
ing the WebSocket output support as described in subsubsection 3.1.4.2 and the
websocket-client [34] Python library. The frontend starts a WebSocket client on
a new thread; this client is connected to the backend output and prints received
messages to the console.

3.2.4 Self Thing Description Generation
If one or more of the following inputs/outputs are enabled the system can behave
like a WoT Thing:

• MQTT input/output;

• CoAP passive input/output;

• HTTP passive input/output.

In this case, as described in subsection 3.1.5, the frontend should enable the WoT
introduction endpoint and configure the “template” node with the self Thing De-
scription. In order to generate the TD, the frontend loads the TD template shown
in Listing 4 and adds the forms according to the enabled inputs and outputs and
their configurations.

31

32

4 | Testing and Evaluation

In this chapter we will briefly describe tests and evaluations conducted on the sys-
tem. The backend is designed in a modular way as described in section 3.1; for this
reason, we have been able to test inputs, outputs and processing pipelines indepen-
dently before testing the entire running system and measuring performances. More
information in the following sections.

4.1 Manual I/O Testing

In order to manually test the various inputs and outputs, we disabled the processing
module, added a “debug” node to the “Inbound data” virtual channel and an “inject”
node to the “Outbound data” virtual channel; the “debug” node is used to see what
is received by the input module while the “inject” nodes is used to inject some data
into the output module.

4.1.1 MQTT
In order to test the MQTT input functionality, we configured the input nodes to
connect to a broker and subscribe to a test topic; we then used Mosquitto [35] CLI
clients to manually publish data to the test topic. Testing the output works in a
similar way: we configured the output nodes to connect to a broker and publish data
to a test topic; we used the clients to subscribe to the test topic and the “inject”
node to push some data.

4.1.2 CoAP
In order to test the CoAP passive input/output functionality, we configured the
nodes with test parameters (e.g.: the path, the port etc.). We used the CoAP CLI
client provided by libcoap [36] to send POSTSs and GETs to the input and output
endpoints, respectively.
In order to test the CoAP active input/output functionality, we needed to set up 2
CoAP endpoints. We created and deployed a new Node-RED flow with the CoAP
endpoints; the GET endpoint returns hard-coded data while the POST one prints the
received value through a “debug” node. Finally we configured the nodes of our
system to use the newly created endpoints as input and output.

33

4.1.3 HTTP
Testing the HTTP input/output functionality is completely analogous to the one
for CoAP described in the previous section. The CLI client is curl [37] and the
endpoints in the test flow are created using built-in HTTP nodes.

4.1.4 WoT
In order to test the WoT input/output functionality, we used node-wot [38] to
create a simple WoT Thing with a readable and writable property. The read handler
returns an hard-coded value while the write handler prints the received value. We
then configured our WoT input/output nodes to consume this newly created Thing.
In order to test the system’s ability to be consumed as a WoT Thing, we enabled
and configured the WoT introduction endpoint and generated the self TD. We then
created a simple script using node-wot that fetches the TD of the system, consumes
it and tries to push or pull data.

4.1.5 File
In order to test the file output functionality, we simply configured the path of a test
file in the “file” node and read that file externally.

4.1.6 WebSocket
In order to test the WebSocket output functionality, we configured the nodes with a
test path. We then used the same Python package used in the frontend to connect
to the WebSocket as described in subsection 3.2.3.

4.1.7 InfluxDB
In order to test the InfluxDB output functionality, we installed and configured a
local InfluxDB instance. We then enabled and configured the nodes with additional
tags and connection settings. As shown in Figure 4.1, we used the InfluxDB data
explorer to check if fields and tags had been saved correctly.

Figure 4.1: Screenshot of InfluxDB data explorer during testing.

34

4.2 Manual Processing Testing

In order to manually test the various processing pipelines, we disabled the other
modules, added an “inject” node to the “Inbound data” virtual channel and a “debug”
node to the “Outbound data” virtual channel; the “inject” nodes is used to inject
some data into the pipeline while the “debug” node is used to see the result of the
processing. We enabled and tested one pipeline at a time.

4.2.1 Passthrough Pipeline
Testing this pipeline is trivial.

4.2.2 Aggregation Pipeline
In order to test this pipeline, we configured the “smooth” nodes with a window size
set as 5 and injected 5 different values. The “debug” node allowed us to check the
aggregation results.

4.2.3 Forecasting Pipeline
In order to test this pipeline, we configured the “function” node configuring the
options for the ARIMA model. We injected some values and checked the forecasting
results.

4.3 Whole System Testing

When the system was completed, we started a whole system testing phase. Unlike in
the manual testing phase, in this phase we tested the system using only the frontend
without tampering with the backend.
In particular we tested:

• every supported operation;

• every supported input/output.

During this phase we used:

• the CLI tools used before;

• the additional flows used before;

• the WoT scripts used before;

• the MQTT broker and InfluxDB instance used before;

• a purpose-built edge device based on ESP32.

35

For example, Figure 4.2 shows the output of the test of the aggregation operation
using MQTT as input protocol and 5 as window size.

Figure 4.2: Screenshot of the test of the aggregation operation.

4.3.1 Edge Device Prototype
In order to test the system with a real edge device, we designed and built a simple
prototype that works as a temperature sensor and supports MQTT, CoAP (server)
and HTTP (server).

4.3.1.1 TMP36 Sensor

As temperature sensor we used a TMP36 [39], a low voltage precision centigrade
temperature sensor that provides a voltage output linearly proportional to the sensed
temperature, as shown in Figure 4.3.

50 25 0 25 50 75 100 125
Temperature (°C)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ou
tp

ut
 v

ol
ta

ge
 (V

)

TMP36

Figure 4.3: TMP36 output voltage vs. temperature.

36

After analyzing the datasheet, we derived the following formula to compute the
temperature T given the sensor Vout reading:

T = 100 · Vout − 50 (4.1)

4.3.1.2 ESP32 Prototyping Board

We used an ESP32 [40] prototyping board, flashed the latest stable version of Mi-
croPython [41] and connected the sensor through an analog pin, as shown in Fig-
ure 4.4. We initially used the REPL to do some testing then we developed a Python
script and persistently uploaded it to the board. This script implements the required
functionalities as described in the following sections.

Figure 4.4: Edge device prototype mounting diagram.

4.3.1.3 Temperature Reading

In order to read the temperature, we needed to read the analog value coming from
the sensor and then apply the formula shown in Equation 4.1. The ESP32 ADCs can
measure analog voltages from 0V to Vref where Vref varies among different chips (the
median is 1.1V). Using espefuse.py [42], the official tool provided by Espressif, we
were able to retrieve the calibrated value Vref = 1.114V from the chip. The ESP32
supports up to 12bit resolution (4096 levels) and supports attenuations to measure
analog values higher than Vref .
Converting raw readings to a voltage is done following Equation 4.2 where Lread is
the raw value, Vmax is the maximum value and Lmax is the maximum level.

Vout = Lread · Vmax/Lmax (4.2)

Using 0dB attenuation and maximum resolution we have Vmax = Vref = 1.114V and
Lmax = 4095. For this reason, we can compute the (calibrated) analog voltage as
shown in Equation 4.3.

Vout = Lread · 1.114/4095 (4.3)

37

Combining Equation 4.1 and Equation 4.3, we implemented an helper function to
get the temperature value from the analog pin; this function is called from another
helper function that encapsulates the temperature in a dictionary. They are shown
in Listing 8 and Listing 9, respectively.

def get_temp():
read analog value and compute temperature
return 100 * (1.114 * temp_in.read() / 4095) - 50

Listing 8: get_temp() function implementation.

def get_sample():
do sample and return dictionary with "value" property
return {"value": get_temp()}

Listing 9: get_sample() function implementation.

4.3.1.4 MQTT, CoAP and HTTP Implementation

The support for MQTT, CoAP and HTTP has been implemented using the MicroPy-
thon libraries umqtt.simple [43], microcoapy [44] and microdot [45], respectively.

MQTT After initializing the client and connecting to the broker, in the main loop
a new sample is periodically retrieved using the get_sample() function, serialized
it as JSON and published with a specific topic.

CoAP After initializing the client, we defined and registered a callback that han-
dles incoming requests for a specific path. This callback gets a new sample using the
get_sample() function, serializes it as JSON and sends the answer back with the
right Content-Format [3]. We then started the client and handled incoming requests
cooperatively in the main loop.

HTTP The Flask-inspired library is not designed to handle request cooperatively;
for this reason, the web server is started on a new thread. After initialization, we
defined and registered a callback to a specific path. This callback simply gets a new
sample using get_sample() and returns it. The sample is automatically serialized
as JSON and the right content type is automatically set.

4.4 Bridging Performance Evaluation

As part of the testing and evaluation phase, we decided to try to evaluate the
performances of the protocol bridging operation of the system. In particular, we
wanted to estimate the overhead introduced by the system comparing the total
message transmission time using the bridging with the total message transmission
time using a native protocol.

38

4.4.1 Evaluated Protocols
As described in the previous chapters, the system supports several input/output
combinations but some of them involve polling, either by the system or the destina-
tion device. Polling time is user-configured and introduces a delay that is probably
at least a couple orders of magnitude larger than the overhead we wanted to measure.
For this reason, we decided to evaluate only the “push” versions of the supported
protocols combinations listed below:

• CoAP10 to MQTT;

• HTTP10 to MQTT;

• MQTT to CoAP11;

• HTTP10 to CoAP11;

• MQTT to HTTP11;

• CoAP10 to HTTP11;

and compare them with native transmissions through:

• MQTT;

• CoAP12;

• HTTP12.

4.4.2 Evaluation Scenario
The total transmission time depends on several factors including the network con-
ditions, the involved protocols and the system translation overhead. In order to
minimize the influence of the network conditions, we decided to:

• deploy the system in a testing device;

• implement producers and consumers in the same testing device;

• deploy an MQTT broker in the same testing device.

In this way, the measured total transmission time of the native transfers, shown
in Figure 4.5a, can be fairly compared with the total transmission time of those
with bridging, shown in Figure 4.5b. For each of the protocols, we implemented
producers and consumers as a Node-RED flow. The producers send 500 messages, 1
second apart from each other, including the timestamp with millisecond resolution;
the consumers compute the time difference and save the result to a file.

10Receiving POSTs as input.
11Sending POSTs as output.
12Producers send POSTs to consumers.

39

Local MQTT
broker

Testing device

Local data
source

Local data
destination

CoAP/HTTP POST

MQTT PUB MQTT SUB

Total transmission time

(a) Native transmission.

Testing device

Total transmission time

Local data
source

Local data
destinationCoAP/HTTP

POST

MQTT PUB MQTT SUB

CoAP/HTTP
POST

RED-Bridge

MQTT PUBMQTT SUB

Local MQTT
broker

(b) Transmission with bridging.

Figure 4.5: Performance evaluation diagrams.

40

4.4.3 Results
For each of the protocols combinations listed in subsection 4.4.1, we collected 500
transmission times for a total of 4500 measurements. We saved the raw results in a
CSV file and created a Python script to analyze them.
As shown in Table 4.1, we first analyzed them computing:

• minimum;

• maximum;

• average;

• median;

• standard deviation.

Then we plotted and analyzed the Box Plots [46], as shown in Figure 4.6, and the
eCDFs [47], as shown in Figure 4.7.

MQTT
native

CoAP
native

HTTP
native

CoAP
to

MQTT

HTTP
to

MQTT

MQTT
to

CoAP

HTTP
to

CoAP

MQTT
to

HTTP

CoAP
to

HTTP

Min 0 0 3 1 4 1 4 3 3
Max 6 8 9 6 14 4 15 8 11
Avg 1,11 1,04 3,82 2,15 6,15 1,63 5,63 4,22 4,49
Median 1,00 1,00 4,00 2,00 6,00 2,00 5,00 4,00 4,00
St. dev. 0,43 0,56 0,88 0,61 1,17 0,60 1,27 0,76 0,82

Table 4.1: Performance evaluation results table.

As expected, the native versions of CoAP and MQTT are extremely fast on average.
The former uses long-lived TCP [17] connections and the latter uses UDP [15]. The
native version of HTTP native is almost 4 time slower, as expected, because the
TCP connections are short-lived.
We expected the measurements for combinations with bridging to be, on average,
at least the sum of the following factors:

• the transmission time of the native version of the input protocol;

• the overhead introduced by our system;

• the transmission time of the native version of the output protocol.

Analyzing all the results we concluded that this seems to be the case and, in par-
ticular, that the overhead of the system seems to be extremely low. For example,
on average, bridging HTTP to MQTT seems to be only about 1ms slower than the
sum of the native protocols.

41

M
QTT native

CoAP native
HTTP native

CoAP to M
QTT

HTTP to M
QTT

M
QTT to CoAP

HTTP to CoAP
M

QTT to HTTP
CoAP to HTTP

0 2 4 6 8 10 12 14
Total transmission time (ms)

F
igu

re
4.6:

B
ox

plots
ofthe

perform
ance

evaluation
results.

42

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
QT

T
na

tiv
e

Co
AP

 n
at

iv
e

HT
TP

 n
at

iv
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Co
AP

 to
 M

QT
T

HT
TP

 to
 M

QT
T

M
QT

T
to

 C
oA

P

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HT
TP

 to
 C

oA
P

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

M
QT

T
to

 H
TT

P

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

Co
AP

 to
 H

TT
P

To
ta

l t
ra

ns
m

iss
io

n
tim

e
(m

s)

Cumulative probability

F
ig

u
re

4.
7:

eC
D

F
pl

ot
s

of
th

e
pe

rf
or

m
an

ce
ev

al
ua

ti
on

re
su

lt
s.

43

44

5 | Issues and Improvements

This work is just a prototype and has several limitations and issues that could be
improved. Some of them are described in the following sections.

5.1 Limiting Frontend

As described in section 3.1, the backend flow has been designed to be modular and as
much general as possible. For this reason, technically the backend supports receiving
inputs from different sources at the same time, applying a processing pipeline and
then sending the result to more than one output simultaneously. For example,
the processing result can be simultaneously printed by the frontend, saved to an
InfluxDB database and outputted in all supported protocols. Even though the
backend supports these simultaneous operations, at time of writing the frontend
limits the user and configures the backend to enable only one input and output
for the purpose of supporting only the basic operations described in chapter 2.
The backend supports even combined operations such as doing data aggregation
(aggregation operation) and saving them to InfluxDB (storage operation) but the
frontend prevents these configurations.

5.2 I/O Format Assumption

The system currently assumes that the input/output data format is a JSON ob-
ject with a property named “value”. The system could be improved relaxing this
requirement in order to support arbitrary formats.

5.3 HTTP Server Port

At time of writing, every HTTP endpoint is served by the same server hosting the
Node-RED editor. For this reason, the endpoints share the same port and cannot
be customized. The system could be improved to support HTTP endpoints running
on their own HTTP server instance.

5.4 WoT: TD, Protocols and Authentication

At time of writing, the node set used to implement WoT property read/write [26] is
still experimental and supports only basic authentication. Furthermore, the frontend

45

currently enables only MQTT, HTTP and CoAP protocol support. Finally, the self
TD generation and the whole system’s WoT support is experimental and could be
improved.

5.5 CoAP Input Observe

The CoAP request node used for the input, as described in subsubsection 3.1.2.2,
supports observing resources [16]. In this case the periodic trigger should be disabled
in order to prevent multiple requests. This case is not currently handled by the
frontend and could be improved.

5.6 Naive Forecasting Implementation

The current implementation of the forecasting operation, described in subsubsec-
tion 3.1.3.3, is extremely naive and is just an example of how a forecasting pipeline
can be added to the system. The current implementation stores the entire dataset
in the flow context, there is no limit on the size of the dataset and the model is
retrained every time before forecasting the next value. The implementation should
be rewritten in a more robust and efficient way (e.g. using a more robust storage).

5.7 Single Flow Limit

At time of writing, Node-RED doesn’t provide an API for managing individual
subflows; in order to manage subflows, we should get the global flow configuration,
edit it and then save it back but this is not currently implemented in the system.
The current implementation of the frontend assumes that the Node-RED instance is
not running any other flow; it deploys the flow using the “flows” API which pushes
the entire configuration overwriting any other configured flow. Consequently, the
system backend cannot be run if the Node-RED instance is running other flows.

46

6 | Conclusions and Future Works

The goal of this work was to present the design, implementation and testing of a
tool supporting some common tasks when handling IoT sensors communicating with
different protocols like HTTP, CoAP and MQTT or sensors supporting the W3C
WoT.

At the beginning of this work we briefly presented the technologies used in this
system along with the basics of the supported protocols. We then listed the require-
ments and the supported functionalities of the system including: the data visual-
ization, aggregation, storage, forecasting and the protocol bridging. We showed an
overview of the system architecture, in particular we described the backend, which
is a Node-RED instance running a custom-built flow, and the frontend, which is a
Python script that provides a CLI to let the user configure and interact with the
system. We dedicated some space to the implementation details of the system; in
particular, we presented a completely modular flow composed of three independent
modules: input, processing and output modules. The entire flow is implemented
using both built-in and third-party nodes in order to support all the required func-
tionalities. The implementation of the frontend is simpler: it parses the commands
and the configurations provided by the user, generates and deploys a custom flow
to the backend then handles the console output, if necessary. We tested the sys-
tem several times, both during and after the implementation. We first tested the
system with the help of command line tools, ad-hoc flows and simulated devices;
then, we designed and built an edge device prototype, based on ESP32, and used
it as input for the tests. Finally, we wanted to evaluate the protocol bridging per-
formances estimating the overhead introduced by the system comparing the total
message transmission time using the bridging with the total message transmission
time using a native protocol. The analyzed results confirmed that the overhead
introduced is minimum, as we expected.

The system presented in this work successfully passed all the tests and evaluations
but is just a prototype and is not meant to be used in production environments. In
the future, with more time and resources, this work could be further improved trying
to mitigate the issues described in the previous chapter, rebuilding the system in a
more robust and flexible way and expanding the support to other protocols.

47

48

A | Licenses and Credits

This work is the thesis for the Master’s degree in Computer Science presented by
Dr. Riccardo Maffei 13.

Except otherwise noted, this work is licensed under a
Creative Commons “Attribution-ShareAlike 4.0 Interna-
tional” license.

Except otherwise noted, the code is licensed under the
GNU Affero General Public License either version 3 or
any later version.

A.1 Third-Party Content

In this work we used third-party content excluded from the licenses mentioned above.
We also used third-party tools that we want to acknowledge.
In particular:

• most of the icons used in figures are made by juicy-fish, Becris and Freepik
from flaticon.com and are used in compliance with the Flaticon license;

• the Python logo in Figure 2.1 is property of the Python Software Foundation
and can be used under nominative fair use;

• the Node-RED logo in Figure 2.1 is property of the OpenJS Foundation and
can be used under nominative fair use;

• Figure 1.8 and Figure 1.9 are copied from the W3C Recommendation [8] and
are copyrighted by the W3C;

• the diagram in Figure 4.4 has been created with Fritzing [48] and uses the
ESP32 part made by Fedorov [49];

• some of the plots have been created using matplotlib [50] and seaborn [51];

13https://orcid.org/0000-0002-6392-9701

49

https://orcid.org/0000-0002-6392-9701
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.gnu.org/licenses/agpl-3.0.html
https://www.gnu.org/licenses/agpl-3.0.html
https://www.flaticon.com/authors/juicy-fish
https://www.flaticon.com/authors/becris
https://www.flaticon.com/authors/freepik
flaticon.com
https://orcid.org/0000-0002-6392-9701

50

| Acknowledgments

I want to thank my thesis supervisor, Professor Di Felice, and my co-supervisor,
Dr. Luca Sciullo, for their support during the development of this thesis. I also
want to thank all the Professors who have guided me and helped me during my
course of studies.

Thanks to my friends, classmates and all my teammates with whom I created great
projects and wonderful memories. Thanks to Beatrice, Dorotea, Federico, Fox,
Nicholas, Oleksandr, Ossama, Riccardo, Samuele and Teresa.

Thanks to that part of my family that supported me in these tough years.

Finally, a thanks goes to those who deserve one but may not like to be directly
mentioned here.

51

52

| References

[1] Jim Morrish and Matt Arnott. Global IoT Forecast Report, 2021-2030. July 25,
2022. url: https://transformainsights.com/research/reports/global-
iot-forecast-report-2030.

[2] G. Sushanth and S. Sujatha. “IOT Based Smart Agriculture System”. In:
2018 International Conference on Wireless Communications, Signal Process-
ing and Networking (WiSPNET). 2018, pp. 1–4. doi: 10.1109/WiSPNET.
2018.8538702.

[3] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Applica-
tion Protocol (CoAP). RFC 7252. June 2014. doi: 10.17487/RFC7252. url:
https://www.rfc-editor.org/info/rfc7252.

[4] Andrew Banks et al. MQTT Version 5.0. OASIS Standard. Mar. 7, 2019. url:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html.

[5] Eclipse Ponte GitHub repository. url: https://github.com/eclipse/ponte.

[6] Ahmed E. Khaled and Sumi Helal. “Interoperable communication framework
for bridging RESTful and topic-based communication in IoT”. In: Future Gen-
eration Computer Systems 92 (2019), pp. 628–643. issn: 0167-739X. doi:
10.1016/j.future.2017.12.042. url: https://www.sciencedirect.
com/science/article/pii/S0167739X17317387.

[7] Varun M Tayur and R Suchithra. “Review of interoperability approaches in
application layer of Internet of Things”. In: 2017 International Conference on
Innovative Mechanisms for Industry Applications (ICIMIA). 2017, pp. 322–
326. doi: 10.1109/ICIMIA.2017.7975628.

[8] Kunihiko Toumura et al. Web of Things (WoT) Architecture. W3C Recom-
mendation. W3C, Apr. 2020. url: https://www.w3.org/TR/2020/REC-wot-
architecture-20200409/.

[9] W3C Web of Things website. url: https://www.w3.org/WoT/.

[10] InfluxDB OSS 2.0 Documentation. url: https://docs.influxdata.com/
influxdb/v2.0/.

[11] Wikipedia contributors. Flow-based programming — Wikipedia, The Free En-
cyclopedia. https : / / en . wikipedia . org / w / index . php ? title = Flow -
based _ programming & oldid = 1120112618. [Online; accessed 17-November-
2022]. 2022.

[12] OpenJS Foundation and Contributors. Node-RED. url: https://nodered.
org.

53

https://transformainsights.com/research/reports/global-iot-forecast-report-2030
https://transformainsights.com/research/reports/global-iot-forecast-report-2030
https://doi.org/10.1109/WiSPNET.2018.8538702
https://doi.org/10.1109/WiSPNET.2018.8538702
https://doi.org/10.17487/RFC7252
https://www.rfc-editor.org/info/rfc7252
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://github.com/eclipse/ponte
https://doi.org/10.1016/j.future.2017.12.042
https://www.sciencedirect.com/science/article/pii/S0167739X17317387
https://www.sciencedirect.com/science/article/pii/S0167739X17317387
https://doi.org/10.1109/ICIMIA.2017.7975628
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/WoT/
https://docs.influxdata.com/influxdb/v2.0/
https://docs.influxdata.com/influxdb/v2.0/
https://en.wikipedia.org/w/index.php?title=Flow-based_programming&oldid=1120112618
https://en.wikipedia.org/w/index.php?title=Flow-based_programming&oldid=1120112618
https://nodered.org
https://nodered.org

[13] Chris Newman and Graham Klyne. Date and Time on the Internet: Times-
tamps. RFC 3339. July 2002. doi: 10.17487/RFC3339. url: https://www.
rfc-editor.org/info/rfc3339.

[14] Wikipedia contributors. Representational state transfer — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Representational_state_transfer&oldid=1122785111. [Online; accessed
20-November-2022]. 2022.

[15] J. Postel. User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.17487/
RFC0768. url: https://www.rfc-editor.org/info/rfc768.

[16] Klaus Hartke. Observing Resources in the Constrained Application Protocol
(CoAP). RFC 7641. Sept. 2015. doi: 10.17487/RFC7641. url: https://www.
rfc-editor.org/info/rfc7641.

[17] Wesley Eddy. Transmission Control Protocol (TCP). RFC 9293. Aug. 2022.
doi: 10 . 17487 / RFC9293. url: https : / / www . rfc - editor . org / info /
rfc9293.

[18] Sebastian Käbisch et al. Web of Things (WoT) Thing Description. W3C Rec-
ommendation. W3C, Apr. 2020. url: https://www.w3.org/TR/2020/REC-
wot-thing-description-20200409/.

[19] Michael McCool et al. Web of Things (WoT) Discovery. W3C Working Draft.
W3C, Aug. 2022. url: https://www.w3.org/TR/2022/WD-wot-discovery-
20220810/.

[20] Pierre-Antoine Champin, Gregg Kellogg, and Dave Longley. JSON-LD 1.1.
W3C Recommendation. W3C, July 2020. url: https://www.w3.org/TR/
2020/REC-json-ld11-20200716/.

[21] Felipe Pezoa et al. “Foundations of JSON schema”. In: Proceedings of the 25th
International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee. 2016, pp. 263–273.

[22] Dimitros Asteriou and Stephen G Hall. “ARIMA models and the Box–Jenkins
methodology”. In: Applied Econometrics 2.2 (2011), pp. 265–286.

[23] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009. isbn: 1441412697.

[24] David Flanagan. JavaScript: the definitive guide. O’Reilly Media, Inc., 2006.

[25] node-red-contrib-coap GitHub repository. url: https://github.com/
JKRhb/node-red-contrib-coap.

[26] node-red-contrib-wot GitHub repository. url: https : / / github . com /
thingweb/node-red-contrib-web-of-things.

[27] node-red-node-smooth GitHub repository. url: https : / / github . com /
node-red/node-red-nodes/tree/master/function/smooth.

[28] arima GitHub repository. url: https://github.com/zemlyansky/arima.

[29] Linus Torvalds. Re: [PATCH] Futex Asynchronous Interface. Email. June 9,
2002. url: https://groups.google.com/g/fa.linux.kernel/c/nqB38TbjVug/
m/YvfBUvRrfiwJ.

54

https://doi.org/10.17487/RFC3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=1122785111
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=1122785111
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0768
https://www.rfc-editor.org/info/rfc768
https://doi.org/10.17487/RFC7641
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7641
https://doi.org/10.17487/RFC9293
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9293
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2022/WD-wot-discovery-20220810/
https://www.w3.org/TR/2022/WD-wot-discovery-20220810/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://www.w3.org/TR/2020/REC-json-ld11-20200716/
https://github.com/JKRhb/node-red-contrib-coap
https://github.com/JKRhb/node-red-contrib-coap
https://github.com/thingweb/node-red-contrib-web-of-things
https://github.com/thingweb/node-red-contrib-web-of-things
https://github.com/node-red/node-red-nodes/tree/master/function/smooth
https://github.com/node-red/node-red-nodes/tree/master/function/smooth
https://github.com/zemlyansky/arima
https://groups.google.com/g/fa.linux.kernel/c/nqB38TbjVug/m/YvfBUvRrfiwJ
https://groups.google.com/g/fa.linux.kernel/c/nqB38TbjVug/m/YvfBUvRrfiwJ

[30] Wikipedia contributors. Synthetic file system — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Synthetic_file_
system&oldid=1091200575. [Online; accessed 7-November-2022]. 2022.

[31] Alexey Melnikov and Ian Fette. The WebSocket Protocol. RFC 6455. Dec.
2011. doi: 10.17487/RFC6455. url: https://www.rfc-editor.org/info/
rfc6455.

[32] node-red-contrib-influxdb GitHub repository. url: https://flows.nodered.
org/node/node-red-contrib-influxdb.

[33] Mark Nottingham. Well-Known Uniform Resource Identifiers (URIs). RFC
8615. May 2019. doi: 10.17487/RFC8615. url: https://www.rfc-editor.
org/info/rfc8615.

[34] websocket-client on PyPI. url: https://pypi.org/project/websocket-
client/.

[35] Roger A. Light. “Mosquitto: server and client implementation of the MQTT
protocol”. In: Journal of Open Source Software 2.13 (2017), p. 265. doi: 10.
21105/joss.00265.

[36] libcoap GitHub repository. url: https://github.com/obgm/libcoap.

[37] curl website. url: https://curl.se.

[38] node-wot GitHub repository. url: https://github.com/eclipse/thingweb.
node-wot/.

[39] TMP35/TMP36/TMP37: Low Voltage Temperature Sensors Data Sheet. Rev.
H. Analog Devices, Inc. Oct. 2002. url: https://www.analog.com/media/
en/technical-documentation/data-sheets/TMP35_36_37.pdf.

[40] ESP32-WROOM-32E Datasheet. Espressif Systems (Shanghai) Co., Ltd. url:
https : / / espressif . com / documentation / esp32 - wroom - 32e _ esp32 -
wroom-32ue_datasheet_en.pdf.

[41] Donald Norris. Python for Microcontrollers: Getting Started with MicroPy-
thon. McGraw-Hill Education, 2016. isbn: 9781259644542.

[42] espefuse.py documentation. url: https://docs.espressif.com/projects/
esptool/en/latest/esp32/espefuse/index.html.

[43] umqtt.simple GitHub repository. url: https://github.com/micropython/
micropython-lib/tree/master/micropython/umqtt.simple.

[44] microCoAPy GitHub repository. url: https : / / github . com / insighio /
microCoAPy.

[45] microdot GitHub repository. url: https://github.com/miguelgrinberg/
microdot.

[46] Wikipedia contributors. Box plot — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Box_plot&oldid=1118420858.
[Online; accessed 15-November-2022]. 2022.

55

https://en.wikipedia.org/w/index.php?title=Synthetic_file_system&oldid=1091200575
https://en.wikipedia.org/w/index.php?title=Synthetic_file_system&oldid=1091200575
https://doi.org/10.17487/RFC6455
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://flows.nodered.org/node/node-red-contrib-influxdb
https://flows.nodered.org/node/node-red-contrib-influxdb
https://doi.org/10.17487/RFC8615
https://www.rfc-editor.org/info/rfc8615
https://www.rfc-editor.org/info/rfc8615
https://pypi.org/project/websocket-client/
https://pypi.org/project/websocket-client/
https://doi.org/10.21105/joss.00265
https://doi.org/10.21105/joss.00265
https://github.com/obgm/libcoap
https://curl.se
https://github.com/eclipse/thingweb.node-wot/
https://github.com/eclipse/thingweb.node-wot/
https://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf
https://espressif.com/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://espressif.com/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://docs.espressif.com/projects/esptool/en/latest/esp32/espefuse/index.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/espefuse/index.html
https://github.com/micropython/micropython-lib/tree/master/micropython/umqtt.simple
https://github.com/micropython/micropython-lib/tree/master/micropython/umqtt.simple
https://github.com/insighio/microCoAPy
https://github.com/insighio/microCoAPy
https://github.com/miguelgrinberg/microdot
https://github.com/miguelgrinberg/microdot
https://en.wikipedia.org/w/index.php?title=Box_plot&oldid=1118420858
https://en.wikipedia.org/w/index.php?title=Box_plot&oldid=1118420858

[47] Wikipedia contributors. Empirical distribution function — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Empirical_distribution_function&oldid=1108690264. [Online; accessed
15-November-2022]. 2022.

[48] André Knörig, Reto Wettach, and Jonathan Cohen. “Fritzing: A Tool for
Advancing Electronic Prototyping for Designers”. In: Proceedings of the 3rd
International Conference on Tangible and Embedded Interaction. TEI ’09.
Cambridge, United Kingdom: Association for Computing Machinery, 2009,
pp. 351–358. isbn: 9781605584935. doi: 10.1145/1517664.1517735.

[49] Andrey Fedorov. Fritzing-parts GitHub repository. url: https://github.
com/Warlib1975/Fritzing-parts.

[50] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[51] Michael L. Waskom. “seaborn: statistical data visualization”. In: Journal of
Open Source Software 6.60 (2021), p. 3021. doi: 10.21105/joss.03021.

56

https://en.wikipedia.org/w/index.php?title=Empirical_distribution_function&oldid=1108690264
https://en.wikipedia.org/w/index.php?title=Empirical_distribution_function&oldid=1108690264
https://doi.org/10.1145/1517664.1517735
https://github.com/Warlib1975/Fritzing-parts
https://github.com/Warlib1975/Fritzing-parts
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021

	Introduction
	General Concepts and Technologies
	Node-RED
	InfluxDB
	Protocols
	HTTP
	CoAP
	MQTT

	W3C Web of Things

	Architecture and Functionalities
	Goals and Use Cases
	Requirements and Functionalities
	Additional and Experimental Functionalities
	Data Forecasting
	W3C Web of Things Support

	Architecture Overview
	Frontend
	Backend

	Implementation
	Backend
	Flow Overview
	Input Module
	MQTT
	CoAP
	HTTP
	WoT Property Read

	Processing Module
	Passthrough Pipeline
	Aggregation Pipeline
	Forecasting Pipeline

	Output Module
	File
	WebSocket
	MQTT
	CoAP
	HTTP
	WoT Property Write
	InfluxDB

	WoT Introduction

	Frontend
	Parameters and Configuration Handling
	Flow Manipulation and Deploy
	Console Handling
	Self Thing Description Generation

	Testing and Evaluation
	Manual I/O Testing
	MQTT
	CoAP
	HTTP
	WoT
	File
	WebSocket
	InfluxDB

	Manual Processing Testing
	Passthrough Pipeline
	Aggregation Pipeline
	Forecasting Pipeline

	Whole System Testing
	Edge Device Prototype
	TMP36 Sensor
	ESP32 Prototyping Board
	Temperature Reading
	MQTT, CoAP and HTTP Implementation

	Bridging Performance Evaluation
	Evaluated Protocols
	Evaluation Scenario
	Results

	Issues and Improvements
	Limiting Frontend
	I/O Format Assumption
	HTTP Server Port
	WoT: TD, Protocols and Authentication
	CoAP Input Observe
	Naive Forecasting Implementation
	Single Flow Limit

	Conclusions and Future Works
	Appendix Licenses and Credits
	Third-Party Content

	Acknowledgments
	References

