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Abstract

Planning is an important sub-field of artificial intelligence (AI) focusing on letting
intelligent agents deliberate on the most adequate course of action to attain their
goals. Thanks to the recent boost in the number of critical domains and systems
which exploit planning for their internal procedures, there is an increasing need for
planning systems to become more transparent and trustworthy. Along this line,
planning systems are now required to produce not only plans but also explanations
about those plans, or the way they were attained. To address this issue, a new
research area is emerging in the AI panorama: eXplainable AI (XAI), within which
explainable planning (XAIP) is a pivotal sub-field.

As a recent domain, XAIP is far from mature. No consensus has been reached
in the literature about what explanations are, how they should be computed, and
what they should explain in the first place. Furthermore, existing contributions are
mostly theoretical, and software implementations are rarely more than preliminary.

To overcome such issues, in this thesis we design an explainable planning library
bridging the gap between theoretical contributions from literature and software
implementations. More precisely, taking inspiration from the state of the art, we
develop a formal model for XAIP, and the software tool enabling its practical
exploitation.

Accordingly, the contribution of this thesis is four-folded. First, we review the
state of the art of XAIP, supplying an outline of its most significant contributions
from the literature. We then generalise the aforementioned contributions into a
unified model for XAIP, aimed at supporting model-based contrastive explana-
tions. Next, we design and implement an algorithm-agnostic library for XAIP
based on our model. Finally, we validate our library from a technological perspec-
tive, via an extensive testing suite. Furthermore, we assess its performance and
usability through a set of benchmarks and end-to-end examples.

Keywords: XAIP, Contrastive explanation, model reconciliation.
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Chapter 1

Introduction

Research efforts on methods to explain the inner logic of learning algorithms and
their models began in the early ’80s and relevantly boosted over the last decade [45,
51, 40]; because of the prominent use of machine learning (ML) and artificial
intelligence (AI) techniques in both academia and industry. Indeed, a large part
of these AI and ML-based solutions is affected by a broadly acknowledged issue:
their algorithmic opacity [40], which is essentially an unacceptable condition in a
world where ML and AI are involved in many (safety-)critical activities [65, 10, 7].
Accordingly, humans’ inability to comprehend the result of the behaviour of such
techniques can lead to dire consequences; thus in current society, the liability
of decisions/actions is still mainly associated with human beings [18, 32]. To
complicate the picture, many governments acknowledge citizens’ right to receive
explanations when AI and ML outcomes may impact their lives [69, 68, 63, 47, 23,
33, 40]. For all those reasons, the issue of the interpretation of ML outcomes is
rapidly gaining momentum in recent AI research.

To address that challenge, scholars from different research domains are devel-
oping a plethora [67, 66] of scattered techniques and approaches to addressing
the interpretation of machine learning algorithms and the generation of human-
interpretable explanations, generally known as explainable AI (XAI) [40]. In this
framework, explainable planning (XAIP) is an emerging and crucial research area
within XAI, focused on explaining AI planning systems to users by leveraging auto-
mated planning models and recognizing the role played by humans in the planning
loop [28, 67]. XAIP includes topics ranging from epistemic logic to machine learn-
ing and techniques from domain analysis to path-finding and goal recognition [38].

To this extent, among the major themes that have emerged within the XAIP
playground, we focus on plan explanation.

Plan explanation is amongst the earliest areas of XAIP [39]. It focuses on
aiding the users to comprehend the reason that leads a system to suggest a specific
plan. In other words, the planning explanation process focuses on presenting the

1



2 CHAPTER 1. INTRODUCTION

output of some automatic planner into forms which are intelligible for humans.
These forms may involve the causal [19] and temporal [8] relations’ description
between plan steps; and the design of interfaces supporting human interaction and
understanding. In all such cases, enabling users to question the planning system
is fundamental to increasing their understanding of the system’s decisions, other
than boosting the user’s confidence in the system.

Because of its interdisciplinary nature, XAIP attracts the interest of academics
with different backgrounds, which develop a number of techniques and approaches
to tackle the interpretation of ML and AI methods within the planning domain.
As it is natural for an emerging domain, the XAIP landscape is still evolving.
Therefore, a definitive systematization of sub-topics and relevant subjects and a
conclusive model is still missing. Furthermore, most XAIP contributions proposed
so far focus on either theoretical contributions or purpose-specific experiments.
Hence, to the best of our knowledge, no efforts have been devoted to engineering
a general-purpose software tool for XAIP.

Accordingly, this thesis addresses two crucial challenges on the XAIP scene.
Firstly, we tackle the challenge of the hectic conceptual XAIP panorama by pro-
viding a concise review of its state of the art, besides supplying an outline of its
crucial features and issues. We then generalise the aforementioned contributions
into a unified model for XAIP for model-based contrastive explanations through
model restriction, meeting the challenge posed by the limited number of XAIP sys-
tems software implementations. Additionally, we design and implement a practical
solution for our XAIP model. We devise our proposal as a pure-Kotlin library for
explaining planning systems, thus endorsing the mission of filling the gap between
theoretical and practical contributions in the XAIP landscape.

Along this line, the contribution of this thesis is four-folded. First, we review
the state of the art of the XAIP, supplying an outline of its most significant facets
and problems. Guided by state-of-the-art research, we develop a proposal for the
XAIP model supporting model-based contrastive explanations. Next, we design
and implement a pure-Kotlin, algorithm-agnostic library for XAIP based on our
model. Finally, we validate our XAIP library’s correctness with an extensive test-
ing suite; while we assess its performance and usability with a set of benchmarks
and end-to-end examples.

Accordingly, the remainder of this thesis is structured as follows.

Chapter 2 introduces notions and state-of-the-art contributions about the XAIP
domain by examining both the planning problem and the explanation background.
chapter 2).

In chapter 3, we provide some definitions to support our approach to explana-
tion introducing the formal definition of the system’s main entities.

Chapter 4 analyzes requirements and objectives we acknowledged for our pro-
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posal.
Chapter 5 begins disclosing details about our framework implementation, con-

sequently, it discusses the validation process describing the metrics used to evaluate
the system’s performances.

Finally, Chapter 6 concludes this thesis by summarising its main contribution.
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Chapter 2

State of the Art

This chapter presents state-of-the-art contributions and notions that we will ref-
erence in the following chapters of this thesis.

In Section 2.1, we provide a preliminary background about planning, there
including its main features, algorithms, and languages.

Section 2.2, in particular, describes well-known planning domains which we
extensively exploit in the remainder of this thesis, as running examples.

Finally, Section 2.3 provides an overview of XAIP, starting with a short intro-
duction, followed by a brief road map of its main topics and dimensions.

2.1 Planning

This section recalls fundamental notions concerning planning in AI. In particular,
Section 2.1.1 gives a broad introduction to the planning problem and a formal
explanation of its central components. Next, in Section 2.1.2, we present PPDL,
the de-facto standard language for defining planning problems and domains, in
practice. Finally, Section 2.1.3 provides an overview of planning algorithms, other
than a concise description of well-known planner STRIPS.

2.1.1 Fundamental notions

Planning is a term that means different things to different groups of people [46]. In
general, we call classical planning, or planning, the problem of devising a sequence
of actions that maps a given initial state to a goal state.

Commonly, planning problems share some common essential elements. In the
following paragraphs, we examine those core elements providing a formal definition
for each of them, besides some common notions.

5



6 CHAPTER 2. STATE OF THE ART

Values: are symbols representing entities from the domain of the discourse. They
can be variables or objects.

More, formally we define the set of values H as:

H = V ∪ O (2.1)

where:

• V : is a set of variables,

• O: is a set of objects.

Objects: represent individual entities which are interesting in the domain of
the discourse.

We denote objects as follows:

o1 | o2 | o3 | . . . (2.2)

where oi are objects’ names. We call O the set of the objects.

Variables: represent placeholders for (or references to) unknown entities.
Formally, we denote variables as follows:

x1 | x2 | x3 | . . . (2.3)

where xi are variables’ names. We call V the set of the variables.
An entity which does not contain any variable is called ground.

Substitution: is a mapping among variables and objects. Formally, a sub-
stitution can either be modelled as a function of the form:

σ : V → H (2.4)

or a set of variables assignments of the form:

σ = {x1 7→ o1,x2 7→ o2, . . .} (2.5)

We call Σ the set of substitutions.

Types: are names of notable sets of values. All types have a supertype. More
formally, we recursively define types as the set T generated by the following pro-
duction rule:

T := ⊤ | ⟨t, T ⟩ (2.6)

meaning that a type T is either:

• the supertype of all types ⊤,

• or type t whose super-type is some other T ′.
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Predicates: are boolean statements about entities from the domain of the dis-
course. Let a ∈ N be a natural number, then we define a predicate as:

⟨p, a⟩ (2.7)

where:

• p is a predicate name,

• a is the number of arguments it takes.

Notably, we call “a” the arity of the predicate. We call P the set of predicates.

Fluents: are a ground logic fact which are true, or false at a given moment.
Formally, we denote fluents as follows:

p(ν1, . . . , νa) (2.8)

where:

• p is the predicate name,

• ν1, . . . , νa ∈ H are values,

• a is the arity of the fluent.

We call F the set of all fluents.

Applying substitutions to fluents. We say that a fluent is ground if it only
contains objects among its values—i.e. if it carries no variable as an argument.

Non-ground fluents may be subject to substitution application. We denote
such situation as follows:

f/σ = p(ν1, . . . , νa)/σ = p(ν1/σ, . . . , νa/σ)
where

νi/σ =

{
ν if (νi ≡ x) ∧ (x 7→ ν) ∈ σ

νi otherwise

(2.9)

In other words, when a substitution σ is applied to some fluent f , any argument
of f which is actually a variable mentioned in σ is replaced by the corresponding
value mentioned in σ.

Notably, applying a substitution σ to a set of fluents s = {f1, f2, . . .} means
applying the same substitution to each fluent individually:

s/σ = {f1/σ, f2/σ, . . .} (2.10)
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States: planning problems usually concern a state space that includes all pos-
sible situations that could occur. The state space might be both discrete and
continuous [46].

Formally, we define a state as a set of fluents. Hence, the set of all possible
states is defined as:

S = 2F (2.11)

Finally, we denote individual states by s, s′, s′′, . . .

Actions: represent entities that a planner can exploit to alter the state of the
world. An action is specified in terms of its preconditions and post-conditions.

Formally an action is:
⟨a, C, C+, C−⟩ (2.12)

where:

• a ∈ N is an action name from a set of action names N ,

• C ∈ 2F is a set of preconditions, i.e. a set of fluents which must be true for
the action to be applicable,

• C+ ∈ 2F is a set of positive post-conditions, i.e those conditions that become
true after the execution of the action.

• C− ∈ 2F is a set of negative post-conditions, i.e the conditions that turn
false after the application of the action at the state.

We say that an action is ground if it only contains ground fluents and we call
A the set of all the actions, C the set of preconditions, C+ the set of positive
post-conditions and C− the set of negative post-conditions.

Unification: is the process of checking whether two (sets of) fluents can be
made equal by applying the same substitution to both of them. More precisely,
unification aims at computing the most general substitution σ making any two
sets of fluents s1, s2 ∈ 2F equal. Provided that such a substitution exists, we call
it most general unifier. Accordingly, unification is devoted to the mgu function,
of the form:

mgu : 2F × 2F → Σ (2.13)

In particular, the mgu function is required to compute the substitution σ such
that

mgu(s1, s2) = σ ⇐⇒ s1/σ ≡ s2/σ (2.14)

Unification is fundamental to understand whether an action is applicable to a
state or not. Formally, we say that an action ⟨a, C, C+, C−⟩ is applicable into a
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state s if and only if its preconditions C unify with some subset s′ of the state, i.e.
iff:

∃s′ ⊆ s : mgu(s′, C) = σ (2.15)

Action application: we use actions to form plans by chaining ground actions
which are consequently applied to some initial state to reach some final state. To
do so, we leverage the notion of action application.

More formally, actions are applied to states via the following function:

apply : S ×A → S (2.16)

which computes destination states from input states. In particular, the function
is defined as follows:

apply(s, ⟨a, C, C+, C−⟩) =

{
((s− C−) ∪ C+)/σ if ∃s′ ⊆ s : mgu(s′, C) = σ

undefined otherwise

(2.17)
It is worth noticing that, for each state, only a subset of ground actions is

applicable. Hence, we call unification the function responsible for checking the
applicability of an action to a state.

Goals: represent a concise description of one (unknown) state to be achieved.
In particular, a goal consists of a ground set of fluents which should be included
in the desired state. We call G ⊆ 2F the set of all possible goals.

Notably, we say that a goal g ∈ G is satisfied into a state s ∈ S iff g ⊆ s.

Plans: are ordered finite lists of ground actions needed to achieve the goal from
the initial state. More formally, we denote a plan as follows:

[a1, . . . , ai, . . . , an] ∈ A∗ (2.18)

Domains: represent the universal aspects of a planning problem, i.e. those
aspects that do not alter depending on the scenario considered [34].

Formally, we define a domain as:

⟨P ,A, T , r⟩ (2.19)

where:

• P is a finite set of predicates,

• A is a finite set of actions,

• T is a finite set of types,

We call D the set of all possible domains.



10 CHAPTER 2. STATE OF THE ART

Problems: express the global worldly aspects of a problem planned as which
actions one can perform executed, along with the types of objects acceptable, the
property which holds on them and the final goal of the computation [34].

Formally, we define a problem as:

⟨∆,O, s0,g⟩ (2.20)

where:

• ∆ ∈ D is a domain,

• O is a finite set of objects,

• s0 ∈ S is the initial state,

• g ∈ G is the goal.

We call Π the set of problems.

Planner: is an entity able to transform the world by devising a sequence of
ground actions that lead from the initial state to the goal state.

Formally, we define a planner p as a function accepting problems as input and
producing plans as output:

p : Π → 2A
∗

(2.21)

It is worth noticing that each planner may output a multitude of plans—as
well as none. This is because, for each input problem and its initial state, there
may be multiple sequences of actions which lead to the goal. Sometimes, there
may be none, because there exists no sequence of action which may lead to the
achievement of a given goal, from a given initial state. When this is the case, a
planner is assumed to output the empty set—denoting the impossibility to solve
the planning problem provided as input.

2.1.2 Planning in Practice: The PDDL Language

Planning problems need languages to describe their domain and how they change
when actions are applied to reach a goal. The Planning Domain Definition Lan-
guage (PDDL) is a formal knowledge representation language designed to express
planning models [36].

It was first developed in 1998 by Drew McDermott as a means of facilitating
systems comparison; then it become the planning language of the International
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Version Features

PDDL 1.2
- predicate centric (i.e. classical representation)
- object types;
- ADL features (e.g. conditional effects, equality);

PDDL 2.1
- numeric fluents;
- durative actions;

PDDL 2.2
- timed-initial literals;
- derived predicates;

PDDL 3.0
- state-trajectory constraints (hard constraints for the
planning process);
- preferences (soft constraints for the planning process);

PDDL 3.1 - object fluents;

PDDL+
- continuous processes;
- exogenous events;

PPDDL
- probabilistic action effects;
- reward fluents;

MA-PDDL - multi-agent planning;

Table 2.1: PDDL versions with the major features introduced in each of them [15,
35].

Planning Competition (ICAPS1) and the de-facto standard for problem specifica-
tion of many planning systems.

It must keep in mind that PPDL is not the only modelling language for plan-
ning, thus the field of classical planning has seen many representations [24, 57, 4]
before PDDL standardized the notations. Accordingly, PDDL was born as an
attempt to standardise planning languages to let all competing planners of the
International Planning Competition (IPC) use the same input language. To this
extent, PDDL provides an abstraction layer to leverage STanford Research Insti-
tute Problem Solver [24](STRIPS), Action Description Language [57](ADL) and
many other representational languages to support different levels of expressivity.
Within this framework, several variants of PDDL emerged in the last years to
capture different aspects of the planning problem at the increasing level of com-
plexities, with a particular focus on deterministic problems [36]. More precisely,
PDDL characteristics spread from the most essential as type specification for ob-
jects, predicates and actions, which can be found in its first version, to the more
advanced features as the numeric variables and durative actions as shown in ta-
ble 2.1.

1Further information about ICAPS are at https://www.icaps-conference.org/

competitions/

https://www.icaps-conference.org/competitions/
https://www.icaps-conference.org/competitions/
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Listing 2.1: Snippet showing a minimal example of a domain definition in PPDL.�
1 (define (problem block_world_problem)

2

3 (:domain block_world)

4

5 (:objects

6 a - blocks

7 b - blocks

8 c - blocks

9 d - blocks

10 )

11

12 (:init

13 (on a floor)

14 (on b floor)

15 (on c floor)

16 (on d floor)

17 (clear a)

18 (clear b)

19 (clear c)

20 (clear d)

21 )

22

23 (:goal at(X, arm))

24 )
� �
A running example of PDDL usage to describe a problem definition for a block

world domain is proposed in listing 2.1.

2.1.3 Planners and Planning Algorithms

Commonly, we call planner, or problem solver the entity that devises the plan; if
a planner is a machine is considered a planning algorithm. Planning algorithms
should encapsulate the machinery of planning independently of the domain of
application [28].

Planning algorithms may rely on several different approaches to solve the plan-
ning problem. In classical planning, two of the most relevant planning categories
are linear and non-linear planners and hierarchical and non-hierarchical planners.

Linear and non-linear planner: are also called total-order planners and partial-
order planners, respectively. Linear planners maintain a partial solution as
an ordered list of actions found, while non-linear planners only represent
partial-order temporal constraints on actions.

Hierarchical and non-hierarchical planner: for non-hierarchical planners, there
is no such concept of the importance of a goal; everyone has the same sig-
nificance for the resolution of the problem, whereas hierarchical planners
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distinguish between the degrees of relevance of goals and actions, attempt-
ing to solve the most relevant first.

In classical planning, users share the same planning model and reason capabilities
as the planner, however, this assumption is not always valid. Indeed, users’ un-
derstanding may differ from that of the planner, in these cases, the user and the
planner may aim to solve the same problem by leveraging different models of the
problem. We call the problems under the above-described scenario Multi-Model
Planning (MMP) problems.

Although planners are not always required, they are relevant in many applica-
tion scenarios. In particular, we might need planners in those cases where systems
need to be observable, accountable, and explainable; thus, whenever reasons be-
hind actions need to be a priori known for any system with some responsibility
(i.e. socio-technical systems) [56].

The STRIPS Algorithm

The Standford Research Institute Problem Solver is a well-known First-Order
Logic [48] language with an associated automated solver devised in 1971 by Richard
Fikes and Nils Nilsson at Stanford Research Institute International (SRI Interna-
tional2) [75].

More precisely, the STRIPS solver is a linear non-hierarchical planner based
on a backward search whose central purpose is to find a sequence of actions to
transform a given initial state of the world into a new state that is compliant with
the goal proposed. We define the problem space for STRIPS by three entities:

• an initial state of the world,

• a set of actions,

• a goal.

A problem is solved when the solver devises a final state that satisfies the given
goal.

Challenges: among the most relevant characteristics of STRIPS that deter-
mined its popularity, we here focus on the way it addresses two crucial challenges,
namely non-determinism and efficiency.

2SRI International is an American nonprofit scientific research institute and organization
headquartered in Menlo Park, California established in 1946 [74].
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Figure 2.1: Flowchart of the STRIPS solver from the original paper [24].

Non-determinism: non-determinism is an essential concept in the theory
of computing. It concerns the possibility of having several options for what can
occur at numerous stages of the elaboration process. STRIPS have to tackle non-
determinism each time that: in a state, the solver may apply multiple operators.
As shown in fig. 2.1, the planner addresses the problem by devising a hierarchy of
goals, sub-goals and states generated by the search process as a search tree.

More precisely, the STRIPS planner divides the problem into multiple sub-
problems; whenever the solver finds a situation where different actions could be
applied. Consequently, it attempts to solve the sub-problem by producing a world
model to which the action is applicable. If the solver finds such a model, then
it applies the operator and reconsiders the original goal in the resulting state;
otherwise, it tries to wig different applicable actions or steps back to the previous
decision point if it gets stuck[24].

In the following lines, we leverage an example of non-determinism in a planning



2.1. PLANNING 15

context. Let: i, j ∈ Z+
0 . Let:

∆ = ⟨P ′,A′, T ′, r⟩ (2.22)

where:

• P ′ is a finite set of predicates,

• A′ = {a0, . . . , ai} is a finite set of actions,

• T ′ is a finite set of types,

be the domain for the problem Π, defined as follows: Π = ⟨∆,O, s,g⟩, where:
• ∆ ∈ C is a domain,

• O′ = {o0, . . . , oj} ∈ O is a finite object set,

• s ∈ S is a a initial state,

• g = a1(x) ∈ G is a goal.

The problem Π has a nonground goal g that leads the solver to a nondeterministic
scenario.

Thus, let
S = {x 7→ o1,x 7→ o2, . . .x 7→ oj} (2.23)

Once the solver pushes the action a1 on the stack, it could apply any substitution
in S to the variable x. Each of them is a valid variable assignment for the variable
x.

Efficiency: a primary design problem for the solver is how to satisfy the
storage requirements of a search tree in which each node may contain a different
state of the world. Thus, given that we may define each state as a large set
of fluent and that STRIPS exploit a search tree process, it will be infeasible to
recopy the entire state context of the computation each time we generate a new
node. In STRIPS, we solve the problem exploiting the Closed World Assumption,
thus stating that whatever we do not declare as true is false by default.

Algorithm: scholars proposed many implementations of STRIPS in the last 50
years, for this thesis, we design our version of the algorithm.

To this extent, our STRIPS planner addresses the nondeterministic challenge
by leveraging a data structure that saves the execution context at the time of
choice. In this way, the algorithm can explore all the possible branches and devise
all the solutions for a given problem.

Before examining the STRIPS algorithm, we require some preliminary descrip-
tions. Let, Π = ⟨∆,O, s,g⟩ be a tuple where:
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• ∆ ∈ C is a domain,

• O′ ∈ O is a finite object set,

• s ∈ S is a a initial state,

• g ∈ G is a goal.

Furthermore, our solver leverage three data structures:

• one that represents the currently simulated state,

• a stack responsible for orderly storing the currently unsatisfied goals and
un-applied actions,

• one storing the names of the actions simulated so far.

Before the solver execution, the system is in the initial state (i) provided in Π.
When we trigger the execution, the planner pushes the fluents in the goal, g,

on the stack. Next, it repeats the following operations until the stack is empty:

• if the top of the stack is fluent:

– if it is possible to find any substitution that allows the fluent to unify
with any fluent of the current state, the fluent is removed, and the
substitution found is applied to the remaining elements of the stack.

– if no unification is possible, then we look for an action in A′ that has
at least one positive effect that matches with the fluent.

∗ if we find it then we push the action and its preconditions on the
stack,

∗ otherwise, we interrupt the computation and explore the next choice
point if it exists, or we interrupt the execution if it does not.

• if the top of the stack is an action, a, whose name matches an action’s name
in A′, then:

– we remove a from the stack,

– we apply it the current state:

∗ if the application of the action to the state produces at least a new
state; we set it as the new current state, we add a to the plan and
saves eventually other states into the choice point data structure
for later explorations,
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∗ if the action does not apply to the current state of the system, that
is to say, that the application function cannot produce any states
with a current couple of parameters, then the solver explores the
next choice point if it exists, or interrupt the computation if it does
not.

Search Strategy: a crucial decision in the design of the algorithm is the
choice of search strategy to apply. We choose the Iterative Deepening Depth-First
Search (IDDFS): a state space search strategy in which a depth-limited version of
depth-first search is run repeatedly with increasing depth limits until the goal is
found [73].

We prefer IDDFS because of the advantages it presents compared to other tech-
niques such as the Depth-first search (DFS)3 or to the Breadth-first search (BFS)4

because of its characteristics. Thus, IDDFS manage to combine the advantages
of both techniques. On one hand, it overcomes the limitation in terms of space
and time required to compute the solution presented in BFS, and on the other, it
guarantees the optimality5 and completeness6. IDDFS combines depth-first search
space efficiency and breadth-first search fast search (for nodes closer to the root).

A comparison among the three search strategies analyzed is proposed in ta-
ble 2.2, where:

• b: maximum branching factor of the search tree;

• d: depth of the least-cost solution;

• m: maximum depth of the state space;

2.2 Well-known Planning Domains

Generally, planning domains are formal specifications that describe a relational
structure among the elements of the problem.

3DFS: it is an algorithm for searching or traversing graph or tree data structures. DFS starts
at the root node and explores as far as possible along each branch before backtracking [72].

4BFS: it is a procedure for searching a tree data structure for a node that satisfies a designated
trait. It commences at the tree root and explores all nodes at the current depth ahead of moving
on to the nodes at the next depth level. BFS utilizes extra memory to maintain a list of the
child nodes that met but not yet examined [70].

5Optimality: find a feasible plan that optimizes performance in some carefully specified
manner, in addition to arriving in a goal state [60].

6Completeness: a problem is complete if it always finds a solution if one exists [61].
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BFS DFS IDDFS

Complete Yes (if b is finite).
No: fails in infinite-depth
spaces, spaces with loops.

Yes.

Time
O(bd+1)
(keeps every node
in memory).

O(bm): terrible if m
is much larger than d
but if solutions are dense,
may be much faster than BFS.

O(bd)

Space
O(bd+1)
(keeps every node
in memory).

O(bm) O(bd)

Optimal

Yes, if cost is
nondecreasing
function of node
depth.

No.

Yes, if step cost is
a nondecreasing
function of node
depth.

Table 2.2: Search strategy comparison [61].

During the last three decades, scholars develop a substantial benchmark of
planning domains to test and evaluate the performance of their algorithm. Among
the most relevant examples of planning domains, one can find the well-known
problem of the Hanoi Tower [37], the Block World [20], or some more pragmatic
domains as the logistics ones [50].

2.2.1 Block World

The Blocks World (BW) is one of the most relevant domains for demonstrating
planning systems. Terry Winograd designed it in the 1970s; firstly, its usage did
not involve Computer Science fields as its conceiver utilized it for his natural
language understanding program, and only after 1975 for studies in computer
visions. The version BW chosen for the project is Elementary BW that involves a
finite number of cubical blocks of equal 7 size and a surface large enough to hold
all of them. The domain also includes an agent (usually in form of a robotic arm)
that can pick a single block and move it to another position (i.e. on top of some
other blocks, or on the floor) [20].

Many reasons lead planning researchers extensively study blocks-world plan-
ning; firstly the simplicity of its concepts makes it intuitive to understand even
to non-expert users, secondly because despite the minimalism of its components

7The actual formalization of the Elementary BW domain would require the blocks to be cubic;
however the in artefact delivered the blocks’ physical characteristics are not explicitly modelled;
therefore, the user can assume the blocks to be cubic and equal in size.
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Figure 2.2: Example of a block world scenario [58].

it captures several of the significant challenges posed in planning systems [58]. A
visual example of the BW domain is fig. 2.2.

Formal representation

In this paragraph, we provide an example of a formal representation of the Block
World domain according to our model. Let:

• x ∈ V be a variable,

• y ∈ V be a variable,

• O′ = {a, b, c, d} ∈ O be a set of objects,

• s = {at(a, floor), at(b, floor), at(c, floor), at(d, floor), clear(a), clear(b),
clear(c), clear(d), armEmpty()} ∈ S be the initial state,

• g = {on(x)} ∈ G be the goal,

• P ′ = {on(blocks, blocks), at(blocks, locations), clear(blocks), armEmpty()}
∈ P be a set of predicate,

• A′ = {pick(x), putdown(x), clearArm(), stack(x, y), unstack(x, y)} ∈ A be
set of actions,
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• T ′ = {⟨blocks, strings⟩, ⟨locations, strings⟩, ⟨string, anything⟩,
⟨numbers, anything⟩, anything} ∈ T be a set of types,

• ∆ = ⟨d,P ′,A′,T′⟩ ∈ D be a domain,

• Π = ⟨∆,O′, s,g⟩ ∈ P be a problem.

2.2.2 Logistics domain

Logistics domains concern the coordination of the activity of resources that spread
from equipment and information to people. Standard logistics planning domains
usually involve a set of objects (either package, box or terrain samples) and a simple
conveyance (i.e. trucks, planes, or rovers) that must deliver them to different
locations.

The primary example of this kind of domain is Logistics [50] proposed by Drew
McDermott and used during the International Planning Competition of 1998 and
2000. Logistics is a classical planning domain where vehicles such as trucks and
aeroplanes transport parcels within and between cities.

We implement a basic version of the logistics domain proposed by McDermott
where an agent must transport boxes between different locations. The agent must
therefore be able to move in the space, loading objects from their location and
unloading them in another.

Formal representation

In this paragraph, we provide an example of a formal representation of the Logistics
domain according to our model. Let:

• x ∈ V be a variable,

• y ∈ V be a variable,

• z ∈ V be a variable,

• O′ = {robots(r), locations(l1, l2, l3, l4, l5, l6, l7),
containers(c1, c2)} ∈ O be a set of objects,

• s = {at(r, l1), inContainer(c1, l2), inContainer(c2, l3), connected(l1, l2),
connected(l1, l3), connected(l2, l4), connected(l3, l4), connected(l4, l5),
connected(l1, l6), connected(l5, l6), connected(l5, l6), connected(l5, l7),
connected(l1, l5), connected(l2, l1), connected(l3, l1), connected(l4, l2),
connected(l5, l4), connected(l6, l2), connected(l6, l5), connected(l7, l5),
connected(l5, l1)} ∈ S be the initial state,
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• g = {move(x, y, z)} ∈ G be the goal,

• P ′ = {connected(locations, locations), atLocation(robots, locations),
loaded(robots, containers), inContainerLocation(containers, robots),
unloaded(robots)} ∈ P be a set of predicate,

• A′ = {move(x, y, z), load(z, y, x), unload(z, y, x), stack(x, y), unstack(x, y)}
∈ A be set of actions,

• T ′ = {⟨robots, strings⟩, ⟨containers, strings⟩, ⟨locations, strings⟩,
⟨strings, anything⟩, anything} ∈ T be a set of types,

• ∆ = ⟨d,P ′,A′,T′⟩ ∈ D be a domain,

• Π = ⟨∆,O′, s,g⟩ ∈ P be a problem.

2.3 Explainable Planning

The demand for explanation within the AI domain is not recent. Since the earliest
days of AI, scholars claimed that intelligent systems should be able to describe
their results, justifying the reason behind their decisions [45].

In the past decade, advancements in AI and ML techniques (i.e. improvements
in accuracy and prediction capabilities) led to a surge in their adoption in a grow-
ing number of real-world applications (i.e.traffic control [65], robotics [10], and
healthcare [7], etc.) to develop automated or semi-automated systems.

Yet, ML is not the panacea. A significant part of the progress that caused its
wide adoption into high-stakes domains was often achieved to the detriment of
human interpretability. More specifically, despite the increased predictive power,
ML techniques present some disadvantages that make them perform inadequately
in some application scenarios. One blatant example is the opacity of the machine
learning algorithms, and, more precisely, the impossibility for users to understand
the system’s decisions that lead to a given outcome. To this extent, the opacity of
the algorithms is a remarkable issue in all the contexts where: humans are either
accountable for their decisions or expected to provide some sort of explanation for
them, even if the decision has been supported by some AI system [32].

Consequently, in the last decade, there has been a soar of research under the
umbrella of eXplainable AI (XAI) which addresses that issue. Along this line,
eXplainable AI Planning (XAIP) is the sub-field of XAI which addresses the design
of trustworthy planners that can interact with humans while their decision-making
processes remain transparent.
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Because of its interdisciplinary nature, XAIP arouses the interest of academics
with widely different backgrounds, which develop a plethora of scattered tech-
niques and approaches to tackle the interpretation of ML and AI methods. As
is natural for an emerging domain, the XAIP landscape is still evolving; thus, it
is premature to present a definitive systematization into sub-topics and relevant
subjects. However, in the following sections, we provide a concise synthesis of its
most relevant topics besides a brief taxonomy of the crucial research areas.

2.3.1 The Call for Explanations

As advanced in Chapter 1, the need for explanation date back to forty years ago in
the era of expert systems [45]. However, in recent years become more prominent
because of ML and AI’s momentum. Indeed the pervasive usage of such techniques
in real-world applications leads to conjunct efforts of the European Union, United
States of America, and China governments to impose to design those systems to
be able to explain their behaviour in a human-understandable way [63, 47, 23].
One eloquent example in this context is the GDPR [68] regulation which states
citizens’ right to explanation [33] that implicitly requires the AI system to become
understandable eventually. Indeed, understanding the system is a requirement to
identify potential biases or issues and to guarantee algorithmic fairness, and that
system performs as conceived and expected [18].

The field of XAIP addresses this challenge by considering the need for trust,
transparency in the decision process, and interaction between humans and ma-
chines to comprehend the reasoning behind an AI algorithm decision. To this
extent, automated planning solutions are particularly well suited for explanation
generation due to their use of symbolic models [8].

2.3.2 Taxonomy of XAIP Approaches

As advanced in Section 2.3, to devise a complete taxonomy for the XAIP ap-
proaches is premature; nevertheless, in the following paragraphs, we discuss some
crucial features and lines of research.

Within the scope of XAIP, explanations can be categorized based on their
scope, outcome, and approach to generating them.

Scope: the primary distinction among the explanations approach we consider is
their scope. In this respect, we distinguish two categories local and global
explanations :

Local: local explanations aim to explain a particular decision (local) taken
in a planning problem;
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Global: global explanations, on the contrary, are geared towards the entire
(global) problem model.

Approaches: the second category of approaches considered are algorithm and
model-based explanations.

Algorithm-based: methods seek to explain the underneath planning al-
gorithm. The major challenge when tailoring explanations for specific
algorithms is properly leveraging the algorithm’s properties to design
an efficacious explanation, thus general concepts within the algorithm
domain, such as heuristics values, are hardly understandable for lay
users [49].

Model-based: explanations exploit algorithm-agnostic approaches for gen-
erating explanations. In this case, one can evaluate the properties of
a solution independently of the planner used to devise it. Within this
framework, we find two different lines of research:

Domain tailored explanations: is a research area focused on devel-
oping custom explanations based on a specific model. The central
issue of this type of explanation is that they require thorough en-
deavour, besides tailoring explanations for each domain individually
leading to effective explanation [49].

General approaches: field of research which develops explanations
based on general planning concepts. In this case, the crucial issue
is to design effective explanations considering only general planning
concepts.

Furthermore, recent studies demonstrate that model-based approaches
are better suited for an explanation, thus for AI Planning decision-
making mechanisms [42, 12]. Indeed, a model-based representation for
AI plans is agnostic to the methods used to produce the plan. Model-
based approaches rely only on the user-provided solution, domain, and
model of the problem; thus, they only examine the properties of a so-
lution independently of the method used to produce it [1].

Problem-based: explanations related to the metric, agents’ priorities, set
of constraints, edge costs and obstacle/target locations, number of agents,
et cetera.

Output: the latter category focuses on making the outputs of the planning pro-
cess more palatable to human decision-makers, to this extent, there are two
primary approaches: text-based and visual-based explanations.
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Text-based: are the most of the relevant solutions proposed on the XAIP
panorama [22, 21, 19]. They focus on providing a textual explanation
for the planning problem. Text explanations also include every method
generating symbols that represent the functioning of the model. These
symbols may portray the rationale of the algorithm using a semantic
mapping from model to symbols [3].

Visual-based: explanations based on visualization [43, 11] leverage on mul-
timedia learning principle, which states that humans learn better from
words and pictures than from words alone.

Aware of this taxonomy, scholars recently proposed different lines of research
to address XAIP challenges. To the best of our knowledge, the most prominent
proposals to generate explanation leverage on plan-property dependencies, or are
either model or argumentation-based.

Through plan-property dependencies: proposal on this line of research [22,
21] usually works at the level of plan properties which are generally boolean
functions on plans, that capture aspect of the plan the user cares. Thus the
proposals in this line work with a two stages process; they usually assume
that a set of relevant properties is part of the input, and next, they examine
the plan space looking for dependencies across plan properties.

Argumentation-based: central to these approaches [19] is the use of causality
within the planning model. Indeed, they usually leverage some sort of en-
gine to extract causalities which then form a knowledge base of causal links
and form arguments with defeasible rules that will be later utilised in the
explanations.

These approaches allow for a definition more than a casual representation
of plans, they permit multiple types of causality to be distinguished and
different causal chunks to be created and combined to generate explanations.

Model-based: as advanced in Section 2.3.2 are approaches that do not consider
the planner used to devise the solution. Central to this line of research is the
proposal of [9]. In this works scholars develop a model-based approach to
explanation as a service, thus presenting a method to build contrastive expla-
nations around an existing planning system. More precisely, they develop a
strategy to address the challenge of multi-model planning, by devising a sys-
tem that enables users to query a planner about a solution that the planner
proposes. Initially, users suggest a set of constraints that the system injects
into the former model. Consequently, the system produces a new plan and
provides a comparison, in terms of actions added and discarded, between the
former plan and the new one.
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2.3.3 The many faces of XAIP

Besides the previous road map about the most relevant approaches, when designing
an explanation system, the primary dimensions one has to consider are:

• who is the explainer?

• who is the explainee?

• what is an explanation?

• what is the nature of explanations?

Conventional answers to the above questions in the XAIP domain are:

Explainer: is an automatic planner or, in general, a software agent.

Explainee: is the end user, thus a person who interacts with the system, asking
questions about the proposed solutions. Commonly in automated planning, the
explainee can either be a user collaborating with a planner in a decision support
setting, a human teammate in a human-robot team, or a direct stakeholder in the
robots’ plans [12].

Explanation definition: one of the challenges of XAIP is to understand what
constitutes an explanation. However, because of its interdisciplinary nature, there
is a lack of agreement on what it consists of and which features it should have to
be effective. Nevertheless, we can affirm that a plan explanation to be considered
efficacious and helpful must be understandable to humans. We give a formal defi-
nition of plan explanation in Section 3.1.2 for now, we can affirm that it concerns
the translation of the planner solutions in a form human-comprehensible.

Explanation nature: explanations may come in various forms and have dif-
ferent models. Nevertheless, in general, they either express differences between
the domain-action models of the software agent and the lay user or concern dis-
crepancy between the initial and, or the goal state assumptions of the planning
problems of the agent and the user [43]. Scholars from cognitive sciences agree
that one of the most relevant explanation types is the contrastive explanation.

Contrastive explanation: Miller surveyed over 250 research papers in phi-
losophy, psychology, and cognitive science on how people expound on each other.
According to that survey, when people request an explication of an event, they
usually demand an explanation relative to some contrast case [41, 51].
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To this extent, we can interpret explanations as answers to “what-if-things-had-
been-different” questions; as we desire to understand how the changes introduced
to make the difference omitting the factors that do not [76].

Thus, we can see that contrastive explanations address the problem where a
user implicitly or explicitly asks for a comparison among multiple solutions.



Chapter 3

Formal model

In this chapter, we provide the formal definitions and methods that support our
approach to explanation.

In general, the need for explanation arises when the plan proposed by an au-
tomatic planner does not conform with the user’s expectation. This work seeks to
fill the gap between these mismatched positions by allowing the user to question
the system and its decision.

Taking inspiration from [9], we develop our formal model to address the expla-
nation generation enabling the user to add additional constraints to the original
model to fit its expectation.

3.1 Definitions

A need for explanation in automated planning arises when an automatic solver
proposes a plan that does not align with the expectations of the explainee. We
devised a proposal to address this issue by allowing an explainee to question a
planner about the decisions made. Along these lines, taking a page from [9], in
the next paragraphs we define a set of questions an explainee can ask a solver
to bridge the gap between their mismatched positions. To answer the questions
asked, our system may devise a novel model for the domain, the problem, or both
with additional constraints to satisfy the explainee’s expectations and provide a
proper explanation.

In the following paragraphs, we formally define the main entities for our expla-
nation system model, examining the admissible questions and the process required
to generate explanations for them.

27
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Question
Θ1 Why is the ground action a used in the plan ρ rather not being used?
Θ2 Why is the ground action a not used in the plan ρ rather than being used?
Θ3 Why is the ground action a used in state s rather than the ground action b?
Θ4 Why plan ρ rather than plan ρ′?
Θ5 Why is plan ρ an appropriate solution?

Table 3.1: Taxonomy of the questions we provide an explanation to.

3.1.1 Question

A question is a query formulated by a user when the plan proposed by a planner
agent does not match the user’s expectations.

Users may ask different questions according to the scenario considered. Taking
a page from [9], we identify five types of questions that we summarize in table 3.1.

Given the above considerations, we call Q the set of all types of questions
considered within our model. Formally we define:

Q ≜
5⋃

i=0

Qi (3.1)

Furthermore, we call QC the set of explicitly contrastive questions and we formally
definite it as follows:

QC ≜
4⋃

i=0

Qi (3.2)

In the following paragraphs, we proposed a definition for each of the questions
identified.

Question 1: given a plan ρ, a formal question of the type Q1 is asked of the form:

Definition 1. Why is the ground action a used in the plan ρ rather than not
being used?

Formally a question of the first type is:

⟨Π, ρ, a⟩ (3.3)

where:

• Π ∈ P : is the problem,

• ρ: is the plan the user wants to ask questions about,
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• a: is the ground action the user wants not to appear in the plan.

Question 2: given a plan ρ a formal question of the type Q2 is asked of the form:

Definition 2. Why is the ground action a not used in the plan ρ rather than
being used?

Formally a question of the second type is:

⟨Π, ρ, a, i⟩ (3.4)

where:

• Π ∈ P : is the problem,

• ρ: is the plan the user wants to ask questions about,

• a: is the action the use wants to add to the plan ρ,

• i: is the position within ρ in which the user wants to insert a.

Question 3: given a plan ρ, a formal question of the type Q3 is asked of the form:

Definition 3. Why is the ground action ai used in state s rather than ground
action b?

Formally, a question of the third type is:

⟨Π, ρ, a, i, b, s⟩ (3.5)

where:

• Π ∈ P : is the problem,

• ρ: is the plan the user wants to ask questions about,

• a: is the ground action the user wants to remove from the plan ρ,

• i: is the potion within ρ in which the user wants to insert b at the place
of the former element that occupied that position,

• b: is the ground action the user wants to add to the plan ρ, in place of
a,

• s is the state in which the replacement must be applied.

Question 4: Given two plans ρ and ρ′ a formal question of the type Q4 is asked
of the form:

Definition 4. Why plan ρ rather than plan ρ’ ?
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Formally a question of the fourth type is:

⟨Π, ρ, ρ′⟩ (3.6)

where:

• Π ∈ P is the problem,

• ρ is the plan former plan,

• ρ′ is the new plan proposed by the user.

Question 5: Given a plan ρ a formal question of the type Q5 is asked of the form:

Definition 5. Why is plan ρ an appropriate solution?

Formally, a question of the fifth type is:

⟨Π, ρ⟩ (3.7)

is a tuple where:

• Π ∈ P is the problem,

• ρ is the plan the user wants to have insight about.

3.1.2 Explanation

As previously advanced, commonly, the need for explanation arises when a solver
proposes a plan that does not match the user’s expectation. It may happen because
the user expects a specific solution different from the one offered by the planner,
or because the solution proposed lacks certain qualities. These expectations com-
monly arise from a model held by the user that differs from the model used by
the planner (MMP). In this context, an explanation is an entity that should rec-
oncile the user’s mental model with the one held by the planner. To this extent,
we need a model reconciliation whenever different models attempt to describe the
same phenomenon and their responses are different. A general solution to achieve
common ground is to align these responses altering one or both of the models and
trying to bring them closer. For planning models, these modifications may involve
changes in the structure of the actions, in the collection of the objects identified
in a state, or their properties, as well as a redefinition of the goal of the problem,
or the model’s constraints [9].

We describe these situations later in this chapter in Section 3.2, but for now, we
say that the need for explanation arises when a planner proposes a solution that
does not match the user’s expectations. In this situation, the system must devise
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an explanation to reconcile the user’s and planner’s models. Thus, an explanation
should give some insight into a plan so that a user can use it to better comprehend
the decision process of the planner. An explanation is in the form:

E ≜
1⋃

i=0

Ei (3.8)

General Explanation

A general explanation analyses a single plan at the time, providing some common
insight about it. Nevertheless, even if a general explanation does not perform any
explicit comparison, it internally uses as evaluation metrics for the plan’s features
the optimal solution for the problem. To this end, we consider as an optimal
solution the plan containing a minor number of grounded actions that accomplish
the goal. A general explanation is in form of:

⟨Π, ρ, µ⟩ (3.9)

is a tuple where:

• Π ∈ P is an instance of the problem model,

• ρ is the new plan, either proposed by the user or by the framework following
the user’s suggestions,

• µ is the minimal solution for Π.

Contrastive Explanation

A contrastive explanation is an explanation that focuses on the differences between
two proposed solutions. Within our model, a user requires a contrastive explana-
tion when the user’s expectation does not conform with the solution proposed
by the solver. In this scenario, a contrastive explanation can help to reconcile
the user’s mental model with the planner’s model providing an insight into what
would have happened if the planner had executed the solution proposed by the
user. Specifically, we design these explanations to highlight the difference between
the solution proposed by the solver and the one suggested by the user or obtained
by adding the constraints the user suggested. Let: W = {1, . . . , 5} and i ∈ W ,
thus we define a contrastive explanation as:

E2 = ⟨ρ, ρ′,∆, α, γ, ξ⟩ (3.10)

is a tuple where:
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• ρ is the plan the user wants to ask questions about,

• ρ′ is the new plan, either created by the user or by the framework following
the user’s suggestions,

• Θ ∈ QC is the user’s question,

• α is the list of the actions that are present in the ρ′ but not in the ρ,

• γ are the operators present in the ρ but not in the ρ′, are operators present
in both plans.

• ξ are the operators present in both ρ and ρ′.

3.1.3 Explainer

The explainer is the element entitled to act as a bridge between the user and
the explanation system, allowing the user to ask an answer to a given question.
Formally the explainer is:

e : (Q) 7→ E (3.11)

An example of the explainer function is:

e(Θ) 7→ ε (3.12)

where:

• e is a function mapping each question to the respective explanation,

• Θ ∈ Q is the question, the user wants an answer to,

• ε ∈ E is the explanation for Θ.

3.1.4 Simulator

As mentioned above, to reconcile the mental model of the user and the model
exploited by the planner it is often necessary to alter one or both models. Within
this framework, we modify the planner model according to the user’s suggestions to
fit the user’s expectations. More specifically, we call constraints the suggestions of
the users to reconcile the model of the user and the one of the planner. We analyze
how to inject the user constraints into the model in Section 3.2; for now, we can
say that when a user adds constraints to a model or asks to test the satisfiability
of a plan proposal, the explanation system requires a way to check if the user’s
suggestion results in a valid solution for the proposed problem, or if otherwise,
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they prevent to find a plan that satisfies the goal. The simulator is the component
of the system that: given a plan ρ and a state s, can simulate its execution to
control if it leads to an acceptable solution for the problem.

Let S ′ ⊆ S and A′ ⊆ A, formally, the simulator is:

s : (S,A′) 7→ S ′ (3.13)

An example of the simulation function is:

s(s, ρ) 7→ S ′′ (3.14)

where:

• s: is the simulator function that map a pair of state (s), plan (ρ) into the set
of states (S ′′),

• s: is the initial state for the plan execution,

• ρ: is the proposed plan whose satisfiability is to check,

• S ′′: is a set of states reachable for simulating the execution of the plan ρ
using s as the initial state.

3.2 Compilation

We call compilation the process performed by the system to extract the user’s
suggestions from the question and inject them into the model. Thus, our explana-
tory system performs a compilation process of the user constraints into the former
problem by creating a new model, called hypothetical domain, and a new problem
named hypothetical problem. Then the system uses these two elements to generate
the new plan (hypothetical plan) complaint with the user suggestions. We depict
the main idea of the compilation process in fig. 3.1.

In the following sections, we give a formal description of the compilation process
of each question proposed in table 3.1.

3.2.1 Removal of an Operator from a Plan

Let:

• ∆ ∈ D be a domain,

• O′ ∈ O be a set of objects,

• s ∈ S be the initial state,
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Planning System

Explanation system

User

Problemplans
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Figure 3.1: Interaction process that leads to the generation of an explanation.

• g ∈ G be the goal,

• P ′ ∈ P be a set of predicate,

• A′ ∈ A be set of actions,

• T ′ ∈ T be a set of types,

• Θ ∈ Q1 be a question of a user.

Given a plan ρ, a problem Π = ⟨∆,O′, s,g⟩ where the domain is: ∆ = ⟨d,P ′,A′,T′⟩
a question of the first type Θ is asked of the form:

Question 1. Why is ground action a used in the plan ρ rather than not being
used?

To coerce the planning system to remove the ground action a from the plan
ρ; it is necessary to make each plan that contains that a unacceptable. To do so,
we create a new fluent and, consequently, a new predicate: not executed action
that represents the ground action the system has not yet performed. Thereby,
we add among the fluent of the goal a fully instantiated version (ground) of
not executed action, to state which operator the planner must not execute for
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the produced plan to be considered acceptable. Furthermore, we create a new
action, a′, which is equal to a, except for its negative effects which also include
not execute action. The execution of a′ will invalidate the plan as it removes
from the goal the new ground fluent. Formally, the compilation process creates a
hypothetical domain as follows:

∆′ = ⟨d,P ′,A′, T ⟩ (3.15)

where:

• d: is the former domain name,

• P ′: new set of predicates, defined as follows:

P ′ = P ∪ {not executed action} (3.16)

• A′: new set of actions, defined as follows:

A′ = A ∪ {a} (3.17)

• T : is the former set of types.

and a hypothetical problem defined as:

Π′ = ⟨∆′,O′, s,g⟩ (3.18)

where:

• ∆: is the hypothetical domain,

• O′: is the former set of objects,

• s: is the former initial state,

• g: is the former goal.

Example

Let:

• x ∈ V be a variable,

• y ∈ V be a variable,

• O′ = {a, b, c, d} ∈ O be a set of objects,
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• s = {at(a, floor), at(b, floor), at(c, floor), at(d, floor), clear(a),
clear(b), clear(c), clear(d), armEmpty} ∈ S be the initial state,

• g = {on(a,b)} ∈ G be the goal,

• P ′ = {on(blocks, blocks), at(blocks, locations), clear(blocks), armEmpty} ∈
P be a set of predicate,

• A′ = {pick(x), putdown(x), clearArm(), stack(x, y), unstack(x, y)} ∈ A be
set of actions,

• T ′ = {blocks, locations, string, numbers, anything} ∈ T be a set of types,

• ∆ = ⟨d,P ′,A′,T′⟩ ∈ D be a domain,

• Π = ⟨∆,O′, s,g⟩ ∈ P be a problem,

• ρ = [pick(a), stack(a, b), pick(c)] the user wants to ask question about,

• pick(c) the action the user wants to remove from the plan. This may happen
because the user realizes that the plan ρ which the user has in mind may
contain a ground action that is not useful to accomplish the goal.

To compel the solver to not execute the ground action pick(c) the compilation pro-
cess must modify both Π and ∆. Thus starting from the domain, the procedure
creates a new predicate not executed action, adds it to P ′ and consequently gener-
ates the respective fluent: not executed action. At this point, the process devises a
new action using as a template the action the user wants to remove from the plan.
We call such new action pick′(x). pick′(x) is equal to pick(x) except for its neg-
ative post-conditions which also contain the new fluent not executed action. At
this point, the compilation alters the set of action A′ removing pick(x) and adding
pick′(x) to A′. Additionally, the compilation considers the problem Π adding the
ground version of the fluent not executed action among the goal of Π. The final
plan according to the user suggestion is: ρ′ = [pick(a), stack(a, b)]

More formally, the new problem created in the compilation process is Π′ =
⟨∆′,O′, s,g′⟩ where:

• g′ = {on(a,b), not executed pick(c)} ∈ G is the new goal,

• ∆ = ⟨d,P ′′,A′′,T′⟩ ∈ D is new a domain; where:

• P ′′ = {on(blocks, blocks), at(blocks, locations), clear(blocks), armEmpty,
not executed action} ∈ P is the new set of predicate,
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• A′ = {pick′(x), putdown(x), clearArm(), stack(x, y), unstack(x, y)} ∈ A is
new set of actions.

In this last formulation of the problem Π′ we explicitly represent only the elements
the compilation process alters.

3.2.2 Insertion of an Operator to a Plan

Let:

• ∆ ∈ D be a domain,

• O′ ∈ O be a set of objects,

• s ∈ S be the initial state,

• g ∈ G be the goal,

• P ′ ∈ P be a set of predicate,

• A′ ∈ A be set of actions,

• T ′ ∈ T be a set of types,

• Θ ∈ Q2 be a question of a user.

Given a plan ρ, a problem Π = ⟨∆,O′, s,g⟩ where the domain is: ∆ = ⟨d,P ′,A′,T′⟩
a question of the second type Θ is asked of the form:

Question 2. Why is the ground action a not used in the plan ρ rather than being
used?

To compel the planner to perform a, it is necessary to create a new fluent and
consequently a new predicate, exectuted action, that signals to the system the exe-
cution of an operator. We must expand the goal g with executed action to express
which ground action the planner must perform for the final plan to be admissible.
Likewise, the positive effects of the action associated with the ground action a
must include executed action, we call that new action a′. Accordingly, only the
execution of the ground action chosen by the user will produce an acceptable plan.

Formally, the compilation process creates a hypothetical domain as follows:

∆′ = ⟨d,P ′,A′, T ′⟩ (3.19)

where:

• d: is the former domain name,
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• P ′: new set of predicates, defined as follows:

P ′ = P ∪ {executed action} (3.20)

• A′: new set of actions, defined as follows:

A′ = A ∪ {a} (3.21)

• T ′: is the former set of types.

and a hypothetical problem defined as:

Π′ = ⟨∆′,O′, s,g⟩ (3.22)

where:

• ∆′: is the hypothetical domain,

• O′ ∈ ≀: is the former set of objects,

• s: is the former initial state,

• g: is the former goal.

Example

Let:

• x ∈ V be a variable,

• y ∈ V be a variable,

• O′ = {a, b, c, d} ∈ O be a set of objects,

• s = {at(a, floor), at(b, floor), at(c, floor), at(d, floor), clear(a), clear(b),
clear(c), clear(d), armEmpty} ∈ S be the initial state,

• g = {on(a,b)} ∈ G be the goal,

• P ′ = {on(blocks, blocks), at(blocks, locations), clear(blocks), armEmpty} ∈
P be a set of predicate,

• A′ = {pick(x), putdown(x), clearArm(), stack(x, y), unstack(x, y)} ∈ A be
set of actions,

• T ′ = {blocks, locations, string, numbers, anything} ∈ T be a set of types,
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• ∆ = ⟨d,P ′,A′,T′⟩ ∈ D be a domain.

• Π = ⟨∆,O′, s,g⟩ ∈ P be a problem.

• ρ = [pick(a), stack(a, b)] the user wants to ask question about,

• pick(c) the action the user wants to add to the plan. This may happen
because the user wants o to investigate how the solver would handle the
adjunct of useless action to the plan.

To enforce the solver to execute pick(c) the compilation process must modify both
Π and ∆. Thus starting from the domain, the procedure creates a new predicate
executed action, adds it to P ′ and consequently generates the respective fluent:
executed action. At this point, the process devises a new action using as a template
the action the user wants to remove from the plan, we call such new action pick′(x).
pick′(x) is equal to pick(x) except for its positive post-conditions that also contain
the new fluent executed action. At this point, the compilation alters the set of
action A′ removing pick(x) and adding pick′(x) to A′. Finally, the compilation
considers the problem Π adding the ground version of the fluent executed action
among the goal of the plan. The final plan according to the user suggestion is:
ρ′ = [pick(a), stack(a, b), pick(c)]

More formally, the new problem created in the compilation process is Π′ =
⟨∆′,O′, s,g′⟩ where:

• g′ = {on(a,b), executed pick(c)} ∈ G is the new goal,

• ∆ = ⟨d,P ′′,A′′,T′⟩ ∈ D is new a domain; where:

• P ′′ = {on(blocks, blocks), at(blocks, locations), clear(blocks), armEmpty,
executed action} ∈ P is the new set of predicate,

• A′ = {pick′(x), putdown(x), clearArm(), stack(x, y), unstack(x, y)} ∈ A is
new set of actions.

In this last formulation of the problem Π′ we explicitly represent only the elements
the compilation process alters.

3.2.3 Replacement of an Operator in a Plan

Let:

• ∆ ∈ D be a domain,

• O′ ∈ O be a set of objects,
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• s ∈ S be the initial state,

• g ∈ G be the goal,

• P ′ ∈ P be a set of predicate,

• A′ ∈ A be set of actions,

• T ′ ∈ T be a set of types,

• Θ ∈ Q3 be a question of a user.

Given a plan ρ = [a1, a2, . . . , an], a problem Π = ⟨∆,O′, s,g⟩ where the domain is:
∆ = ⟨d,P ′,A′,T′⟩ a question of the third type Θ is asked of the form:

Question 3. Why is ground action ai used in state s’ rather than operator b?

To replace a in the final plan there is no need to include additional elements
to the system; indeed, it is only necessary to force it to execute b in s obtaining
a new state s′′. Then s′ becomes a new initial state for the problem (hypothetical
problem):

Π′ = ⟨∆,O′, s′′,g⟩ (3.23)

where:

• ∆: is the former domain,

• O′: is the former set of objects,

• s′: is the new initial state defined as follows:

a(s, b) 7→ s′ (3.24)

• g: is the former goal.

Next, we generate the hypothetical plan (Π′ = ⟨ai+1, ai+2, . . . , an⟩) from the hy-
pothetical problem. Consequently, the final plan is obtained by concatenating the
operators of ρ until a, with b and operators within the Π′. Hence, the resulting
plan is: ⟨a1, a2, . . . , ai − 1, b, ai+1, ai+2, . . . , an⟩
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Example

Let:

• x ∈ V be a variable,

• y ∈ V be a variable,

• O′ = {a, b, c, d} ∈ O be a set of objects,

• s = {at(a, floor), at(b, floor), at(c, floor), at(d, floor), clear(a), clear(b),
clear(c), clear(d), armEmpty} ∈ S be the initial state,

• g = {on(a,x)} ∈ G be the goal,

• P ′ = {on(blocks, blocks), at(blocks, locations), clear(blocks), armEmpty} ∈
P be a set of predicate,

• A′ = {pick(x), putdown(x), clearArm(), stack(x, y), unstack(x, y)} ∈ A be
set of actions,

• T ′ = {blocks, locations, string, numbers, anything} ∈ T be a set of typesan,

• ∆ = ⟨d,P ′,A′,T′⟩ ∈ D be a domain,

• Π = ⟨∆,O′, s,g⟩ ∈ P be a problem,

• ρ = [pick(a), stack(a, b)] the user wants to ask question about,

• stack(a, c) the action the user wants to take pick(a) place in the plan,

• s′ the in which the action stack(a, c) should be executed in place of stack(a, b).

In this latter case, there is no need to alter ∆, we only need the compilation
to replace s with s’ in Π. More formally the compilation process creates a new
problem Π′ defined as follows: Π′ = ⟨∆,O′, s′,g⟩ ∈ P . At this point, we can
calculate the new plan without further modification to our model. The nontrivial
step is to handle the creation of the final plan; thus, it shall also contain the ground
actions in the original plan before stack(a, b). The final plan according to the user
suggestion is: ρ′ = [pick(a), stack(a, c)]

3.2.4 Comparison of plans

Let Θ ∈ Q4. Given two plans ρ and ρ′ a formal question Θ is asked of the form:

Question 4. Why plan ρ rather than plan ρ’ ?

In this case, there is no need for compilation as the user only asks for a com-
parison between two plans, not to change the problem to fit its expectations.
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3.2.5 Request for plan properties

Let Θ ∈ Q5. Given a plan ρ a formal question Θ is asked of the form:

Question 5. Why is plan ρ an appropriate solution?

As for the former question, the compilation process is unnecessary because
there are no constraints to add to the plan; the user only requires insight into ρ.



Chapter 4

Design

Armed with the formal description of our XAIP model, in this chapter, we examine
the design and the architecture of our software implementation proposal along with
possible means of interaction.

Namely, this chapter leverages the formal models provided in Chapter 2 and
Chapter 3 to envisage a software solution to reduce the gap between concepts and
implementation. In Section 4.1, we present the design of the architecture of our
solution, examining its core entities and some significant design choice. Section 4.2
discusses how to interact with the different components of the solution.

4.1 Architectural Design

We divide our project into multiple micro-modules, each representing a contribu-
tion to our proposal. Figure 4.1 illustrates the dependency graph depicting the
project’s overall architecture. More specifically, within the figure, we find the four
modules that form part of our proposal and a set of arrows that connect them.
Each arrow indicates a directed dependency from one module to another. As one
can notice from the figure, we design each module to be as self-contained as pos-
sible; however, some dependencies are inevitable for the coherence of the system;
thus, all the modules depend on the planning module as it provides the core entities
to use within the system.

More specifically, the planning module is a completely self-contained module
that includes our software proposal for the planning formal model. The planning
module is modular and extensible to better comply with the users’ needs and
application scenarios. To this extent, we exploit the APIs of the planning module
within the different modules of the project to build other abstractions remaining
consistent.

The explanation module is the centre of the project, as it contains the entity

43
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Planning system

DSL

Explanation system

Domain

Figure 4.1: Modules and Architectural Dependencies of the Project.

needed to address the challenges proposed by the XAIP domain. Coherently, as
advanced in the previous paragraph, it depends on the abstractions of the planning
module that we exploit to build the explanations.

The DSL module is a utility module to enhance the usage of the planning mod-
ule. More specifically, this module provides a handy way to exploit the planning
module’s entities: thus, it allows users to abstract many implementation details,
writing more readable and concise problems.

Finally, the domain module provides our implementation of the Block World
domain and Logistics domain as defined respectively in Section 2.2.1 and Sec-
tion 2.2.2. Namely, we propose implementations compliant with the abstraction
defined in the planning module.

In the following sections, we propose a reification into Object Oriented software
of the entities delineated in the previous chapters, along with the presentation of
new interfaces and methods to handle some core software aspects.

4.1.1 Planning module

This section presents our proposal for the reification of the planning’s formal model
defined in Section 2.1.1 examining its core blocks with an insight into some design
choices.

Building blocks

In the following lines, we provide a concise description of the central elements of
the module exhibited in fig. 4.2.
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VariableAssignment

merge(VariableAssignment): VariableAssignment

Predicate Type Domain

Problem
State

apply(Operator): Sequence<State>
isApplicable(Action): Boolean

Planner

plan(problem: Problem): Sequence<Plan>

Applicable

refresh(Context): Self
apply(VariableAssignment): Self

ValueOperator FluentBasedGoal
Effect

match(Effect): Boolean
mostGeneralUnifier(Effect): VariableAssignment

Fluent

negate(): Fluent
mostGeneralUnifier(Fluent): VariableAssignment
match(Fluent): Boolean

Object

apply(VariableAssignment): Object
refresh(Context): Object

Variable

refresh(Context): Variable

Action Goal

isSatisfiedBy(state: State): Boolean

Plan

Figure 4.2: UML diagram including the core entities of the Planning module.

Value: is a formal reification for entity Value presented in Section 2.1.1.

It is the top for hierarchy illustrated in fig. 4.3 composed by: variable or object,
which we examine in the following paragraphs.

Variable: is a software implementation for the abstraction Variable shown in
Section 2.1.1; thus, an entity that wraps a logic variable. A variable is responsible
for the parameterisation of an action. Variables that stand for terms of the problem
instance; are instantiated to object from a specific problem instance when an action
is grounded for application. We can instantiate a variable leveraging the method

«interface»
Object

«interface»
Value

refresh(Context): Variable
apply(VariableAssignment): Object

«interface»
Variable

Figure 4.3: UML diagram showing the hierarchy of Value.
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apply(), which performs a logic substitution of the variable.

Object: is a reification for the entity Object presented in Section 2.1.1. Ob-
jects are constants ; each object name must be unique and should be typed. If not
typed, they will typically take on the properties of the base type object [27].

ObjectSet: is an entity not present in the formal model; it aims to map a
set of objects to their type.

Type: is the software representation of the abstraction Type presented in Sec-
tion 2.1.1. Types are values that an object can assume, they determine the set of
allowed operations on each object. Types entities let users define parent-to-child
relationships by allowing a supertype definition.

Fluent: is the reification of formal entity Fluent shown in Section 2.1.1. It is a
ground logic fact which is true, or false at a given moment.

Predicate: is the software implementation of the abstraction Predicate pre-
sented in Section 2.1.1. Predicates are signatures for the fluents allowed in the
problem the user wants to model.

Goal: is the reification of the abstraction Goal presented in Section 2.1.1; we
devise it as an interface aimed at stating if the state satisfies a goal.

FluentBasedGoal: this interface is a specialized version of Goal. To this
extent, a FluentBasedGoal is a conjunction of fluents(ground, or not). Given that
FluentBasedGoals are a conjunction of fluents, we can see them as predicates on a
state; thus, a condition one can test as it returns a boolean result. Consequently,
the satisfiability of a FluentBasedGoal concerns the computation of the sub-set
relationship among states, and the FluentBasedGoal as the conjunction of fluents
that compose the FluentBasedGoals must all be in a state to consider the goal as
fulfilled.

Variable Assignment: it the software implementation of the formal entity Sub-
stitution presented in Section 2.1.1 is a general type for logic substitutions; a
Variable Assignment is a map used to assign values.

State: is the reification of the abstraction State shown in Section 2.1.1. A state
is a conjunction of ground fluents which one can manipulate by logical inference.
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Effect: is an abstraction that reify the Post-conditions presented Section 2.1.1.
The purpose of this concept is to bundle the operations these elements must per-
form, notably as advanced in Section 2.1.1, an action must be able to provide a
way for a user to check if it is applicable in a given state of the computation. We
can prove that by leveraging the unification methods:

• match() that states if any unification among two fluents is possible,

• mostGeneralUnifier() that returns the most general unifier between any
two fluents.

We show the structure of this entity in fig. 4.4.

Action: is the software implementation for the formal abstraction of Action pre-
sented in Section 2.1.1. Actions are ways of changing the state of the world. An
action description consists of two main parts: a description of the effects of the
action and the condition under which it is applicable.

As with any system for action description, our proposal needs to deal with the
frame problem1 defining what changes and what stays the same as the result of the
action. Thus, analogously to PDDL, we decide to define the result of an action in
terms of what changes; everything not altered is unmentioned [62]. As illustrated
by figure fig. 4.4, an action is a significant set of parameters; thus, an action is
represented by:

• name: a consistent name to capture the purpose of the action within the
domain;

• effects: a list of effects which can be either positive or negative; more
specifically:

– the negativeEffects represent all the conditions that became false
after the application of the action to the state;

– the positiveEffects on the contrary, represent all the conditions that
turn true after the application of the action to the state;

Precondition: the preconditions of action are conjunctions of literals that
determine its applicability at the current state of the world.

1Frame problem: it is a logic issue which concerns the definition of a formulæ able to describe
the effects of actions without having to write a large number of accompanying formulæ that
explain the mundane, obvious non-effects of those actions [55].
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«interface»

Action

name: String
positiveEffects: Set<Effect>
parameters: Map<Variable, Type>
preconditions: Set<Fluent>
negativeEffects: Set<Effect>
effects: Set<Effect>

«interface»

Effect

positive: Boolean
fluent: Fluent

mostGeneralUnifier(Effect): VariableAssignment
mostGeneralUnifier(Effect): VariableAssignment
match(Effect): Boolean
match(Effect): Boolean

«interface»

Operator

args: List<Value>

Figure 4.4: UML diagram showing the hierarchy of Action.

Post-conditions: the post-conditions of action are conjunctions of literals
that define the action’s effects on the world. The effects can be either positive or
negative.

Operator: is a ground action, or in other words, an action that is fully
instantiated and has no variables among its terms.

Applicable: is one of the abstractions which is not formally represented in the
formal model presented in Section 2.1.1. This element provides a signature for all
the entities that must perform a logic substitution. The applicable hierarchy is
illustrated in fig. 4.5. From the figure we can notice that the interface provides
two methods:

• apply(),

• refresh()

Both of them are required within the logic paradigm to handle correctly a logic
substitution. The first, apply(), is responsible for the implementation of the logic
substitution, whereas refresh() is a utility method leveraged to handle correctly
the variable names within the logic paradigm. The details of this latter method
will be discussed in Chapter 5.

Domain: is the software implementation of the entity Domain shown in Sec-
tion 2.1.1. A Domain synthesises the pivotal aspects of a specific domain, i.e.
predicates and actions allowed as shown in fig. 4.6.
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«interface»
Applicable

Self

refresh(Context): Self
apply(VariableAssignment): Self

«interface»
Effect

positive: Boolean
fluent: Fluent

match(Effect): Boolean
match(Effect): Boolean
mostGeneralUnifier(Effect): VariableAssignment
mostGeneralUnifier(Effect): VariableAssignment

«interface»
Fluent

name: String
args: List<Value>
ground: Boolean
instanceOf: Predicate
negated: Boolean

negate(): Fluent
match(Fluent): Boolean
mostGeneralUnifier(Fluent): VariableAssignment

«interface»
FluentBasedGoal

targets: Set<Fluent>

«interface»
Operator

args: List<Value>

«interface»
Value

ground: Boolean

Figure 4.5: UML diagram showing the hierarchy of Applicable.

«interface»
Domain

name: String
types: Set<Type>
predicates: Set<Predicate>
axioms: Axiom?
actions: Set<Action>

Figure 4.6: UML diagram showing the Domain entity.
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«interface»
Problem

goal: Goal
initialState: State
objects: ObjectSet
domain: Domain

Figure 4.7: UML diagram showing the Problem entity.

«interface»
Planner

plan(Problem): Sequence<Plan>

«interface»
Problem

goal: Goal
initialState: State
objects: ObjectSet
domain: Domain

«interface»
Plan

operators: List<Operator>

«interface»
Operator

args: List<Value>

Figure 4.8: UML diagram showing the dependencies within the Planner entity.

Problem: is the reification of the Problem presented in Section 2.1.1. A problem
wraps the critical constraints (i.e. goal, initial state, object allowed, etc.), about
the underlying problem for a plan to a generated plan to be effective for execution
as shown in fig. 4.7.

Plan: is a software implementation for the Plan abstraction presented in Sec-
tion 2.1.1. A plan is a type for the result of the planning computation; if a planner
can find at least one possible way to solve the problem it can devise a sequence of
operators that leads from the initial state to goal one.

Planner: is the reification for entity Planner shown in Section 2.1.1 is the entity
that encompasses the resolution strategy that given a problem produces a plan to
accomplish its goal. A representation of this entity is in fig. 4.8, from this we can
understand that a planner is an entity which exploits a Problem to devise a Plan.
Accordingly, this concept only needs one method: plan() which encapsulates the
resolution strategy for the problem. Thus, within the scope of the project, a
planner is essentially any entity that given a problem can devise a plan.



4.1. ARCHITECTURAL DESIGN 51

DSL

Given the structural complexity of the components of the planning system, we
decide to design a DSL to enhance its usage.

Accordingly, we envisage the DSL as a software layer that introduces a level
of abstraction aimed at hiding behind the scenes the complexity of the planning
system. More specifically, we devise this component to provide a high-level lan-
guage to define a planning problem, and consequently all its components, to this
extent our DSL must be fully interoperable and integrated with the planning sys-
tem meaning that all the features of the planning system can be exploited from
within our DSL.

Essentially, this domain-specific language is a straightforward way to write
the planning entities avoiding repetition and improving their understandability,
readability and reuse. The DSL is a pivotal component of the proposal as it
fosters its usage providing a way to write problems more conveniently.

4.1.2 Explanation module

In the next paragraphs, we introduce the core elements of the explanations. This
second part is the core of our proposal as it defines the components used to provide
the explanations. As for the planning system, these elements are an implementa-
tion for the formal model designed in Chapter 3. A UML representation of the
module’s core elements is in fig. 4.9, as one can see, the system is defined by a
minimal set of components, that can satisfy a variety of use cases.

To improve the readability of the diagram we decide not to explicitly represent
usage dependencies from the planning system.

Building blocks

In this paragraph, we give a comprehensive overview of the main components of
the explanation module.

Question: it is the interface that reify the Question abstraction proposed in Sec-
tion 3.1.1. Thus, it is an entity that represents the demand the user wants
to ask the system. This entity is meant to bundle all the questions presented
in table 3.1. To this extent, it is the top of the hierarchy that is shown in
fig. 4.10. More specifically, the figure shows the following class:

• QuestionRemoveOperator that is software implementation of Question
1, defined in Section 3.1.1,

• QuestionAddOperator that is reification of Question 2, proposed in
Section 3.1.1,
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«interface»
ExplanationPresenter

present(): String

«interface»
Explanation

isPlanValid(): Boolean
isProblemSolvable(): Boolean
isPlanLengthAcceptable(): Boolean
minimalSolutionLength(): Int

«interface»
Explainer

explain(Question): Explanation
minimalPlanSelector(Problem): Plan

«interface»
Simulator

simulate(Plan, State): List<State>

«interface»
Question

buildHypotheticalDomain(): Domain
buildHypotheticalProblem(): Sequence<Problem>

Figure 4.9: UML diagram including the core entities of the Explanation module.

• QuestionReplaceOperator that represents the abstraction Question 3
shown in Section 3.1.1,

• QuestionPlanProposal that is software implementation of Question 1,
defined in Section 3.1.1,

• QuestionPlanSasfiability that reify the concept of Question 5 pre-
sented in Section 3.1.1.

From the fig. 4.10, we can see that we bundle the elements leveraged from
all the questions in a base class, whereas each sub-class has its sub-set of
parameters needed by the user to formulate that specific query. These pa-
rameters are indeed the constraints, to add to the model of the problem to
reconcile it with the user model. At the top of the hierarchy we also define
two methods:

• buildHypotheticalDomain(),

• buildHypotheticalProblem()

which are responsible for the compilation process formally defined in Sec-
tion 3.2. Along these lines, we conceive the compilation process as an in-
ternal operation executed in two steps, one performed by calling the first
method, buildHypotheticalDomain(), that is in charge of the creation of
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Figure 4.10: UML diagram showing the hierarchy of Questions.
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a new domain containing the constraints required by the user and the other
using the second, buildHypotheticalProblem(), that is responsible for the
generation of a new problem according to the user suggestions. More specif-
ically, reifying the model proposed in Section 3.2, we devise each Question
to implement the above-mentioned methods differ according to its type.

Explanation: is element that reify the abstraction of Explanation presented in
Section 3.1.2. The Explanation is the second pivotal entity of the explanation
module, it encapsulates the answer to the question posed by the user. This
entity comprises both the general and the contrastive explanation. Indeed
despite the formal model presented in Section 3.1.2 the explanation has not
devised a hierarchy but as a single abstraction. To this extent, we evaluate
that from a software implementation point of view there was no need to de-
couple the concepts of General Explanation and the Contrastive Explanation.
Consequently, we delegate to the Explainer and the ExplanationPresenter
the task of modelling the different types of explanation whenever a user asks
for their presentation. Thus, these two elements are crucial to keep untangle
the model of the explanation, from its actual implementation and presenta-
tion.

Explainer: the interface that reify the entity Explainer proposed in 3.1.3. The
Explainer is the element responsible for the communication between the lay
user and the explanation system. To this extent, the main purpose of the
explainer is to provide a way for a user to express a question to submit to
the explanation system along with a planner. Indeed, aiming to envisage a
planner-agnostic software proposal for XAIP, the explainer must also require
the user to provide the planner that will be used within the Explanation
entity to design the new solutions and explanation for the problem.

ExplanationPresenter: is the component used to present an explanation in a
user-friendly format. Indeed, this element is meant to uncouple the design
of the explanation from its presentation. Thus, it provides a convenient way
to display general and contrastive explanations.

Simulator : is the element leveraged by the Explanation to determine if the
updated model or the plan proposed by the user provides a valid solution for
the starting problem. Therefore this component must be able to simulate
the execution of a given plan leveraging a convenient way to understand if
it is an acceptable solution for a problem or not. That is a pivotal element
for the explanation system as it provides an opportune way to test the user’s
proposals for new plan constraints as well as alternative plans.
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4.2 Interaction

The central contribution of this thesis is the design of a model for XAIP and the
implementation of a software proposal compliant with it; thus, our proposal is
mainly composed of structural entities. Because of the lack of active entities, such
as agents, we can reduce the behaviour of the system to the major components
of the planning and explanation systems. More specifically, the project consists
of a software library that has no active entity; therefore, there is no active inter-
action among the components. Once the user defines the domain, the problem,
or the question (whether using the planner, the DSL or the explanation system),
the library passively utilizes these latter, and the elements therein contained to
compute the plans to solve the problem, if they exist, or the explanation the user
required. However, from an interaction perspective, one can distinguish at least
two active entities for the planner and the explanation system.

4.2.1 Planning system

This section analyses the main concepts involved when a user wants to create a
planning problem and solve it. To this extent, we do not focus on single elements
of the planning module used for the elaboration, but we give a high-level overview
of the process. For the planning module one can find three (or four in case one is
using the DSL) entities:

• the user, who wants to utilize the planning system to define the domain for
a problem and later the problem itself,

• the planning system who is responsible for the generations of the two
elements required by the user,

• the planner who is asked by the planning system to generate the plans to
solve a given problem and,

• optionally the DSL, in case one decided to exploit it. The DSL is responsible
for converting the call made by the user behind the scenes into terms under-
standable for the planning system and calling it to solve the query required
by the user.

In fig. 4.11 is shown the sequence diagram for the planning system, whereas
the fig. 4.12 illustrates the sequence diagram for leveraging the DSL.

The figures show that we divide the process into two pivotal phases: the sys-
tem’s initialization and the planning phase.
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User

User

Plannig System

Plannig System Planner

Initialization

createDomain(parameters)

generateDomain(parameters)

solution(Domain)

generateProblem(Domain)

generateProblem(parameters)

solution(Problem)

Planning

solve(Problem)

solve(Problem)

Planner

plan(Problem)

successful case

stream(plans)

stream(plans)

failure

stream(empty)

stream(empty)

Figure 4.11: Sequence diagram showing the plan generation without the usage of
the DSL module.
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User

User

Plannig System

Plannig System

DSL

DSL Planner

Initialization

createDomain(parameters)

createDomain(parameters)

generateDomain(parameters)

solution(Domain)

generateProblem(Domain)

generateProblem(Domain)

generateProblem(parameters)

solution(Problem)

Planning

solve(Problem)

solve(Problem)

Planner

plan(Problem)

successful case

stream(plans)

stream(plans)

failure

stream(empty)

stream(empty)

Figure 4.12: Sequence diagram showing the plan generation leveraging the DSL
module.
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Initialization phase: it is the first phase concerning the user-system interaction
when a user aims to devise a plan to solve a given problem. This phase is
itself divided into two consequent phases. First, the planning system employs
the parameters received from the user to build a domain model complaint
with them. Next, it exploits that new domain along with the parameters
provided by the user to create a new problem for the given domain.

Planning phase: the planning phase is the core of the computation; it takes
place whenever a user requires the planning system to solve a given problem.
At this point, the planning system leverage an internal planner to compute
the solutions for the problem and return them to the user. In this context,
it is relevant to underline that the problem provided by the user could not
be solvable; in this case, the planner would not be able to devise any plan
and would return an empty solution.

From the figures, one can notice that the computation for the generation of the
domain and the problem is almost identical in leveraging or not the DSL module
because the DSL only introduces a small software layer built on top of the planning
module. However, this layer is essential to provide users with a compact means to
instantiate and use planning entities.

4.2.2 Explanation system

This section examines how the user can leverage the explanation system to obtain
an explanation. As in Section 4.2.1, we will not focus on the single elements of the
system; however, we provide a concise overview of the main concepts involved in
the interaction.

From the interaction perspective, the main entities involved when an explainee
asks for an explanation are:

• the explainee, thus a user that wants to inquire about the system posing
its questions,

• the explanation system that is responsible for the elaboration of the ex-
planation,

• the planning system is exploited behind the scenes during the compilation
process to generate the hypothetical problem and optionally the hypothetical
domain.

Figure 4.13 shows a general interaction between an explainee and our system
proposal when the explainee demands either of the following types of questions:
Θ1, Θ2, or Θ3.



4.2. INTERACTION 59

User

User

Explanation System

Explanation System

Planning System

Planning System Planner

Model reconciliation

ask(question)

extractConstraints(question)

createDomain(constraints, domain)

solution(hypotheticalDomain)

createProblem(constraints, problem)

solution(hypotheticalProblem)

Explanation computation

solve(hypotheticalProblem)

solve(hypotheticalProblem)

Planner

plan(hypotheticalProblem)

solution(hypotheticalPlan)

solution(hypotheticalPlan)

elaborateContrastiveExplanation(hypotheticalPlan)

solution(explanation)

Figure 4.13: Diagram describing the user-system interaction in case the user de-
mands the system an explanation for Θ1, Θ2, or Θ3.
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From the figure, one can see that we leverage two crucial steps to elaborate the
explanation for those types of questions:

• the model reconciliation (described in Section 3.1.2),

• the explanation generation.

Within this framework, we can see that when there is a mismatch between the
expectation of the explainee and the plan proposed by an automatic solver, the
explainee may start an interaction with the system asking it for an explanation.
To this extent, the explainee formulates a question for the explanation system,
where the explainee makes some suggestions to make the planner model adhere to
the explainee mental one.

When the explanation system receives a question from an explainee performs
two major activities: the model reconciliation and the explanation generation.

Model reconciliation: the explanation system is firstly responsible for the rec-
onciliation process. The reconciliation process has two pivotal steps: the
extraction of user suggestions and the generation of the model. More specifi-
cally, firstly, the explanation system retrieves the suggestions of the explainee
from the question and translates them into new constraints to add to the
problem model. Consequently, it exploits the planning system to elaborate
a new domain and problem complaint with user suggestions. The result of
this second step is the Hypothetical Domain and Hypothetical Problem ex-
amined in Section 3.2; the generation of these two elements terminates the
compilation process.

Explanation generation: after devising the hypothetical domain and problem,
the planning system computes the hypothetical plan and returns it to the
explanation system to build the explanation to present to the user.

Otherwise, if the user requires a question of the type: Θ4 or Θ5, the explanation
system will not need any phase of model reconciliation. Indeed, as shown fig. 4.14,
in this case, the user only requires the system to have insight into the properties
of the plan, or compare two solutions; therefore, there would be no need for it to
generate different a different model.
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User

User

Explanation System

Explanation System

askQuestion(parameters)

extractConstraints(parameters)

elaborateExplanation(parameters)

solution(explanation)

Figure 4.14: Diagram describing the user-system interaction in case the user has
an explanation for Θ4 and Θ5.
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Chapter 5

Implementation and Validation

This chapter is about two crucial aspects of our proposal: its software implemen-
tation and validation. To this extent, we begin the chapter by presenting how we
implement our software solution on top of the design details discussed in Chap-
ter 4, focusing only on the most significant implementation choices. Afterwards,
we propose an assessment of our proposal along with some validation metrics.
More specifically, in Section 5.2.1 we describe how we test our implementation.
Section 5.2.2 shows a brief hands-on demonstration of how we can leverage our
proposal to inquire a planner about a solution proposed by an automatic solver and
require it to add constraints to the initial model and generate an explanation for
the novel plan. Finally, in the last section of this chapter, Section 5.2.3, we provide
performance benchmarks of our XAIP library for a set of running examples.

It is worth mentioning that our software implementation is available on GitHub1

as an open-source project under the Apache 2.0 licence.

5.1 Implementation

This section provides an in-depth tour of some significant implementation choices
of the central modules of the proposal: the planning and explanation modules,
besides discussing some details of the others.

Abstraction reification: we implement all the core types described in Sec-
tion 4.1 as interfaces. Each interface designed has a companion object (Sin-
gleton) containing several static factory methods, named “of”, that handle the
actual creation of instances. These methods usually follow the same pattern:
<Type>.of(<args>), their purpose is to let the user decide which type of ar-

1https://github.com/pikalab-unibo-students/xaip-lib
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guments to use for the object instantiation preventing the user to perform the
conversion.

We reified almost every interface in a class, more specifically given that most of
our entities were structural elements we implemented them as Kotlin Data Class.
Accordingly, following Kotlin guidelines, we decide to implement all structural en-
tities using that data structure to ensure immutability while avoiding boilerplate
code. Immutability is a code design practice that guarantees several advantages
that range from preventing memory waste on copies of the same instances to pro-
viding thread-safe objects. Within our software proposal, we ensure immutability
by defining all the properties of the data classes as read-only variables. To this
extent, immutability is a key aspect of our library. Indeed, as several parts of our
software proposal share instances of the same elements, we exploit the opportunity
to perform expensive computations only once. We then save their results to return
them in every subsequent request.

Self type support: unlike other languages such as Scala or Java, Kotlin does not
natively support self types, to overcome that limitation, and let inherited methods
know the type of the class on which they are called we exploit the Curiously Re-
curring Template Pattern. Within this context, the Curiously Recurring Template
Pattern(CRTP) is a C++ idiom in which a class X derives from a class template
instantiation using X itself as template argument; so that the base class can know
the derived type [39]. In the planning module, we exploit the CRTP to implement
the Applicable interface. As outlined in the Chapter 4, Applicable represents
a signature for each entity that should perform a substitution and defines two
methods apply() and refresh(), both of which can only perform their internal
computation by knowing the base class from which the methods are called.

Laziness: to minimize the number of “heavy operations” as well as the waste of
memory we leverage two significant Kotlin strategies: lazy initialization and lazy
evaluation.

Lazy initialization: it is widely known that class initialization can be a
“heavy process” that in the worst cases can result in delays for the whole appli-
cation. To overcome this issue, we make extensive use of the lazy initialization
methods of Kotlin. Kotlin provides two keywords to implement lazy initialization,
lateinit and by lazy, and we make use of both of them within our library. Par-
ticularly in the explanation module, we make relevant use of the second keyword,
defining by lazy a large set of fields. To this extent, the usage of that keyword
allows the system to initialize each field only if and when it is required. This saves
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memory and prevents overloading the class creation process with initializations
that may be delayed.

Lazy evaluation: is an evaluation strategy that postpones the evaluation of
an expression until its value is needed. This strategy is particularly well suited
to all those elements that do not need repeated evaluation or must handle poten-
tially infinite data structures. Kotlin provides a convenient data type to evaluate
expressions only if and when they become necessary at runtime: Sequences. We
leverage Kotlin Sequences in all those entities that handle nondeterministic sce-
narios. We rely on Sequences instead of other data structures eagerly evaluated
for efficiency and performance. This is because lazy evaluation allows us to avoid
computing all the possible solutions for a given scenario but only a given subset of
them. Avoiding possible long computations is a central requirement for those com-
ponents that must work with large state spaces; a blatant example is the Planner.
Thus, in general, a planner may devise numerous plans that satisfy a goal for a
problem; however, the user hardly ever wants to see all of them. For this reason,
it is usually unnecessary for the planner to perform such long computations.

Variable refreshing: is a basic mechanism that allows a formula to be re-used in
different contexts, avoiding undesired variable assignments. In practice, a formula
is refreshed by consistently replacing each variable contained with some bare new
variable of a similar name never used before [16]. That aspect is a central issue
to be considered for the project, as without proper variable refreshing, spurious
substitution could happen. To avoid that issue all the entities can perform a logic
substitution; thus, all the entities inherited from Applicable provide a refresh()
method which takes an instance of the context as a parameter to perform the
refreshing operation. Knowing the context is essential to avoid renaming variables
that belong to the same environment.

5.2 Validation

5.2.1 Testing

It is widely agreed that testing is a crucial activity in software engineering. Thus, in
this section, we examine the test suite developed to validate our software proposal.
We organize our project into modules, each with its own testing suite. Accordingly,
each testing suite includes a set of automated tests to corroborate the compliance of
the module classes with the awaited behaviour and eavesdrop on possible blunders.
We designed three types of tests:
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Unit tests: the central goal of this kind of test is to verify the behaviour of single
functionalities of one class (i.e. single methods or even single lines of code),
thus they require detailed knowledge of the internal program design and
code.

Integration tests: these tests aim to examine how a limited number of parts of
the system work correctly together.

System tests: are the pivotal part of the testing suite they focus on validating
the whole system behaviour and attempting to reproduce the final user usage
of the proposal.

All the test cases are implemented withKotest2 a multi-platform testing framework
for Kotlin.

5.2.2 Proof of Concept Demonstration

This section provides some usage examples of our software proposal. For the
demonstration, we leveraged two problems, one from the Block World and one
from the Logistics domain; demonstrating how to create problems and perform the
reconciliation process to determine explanations for plans. Within our examples,
we assume the user already has a plan from an automatic planner that the user
doesn’t fully understand, and as a result, wants to get clarifications about it.

In general, we can summarize the core steps the user must perform to get an
explanation as follows:

• to begin, the user defines a model for a problem and a domain;

• the user then instantiates an appropriate question specifying its parameters;
commonly: the problem and the domain defined in the previous step, the
plan retrieved from the automatic planner and the user’s suggestions;

• consequently, the user must instantiate an Explainer; thus, the compo-
nent responsible for building an explanation from a given question and an
ExplanationPresenter, which is the entity entitled to show the explanation
in a user-friendly way.

Logistics

The first end-to-end example we examine consists of a simple transportation prob-
lem within the Logistics domain. In this context, we assume a user wants to move

2https://kotest.io/

https://kotest.io/
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Figure 5.1: Graph representing the configuration of the locations of the Logistics
problem.

some objects that we call containers in a given location and wants to exploit an
agent, which we call a robot, to do so.

As mentioned before, to begin, the user must define a model for the problem.
The user can do so by leveraging the DSL, as shown in listing 5.1 and listing 5.2.
The model defined reifies the description proposed in Section 2.2.2; within this
context, we call:

• r: the robot agent;

• c1 and c2: the two containers;

• l1, . . . , l7: the locations. Particularly, we arrange the locations as a graph
shown in fig. 5.1.

Thus, the listing 5.1 models an agent, two objects and a set of positions within
which the agent can move to displace the objects. Listing 5.2 presents a Logistics
problem in which the user aims the robot both to move the containers from their
former locations to some new ones and eventually for the robot to reach a new site.
Within this framework, to solve the problem an automatic planner may propose
the plan shown in listing 5.3.

However, a user may have a different idea in mind; the user may want to know
why the robot did not go to l6 to arrive at l5. The user may ask that question for
several reasons; for example, the user may know something that is not modelled
in the problem, for instance, that the route from l4 to l5 is momentary, not
accessible for some reason or that the path from l6 is more rapid. Whatsoever
the reason, the user may want to force the system to check if there is a feasible
solution for the robot to go to l6 instead of l4.

To require the system to do so, the user should define an appropriate question,
QuestionReplaceOperator, instantiating it with the proper parameters, as shown
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Listing 5.1: Snippet showing the Logistics domain.�
1 val domain = domain {

2 name = "logistics_world"

3 types {

4 +"anything"

5 +"strings"("anything")

6 +"locations"("strings")

7 +"robots"("strings")

8 +"containers"("strings")

9 }

10 predicates {

11 +"connected"("locations", "locations")

12 +"atLocation"("robots", "locations")

13 +"loaded"("robots", "containers")

14 +"unloaded"("robots")

15 +"inContainerLocation"("containers", "robots")

16 }

17 actions {

18 "move" {

19 parameters {

20 "X" ofType "robots"

21 "Y" ofType "locations"

22 "Z" ofType "locations"

23 }

24 preconditions {

25 +"connected"("Y", "Z")

26 +"atLocation"("X", "Y")

27 }

28 effects {

29 +"atLocation"("X", "Z")

30 -"atLocation"("X", "Y")

31 }

32 }

33 "load" {

34 parameters {

35 "Z" ofType "locations"

36 "Y" ofType "containers"

37 "X" ofType "robots"

38 }

39 preconditions {

40 +"atLocation"("X", "Z")

41 +"inContainerLocation"("Y", "Z")

42 }

43 effects {

44 +"loaded"("X", "Y")

45 -"inContainerLocation"("Y", "Z")

46 }

47 }

48 "unload" {

49 parameters {

50 "Z" ofType "locations"

51 "Y" ofType "containers"

52 "X" ofType "robots"

53 }

54 preconditions {

55 +"atLocation"("X", "Z")

56 +"loaded"("X", "Y")

57 }

58 effects {

59 +"inContainerLocation"("Y", "Z")

60 -"loaded"("X", "Y")

61 }

62 }

63 }

64 }
� �
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Listing 5.2: Snippet showing the Logistics problem.�
1 val problem = problem(domain) {

2 objects {

3 +"robots"("r")

4 +"locations"("l1", "l2", "l3", "l4", "l5", "l6", "l7")

5 +"containers"("c1", "c2")

6 }

7 initialState {

8 +"atLocation"("r", "l1")

9 +"inContainerLocation"("c1", "l2")

10 +"inContainerLocation"("c2", "l3")

11 +"connected"("l1", "l2")

12 +"connected"("l1", "l3")

13 +"connected"("l2", "l4")

14 +"connected"("l3", "l4")

15 +"connected"("l4", "l5")

16 +"connected"("l1", "l6")

17 +"connected"("l5", "l6")

18 +"connected"("l5", "l7")

19 +"connected"("l1", "l5")

20 +"connected"("l2", "l1")

21 +"connected"("l3", "l1")

22 +"connected"("l4", "l2")

23 +"connected"("l4", "l3")

24 +"connected"("l5", "l4")

25 +"connected"("l6", "l2")

26 +"connected"("l6", "l5")

27 +"connected"("l7", "l5")

28 +"connected"("l5", "l1")

29 }

30 goals {

31 +"atLocation"("r", "l5")

32 +"inContainerLocation"("c1", "l4")

33 +"inContainerLocation"("c2", "l1")

34 }

35 }
� �

Listing 5.3: Snippet showing the plan proposed by the automatic planner to solve
the problem defined in listing 5.2.�

1 val formerPlan = Plan.of(

2 listOf(

3 moveRfromL1toL3 ,

4 loadC2fromL3onR ,

5 moveRfromL3toL1 ,

6 unloadC2fromRtoL1 ,

7 moveRfromL1toL2 ,

8 loadC1fromL2onR ,

9 moveRfromL2toL4 ,

10 unloadC1fromRtoL4 ,

11 moveRfromL4toL5

12 )

13 )
� �
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Listing 5.4: Snippet showing the question of type Θ1 for the problem defined in
listing 5.2.�

1 val question = QuestionReplaceOperator(

2 problem ,

3 formerPlan ,

4 moveRfromL4toL6 ,

5 8,

6 alternativeState

7 )
� �

Listing 5.5: Snippet showing an instance of the Explainer.�
1 val explainer = Explainer.of(Planner.strips ())

2

3 val explanation = explainer.explain(question)
� �

in listing 5.4. Thus, specifying the problem to analyze, the plan proposed by the
automatic planner, the operator that the user wants to add to the plan, the position
it should take within it and the state in which the replacement should take place.

At that point, the user should create an Explainer and initialize it with a
Planner as shown in listing 5.5. Therefore, the user should instantiate an appro-
priate ExplanationPresent according to the type of explanation the user would
like to receive. In this case, we assume the user would like a general explanation;
to this extent, the user can create a BaseExplanationPresenter and require it
to display the explanation (listing 5.6). The explanation demonstrates that it is
possible to reach l5 from l6. However, one can notice that a general explanation
can be quite verbose whereas a user may want a more concise answer. In such
cases, the user can ask the system for a simplified version of the general explana-
tion by calling presentMinimalExplanation(). Listing 5.8 shows the output of
this second call. The two explanations provide a similar insight into the property
of the solution proposed, but the second one presents it in a more concise way. To
this extent, we design “minimal explanations” for proficient users who may not be
interested in a detailed explanation in natural language.

Listing 5.6: Snippet showing an instance of the BaseExplanationPresenter.�
1 ExplanationPresenter.of(explation).present ()
� �
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Listing 5.7: Snippet showing a general explanation for the question proposed in
listing 5.4.�

1 The problem [atLocation(r, l5), inContainerLocation(c1, l4), inContainerLocation(

c2, l1)] is solvable.

2 The former plan was: [move(r, l1 , l3), load(l3, c2 , r), move(r, l3, l1),

3 unload(l1, c2, r), move(r, l1, l2), load(l2, c1, r), move(r, l2 , l4),

4 unload(l4, c1, r), move(r, l4, l5)]

5 The novel plan is: [move(r, l1, l3), load(l3, c2, r), move(r, l3, l1),

6 unload(l1, c2, r), move(r, l1, l2), load(l2, c1, r), move(r, l2 , l4),

7 unload(l4, c1, r), move(r, l4, l6), move(r, l6, l5)].

8 The novel plan is a valid solution to the problem.

9 The minimal solution is: [move(r, l1 , l3), load(l3, c2, r), move(r, l3 , l1),

10 unload(l1, c2, r), move(r, l1, l2), load(l2, c1, r), move(r, l2 , l4),

11 unload(l4, c1, r), move(r, l4, l5)]

12 The plan is not the minimal solution.

13 There are 2 additional operators with respect to the minimal solution:

14 [move(r, l4 , l6), move(r, l6, l5)].
� �

Listing 5.8: Snippet showing a “minimal explanation” for the question proposed
in listing 5.4.�

1 The plan: [move(r, l1 , l3), load(l3, c2 , r), move(r, l3, l1), unload(l1, c2, r),

move(r, l1 , l2), load(l2, c1, r), move(r, l2 , l4), unload(l4 , c1 , r),

2 move(r, l4 , l6), move(r, l6, l5)], is valid: true

3 The length is acceptable: true

4 Operators missing: [move(r, l4 , l5)]

5 Additional operators: [move(r, l4, l6), move(r, l6, l5)]
� �



72 CHAPTER 5. IMPLEMENTATION AND VALIDATION

Listing 5.9: Snippet showing the Block World problem.�
1 val problem = problem(domain) {

2 objects {

3 +"blocks"("a", "b", "c", "d")

4 +"locations"("floor", "arm")

5 }

6 initialState {

7 +"on"("a", "b")

8 +"on"("c", "d")

9 +"arm_empty"

10 +"clear"("a")

11 +"clear"("c")

12 +"at"("b", "floor")

13 +"at"("d", "floor")

14 }

15 goals {

16 +"clear"("b")

17 +"on"("b", "d")

18 +"on"("d", "c")

19 +"on"("c", "a")

20 +"at"("a", "floor")

21 }

22 }
� �
Block World

The second proof of concept demonstration is a manipulation problem from the
Block World Domain. As advanced in Section 5.2.2, firstly the user defines the
domain3 followed by the problem (listing 5.9).

The model is a reification of the Block World formal model of Section 2.2.1;
within this context, we call:

• a, b, c, d: the blocks;

• arm: the agent in charge of moving the blocks;

In this example, the goal of the problem is to change the initial configuration of the
blocks by “unstacking” all of them from their initial arrangement and disposing
of them in the goal configuration. Listing 5.10 shows the plan proposed by the
planner; however, a user may have a different idea in mind; more specifically, the
user may ask why the arm did not put down the block c before putting it on the
block a.

The reason for an expert is trivial; it is a pointless operation; indeed, if the
arm already holds the block c because it has already performed an “unstack”
operation, there is no need to put it down and then pick it up to stack it on the

3Due to the length of the Block World domain definition, we do not explicitly model it in this
document; we assume it is the same as in Section 2.2.1.
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Listing 5.10: Snippet showing the plan solving the problem defined in listing 5.9
that cause the mismatch.�

1 val initialPlan = Plan.of(

2 listOf(

3 unstackAB ,

4 putdownA ,

5 unstackCD ,

6 stackCA ,

7 pickD ,

8 stackDC ,

9 pickB ,

10 stackBD

11 )

12 )
� �
Listing 5.11: Snippet showing a question of type Θ2 for the problem defined in
listing 5.9�

1 val question = QuestionAddOperator(

2 problem ,

3 initialPlan ,

4 putdownC ,

5 3

6 )
� �
block a. However, a user not proficient in the Block Domain may not think about
it. Therefore, the user may ask why the planner has not done the “putdown”
operation before the “stack” one. To this extent, listing 5.11 illustrates how the
user can ask the system such a question. Thus, the user only has to create a proper
question, in this case, a QuestionAddOperator, specifying the operator to add to
the plan and the position it should take.

Within this context, it is relevant to notice that the user is unaware of the
compilation process that is triggered when asking the question. The result of this
operation is neither an instance of the hypothetical domain nor the hypothetical
problem but one of the required question. Consequently, the user can transparently
create an Explainer providing the Planner to use (listing 5.5) for the generation
of the explanation and then instantiate an ExplanationPresenter to visualize it
conveniently as shown in listing 5.6.

This first use example simulates the case in which a user asks for a general
explanation. The output of the explanation reveals that the plan devised following
the user’s suggestions does not hold true; that is because if the arm has laid down
the block a, then it has to pick it up at some point as well. For this reason in our
explanation (listing 5.12), we point out that the user’s suggestions result in a plan
that is invalid because an operator is missing. However, it may also happen that a
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Listing 5.12: Snippet showing the general explanation for the question proposed
in listing 5.11.�

1 The problem [clear(b), on(b, d), on(d, c), on(c, a), at(a, floor)] is solvable.

2 The former plan was: [unstack(a, b), putdown(a), unstack(c, d), stack(c, a), pick(

d), stack(d, c), pick(b), stack(b, d)]

3 The novel plan is: [unstack(a, b), putdown(a), unstack(c, d), putdown(c), stack(c,

a), pick(d), stack(d, c), pick(b),

4 stack(b, d)].

5 The novel plan is not a valid solution for the problem.

6 The minimal solution is: [unstack(a, b), putdown(a), unstack(c, d), stack(c, a),

pick(d), stack(d, c), pick(b), stack(b, d)]

7 The plan is not the minimal solution. There is 1 additional operator with respect

to the minimal solution: [putdown(c)].
� �
Listing 5.13: Snippet showing a question of type Θ4 for the problem defined in
listing 5.9.�

1 val question = QuestionPlanProposal(problem , formerPlan , planProposal)
� �
user has a valid solution in mind and wants the system to analyze it. In this case,
the user may ask the system a different question, namely a QuestionPlanProsal.

Within this framework, the user only has to instantiate the new question (list-
ing 5.13), pass it to the former Explainer and require the ExplanationPresenter
an explanation.

In this case, in addition to a general explanation, the user may also want a
contrastive one. To do so, the user only has to create a new ContrastiveExpla-

nationPresenter (listing 5.14) and ask for the two explanations.

Within this framework, it is relevant to notice that to obtain a contrastive
explanation the user must leverage a ContrastiveExplanationPresenter, which
besides providing a contrastive explanation, can also show general ones. List-
ing 5.15 shows the output for the general explanation. At first glance, it is similar
to the previous case; however, it is worthwhile to notice that besides having addi-
tional operations the system classifies the revised plan proposed by the user as a
valid solution to the problem.

On the other hand, a contrastive explanation provides a concise way to compare

Listing 5.14: Snippet showing an instance of the ContrastiveExplanationPre-

senter.�
1 val presenter = ContrastiveExplanationPresenter.of(explanation)

2

3 presenter.presentContrastiveExplanation ()
� �
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Listing 5.15: Snippet showing the general explanation to the question defined in
listing 5.13.�

1 The problem [clear(b), on(b, d), on(d, c), on(c, a), at(a, floor)] is solvable.

2 The former plan was: [unstack(a, b), putdown(a), unstack(c, d),

3 stack(c, a), pick(d), stack(d, c), pick(b), stack(b, d)]

4 The novel plan is: [unstack(a, b), putdown(a), unstack(c, d), putdown(c), pick(c),

stack(c, a), pick(d), stack(d, c), pick(b), stack(b, d)].

5 The novel plan is a valid solution to the problem.

6 The minimal solution is: [unstack(a, b), putdown(a), unstack(c, d), stack(c, a),

pick(d), stack(d, c), pick(b), stack(b, d)]

7 The plan is not the minimal solution. There are 2 additional operators with

respect to the minimal solution: [putdown(c), pick(c)].
� �
Listing 5.16: Snippet showing the contrastive explanation to the question defined
in listing 5.13.�

1 problem:

2 [clear(b), on(b, d), on(d, c), on(c, a), at(a, floor)]

3 is solvable.

4 originalPlan: [unstack(a, b), putdown(a), unstack(c, d), stack(c, a), pick(d),

5 stack(d, c), pick(b), stack(b, d)],

6 novelPlan: [unstack(a, b), putdown(a), unstack(c, d), putdown(c), pick(c),

stack(c, a), pick(d),

7 stack(d, c), pick(b), stack(b, d)] valid: true ,

8 addedList =[ putdown(c), pick(c)],

9 deletedList =[],

10 sharedList =[ unstack(a, b), putdown(a), unstack(c, d), stack(c, a), pick(d),

11 stack(d, c), pick(b), stack(b, d)]
� �
two different solutions; thus, from listing 5.15, we can see that the only difference
among the plans concerns the addition of two operators: putdown(c), pick(c)

to the novel plan.

5.2.3 Performance Benchmarks

In this section, we provide some information regarding the performance and exe-
cution time of our proposal in generating general and contrastive explanations for
the questions defined in table 3.1.

We chose a problem from each domain and a maximum length (50 operators) for
the plans to be devised. Accordingly, we formulate a set of valid plans of different
lengths using ad-hoc scripts. As a result, we generated over 5000 valid plans for the
Block World and Logistics problems. We then frame a set of questions for each type
of explanation. These questions enable us to evaluate the system’s performance
when required to add, remove, or replace operators in different positions on the
plan, or to compare two different solutions. Specifically, for all the plans devised,
we devise multiple questions for each type presented in table 3.1, measuring the
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efficiency of the system in terms of time and amount of memory needed to compute
the explanations. To this extent, given the JVM sources of non-determinism4,
we test its variation by exploiting a secondary thread that continuously samples
memory allocation when computing the explanation. We create two datasets (for
contrastive and general explanations) containing over 8000 explanations for each
question within each domain.

We tested the performance of our proposal on three different operating systems:
Linux, macOS and Windows obtaining fairly similar results. Given the negligible
differences among outcomes from the three operating systems in the following lines,
we propose an in-depth analysis of the results from the Windows system.

Windows OS

This paragraph examines the results of the benchmark analysis using a Windows-
based operating system.

Hardware specification: we measure the benchmarks on a local machine with
an Intel Core i7-1280P CPU with 14 cores and 20 threads, 24MB of L3 cache, and
a clock frequency variable from 1.8GHz to 4,8GHz. The installed operating system
is Windows 11 Home x64 version 22H2 and build 22621.232.

Results: for the experiment we chose to generate plans containing a maximum
of 50 operators, devising over 5000 valid plans for each domain. These plans
were exploited to produce a dataset of over 8000 explanations for the questions
in each domain. This paragraph provides an analysis of the results obtained at
a different level of aggregation; we begin examining some line charts showing
the resources needed according to the plan length, subsequently, we review some
aggregate results illustrating the average resource needed to compute each question
in the two domains.

Figure 5.2 fig. 5.3 display the time and memory variation according to the
length of the plan. Particularly, we divide the figures into two parts: on the left,
we present the results of the computation of the general explanations whereas,
on the right, we analyze the contrastive ones. To this extent, the first column
of each part represents with a red line the average time required to compute an

4It is a well-known issue that measuring performance in managed runtime systems, such as
Java, is particularly challenging [6, 29, 31, 44]. This is because the JVM acts as a black box
that affects the benchmark’s runtime performance non-deterministically. Non-determinism is
primarily caused by adaptive optimization, dynamic class loading, Just-in-Time (JIT) compila-
tion, garbage collection, and thread scheduling. Indeed, each of these components is executed
in one or more threads in addition to all application threads causing non-deterministic runtime
overheads.
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Figure 5.2: Performance results from the Block World’s benchmarks. The figure
presents on each row the resources needed to elaborate an explanation (general on
the left and contrastive on the right) for a given type of question. Accordingly, the
first provide the results for Θ1, the second for Θ2 until the last row that presents
the outcomes for Θ5.

explanation of a given length. In the other column, we depict with blue lines the
corresponding data for memory occupation. Furthermore, the figures show on each
row the result of a different question. For example, on the first row of fig. 5.2, we
illustrate on the left the resources required to compute a general explanation to
Θ1 within the Block World domain whereas on the right we provide the respective
data to elaborate a contrastive explanation for the same question in the same
domain. In the second row of the image, we depict the corresponding data for Θ2,
and so on until the last row where we represent the result from the benchmark
analysis for Θ5. Accordingly, fig. 5.3 follows the same pattern in describing the
data of the Logistics domain.

In addition to showing the average time and memory over time, the images
also provide insight into the accuracy of the data. This is done by displaying a
shadow area showing the interval of confidence. Overall, the results show that
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Figure 5.3: Performance results from the Logistics’ benchmarks. The figure
presents on each row the resources needed to elaborate an explanation (general
on the left and contrastive on the right) for a given type of question. Accord-
ingly, the first provide the results for Θ1, the second for Θ2 until the last row that
presents the outcomes for Θ5.
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Question
type

Explanation
type

Block World
domain

Logistics
domain

Time Memory Time Memory

Θ1 General 2,5 ms 119,251,308 bytes 1,0 ms 128,466,830 bytes
Contrastive 2,4 ms 75,959,546 bytes 1,0 ms 114,332,657 bytes

Θ2 General 1,8 ms 107,094,759 bytes 1,0 ms 117,929,601 bytes
Contrastive 1,3 ms 102,365,046 bytes 1,0 ms 112,935,841 bytes

Θ3 General 1,2 ms 105,806,778 bytes 1,0 ms 121,106,859 bytes
Contrastive 2,1 ms 126,118,829 bytes 1,0 ms 109,128,915 bytes

Θ4 General 1,1 ms 116,822,555 bytes 1,0 ms 128,069,367 bytes
Contrastive 2,1 ms 132,912,780 bytes 1,0 ms 127,204,626 bytes

Θ5 General 1,0 ms 126,442,108 bytes 1,0 ms 125,156,009 bytes
Contrastive 1,7 ms 122,230,364 bytes 1,0 ms 142,391,108 bytes

Table 5.1: Table providing a comparison between the time and the memory re-
quired to calculate an explanation (general, or contrastive) for each question type
and domain defined in Windows.

the length of the plan has no significant impact on the time and memory needed
to compute the explanations; indeed, the resources required for the explanations
remain almost unchanged when increasing the length of the plan. The only peaks
on the graphs have to be considered outliers due to the JVM non-deterministic
behaviour.

Table 5.1 summarizes the average time required to produce an explanation for
a question of a given type regardless of the length of the plan. The table shows
that the resources needed to compute explanations within the two domains are
somehow comparable. To this extent, the time needed to elaborate explanations
is between 1,0 and 2,5 milliseconds for the Block World domain whereas is slightly
lower in the Logistics domain (around 1 millisecond). Memory allocation, on the
other hand, follows the opposite trend. The bytes required for the explanation
within the Logistics domain are mildly higher than the amount of memory needed
for the Block World problem.

Finally, table 5.2 and table 5.3 show respectively the amount of time and
memory we require to compute the different explanations in the two domains.

The analysis reveals that the resources needed for the elaboration of the ex-
planations for the various questions in the two domains are barely different from
one another. Accordingly, we conclude that there is no appreciable performance
difference between the questions that require the compilation process and those
that do not, or between the general explanation and the contrastive explanation.
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Domain Explanation type Time

Block World general 1,7 ms
contrastive 1,5 ms

Logistics general 1,0 ms
contrastive 1,0 ms

Table 5.2: Table comparing the time required to calculate general and contrastive
explanations in the Logistics and Block World domains.

Domain Explanation type Memory
Block World general 111,917,313 bytes

contrastive 115,083,501 bytes
Logistics general 121,198,629 bytes

contrastive 124,145,733 bytes

Table 5.3: Table comparing the memory required to compute general and con-
trastive explanations in the Logistics and Block World domains.



Chapter 6

Conclusions

In this thesis, we present a formal model and its software implementation for XAIP,
besides a comprehensive and concise overview of the related state-of-the-art and
knowledge background. In this context, this thesis addresses two central issues
within the XAIP research area; the absence of a proper taxonomy on the main
research lines and techniques exploited, besides the gap between theoretical and
practical contributions.

Accordingly, we begin this work by examining the founding knowledge and the
state-of-the-art of the XAIP landscape, devising a concise road map of its central
features, along with a taxonomy of the relevant approaches and lines of research.
In doing so, we introduce the issue that led to the redaction of this thesis: the
shortage of practical contributions in the XAIP panorama.

Consequently, we present the pivotal contributions of this thesis as our model
for XAIP. To this extent, unlike most of the solutions in the XAIP panorama, we
introduce a two-folded proposal; first, we provide a formal model for XAIP, and
then we devise a coherent implementation of the model into a software system.
More specifically, after dwelling on the details of the model from the conceptual
and software perspective, we propose an in-depth validation of the software library
employing an extensive test suite to prove the correctness of its operations along
with some benchmarks to evaluate its performances and end-to-end examples for
its usability.

6.1 Open Challenges and Future Work

We conclude this thesis by examining possible future works and open challenges
that the current proposal left unexplored. Accordingly, our proposal is not com-
plete. We consider this work as the starting point for several research directions
that we will examine in the following paragraphs.
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To enhance the usage of our project, we believe that our model would benefit
from an improvement of the explanation model. Our thesis mainly focuses on
one type of explanation, contrastive explanation; however, we believe that differ-
ent kinds of explanations may be more appropriate, depending on the application
scenario. We consider that the development of an explanation hierarchy which
includes plan property dependencies and argument-based explanations would in-
crease the relevance of the project, helping it better adapt to different users’ needs.

Furthermore, to enrich our explanations, making them more valuable to users,
we believe it would be worthwhile to increase the number of properties we can
study. In this regard, we deem that the proposal should be empowered with a
later version of PDDL. Indeed, in this first release of the project, we designed the
library to operate on PDDL1.2 that only supports a restricted subset of properties
as compared to the following implementation of the planning language. Utilizing a
later release of PDDL will improve the significance level of our explanation as well
as the quality of our plan. In addition, it will enable us to define more complex
problems.

Within this framework, we consider that our proposal would benefit from a
refinement of the Domain module. Therefore, we value enlarging the module to
provide a broader number of domains with different levels of complexity and diverse
themes.

We also judge that it would be of service to add more solvers to our proposal
to allow users to assess differences in the solutions proposed by manifold planners.

Furthermore, besides improving the meaningfulness of the explanations, we
deem that it would be desirable to improve the questions. More specifically, we
believe that it would be advisable for users to query the system about partial plans
and, ideally, to express questions in natural language. In this context, we envisage
that in the future, we should include a new module to tackle the issue of translating
users’ questions from natural language into formal questions understandable by our
system.

Another module we consider adding to enhance the reuse of code is a parser
module for PDDL. This module will enable users to provide problems and domains
in the PDDL language without redefining them using our library. In this way, users
could only leverage the software to compute the solution.

Furthermore, as stated on different occasions in this document, the main goal
of this thesis was to design a formal model and its software implementation for
XAIP, thus, not providing some convenient way for non-expert users to leverage
the framework. Nevertheless, given the multidisciplinary nature of the proposal,
we realize that a significant contribution to enhancing the usage of the system also
for non-expert users would be a graphical user interface (GUI). Indeed, due to
the recent usage of planning systems in many high stake domains, planning is no
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longer an apanage of scholars. Along these lines, a GUI would provide a suitable
way to allow users not experts in coding to exploit the system.

Finally, from a research perspective, we believe that one of the most relevant
oversights of the proposed release is the absence of user evaluation. To this ex-
tent, we evaluate that given that the project touches multiple domains, it would
be essential to assess its performance with real users. This would enable us to
investigate the effectiveness of the explanations provided.
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