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Abstract

In questo lavoro di tesi viene presentato e validato un modello di rischio di alluvione a
complessità intermedia per scenari climatici futuri. Questo modello appartiene a quella
categoria di strumenti che mirano a soddisfare le esigenze identificate dal World Cli-
mate Research Program (WRCP) per affrontare gli effetti del cambiamento climatico.
L’obiettivo perseguito è quello di sviluppare, seguendo un approccio “bottom-up” al ris-
chio climatico regionale, strumenti che possano aiutare i decisori a realizzare l’adattamento
ai cambiamenti climatici. Il modello qui presentato è interamente basato su dati open-
source forniti dai servizi Copernicus. Il contributo di questo lavoro di tesi riguarda lo
sviluppo di un modello, formulato da [1](Ruggieri et al.), per stimare i danni di eventi
alluvionali fluviali per specifici livelli di riscaldamento globale (GWL). Il modello è stato
testato su tre bacini idrografici di medie dimensioni in Emilia-Romagna, Panaro, Reno
e Secchia. In questo lavoro, il modello viene sottoposto a test di sensibilità rispetto a
un’ipotesi enunciata nella formulazione del modello, poi vengono effettuate analisi rel-
ative all’ensemble multi-modello utilizzato per le proiezioni. Il modello viene quindi
validato, confrontando i danni stimati nel clima attuale per i tre fiumi con i danni os-
servati e confrontando le portate simulate con quelle osservate. Infine, vengono stimati
i danni associati agli eventi alluvionali in tre scenari climatici futuri caratterizzati da
GWL di 1.5◦C, 2.0◦C e 3.0◦C.
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Chapter 1

Introduction

The climate is often defined as the “average weather, or more rigorously, as the statistical
description in terms of the mean and variability of relevant quantities over a period of
time ranging from months to thousands or millions of year” [2](R. Shukla et al.). Conse-
quently, when we deal with climate change, we are treated with deviations, which persist
for long periods, of mean and variability from the ones defined by the climate. The so-
called “radiative balance” is a mechanism that determines the state of the climate, if
the balance is satisfied we will say that the state is in a certain configuration. One of
the mechanisms which lead the climate to change is called climate forcing. Such forcing
can be considered perturbations of a stable configuration; the earth system, in response,
through the radiative balance reaches a new stable configuration. A climate forcing can
be natural based, an example of natural forcing can be represented by changes in or-
bital parameters or in solar activity that can lead to reaching a new colder or warmer
configuration, creating the so-called glacial and interglacial periods. The unequivocal
knowledge of such phenomenon allowed us to identify a forcing different from the natural,
the anthropic one. Such forcing is typically represented by the greenhouse gas emission,
that drives the earth system towards a new stable configuration, to satisfy the radiative
balance, warmer with respect to pre-industrial conditions (1861-1890). “The Intergov-
ernmental Panel on Climate Change (IPCC) is an intergovernmental body of the United
Nations responsible for advancing knowledge on human-induced climate change which
provide periodic reports concerning the state of the climate” [3]. The IPCC Assessment
Report 5 (2014) identified four possible Representative Concentration Pathways (RCPs)
scenarios, as radiative forcing that came from 2.6, 4.5, 6.0 to 8.5 Wm−2, that can be
reached at the year 2100. The AR6 (2021) introduces new scenarios based on the Shared
Socio-Economic Pathways (SSPs), which take into account the fact that radiative forcing
levels can be reached by different pathways of CO2, non CO2 greenhouse gases (GHGs),
aerosols and land use [4](IPCC AR6 WG1). According to [3](IPCC AR6 WG1) global
warming variations are linked quasi-linearly to CO2 emission, while regionally changes,
including extreme events, scale quasi-linearly with changes in global warming, indepen-
dently by emissions scenarios. In addition, even if some regional changes scale robustly
with surface temperature increase, the effects on the local scale can be different. For ex-
ample, “ emissions scenarios with the same radiative forcing can have different regional
extreme precipitation responses resulting from different aerosol forcing” [3]. Therefore
the realization of a generic emission pathway is characterized by uncertainties that con-
sequently, will involve uncertainties in variables projections. A different point o view
to represent the information concerning the future climate could be to consider certain
Global Warming Levels (GWLs) e see what happens, to the impact, if a GWL is reached
rather than another; this approach is represented qualitatively in Fig. 1.1. Therefore,
given a general forcing, these induce a global mean response which has a physical and

2



CHAPTER 1. INTRODUCTION 3

social/economic impact on a local scale through a regional climate response. Assess
future changes in extreme events impacts as a function of GWL, allows us to separate
the uncertainty resulting from global warming in response to emission scenarios, and
the one due to regional climate response resulting from certain GWLs. Therefore, if the
aim is to make projections on a regional scale at certain GWLs, the ones based on time
ranges and emissions scenarios have too much uncertainty caused by differences in model
global transient climate response (shaded grey area in Fig. 1.1). Instead, by partitioning
the uncertainty, i.e. without taking into account the forcing which determines a certain
GWL but GWL itself, we can recognize the uncertainty of physical and social/economic
impact associated with such GWL.

Figure 1.1: Schematic representation of the relationship between emissions scenarios,
global warming levels (GWLs), regional climate responses, and impacts. Image taken
from [3].

Since the early studies on climate change, the focus of research has been oriented
to improve the quality of the climate data which describes the past and actual state
of the earth system to make better projections of the future [5](Rogrigues et al.). The
scientific community then realized that its purpose, in addition to improving the data
quality, should also be to understand how to face the consequences of climate change.
The two approaches actionable to deal with the consequences of climate change are
“mitigation” and “adaptation”, which respectively aim to, reduce climate change and
adapt life in a changing climate context. The challenges that climate science faces
nowadays requires tools that can be used by a range of potential users to quantify
how climate risks are affected by climate change and the associated uncertainty. In such
context, the World Climate Research Program (WRCP) defined the lighthouse activities
of My Climate Risk with a special focus on the local scale. Two possible approaches
can be followed in order to address climate change, both of them are represented in
Fig. 1.2. The “top-down” approach, through mitigation measures, provides a way, for
government policies on a global scale, to respect the Paris agreement target of 1.5◦C.
The problem which affect such approach concerns the fact that all the policy measures
which arise from it, are a sort of action on a large scale, which means that its effects are
weakly perceived by the local communities. Moreover, as pointed out by [5](Rodreigues
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Figure 1.2: Contrast between the “top-down” approach in climate-change science, which
is needed for mitigation action, and the “bottom-up” approach needed for adaptation
action. Image taken from [5].

et al.) traditional approaches to adaptation, which were performed by using mitigation
tools, were ineffective. In that sense, a “bottom-up” approach, which pursues adaptation
rather than mitigation, is actionable in order to give to policymakers, on sub-regional
and local scale, tools different from the mitigation ones to deal with climate change. Is
on that approach on which My Risk is based, that is “developing a new framework for
assessing and explaining regional climate risk using all the available sources of climate
information and by making it meaningful at the local scale” [6].

Since the saturation vapour pressure increases with temperature, the higher the
atmosphere temperature, the greater will be the water-holding capacity, which could
increase extreme precipitation [7](Dankers et al.). On a local scale, other effects due
to climate change must be taken into account. Although a warm Earth can release
more latent heat that can invigorate storms, the changing in atmosphere aerosol com-
position can affect the efficiency of converting moisture into precipitation, resulting in a
change in the characteristics of extreme precipitation events [3]. The are a lot of sources
of uncertainty regarding future extreme precipitation events, depending on projections
about, dynamics, aerosol concentrations, the pattern of surface temperature, changes in
atmospheric and ocean circulation, etc. As well as there is uncertainty in the impact of
such events depending, especially, on changes in land use. Therefore the effects due to
some thermodynamic process are assessed with high confidence, while dynamic aspects
of future climate are affected by low confidence, mainly on a local scale. As shown by
Fig. 1.3, and according to [3], the annual maximum daily precipitation (Rx1day) has
increased during the mid-20th century over land, “the percentage of observing stations
with statistically significant increases in annual maximum daily precipitation (Rx1day)
is larger than expected by chance” [3]. What is found is an intensification of light,
moderate, heavy daily and sub-daily precipitation, although the last one remains low
confidence at a global scale. An increase in extreme sub-daily precipitation is found in
Italy from [8](Libertino et al.), which also highlights the necessity to use a small scale
to perform an efficient local analysis. This type of precipitation, in Italy, are the ones
that causes flooding events. In this regard, as shown by Fig. 1.3, in Europe during the
1950–2018 periods, the number of regions in which an increase in Rx1day is observed is
larger than the ones in which it decreased.

Following [3], a flood event is an inundation of land. In this work, we will refer only
to river floods. A such event happens when the banks of the rivers are not able anymore
to harness the streamflow. “The AR5, assessed with low confidence for observed changes
in the magnitudes or frequency of floods at the global scale” [3], but further papers found
an increase of frequency and magnitude in some regions and a decrease in some others.
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Since most of the successive papers are focused on a local scale analysis, it is difficult to
assess the global and regional scale. Moreover, the measurements of streamflow rivers
are not homogeneously distributed with some spatial gap, which lead the assessment
of observed trends more difficult. The principal drivers for flood events in Europe are
the extreme precipitation events in the western and the snowmelting in the eastern.
There are regions in which both mechanisms are present, and this cause to extreme river
flooding over large areas. Even if on a global scale the confidence about observed trends
in the magnitude an frequency of floods is low, if regional scales are considered some
high confidence assessments can be performed.

Figure 1.3: Signs and significance of the observed trends in annual maximum daily pre-
cipitation (Rx1day) during 1950–2018 at 8345 stations with sufficient data. (a) Percent-
age of stations with statistically significant trends in Rx1day; green dots show positive
trends and brown dots negative trends. Box and ‘whisker’ plots indicate the expected
percentage of stations with significant trends due to chance estimated from 1000 boot-
strap realizations under a no-trend null hypothesis. The boxes mark the median, 25th
percentile, and 75th percentile. The upper and lower whiskers show the 97.5th and
the 2.5th percentiles, respectively. Maps of stations with positive (b) and negative (c)
trends. The light colour indicates stations with non-significant trends, and the dark
colour stations with significant trends. Image taken from [3].

In the Mediterranean area, a decreasing of flood events trend is observed even if for
Rx1day, one of the mechanisms from which floods events depend, a increases trend is
observed. According to [3], “the seasonality of floods is changed in cold regions where
the snowmelt dominates with high confidence”, while there is low confidence about a
decrease in floods in the Mediterranean regions.

For heavy precipitation, according to [4] it is very likely that extreme events will be
more frequent, moreover it is found that, the rate of increase in Rx1day with warming
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does not depend on the forcing scenario. Fig. 1.4 shows the relative changes, in terms of
intensity, of Rx1day as a function of return periods of 10 and 50 years for precipitation
over land with respect to the 1850–1900 baseline under four different degree scenarios.
Therefore, with high confidence, the extreme precipitation as a function of return periods,
respectively equal to 10 and 50 years events, increases in magnitude, as the temperature
increase.

Figure 1.4: Projected changes in the intensity of extreme precipitation events under
1◦C, 1.5◦C, 2◦C, 3◦C, and 4◦C global warming levels relative to the 1850–1900 baseline.
Extreme precipitation events are defined as the Rx1day that was exceeded on average
once during a 10-year period (10-year event, blue) and once during a 50-year period
(50-year event, orange) during the 1850–1900 base period. Results are shown for the
global land. Image taken from [3].

Following [3], Fig. 1.5 represents the spatial patterns of Rx1day changes for different
degree scenarios, by showing an increase of confidence extension as the temperature
of the scenario increase. The different changes in different regions are due to internal
variability. Extreme precipitation events increase in the larger part of the globe, except
for Southern Europe around the Mediterranean basin for low warming levels.
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Figure 1.5: Projected changes in annual maximum daily precipitation at (a) 1.5◦C,
(b) 2◦C, and (c) 4◦C of global warming compared to the 1850–1900 baseline. Results
are based on simulations from the Coupled Model Intercomparison Project Phase 6
(CMIP6) multi-model ensemble under the Shared Socio-economic Pathway (SSP), SSP1-
1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers on the top
right indicate the number of simulations included. Uncertainty is represented using the
simple approach: no overlay indicates regions with high model agreement, where ≥ 80%
of models agree on the sign of change; diagonal lines indicate regions with low model
agreement, where < 80% of models agree on the sign of change. Image taken from [3].

The two panels in Fig. 1.6 shown the spatial pattern in the Mediterranean region
to focus attention on Italy. In that region the climate signal gradually emerges, by
increasing the temperature of warming level, by highlighting positive changes compared
to the 1950-1900 baseline.
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a)

b)

Figure 1.6: Projected changes in annual maximum daily precipitation at (a) 1.5◦C and
(b) 4◦C of global warming compared to the 1850–1900 baseline. Results are based on
simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-
model ensemble under the Shared Socio-economic Pathway (SSP), SSP5-8.5 scenario.
The number of simulations included are 33 and 19, respectively for 1.5◦and (c) 4◦C
of global warming. Uncertainty is represented using the simple approach: no overlay
indicates regions with high model agreement, where ≥ 80% of models agree on the sign
of change; diagonal lines indicate regions with low model agreement, where < 80% of
models agree on the sign of change. Image realized with atlas of [3].

Concerning the future projections of flood events, always following [3], warming of 2
degrees could increase the fraction of global area susceptible to flood hazards (medium
confidence). Even if some papers asses that an increase in global warming can lead to
an increase in the frequency of high floods in all continents except Europe, more recent
results suggest that such assessments have medium confidence at a global scale and low
one at a regional one. “In summary, climate projections indicate a larger fraction of land
areas to be affected by an increase in river floods in Asia, India, tropical Africa, and
North America (medium confidence), while a decreasing in central and eastern Europe
and the Mediterranean (high confidence)” [3].
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Typically, hydrology-related climate change impact indicators are used to make a
risk assessment on a global scale. By following such rationale, [9](Alfieri et al.) present
a model to derive a flood hazard map, then in [10](Alfieri et al.) studied the implications
of high-end climate scenarios on future hydro-meteorological patterns over Europe, by
enhancing the evaluation and visualization of frequency, magnitude and uncertainty of
floods events in such scenarios. [11](Alfieri et al.) realized a flood risk assessment in
Europe under high-end climate scenarios. Finally, in [12](Alfieri et al.), for a warmer
world, global projections of river flood risks and their impact are analysed. By adopting
such global-scale models to a local problems, and following the suggested by My climate
Risk, an intermediate-complexity flood risk model for adaptation to flooding risk for
future climate scenarios is realized by [1](Ruggieri et al.). Since that model was originally
structured to estimate the flood risk events for a near term (2011-2040), mid-term (2041-
2070) and long-term (2070-2100), this thesis work shows how it could be developed in
order to allow it to estimate flood risk events at specific Global Warming Levels (GWLs).
This is important because we are changing the question from “what will happen in the
next years?”, to “what will happen if a certain global warming level is reached?”. Since
that model is based on open-source data available from climate services Copernicus,
local analyses in all the Europe countries can be performed. My part in developing the
model involved: writing some codes in python, partial model validation and estimation
of flood events impact at different GWLs. Finally, the thesis performs a validation of
the model for 3 Italian medium-size catchments, the Panaro, Reno and Secchia rivers,
sharing similar geometry and affected by similar precipitation events since they are all
enclosed in 44 km.

A model, to describe the earth system, can choose to follow different ways according
to how complex the representation must be, i.e. the number of interactions and details
degree used; this generates a kind of hierarchy. Models which take into account a low
number of processes, with a high degree of interaction between them and with a low de-
gree of detail, are called ”conceptual models” (used for long-term climate simulations).
Conversely, those that include a high number of processes with a weak reciprocal inter-
action and a high degree of detail, are called ”comprehensive models” (such as GCMs).
It is in the middle of the spectrum that intermediate-complexity models find a position,
i.e. those models that can select which processes describe, how they interact with each
other and with which degree of detail. Although the model here presented exploits the
results of a higher-complexity one, it abandons the degree of detail in favour of an in-
expensive computational cost, by allowing it to be run on any notebook in circulation
today. It is within this framework that the model located, by describing, using statistical
tools, phenomena that would require a high degree of detail and number of interactions
[13](Claussen et al.).

Chapter 2 introduces some conventions about risk, hazard, exposure, vulnerabil-
ity and concepts like Disaster Risk Reduction (DRR) and Climate Change Adaptation
(CCA). Chapter 3 concerns the methodology followed by the model with some mathe-
matical aspects, a section about the model formulation, the data used by the model and
the modelling approach. Chapter 4 is about some python codes that I have made. In
Chapter 5, a sensibility test is performed about some assumptions made in Chapter 2,
then a model validation is performed through comparison with observed data; after the
model undergoes tests concerning the multi-model ensemble used. In the last section of
the chapter, an estimation of flooding risk in future scenarios is proposed. In the first
section of Chapter 6, there is a brief summary concerning what was made in the previous
chapters, while in the second section the results are discussed with some remarks about
the potential approach and future development of the model.



Chapter 2

Risk assessment methodologies

In this chapter, the meanings of risk, hazard, exposure, and vulnerability and how they
interfaced with each other will be discussed to understand how to describe extreme
events and to perform Disaster Risk Reduction (DDR) and Climate Change Adaptation
(CCA).

2.1 Risk, hazard, exposure and vulnerability

The IPCC framework for the assessment of the risk associated with extreme hydro-
meteorological event partition the risk into three components: hazard, exposure and
vulnerability. That are respectively the probability and magnitude of that event (Haz-
ard), the fraction of environment, human and economic activities (asset category) sus-
ceptible to that event (Exposure), and the magnitude order of damage suffered by asset
category exposed (Vulnerability). Indeed in this framework, the risk is conceptually
defined as the ”result of dynamic interactions between climate-related hazards with the
exposure and vulnerability of the affected human or ecological system to the hazards”[2].
In this work, we will refer to flood events of rivers, events in which the river banks are
not able anymore to constrain the streamflow resulting in leakage of water, i.e. inun-
dation. Thereby, each flooding event will be described in terms of a river discharge,
which depends on precipitation events, and flood height, which is our hazard that we
will link to river discharge. The fraction asset category affected by an event, will depend
on the flood height, while the damage suffered, in economic terms, depends also from
asset category typology interested [12](Alfieri et al.).

One of the major impact drivers of climate change is the modification of the frequency
of extreme events. According to [10] (Alfieri et al.), in Europe, flood events projections
will be characterized by an increase in frequency and magnitude. This implies an increase
of flood risk, and that can be estimated in terms of an increase in the population exposed
and expected economic damage caused by floods. How much the frequency will increase
and how severe such events will be, depends on the shared socioeconomic pathways
(SSP ) and Representative Concentration Pathway (RCP ). As reported by [11](Alfieri
et al.) and shown in Fig. 2.1, a scenario RCP8.5 (high emission scenario), which is
compatible with SSP3 and SSP5 (Regional Rivalry and Fossil-fueled Development),
will lead to an estimate of the population annually affected between 540,000 and 950,000
in 2080 and expected damage of flooding ranging from 20 to 100 Beuro per year.

10
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Figure 2.1: Simulated damage and population affected per year and relative change from
the baseline scenario (Europe-wide aggregated figures). Future scenarios include no SSP
(with ensemble spread in pink), SSP3, and SSP5, together with their 10-years moving
average. Image taken from [11].

In this thesis the following definitions are adopted: Risk Assessment defined as “the
qualitative and/or quantitative scientific estimation of risks” and Risk Management de-
fined as “plans, actions, strategies or policies to reduce the likelihood and/or magnitude
of adverse potential consequences, based on assessed or perceived risks” [2]. The re-
duction of the likelihood and/or magnitude is performed by Risk Mitigation defined
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as “the lessening of the potential adverse impacts of physical hazards (including those
that are human-induced) through actions that reduce the exposure and vulnerability”
[14] and Climate Change Mitigation, actions like reducing the sources or improve the
sinks of greenhouse gases [15]. This last concept falls in the so-called “top-down” ap-
proach, which is an ensemble of measures performed on a global scale, that through the
coordination of all the countries try to respect the Paris agreement target of 1.5◦C.

2.2 Disaster Risk Reduction and Climate Change Adapta-
tion

Since a “top-down” approach was pursued to perform mitigation to climate change, and
this proved unsuccessful, it was necessary to introduce a new one, the “bottom-up”
approach, in which “climate change is just one factor among many to consider” [5](Ro-
drigues et al.) What this approach pursues is the adaptation to climate change, which
for we mean “the process of adjustment to actual or expected climate and its effects, in
order to moderate harm or exploit beneficial opportunities” [2]. For a positive outcome
in the “fight” against climate change, both mitigation and adaptation must be taken
into account and this implies that concerted “top-down” and “bottom-up” actions are
needed.
Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA) are two ap-
proaches that aim reduce risk associated with hydro-meteorological hazards. DRR mea-
sures try to decrease the impact of future disaster events by acting on the exposure and
vulnerability components of risk [14]. In a contest of flood event, acting on the expo-
sure means, for example, reducing the population affected, acting on vulnerability could
mean to reorganized the spatial configuration of asset categories since not all of them
suffered the same damage for a given flood event. CCA tries to provide a way to better
understand the actual and future climate conditions to perform efficient measures of
adaptation. In the context of flood events means to characterize correctly frequency and
magnitude, if they will increase or decrease and if a global pattern is recognizable. In
this regard, for example, [7](Dankers et al.) has found different mechanisms from which
events of flooding can arise. Since, typically, the meteorological forcing that causes flood
events are the annual maximum 5-day accumulated rainfall, in warmer earth, flood events
will increase in western Europe [16](Maria Carmen Llasat et al.). A different mechanism
drives the flood events in northeast Europe, the snow melting in spring, which, for a
warm earth will decrease [7](Dankers et al.). The result is that, in the future, flood
events in northeast Europe will become rare, therefore they will not need adaptation
measures. In order to make adaptation measures more efficient, a regional analysis like
these must be performed for each extreme event to identify in which regions should are
necessary and in which not. Both DDR and CCA try to act on another important as-
pect, the improving of Resilience, which is defined as “the capacity of interconnected
social, economic and ecological systems to cope with hazards event, trend or disturbance,
responding or reorganizing in ways that maintain their essential function, identity and
structure”[2]. Therefore, more effort must be turned towards the realization of flexible
tools which, by using open-source data from climate services, allow us to assess the risk
in future climate scenarios. Another aim is the quantitative estimate of some possible
adaptation measure which acts on hazard, exposure and vulnerability in order to find
which of such measure lead to more effective adaptation; is in this direction that this
model tries to work.



Chapter 3

Methodology

In the first section of this Chapter, 3.1, the Gumbel distribution is discussed. In section
3.2, the rationale followed by the model is given, with a focus on the system of equations
on which the model is based. In the sections 3.3 and 3.4, the datasets used and the
workflow of the model are shown, while in the last part of the section 3.4 the concept of
Areas of Influence followed is presented.

3.1 Type-I generalized extreme value distribution

From [17], the cumulative distribution function (CDF) of the Gumbel distribution is

F (x) = e−e−(x−µ)/β
(3.1)

or equivalent, by defining the reducing variable

y =
x− µ

β

we obtain the compact form

F (x) = e−e−y
. (3.2)

With CDF we can define the probability of occurrence of an event equal to or smaller
than a threshold value xT

F (xT ) = P (x < xT ) (3.3)

as a consequence the probability of occurrence of an event larger than a threshold
value xT is

P (x ≥ xT ) = 1− P (x < xT ). (3.4)

The return period is defined as the average time or an estimated average time between
two events with a magnitude equal to or larger than a threshold value. Analytically is
defined as the reciprocal of the probability (3.4) written as

T =
1

P (x ≥ xT )
=

1

1− P (x < xT )
. (3.5)

Thanks to (3.5) and (3.3) we find that

F (xT ) =
T − 1

T
. (3.6)

Solving (3.2) for yT

13
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yT = −ln
[
ln
( 1

F (xT )

)]
, (3.7)

that we can rewrite, thanks to (3.5), as

yT = −ln
[
ln
( T

T − 1

)]
. (3.8)

Finally by substituting the RHS of (3.1) into (3.8)

xT − µ

β
= −ln

[
ln
( T

T − 1

)]
, (3.9)

and solving for T

T (xT ) =
e−e(x−µ)/β

e−e(x−µ)/β − 1
, (3.10)

The equation (3.10), (3.8) and (3.1) will be rearranged in order to describe flooding
events.

3.2 Model formulation

The model aims to give an estimate, with more accuracy as possible, about the risk
of flooding events in future possible degree scenarios, by referring to the statistic of
variables later on defined. As already long-established, the risk R = hev is defined as
the product of hazard h, exposure e, and vulnerability v. The input of the model is
the river discharge (Q) simulated for future degree scenarios and the flooding height
statistics in the present climate. In order to determine the future risk of flooding events,
some fundamental hypothesis, soon implemented, will allow us to compute the statistic of
flooding height in future climate scenarios. The vulnerability v and exposure e are taken
into account in the model respectively through, empirical hazard-damage functions and
satellite-based or modelled land cover data, both of them will be thoroughly described
in Chapter 3.3. The projection of river discharge and the flooding height statistics in
the present climate used by the model are treated in the same section.

The fundamental hypothesis of the model is to assume that the probability of a
flooding event, characterized by a flooding height h, is

p(hi)dhi = g(Q(ri))dQ, (3.11)

where ri is a river network point, and i identifies a domain point subjected to flooding
events. Through the concept of Area of Influence, we assume that the flooding height
in the point i is caused only by the discharge in the river network point ri; that compu-
tational procedure is described in Chapter 3.4. In that way, the statistic of the flooding
height is ascribable to the statistic of return periods of discharge Q. This means that
the probability of an event, characterized by a flooding height h, with a magnitude equal
to or smaller than a given value H is

P (h ≤ H) =

∫ H

0
p(hi)dhi =

∫ q1

q0

g(Q(ri))dQ, (3.12)

this equality, which is a consequence of (5.1.1), must be verified for every catchment
considered. Rearranging eq.(3.10) in terms of flooding variables

Tn
m(r) = gm(Q(r)) =

e−e(Q(r)−µm(r))/βm(r)

e−e(Q(r)−µm(r))/βm(r) − 1
. (3.13)
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“The simulated high flow events are defined by taking the maxima of a daily time
series. For each model chain m we can the define a sequence, for n = 1, ...., N(m), of
N(m) modelled flood events identified by the return period Tn

m” [1](Ruggieri et al.).
By taking into account (3.1), Q(r) is given by

Q(T, r) = βm(r)y(T ) + µm(r), (3.14)

this fit, through which β(r) and µ(r) coefficients are computed, is performed by
considering the return periods T = 2, 5, 10, 50 years. In the same way, the flood height
of the n-th event simulated by the m-th model is computed through the following fit

hi(T
n
m) = γiy(T

n
m) + ϵi, (3.15)

by considering the return periods T = 10, 20, 50, 100, 200, 500 years. By implement-
ing the hypothesis (5.1.1), we are able to perform a projection of flooding heights

hi(T
n
m) = γiy(T

n
m(ri)) + ϵi. (3.16)

Following [10](Alfeiri et al.) and [1](Ruggieri et al.) a flood protection function is
introduced in order to label with Tm only the annual maximum river discharge which
causes a flood event.

fp(T ) ≡ θ(T − TP (r)). (3.17)

In this regard the condition Tm > Tp must be satisfied, where Tp is the return periods
of the streamflow for which the protection systems allow to avoid the flooding event, such
values are provided in FLOPROS(see Chapter 3.3). Following [1] we define the damage
function as

D = Dmax
c dc(h), (3.18)

where Dmax
c is a damage normalization factor which differs for each asset category

c and dc(h) is a function which expresses the value of the damage as a function of
flooding height h (see Chapters 3.3 and 4). Therefore, for each river network point r,
eventually connected to a domain point i susceptible to flooding events, we define a
damage-frequency curve [1] that associate to a local streamflow event with return period
T in r, the total damage of that event

D(T, r) =
∑
c

Dmax
c

∑
i

dc(hi(T ))δc,ciδr,ri , (3.19)

where δc,ci = 1, δr,ri = 1 ⇐⇒ c = ci, r = ri otherwise δc,ci = 0, δr,ri = 0. Following
[1] the simulated expected damage can then be computed

R(r) =
1

M

M∑
m=1

1

N

N∑
n=1

D(hi(T
n
m), r). (3.20)

Finally the model equation can then be summarised by the following system of equa-
tions
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Tn
m(r) = gm(Q(r)) =

e−e(Q(r)−µm(r))/βm(r)

e−e(Q(r)−µm(r))/βm(r) − 1
(3.21)

hi(T ) = (h1i y(T ) + h0i )fp(T ) (3.22)

D(T, r) =
∑
i,c

Dmax
c dc(hi(T ))δc,ciδr,ri (3.23)

R(r) =
1

M

M∑
m=1

N(m)∑
n=1

D(Tn
m, r) (3.24)

Where m is referred to the ensemble member having size M , n is the high flow
event simulated by the ensemble member, N(m) is the number of events simulated by
the member m, T is the return period, Q is the streamflow, hi is the flood height in i,
βm(r), µm(r), h0i and h1i are the parameter of the linear fit, fp(T ) is the local protection
function, c is a land cover category, Dmax

c is a damage normalization factor associated
to the asset category c, dc(hi) is the damage as a function of flooding height hi.

3.3 Data

Adapted from [1](Ruggieri et al.), data used by the model are summarised in Tab. 3.1.
Data of flood height statistics in present climate are obtained from [18](Dottori et al.)
for 6 return periods (10, 20, 50, 100, 200, 500 years). Land cover data are obtained from
the CORINE land cover [19](György Büttner et al.)) of the Copernicus Land Monitoring
Service. Empirical damage functions from the “Global flood depth-damages functions”
are available from [20](H. Huizinga et al.). To account for flood protection measures that
are not represented in hydrodynamic models applied to obtain the flood hazard maps
we use modeled FLOod PROtection Standards (FLOPROS) that are made available
by [21](Scussolini et al.). This dataset provides return periods handled by protection
measures.

Dataset name Reference period Variables Resolution Data type

Hydrology-related climate
impact indicators

Baseline:1971-2000
Near term:2011-40
Mid term: 2041-70
Long term:2071-2100

Streamflow 5 Km Hazard

River flood hazard maps for Europe
and Mediterranean Basin region

1990/2016
Flood

height (m)
100m Hazard

CORINE Land Cover 2018 Land cover 100m Exposure

Global flood depth-damages
functions

2010
Damages

(2010 Euros/m2)
Continent

Vuln-
-rability

FLOod PROtection Standards 2016
Return period

(years)
Administrative

Vuln-
-rability height

Table 3.1: Overview of datasets used in this study. The first column indicates the
official name of the dataset, the second column indicates the reference time frame of the
dataset, the third column shows the variables used, the fourth column is the nominal
spatial resolution and the last column classifies the datasets used into the categories of
hazard, exposure and vulnerability (adapted from [1](Ruggieri et al.))

From the dataset “Hydrology-related climate impact indicators” we select the daily
river discharge or streamflow (m3s−1) on grid resolution (5Km) as changes over three fu-
ture periods for three RCPs(Representative Concentration Pathways), and three-degree
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scenarios for a global mean temperature increase of 1.5, 2.0 and 3.0 ◦C above pre-
industrial conditions [22]. The streamflow values are given by projections of the EURO-
CORDEX (EUR11) ensemble, realized by using three different General Circulation Mod-
els (GCMs), where each of them is downscaled to 12.5km through Regional Climate
Models (RCMs). Such model chain is bias adjusted by using EFAS-Meteo data set [23].
The bias is defined as “systematic deviations from the reference data used for impact
modelling, including deviation due to discrepancy in the spatial resolution” [22]. There-
fore, “the bias correction is a necessary step when meteorological data from climate
models are to be employed as driving data for impact models” [22]. In our case, the
impact models forced by EUR11 are hydrological models ensemble composed by, E-
HYPEcatch multi-model system (0, 11◦), E-HYPEgrid (5Km), and VIC-WUR (5Km),
the last two are the ones that will be used. Since the data set used, for the bias adjust-
ment (EFAS-meteo), start record in 1990 the reference period is 1990− 2018. The bias
adjustment is performed by calibrating a “transfer function” on the reference period,
which is then applied to the time series 1971 − 2100 of the multi-model ensemble for
temperature and precipitation variables. Then, a transfer to the standard calendar for
HadGEM-ES is performed. Finally, a transferring bias adjustment to sub-daily time
steps only for temperature is implemented (for more detail see [22]).

GCM RCM Hydrological ENS. Members Scenarios (RCP)

EC-EARTH CCLM4-8-17 VIC-WUR and E-HYPERgrid 1 2.6, 4.5, 8.5

EC-EARTH RACMO22E VIC-WUR and E-HYPERgrid 1 2.6, 4.5, 8.5

EC-EARTH RCA4 VIC-WUR and E-HYPERgrid 1 2.6, 4.5, 8.5

HadGEM2-ES RCA4 VIC-WUR and E-HYPERgrid 1 2.6, 4.5, 8.5

HadGEM2-ES RACMO22E VIC-WUR and E-HYPERgrid 1 2.6, 4.5, 8.5

MPI-ESM-LR RCA4 VIC-WUR and E-HYPERgrid 1 2.6, 4.5, 8.5

MPI-ESM-LR REMO2009 VIC-WUR and E-HYPERgrid 2 2.6, 4.5, 8.5

Table 3.2: Models used for climate projections, adapted from [1].

Only for MPI-ESM-LR GCM, we can take into account two different realizations, so
we use all available 14 model chains to form a multi-model ensemble with 16 members for
the RCP 8.5 (“High pathway for which radiative forcing reaches greater than 8.5 Wm−2

by 2100 and continues to rise for some amount of time, assuming constant emissions
after 2100 and constant concentrations after 2250” [14]). All the following results, which
depend on multi-model ensemble projections, will label as CMIP based, while the results
based on reference data will label as EFAS based.

Data used for river streamflow validation in Chapter 5.1.2 are reported in Tab. 3.3,
obtained from some italian authorities like AIPO(Agenzia Interregionale per il fiume Po,
Auorità di Bacino (AdB) fiume Reno and Comune di Marzabotto.
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Panaro
Reno

Casalecchio 1
Reno

Casalecchio 2
Reno

Marzabotto 1
Reno

Marzabotto2
Secchia

Q20(m
3s−1) 1030 1833 1338 1350

Q25(m
3s−1) 1477 1011

Q30(m
3s−1) 1541 1135

Q50(m
3s−1) 2099 1536 1600

Q100(m
3s−1) 1270 1981 2298 1403 1685 1900

Q200(m
3s−1) 1480 2280 2421 1577 1776 2050

Q500(m
3s−1) 1660 2773 2038 2250

Drainage basin area km2 742 1061 1051 1061 1051 1341

Table 3.3: River discharges Qi, where i is the return period in year, provided respec-
tively by authorities AIPO(Agenzia Interregionale per il fiume Po)[24],[25] for Panaro
and Secchia rivers, Auorità di Bacino fiume Reno [26] for Reno Casalecchio 1 and Reno
Marzabotto 1 and Comune di Marzabotto [27] for Reno Casalecchio 2 and Reno Marz-
abotto 2.

All lack of data in Tab.3.3, are due to missing information from the authorities from
which are taken. The data provided by AIPO-Secchia [25] are obtained from observed
data with Hydrologic Modeling System (HEC-HMS), while for AIPO-Panaro [24], are
not specified from which procedure they come. With regard to AdB [26], the data
are obtained from a hydrologic model based on De Saint Venant equations in complete
form, while the ones obtained from Comune di Marzabotto [27] are based on rationale
cinematic methods.

3.4 Workflow of the model

The workflow is shown in Fig. 3.1 where EURO-CORDEX EUR11, which is bias adjusted
with EFAS-meteo, force an ensemble of hydrological models composed by E-HYPEgrid,
and VIC-WUR to compute the statistical of river discharge Q(T ) that lead to obtaining
the statistic of flood height H(T ) in future scenarios. After, with CORINE land cover,
Global flood depth-damages functions and FLOPROS the damage cost in future scenar-
ios is computed. Such damages can be confronted with the ones computed in present
climate by using river food hazard maps and the same auxiliary functions.
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Workflow

OBSERVED CLIMATE

Driving data

HISTORICAL CLIMATE and FUTURE SCENARIOS

Hydrological 
model

Variable

EFAS-meteo dataset (Ntegeka et al.)
(1990-2018)

EURO-CORDEX-11 projections 
realized with a chain of three 

GCM and four RCM (1971-2100)

Hydrological model LISFLOOD
(1990-2013)

Hydrological models ensemble: 
E-HYPEgrid and VIC-WUR

River discharge Q in m3/s

Q(T) ⟺ g(Q)

Flood height H(T)
projections

River food hazard maps
1990-2016

Economic 
Impact

Global flood 
depth damage 

function

FLOod 
PROtection 
Standards

CORINE 
land cover

Damage cost for 
present climate 

Damage cost for: 
● present climate
● future scenarios
● GWLs

Fit

bias 
correction

Extreme events

Figure 3.1: Schematic representation of approach to estimate the damage cost in present
climate and future climate scenario. The projections are taken from EURO-CORDEX
EUR 11 ensemble, performed by a models chain which consists of three different global
climate models (GCMs) downscaled through four different regional circulation models
(RCMs). Such ensemble force HYPEgrid and VIC-WUR hydrological models. The
dashed orange box shows the approach proposed by this work. More details, about
datasets, are reported in Chapter 3.3.

Since the river discharges in Tab. 3.3 are peak values, while the ones computed by
models CMIP based are daily averaged, a conversion is necessary to make a validation
of the model. This conversion is performed through the empirical formula [28]

Qpeak = Qdailymean · F with F = 16 ·A−0.19

where A is the drainage basin area reported in in Tab. 3.3.
Another important step is the merging of 100m resolution maps of flooding height

(finner shading in Fig. 3.2) with the 5km resolution maps of streamflow (coarser shading
Fig. 3.2). To realize that aggregation, the definition of Areas of Influence (AoI) is used.
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50 y flood height (m) and 50 y streamflow
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Figure 3.2: Simulated flood statistics in the domain of the rivers, the shading on the
coarser scale indicates the 50-year streamflow m3s−1 while the shading at a finer reso-
lution shows the 50-year flood height.

The rationale of AoI, implemented in this model, is the assumption that the river
network point, which determines the flooding height in a domain point, is the nearest one
to such domain point. In this way, we can link, uniquely, which point of the river network
determines the flooding height in a certain domain point during a flood event. The result
of that procedure is a domain division in Areas of Influence. A graphic example of that
procedure, respectively for Reno and Secchia rivers, is shown in Fig. 3.3. The domain
regions not coloured are the regions not interested in a flooding event of that river
network.
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Figure 3.3: Areas of flood influence (coloured region) at 100 m resolution for Reno and
Secchia river network, (a) and (b) respectively, for a 50 years return period events.



Chapter 4

Model development

In this Chapter, the outline code will be shown with some code extracts which constitute
my contribution to the realization of this model. In order to summarize the procedure
of the model, Fig. 4.1 represent the outline followed by the code, in which the most
important data, variable and function used are reported.

Code outline

Data:
● Land cover (CORINE)
● Historical River Discharge
● Depth damage function
● Hazard maps
● Models chain projection
● River network

make_LUs

make_H

Land use file

Hazard map for return periods 
T=10, 20, 50, 100, 200, 500

make_baseline_damage

make_Hfit

H mask

idxMap

make_idxMAP_river

Damage in present climate EFAS based

make_GWL

make_RPs

make_damage_fast

Damage in present climate 
CMIP based and for different 

GWLs

Figure 4.1: Code outline followed by the model. The red writings are all functions that
are collected into a Risk − function python script; such functions, are taken as input,
data or output of other functions. The grey-shaded box represents the data taken in
the input and/or the output of the function. Other important variables, dictionaries
and lists concerning GCM, RCM, GWLs, damage function and land use parameters
are collected into a Risk − dict python code. Details about functions are provided in
appendix A.

One of the key points of the model is to determine the damage associated to a flooding
height by taking into account the asset category typology interested by flooding event.
Six asset categories have been identified, which are: agriculture, residential, commercial,
industrial, roads and transport. By following [20], a flood damage fraction is given for
each asset category (Damages in Listing 3.1) in function of flooding heights (Hdamage
in Listing 3.1).

22
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1 import numpy as np

2 import matplotlib.pyplot as plt

3

4

5 Damages ={’agri’:np.array ([0.00 ,0.30 ,0.55 ,0.65 ,0.75 ,0.85 ,0.95 ,1.00 ,1.00]) ,

6 ’resi’:np.array ([0.00 ,0.25 ,0.40 ,0.50 ,0.60 ,0.75 ,0.85 ,0.95 ,1.00]) ,

7 ’comm’:np.array ([0.00 ,0.15 ,0.30 ,0.45 ,0.55 ,0.75 ,0.90 ,1.00 ,1.00]) ,

8 ’indu’:np.array ([0.00 ,0.15 ,0.27 ,0.40 ,0.52 ,0.70 ,0.85 ,1.00 ,1.00]) ,

9 ’roads ’:np.array ([0.00 ,0.25 ,0.42 ,0.55 ,0.65 ,0.80 ,0.90 ,1.00 ,1.00])

,

10 ’trans ’:np.array ([0.00 ,0.32 ,0.54 ,0.70 ,0.83 ,1.00 ,1.00 ,1.00 ,1.00])

}

11 Hdamage=np.array ([0,0.5,1,1.5,2,3,4,5,6])

Listing 4.1: Asset category and max damages

In order to take into account the fact that the same flooding height cause differ-
ent damages depending on the asset category affected, the flood damage in terms of
Euros m−2 can be obtained by multiplying the previous flood damage fraction with
MaxDamages citeflooddamagefunction values reported in the following list.

1 MaxDamages ={’agri’:0.22 ,’resi’:148,’comm’:308,’indu’:251,’roads’:21,’

trans’: 625}

Listing 4.2: Max Damages

Since such data are referred only for 9 flooding heights, in order to determine the
damage for a generic flooding height value, an interpolation is performed by the following
listing.

1 from scipy.interpolate import UnivariateSpline

2

3 x=Hdamage

4 newH=np.linspace (0,6,80)

5 y=Damages[’agri’]

6 spl= UnivariateSpline(x, y)

7 Nagri=spl(newH)

8 y=Damages[’resi’]

9 spl= UnivariateSpline(x, y)

10 Nresi=spl(newH)

11 y=Damages[’comm’]

12 spl= UnivariateSpline(x, y)

13 Ncomm=spl(newH)

14 y=Damages[’indu’]

15 spl= UnivariateSpline(x, y)

16 Nindu=spl(newH)

17 y=Damages[’roads’]

18 spl= UnivariateSpline(x, y)

19 Nroads=spl(newH)

20 y=Damages[’trans’]

21 spl= UnivariateSpline(x, y)

22 Ntrans=spl(newH)

Listing 4.3: Damage function interpolation

The for cycle in the following listing is introduced by myself to avoid that, once the
asymptotic damage value is reached, do not vary anymore.

1 Nagri[Nagri >1]=1

2 Nresi[Nresi >1]=1

3 Ncomm[Ncomm >1]=1

4 Nindu[Nindu >1]=1

5 Nroads[Nroads >1]=1

6 Ntrans[Ntrans >1]=1

7
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8 #For cycle

9 for i in range(len(newH) -1):

10 if Nagri[i]==1: Nagri[i+1]=1

11 if Nresi[i]==1: Nresi[i+1]=1

12 if Ncomm[i]==1: Ncomm[i+1]=1

13 if Nindu[i]==1: Nindu[i+1]=1

14 if Nroads[i]==1: Nroads[i+1]=1

15 if Ntrans[i]==1: Ntrans[i+1]=1

Listing 4.4: Damage function interpolation

Fig. 4.2 represent graphically the two damages function computed in the previous
listings. From the figure at the bottom of Fig. 4.2 is easy to see that, for a given flooding
height, the event cause different damages depending on the asset category exposed; the
transport appears to be the one more vulnerable compared to others.
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Figure 4.2: Top) Flood damage fraction functions obtained from an interpolation per-
formed by scipy.interpolate.UnivariateSpline python function in which 80 points are used
for a flood height which came from 0 to 6 meters. Bottom) Flood damage functions are
obtained from the fraction functions by multiplying them for max damage factors (cite).

To compute the damage in present climate (baseline) and for a given GWL, a python
Global Warming Level function is written. In the first part of the listing variables
elsewhere calculated are imported and then others are introduced.

1 import numpy as np
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2

3 def make_GWL(red ,xN0 ,yN0 ,run ,method=None ,damage_curve=’load’,shift=0,

shifty =0):

4 from Risk_functions import make_baseline_damage ,load_all

5 from Risk_dict import INDIR ,OUTDIR ,DATADIR ,file_LU ,times ,models ,

FILESrp ,nts ,lista ,years ,gwls ,gwl

6 from NAMELIST import exp

7 import numpy as np

8

9 Hfit1 ,Hfit0 ,x,y,xC,yC,LU,rm_LU ,Xh,Yh,idxMAP_river ,= load_all(INDIR ,

OUTDIR)

10 out_baseline=np.zeros ([len(models)])

11 out_1=np.zeros([len(models)])

12 out_2=np.zeros([len(models)])

13 out_3=np.zeros([len(models)])

14 out_baseline_NBS=np.zeros([len(models)])

15 out_1_NBS=np.zeros([len(models)])

16 out_2_NBS=np.zeros([len(models)])

17 out_3_NBS=np.zeros([len(models)])

18 Hmask =(( idxMAP_river [:,: ,0]==xN0)*( idxMAP_river [:,: ,1]==yN0))

Listing 4.5: Import variable

In the first part of the following listing, the logical condition if is introduced in order
to perform a sensitivity test concerning Areas of Influence, whose results are reported
in Chapter 5.1.1.

1 if method ==’sensitivity ’:

2 print(’Using wrong Q for sensitivity ’)

3 xN0fake=xN0 -shift

4 yN0fake=yN0 -shifty

5 else:

6 xN0fake=xN0

7 yN0fake=yN0

Listing 4.6: Logical condition if

The following listing computes the damage through the function np.trapz for the
present climate. Then, a for cycle scroll through all sixteen models and introduce the
Qprotection variable, which is the one that takes into account the fact that a flooding
event, to be defined as such, must be characterized by streamflow greater than a threshold
value.

1 rp_x=0

2 damage_rel =0

3 Damage_x =0

4 out_obs =0

5 if Hmask.sum() >0:

6 if damage_curve ==’compute ’:

7 print(’Compute and save damage_rel and rp_x’)

8 damage_rel ,rp_x=make_baseline_damage(xN0 ,yN0 ,nts)

9 np.save(INDIR+’rp_x_ ’+str(xN0)+’_’+str(yN0)+’.npy’,rp_x)

10 np.save(INDIR+’damage_rel_ ’+str(xN0)+’_’+str(yN0)+’.npy’,

damage_rel)

11 else:

12 damage_rel=np.load(INDIR+’damage_rel_ ’+str(xN0)+’_’+str(yN0)+’.

npy’)

13 rp_x=np.load(INDIR+’rp_x_ ’+str(xN0)+’_’+str(yN0)+’.npy’)

14 Damage_x=-np.log(np.log(rp_x/(rp_x -1)))

15 out_obs=np.trapz(damage_rel ,-1/rp_x)

16 m=0

17 for model in models:

18 DIR=DATADIR+’/CMIP5/merged_yearmax/’

19 FILErcp=DIR+’merged_ ’+run+’_’+model+’.nc’
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20 FILE=DIR+’merged_ ’+model+’.nc’

21 DIRrp=DATADIR+’/CMIP5/RPs/’

22 FILErp=FILESrp[model]

23 lon ,lat ,rdis ,rp2 ,rp5 ,rp10 ,rp50 ,rdisrcp=read_model(FILE ,FILErp ,

FILErcp ,DIRrp)

24 Fit=make_RPs_new(xN0fake ,yN0fake ,rp2 ,rp5 ,rp10 ,rp50)

25 Qprotection=-np.log(np.log (49.88/(49.88 -1)))*Fit [0]+ Fit[1]

Listing 4.7: Damage in present climate

The following listing, which is nested in the previous for cycle, is the one introduced
by myself to compute the damage in the present climate. Since different ranges of years
can be used to compute the expected damage CMIP based in present climate, several
v0 variables are defined according to the preference. Such v0 variables are necessary to
compute the statistic of the river discharges for a chosen period.

1 vnew = np.concatenate ((rdis , rdisrcp), axis =0)

2 # Baseline 1971 -1987

3 #v0 = rdis [0:16 , xN0fake , yN0fake ][( rdis [0:16 , xN0fake , yN0fake] >

Qprotection)]

4 # Baseline 1988 -2005

5 #v0 = rdis [16:35 , xN0fake , yN0fake ][( rdis [16:35 , xN0fake , yN0fake] >

Qprotection)]

6 # Baseline 1990 -2018

7 v0 = vnew [20:48 , xN0fake , yN0fake ][( vnew [20:46 , xN0fake , yN0fake] >

Qprotection)]

8 for gcm in lista:

9 if gcm in model:

10 yi=years[gcm ][0+ gwl]

11 yf=years[gcm ][1+ gwl]

12 yi0 = 35 + yi

13 yf0 = 35 + yf

14 e = 0

15 D_base = 0

16 D_NBS = 0

17 for Qev in v0:

18 logRP = (Qev - Fit [1]) / Fit[0]

19 logRPqr = ((100 - red) / 100 * Qev - Fit [1]) / Fit [0]

20 e = e + 1

21 D_base = damage_rel[np.argmin ((abs(Damage_x - logRP)))]

22 if logRPqr > -np.log(np.log (49.88 / (49.88 - 1))):

23 D_NBS = damage_rel[np.argmin ((abs(Damage_x - logRPqr)))]

24 out_baseline_NBS[m] = out_baseline_NBS[m] + D_NBS / 27.0

25 else:

26 D_NBS = 0

27 out_baseline[m] = out_baseline[m] + D_base / 27.0

28 reduct_baseline [:, m, e] = [logRP , logRPqr , (100 - red) / 100,

Qev , D_base , D_NBS]

Listing 4.8: logical condition if

In the following listing, the expected damage for a GWL of 1.5◦is computed. The
logical condition if is introduced since the General Circulation Models (GCMs) forecast
different years in which the temperature start to be equal to 1.5◦C.

1 if gwl==gwls[’1.5’]:

2 if yi <0:

3 print(’concatenate ’)

4 v1 = vnew[yi0:yf0 ,xN0fake ,yN0fake ][( vnew[yi0:yf0 ,xN0fake ,

yN0fake]>Qprotection)]

5 print(v1)

6 else:

7 v1 = rdisrcp[yi:yf, xN0fake , yN0fake ][( rdisrcp[yi:yf, xN0fake ,

yN0fake] > Qprotection)]
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8 print(v1)

9 e = 0

10 D_base = 0

11 D_NBS = 0

12 for Qev in v1:

13 logRP =(Qev -Fit [1])/Fit[0]

14 logRPqr =((100 - red)/100*Qev -Fit [1])/Fit [0]

15 e = e + 1

16 D_base=damage_rel[np.argmin ((abs(Damage_x -logRP)))]

17 if logRPqr >-np.log(np.log (49.88/(49.88 -1))):

18 D_NBS=damage_rel[np.argmin ((abs(Damage_x -logRPqr)))]

19 out_1_NBS[m]= out_1_NBS[m]+ D_NBS /30.0

20 else:

21 D_NBS =0

22 out_1[m]=out_1[m]+ D_base /30.0

23 reduct_1[:,m,e]=[logRP ,logRPqr ,(100 -red)/100,Qev ,D_base ,

D_NBS]

24 print(out_1)

Listing 4.9: Damage for GWL

The python codex used to compute the damage for GWLs of 2.0◦C and 3.0◦C is
similar to the previous, with the difference that, respectively, v1 and v2 variables are
introduced to take into account the ranges of years necessary to compute the streamflow
statistics in which such GWL is reached.



Chapter 5

Results

In section 5.1 of this Chapter, the model undergoes a series of tests concerning sensibility
and validation. The section 5.1.1 concerns the sensibility to the Areas of Influence
implemented, while 5.1.2 concerns a river streamflow validation of the model comparing
the present climate damage observed and estimated by CMIP multi-model ensemble.
Then in section 5.1.3 the properties of the multi-model ensemble and flood damage
are analyzed. Finally, in section 5.1.4 a validation of the damage in present climate
is performed by making a comparison between the one estimated by CMIP based and
the one observed EFAS based. In the last section, 5.2, an estimation of flooding risk in
future climate scenarios is presented.

5.1 Model validation

To make an assessment of the sensibility and validation of the model is necessary to
verify which assumptions made are the more stringent and which of them, are the major
source of uncertainty. The first test concern the sensibility of the model to our assump-
tion of Areas of Influence. The second test performs a validation of the river discharge by
verifying if the multi-model ensemble estimate, for the present climate, the correct mag-
nitude of streamflow for different return periods, by comparing the simulations with the
observations. The analyses which concern the ensemble, aim to quantify and character-
ize the uncertainty. The first test of ensemble properties verify which model introduces
most uncertainty, while the second determines if the number of the model is sufficient to
make estimations. Another uncertainty that could be quantified, concerns the observed
streamflow, which is not performed due to a lack of metadata of them.

5.1.1 Area of Influence assumption

In Chapter 3.4 we defined the Areas of Influence (AoI) as the assumption that the river
network point, which determines the flooding height in a domain point, is the nearest
one to such domain point. In this way, we can link, uniquely, which point of the river
network determines the flooding height in a certain domain point during a flood event

p(hi)dhi = g(Q(ri))dQ,

where ri is the river network point, and hi is the domain point susceptible to flooding
events. To ensure that this assumption is not a sink of large uncertainty, the sensibility
is evaluated with respect to the perturbation of the river point by changing the point
ri used to compute the flood damage in the point i. In Fig. 5.1 the dots represent
the original river network points (the unperturbed ri) used by the model to compute

28
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the damage, meanwhile, the crosses represent a set of alternative river network points
(perturbed i), that can be used to compute the damage in the same area.

Rivers AoI sensitivity test

10.25°E

10.25°E

10.5°E

10.5°E

10.75°E

10.75°E

11°E

11°E

11.25°E

11.25°E

11.5°E

11.5°E

11.75°E

11.75°E

44.1°N 44.1°N

44.25°N 44.25°N

44.4°N 44.4°N

44.55°N 44.55°N

44.7°N 44.7°N

44.85°N 44.85°N

45°N 45°NBologna
325,384
328,384
327,376
323,378
326,380
330,380

1000 2000 3000 4000 5000

River discharge m3/s

Figure 5.1: Domain points chosen, for Panaro, Reno and Secchia rivers, to perform a
sensitivity test about Area of Influence (AoI).

The Fig. 5.2, 5.4, 5.3 represents the results of the AoI sensitivity test for the Panaro
river in present climate and for 1.5-degree scenario. The horizontal axe values represent
the river network points in ascending order distance from the original model point, which
is zero, meanwhile, the vertical axe is the damage as a function of river network points.
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Panaro AoI sensitivity test
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(a) Test in (323, 378) in present climate
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Figure 5.2: AoI sensitivity test accomplished for the original river network point (323,
378) of Panaro river, in which 7 nearest points are considered, in increasing distance
from original, to compute the damage and to show if it depends on the points chosen;
present climate and 1.5-degree scenario are considered.
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Panaro AoI sensitivity test
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(a) Test in (326, 380) in present climate
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(b) Test in (326, 380) for a 1.5 Degree scenario

Figure 5.3: AoI sensitivity test accomplished for the original river network point (326,
380) of Panaro river, in which 7 nearest points are considered, in increasing distance
from original, to compute the damage and to show if it depends on the points chosen;
present climate and 1.5-degree scenario are considered.
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Panaro AoI sensitivity test
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(a) Test in (330, 380) in present climate
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(b) Test in (330, 380) for a 1.5 Degree scenario

Figure 5.4: AoI sensitivity test accomplished for the original river network point (330,
380) of Panaro river, in which 7 nearest points are considered, in increasing distance
from original, to compute the damage and to show if it depends on the points chosen;
present climate and 1.5-degree scenario are considered.

In a present climate, Fig. 5.2a, 5.3a and 5.4a, the larger damages fluctuations
respect to the original point are respectively 0.17, 1.47 and 0.9 M euros years−1 (greater
amplitude of the fluctuation the greater will be ensemble spread, i.e., disagreement
between models). Such values are smaller than the multi-model ensemble uncertainty
that is of the order of tens of millions of euros years−1 (see STD in 5.1). This means a
weak dependence on the river network points chosen to compute the damage. As regards
the test of the 1.5-degree scenario, the results are shown in Fig. 5.2b, 5.3b and 5.4b, to
determine if in a warmer earth a different sensibility could become possible. In this case,
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the greatest damage fluctuations are respectively, 0.28, 1.15 and 0.19 M euros years−1,
which compared with multi-model ensemble uncertainty, that is of the order of tens of
millions euros years−1 (see STD in 5.1), shown that in warmer earth does not change
such sensibility. For Reno and Secchia rivers the same procedure for the Panaro river is
performed.

Reno AoI sensitivity test
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(a) Test in (325, 384) in present climate
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(b) Test in (325, 384) for a 1.5 Degree scenario

Figure 5.5: AoI sensitivity test accomplished for two original river network point (325,
384) of the Reno river, in which 5 points are considered, in increasing distance from
original, to compute the damage and to show if it depends on the points chosen; present
climate and 1.5-degree scenario are considered.
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Reno AoI sensitivity test
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(a) Test in (328, 384) in present climate
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(b) Test in (328, 384) for a 1.5 Degree scenario

Figure 5.6: AoI sensitivity test accomplished for two original river network point (328,
384) of the Reno river, in which 4 points are considered, in increasing distance from
original, to compute the damage and to show if it depends on the points chosen; present
climate and 1.5-degree scenario are considered.

In the Reno river, for present climate, Fig. 5.5a, 5.6a and 1.5-degree scenario,
Fig. 5.5b, 5.6b shown, like for the Panaro river, a weak dependence from the river
network points to compute the damage, i.e. the order of the fluctuations are 0.1 million
euros years( − 1), while the multi-model ensemble uncertainty is the order of tens of
millions euros years( − 1) (see STD in 5.2). In the same way, as regards the Secchia
river, Fig. 5.7, the fluctuations are 0.01 million euros years( − 1), while the multi-model
ensemble uncertainty is the order of million euros years(− 1) (see STD in 5.3). This last
results lead to the same consideration as for the other two rivers.
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Secchia AoI sensitivity test
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(a) Test in (327, 376) in present climate
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(b) Test in (327, 376) for 1.5 Degree scenario

Figure 5.7: AoI sensitivity test accomplished for the original river network point (327,
376) of Secchia river, in which 6 nearest points are considered, in increasing distance
from originals, to compute the damage and to show if it depends on the points chosen;
present climate and 1.5-degree scenario are considered.

In conclusion, the method proposed to compute the damage in a certain AoI fit in
an appropriate way for these three rivers, which then shares the fact that the basin
geometry is simple and the rivers are developed on a plane region. Probably in more
complex and more slopped backgrounds, an alternative way must be used to compute
which river network points determine the flooding height in an area.
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5.1.2 River streamflow validation

In this model, we make the assumption that an event characterized by a flooding height
H has a probability P (H) to happen, and this is dependent on the return period T (Q)
to have a certain river discharge Q. In order for the model to be reliable, it is of relevant
importance to analyze the streamflow as a function of the return period estimated by the
multi-model ensemble in present climate. A comparison is done between the streamflow
estimated and the one observed by station rivers. In the following figures, Fig. 5.8, 5.9,
5.10, 5.11, 5.12 and 5.13, the rivers discharge as a function of reduced variable is plotted
by taking into account the multi-model ensemble and data reported in Tab. 3.3. Since
its trough the coefficients of the linear regression that the model estimate the statistic of
the river discharge, rather than values explored by the ensemble, the important feature
to check is the slope that regression exhibits,. Therefore, the rate of growth of the
simulated streamflow as a function of return period must be similar to the observed one.
By referring to Fig. 5.8, the intercept observed is 423 m3s−1, while the range of intercept
explored by the multi-model ensemble is 495 m3s−1 (maximum value minus minimum
value) with a mean value of 353 m3s−1. As regards the slope, the one observed is 196
m3s−1 while the mean of the simulated slopes is 137 m3s−1. On average, we can say that
the multi-model ensemble reproduces correct streamflow increasing for growing return
periods.

Simulated flood frequency curves in present climate in the Panaro river
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Figure 5.8: Flood frequency analysis for the Panaro river. Black dots indicate the
streamflow values for 4 different return periods as provided by AIPO [24] at San Cesario
sul Panaro (11.034◦ E 44.562◦ N). The black solid line is the corresponding flood fre-
quency curve obtained by fitting a Gumbel distribution. Blue dots are the streamflow
at 4 return periods obtained via C3S model chains in the same place.

By referring to the next figures, Fig. 5.9 and Fig. 5.10, the intercepts observed are
respectively 256 m3s−1 and 995 m3s−1, while the range of intercept explored by the
multi-model ensemble is 689m3s−1 with a mean value of 492m3s−1. The slopes observed
are respectively 379 m3s−1 and 280 m3s−1 while the mean of the simulated slopes is 189
m3s−1.
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Simulated flood frequency curves in present climate in the Reno-Casalecchio river
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Figure 5.9: Flood frequency analysis for the Reno river. Black dots indicate the stream-
flow values for 4 different return periods as provided respectively by Adb Reno [26] at
Casalecchio (11.280808◦ E 44.472343◦ N). The black solid line is the corresponding flood
frequency curve obtained by fitting a Gumbel distribution. Blue dots are the streamflow
at 4 return periods obtained via C3S model chains in the same place.
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Figure 5.10: Flood frequency analysis for the Reno river. Black dots indicate the stream-
flow values for 5 different return periods as provided by the Comune di Marzabotto [27]
at Casalecchio (11.280808◦ E 44.472343◦ N). The black solid line is the corresponding
flood frequency curve obtained by fitting a Gumbel distribution. Blue dots are the
streamflow at 4 return periods obtained via C3S model chains in the same place.

As concern Fig. 5.11 and Fig. 5.12, the intercept observed are respectively 235m3s−1

and 714m3s−1, while the range of intercept explored by the multi-model ensemble is 165
m3s−1 with a mean value of 354 m3s−1. The slopes observed are respectively 253m3s−1

and 208m3s−1 while the mean of the simulated slopes is 149 m3s−1.
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Simulated flood frequency curves in present climate in the Reno-Marzabotto river
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Figure 5.11: Flood frequency analysis for the Reno river. Black dots indicate the stream-
flow values for 4 different return periods as provided respectively by Adb Reno [26] at
Marzabotto (11.208◦ E 44.338◦ N). The black solid line is the corresponding flood fre-
quency curve obtained by fitting a Gumbel distribution. Blue dots are the streamflow
at 4 return periods obtained via C3S model chains in the same place.
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Figure 5.12: Flood frequency analysis for the Reno river. Black dots indicate the stream-
flow values for 5 different return periods as provided by Comune di Marzabotto [27] at
Marzabotto (11.208◦ E 44.338◦ N). The black solid line is the corresponding flood fre-
quency curve obtained by fitting a Gumbel distribution. Blue dots are the streamflow
at 4 return periods obtained via C3S model chains in the same place.
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Finally, by looking at Fig. 5.13, the intercept observed is 521 m3s−1, while the range
of intercept explored by the multi-model ensemble is 133 m3s−1 with a mean value of
545 m3s−1. As regards the slope, the one observed is 284 m3s−1 while the mean of
the simulated slope is 240 m3s−1. Therefore, for the Secchia river, like the Panaro, the
multi-model ensemble reproduces correctly the observed slope. While for the Reno river
the multi-model ensemble does not reproduce in a correct way the slope of observed data.
Due to a lack of well-documented and high-quality data, e.g. concerning the observation
years used, the validation for this basin is inconclusive. However such results are useful
to check that model values are comparable, at least, to the order of magnitude of the
observation. Since the data collection required, due to the lack of data itself, is too long,
concerning the uncertainty of observed discharge we assume that it is dominated by the
multi-model ensemble uncertainty.

Simulated flood frequency curves in present climate in Secchia river
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Figure 5.13: Flood frequency analysis for the Secchia river. Black dots idicate the
streamflow values for 5 different return periods as provided by AIPO [25] at Concordia
sulla Secchia (10.795◦ E 44.650◦ N). The black solid line is the corresponding flood
frequency curve obtained by fitting a Gumbel distribution. Blue dots are the streamflow
at 4 return periods obtained via C3S model chains in the same place.
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5.1.3 Properties of the ensemble

This section concerns the multi-model ensemble. The first test performed is a Cross
Validation (CV) test, which is a statistical technique used to assess the dependence of
the results from the models of the ensemble. In this category, we found the Leave-p-out
CV procedure (Lpo), where p denotes the number of models excluded in the computation
of the test. The one performed here is the Leave One Out test (p = 1) in which only
one model is excluded from the ensemble [29]. In our case, it consists into compute
the damage, in present climate, by leaving out one of the 16 models, and repeating it
for all the models. For the Panaro river, Fig. 5.14, we can see that the models which
influence mostly the damage computed are: 4, 9, 10, 15, 16. Compared with the others,
model 15 is the one that increases the standard deviation of the ensemble. For the Reno
river, Fig. 5.15, the models that influence mostly the damage computed are 9, 10, 14,
15, and 16. Compared with the others, model 16 is the one that influences more the
standard deviation of the ensemble. Finally, for the Secchia river, Fig. 5.16, the models
that influence mostly the damage computed come from 8 to 16. Compared with the
others, models 10 and 11 are the ones that influence more the standard deviation of the
ensemble.

Leave one out test in present climate for the riverS
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Figure 5.14: Leave one out test for the Panaro river. The vertical axe referred to the
damage computed by the model, orange and black dots indicate the damage computed
by the models CMIP based. The horizontal axe referred to the models excluded in the
computing of the damage meanwhile the label ’All models’ means that all the models
are used. Orange shading is the standard deviation of the CMIP-based ensemble and
the horizontal red line is the EFAS-based damage.
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Figure 5.15: Leave one out test for the Reno river. The vertical axe referred to the
damage computed by the model, orange and black dots indicate the damage computed
by the models CMIP based. The horizontal axe referred to the models excluded in the
computing of the damage meanwhile the label ’All models’ means that all the models
are used. Orange shading is the standard deviation of the CMIP-based ensemble and
the horizontal red line is the EFAS-based damage.
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Figure 5.16: Leave one out test for the Secchia river. The vertical axe referred to the
damage computed by the model, orange and black dots indicate the damage computed
by the models CMIP based. The horizontal axe referred to the models excluded in the
computing of the damage meanwhile the label ’All models’ means that all the models
are used. Orange shading is the standard deviation of the CMIP-based ensemble and
the horizontal red line is the EFAS-based damage.

The second test concerning the ensemble is about the size and try to show if the
number of models considered is sufficient. The rationale is to start by considering an
ensemble composed of 2 models, chosen randomly, and considering all the possible com-
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binations; this procedure is repeated by increasing the ensemble size until all 16 models
are considered. Thereby we will have 120 ensembles composed of 2 members, 560 by
3, 1820 by 4 etc. The test aims to very if the estimated standard deviation saturates
with members number N for N ≈ 16, in that case, no more members are needed. The
next figures show the standard deviation in function of ensemble size, for all the rivers,
Panaro 5.17, Reno 5.18 and Secchia 5.19. By increasing the ensemble size, we have a
considerable diminishing of standard deviation, this leads to conclude that the number
of models CMIP based used is sufficient and no more are needed.

Ensemble size test for the rivers in present climate
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Figure 5.17: Standard deviation in function of ensemble size for the Panaro river. The
vertical axe referred to the damage computed by the model, blue dots indicate the
damage compute by the muti-model ensemble CMIP based. The horizontal axe referred
to the ensemble size.
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Figure 5.18: Standard deviation in function of ensemble size for the Reno river. The
vertical axe referred to the damage computed by the model, blue dots indicate the
damage compute by the muti-model ensemble CMIP based. The horizontal axe referred
to the ensemble size.
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Figure 5.19: Standard deviation in function of ensemble size for the Secchia river. The
vertical axe referred to the damage computed by the model, blue dots indicate the
damage compute by the muti-model ensemble CMIP based. The horizontal axe referred
to the ensemble size.
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5.1.4 Flood damage validation

At first, a comparison between CMIP based damage in present climate (baseline), com-
puted by using different ranges of years, and EFAS based baseline is performed to choose
the correct years to use to make a correct flood damage validation in present climate. By
looking at Fig. 5.20, 5.21 and 5.22 we notice that, by using (1975-2005) as years interval
to define the baseline CMIP based, we overestimate the damage, due especially for the
(1971-1987) contribution. Even if both (1988-2005) and (1990-2018) years ranges lead to
a correct estimate of damage CMIP based compared with EFAS, since the (1990-2018)
years range is used to perform the baseline EFAS based, from consistency the last range
of years will be used from now to compute the CMIP baseline.
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(a) Panaro river

Figure 5.20: Expected damage (baseline) for different ranges of years for the Panaro
river.
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Figure 5.21: Expected damage (baseline) for different ranges of years for the Reno river.
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Figure 5.22: Expected damage (baseline) for different ranges of years for the Secchia
river.

In the next figures, Fig.5.23, 5.24 and 5.25, for each basin and model, the expected
damage CMIP based and EFAS based in present climate are shown.
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Figure 5.23: Expected damage for the Panaro river, CMIP based compared with EFAS
based, relative error computed is 11%. The explicit expression of relative error is reported
in Appendix B.
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Figure 5.24: Expected damage for the Reno river, CMIP based compared with EFAS
based, relative error computed is 9%. The explicit expression of relative error is reported
in Appendix B.
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Figure 5.25: Expected damage for the Secchia river, CMIP based compared with EFAS
based, relative error computed is 20%. The explicit expression of relative error is reported
in Appendix B.

For all the basins, we have a good damage estimation by CMIP models, with a
relative error of the order of ten percentage points. These results show good behaviour,
of the model, for damage estimation in present climate, and this gives us confidence
about correct estimation in future climate scenarios as well.

As shown in Fig. 5.26, 5.27 and 5.28, in each domain point and for all the basins, the
mean damage of the model CMIP based is computed and then compared with one EFAS
based. Fig. 5.26a shows that the domain points 3, 4, 7, 8, and 16 are the ones in which
the damages are more overestimated by the model. By looking at standard deviations in
Fig. 5.26b, we can deduce that members of the ensemble, in such points, disagree with
each other. Fig. 5.27a shows that the domain points 4, 23, 29, 34, 46 and 51 are the ones
in which the damages are more overestimated by the model. By looking at standard
deviations in Fig. 5.27b, we can deduce that members of the ensemble, in such points,
disagree with each other. Fig. 5.28a shows that the domain points 22, 23, 28, 29, and
48 are the ones in which the damages are underestimated by the model. By looking at
standard deviations in Fig. 5.28b, we can deduce that members of the ensemble, in such
points, disagree with each other.
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Flood damage Panaro basin
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(a) Flood damage
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(b) Flood damage difference

Figure 5.26: Expected damage for CMIP model-based and EFAS ones (a) and the dif-
ference between CMIP and EFAS (b) in each domain point of Panaro basin.
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Flood damage Reno basin
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(a) Flood damage, CMIP and EFAS based, in Secchia basin
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(b) Flood damage difference, CMIP and EFAS based, in Reno basin

Figure 5.27: Expected damage for CMIP model-based and EFAS ones (a) and the dif-
ference between CMIP and EFAS (b) in each domain point of Reno basin.
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Flood damage Secchia basin
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(a) Flood damage, CMIP and EFAS based, in Secchia basin
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(b) Flood damage difference, CMIP and EFAS based, in Secchia basin

Figure 5.28: Expected damage for CMIP model-based and EFAS ones (a) and the dif-
ference between CMIP and EFAS (b) in each domain point of Secchia basin.
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5.2 Estimating risk in future climate

Since the model takes into account a chain of models CMIP based, a projection of river
discharge in future climate scenarios, until 3 degrees above pre-industrial conditions
(1861-1890), can be considered. Since we assume that the statistic of flooding height is
referable to the river discharge one, from river discharge projections we can obtain the
flooding height ones, this means that an estimate of damage cost in the future scenarios
can be done through the flood damage functions defined in 4. To show the damage cost
increasing for the different degree scenario, in the next figures, Fig. 5.29, 5.30 and 5.31,
box plots are performed for all the basins.

Damage cost for the Panaro river for present climate, 1.5, 2 and 3 degree scenario
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Figure 5.29: Box plots of the damage in terms of M euros years−1 for the Panaro river
for the baseline and global warming levels of 1.5, 2.0 and 3.0 degrees.
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Damage cost for the Reno river for present climate, 1.5, 2 and 3 degree scenario
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Figure 5.30: Box plots of the damage in terms of M euros years−1 for the Reno river for
the baseline and global warming levels of 1.5, 2.0 and 3.0 degrees.

Damage cost for the Secchia river for present climate, 1.5, 2 and 3 degree scenario
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Figure 5.31: Box plots of the damage in terms of M euros years−1 for the Secchia river
for the baseline and global warming levels of 1.5, 2.0 and 3.0 degrees.

To visualize better the shape and skewness of the distributions, the probability den-
sity functions are plotted for all the basins, Fig.5.32, 5.33 and 5.34 their respective
statistic indexes are reported in Tab. 5.1, 5.2 and 5.3. By looking at the tables, for all
the rivers and in all the degree scenarios, the distributions are positively skewed with a
mean greater than the median, this means that the tails’ distribution is right-skewed.
For Secchia river, Fig. 5.34, the skewness approaches zero, so the distribution is near to
symmetric. As shown qualitatively by the boxplot whiskers, for all the rivers the stan-
dard deviation and mean increase as the temperature of the degree scenario increase.
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Probability density function of Damage cost for the Panaro river
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Figure 5.32: Probability density function (PDF) of damage in terms of M euros years−1

for Panaro in present climate and for increasing GWLs. The PDF, which is an approxi-
mation of the underlying histograms, is performed by using a Kernel density estimation
(KDE) which smooths the discrete data with a Gaussian kernel, producing a continuous
density estimate by using 60 bins.

Probability density function of Damage cost for the Reno river
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Figure 5.33: Probability density function (PDF) of damage in terms of M euros years−1

for Reno in present climate and for increasing GWLs. The PDF, which is an approxi-
mation of the underlying histograms, is performed by using a Kernel density estimation
(KDE) which smooths the discrete data with a Gaussian kernel, producing a continuous
density estimate by using 60 bins.
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Probability density function of Damage cost for the Secchia river
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Figure 5.34: Probability density function (PDF) of damage in terms of M euros years−1

for Secchia in present climate and for increasing GWLs. The PDF, which is an approxi-
mation of the underlying histograms, is performed by using a Kernel density estimation
(KDE) which smooths the discrete data with a Gaussian kernel, producing a continuous
density estimate by using 60 bins.

Another important index computed is kurtosis, which describes the flatness of the
distributions, and is a sort of measure of the distribution tails thickness, but it could be
seen as a departure measure from the normal distribution. Even if the kurtosis index
makes sense only for monomodal distribution, by looking at the value in Tab. 5.1, for
baseline and 1.5 degrees scenario the distribution is called leptokurtic so is more pointed
than the normal distribution. For 2.0 degree scenario, the index is negative, is called
platykurtic, and is flatter than the normal one; for a 3.0 degree scenario the index
is slightly positive and is leptokurtic but near to mesokurtic, so is flat like a normal
distribution.

Table with statistic indexes relative to Panaro PDF

Degree scenario Mean Median STD Skewness Kurtosis SNR

Baseline 5.29 0.0 8.20 1.47 1.21 0.64

1.5 11.39 7.8 14.33 1.93 3.47 0.79

2 21.62 19.85 16.89 0.31 -0.82 1.28

3 36.19 30.76 27.94 1.07 0.79 1.29

Table 5.1: Statistic indices relative to the PDF of the Panaro river 5.32. The explicit
form of indices is given in Appendix B.

For the Reno river, Tab. 5.2, the feature of the distributions are similar to the
Panaro but more accentuated. For Secchia river, Tab. 5.3, the baseline, 1.5, and 3.0
degree scenarios become all platykurtic, meanwhile, the 2.0 degree scenario is near to be
mesokurtic.
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Table with statistic indexes relative to Reno PDF

Degree scenario Mean Median STD Skewness Kurtosis SNR

Baseline 12.65 0.0 21.59 1.83 2.69 0.58

1.5 31.02 22.69 34.79 2.36 5.19 0.89

2 50.69 39.65 42.44 0.83 -0.56 1.19

3 71.42 62.21 69.07 0.37 1.75 1.03

Table 5.2: Statistic indices relative to the PDF of the Reno river 5.33. The explicit form
of indices is given in Appendix B.

Table with statistic indexes relative to Secchia PDF

Degree scenario Mean Median STD Skewness Kurtosis SNR

Baseline 1.39 0 2.01 0.99 -0.68 0.69

1.5 3.58 1.17 4.39 1.22 0.51 0.81

2 7.72 6.51 6.06 0.19 -1.42 1.27

3 11.74 10.83 7.40 0.40 -0.78 1.58

Table 5.3: Statistic indices relative to the PDF of the Secchia river 5.34. The explicit
form of indices is given in Appendix B.

The last index computed is the Signal To Noise Ratio (SNR), as proposed by [30]
(Qingyun Duan et al.). The simple model averaging (SMA) defined the signal as the
arithmetic multimodel ensemble mean, and the noise as the intraensemble range, i.e.
standard deviation. By definition when the SNR increases there is more agreement
between models, and vice-versa when SNR decreases there is disagreement. Since there
is no established threshold value for SNR, to make some statement about the quality
of the signal subjective considerations can be done. When SNR < 1, the signal is
smaller than the noise, we can assume that information contained in the mean is not
very trustworthy. Instead, SNR > 1 could indicate that the values explored by the
ensemble are close enough to consider the arithmetic multimodel ensemble mean as a
representative signal. By referring to the values reported in the tables for all the rivers,
the SNR value for baseline and 1.5-degree scenarios is smaller than 1, suggesting that
any consideration performed by considering such signal could be misleading. However,
by looking at 2.0 and 3.0-degree scenarios, SNR becomes greater than 1 by suggesting
that the information contained in the signal is trustworthy, so a damage cost increasing,
by increasing the temperature, would seem unavoidable. This result, the increasing
of SNR with temperature increase, can be caused by the fact that the multi-model
ensemble computes damages from projections that start from the early 2000s; but climate
projections are affected by the so-called epistemic and stochastic uncertainty. While
the second one is irreducible, the first one is reducible, because when a long period is
considered, the fluctuations of each model compensate each other. So, for the baseline
and 1.5-degree scenario, the years of projection taken into account are few, while for
the 2.0 and 3.0-degree scenario the information seems to be more robust because the
projections take into account more years.

In literature, it becomes a certainty that for every RCP scenario, which assumes an
increasing greenhouse gas (GHG) emission, global warming is inevitable. This means
that, on average, the temperature will increase leading to more moisture available for
atmosphere events, like precipitation one. Since extreme precipitation events have a
strong dependence on moisture content, we are expecting that extreme precipitation
will increase faster than the mean events [31](Myles R. Allen et al.). Because flooding
events depend on extreme precipitation events, rather than mean ones, we are expect-
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ing an increase in the frequency and magnitude of flooding events, so an increase in
river flood hazard. As indicated by [7](Dankers et al.)), for A2 and B2 GHG forcing
scenario, the average annual precipitation for north Italy will decrease, meanwhile the
annual maximum 5-day accumulated rainfall, which could be considered as an extreme
precipitation indicator, will increase. These extreme events will lead to an increase in
the discharge value of 100-year return period events in all seasons except summer [7].
Most important is the fact that, in European rivers like the Po and its tributaries, the
100-year return period events decrease about to 50 and sometimes 20 years, meaning
that the probability associated with 100-year return period events will become twice or
greater [7], [10](Alfieri et al.).

Following [12](Alfieri et al.), the increase of damage computed with a 4 degrees global
warming level, due to RCP 8.5, compared to the one simulated in the baseline period
could be, on average, about 500%. In our case, the increase of damage, computed by
the model with a 3 degrees global warming level due to the same RCP, compared to our
baseline is, on average, about 580%, 460% and 713% respectively for Panaro, Reno and
Secchia river with a 3 degrees global warming level.

All these results cited, some more than others, allow us to corroborate our one:
climate change will cause an increase in damage cost due to flooding risk increase for
rivers located in North Italy.



Chapter 6

Summary and conclusions

In Chapter 2, by following the reports of the Intergovernmental Panel for Climate Change
we have reviewed the concepts of risk, Disaster Risk Reduction and Climate Change
Adaptation. Then the My Climate Risk lighthouse defined by World Climate Research
Program (WRCP) is highlighted, as how the “top-down” and “bottom-up” approaches
can work in this direction. In Chapter 3, the rationale of the model and how it was
formulated is presented, with a focus on the hypothesis concerning the assumption that
the statistic of flood height is ascribable to the river discharge. The datasets used,
and how it’s component interface are summarized, and then the modelling approach is
shown. Chapter 4 concerns the outline followed by the model and functions implemented
to compute flood damage function and the damage at certain GWLs. In Chapter 5, the
model was initially subjected to a sensitivity test concerning the assumption of Area of
Influence followed. Model validation is performed by comparing the river discharges and
damages estimation in present climate with the observed ones. Finally, some properties
of the multi-models ensemble are analysed. Then the last part concern the results, which
are the estimate of the damage at certain GWLs, in form of box plots and Probability
Density Function. Finally, through an analysis of the statistics indices, are made some
considerations of climate signals in terms of damage.

In order to address the low confidence concerning precipitation and floods projection
for future scenarios on a global scale, this model tries to make a quantitative estimate
of the uncertainty by following the approach proposed by My Climate Risk. By dealing
with the problem from a local point o view, it enables a bottom-up approach to climate
risk by providing flexible tools which, by using open-source data from climate services,
allow us to assess the risk in future climate scenarios. Another aim is the quantitative
estimate of some possible adaptation measure which acts on hazard, exposure and vul-
nerability in order to find which of such measure lead to more efficient adaptation. The
uncertainty which emerges from the future degree scenarios is composed of two compo-
nents, an epistemic and stochastic one. The epistemic uncertainty derives from our state
of knowledge of the atmosphere and its interaction with the other components of the
earth system. By introducing the description of the unknown phenomena and improving
the ones that we already know, we will be able to reduce that source of uncertainty. The
stochastic uncertainty is due to the intrinsic nature of the atmosphere which is chaotic,
this must lead us to accept that we will always be dealing with a source of uncertainty
that can never be under our control, leading it to be irreducible, and leaving us only
with the possibility of better quantifying it. A common way employed to split the two
sources of uncertainty is to make an ensemble of different realizations obtained from a
single model by performing projections that starts from different initial conditions to
take into account the fact that also the state from which the projections start is not
knowing with arbitrarily large accuracy. Concerning the uncertainty deducible by our
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results, the ensemble is not composed by different running of the same model but from
sixteen projections performed by fifteen models, in which for only one model we have
two different realizations. As consequence, the uncertainty is quantifiable as a whole
and splitting the two components is not possible. Therefore the uncertainty to which
we refer for the model takes into account both components. Concerning the error that
we make by following our assumption of Areas of Influence it is two orders of magnitude
smaller than the ensemble uncertainty for all the rivers, both in present climate and at
a GWL of 1.5 . For what concerns the river discharge validation, the relative errors
(Appendix B) that we make by considering the simulated slope of the flood-frequency
relationship are 30% for the Panaro river, 15% for the Secchia river, 50% (according to
AdB) and 32% (according to Comune di Marzabotto) for Reno-Casalecchio, 41% (ac-
cording to AdB) and 28% (according to Comune di Marzabotto) for Reno-Marzabotto.
This is anyway affected by large intrinsic variability in the observations that could be
quantified in future studies and may allow more quantitative statements on the valida-
tion of the model. Therefore the hypothesis of AoI is a weak source of uncertainty, this
gives us confidence about its applicability. Although the river discharge validation for
the Reno river is inconclusive, due to a lack of well-document and high-quality data, the
results of the test concerning the Panaro and Secchia rivers indicate a small source of
error in this approximation. As regards the climate signal, it emerges as the temperature
of future degree scenarios increases (see 5.2), and a similar trend is reported by [3] for
the precipitation signal. Therefore an increase in damage due to flooding events as the
temperature increase is found, which is in agreement with the results of [7](Dankers et
al.) and [10](Alfieri et al.). The AoI definition followed, allow the model to perform
analysis for catchment which have similar geometry, e.g. the slope. Therefore, to enable
it to work with others rivers, different formulations of AoI must be taken into account,
according to the type of catchment considered. This is necessary because the soundness
of the assumption, on which the model is based (p(hi)dp = g(Q(ri))dQ), depends on how
the AoIs are chosen, i.e. which river point ri is linked to the domain point i, interested
by a flood event. The approach followed by the model can be implemented for other
extreme events models, e.g. by founding the way through which to link the statistics
of a variable, which drives the hazard, with another one given by climate projections,
to make a forecast of the first one. In that way, a projection of the economic impact of
such extreme events can be performed. Therefore, if achievable, in order to implement
adaptation measures, useful tools would be provided to the policymakers on the local
scale to deal with an increase in risk due to extreme events.



Appendix A

Concerning the outline represented in Fig. 4.1, in that appendix the rule of the functions
will be explained. To run the model, the first python script which is executed is Risk
- init - base which import from the Risk - dict the following variables, dictionaries,
array etc... :

• Damages

– is a dictionary which associate to each asset category the damage fraction
value

• Files

– is a dictionary which associate to each model a nc data file

• MaxDamages

– is a dictionary which associate to each asset category a number, provided by
engineering studies, it is the max damages that an asset can suffer

• Hdamages

– is a one dimensional array containing the number 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6,
which represent a flooding heights

• FILE LU

– file containing information about the portion of surface covered by land

From Risk - Function the following function are imported:

• make LUs

– take as input the file FILE-LU to convert him into a npy format

• make H

– convert the flooding height maps for the return periods equal to 10, 20, 50,
100, 200, 500 years into npy format

• make Hfit

– by using the six flooding height maps relative to each return period, an in-
terpolation is performed in order to obtain the value of the coefficients that
allow to the computation of the flooding height maps for a generic return
period. The two coefficients are named Hfit0 and Hfit1

• make - idxMAP river
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– take as input the river networks and flooding heights map to perform a map
labelled by three indices. The first two indices are the coordinate of the grid
point in the flooding height map (finer grid, 100m) and the third contain the
coordinate of the nearest point of the river network map (coarse grid, 5 km)

• make - idxLUMAP

– perform the same things of the previous one, but considering a map of asset
categories rather than river network

• make - rm - LU

– take as input idxLUMAP and provide as output a map of land use with the
same grid of flooding height map

• make - damage - fast

– is a function which provides the damage in a domain point subject to a flood
event. Is a function of land use (asset category), flooding height and max
damage

• read - model

– for each model of the ensemble, it reads the value of a river discharge simulated
for a given return period

• make - RPs

– for each model of the ensemble, in order to compute the river discharge value
for a generic return period a linear fit is performed

• make - baseline - damage

– which in turn import from Risk - Function the following functions: make -
damage - fast, read - model, make - RPs, Hfit0, Hfit1, make - rm - LU and
idxMAP. A one-dimensional return period array is defined, containing num-
bers which come from 49.88 to 3000, with 90 equidistant steps in a logarithmic
space in order to explore several orders of magnitude. For each element of
the array, which is a return period, the damage associated with such a return
period is computed. A masked is applied in order to compute the damage
only in the domain points which belong to an asset category defined before.
Another mask is applied to consider only the point in which the Hfit0 and
Hfit1 are different from zero, i.e. a domain point susceptible to a flooding
event.

The last function analyzed is make - GWL. The procedure following this function is
similar tomake - baseline - damage. The input is the same as the previous function, a
damage is computed in the present climate in the same way of make baseline damage, but
by taking into account the ensemble of the models. The return period array considered
now depends on the GCMs which is taken into account. The return periods explored,
to compute the damage, depend on the GWL chosen and once again from GCM.



Appendix B

Concerning the relative errors in 5.1.4 and 6 are respectively computed as:

EFAS based− CMIP based

EFAS based
(6.1)

and
observed− CMIP based

observed
(6.2)

Concerning the Tab. 5.1, 5.2 and 5.3 in that appendix explicit forms of the indices
reported are reported.

• Mean The mean value of expected damages the ensemble it is computed as the
sum of all the expected damages xi simulated by the multi-model ensemble divided
by the number of members of the ensemble

µ =
1

M

M∑
i=1

xi. (6.3)

• Median The median value of expected damages is computed by sorting the ex-
pected damage computed by the member of multi-model ensemble and then com-

puting the mean value between the values which occupies the positions
n

2
and

n

2
+ 1

• Standard deviation (STD)

σ =

√√√√ 1

M

M∑
i=1

(xi − µ)2., (6.4)

where µ is the mean value of expected damages

• Skewness The sample skewness is computed as the Fisher-Pearson coefficient of
skewness [32], i.e.

g1 =
m3

m
3/2
2

, (6.5)

where

mi =
1

N

N∑
i=1

(x[n]− µ)i, (6.6)

is the biased sample i-th central moment.

• Kurtosis The Kurtosis considered here is the Fisher one, computed as fourth
central moment divided by the square of the variance minus 3 [32]

kurtosis =
m4

σ4
− 3, (6.7)
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• Signal to Noise ratio (SNR) The signal to noise ratio (SNR) is defined as the
ratio between the mean and the STD

SNR =
µ

σ
. (6.8)
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[26] Autoridà di Bacino Reno - PSAI Reno - Titolo II. Rischio Idraulico e Assetto
della Rete Idrografica. url: https://ambiente.regione.emilia-romagna.it/
it/suolo-bacino/sezioni/pianificazione/autorita-bacino-reno/psai/

tavole-tit-ii-reno/reno-tavole.

[27] Comune di Marzabotto. Relazione idraulica inerente il programma di riqualifi-
cazione urbana della stazione ferroviaria di Marzabotto. url: https : / / www .

comune.marzabotto.bo.it/upload/marzabotto/gestionedocumentale/08.

RI-Rel-idraulica_784_4316.pdf.

[28] Heinz Dieter Fill and Alexandre Arns Steiner. “Estimating Instantaneous Peak
Flow from Mean Daily Flow Data”. In: Journal of Hydrologic Engineering 8.6
(2003), pp. 365–369. doi: 10.1061/(ASCE)1084-0699(2003)8:6(365). eprint:
https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%291084-0699%282003%

298%3A6%28365%29. url: https://ascelibrary.org/doi/abs/10.1061/
%28ASCE%291084-0699%282003%298%3A6%28365%29.

[29] David M. Allen. “The Relationship Between Variable Selection and Data Agumen-
tation and a Method for Prediction”. In: Technometrics 16.1 (1974), pp. 125–127.
doi: 10.1080/00401706.1974.10489157. url: https://www.tandfonline.com/
doi/abs/10.1080/00401706.1974.10489157.

[30] Qingyun Duan and Thomas J. Phillips. “Bayesian estimation of local signal and
noise in multimodel simulations of climate change”. In: Journal of Geophysical
Research: Atmospheres 115.D18123 (2010). doi: https://doi.org/10.1029/
2009JD013654.

[31] Myles R. Allen and William J. Ingram. “Constraints on future changes in climate
and the hydrologic cycle”. In: Nature 419 (2002), pp. 224–232. doi: https://doi.
org/10.1038/nature01092.

[32] “CRC Standard Probability and Statistics Tables and Formulae”. In: Chapman
Hal (2000), Section 2.2.24.1.


