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Sommario

Le galassie nane subiscono spesso interazioni gravitazionali da parte di
compagne più massicce. Queste interazioni possono deformare le galassie,
accendere o spegnere la formazione stellare o dar vita a fenomeni di perdita
di massa. In questo lavoro di tesi ci proponiamo di studiare, tramite sim-
ulazioni N-body, la perdita di massa stellare subita dalla galassia nana
sferoidale (dSph) Fornax in orbita attorno alla Milky Way. Un fenomeno
chiave per spiegare il mass budget problem: gli ammassi globulari di For-
nax possiedono, insieme, una massa stellare confrontabile con quella di
Fornax stessa. Se osserviamo le popolazioni stellari di cui sono fatti e
applichiamo gli scenari di formazione delle popolazioni stellari scopriamo
che, in origine, dovevano essere almeno 5 volte più massicci. Quindi,
devono aver perso o espulso stelle attraverso interazioni dinamiche. Tut-
tavia, come presentato in Larsen et al (2012), le sole stelle di campo
non sono sufficienti per spiegare questo scenario. Possiamo assumere che
parte di quelle stelle siano cadute in Fornax, e successivamente strappate
dalla Milky Way. Per studiare questa soluzione abbiamo costruito diverse
simulazioni illustrative, a singola componente, con un modello a densità
tabulate, usando l’orbita P07ecc studiata da Battaglia et al (2015). Per
dividere la singola componete in componente stellare e di materia oscura
abbiamo definito una funzione di probabilità P(E) a posteriori, dove E
è la distribuzione di energia iniziale delle particelle. Associando ad ogni
particella una frazione di massa stellare e di materia oscura. In questo
modo abbiamo costruito i profili di densità stellare senza ripetere simu-
lazioni. Abbiamo applicato il metodo a Fornax usando le tabelle di densità
dei profili ottenute da Pascale et al (2018) come vincoli osservativi e per
costruire il modello. I risultati confermano i risultati precedentemente
ottenuti con modelli meno flessibili in Battaglia et al (2015). Mostrano
una perdita massa stellare < 4% all’interno dei 1.6 kpc e trascurabile nei
3 kpc, troppo piccola per risolvere il mass budget problem.
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Abstract

Dwarf galaxies often experience gravitational interactions from more
massive companions. These interactions can deform galaxies, turn star
formation on or off, or give rise to mass loss phenomena. In this thesis
work we propose to study, through N-body simulations, the stellar mass
loss suffered by the dwarf spheroid galaxy (dSph) Fornax orbiting in the
Milky Way gravitational potential. Which is a key phenomenon to explain
the mass budget problem: the Fornax globular clusters together have a
stellar mass comparable to that of Fornax itself. If we look at the stellar
populations which they are made of and we apply the scenarios of stellar
population formation we find that, originally, they must have been ≥
5 times more massive. For this reason, they must have lost or ejected
stars through dynamic interactions. However, as presented in Larsen et
al (2012), field stars alone are not sufficient to explain this scenario. We
may assume that some of those stars fell into Fornax, and later were
stripped by Milky Way. In order to study this solution we built several
illustrative single component simulations, with a tabulated density model
using the P07ecc orbit studied from Battaglia et al (2015). To divide
the single component into stellar and dark matter components we have
defined a posterior the probability function P(E), where E is the initial
energy distribution of the particles. By associating each particle with a
fraction of stellar mass and dark matter. In this way we built stellar
density profiles without repeating simulations. We applied the method to
Fornax using the profile density tables obtained in Pascale et al (2018)
as observational constraints and to build the model. The results confirm
the results previously obtained with less flexible models by Battaglia et al
(2015). They show a stellar mass loss < 4% within 1.6 kpc and negligible
within 3 kpc, too small to solve the mass budget problem.
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Chapter 1

Introduction

The current favoured cosmological model, the ΛCDM, describes a flat
geometry universe (Ω0+ΩΛ0 = 1) where the contribution is given to∼ 70%
by dark energy and ∼ 30% by matter. Of this mass ∼ 85% is due to dark
matter while ∼ 15% is due to baryonic matter (42).
Within the ΛCDM model, the formation of massive galaxies and larger
structures such as groups and clusters occurs by merging of smaller ob-
jects, such as dwarf galaxies. This scenario is defined as hierarchical or
bottom-up.
These small objects are formed from a halo of dark matter (Mgal >
106 M⊙) in which baryonic matter collapse, cools and form stars. These
first stars are born in an environment of zero metallicity (8). When they
die they can either explode as supernovae, causing the release of an enor-
mous quantity of energy in the primordial gas, or they can collapse directly
into a black hole (19). The primordial gas, invested by this energy in the
form of shock waves, is swept away.
By that time, these young dark matter halos must have masses ≥ 108 M⊙
(9) to gravitationally retain this gas. Otherwise, the gas is ejected into
intergalactic space, the star formation stops and we get an empty dark
matter halo without optical counterpart.
An objects that can withstand this scenario will then evolve into proto-
dwarf galaxy or dwarf galaxy (17).
We can define galaxies as self-gravitating objects in equilibrium, capable
of gravitationally retaining a substantial fraction of the gas to prolong star
formation (9). They have total masses between 108 M⊙ and 1013 M⊙, size
of 1−200 kpc and their luminosity distribution is generally well described
by the Schechter function (41). They show different morphologies related
to environmental characteristics (15) and their history of star formation
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2 CHAPTER 1. INTRODUCTION

or merging history (43).
Historically, the earliest classifications of galaxies, such as the Hubble tun-
ing fork, were based on their morphological type. However, today there
are more complex classifications based on single physical parameters.
The one of our interest, and which is discussed in section 1.1, is the clas-
sification of dwarf galaxies.
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1.1 Properties of dwarf galaxies.

Dwarf galaxies exhibit a wide variety of shapes and physical character-
istics due to their low mass, which makes them easily influenced by more
massive objects and their own star formation (33).
These influences can be tidal forces (37) or ram pressure and can strip
dark matter from the halo and baryonic matter in the form of stars and
gas. This phenomenon can be so violent or protracted over time that can
leave the galaxy without a dark matter halo (30). Without a sufficient
quantity of gas, and the possibility of accreting it through infall or merg-
ers, it is difficult to have an extended star formation with multiple stellar
populations, it is easier to find simple stellar populations born from burst
events. Such a star formation history can explain the low surface bright-
ness of these objects and their high mass-to-light ratios (17).
Choosing an unambiguous definition of a dwarf galaxy is generally dif-
ficult; one possible choice is to take as a threshold a certain magnitude
(MV ≥ −18 mag) beyond which a galaxy is considered a dwarf. For this
reason they are not easy to observe and the best-known ones belong to the
Local Group (32), (44). The most general classification we can make for
these objects is between irregular, spherical and spheroidal dwarf galaxies
(18).

• (dIrr) Dwarf irregular (MV ≥ −18 mag, MDM+star ≤ 1010 M⊙) are
rich in gas, far from massive objects (fig 1.1), they have rotational
support, show the presence of recent star formation, and typical
metallicity 0.1 Z⊙.

• (dEs) Dwarf spherical (MV ≥ −17 mag, MDM+star ≤ 109 M⊙) are
globular cluster-like objects with a pronounced central concentra-
tion; all the dEs of the Local Group are companions of M31.

• (dSph) Dwarf spheroidal (MV ≥ −14 mag, MDM+star ∼ 107 M⊙)
are almost without gas, with multiple stellar populations and the
stars are generally old-intermediate age. They are not supported
by rotation and show the highest mass-to-light ratios (M/L > 10).
They also show signs of segregation in their spatial distribution in
the Local Group (see fig 1.1).

Another important factor for these galaxies is the presence or absence
of globular clusters which, due to low masses, can have a decisive impact
on their evolutionary history. In particular, Fornax is the dSph with the
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highest number of globular cluster in the Local Group. Several studies
exploit this peculiarity to find constrains on the evolution of this type of
systems (39) or Fornax itself (10) (6) (22).

Figure 1.1: The HI gas content of dwarf galaxies as a function of their
Galactocentric distance. Arrows are upper limits and are where essentially
no gas is detected. This figure is taken from (9).
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1.2 Fornax’s Mass budget problem

Fornax is a dwarf galaxy classified as dSph. It is located at 138±8 kpc
from us (13), in the coordinate position shown in tab 1.1 (3), it is the
second dSph for brightness (MV = −13.2 mag) (31) and for mass ( Mtot ∼
109 M⊙) within the Local Group and shows a complex and articulated star
formation history, which continued until 100 Myr ago (11).
Within Fornax, we can identify three different stellar populations (40):

• Old population (> 10 Gyr): the old population is made up of stars
with metallicity of −2.2 < [Fe/H] < −1.4. It is distributed in the
volume of the galaxy.

• Intermediate population (2− 10 Gyr): the intermediate population
formed over a wide time, with were at least two peaks of star for-
mation 7 and 2.5 Gyr ago. With a metallicity of −1.25 < [Fe/H] <
−0.75, this population is dominant in the centre of the galaxy.

• Young population (< 1 Gyr): it mainly formed in a star formation
episode of 100 Myr ago, it has metallicity of [Fe/H] ∼ −0.7 and it
is mainly segregated in the center.

In addition to these stellar populations, Fornax has five globular clusters.
We define the specific frequency parameter as:

SN = NGC10
0.4·(MV +15) (16) (1.1)

which is the number of globular cluster per unit luminosity, normalized
at 15 mag. For Fornax we obtain SN = 26 (26), is a large number for a
galaxy with Fornax characteristics, since a normal quantity does not go
beyond 20. Typically, spirals, ellipticals and cD galaxies have SN ∼ 1,
3− 5 and 10− 20, respectively (16).
The value increases even more if we consider only the stars with a metal-
licity of [Fe/H] < −2. This is because four out of Fornax’s five glob-
ular clusters present old stars with metallicity [Fe/H] < −2 (Fornax 1,
2, 3, 5 (25) (27)). In these conditions MV ([Fe/H] < −2) ∼ −10 mag
and SN([Fe/H] < −2) ≈ 400 (26). If we compare Fornax’s stellar mass
(M⋆,Fornax ≈ 4.3 · 107 M⊙ (13)) with the total stellar mass of its globular
clusters, we find that they are comparable, i.e. M⋆,tot,GC ≈ 106 M⊙ (14).
Within the globular clusters of Fornax we find multiple stellar popula-
tions (27). In particular, there are first generation stars (1G) and second
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generation stars (2G) which show anti-correlations in the abundances of
different elements, such as O-Na or C-Na.
Scenarios for the formation of multiple populations (23) predict that the
first generation enriches the gas and, together with an amount of gas ac-
creted from the surrounding environment, it enables the formation of a
second generation. However, for a standard IMF (24), only a low per-
centage of this enriched gas can be used to create the next generation.
This led to he so-called mass-buget problem; a solution to this problem
is to assume either a non-standard IMF for 1G stars, or postulate a 1G
more massive than the present-day GCs by a factor between 5-20 (38).
However, Fornax field stars have in total a stellar mass equal to, at most,
4-5 times of the present globular clusters mass (26). This implies that, in
order to justify very large FG mass values (≫ 5), we are forced to require
that a large fraction (90 - 95%) of 1G stars was somehow lost after en-
riching the gas.
An intuitive solution may be to call into question the tidal forces suffered
by Fornax and their contribution to its evolutionary history. A loss of
stellar mass can explain such a high specific frequency and low total stel-
lar mass in Larsen’s field stars. Based on where they were lost, and when,
these stars may no longer be detectable. This possibility was already in-
vestigated (4) with less flexible models.
What we intend to do in this thesis is to study, through N-body simula-
tions, the loss of stellar mass suffered by a Fornax-like satellite. We take
advantage from previous work to put constraints on Fornax mass density
distribution from Pascale et al (2018)(36) and orbital parameters from
Battaglia et al (2015) (4).

Parameter Value
RA 2h39m52s

DEC −34◦30′49′′

P.A. 46◦.8± 1◦.6
ϵ 0.30 ± 0.01
vsys,h 54.1± 0.5 km/s

Table 1.1: Observational parameters of Fornax: right ascension (RA),
declination (DEC), Position Angle (P.A.), ellipticity (ϵ). P.A. is the angle
between the North and the projected major axis of the galaxy measured
anti-clockwise. vsys,h refers to the heliocentric reference frame. The table
is from (2).



Chapter 2

Main proprieties of
collisionless systems

In this chapter we discuss the main properties of collionless stellar sys-
tem following the treatment of (7).
By non-collisional system we mean a system that has an age lower than
its two-body relaxation time.
In this type of systems, such as galaxies, the interactions between stars
are irrelevant because their motion is dominated by the smooth gravita-
tional potential. The gravitational interactions between individual stars
are negligible and retain the motions dating back to their formation. Fur-
thermore, a collisionless system is not automatically in equilibrium. The
condition of relaxation, on the other hand, is achieved through a redistri-
bution of energy between all parts of the system with collisions, bringing
the system to equilibrium.
There are two methods of doing this: through collision between particles
(two-body relaxation time) or through variations of the gravitational po-
tential (violent relaxation time). Of these two phenomena, the longest is
the two-body relaxation time, beyond which we are sure that the system
is relaxed.
To understand how the collisions between the stars can lead the system to
a redistribution of energy we must study how these exchanges of energy
take place.

7



8 CHAPTER 2. COLLISIONLESS SYSTEMS

2.1 Two body relaxation time

For the demonstration of the two-body relaxation time we consider a
system (fig 2.1) with two particles, one at rest (p1, black dot) and one
moving along a trajectory x (p2). We define vini as the initial velocity of
the p2 particles and δv⊥ as the variation in velocity perpendicular to the
straight line trajectory. Then, we can consider the trajectory of a particle
to be significantly deviated if δv⊥ ∼ vini.
For the demonstration we use impulse approximation, we put ourselves in
the center of reference of p1, we approximate the orbit of the deviated
body with a straight line (dashed line), at speed v = cost, at distance
b = cost from p1, fig 2.1. This is what we define collision: in terms of
the parametr b we can then talk about a close encounter (≈ bmin) or a far
encounter (≈ bmax).
The F⊥ is the force perpendicular to the trajectory of the 2p particle. We
can calculate it as:

F⊥ = − Gm2

x2 + b2
cos θ = − Gm2

x2 + b2
b

(x2 + b2)1/2
, (2.1)

the corresponding deviation is:

δv⊥ =
1

m

∫ ∞

−∞
F⊥dt = −Gm2b

∫ ∞

−∞

1

(x2 + b2)3/2
dt = −2Gm

bv
(2.2)

we choose to make a substitution, taking into account that x = vt, with
x̃ = x

b we can change
∫
dt −→

∫
dx̃ and we obtain:

δv⊥ = −2Gm

bv
. (2.3)

If we take into account all the deviations that the particle undergoes
while crossing the system at a distance between b and b + db we obtain:
N
πR22πbdb, where N is the total number of particles and R is the radius.
We assume that all these variations occur randomly, with this condition
the average deviation of the particle will follow a Gaussian centered at 0,
δv⊥ = 0. But, its perpendicular kinetic energy changes at every deviation:〈

∆v2
〉
(b) ≈ (δv)2

2N

R2
bdb . (2.4)

We integrate across the entire range of impact parameters:〈
∆v2

〉
=

8G2m2N

v2r2

∫ bmax

−bmin

db

b
= 8N

(
Gm

Rv

)2

ln Λ , Λ =
bmax

bmin
(2.5)
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where the value of bmin is obtained from our definition of significant devi-
ation, such that v ≈ δv = Gm

bminv
. The value of bmax instead is given by the

size of the system, bmax = R, so

Λ =
bmax

bmin
=

R

Gm

v2

2
=

N

v2c

v2

2
≈ N

2
≈ N . (2.6)

With a ratio nrelax ≈ v2

⟨∆v2⟩ we find the number of steps that the particle

must go through to have an energy ∆K ∼ K:

nrelax =
v4

N

R2

G2m2

1

8 lnΛ
≈ N

8 lnΛ
≈ N

8 lnN
(2.7)

Multiplying by the characteristic time of a passage, tcross =
2πR
v we find

the two-body relaxation time:

t2B-relax = nrelaxtcross ≈
N

8 lnN
tdyn , (2.8)

where tdyn is calculated as:

tdyn =
1√
Gρ̄

=

√
84
3πr

3
half mass

GM
=

√
32π

3

√
r3half mass

M
. (2.9)

The time found in 2.8 is the two-body relaxation time. It measures
how long it takes the system to redistribute energy through only collisions.
For a Milky Way-like galaxy with N ≈ 1011 we find t2B-relax = 106−7 Gyr.
For a dwarf galaxy, with N ≈ 107, t2B-relax = 1011 Gyr.
Galaxies therefore cannot be systems that have achieved relaxation through
collisions. Ideally, with infinite time, all systems relax through collisions
and go from non-collisional to collisional. However the galaxies are too
young compared to their relaxation time, so they must have relaxed oth-
erwise.
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Figure 2.1: Two-particle system.

2.2 Violent relaxation time

Another mechanism to relax the system was proposed in 1967 by Lyn-
den (29). It is the violent relaxation, a chaotic and collective process that
can only be studied through simulations. While the two-body relaxation
redistributes the energies by changing the speed of the particles to have
particles with similar energy, the violent relaxation changes the energy of
the particles by uniforming their speed.
Violent relaxation is possible as long as the gas present for star formation,
or any other element that can allow energy to be dissipated, is exhausted.
Under these conditions it is possible to distribute the energy with the
variation of the gravitational potential.
We define the energy of a single star orbiting in a time-varying gravita-
tional potential Φ(r, t) as:

E(v, t) =
v2

2
+ Φ(r, t) . (2.10)

The variation of the star’s energy over time is given by:

dE

dt
=

∂E

∂v
· dv
dt

+
dΦ

dt
= −v · ∇Φ +

∂Φ

∂r
· dr
dt

+
∂Φ

∂t
=

∂Φ

∂t
(2.11)

and this will happen with a characteristic time of:

tV-relax =

〈
Ė2

E2

〉−1/2

=

〈
Φ̇2

E2

〉−1/2

=
3

4
·

〈
Φ̇2

Φ2

〉−1/2

≈ tcross . (2.12)
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Violent relaxation is a faster process that allows the system to become
relaxed in a few dynamical time.

tV-relax ≈ tcross ≈ tdyn ≪ t2B-relax (2.13)

Ideally this process requires an infinite mass to reach its fulfillment,
only the central regions of the object are in equilibrium while in the outer
parts we expect anisotropies.

2.3 Collisionless Boltzmann Equation (CBE)

In this, and the next section, we introduce the theoretical framework
that we will use to generate positions and velocities of the particles of the
Fornax-like satellite.
We define the distribution function (DF hereafter) as the function f such
that:

f(w, t)d6w , (2.14)

with w = (x,v) is the number of stars in an infinitesimal phase-space
volume d6w centered in w at time t.
We define the integral of the distribution function as∫

f(w, t)d6w = N (2.15)

The DF contains all the information about the system. To obtain them
we need to study the moments of the distribution of the DF.
The study of the first moments are

Number density n(x) =

∫
f(x,v, t)d3v (2.16)

Mean velocity v =
1

n(x)

∫
vf(x,v, t)d3v (2.17)

We can easily arrive at the total mass of the system, or the mass
density, by considering m as the mass of a single star and multiplying it
by 2.15.
What interests us most is to determine the f . If what we need is a
non-collisional system then we require that the probability of finding a
particle in one position does not affect the probability of finding a particle
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in another position.
As result, the distribution function must be such that:

fN(w1,w2, . . . ,wN , t) =
N∏
i=1

f(wi, t) (2.18)

Since the space inside a galaxy is mostly empty, the direct collisions
between stars are highly unlikely, we can consider the stars as a fluid
whose mass its conserved:

∂f

∂t
+

6∑
i=1

∂(fẇi)

∂wi
= 0 , (2.19)

which gives

6∑
i=1

∂(fẇi)

∂wi
=

6∑
i=1

∂(ẇi)

∂wi
f +

6∑
i=1

ẇi
∂(f)

∂wi

=
3∑

j=1 �
�
�
�∂vj

∂xj
−

3∑
j=1 �

�
�
�
�∂

∂vj

∂Φ

∂xj
+

6∑
i=1

ẇi
∂(f)

∂wi
,

(2.20)

where the two canceled terms are eliminated because xj and vi are inde-
pendent coordinates and ∂Φ

∂xi
= v̇j.

This is the Collisionless Boltzmann Equation (CBE hereafter):

∂f

∂t
+

6∑
i=1

ẇi
∂f

∂wi
= 0 , (2.21)

or
∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0 . (2.22)

2.3.1 Jeans Equation

Jeans equations are an infinite series of equations obtainable from CBE
by a function of v and integrated over velocities.
In this way the problem goes from finding a solution for the CBE to being
able to close the infinite series of Jeans’ equations, where each equation
gives information about the physical quantities of the system.
In order to obtain the Jeans equation we combine eq 2.22, 2.16 and 2.17
to write the continuity equation:
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∫
(CBE)d3v =

∂

∂t

∫
fd3v +

∂

∂xi

∫
vifd

3v − ∂Φ

∂xi

∫
∂f

∂vi
d3v

=
∂n(x)

∂t
+

∂nvi
∂xi

− ∂Φ

∂xi

∫
dvj

∫
dvk

�
���

��
∫

∂f

∂vi
dvi

=
∂n

∂t
+

∂nvi
∂xi

= 0 .

(2.23)

The second Jeans equation is:

∫
(CBE)vjd

3v =
∂

∂t

∫
vjfd

3v +
∂

∂xi

∫
vivjfd

3v − ∂Φ

∂xi

∫
∂f

∂vi
vjd

3v

=
∂nvi
∂xj

+
∂nvivj
∂xj

− ∂Φ

∂xi

(
��

���
��

∫
∂(fvj)

∂vi
−

∫
∂vj
∂vi

f

)
d3v

=
∂n

∂t
+

∂nvi
∂xi

+ n
∂Φ

∂xj
= 0 .

(2.24)

We can rewrite this second equation in a more useful form by consid-
ering the velocity dispersion tensor, defined as:

σ2
ij = (vi − vi)(vj − vj) =

1

n

∫
f(vi − vi)(vj − vj)d

3v . (2.25)

The second Jeans equation becomes:

n
∂vj
∂t

+
∂(nσ2

ij)

∂xi
+ nvi

∂vj
∂xi

+ n
∂Φ

∂xj
= 0 . (2.26)

2.4 Jeans theorem

The integrals of motion are defined as functions I(x,v) such that:

dI

dt
=

∂I

∂x

dx

dt
+

∂I

∂v

dv

dt
= v

∂I

∂x
− ∂Φ

∂x

∂I

∂v
= 0 . (2.27)

The 2.27 equation it’s like 2.22 with ∂
∂t = 0 (also known as equilibrium

collisionless Boltzmann equation, eCBE hereafter). So, the integrals of
motion are stationary solutions for the CBE.
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Jeans theorem 2.4.1 Any function of the integrals of motion is a so-
lution of the eCBE. Furthermore, any solution of the equilibrium colli-
sionless Boltzmann equation only depends on the phase-space coordinates
(x,v) through the integrals of motion. (7)

Therefore, if we have some integrals of motion I1, . . . , In every DF like
f = f(I1), f(I1, I2), . . . , f(I1, . . . , In) is a CBE solution.
The Jeans theorem implies that if we are looking for solutions for the sta-
tionary CBE, we must look for a function that depends on prime integrals
of motion and that is positive for all values of (x,v) (7). This for example
allows us to build a galaxy orbit by orbit.
For the spherical systems the possible candidates are the energy E and the
angular momentum L. We choose to consider only DF energy dependent
f(E), which are known as ergodic DF.

2.5 Ergodic DF for sperical system

The simplest CBE solution, for a self-consistent system, is a DF that
depends only on energy. By self-consistent we indicate a system in which
density determines potential and potential determines density consistently
via the Poisson equation.
In order to determine our f(E) we define:

Relative Potential Ψ = −Φ + Φ0 , (2.28)

Relative Energy E = −E + Φ0 = Ψ− 1

2
v2 , (2.29)

where Φ0 is defined such that f > 0 if E > 0 and f = 0 if E ≤ 0.
Then, the Poisson equation in terms of the relative potential is

∇2Ψ = −4πGρ . (2.30)
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We rewrite the density with eq 2.29

ρ(r) =

∫
dvf(r,v)

= 4π

∫
f(r, v)dv

= 4π

∫
v2f(E)dv

= 4π

∫ Ψ

0

√
2(Ψ− E)f(E)dE

1√
8π

ρ(Ψ) = 2

∫ Ψ

0

√
Ψ− Ef(E)dE

(2.31)

In the last step we write ρ(Ψ) because Ψ is a monotonic function that
depends on r, for this reason we can rewrite the density dependence as a
dependence on the relative potential.
Then we differentiate both the members using the relative potential: d

dΨ

1√
8π

dρ(Ψ)

dΨ
= 2

∫ Ψ

0

f(E)√
Ψ− E

dE (2.32)

Since the integral is 0 for Ψ = E we get an integral of Abel which can be
inverted:

f(E) = 1√
8π2

d

dE

∫ E

0

1√
E −Ψ

dρ

dΨ
dΨ . (2.33)

This formula 2.33 is called Eddington’s formula and, given a spherical
distribution, allows to generate a model with the given density. It is clear
that f(E) ≥ 0 only if 1√

E−Ψ

dρ
dΨdΨ ≥ 0, this is a necessary condition. If it is

not satisfied the ergodic DF is not compatible with the density distribution
ρ(r).

2.5.1 Ergodic DF property

Finally, the ergodic DFs due to the condition on 2.33 show some par-
ticular properties.
If we define E = v2

2 + Φ(x) with v2 = v2x + v2y + v2z then:

vi =
1

n(x)

∫
vif

[
1

2
(v2i + v2j + v2k) + Φ(x)

]
d3v = 0 (2.34)
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Since vif [
1
2(v

2
i + v2j + v2k) + Φ(x)] is an odd function. This is also applied

to mixed terms, i ̸= j:

vivj =
1

n(x)

∫
vivjf

[
1

2
(v2i + v2j + v2k) + Φ(x)

]
d3v

=
1

n(x)

∫
dvk

∫
vjdvj

∫
vif

[
1

2
(v2i + v2j + v2k) + Φ(x)

]
dvi = 0

(2.35)

For this reason the velocity dispersion tensor contains only the non-mixed
second moments:

σ2
ii = v2i =

1

n(x)

∫
dvk

∫
dvj

∫
v2i f

[
1

2
(v2i + v2j + v2k) + Φ(x)

]
dvi .

(2.36)
The velocity dispersion tensor is diagonal and symmetrical, the stellar
system is isotropic and the velocity ellipsoid at each point is a sphere.
Moreover, if the DF is ergodic a self-gravitating system has spherical sym-
metry:

vr = vθ = vϕ = 0 ; σ2
r = σ2

θ = σ2
ϕ = σ2 . (2.37)



Chapter 3

N-body models of the
Fornax dSph

In this chapter we present models with a Fornax-like density profile.
We show two models: a Navarro-Frenk-White with core (NFWc hereafter)
with analytic density distribution and the P18 model, which is a model
with numerical density distribution in which the density profile is taken
from the numerical model of (36).
For simplicity we will limit ourselves to building a non-rotating and spher-
ical model. A rotating and non-spherical model would certainly be more
realistic but would introduce complications on a mathematical and phys-
ical level that are not necessary for our purpose.
Once the model parameters have been chosen, we will construct N-body
realizations of the models using an ergodic distribution function (sec-
tion 2.5).
We will then run a simulation in isolation of the model with the FVFPS

colissionless code (28) to assess how the equilibrium is maintained numer-
ically. The sample of particles should already be in equilibrium since the
coordinates of velocity and position of the particles have been extracted
from a DF (section 2.4). However, deviations from an exact equilibrium
are expected due to discreteness effects.
As previously mentioned in section 1.1, the density profile in dSph is often
dominated by dark matter, and in the case of Fornax this dominates at
all radii (36). This is supported by studies that exploit different methods
to investigate the dynamics of the satellite. Dynamical models of Fornax
suggest that the DM halo has a central core (36), (10), (6), (3), (1).
The data in our possession, and which provide us the observational For-
nax constraints, are those provided by (36). The data concern the total

17
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density profile, the dark matter density profile and the stellar density pro-
file with relative errors, are summarized in figure 3.1. We also report fig
2 from (36) (see fig 3.2) with the comparison between the real data and
the Fnxcore3 model.

Figure 3.1: Density profile of Fornax component from (36). The black
line: total density profile. The orange line: dark matter density profile.
The blue line: stellar density profile. The shade represents the Poissonian
error. The black vertical dashed line indicates 3 kpc.
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Figure 3.2: Panel a: residuals ∆ = (nobs
⋆ −n⋆)/n⋆ between the best model

(FnxCore3) and the observed projected stellar number density profiles
(nobs

⋆ , dashed curve). Panel b: projected number density profile of the
best model (dashed line) compared with the observed profile (points with
error bars). Panel c: line-of-sight velocity dispersion profile of the best
model compared with the observed profile (points with error bars). Bands
show the 1σ un-certainty. Note that the x-axis is logarithmic in panel b
and linear in panel c. The figure is from (36).
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3.1 Model with analytic cored NFW total
density distribution

The NFW is a model presented in (34) that describes the cold dark
matter halos of systems close to equilibrium.
In general dark matter halos show a density profile similar to that of the
isothermal sphere at intermediate radii, shallower then r−2 towards the
center and steeper then r−2 near the rvir.
The NFW model describe these deviations from the density profile of
the isothermal sphere, for this reason is the standard model used in the
description of this structures. However, the NFW model is created to de-
scribe cold dark matter halos as obtained in dark-matter only cosmological
simulations. For this reason it does not take into account the peculiari-
ties due to star formation of the host galaxy, which can cause the halo to
deviate from an NFW pattern. An example of this interaction are dwarf
galaxies (33).
In order to best describe these deviations, the cored NFW (NFWc here-
after) was created (34). Specifically, to describe the profiles of dwarf
galaxies which, through the study of kinematic tracers, such as rotating
gas disks, show a flat density profile in the center not compatible with the
classic NFW (12).
Fornax is a dwarf galaxy but it is also a satellite of the Milky Way that has
undergone an evolution probably experiencing phases of non-equilibrium.
To try to maintain some flexibility on the importance and size of the core
within the halo, we use the density profile used in (20):

ρDM(r) =
ρcritδc(

1 + r
rs

)2 (
r2c+r2

r2s

) 1
2

, (3.1)

where ρcrit =
3H2

8πG
, δc =

200

3

c3

ln (1 + c)− c/(1 + c)
, (3.2)

rs is the scale radius, (such that d ln ρs/d ln r = −2); rc is the core
radius (which describes the central region where the profile is flat); c=r200
is the concentration parameter; δc is the overdensity and ρcrit the critical
density of the universe.
An example is available in the figure 3.3 with its parameter table 3.1.
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Figure 3.3: Left: total mass density profiles of the Fornax dSph. In gray
the density profile provided by (36), the width of the line represents its
error. In orange the analytical density profile of the NFWc eq 3.1 Right:
cumulative mass function of the Fornax dSph. In gray the cumulative
mass function extrapolated from (36) data. In orange the cumulative
mass function of the NFWc eq 3.1. The parameter of the NFWc model
in figure are in table 3.1. The black vertical dashed line represents 3 kpc.

The profile is in excellent agreement with the data at r < 5 kpc, while
there is some deviation at larger radii. However, the most important
region for us is the one within 3 kpc where we find most of the stellar
component (4). A small deviation from the reference profile in the outer
regions is acceptable, because it is less important for our purpose and it
should have no consequences for our results.
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M200 4 ·1010 M⊙
rc 1.1 kpc
rt 15 kpc
rhalf mass 7.727 kpc
h 0.67 H/100
tdyn 2.1 ·10−1 Gyr

Table 3.1: M200, mass at the radius where the density reaches 200 times
the critical density of the Universe. rc and rt are defined in eq 3.1. h,
normalized Hubble constant. tdyn, dynamical time (eq 2.13). rhalf mass,
represents the radius enclosing half the mass of the satellite.

3.2 Model P18 with tabulated total density
distribution

The P18 model is created from density tables. The orange density
profile in figure 3.4 is obtained using data taken from (36) multiplied with

an exponential drop: exp

(
−
(

r
rt

)2
)
, where rt is the truncation radius.

Other important parameters are M200 and rs (tab 3.2) which allow to
raise/lower the orange curve in figure 3.4. These two parameters were
taken from the FnxCore3 model presented in (36).

Figure 3.4: Same as fig 3.3 but for the P18 Model. Yellow line: P18 model
without exponential cut off.
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M200 1.44 ·109 M⊙
rs 3 kpc
rt 10 kpc
rhalf mass 4.310 kpc
tdyn 1.3 ·10−1 Gyr

Table 3.2: M200 is the mass within a sphere of radius rs. rs is the scale
radius. tdyn, dt and rhalf mass are the same as in tab 3.1.

A detail that catches the eye of the model in fig 3.4 is the vertical fall
around ∼ 23 kpc of yellow line. This fall is due to the nature of the model,
when the density table stops so does the model without exponential falls
to mitigate. Such an abrupt transition can produce undesirable effects
that will emerge and can evolve in the simulation in isolation. In order to
mitigate this effects we introduced the exponential cut off.
As we see this solution has its drawback, there is a slight deviation from the
reference profile in the outermost areas. But, as already said for the NFWc
model, these deviations in the external areas are not very significant.
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3.3 N-body simulations of the
isolated models

In this section we illustrate the result of the evolution of the P18 model
in isolation, P18-IS simulation (fig 3.5), and the evolution of the NFWc
model in isolation, NFWc-IS simulation (fig 3.6).
The simulations last 12 Gyr in an environment without external potential
or external influences of any kind. 12 Gyr is chosen as the reference time
because it is a much longer time than their dynamical time (NFWc Tab
3.1, P18 model Tab 3.2). In this way we can can asseses the numerical
effects on the equilibrium of the model.
The main indicators that we monitor in the simulation are rhalf mass (NFWc
Tab 3.1 and P18 model Tab 3.2), ρ150 variations and, more specifically,
the density profile.

Figure 3.5: Left: P18 model density profile evolution in 12 Gyr. Cyan
line: density profile plotted at each dt. Black line: profile at fixed time:
0, 4, 8, 12 Gyr. Yellow diamonds: total density profile from (36). Black
vertical line: largest and smallest rhalf mass found.
Right, ρ150 variation in 12 Gyr of evolution. Blue dotted line: median
between 0-6 Gyr. Blue dashed line: median between 6-12 Gyr. Blu solid
line: median 0-12 Gyr.

In fig 3.5, of the P18-IS simulation, the only significant variation oc-
curs in the tail of the density profile. However the densities are low and
therefore the impact is not very significant. The reason for this deviation
is probably due to numerical effects. These effects are not strong enough
to become artificial mass loss effects. The result after 12 Gyr of evolution
is the shape of that tail at low densities and high distance from the centre
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Figure 3.6: Same as fig 3.5 with the NFWc model.

of the system which does not appear to affect the model in any other way.
Furthermore, rhalf mass and ρ150 show small oscillations but remain virtu-
ally unchanged over the course of evolution. Since these variations are not
significant, conclude that our realization of the P18 model has negligible
numerical effects.
The tail is instead absent in the NFWc-IS simulation, fig 3.6, as it is well
described also in the outermost parts and shows no signs of variation.
One last method of verification that we can adopt is a visual method,
we can observe the X-Z and Y-Z planes for the two models (fig 3.7 and
3.8). We expect the conservation of their spherical shape throughout the
simulation since the vi = 0, see subsection 2.5.1.
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Figure 3.7: Spatial distribution of the particles of the satellite at different
times in different planes for the P18-IS simulation. Blacks dot: particles.
Yellow diamond: centre of mass now. Red circle: circle with a radius of
10 kpc as reference.
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Figure 3.8: Same as fig 3.7 for the NFWc-IS simulation.

In conclusion, our N-body models behave well when evolved in isola-
tion. Thus, we can safely use them in simulations in which we will study
the evolution of Fornax orbiting the Milky Way.
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Chapter 4

Effective N-body models
of composite collisionless
stellar systems

The purpose of this chapter is to illustrate how it is possible to create
two new components from a simulation of a N-body system made with a
single component.
We will define a probability function Pk(I), we will divide the mass of
each particle into fractions, each fraction will be representative of a dif-
ferent component. By adding the mass fractions corresponding to the
same component we can build a density profile. We will get two different
density profiles and we can change them without repeating the simulation
but only by changing a posteriori the probability function.
For this reason all simulations are done with a single collisionless compo-
nent so we do not have an initial distinction between the stellar component
and the dark matter. In this chapter different functions are shown that al-
low us to create components with different characteristics, this also allows
us to demonstrate the flexibility of the method.

29
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4.1 Distribution functions and portion
functions

Every single particle is generated with an initial energy, given by the
sum of its gravitational potential energy and its kinetic energy. In fig 4.1
we show two examples of initial energy distribution.
When we refer to initial energy we refer to the energy of the particles
when the satellite is set up in equilibrium and isolated. This energy does
not depend only on the particle position, but is somewhat representative
of the region in which the particle is located. The higher the energy, in
absolute value, the more likely it is to be in the central regions of the
satellite, where we expect to find the most bound particles.

Figure 4.1: (Left) P18 model (section 3.2) initial distribution of energy
in isolation. (Right) NFWc (section 3.1) initial energy distribution in
isolation. Black vertical dashed line: represents Enorm, E of the highest-
E particle section 4.2. The shape of the distribution is model and mass
dependent. Here E = −E

.

In order to separate the components we need to define a function
that we will call Pk(I), where I is an integral of motion, in our case the
initial energy (35). This Pk(I) corresponds to the probability, based on
the chosen integral of motion, that a particle belongs to one component
rather than another. This function is such that:

Pk(I) =
fk(I)
ftot(I)

, where ftot(I) =
Ncomp∑
k=1

fk(I) (4.1)
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is a DF of a stationary collisionless stellar systems obtained from Jeans
theorem, see section 2.4, (5). By definition:

Ncomp∑
i

Pk(I) = 1 (4.2)

where Ncomp is the number of components and fk is the DF to the k − th
component. The probability:

Pk(Ii) = ξk,i (4.3)

that a particle belongs to the k − th component is converted into a mass
fraction so that

Mk =
∑
i

ξk,imi (4.4)

is the total mass of the k− th component, mi the total mass of the i− th
particle and ξk,i is the mass fraction of the i− th particle that belongs to
the k − th component.
With this method we can construct two Pk(I).
The first is representative of the stellar component P⋆(I) and the second
represents the dark matter component PDM(I), with P⋆(I)+PDM(I) = 1.
Now, we can proceed to calculate the density profile with a basic shell-
counted method. We divide the space into spherical shells centered in
the system’s centre of mass and then count the numbers of particles in
each shell. Finally we associate to each particle its mass based on which
component we are considering.
With the simple but powerful method described in section 4.1 we can
create for instance the stellar component of a galaxy and follow its time
evolution. We can reinterpret the same simulations with different Pk(I).
In our case the observational data are those provided from (36), which
give us constraints on the stellar and dark matter density profile, see fig
3.1.
Now, we need to find the Pk(I) that best suits these requests. Hereafter
we assume I = E , where E = −E is the relative energy per unit mass,
and we focus on the stellar component.
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4.2 Choice of the stellar portion function
P⋆(E)

This section presents two different P⋆(E), one taken from (35) and the
other constructed in this work. Both satisfactorily the given observational
constraints, demonstrating that there are more P⋆(E) that can reproduce
the same observables.
There are therefore many ways to build the P⋆(E) that is most suitable
for us. One of the possible standards is to use the generalized Schechter
function already exposed in (35) with an appropriate parameter calibra-
tion.
This functional form is very convenient because it is quite flexible thanks
to the four parameters that regulate the curve.
This is the P⋆(E) used in (35):

P⋆(E) = A

(
E
E0

)α

exp

[
−
(
E
E0

)β
]

with E0 = −E0 . (4.5)

This function has four parameters: A, α, β and E0. Each of the pa-
rameters has its own influence on the shape of the final curve.
Note that E0 is a fixed relative energy which we can choose and E is the
energy of the particles. We express E0 in unit of a normalization energy
Enorm = Ψ0, where Ψ0 is the value of the central gravitational potential
Ψ taken positive (assuming Ψ → 0 for r → ∞). We will therefore write
E0 = 0.7 meaning that it 70% of Enorm.
One thing to note is that the shape of the density profile for the stellar
component is not easily predictable. Unless we choose to use a very simple
P(E)⋆ (see fig 4.2), such as:

P⋆(E) = Θ(E)

{
0, E < 5000

1, E ≥ 5000
(4.6)

Where all and only the particles with a energy higher than a given
value contribute to the mass of the component.
This happens because we are going to act on the mass fraction that each
particle gives to a certain component and the particles are not spatially
well distinct. The highest-E particles are expected to be found in the
innermost region of the satellite. But these particles are not static and
are mixed with low-E particles. This mixture varies with the distance from
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Figure 4.2: Blue: example of component obtained with the P(E)⋆ given
by eq 4.6 applied to P18 model. Orange: total density profile.

the center, because in the outermost regions we expect to find mainly low-
E particles. Therefore, the greater the complexity of the P(E), the more
complex it is to predict the behavior of the profile.
The most useful thing we can do is to study, one at a time, the influence
of the parameters of eq 4.5 on our dataset, see fig 4.3.
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Figure 4.3: Orange and Blue are represents the profile data from (36),
see fig 3.1. Black line: represents the density profile obtained from the
P18-IS simulation. Red, Green, Blue line: stellar density profiles obtained
from different P⋆(E), from Eq 4.5, according to the variation of a specific
parameter indicated in the legend. Where not specified the parameters
are set to: A=1, α = 1, β = 1, E0 = 0.7.
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As we can see from the figure 4.3, the different parameters lower the
curve in different ways. Each parameter flattens the curve slightly dif-
ferently and affecting, or not, the large radius tail. Their appropriate
combination can allow us to describe the blue area, which is the stellar
component we aim to reproduce in our application.
For example, to satisfy our current constraints, this set of parameters
works:

A = 0.22, α = 25, β = 0.5, E0 = 0.9. (4.7)

Its application can be seen in fig 4.4, the initial distribution of proba-
bility can be seen in fig 4.5.

Figure 4.4: Density profiles of the P18-IS simulation. Blue solid line:
represent the stellar density profile. Red solid line: represent the dark
matter density profile. Black dots: total density profile. Orange and blue
area: dark matter and stellar density profiles from (36), see fig 3.1. The
colored dashed lines are representative of the associated Poisson error.
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In figure 4.4 we can see the density profile obtained from the evolution
of the P18 model in isolation with the addition of the stellar component.
Since the model has already been established to be in equilibrium (see
section 3.1), and the overall variation of its density profile in the 12 Gyr
has already been shown in fig 3.5, we expect that there will be no variation
between the profile of the stellar component at t = 0 Gyr and that at t =
12 Gyr. We already seen that ρ150, which measures the density variation
at 150 pc from the center, did not show significant variations. Therefore,
the comparison between the stellar profiles of the two figures is a further
confirmation that the equilibrium condition is well maintained.
Furthermore, the equilibrium condition is independent of the choice of the
P⋆(E). So, if we choose another functional form and build a new P⋆(E),
which satisfies the observational constraints, the profile we found should
remain in equilibrium.
In fig 4.6 we present the density profile described by a P⋆(E) with a differ-
ent functional form applied at the P18 model. Its parameters are already
written in the form of relative energies and their result is shown in fig 4.6.
The function is:

P⋆(E) = log10

(
E

3800

)
exp

(
E − 6350

280

)
, (4.8)

which satisfies, as well as the one used in fig 4.4, the observational
constraints, see fig 4.5.

Figure 4.5: Initial distribution of probability of the P⋆(E) eq 4.7 (left) and
eq 4.8 (right)
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Figure 4.6: Same as fig 4.4 but with the P⋆(E) in eq 5.4.
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Chapter 5

Dynamical evolution of
Fornax orbiting the
Milky Way

5.1 Initial conditions

In this chapter we illustrate the results obtained in N-body simulations
in which Fornax-like satellite evolving in the Milky Way gravitational po-
tential J95, which we describe in section 5.2.
The orbit parameters used for all simulation are shown in table 5.1, they
correspond to the orbit named P07ecc in Battaglia et al (2015) (4) pre-
sented as the most eccentric orbit consistent with the observational data.

X coordinate Y coordinate Z coordinate Value
Position 35.8140 0.0000 137.3890 kpc
Velocity -94.8750 -77.8100 2.9010 km/s
Perigalactic d. 61 kpc
Eccentricity 0.4

Table 5.1: Initial conditions of the P07ecc orbit. Position and velocity are
relative to the Galactic center.
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The P07ecc orbit pattern is shown in fig 5.1.

(a) Pericenter position on X-Z plane, P18-J95
simulation

(b) Pericenter position on X-Y plane, P18-J95
simulation

(c) Pericenter position on X-Z plane, P18m-J95
simulation

(d) Pericenter position on X-Y plane, P18m-J95
simulation

Figure 5.1: Visualization of the pericenters in X-Z plane and X-Y plane
of the P18-J95 simulation (a)(b) and P18m-J95 simulation (c)(d).
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5.2 The J95 model of the Milky Way grav-
itational potential

In this section we present the J95 gravitational potential, one of the
many Milky Way-like gravitational potential.
The gravitational potential of the Milky Way can be deduced only indi-
rectly from the kinematics of visible tracers such as stars and gas.
Its not fully constrained, and for this reason different models have been
proposed. A possible classification of these potentials can be made on the
basis of the expected Milky Way virial mass, so we can divide them into
(20):

• heavy potential (M200 ≥ 2 · 1012 M⊙)

• intermediate potential (M200 ≈ 1− 2 · 1012 M⊙)

• light potential (M200 ≤ 1 · 1012 M⊙)

The J95 potential, first presented in (21), is classified as heavy. It has
mass of ≃ 0.5 · 1012 M⊙ within 50 kpc and ≃ 2.3 · 1012 M⊙ within 300
kpc (20). It consist of three components that describe the gravitational
potential of the Milky Way bulge, disk and halo (fig 5.2). The bulge is
modelled as an Hernquist sphere (eq 5.1), the disk as a Miyamoto-Nagai
disk (eq 5.2), and the dark matter halo as a logarithmic potential (eq 5.3):

Φbulge =− GMbulge

r + c
; (5.1)

Φdisk =− GMdisk√
R2 + (a+

√
z2 + b2)2

; (5.2)

Φhalo =v2halo ln (r
2 + d2). (5.3)

Hernquist Miyamoto-Nagai Logarithmic Potential
c = 0.70 kpc a = 6.50 kpc d = 12.00 kpc

b = 0.26 kpc
Mbulge = 3.4 · 1010 M⊙ Mdisk = 1.0 · 1011 M⊙

vhalo = 212 km/s

Table 5.2: Parameters for the components of the J95 potential.
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The total circular speed (v2circ = dΦ
dR) obtained from the sum of the

three components gives us the total circular speed of the J95 potential
(see fig 5.2).

Figure 5.2: J95’s potential circular speed produced by the different com-
ponents. Olive solid line: total circular speed. Red dashed line: bulge
circular speed. Blue dashed line: disk circular speed. Black dashed line:
halo circular speed. R0=8 kpc, VC(R0) = 220 km/s.

The region where the satellite Fornax-like orbits is between 60 kpc and
140 kpc 5.3. This is because the P07ecc orbit (see tab 5.1), used in our
simulations, has a pericenter with a perigalactic distance of 61 kpc.

Figure 5.3: Galactocentric distance vs time. Purple crosses: pericen-
ter. Red cross: innermost pericenter. (Left) P18-J95 simulation. (Right)
P18m-J95 simulation.

The potential J95 produces an approximately flat circular speed that
extends out to 140 kpc 5.4.
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Figure 5.4: Same as fig 5.2. The x-axis is logarithmic.
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5.3 Evolution in J95 gravitational Potential

5.3.1 P18 Model

In this section we describe the result of P18-J95 simulation in which the
initial satellite density distribution follow the P18 model (see section 3.2).
The cyan area of fig 5.5 is created by the superposition of numerous density
profiles that have been printed every 0.12 Gyr. This clearly highlights the
global shift that the density profile undergoes as it changes over time. The
orange line, in particular, represents the density profile at the end of the
simulation; we can see how it is below the yellow diamonds that represent
the total density profile from the (36) data (see fig 3.1).

Figure 5.5: (left) Evolution of the total density profile of the satellite in
simulation P18-J95. Cyan lines: density profile plotted every 0.12 Gyr.
Black lines: profiles at: 0, 4, 8 Gyr. Orange line: profile at 12 Gyr. Yellow
line: density profile of the P18 model. (right) ρ150 vs time: Same as fig
3.5.

The innermost regions in fig 5.5(right) show small variations of density
profile, because the inner regions are strongly bound. The central density
remains of the order of 107 M⊙/kpc

3 all the time. The big shift occurs at
around 10 kpc where the density profile drops down due to the unbound
particles.
Due to this mass loss the difference between the simulated profile and the
P18 profile increse significally over time. We need to add mass to the
initial P18 model to make it more resilient to the tidal stripping. Later
in this chapter we will present a model similar to P18 but more massive.
In fig 5.6 we show several frames, taken at fixed instants of time (4, 8, 12
Gyr), of the simulation.
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Figure 5.6: Spatial distribution of the particles of the satellite at differ-
ent times in different planes in the P18-J95 simulation. Yellow diamond:
current satellite center of mass position. Blue line: center of mass trajec-
tory. Black dots: particles. Red dot: center of the system (Milky Way).
Red circle: 10 kpc radius circular area centered on the center of mass as
reference.
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In fig 5.6 we can see how the mass loss is substantial already at 4
Gyr, two tidal tails can be identified that scatter particles on the Galactic
plane. At 8 Gyr the tails have disappeared, the lost material orbits freely
in the potential. In the last frame taken at 12 Gyr we observe the material
scattered throughout the Galactic plane and the satellite that has been
peeled down to a size comparable to the circle of radius 10 kpc shown in
the figure.
More quantitative results are shown in tab 5.3, in which we report stellar
and dark matter mass properties computed using P⋆(E) as in eq 4.5 with
parameters given in 4.7.

Stellar c. [M⊙] % Dark matter c. [M⊙] %
M1.6 kpc(t=0) 1.16 · 107 3.74 · 108
M1.6 kpc(t=12) 1.09 · 107 (93%) 2.64 · 108 (70%)
∆M1.6 kpc 0.07 · 107 (7%) 1.10 · 108 (30%)
M3.0 kpc(t=0) 1.28 · 107 1.26 · 109
M3.0 kpc(t=12) 1.28 · 107 (99%) 0.93 · 109 (73%)
∆M3.0 kpc 0.00 · 107 (< 1%) 0.33 · 109 (27%)

Table 5.3: Stellar and dark matter loss from the satellite Fornax-like in
the P18-J95 simulation.
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5.3.2 NFWc model

In this section we illustrate the results obtained from the NFWc-J95
simulation for the NFWc model shown in section 3.1.
The NFWc shows a different behavior compared to the P18 Model. The
density profile decreases steadily over time also in the central regions (fig
5.7(left)). ρ150 (right panel of fig 5.7) decrease with time and it is halved
after 12 Gyr . Eventually reaching 2 · 107 M⊙/kpc

3 as in P18-J95 simula-
tion (see fig 5.5(right)).

Figure 5.7: Same as fig 5.5 for the NFWc-J95 simulation.

As for the P18 model, also for the NFWc model the effect of the tidal
stripping is particularly strong at r ≤ 10 kpc. However, for the NFWc
the mass loss effect is stronger, as shown by the gap between the black
dashed line and the orange solid line in fig 5.7, and leads the model to a
more disordered evolution than the P18 model (fig 5.8).
We recall that the NFWc has shown to be well in equilibrium if let to
evolve in isolation (fig 3.6), so we can exclude artificial mass loss due to
numerical effects.
Comparing the results of the P18 and the NFWc models, the P18 model
looks more promising to reproduce the observed Fornax profile, if suitably
modified. For this reason, we decide to set aside the NFWc model in favor
of the P18 model.
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Figure 5.8: Same as figure 5.6, but for the NFWc-J95 simulation.
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5.4 A modified P18 model

In this section we present a modified P18 model, which we will refer
to as P18m model, created in order to obtain a Fornax-like system at the
end of the simulation. It is based on the previous P18 model (presented in
section 3.2), with an increase in total initial mass and density by a factor
1.4 to compensate for the expected mass loss (see fig 5.9). The properties
of the P18m model are summarized in tab 5.5 with the properties of the
other model presented in this thesis.

Figure 5.9: Same as fig 3.3, but for the P18m Model.

In fig 5.10 and fig 5.11, we present the results of the P18m-J95 simula-
tion, whose parameters are in tab 5.6 and whose results will be discussed
in the next section 5.5.
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Figure 5.10: Same as figure 5.6, but for the P18m-J95 simulation
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Figure 5.11: Same as fig 5.5, but for the P18m-J95 simulation.

The change in mass also involves the initial energy distribution. The
initial energy distribution is a combination of the kinetic and the potential
gravitational energy. For this reason, the initial energy distribution curve
of the P18m model (fig 5.12(left)) is different from that of the P18 model,
as are the parameters of the P⋆(E) probability function (eq 4.7).
The new set of parameter is:

A = 0.15, α = 30, β = 0.5, E0 = 0.9. (5.4)

The resulting P⋆(E), stellar density and dark matter profile are shown in
fig 5.12, 5.13(c)(d).

Figure 5.12: (Left) Initial energy distribution of the P18m model. (right)
Initial distribution of probability of the P⋆(E) eq 5.4.
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Figure 5.13: Same as fig 4.4 for the P18m-J95 simulation.
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5.5 Mass loss in the P18m-J95 simulation

In this section we present the mass loss results obtained from the
P18m-J95 simulation. Our goal is to determine the stellar mass loss of the
Fornax-like satellite. The regions we are most interested in are the internal
areas of the satellite. We want to evaluate how efficiently the stellar
component is stripped away by the tidal forces caused by interactions
with the Milky Way in the J95 gravitational potential.
For this reason, we choose 3 kpc and 1.6 kpc as reference radii, in order to
evaluate the stellar mass variation inside the same radii used in (4). We
exclude the third reference radii of 13.6 kpc chosen in (4) because we note
that at radii > 10 kpc, there are essentially no more stars (see fig 5.13).
The results are shown in figure 5.14 and table 5.4.

Figure 5.14: Mass loss by the satellite in 12 Gyr within a radius of 1.6
and 3 kpc for P18m-J95 simulation.
(Left panel) Red solid line: dark matter component within 1.6 kpc. Red
dashed line: dark matter component within 3 kpc. Black-cyan solid line:
stellar component within 1.6 kpc. Black-cyan dashed line: stellar compo-
nent within 3 kpc.
(Right panel) Green solid line: dark matter + stellar component in 1.6
kpc. Green dashed line: dark matter + stellar component wihin 1.6 kpc.
(Both panel) Black dotted line: time at which the passage to the peri-
center takes place. Black solid line: time at which the passage to the
pericenter closest to the center takes place.

As we can see from figure 5.14, the component most affected by the
tidal force, and which constitutes almost all of the lost mass, is dark
matter. Instead, the stellar component seems barely touched. We could
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identify a stellar flux moving outward from the inner 1.6 kpc zone, replen-
ishing the stellar component inside the 3 kpc and allowing it to remain
stable, see fig 5.14. However, the mass loss within 1.6 kpc is only 4%; in
physical units the loss amounts to 5 · 105 M⊙ versus a total stellar mass
within 1.6 kpc of 1.4 · 107 M⊙. More quantitative results are shown in tab
5.4.
For this reason, according to our result, it is therefore not likely that For-
nax lost significant stellar mass through tidal interactions with the Milky
Way.
Our results are very far from the 90% mass loss limit found in (22), under
very different assumption. Such stellar mass loss can be obtained, accord-
ing to (22), thanks to the gas expulsion from the system.
However, despite our results, the tidal mass loss scenario should not be
necessary discarded. In fig 5.14 we can see that mass loss happens mainly
after the passage of the pericenter. In the rest of the orbit the satellite
does not lose mass, in the internal areas of the satellite the particles os-
cillate. For this reason, a different, more extreme, orbit with a shorter
perigalactic distance or a greater number of pericenter passages could in-
crease the stellar mass loss. Also the choice of a different Milky Way-like
gravitational potential, perhaps heavier than J95 (section 5.2), since it is
still not well determined, may prove useful to favour the mass loss of the
Fornax dSph.

Stellar c. [M⊙] % Dark matter c. [M⊙] %
M1.6 kpc(t=0) 1.40 · 107 5.27 · 108
M1.6 kpc(t=12) 1.35 · 107 (96%) 4.23 · 108 (80%)
∆M1.6 kpc 0.05 · 107 (4%) 1.04 · 108 (20%)
M3.0 kpc(t=0) 1.47 · 107 1.76 · 109
M3.0 kpc(t=12) 1.47 · 107 (99%) 1.47 · 109 (83%)
∆M3.0 kpc 0.00 · 107 (< 1%) 0.29 · 109 (17%)

Table 5.4: Mass loss from Fornax-like satellite in the P18m-J95 simulation.
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M200

[M⊙]
rc
[kpc]

rs
[kpc]

rt
[kpc]

rhalf mass

[kpc]
tdyn
[Gyr]

h
[H/100]

P181 1.44 · 109 3 10 4.310 1.3 · 10−1

NFWc2 4.00 · 1010 1.1 15 7.727 2.1 · 10−1 0.67
P18m 2.01 · 1010 3 10 4.312 1.1 · 10−1

Table 5.5: Summarized properties of the Fornax-like models presented in
the thesis. 1 tab 3.2, 2 tab 3.1.

Simulation I. profile G. Potential Orbit Particles N° Time [Gyr]
P18-IS1 P185 None None 106 12
NFWc-IS1 NFWc6 None None 106 12
P18-J952 P185 J957 P07ecc8 106 12
NFWc-J953 NFWc6 J957 P07ecc8 106 12
P18m-J954 P18m4 J957 P07ecc8 106 12

Table 5.6: Summarized properties of the simulations illustrated in this
thesis work. 1 section 3.3, 2 subsection 5.3.1, 3 subsection 5.3.2, 4 sec-
tion 5.4, 5 section 3.2, 6 section 3.1, 7 section 5.2, 8 Tab 5.1.
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Chapter 6

Conclusions

In this thesis we studied with N-body simulations the stellar mass loss
of the Fornax dSph, due to its tidal interaction with the Milky Way. In
particular we calculated the stellar mass loss of the Fornax dSph within 3
kpc and 1.6 kpc from the center. We have selected two different Fornax-
like models, one with a cored Navarro-Frank-White (NFWc hereafter)
total density profile and the other with density profiles based on the nu-
merical profile provided by Pascale et al (2018) (36).
The simulations are carried out with the collisionless code FVFPS (28).
The Fornax-like satellite is modelled with a single component represent-
ing the total mass density distribution; with a total of 106 particles, whose
positions and velocities have been obtained with an ergodic distribution
function, i.e. dependent only on energy. The models thus obtained are
expected to be at equilibrium. The two models were then let evolve in
isolation for 12 Gyr. We chose 12 Gyr because it is much longer than
the dynamic time of the two models. As indicators we have chosen: the
rhalf mass, represents the radius enclosing half mass of the satellite; the ρ150
is the density at 150 pc from the center; the variation of the total density
profile ρ(r) over time; and, as an additional indicator, with a visual proof,
the conservation of spherical symmetry. With these tests we verified that
numerical effects are negligible for our purpose.
We then performed simulation in which the same two models orbit in the
Milky Way gravitational potential, following a Fornax-like orbit for 12
Gyr. In particular we have chosen the most eccentric orbit among those
studied in Battaglia et al (2015), with a perigalactic distance of 61 kpc
and an ellipticity of 0.4. At the end of the simulation we analyzed the
density profiles and we decided to discard the NFWc, which is the less
resilient to mass loss of the two models.

57
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At this point we have defined the stellar component through a probability
function P⋆(E), where E is the initial energy distribution of the particle,
as the ratio between the stellar distribution function and the total distri-
bution function. The functional form we have chosen to characterize the
P⋆(E) is the generalized Schechter, whose shape and normalization are is
controlled by four different parameters: α, β, A, E . After finding a suit-
able set of parameters we obtained a P⋆(E) able to satisfy the constraints
from (36). We built the stellar and dark matter density profiles of the
simulated satellite, by weighting the particle masses using P⋆(E).
To be able to satisfy the observational constraints, at the end of the simu-
lation, we had to compensate for the mass loss, so we run a simulation in
which the initial satellite is more massive than the P18 model. From this
simulation we then extracted information on the mass loss of the two com-
ponents: stellar (∼ 4% within 1.6 kpc) and dark matter (∼ 17% within 3
kpc), see tab 5.4. The two results, like the behavior of the components, are
similar to those found in Battaglia et al (2015) (using less flexible models).
The stellar mass loss found in our simulation is insufficient to explain the
mass budget problem (see section 1.2) (∆M1.6 kpc = 0.05·107 M⊙), because
stellar mass loss cannot significantly shift the ratio proposed in Larsen et
al (2012) of 4− 5 · 106M⋆ in favor of multiple stellar population formation
scenarios.
However, scenarios based on stellar mass loss from Fornax should not be
considered discarded. The phenomena of mass loss can be increased, by
using more extreme orbits, with smaller perigalactic distances or more
pericentric passage, where, as shown in fig 5.14, the tidal force culminates
and mass loss is concentrated. Furthermore, the potential of the Milky
Way is not well known and in particular heavy potentials can increase the
strength of tidal interactions, for given orbit. Therefore, a better explo-
ration of possible orbits, but also of other Milky Way-like potential, could
lead to different results.
Finally, we have considered the Fornax density profiles, in order to build
our models and as an observational verification method and we have con-
centrated on the Fornax-Milky Way interactions neglecting internal pro-
cess in the Fornax Globular clusters. In the future we should consider
more complete models because interesting answers (22) could come from
these interaction but also because the exploration of more extreme con-
ditions will stress the Fornax system (39), possibly leading to significant
stellar mass loss.
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