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Abstract

Quantum clock models are statistical mechanical spin models which may be
regarded as a sort of bridge between the one-dimensional quantum Ising model and
the one-dimensional quantum XY model. This thesis aims to provide an exhaustive
review of these models using both analytical and numerical techniques. We present
some important duality transformations which allow us to recast clock models
into different forms, involving for example parafermions and lattice gauge theories.
Thus, the notion of topological order enters into the game opening new scenarios
for possible applications, like topological quantum computing. The second part of
this thesis is devoted to the numerical analysis of clock models. We explore their
phase diagram under different setups, with and without chirality, starting with a
transverse field and then adding a longitudinal field as well. The most important
observables we take into account for diagnosing criticality are the energy gap, the
magnetisation, the entanglement entropy and the correlation functions.



Sommario

I clock model quantistici sono modelli di spin studiati in meccanica statistica
che si collocano a metà strada fra il modello di Ising e il modello XY. Con questa
tesi ci si propone di condurre una rassegna il più possibile esaustiva di questi
modelli, utilizzando tecniche analitiche e numeriche. Presentiamo alcune importanti
trasformazioni di dualità che permettono di trasformare i clock model in forme
nuove, per esempio ricorrendo al linguaggio dei parafermioni e delle teorie di
gauge su reticolo. Questo permette di introdurre la nozione di ordine topologico
aprendo nuovi scenari per possibili applicazioni, quali la compuazione quantistica
topologica. La seconda parte di questa tesi è riservata all’analisi numerica dei clock
model. Ne esploriamo il diagramma di fase studiando configurazioni diverse: con e
senza chiralità, introduciamo inizialmente soltanto un campo trasverso, successiva-
mente applichiamo anche un campo longitudinale. I principali osservabili fisici che
studiamo per diagnosticare la criticità sono il gap di energia, la magnetizzazione,
l’entropia di entanglement e le funzioni di correlazione.
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Introduction

Phase transitions are ubiquitous in nature. Since decades they have shown them-
selves familiar in our common experience and yet not fully understood, exhaustive
in their classification and then prolific arena for constant discoveries. All these
features have contributed to make them one of the most compelling phenomena
of modern physics, raising a long-standing interest in several research areas, both
on theoretical and experimental grounds.

In physics one needs a theory in order to make quantitative predictions. So
let us here recall some historical notes about the theory of critical phenomena.
Its birth may be traced to the experiments performed by Thomas Andrews in
1869 [2] on the liquid-gas transition in carbon dioxide. This transition is indeed
accompanied by the phenomenon of critical opalescence, which can be explained in
terms of strong fluctuations in the density of the liquid reflecting into fluctuations
in the refraction index near criticality. This was firstly understood by Marian von
Smoluchowski in 1908 [75] and then formalised by Albert Einstein in 1910 [21]. Since
then, many other phase transitions have been investigated and new exotic phases of
matter have been discovered, especially in the quantum regime. At the same time
many ideas of condensed matter physics started to spread to other physical areas,
going even far beyond the domain of solid-state physics. Among those it is worth
mentioning at least three famous examples, namely the Bose-Einstein condensate,
BCS-superconductivity and the quark-gluon plasma. Such a richness of critical
behaviours immediately pushed the need for a synthesis from the reductionist
perspective, which culminated with the Ginzburg-Landau theory in 1950 [47] which
is still largely exploited nowadays. Originally developed within the framework of
superconductivity, this theory allows to reshape the theory of critical phenomena
in a group-theoretical fashion by associating different symmetries with different
phases - or orders - and explaining phase transitions in terms of the spontaneous
symmetry breaking mechanism. However, the Ginzburg-Landau theory is not able to
describe all possible orders and new phases which do not fit this paradigm have been
soon discovered. The most famous examples are Berezinskii-Kosterlitz-Thouless
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2 Introduction

transitions [7, 8, 44], high-temperature superconductivity [6], the fractional quantum
Hall effect [48] and all models displaying topological order in general [14].

The most widespread and paradigmatic playground for studying critical phenom-
ena is the Ising model [37]. This is indeed the simplest statistical mechanical model
exhibiting a phase transition. It may be thought of as a d-dimensional lattice with
spins variables - either classical, i.e. boolean, or quantum - attached at each site. Only
neighbouring spins are allowed to interact with each other and a transverse magnetic
field is usually applied. Despite the apparent simplicity and the high degree of
abstraction, this model already encodes most of the salient features of critical systems
and allows for extremely interesting applications even on the experimental ground.
Following the success of the Ising model, many other spin models with different
symmetry group (e.g. Zp, U(1), O(p) . . . ) have then been introduced. Among
these, clock models are highly notable. Not only they provide the simplest and most
natural generalisation of the Z2 symmetry of the Ising model to the Zp symmetry,
but they also share a deep connection with another extremely famous statistical
model, namely the XY model. Thus, depending on the clock order, they may enjoy
properties of either model, like the Kramers-Wannier duality when p ≤ 4 or the
emergence of a new critical phase of Berezinskii-Kosterlitz-Thouless type for p ≥ 5.

Standard clock models, like Potts and Ashkin-Teller, are symmetric in nature,
as the interaction energy between two spins is left invariant by their interchange.
Thus, the three discrete spacetime symmetries of parity, time reversal and charge
conjugation are preserved. However, it is possible to explicitly break these sym-
metries by introducing chiral interactions into the clock Hamiltonian. This may be
practically achieved by allowing the coupling constants to take complex values and
avoiding special configurations which would restore the symmetry of the model.
When this happens to be the case, clock models are said to be chiral. Chiral clock
models were firstly studied by Stellan Ostlund in 1980 [61] who suggested that
they may host in their phase diagram a new critical and floating incommensurate
phase having no counterpart either in symmetric clock models or in the chiral
Ising model. For this reason, chiral clock models represent the best testing ground
for investigating a long-standing problem of condensed matter physics, namely
the commensurate-incommensurate transition, which has recently risen in new
popularity in the study of Rydberg atoms [17].

With the present dissertation we aim to fit into this framework by presenting
a review of both symmetric and chiral models. The main duality transformations
involving these models are discussed as well. A special focus is then deserved to
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the study of their critical behaviour, which is investigated via DMRG numerical
simulations with tensor networks.

This thesis is organised as follows. In Chapter 1 we provide a quick overview of
the theory of critical phenomena. After recalling a few necessary notions of quantum
field theory, we present quantum phase transitions and discuss the behaviour of
the main thermodynamic observables at criticality. The mechanism of spontaneous
symmetry breaking lying behind most phase transitions is described and the example
of Berezinskii-Kosterlitz-Thouless transitions, which instead do not fit this paradigm,
is provided. Then we move on discussing the universality of phase transitions which
allows for their organisation into universality classes and the finite-size scaling
which we have to deal with when working out of the thermodynamic limit. We end
the chapter by reviewing the quantum Ising model in one dimension.

In Chapter 2 we introduce both symmetric and chiral p-state clock models
with different fields and couplings. We also discuss the topology of their phase
diagrams according to the literature. The very last part of this chapter focuses
on the symmetries enjoyed by these models. A special attention is given to the
three discrete spacetime symmetries of parity, time reversal and charge conjugation
along with their explicit violation.

Chapter 3 aims to review the most important duality transformations involving
these models. The Kramers-Wannier duality both for Ising and clock models is
firstly presented. Then we discuss the Jordan-Wigner transformation which allows
to exactly solve the Ising model and its generalisation to clock models, which instead
goes under the name of Fradkin-Kadanoff transformation. The notion of topological
order is then introduced and its relevance for topological quantum computation is
briefly discussed. The last duality transformation we have decided to present relies
on a recently developed formalism known as bond-algebraic approach and links
Abelian Zp lattice gauge theories on a ladder geometry with p-state clock models
with both transverse and longitudinal fields.

The numerical analysis of symmetric and chiral clock models via DMRG calcula-
tions with tensor networks may be found in Chapter 4. Here, by investigating these
models under several configurations, we focus on the most important observables,
namely the energy gap, the entanglement entropy, the magnetisation and the
correlation functions, in order to study their scaling behaviour and extract the
corresponding critical exponents. The universality classes of most phase transitions
are therefore identified and a global picture of the phase diagrams is obtained. A
specific discussion is deserved to the topology of the phase diagram of the 3-state
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chiral clock model and to the Lifshitz oscillations observed in its energy gap as a
function of the system size. Then we add a longitudinal field to these models in
order to understand how the phase diagram gets modified. Under the same setup,
the duality with lattice gauge theories is numerically explored.

Finally, in the conclusions we review the main results we have achieved and try
to outline some pathways for possible future research about these topics.

More technical considerations about the computational tools we have used
throughout this dissertation are listed in Appendix A.



1
Critical phenomena: an overview

In this chapter we recall the main features of critical phenomena in one-dimensional
quantum systems at the equilibrium. We do not intend to be exhaustive, but
simply to review the most important theoretical aspects which we are going to
take advantage of for the study of p-state clock models in the next chapters.

Thus, we start by reviewing the field theoretical background behind critical
phenomena by presenting the correspondence between statistical mechanics and
quantum field theory. Afterwards, we define and recall the main characteristics
of quantum phase transitions, focusing on continuous ones with some examples.
In particular we focus on Berezinskii-Kosterlitz-Thouless transitions which are the
paradigmatic example of infinite order phase transitions. We end the chapter with
a more detailed study of the quantum Ising model.

1.1 Field theoretical background

We think worth opening this chapter by presenting an idea which we will exten-
sively exploit all along the next sections: the correspondence between equilibrium
statistical systems and quantum field theories near criticality [18, 20]. Let us consider
a quantum mechanical system with time-independent HamiltonianH, which may
be either relativistic or not, but we now stick to the non-relativistic case for the
sake of simplicity. The time evolution of this system is expressed by the time-

5



6 1.1. Field theoretical background

evolution operator

U(t, t′) = exp
{
− i
}H (t− t′)

}
(1.1)

which acts on the wave function at time t and makes it evolve to the time t′, formally
ψ(t′) = U(t, t′)ψ(t). Assuming t− t′ � 1, we may derive a path integral expression
for the generating functional. We will not go through the formal derivation of it, as
we are only interested in the physical intuition. However, we stress that the path
integral derivation represents an alternative way in quantum mechanics for passing
from the Hamiltonian to the Lagrangian beside the standard Legendre transform
[26]. Indeed the final expression for the generating functional reads

Z =
∫

dxi ∏
i

U(ti+1, ti) =
∫

Dx exp
(
− i
}S
)

(1.2)

where S(t1, t2) =
∫ t2

t1
dtL is the classical action, with L the classical Lagrangian, and∫

Dx is a symbolic way of writing the path integral indicating the sum over all paths
in (x, t)-space. If instead we consider a statistical mechanical system, for example
a spin system in d dimensions (a temporal one and d− 1 space ones), being τ1, τ2

two instants of time and σ(τ1), σ(τ2) the corresponding spin configurations, we may
introduce the transfer matrix T , which is defined by having elements

〈σ(τ1)|T |σ(τ2)〉 = exp
(

1
kBT

h(τ1, τ2)

)
, (1.3)

whereH = ∑τ h(τ, τ + 1) is the classical Hamiltonian. Then the partition function
of the system reads

Z = ∑
σ1,...,σm

exp
(
− 1

kBT
H
)
= Tr T m (1.4)

being m the number of sites along the temporal direction, assuming our systems to
live on a m× n lattice. The strong formal analogies between the two descriptions
suggest to interpret T as an Euclidean time-evolution operator, i.e.

T = exp (−τH) (1.5)

where now H is the quantum Hamiltonian. Thus, the eigenstates of the transfer
matrix correspond to the energy eigenstates: let us call Λr the 2n eingenvalues of
T and Er the corresponding eigenvalues of H, we have

Er = −
1
a

ln(Λr) , (1.6)



1. Critical phenomena: an overview 7

being a the lattice spacing. This also comes along with other identifications, for
example between the real time t and the Euclidean time −iτ, between the generating
functional and the partition function and of course between the time-evolution
operator and the transfer matrix. Thus, we see that we are able to build a map
between a classical system in d dimensions and a quantum one in (d− 1) dimensions.
We stress that this map is highly non-trivial as in the former case we have classical
commuting variables, whereas in the latter case the variables are quantum, i.e.
non-commuting. Moreover, this correspondence between statistical systems and
quantum field theories allows us to indifferently speak about equilibrium state
and ground state, ensemble average and ground state expectation value, inverse
correlation length (or mass) and energy gap, and so on. Indeed, being σ̂ the spin
operator, the ensemble average of the magnetisation 〈σij〉may be computed as

〈σ11〉 = lim
m→∞

(Tr T m)−1 Tr (σ̂T m) (1.7)

= lim
m→∞

e−ma(E1−E0) ∑l〈0|σ̂1|l〉 (1.8)

= 〈0|σ̂1|0〉 , (1.9)

where in the last step we have used the identities ∑l |l〉〈l| = 1 and 〈0|l〉 = δ0,l. The
energy gap E1 − E0 entering the previous formula represents the energy of a particle
at rest, i.e. its mass. Consequently, we may introduce the correlation length

ξ =
1

ma
, (1.10)

whose divergence at criticality - which we are going to discuss in the next section -
implies the vanishing of the mass. In this sense we will say that statistical systems
at criticality correspond to massless quantum field theories.

Finally, we also mention that β = 1/(kBT) and 1/} parameterise thermal and
quantum fluctuations, which are responsible for driving classical and quantum
phase transitions, respectively.

1.2 Quantum phase transitions

For classical systems thermal fluctuations are responsible for classical phase
transitions, which may then occur only at non-zero temperature. On the contrary,
quantum phase transitions (QPTs) are driven by quantum fluctuations which do
occur even at zero temperature due to the Heisenberg uncertainty principle. More
formally, quantum phase transitions are points of non-analiticity of the ground
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state energy of the system with respect to the coupling of the external field. Let
us consider an Hamiltonian having the form

H(λ) = H0 + λH1 . (1.11)

for some parameter λ. The eigenvalues of H0 and H1 - whether they commute or
not, if they do they are also simultaneously diagonalisable - are λ-dependent. Two
possible scenarios show up: either there is no level-crossing between the ground state
and the first excited state, thus no phase transition occurs and the energy spectrum
of the system remains gapped, or there is a point of non-analiticity occurring for
some λ = λc, which may either be a point of level-crossing or the limiting case
of an avoided level-crossing [69].

In this dissertation we are going to focus mostly on the so called continuous
quantum phase transitions, which are characterised by the vanishing of the energy
gap, the divergence of the correlation length and of the entanglement entropy and the
power-law decay of the correlators at criticality. Thus, these observables separately
provide useful pieces of information which all together may be used to detect the
presence of a phase transition of this kind.

1.2.1 Observables at criticality

Let us now discuss more in detail how the most relevant physical observables
behave in a vicinity of a point of second order phase transition.

Energy gap and correlation length. The closing of the energy gap implies that
we may have excitations with arbitrarily low energy and thus a qualitative change
in the nature of the system takes place. As we approach criticality, the gap ∆E
is known to close as

∆E ∼ J|λ− λc|zν , (1.12)

for some proportionality constant J having the dimension of an energy. The exponent
ν is a universal critical exponent, as we will clarify later on, and z is the dynamical
critical exponent. We stress that this behaviour holds true even for λ ≥ λc and
λ ≤ λc with the same exponent, but with different and non-universal proportionality
constant (velocity).

At a point of quantum phase transition, the correlation length - the characteristic
length scale of the fluctuations of the system - diverges as

ξ−1 ∼ Λ|λ− λc|ν (1.13)
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for some proportionality constant Λ having the dimension of an inverse length. As
the exponents governing the scaling of the energy gap and the correlation length
are the same, by comparing the two previous expressions we immediately find
the following relation:

∆E ∼ ξ−z . (1.14)

As an aside, we stress that the vanishing of the correlation length at criticality
implies that the theory is scale invariant. If it is also Lorentz invariant, the theory is
then said to be conformally invariant, which is plenty of geometrical consequences.
We do not intend to present all the machinery of Conformal Field Theory (CFT) as
this would go beyond the scope of this dissertation. We simply clarify that conformal
invariance is the symmetry under local (i.e. position-dependent) dilatations. For
classical systems in two dimensions, or equivalently quantum systems in one
dimension, conformal symmetry becomes extremely rich as here there exist infinitely
many locally conformal coordinate transformations. A crucial object emerging
within this framework is then the central charge, c, sometimes also called conformal
anomaly, as it is related to a soft breaking of conformal symmetry by the introduction
of a macroscopic scale into the system [18]. The central charge is strictly model-
dependent and thus it plays an important role in the context of universality and
finite-size scaling, as we will see in the next sections.

Entanglement entropy. Another useful physical observable to detect quantum
phase transitions is the entanglement entropy, which deserves a separate and
broader discussion.

Quantum entanglement is one of the most intriguing and counter-intuitive
phenomena of quantum mechanics, as it is responsible for the violation of the locality
principle. Given two entangled particles, the measurement of the properties of one
particle may instantaneously affect the outcome of the measurement performed on
the other particle, arbitrarily far away. In this sense, entanglement describes non-
local quantum correlations and it also shares a deep connection with quantum phase
transitions. Indeed, in the framework of quantum many-body systems, by measuring
the degree of entanglement between two regions of the system, the entanglement
entropy provides extremely useful information both about the location of the critical
points and the nature of the phase transitions themselves [11].

Let us consider a system with density matrix ρ and let us take it in a pure
quantum state |ψ〉 so that ρ = |ψ〉〈ψ|. Then, let us partition the system into two
regions, namely A and B, so that the total Hilbert space reads H = HA ⊗HB and
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the reduced density matrix of the subsystems A and B is ρA,B = TrB,A ρ. Thus, the
entanglement entropy is the von Neumann entropy of either subsystem, formally

SA = −Tr (ρA ln ρA) = −Tr (ρB ln ρB) = SB . (1.15)

We stress that the equality SA = SB holds true only when the system is in a pure
quantum state. On the contrary, when the state is mixed the entanglement entropy is
no longer a good quantity to measure the degree of entanglement between the two
subsystems, as it would mix classical and quantum correlations and its definition
would overlap with the one of the thermodynamic entropy.

For our purposes, we are interested in how the entanglement entropy behaves at
criticality. As already anticipated, it diverges at a quantum critical point so providing
useful information about its location. Moreover, the entanglement entropy is infinite
all within gapless phases, thus it may also be used to understand whether a phase
is gapped or gapless, and therefore critical [11].

We defer the discussion about the universal scaling of the entanglement entropy
to the specific section about finite-size scaling.

Correlation functions. In order to investigate the phase diagram of a system
correlation functions are also extremely useful. In spin systems, they measure the
degree of alignment between two spins at a given distance r. The closer the spins are,
the more they tend to be correlated and the length scale describing their correlation
is given by the correlation length. More quantitatively, at distances much larger
than the lattice spacing a, the asymptotic behaviour of the correlation functions
G(r) away from criticality is given by

G(r) ∼ exp
(
−|r|

ξ

)
for r � a , h 6= hc . (1.16)

It decays exponentially to a finite value G0 in the ordered phase and to zero in
the disordered one.

Instead, at criticality correlation functions display a power-law decay of the form

G(r) ∼ 1
|r|d−2+η

for r � a , h = hc , (1.17)

where d is the dimension of the classical system and η is a critical exponent called
anomalous dimension. Such a behaviour means that at criticality correlations extend
to all distance scales, as the correlation length is infinite.

Order and disorder parameter. Another way of distinguishing between two
different phases and thus to identify a point of second order phase transition
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makes use of the order and disorder parameters. In contrast to the previous
observables, these quantities neither diverge nor vanish, but their first derivative
suffers a discontinuity across criticality, as they are defined to be zero in a phase
and different from zero in the other one. In this sense an order parameter (e.g.
the net magnetisation in ferromagnetic spin systems) measures the degree of order
across the boundaries between two phases and similarly a disorder parameter
measures the degree of disorder.

Consider a quantum system with Hamiltonian H(λ) which is symmetric under
a group G for any value of the parameter λ, let |ψ0(λ)〉 be the ground state of
the system and let λc be the location of a critical point. Then, the order param-
eter φ is defined as

φ = 〈Ô〉0 = 〈ψ0(λ)|Ô|ψ0(λ)〉 =

 0 , if λ > λc

φ0 6= 0 , if λ < λc

. (1.18)

for some operator Ô which is not invariant under the action of the symmetry
group getting spontaneously broken in the ordered phase [23]. A complementary
description holds true for the disorder parameter as well, so we omit it.

Strictly speaking, the notion of order parameter arises in the framework of
spontaneous symmetry breaking, which we are now going to discuss, even if
there exist infinite order phase transitions which do not break any symmetry, as
we will see next.

1.2.2 QPTs with Spontaneous Symmetry Breaking (SSB)

As already mentioned, many quantum phase transitions correspond to a change
in the global symmetries of the system, which will then host two different phases,
one more symmetric than the other. Typically, in ferromagnetic spin systems we
have a disordered highly symmetric phase, where the symmetry group leaving the
Hamiltonian invariant is a Lie group G, and an ordered less symmetric phase where
the Hamiltonian is only invariant under G0 ⊂ G. When this happens to be the case,
we say that the symmetry group G spontaneously breaks down to its subgroup G0 in
the ordered phase and an order parameter - as we have already anticipated - appears.
Also, the subgroup G0 of the broken phase is isomorphic to the little group of the
order parameter and the order parameters space is given by the coset space G/G0

[23]. A similar discussion generalises to discrete symmetries as well. Moreover, we
stress that no spontaneous symmetry breaking can take place in finite systems.
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Most importantly, the spontaneous breaking of a symmetry comes along with
gapless excitations known as Nambu-Goldston modes. In the context of magnetic
systems, these modes not costing any energy are spin waves.

Despite their widespread, there are some limits - depending on the dimension
of the system - to the possibility of having phase transitions associated with the
breaking of some symmetry. In this regard, let us state the following theorem [52]:

Mermin-Wagner theorem: for short-range forces no phase transition involving the
breaking of a continuous symmetry may occur in d < 3 dimensions at positive temperature,
T > 0. Instead, if the symmetry is discrete, the same holds true for d < 2.

Thus, d = 1, 2 and d = 1 respectively are called lower critical dimensions as no phase
transition can occur below these dimensions. Given the correspondence between
classical systems in d dimensions and quantum systems in (d− 1) dimensions, the
generalisation of this theorem to the quantum case is straightforward.

However, there exist phase transitions occurring below the lower critical dimen-
sion in systems having a continuous symmetry. Still, they are not in contrast with the
Mermin-Wagner theorem because, despite they are continuous, they do not break
any symmetry. The most famous example is the infinite order Berezinskii-Kosterlitz-
Thouless transition occurring in the XY model, which is discussed in the next section.

1.2.3 Beyond SSB: BKT transitions and the XY-model

Berezinskii-Kosterlitz-Thouless (BKT) phase transitions were firstly discovered
in the two-dimensional classical XY-model by Vadim Berezinskii in 1971 [7, 8] and
independently by John M. Kosterlitz and David J. Thouless in 1973 [44], but they
are actually ubiquitous in classical two-dimensional systems. In this section we
provide a description of these new phase transitions along with a discussion of the
XY-model, which - together with the Ising model - will represent our starting point
for presenting clock models in the next chapter.

The classical XY-model, or planar rotor model, enjoys a global continuous O(2)
symmetry, thus, according to the Mermin-Wagner theorem, in d < 3 dimensions
long-range order is destroyed by fluctuations of the order parameter. However,
this model is known to undergo a phase transition even in two dimensions, which
may be explained in terms of a new notion of long-range order - called quasi long-
range order - which relies on the existence of topological excitations emerging on
top of the standard spin-wave excitations.

Let us briefly review some notions of the theory of topological defects in two-
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dimensions [13]. The new topological excitations emerging in the XY model - which
are called vortices - are topological defects, i.e. defects which cannot be made
disappear by any continuous deformation of the order parameter, thus they are topo-
logically stable. The characterisation of topological defects and their combination is
mathematically formalised within the framework of homotopy theory and defects are
classified into homotopy classes of the ground state manifold, or order parameter
spaceM. For the XY modelM = S1. Defects belong to the same homotopy class if
the mappings of all the paths enclosing them may be continuously deformed into
each other and they are labelled by the number of times the paths wrap around a
unit circle surrounding the defect. We call this integer quantity winding number and
we say that the first homotopy group π(M). For the XY model π(S1) = Z.

Let us now introduce the XY-model: being s ≡ s(cos θ, sin θ) with θ ∈ [0, 2π[ the
order parameter, the ladder Hamiltonian of the classical XY-model reads

H = −J ∑
〈i,j〉

si · sj = −Js2 ∑
〈i,j〉

cos (θi − θj) . (1.19)

Thanks to the isomorphism SO(2) ∼= U(1) (upon setting s = 1), we may equiva-
lently express the order parameter as a complex scalar ψ = |ψ|eiθ and re-write the
Hamiltonian in a field-theoretical language as

H =
∫

d2x
1
2
(∇ψ)2 (1.20)

which we will also call action, following the convention of quantum field theories. Us-
ing the definition of the order parameter ψ we may also manipulate the Hamiltonian
(1.20) to get an effective field theory for θ, namely

H =
ρs

2

∫
d2x(∇θ)2 (1.21)

where we have introduced the stiffness or elasticity modulus ρs ≡ |ψ|2. Thus, in the
XY-model vortices are spin configurations such that∮

dθ =
∮

Γ

dθ

ds
ds = 2nπ , n = 0,±1, . . . (1.22)

where n is the winding number. There exists a simple heuristic argument - due to
Kosterlitz and Thouless - entirely based on thermodynamics considerations which
describes how vortices are responsible for driving the system from quasi long-range
order to disorder and how to work out an estimate of the critical temperature of this
second-order phase transition. Let us consider a vortex with winding number n = 1
and let us compute its energy, which is given by the sum of the core energy plus an
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elastic contribution. We will neglect the former and compute the latter. From (1.21)
by minimising the energy and up to an integration by parts we find

δH
δθ

= −ρs∇2θ = 0 ⇒ ∇2θ = 0 (1.23)

which is solved by

θ = nφ with vs ≡ ∇θ =
n
r

eφ (1.24)

where we have introduced the polar angle φ = tan(y/x) and the radius r =√
x2 + y2, as we are working on the (x, y)-plane. The computation of the elastic

energy of the vortex is then straightforward,

Eel =
ρs

2

∫
D

d2xv2
s =

ρ

2
2πn2

∫ R

a

drr
r2 = πn2ρs ln

(
R
a

)
(1.25)

where D is the domain of the sample deprived of the vortex core and of the “infinity",
a is the core radius of the vortex, R the linear dimension of the sample with the
vortex inside and n = 1 in our example. Now we need to evaluate the entropy,
which may be estimated as follows: imagine to cover the sample with many vortices
all with the same core radius a and count the number of possible configurations,
Γ. This will be proportional to the ratio between the area of the sample and the
area of a single vortex, i.e.

Γ ∼ πR2

πa2 =

(
R
a

)2

(1.26)

so the entropy is given by S = kB ln Γ = 2kB ln
(R

a
)
. At this point we have all the

ingredients to compute the free energy of the system, which reads

Fel = Eel − TS = (πρs − 2kBT) ln
(

R
a

)
. (1.27)

From this equation we infer that for kBT > πρs
2 the energy dominates favouring an

ordered configuration against vortices, which are then energetically suppressed and
they tend to bind into vortex and anti-vortex pairs, as the energy of two vortices is
proportional to (n2

1 + n2
2). Instead, for kBT < πρs

2 the entropy dominates favouring
a disordered configuration and the vortex unbinding or proliferation. Thus, the
critical temperature at which the phase transition occurs is given by

TBKT =
πρs

2kB
(1.28)

which is the same result one would obtain by deriving it rigorously via renormal-
isation group analysis [38, 70].
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Before concluding, we mention - without going through the formal derivation
- what is the main phenomenological feature of BKT transitions: the peculiar
behaviour of the correlation length at T = TBKT. In contrast to the usual algebraic
divergence typically occurring at points of second order phase transition, when
the transition is BKT the divergence of the correlation length is much faster and
it gets infinite like

ξ(TBKT) ∼ exp
(

A√
T − TBKT

)
(1.29)

for some constant A, as we approach criticality from above.

1.3 Critical exponents and universality classes

The proper theoretical framework for describing how statistical systems behave
at criticality is the renormalisation group (RG), which allows for a clear under-
standing of scaling laws and universality. Indeed, as we have anticipated, close to a
phase transition the thermodynamic observables describing the system display a
characteristic power-law behaviour which may be parametrised by a set of critical
exponents, some of which we have already encountered in the previous sections.
Assuming that we have already chosen a path to approach the critical field hc, any
observable f will depend only on the reduced field ε ≡ 1− h/hc, namely f ≡ f (ε).
We define the critical exponent λ f associated with f as [23, 54]

λ f ≡ lim
ε→0

ln f (ε)
ln |ε| , (1.30)

so that, if λ f 6= 0, when ε → 0

f (ε) ∼ |ε|λ f g(ε) with g(0) 6= 0 . (1.31)

Always having in mind magnetic systems, in Tab.1.1 we list the critical exponents
of the most important thermodynamic observables which are defined by their
behaviour close to criticality.

The exponents α, β, γ, δ and ν we have just introduced are not all independent,
in fact they satisfy the following algebraic relations:

α + 2β + γ = 2 (Rushbrooke [24, 68]) (1.32)

α + βδ + β = 2 (Griffits [33]) (1.33)

ν(2− η) = γ (Fisher [27]) (1.34)

α + νd = 2 (Josephson [39, 40, 76]) . (1.35)
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Observable Scaling and critical exponent

. .
Specific heat C ∼ A|ε|−α

Magnetisation M ∼ B|ε|β

Susceptibility χ ∼ C|ε|−γ

Correlation length ξ ∼ Λ|ε|−ν

Correlation function G(r) ∼ r2−d−η

Incommensurate wave vector k ∼ D|ε|β

. .

Table 1.1: Incomplete list of critical exponents.

To be more precise, all these relations between critical exponents were historically
discovered as inequalities, but under the Widom scaling hypothesis [83] one can
prove that they all reduce to the above exact equalities [23]. Thus, knowing only two
of these critical exponents is enough to determine all the other ones. As an aside,
the existence of these relations between the critical exponents justifies the scaling
relations of the thermodynamic observables which are discussed in the next section.

Another striking observation - which is also justified on the experimental ground
- is that critical exponents depend only on the symmetries of the Hamiltonian
and the dimension of the system. In this sense they are universal and allow for
a classification of phase transitions into universality classes independently of the
microscopic details [23, 54].

We end this section by listing the main universality classes we are going to
encounter in this dissertation along with their critical exponents and central charges,
namely Ising, 3-Potts, 4-Potts, Pokrovsky-Talapov, Berezinskii-Kosterlitz-Thouless
and chiral. We provide a schematic descriptions in Tab.1.2 along with the main
critical exponents and the central charge. We have also reported the nominal values
of the dynamical exponents z for these universality classes. We stress that a non-
unitary value of the dynamical exponent implies that the underlying quantum
field theory is not Lorentz invariant and therefore non-conformal. We defer more
detailed considerations to the last chapter.

.
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α β γ δ ν η β z c

Ising 0 1/8 7/4 15 1 1/4 ? 1 1/2
3-Potts 1/3 1/9 13/9 14 5/6 4/15 5/3 1 4/5
4-Potts 2/3 1/12 7/6 15 2/3 1/4 ? 1 1

Pokrovsky-Talapov 1/2 ? ? ? 1/2 2/p2 ∗ 1/2 2 ?
BKT - - - - - 1/4 - 1 1

Chiral 1/3 ? ? ? 2/3 ? 2/3 3/2 ?

Table 1.2: Incomplete list of universality classes in d = 2 dimensions (classical systems). The

main critical exponents are reported along with the dynamical exponents and the central

charges. We have denoted by (?) those critical exponents whose value is not analytically

known and by (-) those which are not defined for that particular universality class. ∗ being

p the order of the clock model.

1.4 Finite-size scaling

Finite-size scaling describes finite-size effects arising when a statistical system is
confined in a finite geometry, for example a chain or a lattice with a given number of
sites. The most important implication is that no phase transition may occur under
these conditions. Thus, the energy gap does not close, the correlation length and
the entanglement entropy do not diverge, but the singularities appear rounded and
shifted with respect to the nominal values of the thermodynamic limit [12, 18, 28].

So let h be the magnitude of the transverse field applied to a one-dimensional
spin system (in a classical setup this would be the temperature T) and let us consider
a thermodynamic observable O, which can be for example the specific heat or the
magnetic susceptibility, but the following discussion holds true on a general ground
for every thermodynamic observable. The curves of O will display a maximum
at some value hc(L) which is shifted away from hc(∞) ≡ hc, at which the phase
transition occurs in the thermodynamic limit. Thus, the finite-size shift amounts to

hc(L)− hc(∞)

hc(∞)
∼ L−λ as L→ ∞ , (1.36)

where λ is the shift exponent.
Similarly, we may define the rounding field h∗(L) such that if

|h− hc|
hc

≥ |h
∗ − hc|

hc
(1.37)
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then the finite-size O is close to its bulk value, formally O(L; h) ' O(∞; h). This
defines the rounding exponent θ as

h∗(L)− hc(∞)

hc(∞)
∼ L−θ as L→ ∞ . (1.38)

The basic hypothesis of finite-size scaling states that there should be only one
relevant length describing the rounding and shifting of the singularities. Thus, the
correlation length in the thermodynamic limit goes like

ξ(h∗(L)) ∼ L (1.39)

and recalling that ξ∞ ∼ (h− hc)−ν, we immediately find that the rounding exponent
equals the inverse of the critical exponent ν, i.e. θ = 1/ν. Going through very
similar steps, we find that λ = 1/ν as well.

Let us now consider a specific example, namely the scaling of the magnetisation,
M. We introduce the scaling variable

z̃ ≡ L
ξ∞(h)

(1.40)

and define the finite-size scaling region as the region where z̃ is finite. Recalling
that in the thermodynamic limit M ∼ |ε|β, one may postulate that in the finite-
size scaling limit

L→ ∞, h→ hc with z̃ ≡ L
ξ(h)

fixed . (1.41)

Thus, one may write the magnetisation in the form

M(L; h) ∼ LωQ̃(z̃) ∼ LωQ̃(L
1
ν ε) (1.42)

where Q̃ is a universal function. Finally, in order to reproduce the bulk behaviour
in the limit z̃ � 1, we do the following ansatz for the scaling function:

Q̃(x̃) ∼ q±∞ x̃−ρ when x̃ → ±∞ (1.43)

and then by matching ω = ρ/ν and ρ = −β, we find

M(L; h) ∼ L−
β
ν Q̃(L

1
ν ε) (1.44)

or equivalently

M(L; h∗) ∼ L−
β
ν Q̃(z̃) (1.45)
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with Q̃(z̃) finite and different from zero for 0 ≤ z̃ ≤ 1, so that

M(L; hc(h)) ∼ L−
β
ν . (1.46)

We stress again that despite we have focused on the magnetisation as a specific
example, a very similar discussion holds true every thermodynamic quantity, each
one with its own critical exponents. In this regard we list the finite-size scaling
of the most relevant thermodynamic quantities close to a point of second order
phase transition with z̃ = 0:

(i) Specific heat: C ∼ L
α
ν ;

(ii) Magnetic susceptibility: χ ∼ L
γ
ν ;

(iii) Order parameter/magnetisation: M ∼ L−
β
ν ;

(iv) Correlation length: ξ ∼ L ;

(v) Free energy density: f ∼ L−d .

The finite-size scaling of the entanglement entropy deserves instead a separate
discussion. When periodic boundary conditions are enforced on a chain of length
L, the entanglement entropy of a sub-chain of length ` scales according to the
Calabrese-Cardy formula [11]

SPBC(L; `) =
c
3

ln
[

L
π

sin
(

π`

L

)]
+ S0 (1.47)

where c is the central charge and S0 is a non-universal constant. On the other hand,
when open boundary conditions are enforced, the entanglement entropy scales as
[11]

SOBC(L; `) =
c
6

ln
[

2L
π

sin
(

π`

L

)]
+ S0 (1.48)

which is again proportional to the central charge c and has an extra piece S0 which
now includes both the boundary entropy and a non-universal constant. Thus,
the study of the logarithmic scaling of the entanglement entropy is crucial in the
theory of critical phenomena, as it provides the central charge of the underlying
conformal theory, which may be used to identify the nature of the phase transition
the system is undergoing.
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1.5 The quantum Ising model

We end this chapter by discussing one of the simplest statistical models hosting
a second order phase transition: the Ising model1. In its classical version, it was
firstly studied and solved in one dimension by Ernst Ising in 1925 [37], whom it is
named after. Moreover, it is also one of the very few examples of statistical models
which are integrable and therefore exactly solvable even in two-dimensions, as it
was firstly proved by Lars Onsager in 1944 [59].

The Hamiltonian of the one-dimensional quantum Ising model on a chain of
length L with open boundary conditions (OBC) is

H = −J
L−1

∑
i=1

σz
i σz

i+1 − h
L

∑
i=1

σx
i (1.49)

where the first term describes the exchange interaction energy between nearest-
neighbours spins with coupling constant J > 0, enforcing a ferromagnetic interaction
along the z-direction. The second term describes a transverse magnetic field along
the x-direction with magnitude h ≥ 0 which tends to break the Z2 symmetry of
the model along with the magnetic order. Instead σx

i , σz
i are operators acting on

the i-th site of the chain and they are defined as

σa
i = 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸

(i− 1) times

⊗σa ⊗ 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸
(L− i) times

with a = x, y, z , (1.50)

where σx, σz are two Pauli operators. We recall that, upon choosing a suitable or-
thonormal basis, these operators may be realised as the following 2× 2 hermitian ma-
trices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.51)

It is well-known that the Pauli operators obey a non-trivial algebra which is given
by the following commutation and anti-commutation relations

[σa, σb] = 2iεab
c σc and {σa, σb} = 2δab12 , (1.52)

where εab
c is the Levi-Civita anti-symmetric tensor, δab the Kronecker symbol and

the indices take values a, b, c = x, y, z. In our notation, we have non-trivial relations
only when the Pauli operators are defined on the same site, otherwise on different

1For our purposes, we focus only on its one-dimensional quantum version, which may also be
derived from the classical one via the transfer matrix method (see for example Ref.[30, 54]).
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sites they commute. The operator σz
i has eigenvalues ±1 and eigenstates which

we may denote as

| ↑〉i ≡ |0〉i =
(

1
0

)
i

and | ↓〉i ≡ |1〉i =
(

0
1

)
i

(1.53)

describing the states with spin up and down, respectively.
Now that we have clarified the notation, we can start studying the quantitative

properties of the phase diagram of the quantum Ising model [69]. The ground state
of the system depends upon the magnitude of the transverse field h, so it is useful
to distinguish between two different regimes: h� 1 and h� 1, which correspond
to the classical high- and low-temperature limits, respectively. When h � 1, the
transverse field along the x-direction wins against the exchange interaction term,
thus spoiling the magnetic order along the z-direction and favouring a random
spin configuration, which we will call paramagnetic phase or quantum paramagnet.
So if we denote by

| →〉i =
1√
2
(| ↑〉i + | ↓〉i) and | ←〉i =

1√
2
(| ↑〉i − | ↓〉i) (1.54)

the eigenstates of σx
i with corresponding eigenvalues ±1, the ground state in the

asymptotic limit h = 0 reads

|GS〉 = ∏
i
| →〉i . (1.55)

We also notice that the zero-order ground state correlator is given by 〈σz
i σz

j 〉 = δij

as the operators at different sites i 6= j are completely uncorrelated. But when the
transverse field is strong but finite, perturbative corrections produce correlations
which are expected to remain short-ranged at large distances, i.e. we expect

〈σz
i σz

j 〉 ∼ e−|xi−xj|/ξ , for |xi − xj| � 1 , (1.56)

where ξ is the correlation length, so this picture is consistent with the expected
behaviour of the correlation function away from criticality which we have previously
described in the specific section.

Instead, in the limit of weak field h� 1, the first term in (1.49) now dominates
forcing a configuration, which we will call ordered ferromagnetic phase, where all
the spins tend to be aligned, either up or down, formally

| ↑〉 = ∏
i
| ↑〉i and | ↓〉 = ∏

i
| ↓〉i . (1.57)
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Strictly speaking, this holds true for h = 0, but it may be considered approximately
true when the transverse field is weak, i.e. h � 1. Thus, we see that there is
a clear qualitative change in the nature of the ground state of the system when
passing from one regime to the other, this providing strong evidences supporting
the hypothesis of a phase transition occurring at some h = hc in between. Such
phase transition is second-order in nature and it is triggered by a mechanism of
spontaneous symmetry breaking.

The Ising model indeed enjoys a discrete global Z2 symmetry generated by
the unitary operator

O =
L

∏
i=1

σx (1.58)

which acts by sending σz into −σz, thus leaving the Hamiltonian invariant when
the transverse field is switched off, i.e. when h = 0. Moreover, we have already
anticipated that the ground state is twofold degenerate, as it consists in a configu-
ration in which the spins are all aligned, either up-ward or down-ward. Therefore
the system will choose either one configuration or the other, thus breaking the Z2

symmetry. This also defines an order parameter as

〈σz
i 〉 = ±M 6= 0 (1.59)

where the expectation value 〈·〉 is taken over either of the ground state configura-
tions.

As we approach criticality from above, h→ h+c , the correlation length diverges,
the energy gap closes and the magnetisation decays algebraically to zero. At least
this is true in the thermodynamic limit, where the lattice gets infinite, otherwise no
phase transition may happen and we need to deal with finite-size effects.

It is also possible to exactly locate the point of second order phase transition at
hc = 1 by exploiting the Kramers-Wannier duality, which establishes a map between
the strong- and weak-field regimes and thus between order and disorder. We will
discuss it in detail in the third chapter, along with the Jordan-Wigner duality, which
instead maps the Ising model into a free fermion model, so providing an easy way
to exactly diagonalise the Hamiltonian.

We end this section about the Ising model by briefly discussing what happens
to the model if we modify the Hamiltonian (1.49).

By adding a longitudinal field, the Ising Hamiltonian becomes

H = −J
L−1

∑
i=1

σz
i σz

i+1 − hx

L

∑
i=1

σx
i − hz

L

∑
i=1

σz
i . (1.60)
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where now the magnitude of the transverse field is hx, while hz is the magnitude of
the longitudinal field. The primary effect of adding such a field to the ferromagnetic
transverse Ising model is that the singularity at h = 1 gets removed, namely no
phase transition occurs anymore and the energy spectrum of the model is completely
gapped [78]. In addition to that, the presence of a longitudinal field spoils the
symmetry between the strong- and weak-field regimes, thus the Kramers-Wannier
duality does not hold anymore.

Another possible version of the model is the chiral Ising model, which however
is not particularly interesting, as no new phases emerge [61]. For this reason we
do not present it and postpone the discussion about chirality to the next chapter
in the context of p-state chiral clock models.



2
Quantum clock models

In this second chapter we present one-dimensional quantum p-state clock models
under different setups. We start by studying the symmetric case with a transverse
field only and then we add a longitudinal field as well. We discuss both real and
complex coupling constant for the longitudinal field. Then we move on to consider
p-state chiral clock models: after having clarified what we mean by chiral, we
firstly apply to the model a transverse field and in a second time a longitudinal
field as well. We end the chapter by discussing the symmetries of these models,
with a special focus on the discrete spacetime symmetries of parity, time reversal
and charge conjugation.

2.1 p-state clock models

Quantum p-state clock models historically arise as a generalisation of the trans-
verse Ising model, which indeed is recovered when the clock order p = 2. The
literature about these models is rich, yet sometimes ambiguous in the naming.
Indeed, p-state clock models are also known as Zp-models, after their symmetry,
and as vector or planar Potts models, because a generalisation of the Ising model
with p = 3 was firstly studied by Renfrey Potts in 1951 [63]. When p = 4 the 4-state
clock model - or 4-state Potts model - is often referred to as Ashkin-Teller model,
named after Julius Ashkin and Edward Teller, who firstly studied an equivalent

24
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model in 1943 [3]. Besides generalising the Ising model, clock models are also strictly
related to the XY-model which we have introduced in the previous chapter. More
precisely, p-state clock models may be regarded as progressive approximations to
the XY-model as p increases and suitably performing the limit p→ ∞ the XY-model
itself is recovered [22]. This is particularly manifest if we take into account their
classical formulation in two dimensions, where the clock Hamiltonian in absence
of an external magnetic field (h = 0) takes the form

H = −J ∑
〈i,j〉

cos (θi − θj) , (2.1)

which differs from (1.19) only for the fact that now the angles are discretised,

θi =
2πni

p
, ni = 0, 1, . . . , p− 1 . (2.2)

Indeed while the classical XY-model can be figured as a lattice with a spin attached
at each site, which is able to rotate in the (x, y)-plane, for the classical p-clock model
we should imagine to attach at each site a spin which may take only a discrete set
of values, like the hand of a clock, hence the name (see Fig.2.1).

However, in what follows we are going to focus only on the one-dimensional
quantum version of p-clock models, which one could also formally derive starting
from the classical two-dimensional one via the transfer matrix method [5, 50]. So
let us introduce the model.
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Figure 2.1: Pictorial representation of the classical 12-state clock model on a square lattice.
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2.1.1 The model

The Hamiltonian of the one-dimensional quantum p-state clock model on a chain
of length L with open boundary conditions reads [60, 77]

H = −J
L−1

∑
j=1

(
ZjZ†

j+1 + Zj+1Z†
j

)
− h

L

∑
j=1

(
Xj + X†

j

)
(2.3)

where J and h are real and positive parameters representing the coupling constants
of the “kinetic" term and of the transverse field, respectively. X and Z are the
unitary operators describing the clock degrees of freedom and they satisfy the
following algebra:

ZX = ωXZ, Zp = Xp = 1, ω ≡ e
2πi

p , (2.4)

which is a generalisation to arbitrary p’s of the Pauli matrix algebra σxσz = e
2πi

p σxσz,
holding for p = 2. Thus, each clock degree of freedom lives in a p-dimensional
Hilbert space, say Hp, where one can build an orthonormal basis

{|n〉 ∈ Hp, n = 0, 1, 2, . . . p− 1} (2.5)

such that the clock operators are realised as the following unitary matrices:

X =



1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
... . . . ...

0 0 0 . . . ωp−1


and Z =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1
1 0 0 . . . 0


. (2.6)

The X operator acts on the states |n〉 by extracting a phase, whereas the action of
the Z operator results in a counterclockwise rotation in the internal space of clock
degrees of freedom from one state to the nearest-neighbour one. Formally:

X|n〉 = |n〉ωn and Z|n〉 = |n− 1〉, (2.7)

with the convention Z|0〉 = |p − 1〉. A pictorial representation of the action of
the Z operator is sketched in Fig.2.2.

One may then add to the model a longitudinal field as well, so that (2.3) becomes

H = −J
L−1

∑
j=1

(
ZjZ†

j+1 + Zj+1Z†
j

)
− hx

L

∑
j=1

(
Xj + X†

j

)
− hz

L

∑
j=1

(
Zj + Z†

j

)
(2.8)
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Figure 2.2: Pictorial representation of the action of the Z operator, resulting in a counter-

clockwise rotation to the nearest-neighbour state. Similarly, the action of Z† will result in a

clockwise rotation to the nearest-neighbour state.

where we have re-named hx the magnitude of the transverse field and called hz

that of the longitudinal field.
The last setup we are going to study is that of p-state symmetric clock models

with complex longitudinal field, having Hamiltonian

H = −Jh
L−1

∑
j=1

(
ZjZ†

j+1 + Zj+1Z†
j

)
−

L

∑
j=1

(
Xj + X†

j

)
+

− h
L

∑
j=1

(
Zj(1 + ωn) + (1 + ωn∗)Z†

j

)
,

(2.9)

were ω ≡ exp(2πi/p) and n = 0, 1, . . . , p− 1 is a term keeping memory of the topo-
logical sector of the dual lattice gauge theory, as we will discuss in the third chapter.

We notice that despite the presence of a complex coupling, this model is not
chiral in the sense we are going to clarify in the next section, thus it can rightfully
be discussed in the present section.

2.1.2 Phase diagram

The basic topology of the phase diagram of transverse p-state clock models, at
least in their classical formulation, is well known since the late seventies of the
previous century [22] . When p ≤ 4 these models are characterised by two gapped
phases separated by a second order phase transition occurring at h = hc. Thanks to
self-duality considerations which will be clarified in the next chapter, we are able
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to locate the critical point at hc = 1, just like the Ising model. Thus, for h < 1 (low
temperature regime) the system is in a ferromagnetic phase which is characterised
by long-range order and by the breakdown of the Zp symmetry. Instead, when
h > 1 (high temperature regime) the system enters a disordered paramagnetic phase
where the Zp symmetry is restored. For a more exhaustive discussion, it is useful to
characterise these phases in the language of Zp discrete gauge models as well [22].
In this sense, we may also say that the low temperature phase is Higgs-type and
deconfined, with Wilson loops displaying a perimeter law behaviour, whereas the
high temperature phase is Coulomb-type and confined, with Wilson loops displaying
an area law behaviour. We will go back to discuss the relation between lattice gauge
theories and clock models in the next chapters.

According to the literature when p ≥ 5 clock models seem to support a third
phase of Berezinskii-Kosterlitz-Thouless type opening symmetrically around the
critical point hc = 1 [60]. This new critical phase is characterised by quasi-long-
range order along with the power-law decay of the correlators and the loss of exact
self-duality. The reason of this discontinuous behaviour when passing from p ≤ 4
to p ≥ 5 may be traced to the emergence of a continuous U(1) symmetry together
with a new type of excitations appearing on top of the usual domain walls already
present for p ≤ 4. These new excitations are topological in nature as they carry non
zero winding number and therefore they may be identified as discrete vortices.

Finally, in the limit p→ ∞ we recover the continuous XY model, thus the ordered
ferromagnetic phase must shrink into a single point, according to the Mermin-
Wagner theorem. We also recall that the XY model is not self-dual, this explaining
the loss of self-duality starting from p = 5.

We summarise all these pieces of information in Fig.2.3. More quantitative
considerations about the phase diagram of p-state clock models are postponed to
the last chapter where we investigate these models by using numerical techniques
as - in contrast to the Ising models - clock models are not exactly solvable.

The presence of a longitudinal field instead modify the topology of the phase
diagram, as it tends to align all the spins along its direction. Indeed, at least for
p = 3, 4, clock models are known to behave like the Ising model, meaning that
the longitudinal field immediately dominates over the transverse one as far as
it is switched on. So the singularity is removed and the spectrum is completely
gapped for any non-zero value of hz.
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Figure 2.3: Sketch of the phase diagram of p-state clock models for p ≤ 4 (on top), p ≥ 5 (in

the middle) and phase diagram of the XY model (at the bottom). We draw the gapped phases

with smooth black lines and the critical ones with dashed red lines. Red circles represent the

points of phase transition.

2.2 p-state chiral clock models

The next models we take into account are one-dimensional quantum p-state
chiral clock models. Among the first studies about chiral clock models it is worth
mentioning the work carried out by Stellan Ostlund in 1980 [61]. Here he investigated
the commensurate-incommensurate (C-IC) transition which occurs each time a
commensurate phase with long-range order melts to an incommensurate floating
phase. This kind of phase transition naturally arises when introducing an asymmetry
in clock models with order p ≥ 3. No C-IC transition occurs in the chiral Ising model.

Chiral clock models have recently risen in new popularity thanks to the work of
Paul Fendley [25] who has shown that parafermionic edge zero modes do appear
only in presence of chiral interactions. Moreover, as we will better discuss in the next
chapter, one-dimensional Zn-parafermionic models display topological order with
non-Abelian anyonic excitations and thus they may seem promising for topological
quantum computing. Unfortunately, they are not sufficient for performing universal
quantum computation. Still, this discovery started both theoretical and experimental
new research lines in the context of chiral clock models and nowadays the literature
in this area is quite rich [49, 71, 82, 85].

In analogy with the previous section, even if we are going to focus only on the
quantum version of these models, it may be useful to write down the Hamiltonian of
classical chiral clock models as well, which in absence of an external magnetic
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field (h = 0) reads [61]

H = −J ∑
〈i,j〉

cos
[

2π

p
(
ni − nj − Rij · ∆

)]
(2.10)

where ni, nj are integers ranging from 0 up to p− 1, Rij ≡ (Ri − Rj)/|Ri − Rj| is the
unit vector between the i-th and j-th sites of the lattice and ∆ ≡ ∆x̂ is the vector
whose magnitude ∆ introduces a chirality in the model. Indeed, ∆ forces the angle
θi = 2πni/p to undergo a continuous rotation in space, which is in competition with
the discrete nature of the angle itself. This competition is the origin of the emerging
of a new critical phase which is floating incommensurate in nature.

Before going further and present the quantum version of chiral clock models,
let us firstly formalise what do we truly mean by chiral.

2.2.1 What does chiral mean?

Before formally defining the model, we need to clarify what the word chiral
means in the present context [25] . We will say that a system or model is chiral if the
interaction energy between two spins is not invariant under their interchange. The
models we have described in the previous section are defined to have real coupling
constants, hence they are always non chiral. Instead, by allowing the couplings to
take complex values, we may introduce an asymmetry into the model, which then
becomes chiral in the sense we have just defined.

Let us call sj the spin at site j taking values 1, ω, ω2, . . . , ωp−1, where ω is the usual

phase defined as ω ≡ e
2πi

p . For a 3-state system with chiral phase θ, the energy term
reads s∗j skeiθ . When the chirality is absent, i.e. θ = 0, s∗j sk may take only three values,
namely 1, ω, ω2 and the situation is sketched in Fig.2.4(a). As the interaction energy
between any pair of spins is proportional to the real part of their values, the rightmost
point in the figure has the largest real part (sj = sk) and thus it minimises the energy
(because in the Hamiltonian there is a minus sign in front). On the other hand, when
θ 6= 0, the situation is sketched in Fig.2.4(b). Now the diagram describing the three
values of s∗j skeiθ gets rotated anticlockwise by θ, as we are assuming θ > 0. As a
consequence of this, the rightmost point of the diagram still minimises the energy
as it has the largest real part, but now the interaction energy is no longer invariant
under the exchange of the spins sj and sk. Hence, this model is chiral. However, we
stress that if θ is integer multiple of 2π/p the symmetric configuration is restored,
the energy is again invariant under the exchange of two spins and thus the model
is no longer chiral, even if it has complex coupling constants.
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(a) Symmetric case, θ = 0.

θ

(b) Chiral case, θ 6= 0.

Figure 2.4: Picture of the three possible values of s∗j skeiθ for θ = 0 (symmetric case, left) and

θ 6= 0 (chiral case, right) with clock order p = 3.

2.2.2 The model

The Hamiltonian of the one-dimensional quantum p-state chiral clock model
with a chain of length L and open boundary conditions is [25, 82]

H = −J
L−1

∑
j=1

(
ZjZ†

j+1eiθ + Zj+1Z†
j e−iθ

)
− h

L

∑
j=1

(
Xjeiφ + X†

j e−iφ
)

. (2.11)

Now the couplings are complex: θ and φ are two chiral phases, while J and h are the
moduli of the couplings of the kinetic term and the transverse field, respectively. X
and Z are the same unitary operators defined in the symmetric case, so they obey the
algebra (2.4). Therefore, one may also find out an orthonormal basis of the Hilbert
space in which the clock operators are realised as the same unitary matrices of (2.6),
in full analogy with the previous case. We also stress that this model is indeed chiral
- unless both the angles are integer multiples of 2π/p - as one can easily check that
the interaction energy between two spins is not invariant under their interchange.

We have mentioned in the previous section that symmetric clock models are not
integrable. Similarly, chiral clock models are not exactly solvable either, except for
the line h cos (pφ) = J cos (pθ) which is known to be integrable [25].

Another nice property of the chiral Hamiltonian is that it is left invariant when
either of the two phases, θ and φ, get shifted by multiples of 2π

p . Indeed, under
the transformation

θ → θ′ = θ +
2nπ

p
, φ→ φ′ = φ +

2mπ

p
(2.12)

The Hamiltonian gets rephrased as

H = −Jω−n
L−1

∑
j=1

Zj+1Z†
j e−iθ − hω−m

L

∑
j=1

X†
j e−iφ + h.c. . (2.13)
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Now we may redefine the clock operators as

X′j = ω−mXj, Z′2j = ω−nZ2j, Z′2j+1 = Z2j+1 (2.14)

and upon this redefinition we immediately recover the initial Hamiltonian. As an
aside, it is important to notice that the previous redefinition is justified by the fact that
the new operators preserve the algebra (2.4) and thus they are good clock operators.
This has the main advantage of allowing us to restrict to a shorter range of angles
within which these models are always chiral, namely θ ∈ [0, 2π

p [ and φ ∈ [0, 2π
p [ .

By adding also a longitudinal field, the Hamiltonian gets modified from (2.11) to

H = −J
L−1

∑
j=1

(
ZjZ†

j+1eiθ + Zj+1Z†
j e−iθ

)
− hx

L

∑
j=1

(
Xjeiφ + X†

j e−iφ
)
+

− hz

L

∑
j=1

(
Zj + Z†

j

) (2.15)

where hx and hz are the couplings of the transverse and longitudinal field, respec-
tively. In this dissertation we do not study the case with a chiral coupling on the
longitudinal field, so if not otherwise specified hz is real and positive.

2.2.3 Phase diagram

In addition to the two commensurate phases which we have already discussed
in the symmetric case, chiral clock models are known to host a new floating incom-
mensurate phase for any p ≥ 3 [61] . Let us start by clarifying the “dictionary"
we are going to use. A phase is said to be incommensurate if it has a periodicity
which is irrational multiple of the periodicity of the underlying lattice. Indeed it is
customary to describe these models with the language of condensed matter physics,
as this new kind of phases has been investigated in the context of incommensurate
crystals [62] since the last seventies of the previous century. Thus, the picture
one should keep in mind is that of a mono-layer of atoms getting adsorbed on
a surface with a regular array of adsorption sites. In this sense the superlattice
may either be commensurate or incommensurate with the underlying lattice. Then,
by varying the temperature (or any other thermodynamic field in general) the
ordered solid-like commensurate phase may melt either into a disordered fluid-like
phase or into a floating solid-like incommensurate phase via a C-IC transition [36].
We also mention that in the literature these phases are sometimes referred to as
Tomonaga-Luttinger liquids, because the C-IC transition may be mapped into the
insulator-Luttinger liquid transition occurring in a one-dimensional spinless fermion
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Incommensurate (IC) 〈S(0)S(r)〉 ∼ cos(k · r + ϕ0)

Floating incommensurate 〈S(0)S(r)〉 ∼ r−η cos(k · r + ϕ0)

Fluid 〈S(0)S(r)〉 ∼ exp(−r/ξ) cos(k · r)

Commensurate (C) 〈S(0)S(r)〉 ∼ cos (k0 · r)

Table 2.1: Dictionary of commensurate-incommensurate transitions from condensed matter

physics in two dimensions [4] . S is the two-component order parameter or spin, k is the

wave vector of the phase, η is a critical exponent, k0 is a constant vector and ϕ0 a phase.

at the bottom of a quadratic band [73, 82]. More formally, we may characterise
different kinds of phases according to the long-distance behaviour of the correlators,
as it is summarised in Tab.2.1.

Let us now focus more quantitatively on the floating incommensurate phase we
have to deal with when studying quantum chiral clock models. This phase is gapless,
and therefore critical, with central charge c = 1. Correlation functions display a
power-law decay with a complex modulation, formally

〈ZZ†〉 ∼ A(r) · exp
(

2πi
p

k · r
)

(2.16)

with A(r) decaying algebraically and k being irrational, thus both the real and
imaginary parts of the correlators display an oscillating pattern with algebraic
damping. Before focusing on the phase transitions the incommensurate phase is
bounded by in chiral clock models, we notice that in general the chiral perturbation
may either be relevant or irrelevant, in the sense of the renormalisation group, so we
would need to distinguish between these two cases. However, at least for p-state
chiral clock models the chiral perturbation happens to be always relevant at the
symmetric critical point θ and φ. Therefore, the C-IC transition must be in a different
universality class from that of the corresponding symmetric model, implying that
the symmetric critical point is multicritical [36].

Coming now to the topology of the phase diagram, the first C-IC phase transition,
the one from the ordered phase to the floating one, belongs to the Pokrovsky-Talapov
universality class, whereas the second one, from the floating phase to the disordered
one, is Berezinskii-Kosterlitz-Thouless. In chiral clock models with order p ≥ 4
the incommensurate phase opens as soon as we turn on the chirality, implying that
the transition from the ordered to the disordered phase is always two-step. When
p = 3 the situation is more controversial: either the incommensurate phase opens
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immediately, as in the previous case, or there is a tricritical Lifshitz point so that
at small angles the transition is one-step. In the latter case, the direct transition
between the 3-Potts point and the Lifshitz point should be non-conformal and live in
a new universality class, called chiral, which was firstly proposed by David A. Huse
and Michael E. Fisher in 1982 [36]. More precisely, they have found that this phase
transition should be unambiguously signalled by an abrupt change in the value
of the incommensurability exponent β across the the Lifshitz point. Moreover, the
product of the incommensurate wave vector and the correlation function is supposed
to converge to a universal constant, meaning that the equality ν = β between their
critical exponents must hold, with the dynamical critical exponent being z 6= 1. For
scaling considerations of why this has to be the case see again Ref. [36].

On the other hand, the literature about chiral clock models with also a longitudi-
nal field is not so rich. Therefore we defer the discussion about how the topology
of the phase diagram is supposed to change to the fourth and last chapter, where
we propose a purely numerical study of the model.

2.3 Symmetries

This last section is devoted to the symmetries of clock models. First of all, both
symmetric and chiral clock models enjoy a Zp discrete global symmetry. On the
contrary, when a longitudinal field is applied to the models, this symmetry gets
explicitely broken. Indeed, it is easy to check that the unitary operator

O =
L

∏
j=1

Xj (2.17)

acts asO†ZjO = ωZj andO†XjO = Xj, thus it commutes with the Hamiltonians(2.3)
and (2.11), but not with (2.8) and (2.15). Moreover, in the basis where X is diagonal,
the operator O may be recast as

O = ∏ exp


0 0 . . . 0

0 2πi
p . . . 0

...
. . .

...

0 . . . 2πi
p (p− 1)

 = exp


∑

2πi
p


0 0 . . . 0

0 1 . . . 0
...

. . .
...

0 . . . p− 1




(2.18)
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from which we identify

K =


0 0 . . . 0
0 1 . . . 0
... . . . ...
0 . . . p− 1

 (2.19)

as the discrete “generator" of the Zp symmetry.
In addition to that, it is useful to take into account the three discrete space-

time symmetries of charge conjugation, spatial parity and time reversal. Charge
conjugation acts on the clock operators via the unitary operator C as CZjC =

Z†
j , CXjC = X†

j with C2 = 1. Spatial parity is realised by the unitary operator
P acting as PZjP = Z−j , PXjP = X−j and P2 = 1. Finally, time reversal is
anti-unitary and it is realised by the operator T acting on the clock operators as
TZjT = Z†

j , TXjT = Xj with T2 = 1. In addition to that, we stress that the
time reversal transformation also performs a complex conjugation of the phases,
namely eiθ ↔ e−iθ and eiφ ↔ e−iφ. Symmetric clock models - with and without
a longitudinal field - clearly enjoy all these three symmetries, as the non-chiral
Hamiltonian is left invariant under the previous transformations. This is not the
case of the chiral Hamiltonian, where the presence of complex couplings may break
some or all these symmetries. More precisely,

H(θ, φ)
C7−→ H(−θ,−φ), H(θ, φ)

P7−→ H(−θ, φ), H(θ, φ)
T7−→ H(θ,−φ),

meaning that when both the chiral phases are present, i.e. θ 6= 0 and φ 6= 0, the
chiral Hamiltonian breaks separately charge conjugation, parity and time reversal.
Still, it is invariant under their combination, CPT.

When φ = 0 and θ 6= 0:

H(θ, 0)
C, P7−−→ H(−θ, 0), H(θ, 0) T7−→ H(θ, 0), H(θ, 0) CP7−→ H(θ, 0),

the chiral Hamiltonian breaks parity and charge conjugation, but it is invariant
under time reversal and CP-symmetry.

Finally, when θ = 0 and φ 6= 0:

H(0, φ)
C, T7−−→ H(0,−φ), H(0, φ)

P7−→ H(0, φ), H(0, φ)
CT7−→ H(0, φ),

the chiral Hamiltonian is invariant under parity and CT-symmetry, while it breaks
time reversal and charge conjugation.
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Another way of breaking some discrete space-time symmetry is via a longitudinal
field with complex coupling. So, fixing n 6= 0 for p odd and n 6= 0, n 6= p/2 for
p even s.t. ωn 6= ±1, Hamiltonian (2.9) transforms as

H(ω)
C7−→ H(ω∗), H(ω)

P, T7−−→ H(ω), H(ω)
PT7−→ H(ω∗),

thus breaking charge conjugation but preserving both parity and time reversal. The
breaking of the PT-symmetry is required for consistency by the CPT-theorem. We
stress that the fact that this Hamiltonian preserves parity is consistent with the
non-chiral nature of the model and it is due to the fact that the angle entering the
definition of ω is integer multiple of 2π/p.

If instead we do not fix n, charge conjugation is preserved by the global theory,
consistently with the dual lattice gauge theory which is C-symmetric. Let us consider
for example the case p = 3. If n = 0 the clock Hamiltonian trivially preserves the
charge conjugation symmetry. On the other hand when n = 1, 2

H(n = 1) C7−→ H(n = 2) and H(n = 2) C7−→ H(n = 1) (2.20)

the two topological sectors get exchanged, thus the theory is globally invariant
even under charge conjugation.



3
Duality transformations

Duality transformations are powerful analytical tools both in statistical mechanics
and quantum field theory. They are commonly used to recast the same model into
different forms in order to capture different features. Indeed, what seems obscure and
cumbersome may become simple and clear just dressing up the model in a different
way so changing our point of view. Thus, duality mappings result extremely helpful
as they allow to tackle problems which otherwise would be too difficult to deal with.

In this chapter we present the traditional Kramers-Wannier and Jordan-Wigner
dualities of the Ising model and their generalisation to Zp-clock models for arbitrary
p. The former generalises straightforwardly to clock models, while the latter requires
a bit more of attention and in this framework it goes under the name of Fradkin-
Kadanoff duality. We also introduce the notion of topological order and discuss the
possibility of having edge states costing no energy. We end by presenting a duality
between some lattice gauge theories and clock models, which relies on a recently
developed formalism known as bond-algebraic approach.

3.1 Kramers-Wannier duality

The Kramers-Wannier duality was firstly discovered in 1941 by Hendrik Kramers
and Gregory Wannier for two-dimensional ferromagnets [45, 46]. It relates the high-
and low-temperature or, in our context, the strong- and weak-field regimes thus

37
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establishing a mapping between order and disorder. Consequently, it also allows to
locate at hc = 1 (cfr. Eq. (1.49) and (2.3)) the point of second order phase transition
occurring in these models. We start by discussing the the quantum Ising model [32,
54, 65] and then we will generalise the mapping to p-state clock models as well. For
simplicity, we shall also enforce periodic boundary conditions in the following, even
if we stress that this same duality holds true even under open boundary conditions.

The Kramers-Wannier duality maps Ising spins on the principal chain into Ising
spins on the dual chain. We denote the dual sites - corresponding to the links of
the original chain - using half-odd numbers in the form i + 1

2 , with i labelling the
principal sites. Then we define the dual Pauli operators µx

i , µz
i so that

σx
i = µz

i− 1
2
µz

i+ 1
2

and σz
i σz

i+1 = µx
i+ 1

2
, (3.1)

where µx, µz clearly obey the same algebra as the standard Pauli operators. Both
the models enjoy a global Z2 symmetry generated by

O = ∏
i

σx
i and Odual = ∏

i
µx

i+ 1
2

, (3.2)

respectively. Using the duality (3.1) two global constraints emerge, namely

Odual = ∏
i

σz
i σz

i+1 = 1 and O = ∏
i

µz
i− 1

2
µz

i+ 1
2
= 1 , (3.3)

meaning that only those states satisfying these relations have to be considered, i.e.
in the spectrum only Z2-singlets are allowed. Afterwards, inserting the expressions
(3.1) into the Ising Hamiltonian (1.49) and setting J = 1 we find

H(λ) = −∑
i

µx
i − h ∑

i
µz

i µz
i (3.4)

= h

(
−∑

i
µz

i µz
i+1 −

1
h ∑

i
µx

i

)
, (3.5)

up to boundary terms which we neglect. Thus we see that (3.4) differs from the
original Hamiltonian just by an overall factor h and by the replacement h ↔ 1/h
within the round bracket, therefore

H(σ; h) = hH(µ; h−1) (3.6)

which is the same as saying that the strong- and weak-field regimes are equivalent.
Indeed, thanks to (3.6) we are able to map an eigenvalue of H(h) into a unique eigen-
value of H(h−1). Moreover, (3.6) for the Hamiltonians implies for the energy gaps:

∆E(h) = h∆E(h−1) . (3.7)
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So we see that if the gap vanishes for some h = hc, then it must vanish also for
h−1 = h−1

c and assuming that there is only one critical point, we are able to locate it as

hc =
1
hc

⇐⇒ hc = 1 , (3.8)

which is by the way consistent with the expression of the energy gap known from
the exact solution of the Ising model, namely ∆E(h) = 2|1− h|. Before concluding
the discussion about the Kramers-Wannier we also stress that as in our notation σz

i

and σx
i are order and disorder operators respectively, and they may be used to define

the corresponding order and disorder parameters, similarly the dual operators

µz
i+ 1

2
=

i

∏
j=1

σx
j and µx

i+ 1
2
= σz

i σz
i+1 with µx

L+ 1
2
= σx

L (3.9)

are disorder and order operators, whose expectation values over the ground state
define the corresponding disorder and order parameters. More precisely, the former
operator is responsible for a spin flip of all those spins placed before site i, thus
producing a kink excitation, and the kink proliferation clearly disorders the system.
In fact, the ground state of the paramagnetic phase may be considered as a kink
condensate. Instead the latter is sensitive to alignment of two nearest-neighbour
spins only. In this sense, the Kramers-Wannier duality may also be regarded as
a duality between order and disorder.

The generalisation to p-state clock models is straightforward. We define the
dual clock operators such that

Xi = Φi− 1
2
Φ†

i+ 1
2

and ZiZ†
i+1 = Πi+ 1

2
, (3.10)

and they clearly obey the same algebra of the clock operators previously defined in
(2.4). Both the original and the dual model enjoy a global Zp symmetry which is gen-
erated by

O = ∏
i

Xi and Odual = ∏
i

Πi+ 1
2

, (3.11)

respectively, which give rise to the following constraints:

Odual = ∏
i

ZiZ†
i+1 = 1 and O = ∏

i
Φi− 1

2
Φ†

i+ 1
2
= 1 . (3.12)

Writing then the Hamiltonian in terms of the dual operators we find

H(X, Z; h) = hH(Π, Φ; h−1) (3.13)
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which implies hc = 1, just like for the Ising model. Strictly speaking, this property of
both Ising and clock models is known as self-duality. We also recall that this result
actually holds true for p = 3, 4-state clock models only, as for p ≥ 5 the topology
of the phase diagram changes and a new gapless phase opens [60].

Even chiral clock models enjoy an exact duality which is very similar to the
Kramers-Wannier one. Indeed, we can proceed in a similar way by introduc-
ing the same dual operators of (3.10) to re-phrase the Hamiltonian (2.11), up to
boundary terms, as

H = −J
L−1

∑
i=1

(
Πi+ 1

2
eiθ + Πi+ 1

2
e−iθ

)
− h

L

∑
i=1

(
Φi− 1

2
Φ†

i+ 1
2
eiφ + Φ†

i− 1
2
Φi+ 1

2
e−iφ

)
,

(3.14)
which is formally equivalent to the original Hamiltonian up to the simultaneous
exchanges of the phases and of the couplings, formally

θ ↔ φ and J ↔ h .

A nice consequence of this is that the phase diagram of the model is symmetric with
respect to the self-dual line J = h when θ = φ and for this reason the following
numerical analysis we will often stick to this special case.

3.2 Jordan-Wigner duality

The Jordan-Wigner duality is another interesting mapping involving the Ising
model. It was firstly proposed by Pascual Jordan and Eugene Wigner in 1928 to
exactly diagonalise the Ising Hamiltonian, thus solving the model.

Let us discuss it in detail. The Jordan-Wigner duality maps spin operators into
fermionic creation and annihilation operators, so allowing for a free-fermion formu-
lation of the Ising model. To simplify the notation we enforce periodic boundary
conditions, label the sites with i = − L

2 ,− L
2 + 1, . . . ,−1, 0,+1, . . . , L

2 − 1,+ L
2 (so our

chain is now L + 1 sites long) and work with the Hamiltonian

H = −∑
i

(
σz

i + hσx
i σx

i+1
)

(3.15)

which is unitarily equivalent to (1.49), up to the choice of the boundary conditions.
Then we introduce the operators

σ+
i ≡

1
2
(
σz

i + iσy
i
)

and σ−i ≡
1
2
(
σz

i − iσy
i
)

(3.16)
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which we use to define the following fermionic creation and annihilation operators

ci ≡
[

i−1

∏
j=−L/2

exp
(

iπσ+
j σ−j

)]
σ−i and c†

i ≡ σ+
i

[
i−1

∏
j=−L/2

exp
(
−iπσ+

j σ−j

)]
(3.17)

s.t. {ci, c†
j } = δij , {ci, cj} = 0 = {c†

i , c†
j } . (3.18)

By inverting the definition of the fermionic operators we find

σz
i = 2c†

i ci − 1 (3.19)

σx
i σx

i+1 =
(

c†
i − ci

) (
c†

i+1 − ci+1

)
(3.20)

which may be plugged into the Hamiltonian (3.15) to recast it in the form

H = −2 ∑
i

c†
i ci − h ∑

i

(
c†

i − ci

) (
c†

i+1 − ci+1

)
(3.21)

which is now quadratic in the fermionic operators and thus diagonalisable. Before
doing it, it is better to provide some important remarks about what happens at the
boundaries which were firstly argued by Alexei Kitaev [42].

First of all we notice that the Hamiltonian (3.21) contains terms in the form cici+1

and c†
i c†

i+1, therefore the fermion number, generated by F = ∑i c†
i ci, is conserved

only modulo 2. Instead, the fermion parity is preserved as a direct consequence
of the Z2 symmetry of the Ising model. Therefore, we stress that the choice of
periodic boundary conditions on the spins does not completely specify the boundary
conditions for the fermions as it leaves their parity unfixed [25, 30]. The second
observation we want to point out is the possibility of having fermionic edge zero
modes [42] in this model. To see this it is more instructive to go back to the notation
defined in Chapter 1 for the Ising model and re-phrase it now in terms of Majorana
fermions. This dual representation in terms of Majorana fermions is more commonly
referred to as Kitaev chain or wire. Then we recall that a fermionic edge state is an
operator, say Ψ, which commutes with the Hamiltonian [H, Ψ] = 0, anti-commute
with the fermion number operator {(−1)F, Ψ} = 0 and has a finite normalisation
Ψ†Ψ = 1 even in the thermodynamic limit. The Ising model does have two of
these zero modes when open boundary conditions are enforced. So let us see this
by firstly introducing the operators

χ1
j ≡

(
∏
k<j

σx
k

)
σz

j and χ2
j ≡ i

(
∏
k<j

σx
k

)
σz

j σx
j (3.22)
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which are self-adjoint, they anti-commute with each other and square to the identity,
thus they are good Majorana operators indeed. If we re-write the Ising Hamiltonian
with open boundary conditions (1.49) (pay attention that here we are no longer
considering (3.15)!) we find

H = ih
L

∑
j=1

χ1
j χ2

j + i J
L−1

∑
j=1

χ2
j χ1

j+1 . (3.23)

It is now easy to see that, upon setting h = 0, operators χ1
1 and χ2

L at the boundaries
do no longer enter the Hamiltonian and therefore they commute with it. As
they also anticommute with the fermion parity and are correctly normalised (as
they square to the identity) the are rightful fermionic edge zero modes. What is
interesting in this whole picture is that the ordinary notion of order in the spin
system becomes topological order [80] in the fermion model, which is signalled by
the twofold degeneracy of the ground state along with the absence of a local order
parameter acquiring a non-zero vacuum expectation value in the ordered phase.
Indeed, no spontaneous breaking of any symmetry occurs here. These observations
have given a new popularity to these models as the twofold degenerate ground states
may be used a qubit which is robust against decoherence thanks to the presence
of the energy gap between the first excited state. Thus, it is promising for fault-
tolerant quantum computing [41] .

Let us now go back to the previous discussion and diagonalise the Hamiltonian
(3.21): we firstly consider the Fourier transform of the fermion operators

cj =
1√

L + 1 ∑
k

e−ikjck and c†
j =

1√
L + 1 ∑

k
eikjc†

k , (3.24)

where ck and c†
k are the fermionic creation and annihilation operators in momentum

space. Using then (3.24) into (3.21) we find

H = −2 ∑
k>0

(1 + h cos k)(c†
kck + c†

−kc−k) + 2ih ∑
k>0

sin k(c†
kc†
−k + ckc−k) , (3.25)

where
1

L + 1 ∑
j

e−i(k−k′)j = δk,k′ (3.26)

has been used. Now we have to re-write the Hamiltonian in a canonical form via
Bogoliubov transformation. So we introduce the new operatorsηk = ukck + ivkc†

−k

η†
k = ukc†

k − ivkc−k

and

η−k = ukc−k − ivkc†
k

η†
−k = ukc†

−k + ivkck

(3.27)
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where uk and vk are positive real coefficients. By imposing these operators to be
fermionic, i.e. {ηk, η†

p} = δkp, {ηk, ηp} = 0 = {η†
k , η†

p}, we find the equation

u2
k + v2

k = 1 (3.28)

which is solved by

uk = cos θk and vk = sin θk (3.29)

for θk ∈ [0, 2π[. At this point we simply have to invert the relations in (3.27) to find
out an explicit expression for the c-type operatorsck = ukηk − ivkη†

−k

c†
k = ukη†

k + ivkη−k

and

c−k = ukη−k + ivkη†
k

c†
−k = ukη†

−k − ivkηk

(3.30)

and insert these expressions into (3.25), so that the Hamiltonian becomes

H = ∑
k>0

[
−2(1 + h cos k)(u2

k − v2
k) + 4h sin kukvk

]
(η†

k ηk + η†
−kη−k)+

+ ∑
k>0

[
4i(1 + h cos k)ukvk + 2ih sin k(u2

k − v2
k)
]
(η†

k η†
−k + ηkη−k) .

(3.31)

Now we need to impose the vanishing of the second term, i.e.

4(1 + h cos k)ukvk + 2h sin k(u2
k − v2

k) = 0 . (3.32)

By using (3.28), from which we have

2ukvk = sin 2θk and u2
k − v2

k = cos 2θk , (3.33)

(3.32) becomes

4(1 + 1 + h cos k) sin 2θk + 2h sin k cos 2θk = 0 . (3.34)

This provides an explicit expression for the angles θk, formally

tan 2θk = −
h sin k

1 + h cos k
(3.35)

which is equivalent to

sin 2θk =
h sin k√

1 + 2h cos k + h2
, (3.36)

cos 2θk = −
1 + h cos k√

1 + 2h cos k + h2
. (3.37)
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Now we have done, as the Hamiltonian now reads

H = 2 ∑
k

Ekη†
k ηk + const. (3.38)

with Ek providing the dispersion relation

Ek =
√

1 + 2h cos k + h2 (3.39)

which has a minimum for k = ±π, so we recover the known expression for the
energy gap E±π = 2|1 − h|.

3.3 Fradkin-Kadanoff duality

Clock models are the natural candidates to generalise the previous discussion
beyond the Z2 symmetry of the Ising model. Indeed, their dual formulation
in terms of parafermions via Fradkin-Kadanoff transformation is known to host
a topological phase as well. However, zero-mode edge states generalising the
Majorana ones do exist only when parity and time-reversal symmetries are broken,
i.e. when clock models are chiral [25]. Given that one usually performs these
duality transformations with the goal of identifying the edge states, in this section
we focus on the chiral case only.

The Fradkin-Kadanoff duality, named after Eduardo Fradkin and Leo P. Kadanoff
(1980) [31] , is indeed the natural generalisation of the Jordan-Wigner duality to
p-state clock models with arbitrary clock order p. Let us discuss it in detail [25, 54].
We firstly take into account the chiral Hamiltonian defined in (2.11) and define at
each site j of the chain the parafermions operators

χj ≡
(

j−1

∏
k=1

Xk

)
Zj (3.40)

ψj ≡ ω
p−1

2 χjXj = ω
p−1

2

(
j−1

∏
k=1

Xk

)
ZjXj (3.41)

where as usual ω = 2π/p being p the clock order. Moreover, the parafermion
operators clearly obey the same algebra as the spin operators, namely

(χj)
p = (ψj)

p = 1 , χ†
j = χ−1

j = χ
p−1
j , ψ†

j = ψ−1
j = ψ

p−1
j

χjψj = ωψjχj .
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In addition to that, now the parafermion operators do not commute even at different
sites, because of the non-locality of their definition. Thus, we have

χjχk = ωχkχj ψjψk = ωψkψj , χjψk = ωψkχj for j < k . (3.42)

So we see that parafermions are the natural p-state generalisation of the Majorana
fermions of the Ising chain, with the difference that for clock models ω 6= ω−1.
Now performing the substitutions

Xj = ω
p−1

2 χ†
j ψj and Z†

j Zj+1 = ω
p−1

2 ψ†
j χj+1 (3.43)

into the Hamiltonian (2.11) we find that the parafermion Hamiltonian reads

H = −Jω
p−1

2

L−1

∑
j=1

ψ†
j χj+1e−iθ − hω

p−1
2

L

∑
j=1

ψ†
j χje−iφ + h.c. , (3.44)

which is not as easily solvable as the Ising Hamiltonian in terms of free fermions. In
fact, due to the relations in (3.42), there is a non trivial coupling between parafermion
operators at different momenta, so even performing a Fourier transform we are
not able to recast it into a block diagonal Hamiltonian as we did for the Ising
model. As we have already mentioned in the previous chapter, clock models are not
exactly solvable indeed. Yet, chiral clock models are integrable for a two-parameter
family of couplings along the line

h cos (pφ) = J cos (pθ) . (3.45)

We shall not discuss the integrability of the model along this special line as this
would go beyond the goal of this dissertation. Similarly, we will not go through the
formal derivation of the existence of edge states. We just mention that zero-mode
edge states are indeed present even in these Zp-clock models when chiral couplings
are present so to break both parity and time reversal symmetries. Moreover, when
this last requirement is satisfied, they are exact, thus signalling the presence of
topological order. Thus, chiral clock models may allow for interesting applications
to topological quantum computing [53].

3.4 Clock models and Lattice Gauge Theories

Lattice Gauge Theories (LGTs) are non-perturbative regularisations of gauge
theories on a discretised spacetime. They were firstly proposed by Kenneth G. Wilson
[84] in order to tackle the problem of quark confinement within the framework of
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quantum cromodynamics. However, their range of application was immediately
understood to be much wider and nowadays they represent one of the most lively
research areas in modern physics. In this section we shall not review the entire
formal machinery of lattice gauge theories as the literature is extremely rich. We
will instead provide only those tools which are strictly necessary for framing the
duality between lattice gauge theories and clock models.

3.4.1 Lattice gauge theories in a nutshell

For our purposes we are interested only in a specific class of LGTs, namely
Abelian ZN lattice gauge theories on a ladder geometry in the Hamiltonian formu-
lation [43]. The ladder geometry is a quasi two-dimensional geometry consisting
in a lattice L made of two parallel chains (legs) coupled to each other by rungs in
order to form square plaquettes [64]. We shall index rungs with i = 1, . . . , L, being
L the length of the ladder and links with `. Links on upper and lower legs will
be denoted with `↑, `↓ respectively, whereas those on vertical rungs with `0. As
gauge group degrees of freedom live on the links, we may introduce two unitary
operators U` and V` for each link ` ∈ L which commute on different links, whereas
on the same link they satisfy

V`U` = ωU`V` and UN
` = VN

` = 1N (3.46)

being ω = exp
(

2πi
N

)
[74]. Let us now list what we need for constructing a lat-

tice gauge theory:

(i) attach to each link ` a N-dimensional Hilbert spaceH` which is spanned by the
othonormal basis {|vk,`〉k=1,...,N−1} (electric basis) such that V`|vk,`〉 = ωk|vk,`〉
and U`|vk,`〉 = |vk+1,`〉 (taking k + 1 mod N);

(ii) identify the V’s operators (V↑` , V↓` and V0
` ) as the electric field operators;

(iii) define on each plaquette the magnetic field operators as Ui = U↓i U0
i+1(U

↑
i )

†(U0
i )

†;

(iv) select as physical states only those states which satisfy the Gauss’ law, formally
Ga

i |Ψphys〉 = |Ψphys〉, ∀ i with a =↑, ↓ , where G↑i = V↑i (V
↑
i−1)

†(V0
i )

† and
G↓i = V↓i V0

i (V
↓
i−1)

† are Gauss operators.

A pictorial representation of these operators is provided in Fig.3.1. The gauge
invariant Hamiltonian on the ladder then reads [64]

HZN = −∑
i

[
Ui + λ

(
V↑i + V↓i + V0

i

)
+ h.c.

]
(3.47)
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Ui

(U
↑
i
)†

U
↓
i

(U0
i )†

U0
i+1 G

↑
j
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↑
j
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Figure 3.1: Pictorial representation of the local operators of the ZN LGT on the ladder. In

particular the plaquette/magnetic (blue) and the two Gauss’ (red) operators are drawn.

with coupling constant λ > 0 and enforcing PBCs on the legs. We notice that there
is a strong formal analogy between this theory and the famous two-dimensional
Toric Code [41, 66]. In both cases the total Hilbert space of physical states can
be decomposed as

Hphys =
N−1⊕
n=0
H(n)

phys (3.48)

with H(n)
phys superselection sectors which may be distinguished by the operators

S = V↑i∗V
↓
i∗ and W = ∏

i∈C∗
U↓i , (3.49)

with i∗ labelling an arbitrary rung of the ladder and C∗ being a non-contractile loop
around the ladder, such that WS = ωSW. Moreover, we recall that physical states
in H(n)

phys are eigenstates of S with eigenvalues ωn, whereas the action of operator

W results in a mapping of H(n)
phys into H(n+1)

phys [64].
Finally, let us make a few comments about the topology of the phase diagram

of these Abelian ZN LGTs, which are known to display topological order. It is
indeed known from the literature that models with Hamiltonian (3.47) exhibit con-
fined/deconfined phases separated by a deconfined-confined phase transition (DCPT). In
standard lattice gauge theories the most important diagnostic tool for distinguishing
between these two kinds of phases is the behaviour of Wilson loops, i.e. the product
of all magnetic operators in a given region. Indeed they are known to display an
area law behaviour within confined phases and a perimeter law behaviour within
deconfined ones [84]. However, the ladder geometry has a disadvantage: both the
area and the perimeter of a loop linearly grow with the size of the ladder, namely L.
However, one can still look at the behaviour ofWD ≡ ∏i∈D Ui over some connected
region D to capture the phase transition [64]. Indeed we find that for λ = 0 - in full
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analogy with the Toric Code [41] - the ground state of the system may be regarded
as a condensate of electric loops and it is therefore deconfined with 〈WD〉 ≈ 1.
On the other hand, in the limit λ → ∞ electric loops get suppressed signalling
a confided phase with 〈WD〉 ≈ 0.

3.4.2 Bond-algebraic approach to dualities

Let us now review the recently developed bond-algebraic approach to dualities.
Details along with paradigmatic examples can be found in Ref. [60].

The notion of bond algebra was firstly introduced in 2008 by Zohar Nussinov and
Gerardo Ortiz and relies on the crucial observation that most Hamiltonians can be
written as the sum of quasi-local terms {hR} (bonds) as [56]

H = ∑
R

αRhR , (3.50)

with αR c-numbers and R finite set of indices (e.g. lattice sites). By definition a
bond algebra A{hR} is then the linear space of operators generated by all products
of the bonds and their Hermitian conjugates. In this regard, we stress two points:
bond operators hR do not need to be all independent and the same Hamiltonian
admits in principle more bond algebras depending on how it is partitioned into
quasi-local terms.

Within this framework dualities are revealed to be bond algebras homomor-
phisms, i.e. structure-preserving local mappings between bond algebras which may
be implemented as unitary or projective-unitary transformations [60]. So let us
consider two Hamiltonians H1 and H2 acting on spaces having the same dimensions.
H1 and H2 are then said to be dual if there exists a homomorphism between some
bond algebra AH1 of H1 and some bond algebra AH2 of H2, formally

Φ : AH1 −→ AH2

H1 7→ Φ(H1) = H2 .
(3.51)

Moreover, any bond algebra A is unitary implementable, i.e. there exists a unitary
matrix U such that

Φ(O) = UOU †, ∀O ∈ A . (3.52)

The bond-algebraic approach to dualities also comes along with the notion of
gauge-reducing dualities. The process of eliminating gauge constraints may indeed be
realised as a bond-algebraic duality [60] which allows to map a gauge model into a
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non-gauge one. We recall that gauge models are characterised by the presence of
redundant degrees of freedom so that the total space of states is actually larger than
the space of physical states obeying the Gauss’ law. Moreover, physical observables
are required to be gauge invariant, thus they are realised as Hermitian operators
which have to commute with the gauge symmetry. A gauge-reducing duality is
then a mapping defined over a bond algebra which maps all local gauge operators
to the identity, trivially. Formally

ΦGR(HG) = HGR and ΦGR(GR) = 1 ∀R (3.53)

where HG and HGR are the gauge and gauge-reduced Hamiltonians respectively,
and GR is the group of gauge symmetries.

3.4.3 Ladder LGT-clock models duality

Thanks to the bond-algebraic approach to dualities we are now able to establish
a gauge-reducing duality mapping between the ZN gauge model on the ladder and
N-state clock models with both transverse and longitudinal field. Let us discuss the
main steps (a more detailed discussion can be found in Ref. [64]).

We firstly associate with each plaquette of the LGT theory a site of the chain of
the dual clock model. This allows us to map the gauge-invariant magnetic operator
Ui into the single-body clock operator Xi. Afterwards, we map the V0

i operator into
the “kinetic" term ZiZ†

i−1 entering the clock Hamiltonian 2.8. This last mapping is
justified by the fact that the electric field on the rung link `0

i equals the flux difference
between the two adjacent plaquettes. Turning then to the V↑i , V↓i operators, we may
define the mapping to clock operators via the following transformation

V↑i 7→ a↓i Z†
i and V↓i 7→ a↑i Zi (3.54)

with a↑i , a↓i complex coefficients which must preserve the algebra defined in (3.46),
guarantee the automatic enforcing of the Gauss’ law, i.e. G↑i 7→ 1 and G↓i 7→ 1, and
ensure that within each superselection sector S 7→ ωn1. These three requirements
allow to uniquely fix the values of the previous constants as a↓i = 1 and a↑i = ωn.
Summarising, our sector dependent duality mapping reads [64]

Ui 7→ Xi , V0
i 7→ ZiZ†

i−1,

V↑i 7→ Z†
i , V↓i 7→ ωnZi .

(3.55)

A visual representation is sketched in Fig.3.2. Thus, applying this duality trans-
formation to the LGT Hamiltonian (3.47) we find

HZN(λ) = λHclock(λ
−1) (3.56)
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Figure 3.2: Pictorial representation of the local operators of the ZN LGT on the ladder along

with the duality transformation to the N-state clock model.

where
Hclock(λ

−1) = −∑
i

[
ZiZ†

i−1 + λ−1Xi + (1 + ωn)Zi + h.c.
]

(3.57)

is a familiar clock Hamiltonian with both transverse and longitudinal field (cfr. (2.8)
upon setting J = 1, h = λ−1 and performing a change of variables in the summation,
i → i − 1). We stress that the longitudinal field in the clock Hamiltonian keeps
memory of the superselection sector of the dual lattice gauge theory as it depends
explicitly on ωn. Moreover, for n = 0 and also for n = N/2 if N is even, the coupling
constant of the longitudinal field becomes real or disappears. However, we stress
that even when the coupling is complex, the clock Hamiltonian is not chiral as ωn

is integer multiple of 2πi/N, therefore the interaction energy between two spins
is invariant under their interchange. Such a behaviour can be made explicit by
redefining the Z clock operators as Zi 7→ ω−n/2Zi so that their eigenvalues get
globally rotated but the algebra (2.4) is preserved. More precisely, for n even the
eigenvalues simply get permuted without affecting the energy spectrum of the
model. Instead, for n odd up to a re-order the eigenvalues get all shifted by a factor
of π/N = ω/2. In this way the Hamiltonian (3.57) can be rephrased as [64]

Hclock(λ
−1) = −∑

i

[
ZiZ†

i−1 + λ−1Xi + h.c.
]
− 2 cos

(πn
N

)
∑

i

(
Zi + Z†

i

)
. (3.58)

We stress that the presence of a longitudinal field depending on the n in the clock
Hamiltonian, for n odd results in a two-fold degenerate ground state.

The main advantage of this duality transformation between Abelian ZN lattice
gauge theories and clock models - as we will better appreciate in the next chapter -
relies in the correspondence between their phase diagrams, so that we may study
either model to gain information about the other one. Thus it can be seen that the
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confined and deconfined phases of the lattice gauge theory become respectively
the paramagnetic and ferromagnetic phases of the dual clock model formulation.
Moreover, the presence of the longitudinal field breaks the N-fold symmetry of the
ferromagnetic phase into a one-fold (if n even) or two-fold (if n odd) degeneracy,
depending on the parity of the superselection sector [64].



4
Numerical analysis

In this chapter we carry out an in-depth analysis of clock models with the aim
of probing the theoretical predictions we have presented in the previous chapters.
To this purpose, we have performed extensive DMRG numerical simulations with
tensor networks [29] in order to explore the phase diagram of both symmetric and
chiral clock models. The main focus is understanding the nature of the different
phases along with the phase transitions they are bounded by. The most important
observables encoding this information are the energy gap, the order (or disorder)
parameter, the entanglement entropy and the correlation functions. Our discussion
takes place in three steps: we firstly address to themes which are well-established in
the literature in order to test our numerical apparatus and bring further evidence
supporting the results. Then, we move on by trying to tackle those issues which
are more controversial, like the topology of the phase diagram of 3-state chiral
clock models and the oscillations of the energy gap. Afterwards, by adding a
longitudinal field to the clock Hamilonian, we venture into new scenarios in order
to study how the phase diagram gets modified. At the very end of the chapter we
propose a purely numerical study of the duality linking clock models and lattice
gauge theories working in the clock model formulation and making some contact
with the recent literature.

52
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4.1 DMRG parameters

We start with a short review of the best algorithm parameters we have chosen
for the numerical simulations. For further information see appendix A.

For 3- and 4-state clock models, both symmetric and chiral, five DMRG sweeps
with a schedule of increasing maximum bond dimension up to 150 were found to
be enough to reach a high accuracy away from criticality. Instead, at criticality and
when dealing with higher order clock models, we have gradually increased the
maximum bond dimension up to 200 and 250 together with the number of sweeps.
The truncation error cutoff has been fixed at 10−12, which is near to exact accuracy.
The noise term has been gradually reduced sweep by sweep down to a minimum
of zero: this should ensure the convergence of DMRG calculations, especially of
those conserving quantum numbers. Finally, increasing the number of iteration
of the Davidson algorithm up to ∼ 10 was found to be very efficient in order to
get more accurate results at criticality.

4.2 Symmetry implementation

As already mentioned in the second chapter, both symmetric and chiral clock
models enjoy a discrete global Zp symmetry. Therefore, out of the ordered phase
where this symmetry gets spontaneously broken, the eigenvalues Q = 0, 1, 2, . . . , p−
1 of the operator (2.19) behave as quantum numbers which are conserved under
the dynamical evolution of the system. Thus, we have implemented (at least
when possible) the conservation of these quantum numbers throughout DMRG
calculations using ITensor. This allows for two main advantages:

(i) Speed up our numerical simulations and use less memory as the DMRG
algorithm runs more quickly;

(ii) Obtain the ground states in the different symmetry sectors.

The clock Hamiltonian is automatically quantum number preserving, therefore we
simply had to prepare the initial states within the right symmetry sector. Also, we
have used chain lengths which were multiple of the clock order: this should allow
for more precise results by minimising the competing effects between the finite size
of the system and the symmetry constraints.

If not otherwise specified, all the following results within the disordered phase
and at criticality (both points of second order phase transitions and incommensurate
critical phases) have been obtained with conserved quantum numbers.
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4.3 p = 3, 4-state clock models with transverse field

Coming to the results, we now start by presenting the numerical analysis carried
out on transverse clock models with order p ≤ 4. These are the simplest models
we are going to discuss, as we recall that their phase diagram hosts just a single
critical point located at hc = 12. In this sense, we say that 3- and 4-state clock models
generalise straightforwardly the Ising model. Let us discuss the behaviour of the
main physical observables in order to reconstruct a picture of the phase diagram.

4.3.1 Energy gap

In order to diagnose criticality in these models and investigate their different
phases, we have firstly focused on the energy gap. Since in the disordered phase 3-
and 4-state clock models enjoy an exact Z3 and Z4 symmetry respectively, we have
separately computed the ground states in the different symmetry sectors, which are
shown in Fig.4.1(a) and (b). This has allowed us to identify the state with Q = 0 as
the true ground state of the system and that with Q = 1 as the first excited state,
which were consequently used to compute the energy gap. Actually, this holds true
for any order p as far as the model is non-chiral. We will come back to this later on.

We have then studied how the energy gap behaves as we tune the magnitude of
the transverse field, h, across its critical value hc = 1. We show the resulting plots
in Fig.4.2(a) and (b) for 3- and 4-state clock models, respectively. In both cases the
picture emerging from the profile of the energy gap is consistent with a self-dual
phase diagram hosting two gapped phases separated by a critical point. Yet, the
gap does not perfectly close at hc = 1, but it rather appears as a minimum getting
lower as the size of the system increases. This is a pure finite-size effect due to the
fact that we have performed numerical simulations with finite chains. Indeed we
recall that no phase transition can occur when we constrain a system to a finite
geometry. Thus, in order to infer what happens in the thermodynamic limit, we
have studied the scaling of the energy gap for increasing values of the chain length L
and extrapolated its value as L→ ∞, assuming a purely linear dependence between
∆E and 1/L and performing a fit of the data. This last assumption is justified by
the fact that for 3- and 4-state clock models the energy gap equals the inverse of
the correlation length as the dynamical exponent is known to be z = 1 (cfr. (1.14)).
The results of the analysis are shown in Fig.4.3 (a) and (b).

2From now on, unless otherwise specified, we will refer to the previously defined Hamiltonian
(2.3) with open boundary conditions.
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(a) 3-state clock model.
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Figure 4.1: Energy levels of the 3-state clock model (on the left) and 4-state clock model (on

the right), with L = 99 and L = 100 respectively, within the different symmetry sectors of

the disordered phase as a function of h. When p = 3 the energy levels in the sectors Q = 1

and Q = 2 are almost perfectly degenerate. The same holds true for the sectors Q = 1 and

Q = 3 when p = 4. In both cases one should consider the energy level with Q = 0 as the

true ground state of the system and the one with Q = 1 as the first exited state in order to

compute the energy gap.
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(a) 3-state clock model.
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Figure 4.2: Energy gap of the 3-state clock model (on the left) and 4-state clock model (on

the right) for different lengths of the chain. Both the plots show that, although the minimum

gets lower as the length of the chain increases, the gap does not perfectly close because of

the finite size of the system. We also put a grid to guide the eye to appreciate the self-duality

of the plot.
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In both cases, as L→ ∞ the energy gap goes almost perfectly to zero at hc = 1.0,
supporting the hypothesis of a second order phase transition. Namely: ∆E =

0.000659± 0.000013 and ∆E = 0.00018± 0.00003 for the 3- and 4-state clock model,
respectively3. The other two points, h = 0.9 and h = 1.1, in the ordered and
disordered phase respectively, are chosen to be symmetric with respect to the critical
point in order to check the self-duality of the model. For the 3-state clock model we
have found ∆E(h = 0.9) = 0.47833± 0.00004 and ∆E(h = 1.1) = 0.47972± 0.00014,
which are in very good agreement as they differ only by 0.3%.4

Instead, in the case of 4-state clock model a small discrepancy is found: ∆E(h =

0.9) = 0.1855± 0.0006 and ∆E(h = 1.1) = 0.1928± 0.0004, differing by 4%. The
lower accuracy here is likely due to the fact that we are still considering chain
lengths of L ∼ 102 as in the case of 3-state clock models. However, now the clock
order is higher, thus deviations from the first order linear behaviour become larger
as well and they start playing some role. As a general rule, in order to reach
the same accuracy one should consider larger values of L as the order, p, of the
clock model increases.
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Figure 4.3: Scaling of the energy gap of the 3- (left) and 4- (right) state clock model at three

different points: h = 0.9, hc = 1.0 and h = 1.1. In both cases, in the limit of infinite chain

the gap goes to zero at hc = 1.0, whereas it converges approximately to the same non-zero

values at h = 0.9 and h = 1.1, consistently with the self-duality property of these models.

3All the errors in this section have been estimated from the linear fits.
4To be more precise, in this dissertation we refer to dimensionless energies as they are energies in

unit of J, the coupling of the kinetic term entering the clock Hamiltonian (2.3)
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The last piece of information we can extract from the energy gap is the value of
the critical exponent ν associated with the divergence of the correlation length at
criticality. Although it is not enough, as at least two critical exponents are needed to
identify unambiguously the universality class, this may start shedding some light
on the nature of the phase transition. Thus, given z = 1, we expect the energy gap to
scale like ∆E ∼ |ε|ν as we approach the critical point either from the disordered phase
or from the ordered one, due to the self-duality of the models. In the present case, we
have chosen to approach criticality from the disordered phase. The fits of the data
reported in Fig.4.4(a) and (b) reveal ν = 0.838± 0.008 for p = 3 and ν = 0.999± 0.009
for p = 4. This strongly suggests that the second order phase transitions occurring in
3- and 4-state clock models may fall into the 3- and 4-Potts universality classes, which
are characterised by ν = 5/6 and ν = 1, respectively. We will see that this is indeed
the case by computing the critical exponents associated with other observables.
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Figure 4.4: Critical exponent ν for 3- and 4-state clock models computed by fitting the data

of the energy gap in a vicinity of the critical point hc = 1. In both cases we have found values

of ν suggesting that the phase transitions may fall into the 3- and 4-Potts universality classes.
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4.3.2 Entanglement entropy

The second observable we take into account is the entanglement entropy. We have
already discussed in the first chapter the crucial role played by this physical quantity
in the theory of critical phenomena and how we can use it to gain information
about the nature of phase transitions. In this regard, we recall that, for relativistic
theories (z = 1) like those we are considering in this section, in the critical regime
the entanglement entropy is known to diverge logarithmically. We show in Fig.4.5
the curves of the half chain entanglement entropy of the 3-state clock model for
different values of the chain length (L = 60, 90, 120, 150, 180, 210). We immediately
see from this plot that finite-size effects result both in the rounding and shifting of
the singularities: as the size of the system increases the peaks get higher and sharper
and they shift towards hc = 1. More quantitatively, we may sit at hc = 1, where
the phase transition takes place in the the thermodynamic limit, and evaluate the
finite-size scaling of the entanglement entropy by plotting it as a function of the
logarithm of L, according to the Calabrese-Cardy law (1.48) (we recall that we are
enforcing open boundary conditions). We expect a linear dependence, so we may
extract the angular coefficient of the logarithmic growth which is proportional to the
central charge of the underlying conformal field theory. The resulting plots for both
3- and 4-state clock models are shown in Fig.4.6(a) and (b). In the first case we have
found c = 0.7995± 0.0014, which is consistent with the nominal value c = 4/5 of
the 3-Potts universality class. Instead, in the second case the central charge is found
to be c = 1.00860± 0.00013, which differs only by ∼ 0.86% from the nominal value
c = 1 of the 4-Potts universality class. This last small discrepancy is likely due to
higher order corrections which get stronger as the clock order increases. Still, in both
cases the analysis of the entanglement entropy may be considered consistent both
with the theoretical predictions and with the numerical critical exponents.

Let us spend a few words about the non-critical regime as well. Away from
criticality the system is gapped, meaning that the underlying quantum field theory
is massive. Here the entanglement entropy does not scale logarithmically, but either
increases monotonically with L up to a saturation value, or it is identically zero for
any value of L, thus signalling that the state we are considering is unentangled, i.e.
it is a product state [79]. In this case we see from the inset in Fig.4.5 that for the
3-state clock model the entropy is constant with L and different from zero as far as
the transverse field is weak. On the other hand it is constant with L but vanishing
when the magnitude of the transverse field h & 2, implying that the magnetic field
is so strong to set the spins into a unentangled product state.
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Figure 4.5: Half chain entanglement entropy of the 3-state clock model (OBC) at different

chain lengths. Finite-size effects show themselves both in the rounding and shifting of

the singularities: correctly the peaks of the entanglement entropy get sharper and shifted

towards hc = 1 as the chain length increases. Inset: same plot of the entanglement entropy

for different chain lengths on a broader range of values of h.
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Figure 4.6: Finite-size scaling of the entanglement entropy for the 3- and 4-state clock model.

A fit of the data according to the Calabrese-Cardy law (1.48) reveals values of the central

charges compatible with the 3- and 4-Potts universality classes.
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4.3.3 Magnetisation

In order to quantify the response of a spin system to the application of a transverse
field, one usually introduces a quantity called magnetisation. For p-state clock
models we define the normalised magnetisation as

M =
1

2L ∑
i
〈Xi + X†

i 〉 (4.1)

where X is the usual clock operator and and the expectation value 〈·〉 is taken over
the ground state. The magnetisation also provides a viable way for distinguishing
between the two gapped phases of these models as in the thermodynamic limit it
would be identically zero in the ordered phase and identically one in the disordered
phase, displaying a point of inflection at criticality. Thus, the magnetisation is the
natural disorder parameter for these models.

As usual, out of the thermodynamic limit we have to deal with finite-size effects,
which for the magnetisation result in the smoothening of the singularity occurring
at hc = 1. We start by considering 3-state clock models and show in Fig.4.7(a) the
curves of the magnetisation for different values of the chain length. First of all we
stress that - unlike the previous cases - we have here enforced periodic boundary
conditions in order to avoid boundary effects which would spoil the scaling analysis.
Afterwards, we notice that the curves of the magnetisation are indeed smooth across
h = 1, but they correctly get steeper as the chain length L increases. Moreover, out
of the focus on a vicinity of hc = 1, they goes to zero as we switch off the transverse
field and they tend to one when the field is strong. The second crucial observation is
that all the curves cross at a single point at h ≈ 1, thus supporting the hypothesis
of a second order phase transition occurring there in the thermodynamic limit. We
may also be quantitative and evaluate the universal scaling of the magnetisation as
we have already explained in the first chapter to verify the finite-size scaling law
(1.44). In order to do so we firstly have to make an hypothesis on the nature of the
phase transition. In this case we already known from the literature and from our
previous numerical results that the expected universality class is 3-Potts, for which
ν = 5/6 and β = 1/9. Thus, by plotting the magnetisation multiplied by a factor of
Lβ/ν as a function of L1/ν(h− hc) we expect the curves to collapse all into the same
universal constant, namely Q(L1/ν(h− hc)), at least in a vicinity of the critical point.
Such a behaviour is indeed verified as we see from Fig.4.8(a). This provides the
second critical exponent which, along with the critical exponent ν of the correlation
length and the central charge, validates the hypothesis of phase transition falling
into the 3-Potts universality class for 3-state clock models.
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Figure 4.7: Magnetisation of the 3- and 4-state clock model (PBC) at different chain lengths.

In case of 3-state clock models the curves all cross at a single point which is consistent with

the nominal value of the critical field hc = 1. In the case of 4-state clock models we see

that the curves cross at a point which is slightly shifted away from the nominal hc = 1.0.

This is a finite-size effect which gets stronger as the clock order increases. Indeed such a

shifting is almost completely negligible in case of 3-state clock models. Insets: focus on a

neighbourhood of the critical point.
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Figure 4.8: Universal scaling of the magnetisation for the 3- and 4-state clock models (PBC). In

both cases we see that, at least in a vicinity of the critical point, the curves of the magnetisation

collapse onto the same universal curve. Such a behaviour allows us to extract the ratio β/ν

between the critical exponents, verifying that the phase transitions occurring in the 3- and

4-state clock models fall into the 3- and 4-Potts universality class.
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Going through very similar steps, one may also verify that the phase transition
occurring in the 4-state clock model falls into the 4-Potts universality class. We show
in Fig.4.7(b) the magnetisation of the 4-state clock model for different sizes. First
of all we see that the curves are less steep with respect to those of the 3-state clock
model. This may be easily explained in terms of the higher clock order. This is
also the reason why in the present case the curves cross at a single point which is
slightly shifted away from the nominal value of hc = 1.0. Given the same values of
L, finite-size effects are indeed usually stronger when the clock order is higher. As
we have just done for the 3-state clock model, we may also evaluate the universal
scaling of the magnetisation for the 4-state clock model as well. We have firstly
made an hypothesis on the nature of the phase transition, which we expect to be
4-Potts. For this particular universality class ν = 1 and β = 1/12 (cfr. Tab.1.1).
We have plotted in Fig.4.8(b) the magnetisation multiplied by a factor of Lβ/ν as a
function of L1/ν(h− hc) in order to show that all the curves collapse into the same
universal curve Q(L1/ν(h− hc)) near criticality. This behaviour is indeed verified
proving that for the 4-state clock model β = 1/12 and ν = 1, thus it correctly
falls into the 4-Potts universality class.

4.3.4 Binder cumulant

There is another way of checking that the critical point is indeed hc = 1 in the
thermodynamic limit, which relies on the fourth-order Binder cumulant, UL. It is
defined as the fourth-order cumulant of the order parameter, namely

UL(h) = 1− 〈M̃4〉
3〈M̃2〉2

(4.2)

where we have introduced the “longitudinal" magnetisation M̃ ≡ 1
2L ∑i(Zi + Z†

i )

as order parameter. The curves of the binder parameter for different system sizes
provide useful information about the location of the critical point. Indeed, the critical
field hc corresponds to the point where all these curves cross in the thermodynamic
limit [9]. Moreover, the finite-size scaling of the Binder parameter close to the critical
point is known to be [9] UL(h) = b(εL1/ν), where b(x) is a universal constant. Thus,
this provides an alternative way of working out the critical exponent ν in addition
to the energy gap and the correlation length.

Let us now focus on the 3-state clock model enforcing periodic boundary condi-
tions. We shown in Fig.4.9(a) the plot of the Binder parameter for different values
of L. As expected, all the curves cross at a single point which is very close to
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hc = 1.0. To be more quantitative, we have studied the behaviour of the ratio
U18/U15 in the range 0.9 ≤ h ≤ 1.1 and looked at its intersection point with the line
U18/U15 = 1. This has allowed us to identify hc = 0.995± 0.005 as the transition
point, which is fully consistent with the nominal value of the literature. In Fig.4.9(b)
we also show the finite-size scaling analysis of the Binder cumulant. By plotting
UL as a function of (h − hc)L1/ν , using hc = 1.0 and ν = 5/6, we could check
that all the curves collapse on the universal line b(x), at least close to the critical
point. This brings further evidence on the 3-state clock model to fall into the 3-
Potts universality class. For the 4-state clock model very similar considerations
hold true, therefore we do not present it.
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Figure 4.9: Fourth-order Binder cumulant of the 3-state clock model (PBC) for L =

9, 12, 15, 18, 21. On the left we see that all the curves cross at a single point, consistently with

the hypothesis of a phase transition occurring at hc = 1.0 in the thermodynamic limit. Inset:

zoom in on a neighbourhood of the critical point. On the right we show the finite-size scaling

analysis, which suggests that for this model ν = 1, consistently with the literature.

The universality classes of the 3- and 4-state clock models are now well estab-
lished. Yet, for the sake of completeness let us also discuss correlation functions at
criticality in order to extract the anomalous dimension η as well.

4.3.5 Correlation functions at criticality

We now conclude the discussion of 3- and 4-state clock models by studying
the correlation functions at criticality, where the correlation length gets infinite
and consequently the correlators decay algebraically. More precisely, we have
already seen that their large distance behaviour at criticality defines the anomalous
dimension η according to (1.17), thus providing further information about the
universality class of the phase transition. In particular, as we are dealing with
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one dimensional quantum system, for 3 and 4-state clock models at criticality we
expect the correlation function to decay as G(r) ∼ 1/|r|η , in full analogy with the
Ising model. Therefore we are able to easily extract the value of η by performing
a fit of the correlation function, which we define here as Cij = 〈ZiZ†

j 〉, at criticality
with a power-law functional dependence. We have used chains of L = 201 and
L = 200 for 3- and 4-state clock models respectively and, with the aim of avoiding
boundary effects due to open boundary conditions, we have considered only sites
from 1/4 to 3/4 of the chain length. More precisely, we have fixed the index i = 50
and varied j from 51 up to 150. Afterwards, we have performed a fit [10] of these
data using the following functional dependence:

f (|i− j|) = p2 · exp(−|i− j| · p1)
|i− j|p0 (4.3)

where p0, p1 and p2 are three free parameters. The former, p0, provides the value of
the critical exponent η, which we are interested in. Instead, p1 is the inverse of the
correlation length, which has to be zero, as we are at the critical point, and p2 is a
multiplicative constant which does not provide particularly useful information. The
resulting plots are shown in Fig.4.10(a) and (b). The agreement with the theoretical fit
is good, as a chi-squared test reveals χ2 ∼ 10−5. We also mention that before studying
3- and 4-state clock models we have checked the goodness of the chosen functional
dependence using the Ising model as a testing ground, finding η = 0.2486± 0.0006,
which is in good agreement with the nominal value. Coming now to the results, in
the case of 3-state clock model we have found η f it ≈ 0.2813± 0.0007, which differs
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Figure 4.10: Fit of the correlation functions of 3 and 4-state clock models (OBC) at criticality.

In both cases we have found values of the anomalous dimension η which are in reasonable

agreement with the nominal values for the 3- and 4-Potts universality classes.
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from the theoretical value ηtheo = 4/15 approximately by 5%. On the other hand, for
4-state clock model we have found η f it ≈ 0.2398± 0.0006, which differs from the
theoretical value ηtheo = 1/4 by 4%. In both cases the theoretical values of η refer to
the thermodynamic limit, thus these small discrepancies are due to the finite size
of the system and they may be reduced by increasing the value of L.

We do not discuss correlation functions out of criticality because there their
behaviour is not universal. Indeed we recall that when the phase is gapped,
correlators fall off exponentially and their decay is ruled by the correlation length
with some velocity constant in front and these may both depend on the magnitude
of the transverse field.

4.4 p ≥ 5-state clock models with transverse field

We turn now our attention on clock models with order p ≥ 5, where, as explained
in the second chapter, a new gapless phase of Berezinskii-Kosterlitz-Thouless type is
expected to open symmetrically around the point h = 1.0. Dealing with high-order
clock models is computationally very demanding and for this reason we shall not
go through the same analysis as before. Instead, we shall discuss few important
observables focusing most of the time on 5-state clock models only.

4.4.1 Energy gap for p = 5 and p = 6

As usual, we have firstly studied how the energy gap behaves as a function of the
magnitude of the transverse field h. We show in Fig.4.11(a) and 4.12b the resulting
plots for 5- and 6-state clock models, respectively. First of all we see that the exact
self-duality is lost, consistently with the literature. Then we see that, despite the
usual finite-size effects preventing any phase transition in a finite geometry, there
is evidence of a new critical phase which we know from the literature to be BKT.
Indeed, the energy gap does no longer close at a single point, but it stands close
to zero throughout a small region around h = 1.0 and then it starts growing again
in the two regions where h � 1 and h � 1. Moreover, the size of this region is
strictly dependent on the clock order: it gets broader as the order of the clock model
increases, as we see from these same plots.

We are also able to approximately locate the boundaries of this critical region
at h ≈ 0.85 and h ≈ 1.15 for 5-state clock models and at h ≈ 0.70 and h ≈ 1.30
for 6-state clock models. We recall that self-duality considerations require these
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Figure 4.11: Plots of the energy gap of 5- and 6-state clock model for a chain of length

L = 100 and L = 120, respectively. In both cases the gap does no longer close at a single

point, but a new gapless phase of Berezinski-Kosterlitz-Thouless type opens symmetrically

around h = 1.0. We are able to approximately locate the two transition points at h ≈ 0.85

and h ≈ 1.15 for p = 5 and at h ≈ 0.70 and h ≈ 1.30 for p = 6. Moreover, as we see from the

grid, the exact self-duality is lost as the plots are no longer symmetric with respect to the

point h = 1.0.

two phase transitions to be of the same type, namely BKT, and to be symmetrically
located around h = 1.0. Clearly the location of BKT critical points is a very difficult
task, as we recall that for this special kind of phase transition the correlation length
diverges much faster, as its divergence is exponential rather that algebraic. Finite-
size scaling analysis for the energy gap may be helpful in this case, so let us discuss
it for the 5-state clock model only, due to the huge computational effort. As we show
in Fig.4.12, we have performed a fit of the data at different values of h. At h = 0.85
and h = 1.15 the gap becomes small, yet not perfectly equal to zero, signalling
that we are in a vicinity of the phase transition, but still in the gapped ordered
phase. At h = 0.90, 1.00 and 1.10 we have found values which are compatible with
zero, meaning that we should now be inside the critical phase. We stress that the
negative values we have found in the thermodynamic limit - which are apparently
meaningless - signal that we are in presence of deviations from the first order linear
behaviour of the energy gap as a function of 1/L and thus they are simply finite-
size effects. This seems to suggest that in the thermodynamic limit the BKT can
be found within a range 0.9 . h . 1.1.
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Figure 4.12: Scaling of the energy gap for the 5-state clock model. This analysis suggests that

in the thermodynamic limit the BKT phase should be located between h ≈ 0.9 and h ≈ 1.1,

which is a shorter ranged compared to the one we have previously identified in Fig.4.11(a).

Thus, as the system size increases, the critical phase gets smaller.

4.4.2 Magnetisation

The second and last observable we discuss is the magnetisation. We shall focus
on the p = 5 case only and we will not be quantitative with the finite-size scaling
analysis as we are here interested only in the location of the phase transitions.

In full analogy with the 3- and 4-state clock models we have already discussed,
we define the normalised magnetisation as in (4.1) enforcing periodic boundary
conditions so to avoid boundary effects. High-order clock models would require
long chains in order to reach a good accuracy, but at the same time the DMRG
algorithm works worst and much slower when periodic boundary conditions are
enforce. We have reached a compromise and considered chain lengths up to L = 80.
The resulting plot is shown in Fig.4.13. If we zoom in on a neighbourhood of the
critical BKT phase we see that the curves of the magnetisation all cross at the same
value h ≈ 0.925, they overlap all withing the range 0.925 . h . 1.075 and then
they separate again. Such a behaviour is somehow reminiscent of the one we have
previously studied in Fig.4.7 for 3- and 4-state clock model. Before all the curves
crossed at a single point, which we have identified as the true critical point of the
thermodynamic limit, namely hc = 1.0. Assuming then that the overlap of the
curves is a signal of criticality, the plot of the magnetisation of the 5-state clock
model seems to suggest that in the thermodynamic limit the actual BKT phase is
located between h ≈ 0.925 and h ≈ 1.075. Such a range is shorter than the one we
have identified in Fig.4.11(a) for L = 100, meaning that as the system size increases
we expect the two critical point to shift towards each other, this resulting in the
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shrinking of the critical phase as L increases.
If we make a comparison with the literature, this seems to go in the right direction.

For example in Ref. [77] Sun et al. have investigated the location of the BKT phase
opening in 5-state clock models by studying the scaling of the peaks of the fidelity
susceptibility up to L = 168. This resulted in h ≈ 0.966 for the first transition and
h = 1.035 for the second one. By the way, they have carried out a similar analysis for
the 6-state clock model as well for different sizes up to L = 144 finding h ≈ 0.782
and h ≈ 1.285 for the two BKT transitions, respectively.
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Figure 4.13: Magnetisation for the 5-state clock model (PBC) for different chain lengths. We

show a focus on a neighbourhood of the BKT phase. The curves seem to cross at h ≈ 0.925,

then they overlap within the range 0.925 . h . 1.075 and then they split again. Inset: profile

of the magnetisation over a broader range of values of h.

4.5 p = 3-state chiral clock models with transverse field

This section is devoted to the study of transverse chiral clock models with order
p = 3 only. This is indeed the first and simplest version of clock models hosting a
floating incommensurate phase and thus it represents the best testing ground for
investigating its nature. We firstly present the study of the energy gap as a function
of h for different angles. This has allowed us to approximately locate the three
different phases hosted by these models. In order to do so we have also exploited
symmetries and dualities of the phase diagram. A specific discussion is deserved
to the Lifshitz oscillations displayed by the energy gap when plotted as a function
of the system size. We also briefly discuss the half-chain entanglement entropy in
the self-dual case only. We conclude the section by presenting the analysis of the
correlation functions within the incommensurate phase.
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4.5.1 Energy gap

We proceed in analogy with the symmetric case by firstly discussing the energy
gap in order to extract as much information as possible about the phase diagram.
This is known to host three phases, out of which one is critical and the other two are
gapped. More precisely the two gapped phases are the same ordered ferromagnetic
and disordered paramagnetic phases which we have already encountered when
studying symmetric clock models. The critical incommensurate one is instead
completely new, as - we recall - it shows up starting from p = 3, so it has no
counterpart in the chiral Ising model.

For convenience, we rewrite here the Hamiltonian of the 3-state chiral clock
model for a chain of length L with open boundary conditions:

H = −J
L−1

∑
j=1

(
ZjZ†

j+1eiθ + h.c.
)
− h

L

∑
j=1

(
Xjeiφ + h.c.

)
.

We have decided to use the same notation and conventions as Zhuang et al. [85]. We
have fixed J = 1− h, hence the phase diagram of the model depends only on h, θ

and φ and then, given that the full phase diagram is three-dimensional and is also
mostly unexplored for arbitrary angles, we have restricted ourselves only to some
peculiar two-dimensional sections. Namely, we have focused on the following cases:

(i) Self-dual case with θ = φ;

(ii) Case with θ 6= 0 and φ = 0;

(iii) Case with θ = 0 and φ 6= 0.

Case (i). Along the line θ = φ the phase diagram of the 3-state chiral clock model
is self-dual, with the incommensurate phase opening symmetrically around the
point h = 0.5, in between the ordered and disordered phases. In the limiting case
θ = φ = 0 the model becomes non-chiral and one recovers all the results previously
discussed for the symmetric 3-state clock model. Upon introducing the chirality in
the model, two different scenarios are possible: either there is a Lifshitz point at
θ = φ = π

6 (Fig.4.14(a)) [35] or a thin incommensurate layer survives all the way
down to θ = φ = 0 (Fig.4.14(b)) [1, 51], implying that the incommensurate phase
opens right away as the chirality is introduced. While chiral clock models with order
p ≥ 4 are known to fall into the second picture, for 3-state chiral clock the situation
is more controversial as probing either scenario requires an extremely high level of
accuracy which is usually impossible to reach in standard numerical simulations.
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Figure 4.14: Cartoon of the two possible scenarios for the phase diagram of the 3-state chiral

clock model with J = 1− h and θ = φ. On the left there is a tricritical Lifshitz point (in red),

thus the phase transition for angles θ ≤ π
6 is one-step. On the right there is no tricritical

point as the critical incommensurate phases persists all the way down to the non-chiral

point. Obviously, in this last picture we have deliberately exaggerated the thickness of the

incommensurate layer, which is actually very thin, if it ever exists.
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Figure 4.15: Plot of the energy gap of the 3-state chiral clock model at two different angles,

θ = φ = π
4 (left) and π

10 (right) for different chain lengths. Both the plots are manifestly

self-dual. On the left, we see the two gapped phases and the new critical phase opening

symmetrically around the point h = 0.5. On the other side, we see a plot which shows

resemblance with that of the 3-state non-chiral clock model, with the energy gap apparently

closing at a single point.
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We have then studied the dependence of the energy gap on the magnitude of
the transverse field, h, for different angles. We show in Fig.4.15(a) and 4.15(b) the
resulting plots for θ = φ = π

4 and θ = φ = π
10 . In the former case the plot visibly

displays two gapped phases and a critical one opening symmetrically around h = 0.5.
We could approximately locate the boundaries of this critical region at h ≈ 0.34
and h ≈ 0.66. Due to the interplay between finite size of the chain, the clock order,
symmetry constraints and chirality, performing the scaling of the energy gap to
locale the phase transitions in the thermodynamic limit is not particularly fruitful,
even considering chains length which are integer multiples of the clock order. We
then recall that according to the literature the first C-IC transition falls into the
Pokrovsky-Talapov universality class, whereas the second one is BKT in nature. The
first statement may be easily checked by extracting the critical exponent ν associated
with the divergence of the correlation length. From the literature we known that
for Pokrovsky-Talapov z = 2 and ν = 1/2, thus we expect the gap to close linearly
as we approach the critical point from the left (cfr. (1.14)). This is indeed what we
have found, which is shown in Fig.4.16. Also, according to the fit the gap closes
starting from h = 0.33713± 0.00014 for L = 99. The second phase transition is
instead more difficult to locate and classify due to the exponential divergence of
the correlation length. On the other hand, for θ = φ = π

10 the plot shows a strong
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Figure 4.16: Fit of the energy gap near criticality for θ = φ = π
4 . The linear closing of the

energy gap is consistent with the Pokrovsky-Talapov theory predicting z = 2 and ν = 1/2.
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resemblance with the one of the 3-state non-chiral clock model (Fig.4.2(a)), yet this is
not sufficient to conclude that the transition is one-step. In this regard we mention
an interesting work recently carried out by S. Nyckees, J. Colbois and F. Mila on the
classical 3-state chiral Potts model [57]. Using corner transfer matrix renormalisation
group (CTMRG) and studying effective exponents they have found evidences which
seem supporting the hypothesis of a chiral transition occurring at small angles. In
particular they have found β ≈ ν ≈ 2/3 which is far away both from the nominal
values of β = ν = 1/2 for Pokrovsky-Talapov and even from the β = 5/3 and
ν = 5/6 for 3-Potts (cfr. Tab.1.1), suggesting that at small angles the transition
may live into a different universality class.

Thus, we may be more quantitative and extract the critical exponent associated
with the vanishing of the energy gap along the critical line h = 0.5. Before doing
so, we recall that the dynamical exponent becomes different from one when the
chirality is switched on. We have already said that for Pokrovsky-Talapov z = 2. In
addition to that, we know from the literature that for the chiral transition z = 3/2
[57], thus the quantity zν alone is not sensitive to this change. Yet, we may study
whether its value is constant and unitary for different angles or not. We show
then in Fig.4.17 the fit of the energy gap near criticality for different values of the
angles, namely θ = φ = π

7 , π
10 , π

20 , π
40 and π

80 with L = 99. We have performed the
fit by approaching the critical point from either side, but expecting - as we have
found indeed - values which are consistent with each other due to the self-duality
of the phase diagram. First of all we notice that the value of zν seems to change
rather smoothly along the critical line h = 0.5. For θ = φ = π

20 , θ = φ = π
40

and π
80 the critical exponent zν is slightly larger that the nominal value ν = 5/6

(z = 1) of the 3-Potts universality class for the non-chiral case. On the contrary, for
θ = φ = π

7 we have found clear evidences of an incommensurate phase extending
from h = 0.4862± 0.0003 to h = 0.5089± 0.0014. This is also supported by the fact
that the gap closes linearly from the left, therefore this phase transition is Pokrovsky-
Talapov and the Lifshitz point, if it exists, should be located before the theoretical
value of π

6 . Finally, for π
10 the critical exponents are smaller than one and assuming

z = 3/2 we find ν π
10
= 0.635± 0.004 when approaching the critical point from the

left and ν π
10
= 0.637± 0.005 when approaching it from the right. These values are

not to far from ν ≈ β = 2/3 found in Ref. [57], but they may also be approximately
consistent with a Pokrovsky-Talapov transition if instead we assume z = 2. We
will come back to this issue when discussing correlation functions along with the
incommensurate wave vector.
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Figure 4.17: Fit of the energy gap near criticality at small angles in the self-dual case and

critical exponents. For this plot we have considered chain lengths of L = 99 sites.

Case (ii). When θ 6= 0 and φ = 0 time reversal symmetry is preserved, parity
is broken and the self-duality is lost. The topology of the phase diagram is well
understood from the literature [85] and it is sketched in Fig.4.18(a). We have decided
to study the energy gap as a function of h with an angle θ = 0.9. Here we expect to
capture the usual three phases characterising these models, but now the resulting
plot will not be symmetric around h = 0.5. We show the plot of the energy gap in
Fig.4.18(b). From the plot, without performing any scaling, we may approximately
locate the Pokrovsky-Talapov transition at h ≈ 0.15 and the BKT one at h ≈ 0.6. We
mention that for this particular setup we will not address the issue of the existence
of a Lifshitz point, but the same ambiguities as before hold true even in this case.

Case (iii). The last case we have studied is the one with φ 6= 0 and θ = 0. Here
parity is preserved, time reversal is broken and the self-duality of the model is again
lost. It is interesting to notice that, given the symmetry of the phase diagram under
the simultaneous exchange of the phases and of the couplings, we are now in a
situation which is “mirrored" with respect to the one we have just described for case
(ii), as we also see from Fig.4.19(a). In order to further highlight this symmetry of
the phase diagram, we have studied the energy gap as a function of h with an angle
φ = 0.9. From the plot in Fig.4.19(b) we may approximately locate the Pokrovsky-
Talapov transition at h ≈ 0.6 and the BKT one at h ≈ 0.15, again consistently with
what we have previously found. Even in this case we do not address the issue
of the existence of a Lifshitz point.
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Figure 4.18: On the left we draw a sketch of the phase diagram of the 3-state chiral clock

model with θ 6= 0 and φ = 0 showing the three different phases (in different colours) and

the putative Lifshitz point (in red). On the other side we show the plot of the energy gap as

a function of h for θ = 0.9 which reveals the three different phases with the critical one in

between.
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Figure 4.19: On the left we draw a sketch of the phase diagram of the 3-state chiral clock

model with φ 6= 0 and θ = 0 showing the three different phases (in different colours) and

the putative Lifshitz point (in red). On the other side we show the plot of the energy gap as

a function of h for φ = 0.9 which reveals the three different phases with the critical one in

between.
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Before concluding this discussion we want to provide some details about the
explicit computation of the energy gap. In this respect we show in Fig.4.20 the energy
levels of the 3-state chiral clock model for a given L. We immediately see that the
chirality has the effect of shifting the energy levels in the different symmetry sectors
with respect to what we have seen in the symmetric case. Indeed, in the disordered
paramagnetic case the first excited state does no longer live within Q = 1, but within
Q = 2. Therefore, we have computed the energy gap as the difference between the
energy eigenvalues of the sectors Q = 2 and Q = 0. Within the incommensurate
phase the situation is more peculiar, as the true ground state actually changes
symmetry sector as h changes. In other words, we have found evidence of level-
crossing within the incommensurate phase, thus we have consequently computed
the energy gap checking the right symmetry sector for each value of h.
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Figure 4.20: Plot of the energy levels of the 3-state chiral clock model with J = 1 − h,

θ = φ = π
4 and L = 21. It shows that introducing a chirality in the model has the effect of

shifting the energy levels. For L = 21, in the disordered phase the ground state is again

within the Q = 0 symmetry sector, but now the first excited state lives in the one with Q = 2.

In the miniature we show the profile of the ground state throughout the three phases, with h
running from 0 up to 1.

The level-crossing which seems to characterise these models also reveals itself
in a peculiar pattern of oscillations displayed by the energy gap as a function of
the chain length. Let us now discuss it more in detail.
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4.5.2 Lifshitz oscillations

As we have already anticipated, we have found evidence of oscillations in the
plot of the energy gap as a function of the chain length L, whose origin seems to be
traced to level-crossing of the ground states in the three symmetry sectors. Before
presenting our analysis we mention that in the literature there are some works [82,
85] which are already familiar with these Lifshitz oscillations. Still, their origin seems
to be not fully understood. Zhuang et al. have found evidence of oscillations in the
plots of the energy gap and of the entanglement entropy and focused their attention
mostly on the latter. They have studied the dependence of the oscillation length
` as a function of the angle θ proposing the empirical relation ` = θ−3.75 + 1.16.
They have also noticed that the pattern of oscillations in the entanglement entropy
disappears when enforcing periodic boundary conditions, consistently with the
literature about some free fermions models [67]. On the other hand, Whitsitt et al.
have confirmed the results of the previous work and produced further evidence
which seems to support the scenario of phase transition occurring through a narrow
sliver of the incommensurate phase extending all the way down to the 3-state Potts
point at θ = φ = 0 along the line h = J = 0.5.

Thus, we have stuck to the self-dual case (i) with θ = φ = 0.4 and focused our
attention mainly on the critical h = 0.5 [85]. We have firstly studied the energy gaps
between the energy levels in the three symmetry sectors Q = 0, 1, and 2, which are
plotted in Fig.4.21(a), (b) and (c). Interestingly, the ground states oscillate all with
the same periodicity of ` ≈ 51 sites. Moreover, the minima appearing in these plots
actually correspond to points of level-crossing, thus they should be considered as
zeros. In other words, the gap closes at these points, as it is manifest from Fig.4.22.
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Figure 4.21: Oscillations of the energy gaps of the 3-state chiral clock model in the different

symmetry sectors as a function of L. The different ground states oscillate all with the same

periodicity: ` ≈ 51. We stress that the minima correspond to the points of level-crossing.
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Figure 4.22: Oscillations in the energy levels of the 3-state chiral clock model with θ = φ =

0.4. Reading the plot on the left: when L is small the true ground state has Q = 0 and the

first excited state has Q = 2, then at L = 33 they get exchanged, with the sector in Q = 2

becoming the ground state and the one in Q = 0 the first excited state. After, at L = 51 the

energy level in Q = 1 crosses the one in Q = 0 becoming the new first excited state, and

so on. Thus this plot shows evidence of level crossing between the ground states in the

different sectors, explaining the oscillating pattern of the energy gap. On the right we show

a magnification of the same plot.
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Figure 4.23: Oscillations of the energy gap of the 3-state chiral clock model with θ = φ = 0.4

as a function of the chain length L. Both normal (left) and logarithmic (right) scale are

shown in order to better appreciate the pattern of oscillations. The same colour convention

of Fig.4.21 has been used to highlight the role played by all the ground states in the three

symmetry sectors in the definition of the true energy gap. The change of sectors takes place

with a periodicity of about 6 points, corresponding to 18 sites.
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The plot of of the energy levels (normalised by the chain length) as a function of
L indeed shows evidence of level-crossing between the ground states of the different
symmetry sectors which oscillate periodically, thus giving rise to the oscillating
pattern already shown in Fig.4.21. A possible explanation for level-crossing along
the critical line h = 0.5 and within the incommensurate phase may be traced to
the competition between the finite size of the system, the symmetry constraints
and - most of all - the chirality of the model. Thus, for different values of L it
may be more favourable for the system to relax within a given symmetry sector
rather than the others, this explaining the interplay of all the three ground states.
Moreover, this has allowed us to reconstruct the plot of true energy gap, which
also display an oscillating pattern as it is shown in Fig.4.23(a) and (b) where the
same colour convention of Fig.4.21 has been used. The oscillation length for of
the energy gap in the present conditions is ` = 33 sites, which is consistent with
the one obtained by Zhuang et al..

We conclude the discussion of the Lifshiftz oscillations of the energy gap with
two observations. First of all, we recall that in the symmetric case θ = φ = 0 no
oscillation is visible in the plot of the energy gap. Moreover, no oscillation is visible
in the chiral case slightly out of criticality, for example at h = 0.4 and h = 0.6, either.
Thus, we may quite safely conclude that this oscillating pattern is peculiar to the
h = 0.5 line. It is also possible that these oscillations are related to the nature of the
critical line itself, which - we recall - may either host a one-step transition living in the
chiral universality class, or a two-step one proceeding through an incommensurate
film so thin to be practically impossible to reveal without ambiguity. For example
we recall that we have found evidences of level-crossing within the incommensurate
phase as well. However, in this regard it may be worth mentioning that in Ref. [34]
Hoeger et al. have found evidences of level-crossing in the XY-model and suggest
that oscillating patterns in the energy gap are peculiar of phases with non-vanishing
wave vector, like both IC phase and chiral transition are. Yet, in our opinion the
hypothesis of competition between the chirality of the model and the symmetry
constraints seems to be more likely. In fact, the opening and closing of the energy
gap along the same critical line for different system sizes has all the appearance of
a spurious effect which may not be there in the thermodynamic limit.

The second and last observation is that we have also considered the energy gap
under periodic boundary conditions up to L = 99 sites only. We have already
mentioned that according to the literature the oscillations in the entanglement
entropy disappear when periodic boundary conditions are enforced. Interestingly
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enough, the energy gap still seems to oscillate with a different periodicity. However,
given that DMRG becomes less solid and runs much slower when working with
PBC, we defer this issue to future and more accurate simulations.

4.5.3 Entanglement entropy

A second physical observable which may provide useful information about
the topology of the phase diagram of the transverse 3-state chiral clock model is
the entanglement entropy. We do not intend to be exhaustive here as an in depth
study of the entanglement entropy has already been carried out in Ref. [85]. Thus,
we have simply studied the half-chain entanglement entropy in the self-dual case
for θ = φ = π

4 , as for this particular choice of the angles we already known the
approximate location of the critical boundaries of the incommensurate phase. We
stress that we have computed the entanglement entropy over the true ground state
of the system, i.e. considering level-crossing within the critical phase, which is
sometimes difficult to deal with. Also, the uncertainties on the data especially close
to the boundaries of the incommensurate phase are usually large, as they are affected
by multiple technical issues. With these caveats, we shown in Fig.4.24 the resulting
plot. We see that for 0.34 . h . 0.66 the entanglement entropy scales with the
system size, implying that within that range of parameters the phase is critical. Also,
the entropy is constant for h . 0.34 and it goes to zero for h & 0.66, meaning that in
the strong field regime the states become unentangled product states. In the inset
we show a magnification of the same plot in a vicinity of the BKT transition, where
the curves of the entanglement entropy seem to cross all at the same point h ≈ 0.66.
This seems to suggest that for the second IC-C transition the entanglement entropy
behaves as a sort of “order" parameter. In fact, the incommensurate phase is not
ordered in the standard sense, but it is expected to display an “ordered" pattern
given by the different domain walls, whose size depend on all the parameters of
the model, namely θ, φ, L and of course h. This is indeed different from the gapped
commensurate phase which is paramagnetic in nature. We do not present here any
study of the central charges because they are extremely sensible - even with O(1)
errors - to the location of the critical points and we do not known the exact location of
the two C-IC phase transitions in the thermodynamic limit. A quantitative evaluation
of the errors on the central charges slightly out of criticality is shown in Ref. [85].

We also mention that we have found evidences of oscillations in the curves of the
entanglement entropy when open boundary conditions are enforced, consistently
with the literature. Yet, it is extremely difficult to venture an hypothesis about
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the possible relation between these oscillations and the pattern of oscillations we
have just discussed for the energy gap. Due to the fact that the energy gap seems
to oscillate even when periodic boundary conditions are enforced and that the
numerical curves of the entanglement entropy at criticality are obtained with finite
bond dimensions - and thus they are plagued by finite-size effects -, it is also possible
that these oscillations have a different origin.
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Figure 4.24: Half chain entanglement entropy of the 3-state chiral clock model (OBC) at

different chain lengths. For 0.34 . h . 0.66 the entropy scales with L, consistently with the

critical nature of the floating incommensurate phase. Inset: same plot of the entanglement

entropy in a vicinity of the BKT transition, where all the curves seem to cross at the critical

point. This behaviour is typical of order and disorder parameters.

Finally, we mention here that in the following we shall not present the finite-size
scaling analysis of the magnetisation for the 3-state chiral clock model as this is spoilt
by the chirality. We just mention that the usual order parameter is in principle able to
capture only the first C-IC phase transition, as here the system passes from an ordered
configuration to a disordered one. However, we may invoke duality considerations
and investigate the second IC-C transition with the dual disorder parameter. Thus,
both the order and disorder parameters will be zero within the incommensurate
phase, consistently with the self-duality of the model when θ = φ. We also mention
that within the IC phase further evidence of level-crossing have been found.
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4.5.4 Correlation functions at criticality

We conclude the study of the transverse 3-state chiral clock model by turning
the attention on the correlation functions within the incommensurate phase.5. This
phase is critical and floating incommensurate, thus at large distance we expect the
correlation functions to display an algebraic power-law decay with some complex
modulation ∼ ei(k−k0)·r, for some incommensurate wave vector k. Indeed, the
former is typical of criticality, the latter of floating IC phases. Thus we have studied
separately the absolute value, the real and imaginary parts of the correlators in order
to capture this special behaviour. A specific - but yet paradigmatic - example for
θ = φ = π

4 at h = 0.5 is shown in Fig.4.25.
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Figure 4.25: Absolute value, real and imaginary part of the correlation functions of the

3-state chiral clock model within the IC phase. The former displays a power law decay

typical of criticality. Instead, the real and imaginary parts reveal a pattern of oscillations

with a power-law damping.

As expected, both the plots of the real and imaginary parts reveal an oscillating
pattern with a power-law damping shifted in relation to each other. Thus, in this
context correlation functions provide useful information not only about the nature of
the phase transitions via their critical exponents, but they also allow us to extract the
incommensurate wave vector characterising both the critical phase and its critical
boundaries. Therefore, we have investigated more deeply the dependencies of
the wave vector k on the magnitude of the transverse field h and on the angle

5We do not take into account correlators within the two gapped phases, because there we expect
nothing new compared with the non chiral case, which we have already studied
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θ = φ, as we stick to the self-dual case as usual. We show in Fig.4.26 and 4.27
the real and imaginary parts of the correlation functions for different values of
h and θ, respectively.
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Figure 4.26: Correlation function of the 3-state chiral clock model for different values of h
within the IC phase. They are coloured by increasing values of the wave vector k.
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Figure 4.27: Correlation function of the 3-state chiral clock model for different values of θ

within the IC phase. They are coloured by increasing values of the wave vector k.

We have then extracted the value of the wave vector from the fit of the real and
imaginary parts of the correlators, considering only sites from 1/4 to 3/4 of the chain
in order to avoid finite-size effects and using the following functional dependence:

f (|i− j|) = p3 · exp(−|i− j| · p4)
|i− j|p0 · cos(p1 · |i− j|+ p2 · π) . (4.4)
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The parameter p0 rules the power-law decay, p1 is the incommensurate wave vector
we are interested in, p2 is a phase, p3 is a multiplicative constant and p4 is the inverse
of the correlation length, which is expected to be zero as the phase is gapless.

Let us discuss in detail the results. We have started from the case θ = φ = π
4 , for

which we already know the approximate location of the critical points. We show in
Fig.4.28(a) and (b) the plots of the incommensurate wave vector and the oscillation
length as a function of h. From the former we learn that the wave vector is zero in
the gapped ordered phase, then it starts growing within the incommensurate phase,
it reaches a maximum at the BKT transition and then it jumps to zero again in the
gapped disordered phase, supporting the hypothesis of phase transitions occurring
at h ≈ 0.34 and h ≈ 0.66. Also, we see that the oscillations become faster and
their length ` decreases as h increases within the critical phase. Such a behaviour is
consistent with Fig.4.28(b) and with the literature [4]. Then, by restricting ourselves
to a vicinity of the first critical point and performing a fit of the data we have
extracted the critical exponent β. The Pokrovsky-Talapov theory predicts β = 1/2,
which has to be true all along the critical line separating the ordered phase from the
incommensurate one. Thus, we have chosen two different angles, θ = π

4 and θ = π
5

(see Fig.4.29(a) and (b)), finding β = 0.507± 0.016 and β = 0.508± 0.009, respectively.
In both cases our results are fully consistent with the theoretical prediction.
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Figure 4.28: Wave vector k and oscillation length ` as a function of h. Both the plots have been

obtained at θ = φ = π
4 . The values of k have been extracted from the fit of the correlators

considering both the real and imaginary part and no significant difference between the two

has been found. There is only a small discrepancy in the left plot for h ≈ 0.34 and h ≈ 0.66,

which is likely due to the fact that these points are very close to the phase transitions. For the

oscillation length we have found no distinction between the real and imaginary parts of the

correlators. It decreases as h increases until it stabilises to ` ≈ 5 sites starting from h = 0.55.
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Figure 4.29: Incommensurability exponent at Pokrovsky-Talapov for θ = π
4 and π

5 . In both

cases we have found values which are fully consistent with the nominal β = 1/2.

Now that we have investigated the h-dependence of the correlation functions, we
can start discussing the dependence on the angle θ = φ. We draw in Fig.4.30(a) and
(b) the plots showing the angular dependence of the wave vector and the oscillation
length, respectively. As before, we have extracted k from the fit of both the real and
imaginary part of the correlation functions, although no significant difference is
found between the two. Instead for the oscillation length the agreement is perfect,
thus we have not distinguished between the two cases. The plot in Fig.4.30(a) shows
that the wave vector increases with the angle θ along the critical line h = 0.5. We
recall that here we are computing the correlators over chains of length L = 201 and
then fitting within a range of 100 sites. Under these conditions, the latest oscillations
are detected at θ = 0.35 with wave vector k ≈ 0.0325. However, we have found
that by increasing the chain length up to L = 300, so to compute the correlation
functions within a larger range of 150 sites, we are able to detect oscillations down to
θ = 0.30 with k ≈ 0.0194. This implies that for smaller angles the oscillation length
becomes larger than the range we are considering for computing the correlators, so
that the oscillations are not visible, but they are still there. Interestingly enough, the
analysis of the oscillations of the energy gap shows some resemblance with what
we have found here for the correlation functions. Indeed, Zhuang et al. claim that
the oscillation length of the energy gap becomes larger than the size of the system
they are considering (L = 200) at θ = π

12 ≈ 0.262, which is not too far from our
value of θ = 0.30 for a range of 150 sites. On the other hand, from Fig.4.30(b), we
learn that ` decreases as θ increases. More precisely, a fit of the data reveals the
following empirical relation: ` ∼ 1.69 · θ−3.66 + 1.7. Again, it is interesting to make
a comparison between these results and those known from the literature about the
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energy gap. In this regard, Zhuang et al. have also found for the oscillation length
associated with the oscillations of the energy gap and the entanglement entropy the
empirical relation ` ∼ θ−3.75 + 1.16. Their exponent ruling the algebraic decay in θ,
−3.75, is very similar to our −3.66± 0.06, which may be more than a coincidence
as they differ only by 2.5%. Yet, for a more accurate comparison we should sample
more data and check whether the agreement improves or gets worse.
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Figure 4.30: Plots of the wave vector k and of the oscillation length ` as a function of θ. Both

the plots have been obtained at h = 0.5, i.e. right in the middle of the incommensurate

phase. The values of k have been extracted from the correlators considering both the real and

imaginary part, without significant difference between the two. For ` the two data coincide

perfectly. For the dependency of ` on θ we propose an empirical relation.

Unfortunately, the picture resulting from our numerical analysis is consistent both
with the the scenario of a thin incommensurate layer extending down to θ = φ = 0
and with the hypothesis of a Lifshitz point. In particular we have found evidences
of oscillations in the correlators at small angles. Yet, we recall that chiral transitions
are characterised by a wave vector just like the incommensurate phase is, thus we
expect the correlation functions to oscillate there as well. Also, we have said in
the previous chapters that a chiral transition is non-conformal, i.e. z 6= 1, and it is
characterised by the equality β = ν. But, as we have understood, this is true for the
Pokrovsky-Talapov transition as well. Thus, with our approach based on DMRG
simulations and extractions of critical exponents, the only possible way of detecting
such a transition is to reveal an abrupt change in the value of the incommensurability
exponent β across the putative Lifshitz point θ = φ = π

6 . We have therefore tried to
extract β like we have done at the Pokrovsky-Talapov transition. Namely, we have
sat at angles θ = φ = 0.35, 0.45 and 0.50 and tried to approach the phase transition
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both from the ordered and disordered phase by studying the wave vector. In doing
so we have ended up with two kinds of technical problems. The first is that there are
evidences of oscillations in the correlation functions slightly off criticality both in
the ordered and disordered phase, but it is possible to say whether these oscillations
are physical, and therefore reliable for our analysis, or simply distortions induced
by the nearby critical line. The second problem is that when the angles are small
the oscillation length of the fluctuations gets large, sometimes - like for θ = 0.35 -
even larger that the range within which we are fitting. Therefore the data for the
wave vector, which is very small, suffer a large uncertainty. All these effects spoil the
analysis of the incommensurabilty exponent so that we cannot provide viable results.

4.5.5 Binder cumulant

Let us now review what we have found so far about the critical line h = 0.5 at
small angles, always sticking to the self-dual case. We have firstly studied the energy
gap to extract the critical exponent zν, as both the chiral and Pokrovsky-Talapov
transitions are non-conformal. Due to the values of the critical exponents of these
two universality classes, if a Lifshitz tricritcal point is present, the quantity zν is not
sensitive to it, as for both transitions we expect zν = 1. However, as the angle θ = φ

decreases, a rather smooth dependence was found, resulting in zν ≤ 1. Afterwards,
we have studied the oscillating behaviour of the energy gap and of the correlation
functions. The former may be traced to the presence of level-crossing and it does not
provide any quantitative information about the universality class of the transition.
The latter has instead allowed us to extract the incommensurate wave vector together
with its incommensurability exponent for the Pokrovsky-Talapov transition but not
for the one occurring at small angles for h = 0.5.

Let us now make one final attempt by studying the exponent ν which is expected
to be sensitive to any change between the two universality classes (cfr. Tab.1.1).
Instead of computing it by fitting the correlation functions to extract the correlation
length, it is much easier to consider the fourth-order Binder cumulant (4.2). Its
finite-size scaling indeed depends only on ν, as we have already seen. Thus, we
have proceeded as follows: upon enforcing periodic boundary conditions, we have
firstly computed UL as a function of h for different values of L and for different
angles θ = φ < π

6 . The plots have revealed that the curves all cross at a single
point which is consistent with hc = 0.5 (see Fig.4.31 for θ = φ = π

10). Instead, for
θ = φ > π

6 , where the incommensurate critical phase is already open, the curves of
the Binder parameter suffer an abrupt jump and display a sort of staircase behaviour.
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Figure 4.31: Binder cumulant for the 3-state chiral clock model with θ = φ = π
10 . All the

curves cross at a single point which is consistent with the nominal value hc = 0.5. A very

similar plot has been found for θ = φ = π
40 as well.

Therefore, we have focused our attention on the former case only. Afterwards, we
have performed the finite-size scaling analysis for three different angles, namely
θ = φ = π

40 , π
10 and π

7 . Thus, we have studied the behaviour of UL as a function of
L1/ν(h− hc) considering both ν = 1/2 (Pokrovsky-Talapov) and ν = 2/3 (chiral) in
order to see in which case all the curves collapse on a single universal curve. For
ν = 1/2, we have found that the curves do not collapse. Instead, for ν = 2/3 they
do, at least for θ = φ = π

40 and π
10 . The resulting plots are shown in Fig.4.32(a), (b)

and (c). We stress that in the first two cases hc = 0.5 has been used, whereas in
the last one we have chosen hc = 0.4862, which is the value we have found from
the previous analysis of the energy gap.

All these results seem finally to suggest that the transition occurring at small
angles for h = 0.5 may be chiral in nature. However, we also have to mention that for
θ = φ = π

7 with ν = 1/2 the curves of the Binder parameter do not collapse either.
This may due to our ignorance about the exact location of the transition point in the
thermodynamic limit, as we recall that the value hc = 0.4862 was just an estimate
from the fit under a specific setup (L = 99 with OBC). Another possibility is that the
thin incommensurate phase we have previously observed for θ = φ = π

7 actually
closes in the thermodynamic limit. This would be also supported by the following
observation: instead of using hc = 0.4862 as critical value for the scaling, if we insist
in considering hc = 0.5, then all the curves of the Binder cumulant collapse onto the
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same universal curve with the same chiral critical exponent ν = 2/3, just like we
have seen for the smaller angles θ = φ = π

40 and π
10 . By the way, this would also be

consistent with the theoretical location of the Lifshitz point at θ = φ = π
6 .
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Figure 4.32: Universal scaling of the Binder cumulant for the self-dual 3-state chiral clock

model (PBC) assuming ν = 2/3 (chiral transition). For θ = φ = π
40 and π

10 all the curves

correctly collapse into a single universal one in a vicinity of the critical point. Instead for

θ = φ = π
7 they do not as they still cross themselves. In the first two cases we have used

hc = 0.5, whereas in the last one hc = 0.4862 (cfr. Fig.4.17).
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4.6 Adding a longitudinal field

In this last section we apply a longitudinal field to 3-state clock models, both
symmetric and chiral, on top of the standard transverse one. The literature for
this particular configuration is not so rich. So let us proceed, as usual, by closely
following the Ising model, which is instead largely studied in all its configurations.

We have already recalled in the previous chapters that the transverse Ising
model is integrable via Jordan-Wigner transformation. By applying to the model
also a longitudinal field (cfr. Hamiltonian (1.60)), we find that such a term cannot
be mapped into a local fermion operator and therefore it introduces a non-local
interaction between fermions. Thus, the Ising model with both transverse and
longitudinal fields is not integrable [55]. In addition to the integrability-breaking
effect, a longitudinal field is also known to remove the critical point occurring in
the ferromagnetic transverse Ising model at hx = 1. Thus, the phase diagram of this
model is completely gapped for any non-zero value of the longitudinal field and the
only lack of analiticity in the ground state energy occurs at (hx = 1, hz = 0).

4.6.1 Phase diagram

Since we are introducing a new parameter in the Hamiltonian, namely the
magnitude of the longitudinal field, hz, the phase diagrams of these models will
become one dimension higher. We shall therefore study the two-dimensional (hx, hz)

phase diagram, which for the 3-state symmetric model is the entire phase diagram
itself, whereas for the 3-state chiral model it is just a section for a particular choice
of the angles θ and φ, given J = 1 − hx.

Let us start by discussing the 3-state symmetric clock model (2.8). We show in
Fig.4.33(a) the plot of the energy gap as a function of hx for different values of the
longitudinal field hz and in Fig.4.33(b) the resulting two-dimensional phase diagram
mapped via the energy gap. Both the plots have been obtained enforcing open
boundary conditions on a chain of length L = 99 sites. We have found that the
critical point occurring in the transverse clock model gets immediately removed
as far as the longitudinal field is switched on. For example, by applying a weak
longitudinal field hz = 0.001, the energy spectrum is already completely gapped.
This picture is consistent with what we have previously discussed for the Ising
model, which makes sense as the 3-state Potts model is its simplest generalisation 6.

6Compare for example our Fig.4.33(b) with Fig.1(a) in Ref. [78].
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Figure 4.33: Phase diagram of the 3-state symmetric clock model with both transverse and

longitudinal field for L = 99 (OBC). On the left we see the plot of the energy gap for different

values of the longitudinal field. On the right we show the resulting two-dimensional

phase diagram mapped via the energy gap. It has only one critical point occurring at

(hx = 1, hz = 0).
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Figure 4.34: Phase diagram of the 3-state chiral clock model with both transverse and

longitudinal field for L = 99 (OBC) and θ = φ = π
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resulting two-dimensional section of the phase diagram mapped via the energy gap up to

hz = 0.1. The critical incommensurate phase seems to persist even for small non-zero values

of the longitudinal field.
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For the 3-state chiral clock model (2.15) the situation is instead slightly different.
Naively, we may have expected the critical incommensurate phase to disappear as
far as we switch on the longitudinal field, but this is not the case. In fact, we see from
Fig.4.34(a) that by increasing the magnitude of the longitudinal field from hx = 0.00
up to hx ≈ 0.03 the incommensurate phase survives and it gets shorter until it shrinks
into a single critical point for some special value of the field, say h∗x, which should
be approximately located within the range 0.030 . h∗x . 0.035. Such a persisting of
the incommensurate phase even for non-zero values of the longitudinal field may
either be a truly physical or a finite-size effect. We are not able to completely rule
out the second scenario, yet we mention that we have checked values from L = 60
up to L = 201 and this phase seems to be stable, as it does not get significantly
shorter by increasing the size of the system. We do not show the corresponding
plot, but we mention that a similar behaviour with the incommensurate phase
surviving and shrinking as hx increases was observed even for a different choice
of the angles, namely θ = π

4 and φ = 0. We also notice from Fig.4.34(a) that the
incommensurate phase shrinks mostly from the left, i.e. from the Pokrovsky-Talapov
side. This behaviour may be traced to the larger robustness of BKT transitions to
external perturbation due to their topological nature. In Fig.4.34(b) we then show
the resulting two-dimensional section of the phase diagram for θ = φ = π

4 fixed and
J = 1− hz as usual. We see that instead of a single critical point like in Fig.4.33(b),
the phase diagram now hosts an entirely critical triangular-like region.

We finally notice that both in the symmetric and in the chiral case for hx & 0.3,
where the energy spectrum is completely gapped, we remain within the ordered
phase as the longitudinal field forces the ferromagnetic alignment of the spins 7.
Also, consistently with the literature about the Ising model, we see that the self-
duality property is lost as the application of the longitudinal field is known to
spoil the Kramers-Wannier duality.

We end this discussion by providing some comments about how we have
performed these numerical calculations. The previous plots have been obtained
after removing the requirement of quantum number conservation throughout the
DMRG calculations as the Hamiltonians (2.8) and (2.15) are no longer quantum
number preserving. This is due to a technical issue: we cannot act with the operator
Z or Z† on a given state, the ground state in this case, and remain within the initial

7This is true at least for the particular Hamiltonians (2.8) and (2.15) we are considering, where we
have taken the exchange interaction term to be ferromagnetic (J > 0) and the longitudinal field to
have a minus sign in front. Different setups may correspond to different models with different phase
diagrams.
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symmetry sector at the same time. In fact, the action of this operator results in
bringing the system into the next symmetry sector.

4.6.2 Duality with Lattice Gauge Theories

Let us now discuss clock models with both transverse and longitudinal fields
within the framework of duality transformations with lattice gauge theories, as we
have explained in the previous chapter. Due to the computational effort, we shall
focus here only on the 3-state clock model.

Let us review the phase diagram of the dual lattice gauge theory to get a flavour
of what we expect to find in the clock model formulation. For all three superselection
sectors n = 0, 1, 2 the Z3 LGT does not seem to host any phase transition. Also,
for λ = 0 all the sectors have a deconfined point. Thus, for n = 0 with λ > 0
we have a quick transition to a confined phase. Instead, for n = 1 and n = 2 -
which are equivalent - the model seems to exhibit a smooth crossover for λ > 1,
even if the scenario of a true phase transition cannot be ruled out [64]. Therefore,
thanks to duality considerations, we expect the corresponding 3-state clock model
(cfr. Hamiltonian (2.8)) to display a very similar behaviour. In particular, given
h = λ−1, in our case the phase diagram will host a deconfined point for h→ ∞. We
also stress that due to the presence of the longitudinal field the expected three-fold
degeneracy of the ordered phase of the purely transverse clock model is expected
to break down to a two-fold degeneracy.

Our goal now is to present a purely numerical study of the 3-state clock model
with both transverse and longitudinal fields to bring further evidence supporting the
results of Ref. [64], where a first numerical approach to these models is presented.
In particular, in this paper the Z3 LGT has been numerically investigated via
exact diagonalisation technique. Here, we will instead work in the clock model
formulation, thus reversing - in certain a sense - the “arrow" of the duality mapping.
To make contact with the results about the dual LGT we have enforced periodic
boundary conditions as well.

The sector n = 0 is not particularly interesting as here the magnitude of the
longitudinal field becomes real, namely hz = 2. We can extrapolate the behaviour
of this model under these conditions by looking at the plot in Fig.4.33(a). There
we see indeed that no phase transition occurs as the energy spectrum is completely
gapped. Moreover, the corresponding deconfined point cannot be appreciated in
this formulation as it is located at infinity.

On the other hand sectors n = 1 and n = 2 are more interesting. In order to
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be able to make a direct comparison with the plots shown in Ref. [64] we have
here considered the Hamiltonian (2.9) under periodic boundary conditions, which is
unitarily equivalent to (2.8). We have firstly studied the energy gaps ∆Ei = Ei − E0

with i = 1, 2 for both n = 1 and n = 2. We show the resulting plot in Fig.4.35. We
stress that the very same behaviours have been observed for both sectors, which
are indeed equivalent. Moreover, we see that a two-fold degeneracy of the ground
state emerges for h > 1, just as in the dual LGT.
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Figure 4.35: Energy gaps ∆Ei = Ei − E0, i = 1, 2 of the 3-state clock model with transverse

and longitudinal fields for L = 9, 15 and 27 (from left to right). For h > 1 a two-fold

degeneracy of the ground state emerges, consistently with the results in Ref. [64].

The second observable we have considered in order to investigate the phase dia-
gram of these models is the transverse magnetisation (4.1), we show the resulting plot
in Fig.4.36(a). All the curves of the magnetisation cross at a single point h ≈ 0.825,
which is a typical behaviour signalling a phase transition in the thermodynamic limit,
as we have already studied for the purely transverse 3-state clock model. However,
we notice that in Ref. [64] - although they do not exclude the possibility of having a
true phase transition - a rather smooth crossover between the two phases is observed
in the plot of the half-ladder Wilson loop. This apparent discrepancy may have a
double origin. First of all, we are not comparing the same observables, as, strictly
speaking, the Wilson loop is dual to a disorder parameter given by the expectation
value of a product of X operators. Both this disorder parameter and the transverse
magnetisation measure the lack of order along the z-direction, but they are different
quantities. The second possibility is that the phase transition reveals itself only at
higher sizes, like those we are considering. We stress again that in Ref. [64] all the
numerical simulation have been performed via exact diagonalisation. This technique
allows for a higher accuracy at the cost of accessing small sizes only, which is not
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our case and indeed here we could reach higher chain lengths (up to L = 27).
Another interesting observable we may take into account is the “longitudinal"

magnetisation M̃ ≡ 1
2L ∑i(Zi + Z†

i ), which is also expected to signal the qualitative
change in the ground state of this model, namely the emergence of a two-fold
degeneracy for h > 1, as we are moving towards a z-ordered phase. We show the
plot of the longitudinal magnetisation in Fig.4.36(b). We see that this observable does
indeed capture this behaviour as the curves - although without crossing - display a
point of inflection which gets shifted toward unity from the right, h → 1+, due
to finite-size effects.

Finally, our analysis of the magnetisation seems to suggest that in the thermo-
dynamic limit these models may undergo a true phase transition at h ≈ 1, rather
than a smooth crossover. We will not take into account different observables here,
even if we stress that this may be helpful in shedding light about the behaviour
of the system at h ≈ 1 and, if a phase transition is indeed present, even about its
nature. We defer all these issues to future studies.
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Figure 4.36: Transverse (left) and longitudinal (right) magnetisation of the 3-state clock

model with transverse and longitudinal fields for L = 9, 15, 21 and 27 as a function of h.

The curves of the transverse one cross at a single point, h ≈ 0.825, which is typical of a phase

transition occurring in the thermodynamic limit. Inset: focus on a neighbourhood of the

crossing. The longitudinal magnetisation is also sensitive to the qualitative change in the

ground state of the model occurring for h ≈ 1. However, despite the previous case, now the

curves do not cross.



Conclusions and outlooks

Throughout this dissertation we have discussed both symmetric and chiral
quantum clock models in one dimension via duality transformations and numerical
simulations based on DMRG. Firstly, by studying the behaviour of the main thermo-
dynamic observables at criticality, we have been able to reconstruct a picture of the
well-understood phase diagram of symmetric clock models, finding results which
are all consistent with the literature. We have thereafter applied the same machinery
to chiral clock models as well, sticking to the p = 3 case, and carried out a similar
analysis. Here, by trying to address those issues which are still controversial in the
literature, we have found evidences of level-crossing between the ground states
of the different symmetry sectors both within the floating incommensurate phase
and along the critical line h = 0.5 at small angles. This behaviour, which is likely
due to the interplay of finite size, symmetry constraints, clock order and chirality,
might - among others - provide a reasonable explanation for the Lifshitz oscillations
observed in the energy gap as a function of the chain length. Finally, we have
studied symmetric and chiral models with order p = 3 by adding both transverse
and longitudinal fields. As the literature for this particular setup is not so rich, in the
symmetric case we have closely followed the discussion of the ferromagnetic Ising
model and invoked duality considerations. In this case we have then found that the
longitudinal field removes the non-analiticity in the ground state energy as far as it
is switched on. Thus, the energy spectrum of the 3-state symmetric clock model with
both transverse and longitudinal fields is completely gapped. We stress that this
behaviour is fully consistent with the literature about the Ising model under the same
setup. Instead, for the 3-state chiral clock model we have found that the floating
incommensurate phase persists when the longitudinal field is weak and, as this field
is lowered, it shrinks from the Pokrovsky-Talapov side until it disappears completely.
Such a behaviour seems stable under finite-size effects, at least for the specific sizes
we have considered. Finally, the duality between Abelian Zp lattice gauge theories
and p-state symmetric clock models has been numerically investigated in the clock
model formulation, finding results which are mostly consistent with recent works.
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We now want to conclude this thesis by outlining some pathways for possible
future research. First of all, in order to bring further evidence to the literature,
disposing of more time and computational resources, a more detailed studied on
higher order symmetric and chiral clock models could be carried out and all the
previous results could be tested with a higher accuracy as well. Also, different
numerical methods, besides the standard DMRG, may be used to tackle these same
problems from different points of view. This may indeed shed some light on those
controversial issues like the topology of the phase diagram of the 3-state chiral clock
model, in order to better understand whether there exists a Lifshitz point with a
phase transition falling into the chiral universality class at small angles - like recent
works seem to suggest - or simply a thin incommensurate layer extends down to
the 3-Potts point. The phase diagram of the 3-state chiral clock model with both
transverse and longitudinal fields might be worth of further investigation as well
in order to understand whether the incommensurate phase indeed survives when
the longitudinal field is weak or not. If this behaviour is confirmed, this may be the
simplest clock model characterised by the coexistence of criticality and longitudinal
field, as we recall that both in the Ising model and in the 3-state symmetric clock
model no phase transition occurs when a longitudinal field is present. The duality
between lattice gauge theories and clock models may also be notable of further
studies, hopefully even providing more analytical insights about the inverse duality
mapping, namely from clock models to lattice gauge theories. Finally, it would be
extremely interesting - and indeed there are already some works pushing towards
this direction [82] - to address the problem of the commensurate-incommensurate
transition from the field theoretical point of view and in the fermion language as well.



A
Computational tools

In this appendix we collect the descriptions of the main computational tools
we have used all along this dissertation. In particular, we mainly focus on how
DMRG works, distinguishing between infinite-system and finite-system DMRG.
Then, given that all numerical simulations have been performed using the ITensor
software library, we think necessary to provide a short overview on the Tensor
Networks method as well.

A.1 The Density Matrix Renormalisation Group

The Density Matrix Renormalisation Group (DMRG) is nowadays one of the
most powerful and successful variational algorithms for computing the low-energy
properties of one-dimensional quantum systems. Thanks to its ability of dealing
with strongly correlated systems in general, its area of application actually goes
beyond quantum many-body theory, ranging from quantum chemistry to nuclear
physics. It was invented by Steven R. White in 1992 [81] in order to overcome the
technical problems of Real Space Renormalisation Group (RSRG) which had proven
to be unreliable when applied to some particular quantum models, like the Hubbard
and the Heisenberg ones. The crucial idea behind DMRG relies on the usage of the
eigenstates of the density matrix of the system rather than those of the Hamiltonian.
This indeed allows for an accurate description of systems which are strongly coupled
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to the environment. Since its introduction, many different versions of DMRG have
then been invented, like time-dependent DMRG (tDMRG), finite-temperature DMRG
and so on, together with its generalisation to two-dimensional quantum systems
as well. In the present section we shall focus on time-independent DMRG at zero
temperature for one-dimensional quantum systems, as all the numerical simulations
we have performed fall into this case. Also, in the following we will consider open
boundary conditions, as we have mostly done in our dissertation. Indeed, despite
lots of numerical methods and most of the analytical ones use periodic boundary
conditions in order to mimic the ideal setup of infinite system - avoiding boundary
effects - DMRG prefers open boundary conditions.

The primary goal of DMRG is computing the ground state and the ground state
energy of a one-dimensional quantum system of length L with Hamiltonian H. This
can be done either in the thermodynamic limit for L→ ∞ with a modest accuracy
or in the finite case L < ∞ with higher accuracy. These two versions go under the
name of infinite-system and finite-system DMRG, respectively, which we are now
going to discuss. However, we stress that both of them have to face the problem of
the exponential growth of the Hilbert space, e.g. for a 1

2 -spin system it grows like 2L.

A.1.1 Infinite-system DMRG

The infinite-system DMRG procedure works as follows [72]. First of all we need
to find the reduced space containing all the relevant physics. Such a reduced space
does exist for one-dimensional quantum systems and can be found by

(i) introducing a left and right block, A and B, containing one site each so that at
the beginning the chain length is L = 2;

(ii) building iteratively longer chains by adding - between the blocks - one site to
each block at any step, so that the full block state space grows like 2`, being `

the current block size. Such a chain 2`+ 2 sites long is usually referred to as
superblock;

(iii) defining an orthonormal basis {|a`〉A,B} for the reduced Hilbert space which
we assume to be χ-dimensional (being χ the bond dimension) so that any state
|ψ〉 of the superblock may be expressed as

|ψ〉 = ∑
aA,σA,aB,σB

ψaAσAaBσB |a〉A|σ〉A|σ〉B|a〉B ≡ ∑
iA,jB

ψiA jB |i〉A|j〉B (A.1)

where {|σ〉A,B} is a basis for the d-dimensional local state space hosting the
states of the sites next to A and B, respectively, while {|i〉A} {|j〉B} are the
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(dχ)-dimensional basis of the corresponding block together with the nearby
site, say A• and •B;

(iv) performing a numerical diagonalisation (via Lanczos or Davidson algorithms)
to find the state |ψ0〉 which minimises the energy

E =
〈ψ0|Hsup|ψ0〉
〈ψ0|ψ0〉

(A.2)

being Hsup the superblock Hamiltonian;

(v) avoiding the exponential growth of the bases {|i〉A}, {|j〉B} by truncating them
to χ states. This can be achieved by introducing the density matrices of the
larger blocks A• and •B, namely

ρA• = Tr•B |ψ0〉〈ψ0| and ρ•B = TrA• |ψ0〉〈ψ0| (A.3)

respectively, whose eigenstates are determined via exact diagonalisation. Next
we perform the truncation by retaining as reduced basis only those χ orthonor-
mal eigenstates of the density matrix having the largest eigenvalues;

(vi) performing an approximate change of basis so that we may increase again the
system size until the desired value.

A.1.2 Finite-system DMRG

For a higher accuracy finite-system DMRG is usually preferred. We stress that
both methods deal with the iterative growth of the blocks. The main difference is
that while in infinite-system DMRG this growth occurs at both sides, in the finite-
system case it occurs only at one side at the expense of the other. More precisely,
finite-system DMRG consists in [72]

(i) stopping infinite-system DMRG up to some desired length L;

(ii) repeating the same procedure we have described for infinite-system DMRG,
but now for one block only, say block B, at the expense of block A, which
shrinks down to its minimal size, i.e. the size for which the dimension of the
Hilbert space of block A does not exceed χ;

(iii) reversing then the growth direction and doing the same for block A as block B
shrinks;

(iv) repeating this sweeping procedure until the convergence of the wave function is
reached.
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two sites

subsystem A• subsystem •B

superblock

new block A new block B
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block A block Btwo sites
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block size A
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block A
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system DMRG

.

repeated
sweeps

(b) Finite-system DMRG

Figure A.1: Schematic representation of infinite-system DMRG vs finite-system DMRG.

These sketches have been realised following Fig.2 of Ref. [72].

In order to find out the ground state |ψ0〉 of each superblock this method needs
to use some iterative large sparse matrix eigensolver consisting in the sequential
applications of the Hamiltonian on the input wavefunction. This is the reason why it
is important to choose the initial wavefunction to be as closer as possible to the final
one in order both to make the convergence easier and to save computational time.

A pictorial representation of infinite- and finite-system DMRG is sketched in
Fig.A.1(a) and (b) respectively.

A.2 Tensor Networks: a brief overview

Tensor networks are representations of high-order tensors as the contracted
product of many low-order tensors. Since their introduction, they have gained a huge
popularity because they allow for an intuitive diagrammatic notation which makes
tensors extremely simpler to handle. All the numerical results presented in this
dissertation have been obtained by using ITensor, which is a tensor-network-inspired
software library which provides the advantage of translating tensor diagrams
directly into code [29].

The most common and widely used tensor networks formats are matrix product
states (MPS) and matrix product operators (MPO). Let us discuss them in detail.



A. Computational tools 101

A.2.1 Matrix Product States

For local Hamiltonians with a gap between the ground state and the first excited
state finding the ground state is a relatively easy task. Despite the problem of
the exponential growth of the Hilbert space, when the Hamiltonian of the system
satisfies the previous requirements the relevant corner of the Hilbert space we may
restrict ourselves to is actually small and it may be efficiently parametrised by using
matrix product states. Let us see how to decompose an arbitrary quantum state into
a MPS [72]. Consider a chain or more generally a lattice 8 with L sites and let {σi} be
the d-dimensional local state space at the i-th site. The most general representation
of a pure quantum state |ψ〉 (which we will assume to be normalised) reads

|ψ〉 = ∑
σ1,...,σL

cσ1...σL |σ1, . . . , σL〉 (A.4)

for some coefficients cσ1...σL . We may then recast our dL-dimensional state vector
into a (d× dL−1) matrix, say Ψ, with components Ψσ1,(σ2...σL) = cσ1...σL . A singular
value decomposition (SVD) of this matrix provides

cσ1...σL = Ψσ1,(σ2...σL) =
r1

∑
a1

Uσ1,a1Sa1,a1(V
†)a1,(σ2...σL) ≡

r1

∑
a1

Uσ1,a1ca1σ2...σL) (A.5)

with U and V unitary, S diagonal, r1 ≤ d and in the last step we have again
recast the product (SV†) into a vector. By decomposing U into a collection of d
row vectors Aσ1 with entries Aσ1

a1 = Uσ1,a1 and writing ca1,(σ2...σL) as a (r1d× dL−2)

matrix Ψ(a1σ1),(σ3...σL), (A.5) becomes

cσ1...σL =
r1

∑
a1

Aσ1
a1Ψ(a1σ1),(σ3...σL) . (A.6)

Performing then another SVD on Ψ, we find

cσ1...σL =
r2

∑
a2

r1

∑
a1

Aσ1
a1 U(a1σ2),a2

Sa2,a2(V
†)a2,(σ3...σL) =

r2

∑
a2

r1

∑
a1

Aσ1
a1 Aσ2

a1,a2Ψ(a2σ3),(σ4...σL)

(A.7)
where now Aσ2 are d (r1 × r2) matrices having entries Aσ2

a1,a2 = U(a1σ2),a2
, Ψ is

a (r2d × dL−3) matrix and r2 ≤ r1d ≤ d2. Going further in performing SVDs,
at the end we find

cσ1...σL = ∑
a1,...,aL−1

Aσ1
a1 Aσ2

a1,a2 . . . AσL−1
aL−2,aL−1 AσL

aL−1 ≡ Aσ1 Aσ2 . . . AσL−1 AσL . (A.8)

8MPS are numerically manageable only in one dimension, but nothing prevents us to be more
general.
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Thus, we are finally able to write our quantum state |ψ〉 as matrix product state in the
form

|ψ〉 = ∑
σ1,...,σL

Aσ1 Aσ2 . . . AσL−1 AσL |σ1, . . . , σL〉 . (A.9)

More precisely, this representation of |ψ〉 takes the name of left-canonical matrix
product state as this MPS representation consists only in left-normalised matrices,
i.e. matrices satisfying

∑
σ`

Aσ`† Aσ` = 1 . (A.10)

A similar right-canonical matrix product state representation does exist as welly

|ψ〉 = ∑
σ1,...,σL

Bσ1 Bσ2 . . . BσL−1 BσL |σ1, . . . , σL〉 . (A.11)

where now these matrices obey

∑
σ`

Bσ`Bσ`† = 1 . (A.12)

and thus they are said to be right-normalised.
Before concluding the discussion of MPS, we want to underline two points.

Firstly, gauge degrees of freedom do exist in these representations, thus MPS are
not unique. Secondly, there exists a deep connection between DMRG and MPS, as
it has been discovered that finite-system DMRG leads to quantum states in MPS
form. Thus, it is possible and even more natural to rephrase the entire DMRG
implementation using the language of MPS as ITensor does.

A.2.2 Matrix Product Operators

The Matrix Product Operators (MPO) representation is straightforward once we
have become familiar with MPS. Indeed we may naturally generalise the expression
of a single coefficient of a MPS, namely

〈~σ|ψ〉 = Mσ1 Mσ2 . . . MσL−1 MσL (A.13)

and write the coefficients of an arbitrary operator Ô as

〈~σ|Ô|~σ′〉 = Wσ1,σ′1Wσ2,σ′2 . . . WσL−1,σ′L−1WσL,σ′L , (A.14)

where now the operator reads

Ô = ∑
~σ,~σ′

Wσ1,σ′1Wσ2,σ′2 . . . WσL−1,σ′L−1WσL,σ′L |~σ〉〈~σ′| . (A.15)

For our numerical simulations with DMRG we have used Hamiltonians in MPO rep-
resentations.
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