
Alma Mater Studiorum ⋅ Università di
Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

Evaluating the Impact of
Recommender Systems to Society

Relatore:

Chiar.mo Prof.

UGO DAL LAGO

Correlatore:

Chiar.ma

ASIA J. BIEGA

Presentata da:

VALENTINA

FERRAIOLI

Sessione II

Anno Accademico 2021/2022

Abstract

Nowadays, Recommender systems play a key role in managing informa-

tion overload, particularly in areas such as e-commerce, music and cinema.

However, despite their good-natured goal, in recent years there has been a

growing awareness of their involvement in creating unwanted effects on soci-

ety, such as creating biases of popularity or filter bubble. This thesis is an

attempt to investigate the role of RS and its stakeholders in creating such

effects. A simulation study will be performed using EcoAgent, an RL-based

multi-stakeholder recommendation system, in a simulation environment that

captures key user interactions, suppliers and the recommender system in

order to identify possible unhealthy scenarios for stakeholders. In particu-

lar, we focus on analyzing the document catalog to see how the diversity

of topics that users have access to varies during interactions. Finally, some

post-processing methods will be defined on EcoAgent, one reactive and one

proactive, which allows us to manipulate the agent’s behavior in order to

study whether and how the topic distribution of documents is affected by

content providers and by the fairness of the system.

Sommario

Negli ultimi decenni, con l’ascesa di YouTube, Amazon, Netflix e molti

altri servizi web di questo tipo, i sistemi di raccomandazione hanno preso sem-

pre più posto nella nostra vita. L’enorme volume di informazioni disponibili

sul web porta al problema del sovraccarico di informazioni, che rende difficile

per un decisore fare le scelte giuste. Questo diventa ovvio quando nella vita

di tutti i giorni ci troviamo di fronte a una lunga lista di elementi in un ne-

gozio di shopping online; più elementi sulla lista, più difficile diventa fare una

selezione. I Recommender System (rss) sono strumenti sviluppati con l’idea

di aiutare gli utenti a trovare gli articoli relativi a loro, con la previsione

delle loro preferenze o valutazione sugli articoli. Tuttavia, nel mondo reale,

l’applicazione è un po’ più complessa in quanto gli utenti non sono l’unica

parte coinvolta nel processo di raccomandazione. Un altro gruppo di attori

chiave, ad esempio, sono i fornitori di contenuti. Questi, infatti, manipolando

il catalogo di contenuti disponibili per la raccomandazione esercitano una

grande influenza sulla piattaforma e indirettamente sulla soddisfazione degli

utenti. Inoltre, nonostante il loro obiettivo benevolo, negli ultimi anni c’è

stata una crescente consapevolezza del loro coinvolgimento nella creazione di

effetti indesiderati sulla società. Infatti, per natura del loro design, il sistema

di raccomandazione è soggetto alla creazione di bias a seguito dell’interazione

tra i vari componenti. È proprio la presenza di questi bias che riduce drasti-

camente la qualità delle raccomandazioni e mette a rischio il benessere della

società.

Questa tesi è un tentativo d’indagare il ruolo di RS e dei suoi stakeholder

nella creazione di tali effetti. Sarà effettuato uno studio di simulazione uti-

lizzando EcoAgent, un sistema di raccomandazione multi-stakeholder basato

su RL, in un ambiente di simulazione che cattura le interazioni chiave tra

gli utenti, i fornitori e il sistema di raccomandazione al fine di identificare

possibili scenari malsani per le parti coinvolte. In particolare, ci concentr-

eremo sull’analisi del catalogo dei documenti per vedere come la diversità

degli argomenti a cui gli utenti hanno accesso varia durante le interazioni.

Nello specifico, abbiamo individuato la presenza di un bias sugli argomenti

disponibili, in quanto durante la simulazione un argomento viene creato con

una maggiore frequenza rispetto agli altri. Abbiamo quindi implementato

due tecniche di post-processing che modificano il comportamento dell’agente

nei confronti dei fornitori di contenuti al fine di definire sia il ruolo dei content

providers che quello della fairness del sistema nella creazione o amplificazione

di questi effetti. Le tecniche utilizzate creerannno prima una piattaforma

che massimizza il numero di fornitori disponibili e successivamente una che

si comporta correttamente nei loro confronti.

I risultati ottenuti mostrano che fornire un ambiente sano per i fornitori

di contenuti, dove tutti sono trattati in modo equo, si riflette nel mitigare

il bias di popolarità trovato sugli argomenti. Infatti, ricevendo raccoman-

dazioni, i fornitori di contenuti sono incoraggiati a creare nuovi documenti

in base alle loro preferenze che includono argomenti più di nicchia, aumen-

tando cos̀ı la diversità degli argomenti proposti. Inoltre, poiché più fornitori

creano documenti sugli stessi argomenti la possibilità che i documenti su un

particolare argomento siano polarizzati diminuisce, consentendo all’utente di

accedere a diversi punti di vista e quindi riducendo il rischio di restare in-

trappolato in delle echo chambers. Invece, come risultato della mitigazione

dei bias di popolarità sugli argomenti, abbiamo un catalogo più diversificato

tra cui scegliere gli elementi da raccomandare agli utenti. Questo ci permette

di soddisfare le preferenze degli utenti di cui siamo a conoscenza, ma anche

di verificare la loro posizione su quelli non ancora menzionati, aumentando

cos̀ı la probabilità di avere raccomandazioni nuove o serendipite.

Introduction

In recent decades, with the rise of YouTube, Amazon, Netflix and many

other web services of this type, recommendation systems have taken more

and more place in our lives. The huge volume of information available on

the web leads to the problem of information overload, which makes it tough

for a decision maker to make the right decisions. It becomes obvious when

in everyday life we face a long list of items in an online shopping store; the

more items on the list, the more difficult it becomes to make a selection. Rec-

ommender systems (RSs) are tools developed with the idea of helping users

to find items relevant to them, through the prediction of their preferences

or rating on items. Aligning the goal of a recommendation system with the

user utility is the most natural thing, since users are first-hand consumers of

recommendation services. However, in the real world, the application is a bit

more complex and users are not the only stakeholders involved in the recom-

mendation process. Another group of key players are content providers that

have a great influence on the platform and indirectly on user satisfaction,

through the manipulation of the content pool available for recommendation.

Therefore, depending on the stakeholders involved in the recommendation

issue, the data used to generate a recommendation, such as online user history

or preferences of people similar to them, and the technique used to generate

recommendations, we can distinguish different types of RSs. Among the

most important methods, we find traditional methods such as collaborative

filtering, content-based or knowledge-based methods in addition to the most

recently developed methods involving the use of machine learning techniques.

i

ii INTRODUCTION

Worthy of particular note, lately, are the methods that make use of re-

inforcement learning. These are more and more frequently adopted in real

life scenarios where it is necessary to model the complex interaction between

several stakeholders. The problem of recommendation, in fact, is well-suited

to be solved using reinforcement learning, where the recommendation system

represents a decision-maker that interacts with an environment composed of

users and content providers, it collects data through interaction and learns

to suggest the element that maximizes the objective of all stakeholders.

However, despite their good-natured goal, in recent years there has been

a growing awareness of their involvement in the creation of unwanted effects.

In fact, by nature of their design, the recommendation system is subject to

biases that are created during the interaction among the various components.

The presence of these biases drastically lowers the quality of recommenda-

tions and leads to the creation of some undesirable effects on society. For

instance, to name a few, it has been shown that they have reduced the

diversity between elements consumed by a user, which intensifies the homog-

enization of users, resulting in the creation of filter bubbles, in which the

user is only shown content similar to those he had already interacted with,

resulting in intellectual isolation, political polarization, and eco chambers.

Yet, these effects are hard to analyze since the items’ consumption is gov-

erned by a complex interaction between the users’ preferences, the content

provider’s intent, and the platform nature.

This thesis is an attempt to analyze these effects of RSs. To proceed with

this study, we used EcoAgent [Zha+21], a multi-stakeholder recommenda-

tion system based on RL, which captures the dynamics between users, agent

and content providers. Once the agent is trained and validated, we studied

how it behaves in a simulated environment and how its behavior affects other

elements of the environment, such as users, content provider, and the docu-

ment catalog. In particular, we focus on analyzing the document catalog to

see how the diversity of topics that users have access to varies. Once we iden-

tify the presence of a bias over the topics available on the platform, we see

INTRODUCTION iii

how applying post-processing techniques that modify the agent’s behavior

towards content providers reflects in the mitigation of the bias detected.

Structure of the thesis:

• Chapter 1 contains a theoretical introduction to RL where the main

ideas and elements are described, such as the concepts of reward,

policy and value function and its definition in relation to Markov’s

decision-making processes (MDP). Then the fundamental algorithmic

techniques used to solve it are explored, considering tabular, approxi-

mated and policy gradient methods. Finally, the differences with the

variant of Multi-Agent Reinforcement Learning (MARL) are explored.

• Chapter 2 contains the definition of the context of application of rec-

ommendation systems and explore some of the most important types

of recommendation systems: collaborative filtering, content-based sys-

tem, systems using learning approaches and multi-stakeholder system.

• Chapter 3 discusses the impact of recommendation systems on society,

by analyzing some of the underlying problems in the design of RS and

how these lead to the creation of biases that negatively affect society,

i.g creating filter bubble and echo chamber.

• Chapter 4 contains a simulation study on the effect of RS on the diver-

sity of topics to which users are exposed. EcoAgent, a multi-stakeholder

recommendation system based on RL, and the environment in which

it works will be introduced first. Later, we will further investigate how

the environment is affected by the behavior of the recommendation

system during simulation, focusing on identifying biases on topics. Fi-

nally, will be proposed two post-processing techniques that will allow

us to assess the role of content providers and the fairness of the system

in creating or amplifying such biases.

Contents

Introduction

1 Reinforcement Learning 1

1.1 Introduction to ML . 2

1.2 Reinforcement Learning . 5

1.2.1 Markov Decision Processes 8

1.3 Tabular Methods . 12

1.3.1 Dynamic Programming 13

1.3.2 Monte Carlo Methods 15

1.3.3 Temporal-Difference Learning 17

1.4 Approximate Methods . 18

1.4.1 Linear Function Approximator 18

1.4.2 Nonlinear Function Approximator 19

1.5 Policy Gradient . 20

1.5.1 Monte Carlo Policy Gradient 21

1.5.2 Actor-critic methods . 22

1.6 Multi-Agent RL . 23

2 Recommender Systems 25

2.1 Introduction . 26

2.1.1 Goals . 27

2.2 Types of Recommender Systems 28

2.2.1 Collaborative Filtering 29

2.2.2 Content-Based Systems 32

v

vi CONTENTS

2.2.3 Knowledge-Based Systems 34

2.2.4 Hybrid Systems . 36

2.2.5 Learning Approaches: 37

2.2.6 Multi-stakeholders Recommendations Systems 40

3 Recommender Systems and Society 43

3.1 Recommender Systems and Biases 44

3.1.1 Undesired Effects to Society 46

4 EcoAgent: a Case Study 49

4.1 Problem Formulation . 50

4.1.1 The User ↔ Agent Interaction 51

4.1.2 The Content Providers ↔ Agent Interaction 52

4.1.3 EcoAgent: a Provider-Aware Agent 53

4.2 Simulated Environment . 55

4.2.1 Environment Setup . 57

4.3 Experiments . 57

4.3.1 EcoAgents Training and Evaluation 57

4.3.2 Simulation Analysis . 62

4.4 Post-Processing Experiments . 67

4.4.1 Reactive Approach . 69

4.4.2 Proactive Approach . 71

4.4.3 Post-Processed Simulation and Results 73

4.5 Discussion . 78

Conclusion and Future Work 81

Bibliography 83

List of Figures

1.1 The agent-environment interaction in RL 7

1.2 Transition graph . 10

1.3 still to be modified . 11

1.4 Generalized Policy Iteration (GPI) 13

1.5 Policy Iteration . 15

1.6 REINFORCE algorithm . 21

1.7 REINFORCE-wb algorithm . 21

1.8 Actor-Critic algorithm . 22

2.1 Recommendation Techniques . 28

2.2 User-based example . 30

2.3 Item-based example . 31

2.4 Content-based example . 33

2.5 Knowledge-based approach example 35

2.6 Agent-user interaction . 40

3.1 Recommendation Techniques . 44

4.1 Interactions among Recommender Stakeholders 51

vii

viii LIST OF FIGURES

4.2 Illustration of EcoAgent structure. EcoAgent consists of three

components: (i) a user RNN utility model that embeds user

history into user hidden states and predicts user utility; (ii)

a content provider RNN utility model that embeds content

provider history into content provider hidden states and pre-

dicts content provider utility; (iii) an actor model that inputs

user hidden state and candidates (content, content provider

hidden state) to generate policy. Actor model is optimized us-

ing REINFORCE with recommendation reward being a linear

combination of user utility and content provider utility uplift 55

4.3 EcoAgent evaluation in a 20 steps simulation. EcoAgent (λ

close to 1) helps content providers by improving content provider

accumulated reward as compared to a user-oriented EcoAgent

(λ close to 0). 60

4.4 EcoAgent evaluation in a 100 steps simulation. EcoAgent

(λ close to 1) helps content providers by improving content

provider accumulated reward as compared to a user-oriented

EcoAgent (λ close to 0). 61

4.5 EcoAgents available content providers at the end of 20 and

100 steps simulation. 61

4.6 Overall topic distribution of documents in the simulation en-

vironment over interactions with EcoAgent. In this figure, the

plot shows how the overall topics’ distribution of the docu-

ments changes at each steps of the experiment, where each step

represents an interaction between users and content providers

with the recommendation system. 63

4.7 In this figure, it’s possible to observe the number of documents

for each topic at the beginning and at the end of the experiments. 64

4.8 Visual representation of the Gini Coefficient at time step 0

and 100 of EcoAgent using the Lorenz curve. 66

List of Figures ix

4.9 Median content providers’ satisfaction observed using EcoA-

gent with reactive post-processing at the beginning and at

the end of the simulation. 70

4.10 Visual representation of the Gini Coefficient at time step 0

and 100 of EcoAgent with reactive post-processing using

the Lorenz curve. 70

4.11 Median content providers’ satisfaction observed using EcoA-

gent with a proactive post-processing at the beginning and at

the end of the simulation. 72

4.12 Visual representation of the Gini Coefficient at time step 0

and 100 of EcoAgent with proactive post-processing using

the Lorenz curve. 72

4.13 Overall topic distribution of documents in the simulation en-

vironment over interactions with the Reactive Agent . . . 75

4.14 Overall topic distribution of documents in the simulation en-

vironment over interactions with Proactive Agent. 75

4.15 Number of documents for each topic at the beginning and at

the end of the simulation . 76

Chapter 1

Reinforcement Learning

Nowadays, whether we realize it or not, machine learning is everywhere –

automated translation, image recognition, fraud detection, self-driving cars,

and beyond. Lots of fields have benefitted from the application of machine

learning algorithms that make the most of the big data they have access

to, bringing a significant improvement in accuracy. In this thesis, we will

talk in depth about one field that has benefited from the use of machine

learning: recommendation systems. Recommendation system aims to help

users deal with a big amount of information by filtering only items that could

be relevant for them, based on various properties, such as their historical

preferences, similarity to what they are currently consuming or other similar

users have consumed and so on. Traditional recommendation methods have

evolved from simple matrix-based methods that only capture simple linear

interactions between users and items, to very complex methods that capture

higher orders and more sophisticated interactions. One method which has

been widely used recently is reinforcement learning.

In this chapter, we are going to briefly introduce machine learning and its

categories, and then we are going to deeply explore reinforcement-learning,

a computational approach to goal-directed learning by interaction, that fo-

cuses on providing solutions to teach machines and artificial intelligence to

act and learn in an environment, exactly as a human being. First, we provide

1

2 1. Reinforcement Learning

an overview of all its meaningful elements and its mathematical definition

in terms of a Markov Decision Process, finally we explore some of the ap-

proaches studied in literature to solve the RL problem, such as Tabular and

approximated methods and policy gradient methods. Everything we

will see in this chapter will help us to have a good theoretical understanding

of reinforcement-learning to see in the next chapters its application to the

recommendation problem.

1.1 Introduction to ML

Nowadays, whether we realize it or not, machine learning is everywhere –

automated translation, image recognition, fraud detection, self-driving cars,

and beyond. The term machine learning was first coined in the 1950s by

the Artificial Intelligence pioneer Arthur Samuel [Mah20; SB18], who built

the first self-learning system for playing checkers. He defined ML as the field

of study that gives computers the ability to learn without being explicitly

programmed. Machine learning is used to handle a high amount of data

efficiently because it is able to automatically find the valuable underlying

patterns among complex data that would otherwise be hard to discover.

Then, the hidden patterns and knowledge about a problem can be used to

predict future events and perform all kinds of complex decision-making.

However, the ML field is wide, indeed there is no single one-size-fits-all

type of algorithm that is best to solve every problem. The algorithms to

be used are chosen depending on the kind of problem you wish to solve,

the available data, the type of feedback it receives while learning, and many

other variables. We can classify ML algorithms into three broad categories

[Mah20]:

• supervised learning,

• unsupervised learning,

• reinforcement learning

1.1 Introduction to ML 3

Moreover, we must point out the existence of an important sub-field of ML,

Deep learning, which learns by mimic the mechanism of the human brain to

interpret complex data such as images, sounds and texts capturing hidden

features.

Supervised Learning

In supervised learning, the system learns from a set of input-output pairs,

which are called labeled examples. Each example consists of a pair (feature,

label) where the features match the input and provide the description while

the label matches the output and gives prior knowledge about the features,

for example, if the features are describing an object, the label could represent

the category it belongs. Therefore, given a training set, SL systems learn a

function that best approximates the relationship between input and output

observable in the data. Throughout the learning process, the learner looks at

the training data example and makes a guess about the output, a supervisor

- the label - which knows the right answer corrects its guess if required.

Learning ends when the learner achieves acceptable performances.Arrived

here, the system has acquired some kind of patterns that allows him to

generalize its responses so that it replies correctly also when it encounters a

description for the first time. This approach is mainly used for classification

and regression tasks.

Unsupervised Learning

In unsupervised learning, the system does not have any prior knowledge

about the data it is analyzing and there is not any supervision. The system

is fed with a set of examples composed of features only, and it is left alone

to discover and present any interesting hidden structures it detects in the

data through similarity detection and pattern recognition. When new data

is introduced, it uses the previously learned hidden structures to recognize

the class the data belongs to. The main tasks supervised learning tasks is

used for are: clustering, anomaly detection, association rules, feature

4 1. Reinforcement Learning

reduction.

Reinforcement Learning

Reinforcement learning is fundamentally different from supervised and

unsupervised learning in the sense that data are not provided as a fixed set

of examples. Rather, there is a learner or decision-maker, called agent, that

through interaction with an external world, called environment, collects

data and learns what to do by mapping situations to actions that maximize

a numerical reward. This approach, according to Sutton and Barto [SB18],

suits particularly well the so-called RL problem, which presents the follow-

ing characteristics:

1. the problem is closed-loop, which means that the learner’s action in-

fluences its later system

2. the learner does not have a tutor to teach it what to do, but it should

figure out what to do through trial-and-error,

3. actions influence not only the short-term results, but also the long-term

ones

Another peculiarity of reinforcement learning is that it explicitly considers

the whole problem of a goal-directed agent interacting with an uncertain

environment, while other approaches consider general sub-problems which

could lead to uncertainty when fitted in real-time decision-making problems.

Deep Learning

Deep learning can be generally considered to be a sub-field of machine

learning. It mimics the mechanism of the human brain to interpret data such

as images, sounds, and texts. Neural networks are inspired by the biological

neurons within the human body which activate under certain circumstances

resulting in an action performed by the body in response. Neural nets consist

of various layers of interconnected artificial neurons powered by activation

1.2 Reinforcement Learning 5

functions that help in switching them ON/OFF. Briefly, each neuron receives

a part of the inputs and random weights, which are then added with a static

bias value; this is then passed to an appropriate activation function which

returns the neuron output. Once the output is generated from the final

neural net layer, the loss function (distance between the actual value and the

predicted value) is calculated, and backpropagation is performed where the

weights are adjusted to make the loss minimum. Finding optimal values of

weights is what the overall operation focuses around.

Neural networks can be of different types, depending on their structure.

For example, Multilayer Perceptron (MLP) is the simplest form of neural

network where input data travels in one direction only - forward — from the

input nodes, through the hidden nodes (if any), and to the output nodes.

A more complex variation of MLP is called Convolutional Neural Network

(CNN), which is a special kind of feedforward neural network with convo-

lution layers and pooling operations; it suits particularly well for images

processing. Instead, Recurrent Neural Network (RNN) is different from feed-

forward nets since presents loops and memories in RNN to remember former

computations. [Zha+19]

1.2 Reinforcement Learning

To begin, it can be useful to observe how RL works using an example,

which we now describe: A mobile robot has the job of collecting empty soda

cans in an office environment. It has sensors for detecting cans and an arm

and gripper that can pick them up and place them in an onboard bin; it runs

on a rechargeable battery. The robot’s control system has components for

interpreting sensory information, for navigating, and for controlling the arm

and gripper. At each such time, the robot chooses the action to execute:

- (1) search - actively search for a can,

- (2) wait - remain stationary and wait for someone to bring it a can,

- (3) recharge - go back to home base to recharge its battery

6 1. Reinforcement Learning

We know that finding a can produces high reward and the best way to find

cans is to actively search for them, but this runs down the robot’s battery,

whereas waiting does not. Whenever the robot is searching, the possibility

exists that its battery will become depleted and it will need to be rescued,

producing low reward. The robot act considering the level of the battery.

It is easy to detect the agent - the robot - and the environment -

any aspect the agent can sense, such as information about the room or its

energy level. Moreover, we confirm that the example above presents all the

characteristics of a RL problem, indeed the agent is not told which actions

to take, and actions may influence not only immediate rewards, but also the

consequent situations and therefore the subsequent rewards. So far, we can

state that we have all the elements to solve our RL problem using reinforce-

ment learning. On the other hand, there are four other main sub-elements

that can be identified in a reinforcement learning system and that help to

understand how the agent-environment interaction works:

• policy: it is generally indicated as π and defines how an agent behave

in a particular situation. To do so, it maps perceived states of the

environment to actions to be taken when in those states.

• reward signal: is an immediate feedback, in numeric form, on how

good or bad was the action taken by the agent according to the pol-

icy. We must point out that the reward for a given action is non-

deterministic because it depends also on the current state of the agent’s

environment. In our example above, the agent deciding to go after a

can 5 m away can generate a high reward over this run, but lower in a

situation where it risks shutting down because of low battery. Further-

more, the reward directly affects the policy changing the probability of

taking an action, as a result of the reward obtained.

• value function: indicates the long-term desirability of states, it con-

siders the rewards generated by the current states plus those generated

by the states which are likely to follow. For example, a state might

1.2 Reinforcement Learning 7

always yield a low immediate reward but still has a high value because

it is regularly followed by other states that yield high rewards, and

vice versa. For example, picking one more can when the robot has low

energy may yield a high reward, but bring to a state with low value

since it may not be able to reach the charging station, producing low

reward until it is rescued. Thus, the goal is to select actions that bring

the agent to states of the highest value and reward over the long-run.

• model: provides dynamics about the behavior of the environment. For

instance, the model can predict next state and next reward in a given

state and action.

To sum up, in a reinforcement learning system the agent and the environment

interact in the following way:

Figure 1.1: The agent-environment interaction in RL

Formally, the agent and environment interact at each of a sequence

of discrete time steps, t = 0,1,2,3, where at each time step t, the agent

observes the environment, receiving some representation of its state St ∈ S,
and upon that, selects an action,At ∈ A(s), from the set of all possible actions.

At the following time step, the agent receives a numerical reward Rt+1 ∈ R
and enters a new state, St+1, both determined by the environment dynamics.

In order to pick an action, the agent refers to a policy πt that gives the

probability of taking action a ∈ A(s) when the agent is in state s, π(a∣s).
The policy changes over time as a result of the agent’s experience, which

means that if an action got a good reward, its likelihood of being selected in

8 1. Reinforcement Learning

the next step will be higher. The agent’s goal, roughly speaking, is to find

the optimal policy that maximize the total amount of reward it receives over

the long-run, by choosing actions that maximizes the value function.

Anyway, by simply choosing the action that maximizes the value func-

tion, we face one of the main challenges of RL, namely the trade-off between

exploration and exploitation. Indeed, to obtain a high reward, a rein-

forcement learning agent must prefer actions that it has tried and found to

be effective in producing reward. But to discover such actions, it has to

try actions that it has not selected before. The agent has to exploit what

it already knows in order to obtain the reward, but he must also explore

to have the best action selected in the future. The dilemma is that neither

exploration nor exploitation can be pursued exclusively without failing at

the task. The agent must try a variety of actions and progressively favor

those that appear to be the best. In the next sections, we will see how to

concretely solve the RL problem framed, and we will introduce some of the

most famous algorithms used in RL.

1.2.1 Markov Decision Processes

Markov decision processes (MDPs) are a tool that can allow us to describe

the reinforcement learning problem in a mathematical way. In particular, it

describes the environment and its behavior through a tuple (S,A,R,P, γ),
and the agent behavior - the policy - as the probability distribution over

actions given states π(a∣s) = P[At = a∣St = s]. The only condition required

to formalize the problem as an MDP is that every environment states sat-

isfy the Markov Property, meaning that states contain, other than current

information, a summary of past sensation, in such a way that all relevant in-

formation is retained. Formally, an MDP is defined as a tuple (S,A,R,P, γ),
where

• S is the set of all possible states,

• A is the set of available actions in all states,

1.2 Reinforcement Learning 9

• R is the reward function R ∶ S ×A→ R, r(s, a) = E[Rt+1∣St = s,At = a]

• P is the transition probability that guide the environment behavior,

also called dynamics

p(s′∣s, a) = Pr{St+1 = s′∣St = s,At = a} (1.1)

• and γ is the discount factor.

The problem describes above can be formalized as an MDP (S,A,R,P, γ)
where, S = {high, low}, the agent’s action sets are A(high) = {search, wait};
A(low) = {search, wait, recharge} and the transition probability and ex-

pected reward are collected in Figure 1.1. The example can be summarized

in the transition graph in Figure 1.2.

s s′ a p(s′∣s, a) r(s, a, s′)
high high search 0.7 3

high low search 0.3 2

low high search 0.2 - 3

low low search 0.8 -1

high high wait 1 -2

high low wait 0 -

low high wait 0 -

low low wait 1 0

low high recharge 1 0

low low recharge β 0

Table 1.1: Dynamics’ table.

10 1. Reinforcement Learning

Figure 1.2: Transition graph

Once the problem is formalized as MDP, we can focus on solving it by

finding the best path that will maximize the sum of rewards over the long-run.

The solution involves estimating value functions of states that evaluate

how good it is for the agent to be in a given state, defined in terms of future

expected return when starting in s and following the policy π thereafter.

The value function is defined in terms of the expected future reward,

Gt = Rt+1 + ..+ γRt+2, which represents the total amount of reward the agent

could receive over the long-run, which it seeks to maximize. Its peculiarity

of satisfying the Bellman equation, which says that the value function

can be decomposed into two parts, the immediate reward plus the discounted

future values, allows decomposing a complex problem, into simpler, recursive

sub-problems and finding their optimal solutions. It can be of two kinds:

• State-value function, indicated as vπ, evaluate “how good” is the state

you are in and is defined as

vπ(s) = Eπ[Gt∣St = s] = Eπ[Rt+1 + γqπ(st+1,At+1)∣St = s,At = a] (1.2)

• Action-value function, indicated as qπ, evaluate “how good” is it to

1.2 Reinforcement Learning 11

take a particular action in a particular state and is defined as

qπ(s, a) = Eπ[Gt∣St = s,At = a] = Eπ[Rt+1 + γvπ(st+1)∣St = s] (1.3)

The maximization of the value function over all policies gets the optimal

value functions, q∗ and v∗, that specify the best possible performance we

can obtain from the MDP. Then, it is easy to find the optimal policy just

by picking action that maximize q∗(s, a):

q∗(s, a) =maxπqπ(s, a)

v∗(s) =maxπvπ(s)
(1.4)

π∗(a∣s) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if a = argmaxa∈Aq∗(s, a)

0, otherwise

Therefore, once we formalize the RL problem as MDP, we dispose of all

the elements required to find the optimal value function, and thus the optimal

policy that maximize expected reward. The solution of the former example

will be:

Figure 1.3: still to be modified

12 1. Reinforcement Learning

Reinforcement-Learning Algorithms

In the previous section, we demonstrated that it is possible to solve an RL

problem by solving the Bellman optimality equation, however, there are tasks

where this approach is too costly. This is due to the high computational cost

they could require, given the necessity of an exhaustive search, looking ahead

at all possibilities, computing their probabilities of occurrence and their de-

sirabilities in terms of expected rewards. In tasks with small, finite state

sets like the one we have analyzed, it is possible to reduce the computational

cost by storing the value functions, avoiding useless re-computation. This

approach is known as tabular method. Whereas, in tasks where the state

space is too large to be stored, the value functions must be approximated

using so-called approximated methods. Another method used very often

is policy gradient methods, which learns directly to optimize a parame-

terized policy without consulting the value function. The rest of the chapter

will cover the main algorithms we can use to solve RL problems, consider-

ing all methods named above: tabular methods, approximated methods, and

policy-gradient methods.

1.3 Tabular Methods

Tabular methods are well-suited to solve RL problem with a small state

and action space so that the approximate values are stored in arrays or tables.

The three most important tabular methods are:

• Dynamic Programming, which are well-developed mathematically, but

require a complete and accurate model of the environment.

• Monte Carlo methods, which do not require a model and are concep-

tually simple, but are not suited for step-by-step incremental computa-

tion, which means they do not allow improving the policy step-by-step

as new information is available.

1.3 Tabular Methods 13

• Temporal-Difference learning, methods require no model and are fully

incremental, but are more complex to analyze.

1.3.1 Dynamic Programming

Dynamic programming (DP) is a collection of algorithms that can be used

to compute optimal policies assuming to have access to a perfect model of the

environment in MDP form. On one hand, DP methods are well-developed

mathematically to the point that they provide the theoretical foundation on

which other methods, such as MC and TD, are built. On the other hand, the

assumption of having access to a perfect model is extremely limiting. After

all, MC and TD are attempts to achieve the same results as DP, but with

lighter computation and with a loosen assumption about the environment.

Figure 1.4: Generalized Policy

Iteration (GPI)

Solving an MDP consists in - accord-

ing to the prediction problem (or policy

evaluation) - estimate the value function

given a policy and - according to the con-

trol problem (or policy improvement) -

in finding an optimal value function or opti-

mal policy. The general idea of running mul-

tiple times policy evaluation and policy

improvement that work together to find

an optimal value function and an optimal

policy, is known asGeneralized Policy It-

eration.

Assuming to have access to a perfect model and a policy π0, DP algo-

rithms can solve an MDP using two methods: Policy Iteration and Value

Iteration. In policy iteration, the two phases are dependent. So, at each

iteration, the policy evaluation is done considering a sequence of approxi-

mated value functions v0, v1, v2, ... where the initial v0 is chosen arbitrarily,

and each following approximation is obtained applying the equation 1.5 as an

update rule until it converges to the optimal value function vπ. We must recall

14 1. Reinforcement Learning

that all previously computed estimations are stored in tables, and note that

Eq. 1.5 updates vk+1 using an existing estimate, vk, this mechanism is called

bootstrapping. Only once the policy evaluation has converged, the policy im-

provement phase begins, which will greedily updates the policy taking, in

every state, the action that maximize the value function, π1 = argmaxv∗(s).
Multiple iterations of evaluation and improvement may be required before

the optimal policy can be achieved. We can summarize this process in Eq.

1.6 where
EÐ→ denotes a policy evaluation,

IÐ→ denotes a policy improvement,

and ⇢ denotes policy evaluation’s iteration to converge.

vk+1(s) = Eπ[Rt+1 + γvk(st+1,At+1)∣St = s,At = a] (1.5)

π0
EÐ→ vπ0 ⇢ v∗π0

IÐ→ π1
EÐ→ vπ1 ⇢ v∗π1

IÐ→ π2
EÐ→ . . .

IÐ→ π∗
EÐ→ v∗ (1.6)

May be useful to look at an example to have a better understanding of

the algorithm: suppose we have a grid world with 14 states, where each

block represents a state and the top left and bottom right state are terminal.

We can move up, down, left and right with each transition and we get an

immediate reward of -1 until a terminal state is reached. We consider a

discount factor γ=1 and a uniform random policy π(up∣S) = π(down∣S) =
π(right∣S) = π(left∣S) followed by our agent, as in Fig. 1.5b. To solve

the prediction problem, we need to evaluate our policy. At the beginning

v0 is initialized at 0, then we compute v1 using 1.5, and then v3, v4.. until

it eventually converges to vπ. Then, in the policy improvement, first we

extract q(s, a), then we update the policy taking π1 = argmaxq∗(s, a), which
will result in Figure 1.5b. If it is different from the previous one, we do again

policy iteration until we find the optimal policy.

1.3 Tabular Methods 15

(a) Policy evaluation (b) Policy

improvement

Figure 1.5: Policy Iteration

In value iteration, instead, policy evaluation and policy improvement

are combined together taking, for each state, the maximum action-value as

the estimated state value. Once state-values have converged to the optimal

state-values, can be extracted the optimal policy. using the following update:

vk+1(s) =maxaEπ[Rt+1 + γvk(st+1,At+1)∣St = s,At = a]

A major limitation in these DP approaches is that they require to perform

operations over the whole state set, that can result in a greatly expensive task

when the state is large.

1.3.2 Monte Carlo Methods

The Monte Carlo methods (MC), unlike DP, do not require complete

knowledge of the environment. For instance, they do not have access to

transition probability or to the reward structure, so the only way to under-

stand how the model evolves is by trying things out. This makes Monte Carlo

methods learn directly from experience, but they are limited to be applied

to episodic tasks.

16 1. Reinforcement Learning

As for prediction problem, MC methods are more interested in estimating

the value of actions qπ(s, a), than the states-value vπ, because the lack of a

model does not allow having information about the next states. An obvious

way to estimate the action-values of a state s from experience, composed of

a set of episodes obtained following π then, is simply to average the returns

observed after visits to that state in each episode. MC differentiates between

a first-visit method and an every-visit method : in the former, vπ is estimated

by averaging on the returns following first visits to s, while the latter averages

the returns following all visits to s. The idea is that as more returns are

observed, the average should converge to the expected value.

As for control problem, the policy improvement is done by taking greedy

actions in each state. However, this may lead to a deterministic policy where

low reward actions are never selected, compromising the achievement of max-

imum reward given the impossibility of exploring all possible paths. In fact,

as described so far, MC exploit actions that it has tried and found to be

effective, but it never explores new actions. So, to encourage exploration, it

is necessary to introduce the definitions of on-policy and off-policy methods.

On-policy learning evaluates and improves the same policy which is being

used to select actions. The mechanism used to encourage exploration con-

siders ϵ − greedy policies, meaning that generally they select action greedily,

but with probability ϵ they select a random action. The off-policy approach,

instead, solves the dilemma of a policy trying to learn action values con-

ditionally on optimal behavior while still behaving non-optimally to allow

exploration. This is done through decoupling of the policy in two: the policy

being learned about, called target policy, and the policy used to generate the

data, called behavior policy. One possible way to achieve this is using an

importance sampling mechanism, that is, weighting returns by the ratio

of the probabilities of taking the observed actions under the two policies.

Also in this case, many evaluation and improvement iterations may be

needed to reach the optimal policy. MC methods do not allow alternating

policy evaluation and improvement on a step-by-step basis, though they al-

1.3 Tabular Methods 17

ternate on an episode-by-episode basis, allowing to compute qπ(a, s) using
episodes right away. This approach is known as incremental method and

suits particularly well in non-stationary problems, where the true value is

going to vary over time, so we do not care about old episodes. The idea

derive directly from GPI, and we can summarize what happen as:

π0
EÐ→ qπ0

IÐ→ π1
EÐ→ qπ1

IÐ→ π2
EÐ→ . . .

IÐ→ π∗
EÐ→ q∗

1.3.3 Temporal-Difference Learning

Temporal-Difference Learning combine both MC and DP approaches.

Similarly to MC, it does not access a perfect model and learn from expe-

rience, whereas like DP, they update state-value estimates based in part on

other learned estimates, without waiting for a final outcome (they boot-

strap)[SB18].

Regarding the prediction problem, TD methods wait only until the next

time step to update the state-value. At time t+1, once they have information

about the reward gained with the action selected at time t, they immediately

form a target and make a useful update using the observed reward Rt+1 and

the estimate V (St+1). The simplest TD method, known as TD(0), is

V (St)← V (St) + α[Rt+1 + γV (St+1) − V (St)]

As for the control problem, both on-policy and off-policy methods, can be

used. The on-policy methods make use of action-value since, as for MC, it is

more informative in situation where the environment dynamics are unknown.

Then it updates the policy using ϵ−greedy policy improvement. This method

is known as Sarsa, and takes its name from the elements used in its update

rule (St, At,Rt+1, St+1, At+1):

Q(St,At)← Q(St,At) + α[Rt+1 + γQ(St+1,At+1) −Q(At, St)]

The off-policy method is called Q-learning. It uses the behavior policy to

explore the environment and to define the next state, S’, that has to be vis-

ited. Then, it evaluates the action-value as in Eq. 1.7 considering Q(S′, a′),

18 1. Reinforcement Learning

where a′ is the action chosen by π, to reach the state S’ decided by the

behavior-policy. The target policy is updated greedily π =maxaQ(St+1, a′).

Q(St,At)← Q(St,At) + α(Rt+1 + γmaxaQ(St+1, a′) −Q(St,At)] (1.7)

1.4 Approximate Methods

So far, we have assumed that our estimates of value function could be

represented as a table, with one entry for each state/state-action pair. Even

though this method is easy to explain, it is usable only for tasks with small

numbers of states and actions. For example, using a tabular method for chess

is impossible, because we would need to evaluate and store the results of each

state. In fact, a board has 64 possible positions and 32 pieces, so the state

space consists of all possible board configurations, about 10120 states, which

makes the calculation extremely expensive in terms of time and space.

Therefore, large state space RL problems, such as chess, must be solved

with a different approach. Assuming that we have access to past-experience

generated by following a policy π, we must estimate the value function

through a function approximator, v̂(s,w) that learns the function that best

fit the experience adjusting a weight vectorw using gradient-descentmeth-

ods. We will write v̂(s,w) ≈ vπ(s) for the approximated value of state s given

weight vector w. This method, known as function approximation, is an

instance of Supervised Learning. It allows generalizing from seen states to

unseen states and considerably reduces the memory cost, since it only needs

the weight vector to estimates all the state-values, which otherwise would

have been stored with the tabular approach.

1.4.1 Linear Function Approximator

Linear Function Approximator is one of the most important special

cases of gradient-descent function approximation that approximate the func-

tion v̂, as a linear function of the parameter vector, w. It needs states to

1.4 Approximate Methods 19

be represented as a features vector x(S) = (x1(s), x2(s), ..., xn(s))⊺, where
each feature x(Si) is giving some information about the state. As always,

we begin from the prediction problem, the approximate state-value function

is given by a linear combination of features v̂(S,w) = w⊺x(S) =. Supervised
learning is applied to training data, to find the weight vector w that best

approximate the value-function. It aims to minimizing the loss between the

approximated value-function and the true value-function, to do so it uses

stochastic gradient descent that indicates the direction towards w’s weight

need to be moved to minimize the loss function. The control method, also

in this case, uses an action-value function. Afterwards, policy improvement

is done by changing the target policy to the greedy policy - in off-policy

methods- or to an ϵ − greedy policy, in on-policy methods.

1.4.2 Nonlinear Function Approximator

RL application that use linear approximation have relied on hand-crafted

features combined with linear value functions. Clearly, the performance of

such systems heavily relies on the quality of the features’ representation.

However, in certain cases, we can have access to poor quality features. For-

tunately, recent advances in deep learning have made it possible to extract

high-level features from raw sensory data, leading to breakthroughs in com-

puter vision, speech recognition etc. The same idea has been used in RL,

using neural network trained on raw data, that learn better representation

than linear approximator. This class of algorithm is known as deep rein-

forcement learning.

One of the most common algorithm of this class is DQN, which makes

use of two different techniques to enable relatively stable learning: experience

replay and target networks. Experience replay stores samples < s, a, r, s′ > in
a buffer, randomly samples a mini-batch, and performs the above update

over that mini-batch. This approach helps reduce the correlation between

consecutive samples, which can otherwise negatively effect gradient-based

methods. The second element, the target network, maintains a separate

20 1. Reinforcement Learning

weight vector θ to create a temporal gap between the target action-value

function and the action-value function that updates continually. The sepa-

rate weight vector. θ̂, is synchronized with θ after some period of time chosen

as a hyperparameter. The algorithms at each time step t selects an action

ϵ − greedily with respect to the action values, then, saves the tuple of expe-

rience (St,At,Rt+1, γ, St+1) into a replay memory buffer that can store up to

one million transitions. Subsequently, the weights of the network are opti-

mized using stochastic gradient descent (Rt+1+γmax′aqθ(St+1, a′)−qθ(St,At))
to minimize the loss. Back-propagation through gradient descent, however,

is made only into the parameter θ of the Q-network - the network used to

estimate actions’ values - whereas the T-network parameters θ is updated

only after a certain number of time steps as copy of the Q-network, and it is

not directly optimized.

1.5 Policy Gradient

So far, all methods considered follow the same approach: learning the

value function and then selecting actions based on estimated values.

In this section we consider methods that, instead, learn directly to optimize

a parameterized policy without consulting a value function. The key idea

underlying this method is reinforcing good actions: to push up the probabil-

ities of actions that lead to higher return, and push down the probabilities

of actions that lead to a lower return, until we arrive at the optimal policy.

Policy gradient methods focus on learning a parameterized policy π(a∣s; θ),
where θ ∈ Rd is the policy’s parameter vector, and π(a∣s; θ) is the probability
that action a is taken at time t given that the environment is in state s at

time t with the parameter θ. Policy gradient methods involve performing

stochastic gradient ascent on some performance measure J(θ), so that every

update step has the form θt+1 = θt + α ˆ∆J(θt) where α is a learning rate and
ˆ∆J(θt) is the gradient of J .

1.5 Policy Gradient 21

1.5.1 Monte Carlo Policy Gradient

REINFORCE is a MonteCarlo method that uses episode samples in or-

der to update the policy parameter θ. We consider a policy (here a neural

network) and initialize it with some random weights. Then we play for one

episode and after that, we calculate discounted reward from each time step

towards the end of the episode. This discounted reward (G in the code below)

will be multiplied by the gradient.

Figure 1.6: REINFORCE algorithm

Figure 1.7: REINFORCE-wb algorithm

Amajor problem with REINFORCE is the high variance in the estimation

of the gradient it suffers from, which it is due to its MonteCarlo nature

22 1. Reinforcement Learning

that implies taking multiple random actions. To overcome this problem, an

estimate of a state-value function q̂(At, St,w) can be added to the update

rule as a baseline to reduce variance. The action-value q̂(At, St,w) is learned
using one of the methods presented in the previous sections, e.g. MC methods

or approximated methods. However, We must point out, that the action

value acts just as a baseline, and it is not used for bootstrapping in order to

improve the policy. Its only purpose is to stabilize REINFORCE variance in

order to speed up the learning process.

1.5.2 Actor-critic methods

Actor-Critic is a class of algorithms that estimate both a parameterized

policy and an action-value function, using the latter estimate to learn the

former, they are actually among the first algorithms studied in the literature.

Actor-Critic methods are composed of two processes. A critic, that inform

the actor about how good was the action taken through the evaluation of the

state is in, and an actor, that updates the policy in the direction suggested

by the critic, using policy gradient.

Figure 1.8: Actor-Critic algorithm

1.6 Multi-Agent RL 23

1.6 Multi-Agent RL

In a multi-agent system (MAS) multiple agents interact sharing the same

environment. In this domain, MDPs are generalized to stochastic games or

Markov games. MARL introduces a series of challenges to those already

present in single agent RL, such as the curse of dimensionality that becomes

even more problematic given the exponential growth of the state-action space,

the problem of specifying a suitable goal, since agents’ returns are correlated

and cannot be maximized independently - from this the difficulty in shaping

the reward, both in cooperative settings, where agents have a common goal,

competitive and mixed. The exploration-exploitation dilemma is made more

complex since agents need to explore not only to obtain more knowledge

about the environment, but also on other agents. On the other hand, too

much exploration can lead to destabilization of the other agents that are

concurrently learning from the environment and the agent as well.

24 1. Reinforcement Learning

Chapter 2

Recommender Systems

In recent decades, with the rise of YouTube, Amazon, Netflix and many

others similar web services, recommendation systems have taken more and

more place in our lives. From e-commerce (suggesting buyers items that

might interest them) to online advertising (suggesting users the right con-

tent, corresponding to their preferences), recommendation systems are now

inevitable in our daily online journey. In a very general way, all recommen-

dation systems have a common goal: to help people choose the most relevant

element for them, among the huge amount of options available. However,

the real-world application is a bit more complex and users are not the only

stakeholders involved in the recommendation process. In fact, there are other

parties that benefit from a good recommendation whose perspective should

be integrated into the design of recommendation systems, such as suppliers

of goods or services for sale and the system behind the platform. There-

fore, based on the stakeholders involved in the recommendation issue and

the data used to generate a recommendation, such as online user history or

preferences of people similar to them, and the technique used to generate

recommendations, we can distinguish different types of RSs.

Moreover, despite their good-natured aim, in recent years has grown

awareness of their involvement in the generation of some negative effects

to which society is subject, e.g. the spread of disinformation, homogeniza-

25

26 2. Recommender Systems

tion of users, the creation of filter bubbles and echo chambers. Given our

interest in understanding the impact of the recommendation system on soci-

ety, it is crucial to first have a solid understanding of how recommendation

systems work thus, in the rest of this chapter, we will explore different types

of recommendation systems.

2.1 Introduction

Recommender systems play a vital role in dealing with information over-

load, especially in domains such as e-commerce, music and film industries.

They are a set of technologies used to sort information or goods a user might

be interested in among everything provided by the website. For instance, the

Netflix movies catalog is too big to be displayed to a user. Therefore, it is im-

portant to detect user preferences, and display just items that are most likely

to be relevant for the user. This, of course, is beneficial to the individual user

as well as the e-commerce owner. In fact, suggesting an element that matches

the user’s preferences increase his satisfaction, which increases the likelihood

that the user will use the website again and consume other elements of the

platform, consequently generating more income for the e-commerce owner.

The first recommendation system implemented was Tapestry [Gol+92]. It

was based on the simple observation that people often rely on the recommen-

dations of others in their daily decisions, for example, when selecting a book

to read. Thus, it tried to simulate this behavior, collecting users’ opinions

about an item to deliver useful recommendations to an active user look-

ing for suggestions, and the author termed it collaborative filtering [RRS11].

However, later this term was integrated into the more generic recommender

systems, which refers to any system that guides a user in a personalized way

to interesting or useful objects in a large space of possible options or that

produces such objects as output [FB08].

Recommendation systems, indeed, can use different approaches depend-

ing on the context they are working on, the type of data available and how

2.1 Introduction 27

they produce the recommendation. Among the most important methods,

we find the already mentioned collaborative filtering [Res+94], but also

content-based or knowledge-based methods in addition to the methods

developed more recently that involve the use of machine learning techniques,

as Reinforcement Learning Recommender System (RLRS) methods.

2.1.1 Goals

Recommendation systems are designed to let the needs of users meet

those of the platform. In the case of e-service providers, we have seen that

the obvious reason to use recommender systems is to increase the number

of users that accept the recommendation and consume an item, generating

profit. Whereas, user’s primary motivation is to find useful items. Both these

goals can be reached by achieving less obvious sub-goals [Agg+16; RRS11]:

• Relevance: The main goal of a recommender system is to recommend

items that are relevant to the user at hand.

• Novelty: There are items that the user has not seen in the past. For

instance, in a movie RS such as Netflix, the service provider is interested

in renting all the movies in the catalog, not just the most popular ones.

Therefore, a RS suggests or advertises unpopular movies to the right

user.

• Serendipity: The goal is to recommend items that are unexpected

and yet useful. Serendipity is different from novelty because they are

re not just recommending something he did not know about, but it is

outside the user’s expectations.

• Increasing Diversity: if more than a single item is recommended

in each session, having several different items increases the chances

that the user might like at least one of them. Moreover, diversity has

the benefit of ensuring that the user does not get bored by repeated

recommendation of similar items.

28 2. Recommender Systems

2.2 Types of Recommender Systems

Figure 2.1: Recommendation Techniques

In most of the common formulation, the recommendation problem is re-

duced to the problem of estimating ratings, where rating are seen as the

utility of an item for the user, that we want to maximize [AT05]. Intu-

itively, this estimation is usually based on the ratings given by this user to

other items. Once we can estimate ratings for the yet unrated items, we can

recommend to the user the items with the highest estimated ratings. Rec-

ommendations are make using different techniques, that are characterized by

the knowledge-source they have access to and the type of algorithm used

to estimate the utility. Specifically, knowledge-source is composed of [Bur02;

RRS11]:

• background data the system have access to before the recommendation

process begins. It could include a single user’s past-experience, every

user’s past-experience, items’ features or in some case some deeper

knowledge about the domain they are operating in.

2.2 Types of Recommender Systems 29

• input data, represents the information that the user must communi-

cate to the system in order to generate a recommendation.

On this basis, we can have different techniques of recommendation, which

combine different sources of knowledge and algorithmic approaches. In Fig.

2.1 we see some of the most important RS types, which we will analyze in

detail in the next sections.

2.2.1 Collaborative Filtering

Collaborative filtering is the first technique developed in the recommender

system field. The knowledge sources here are community and user’s opin-

ions. The system matches the profile of the active user, who is looking for a

recommendation, with those in the community with similar taste by taking

into account past rating history. Then, it suggests to the active user new

items which have not yet been seen, but that have been liked by its peers in

the past [Bob+13]. To do so, many algorithmic approaches can be used; the

two more important are:

• memory-based methods: [Agg+16] They are based on the fact that

similar users display similar patterns of rating behavior and similar

items receive similar ratings. Therefore, identifying similar users or

items can be exploited to make recommendations. In particular, we

can distinguish two techniques:

– user-based: To catch the intuition behind these systems, we in-

troduce this algorithm with the following example. Supposing to

have access to the opinions of a small community composed of Bob

and Anne, and to the active user’s history, Alice. The first thing

the system needs to do is to find users who share Alice’s rating

patterns. In the situation described in Figure, for instance, we can

say that Alice and Bob are similar, because they both liked Titanic

and Matrix. So, Bob and Alice are neighbors in terms of movie

interest. Instead, Anne does not share Alice’s taste. Therefore,

30 2. Recommender Systems

it makes sense to recommend to Alice a movie that her neighbor,

Bob, has already seen and appreciated, meaning Joker.

(a) Step 1: defining Alice’s neighborhood in terms of movie interests.

(b) Step 2: choose the most interesting movie for Alice, among those appreciated by her

neighbors.

Figure 2.2: User-based example

Technically speaking, in order to decide if an unseen item X would

be appreciated by user A, we use similarity measures and apply

2.2 Types of Recommender Systems 31

the k-nearest neighbor algorithm. In other words, we:

1. compute the similarity between the target user and all other

users

2. define the neighborhood of the target user, denoted N(u),
composed of a subset of similar users whom have rated the

unseen item.

3. compute the utility of X for the active user, averaging the

ratings given by users in the set of N(u). Only if the resulting

rating is above a certain threshold, X will be recommended.

– item-based : In the item-based approach, we look for the neigh-

borhood to which an object belongs based on users’ behavior. For

example, Oceania and Matrix are considered neighbors, as they

were positively rated by both Jack and Alice. So, Oceania can

be recommended to Bob, as he has already shown interest in Ma-

trix. We must highlight that here items’ content (features) are

not taken into account for recommendation generation.

Figure 2.3: Item-based example

32 2. Recommender Systems

Technically speaking, we act similarly to the user-based approach.

This time, we compute the similarity between the target item and

all other items by comparing their ratings among users. Then

we define the neighborhood of the target item i, composed of it

similar items which have also been rated by the user u, denoted

Nu(i), . Finally, we rate i, as the average of the ratings from users

in the set Nu(i).

• model-based: a model is derived from the historical rating data and

used to make recommendations. Some of the techniques used in model-

based recommender system are clustering and neural networks.

The main advantage of CF is that it can perform well in environments where

there is not much content associated with items or where items are too com-

plex. Furthermore, it has proved to provide serendipitous recommendations

[IFO15]. On the other hand, CF methods suffer in situations where there is a

lack of previous ratings. On the contrary, the main problems they encounter

are data sparsity and cold start problems, where data sparsity means

that few ratings of the active users are available, and it is then hard to find

reliable similar users, while the cold start problem is encountered when a

new user or item has joined the system, so the system does not have enough

interactions to make a useful prediction.

2.2.2 Content-Based Systems

Besides collaborative filtering, which tries to predict the target user be-

havior based on the community’s rating, there is another important class

of recommender systems, called content-based. Content-based systems, have

access to items’ features (or content) and to the active user’s history. They

analyze the target user’s history to learn the profile of the user’s interests,

based on the features presented by the items the user has rated [Bur02]. This

allows to predict the user’s behavior towards an item and to suggest items

that better satisfy his interests.

2.2 Types of Recommender Systems 33

To catch the intuition behind this system, we can see how it behaves in

the following situation: we have a system that has access to Alice’s past

history and to a catalog. The catalog is composed of just six movies, where

the item features represent the genres they belong to. From Figure 2.4, we

can see that Alice has already watched and rated three movies from the

catalog. Now, the task of the recommender engine is to pick the movie that

she would enjoy most among the three movies left. To do so, the system has

to extract Alice’s interests from her past interactions. For example, it notices

that she gave a high rating to Guardians of the Galaxy and Captain America,

which are both Comedy and Superheroes genres, hence, it concludes that she

enjoys these genres. By analyzing the features of the three movies she has not

watched yet, the engine ends up suggesting Spider-Man because it belongs to

both the comedy genre and superheroes, and is therefore the one that best

suits her interests.

Figure 2.4: Content-based example

On the one hand, CB systems overcome some of the issues of CF systems.

They are able to recommend new items even if there are no other users’

ratings, as long as they match user interest. Therefore, they do not suffer

from the new item problem encountered by the CF system. Moreover, they

capture changes in the user’s interests, adjusting recommendations in a short

time. On the other hand, they still suffer from new user problem, because the

34 2. Recommender Systems

lack of user’s history, leads to a lack of knowledge about user’s interests on

which to base recommendations. Moreover, they were criticized for reducing

the diversity and novelty of recommended items, given that if a user has

never consumed items with a particular feature, these items have little or no

chance of being recommended.

2.2.3 Knowledge-Based Systems

Knowledge-based recommender systems are often considered to be closely

related to content-based recommender systems. Here the knowledge source

is composed of some domain-knowledge about the items it is recommending

and the uses that they may serve, plus explicitly specified user requirements.

This approach suits particularly well to contexts where the items are highly

customized and are not bought frequently, such as real estate, automobiles,

and luxury goods. Both content-based and collaborative systems have diffi-

culties because of the lack of ratings that characterize these contexts. The

former, indeed, has difficulties finding enough ratings in the user’s history

that match a specific instantiation of the item, from which to extract the

user’s behavior. The latter is facing the cold start problem, few ratings per

user and few ratings per item make it hard to make useful predictions.

The idea behind a knowledge-based system, consists of explicitly ask-

ing users about their needs and providing items that fulfill their require-

ments, instead of trying to predict what they would like based on past ex-

perience. However, in order to provide personalized recommendations, these

systems exploit domain-knowledge, which helps to map user requirements

to the item’s attributes. Therefore, a knowledge-based system first filters

items that satisfy user’s requirements, called anchor points. Then, domain-

knowledge is applied to the anchor points to retrieve similar items that could

be interesting for the user. Once, the system has returned its recommen-

dations, the user has the opportunity to change his initial requirements on

the fly, which is seen as a critique in response to recommended items. The

process is then repeated with the updated requirements until the user gets

2.2 Types of Recommender Systems 35

the desired result.

(a) (b)

(c)

Figure 2.5: Knowledge-based approach example

One example is taken from Burke [Bur00], where it uses a knowledge-

based system to help the users finding restaurants. The user is first asked

explicitly his requirements. As shown in Figure 2.5a he wants to find a

restaurant similar to Wolfgang Puck’s “Chinois on Main” in Los Angeles.

As shown in Figure 2.5b, the system finds a similar Chicago restaurant that

combines Asian and French influences, “Yoshi’s Café”. The user, however, is

interested in a cheaper meal and selects the “Less $$” button. The result in

36 2. Recommender Systems

Figure 2.5c is a creative Asian restaurant in a cheaper price bracket: “Lulu’s”.

Note, however, that the French influence has been lost as a consequence of

the move to a lower price bracket. The user-system interactions, play an

important role in the process, because they encourage exploration, and allow

to better identify user’s needs in complex domain, where the user can not

even be aware of various options trade-off in item’s domain. [Agg+16; FB08]

2.2.4 Hybrid Systems

Hybrid systems can be seen as combinations of recommendation tech-

niques. As discussed above, each technique relies on different knowledge

sources, and all of them have strengths and weaknesses. Thus, the idea

behind hybrid recommender systems is to combine two or more recommen-

dation techniques to take advantage of all the knowledge available and get

the best from every world. According to Burke [Bur02], hybrid recommender

systems can be classified into the following categories:

• Weighted : in this case, the system implements two different recom-

mendation techniques that work independently, i.g. CF and CB. The

final result is given by a weighted combination of the output of the two

systems;

• Switching : the system implements several recommendation techniques,

and selects the one that best suits the current needs. For example, could

use a knowledge-based system at the beginning to avoid the cold-start

problem and then switch to CB or CF once more ratings are available

• Mixed : Recommendations from several different recommenders are pre-

sented at the same time;

• Feature Combination: the features from different data sources are com-

bined and used in the context of a single recommender system.

• Feature Augmentation: one technique is employed to produce a rating

2.2 Types of Recommender Systems 37

or classification of an item, and that information is then incorporated

into the processing of the next recommendation technique;

• Cascade: one recommender system refines the recommendations given

by another. For example, first using the KB system to make recom-

mendations based on user interests, and then use to further ranking

the suggestion in each bucket;

• Meta-Level : The model used by one recommender system is used as

input to another system.

2.2.5 Learning Approaches:

Deep Learning Based Recommender Systems

The past few decades have witnessed the tremendous success of deep

learning (DL). It has been applied to a wider range of applications due to its

capability in solving many complex tasks while providing start-of-the-art re-

sults, from computer vision to speech recognition. The use of such techniques

allowed to fix some of the obstacles encountered by traditional models, such

as cold start (i.e., the system cannot provide useful recommendations when

the user or the item is new), lack of novelty and diversity, scalability, low

quality recommendation, and great computational expense. Lately, the data

available has become more and more complex and the use of conventional

methods, which are essentially linear models, can limit the model’s expres-

siveness. Therefore, the use of deep learning models which are able to capture

non-linearity in data allows capturing intricate user-items patterns, as well

as efficiently represent input data to improve recommendation quality, and

last, capturing sequential patterns in the user behavior. [Zha+19]

Deep-learning based systems can be classified into two categories: models

that use deep learning to integrate traditional techniques, and models based

solely on deep learning technique. For example, Van den Oord [VDS13] use

a content-based approach integrated with the use of deep convolution neural

38 2. Recommender Systems

networks to predict latent factors from music audio when they cannot be

obtained from usage data. Whereas, Devooght [DB16] used RNN to reframe

collaborative filtering as a sequence prediction problem. Instead of rating an

item, he takes into account the order in which items are consumed by a user

and try to predict what the active user is likely to consume next given his

history.

Reinforcement-Learning Based Recommender Systems

Lately, reinforcement-learning-based approach have been adopted in real-

life scenarios to capture the users’ preferences from the interactions between

the user and the recommendation agent, instead of relying on past history. In

fact, all the above presented techniques suffer from two serious limitations.

Firstly, most of them consider the recommendation procedure as a static

process, i.e., they assume the user’s underlying preferences keeps unchanged.

However, it is very common that a user’s preference is dynamic w.r.t. time,

i.e., a user’s preference on previous items will affect her choice on the next

items. Thus, it would be more reasonable to model the recommendation

as a sequential decision-making process. Secondly, the aforementioned stud-

ies are trained by maximizing the immediate rewards of recommendations,

which merely concentrates on whether the recommended items are clicked or

consumed, but ignores the long-term utility of the items. However, the items

with small immediate rewards, but large long-term benefits are also crucial.

[Liu+18]

Hence, the sequential nature of user interaction with RS suggests that

the recommendation problem could be modeled as an MDP and solved using

Reinforcement-learning algorithms. We can think of the recommender system

as the RL agent, while everything outside, as the user and items of the system,

can be considered as the agent’s environment and it can be formalized as an

MDP where:

• State S: a state st ∈ S is defined as the user preferences and their past

history with the system;

2.2 Types of Recommender Systems 39

• Action A: contains items available for recommendation; at ∈ A means

that items a has been recommended to the user at time step t;

• Reward R: the RL agent receives reward r(st, at) ∈ R based on the

user feedback on the recommendation provided;

• Transition probability P: transition probability p(s′∣s, a) ∈ P is the

probability of transition from s = st to s′ = st+1 if action a is taken by

the agent

• Discount factor γ: γ ∈ [0,1] is the discount factor for future rewards.
With γ = 0 , the agent becomes myopic, i.e., it only focuses on imme-

diate reward. On the contrary, if γ = 1, the agent becomes farsighted

and focuses more on future rewards [SB18].

The environment described by the MDP can be built using three different

methods: offline, simulation, and online. In offline method, the environ-

ment is a static dataset containing the ratings of some users on some items.

A common practice in offline methods is to train the agent on the training

data (usually 70-80% of the data) and then test it on the remaining data. In

simulation studies, usually, first a user model is built and then the recom-

mendation agent is evaluated while interacting with this user model. This

user model could be as simple as a user with some pre-defined behavior, or it

could be more complex and be learnt using available data. In online method,

the algorithm is evaluated while interacting with real users and in real-time

[ACF21].

Figure 2.6 illustrates the agent-user interactions in MDP. With the no-

tations and definitions above, the problem of item recommendation can be

formally defined as follows: Given the historical MDP, i.e., (S,A,P,R, γ),
the goal is to find a recommendation policy π ∶ S → A, which can maximize

the cumulative reward for the recommender system [Zha+18].

40 2. Recommender Systems

Figure 2.6: Agent-user interaction

2.2.6 Multi-stakeholders Recommendations Systems

All the recommendation techniques seen so far are able to satisfy the

end user’s needs. However, in many real-world applications, they are not

the only stakeholder involved. There are other parties that benefit from

good recommendations, and the integration of their perspectives into the

design of recommender systems is the goal underlying the sub-field of multi-

stakeholder recommendation. In this work, we are going to consider only key

stakeholders that play an active role in the recommendation process which are

the users, who consume recommendations that satisfy their needs; providers

of goods or services for sale, and the system behind the platform, which

suggests users documents whose features best suit their interests and which

can possibly earn from the service offered [Abd+20]. An example of a multi-

sided platform is Expedia which matches users with travel related-services

(e.g hotels, car rentals, airlines), but also Airbnb or Uber.

Multi-stakeholder recommender system (MRS) should be designed to in-

corporate the interests of all parties. Therefore, MRS should consider not

only the needs of users but also those of providers, as suppliers whose items

are not recommended may experience poor user engagement and lose interest

in staying on such a platform. Finally, if present, they should consider the

2.2 Types of Recommender Systems 41

needs of the platform itself, which can have the goal of maximizing some

income, or goals that concern the social welfare of the user, such as fair-

ness and balance of items consumed by the user, which can go against users’

preferences.

Ideally, all these stakeholder interests and factors should then feature in

the learning algorithm, but in practice this requires both a precise mathemat-

ical specification of each objective as well as a learning algorithm that is able

to solve for multiple (and potentially opposing) objectives [NDK17]. For this

reason, in the literature, a variety of methodological approaches of different

complexities have been explored to incorporate profit information into recom-

menders and to balance relevance and profitability. Chen [Che+08] compares

existing recommendation algorithms such as CF with a new system that con-

siders both product profitability and the purchases probability of the item by

the user and shows that higher overall profitability can be achieved without

a loss of accuracy for personalized recommendations. Das et al. [DMR09],

implement an approach that supplements any traditional recommendation

system and allows the vendor to control how much the profit-based recom-

mendation should deviate from the traditional recommendation. Nguyen et

al.[NDK17], instead, implemented a learning-to-rerank algorithm that, given

an initial ranking of item recommendations built for the consumer, aims to

re-rank it such that the new ranking is also optimized for the secondary

objectives while staying close to the initial ranking. In the next chapter,

will be seen in detail a different implementation proposed by Zhan [Zha+21]

which uses a reinforcement learning (RL)-based recommendation approach

to optimize the combination of both user and provider objectives.

42 2. Recommender Systems

Chapter 3

Recommender Systems and

Society

Recommendation systems are seen as systems of good nature, which help

users find interesting content among the information overload to which they

are subjected, helping content providers to make more profit. On the other

hand, in recent years awareness has grown about their possible negative

effects on society. For instance, it has been proven that in order to maximize

the platform’s profit they can amplify the spread of misinformation, which

obviously has an impact on the user’s well-being.

In this chapter we are going to talk about the impact of RS on society,

first analyzing some of the underlying problems in RS design, which lead to

the creation of unwanted effects on society, and then analyzing in detail these

effects. This chapter will give us the tools needed to identify the presence of

biases due to the interaction with a recommender system, and therefore will

allow us in the next chapters to analyze the impact on society of a particular

recommendation system, EcoAgent.

43

44 3. Recommender Systems and Society

3.1 Recommender Systems and Biases

In recent years there has been a growing awareness of the possible neg-

ative effects that recommendation systems can have on society: advertise

items that maximize the platform profit, or gain user engagement through

the spread of misinformation. Indeed, by nature of their design, the recom-

mender system can lead to a self-reinforcing pattern by leveraging the up-

dated data since the lifecycle of the recommendation has a feedback loop

among three components: Users, Data, and RSs. These components are in a

process of mutual dynamic evolution where users’ profiles get updated over

time via recommendations generated by the recommender system and the ef-

fectiveness of the recommender system is also affected by the profile of users,

as shown in Figure 3.1 [Che+20; Man+20].

Figure 3.1: Recommendation Techniques

Throughout the feedback loop, we can identify different biases due to

the algorithm used to make recommendation or to the data it uses, such as

[Che+20]:

• Selection Bias: happens as users are free to choose which items to

rate, and generally they tend to rate items they liked or those partic-

ularly bad. So the missing rating are not completely random.;

• Exposure bias: happens as users are only exposed to a part of specific

items so that unobserved interactions do not always represent negative

3.1 Recommender Systems and Biases 45

preference

• Conformity bias happens as users tend to behave similarly to the

others in a group, even if doing so goes against their own judgment,

making the feedback do not always signify user true preference;

• Position bias: happens as users tend to interact with items in higher

position of the recommendation list regardless of the items’ actual rel-

evance so that the interacted items might not be highly relevant;

• Inductive bias: denotes the assumptions made by the model to better

learn the target function and to generalize beyond training data.

• Popularity bias Popular items are recommended even more frequently

than their popularity would warrant;

• Unfairness: The system systematically and unfairly discriminates

against certain individuals or groups of individuals in favor of others

[Che+20];

Recent research studies indicate how the presence of biases deeply affects

recommendations quality, and how they can lead to some undesired effects

on society. For example, it has been proved that they decreased diversity

among items consumed by a user, which intensify the homogenization of

users, resulting in the creation of filter bubbles, where the user is only

shown contents similar to those he had already interacted with, resulting

in intellectual isolation, political polarization, and echo chambers. Fur-

thermore, they may exhibit a bias towards popular items, resulting in ho-

mogenization of user behavior and a concentration of the market for content

in the hands of a few creators[Luc+21; Ela+21a]. These are just some of

the possible negative effects due to recommendation systems and considering

the potentially significant effects of recommendations on different stakehold-

ers, researchers increasingly argue that providing recommendations should

be done in a responsible way, avoiding or at least mitigating negative effects.

46 3. Recommender Systems and Society

To have a better understanding of what it means to provide a responsible

recommendation, in the next section we are going to briefly introduce some

of the undesired effects.

3.1.1 Undesired Effects to Society

Filter bubbles is one of the most studied effects of personalization and

recommendations. Parisier [Par11], argued that the root of human intelli-

gence is the ability to survive in a changing world, adapting and adopting

new information. Simultaneously, recommender systems trap a user into an

unchanging environment, called a filter bubble, where he is surrounded by

things he is already familiar with and he likes, while removing key elements

that trigger the necessity to see something different or to study different

viewpoints. In the long-term, the filter bubble will be over-personalized and

users will be isolated by the world outside their ”bubble”, and this may affect

their creativity, other than their learning and thinking capabilities.

Echo chambers are a particular case of the filter bubble, where the user

environment is other than personalized, also polarized, meaning that only

certain viewpoints, information, and beliefs the users agree with are avail-

able [Ela+21b]. The recommender system amplifies this effect by repeatedly

exposing the user to media contents that confirms their beliefs and view-

points, decreasing their exposure to diverse opinions which could trigger the

necessity to question their beliefs. The amplification of the echo chamber

hinders mutual understanding and could lead to a situation where people are

so far apart from those outside their chamber, that they have no common

ground. It can be seen how they actually live in different realities and would

hardly try to understand different points of view from their own.

Popularity bias is the tendency of emphasizing a “rich-get-richer” effect

in favor of popular items. This bias generally derives from the data used

to make recommendations, which is generally composed of a small set of

popular items - also called short-head - and a big number of unpopular or

niche items - called long-tail. The RS seems to focus on popular items, while

3.1 Recommender Systems and Biases 47

niche items do not get the deserved attention. On the one hand, this can

be seen as a safe strategy, since users will be likely to enjoy popular items.

On the other hand, it leads to some limitations since a platform that suffers

from popularity bias will hardly promote niche items, and will push users to

consume mainstream items, creating a market dominated by a few brands.

In addition, they would miss the opportunity to improve the user’s profile, as

long-tail articles are unlikely to have been seen by the user already and will

probably show different features than mainstream items. This would help to

adjust the user preferences seen so far, and eventually find out their positions

on those not yet met [ABM17].

Unfairness has several definitions in different contexts. One popular

definition characterizes it as the absence of any bias, prejudice, favoritism,

mistreatment toward individuals, groups, classes, or social categories based

on their inherent or acquired characteristics. [Che+20]. However, in the

context of RS there are different notions of fairness, for example, Burke

[Bur17] defines fairness according to different stakeholders. In C-Fairness,

the concern is that different users or user groups receive different types of

recommendations, such as recommendations of lower quality or on particular

themes, and that this increases the discrimination level of the algorithm. If

we consider fairness toward providers, P-Fairness, instead they care that the

benefit of being in the recommendation system is evenly distributed among

providers, so that items of each provider are fairly recommended in order

to avoid having providers leaving the platform. Having a fair system with

respect to providers reduces the risk of having few providers manipulating

the users’ behavior.

48 3. Recommender Systems and Society

Chapter 4

EcoAgent: a Case Study

In the previous chapters, we have seen the important role recommender

systems play in helping consumers deal with the information abundance of

a platform, reducing the sense of frustration and maximizing their satisfac-

tion with the platform. However, we have also seen that user’s satisfaction

is strongly influenced by the content available on the platform, and there-

fore by content providers. Like for other digital technologies, there are some

concerns about the effect of RS on society. There are those who argue that

recommenders help consumers discover new products and, thus, increase rec-

ommendation diversity. Others, instead, believe recommenders only reinforce

the popularity of already popular products, resulting in a reduction in the di-

versity of content to which the user is exposed, with the subsequent creation

of a filter bubble or echo chamber. These effects are hard to analyze since

the items’ consumption is governed by a complex interaction between the

users’ preferences, the content provider’s intent (that translates into increas-

ing their own satisfaction, which means increasing their popularity and/or

income), and the webpage-nature of the medium.

This thesis is an attempt to analyze these effects of RS. In particular, we

focus on analyzing the diversity of topics that users have access to, where

some biases that lead to the undesirable effects mentioned in section 2 may

be recognized. In order to do so, we used the content provider-aware rec-

49

50 4. EcoAgent: a Case Study

ommender system proposed by Zhan [Zha+21], EcoAgent. It is a multi-

stakeholder recommendation system based on RL, that captures the dy-

namics that interplay among user-agent-content providers. In addition, it

provides us with a simulated environment to study the effectiveness of the

approach used and, as far as we are concerned, to study how RS behavior is

reflected in other elements of the environment, such as documents available

to the user that could create or amplify some bias.

Therefore, in the rest of the chapter, we will first see how EcoAgent is

designed to meet the interest of all stakeholders involved, including a de-

scription of the simulation environment in which it can be applied in order

to demonstrate its effectiveness towards the users and the content providers.

Next, we will further study how the environment is affected by the behavior

of the recommendation system throughout the simulation, focusing in partic-

ular on the effects it has on the document catalog regarding the distribution

of topics. Finally, we will propose post-processing techniques that will allow

us to evaluate the role of content providers and the fairness of the system, in

the creation or amplification of some bias.

4.1 Problem Formulation

In this section, we will define the multi-stakeholder recommendation prob-

lem solved by EcoAgent. Stakeholders involved in this issue are users, who

consume recommendation that meet their needs; providers of available con-

tent on the platform, in this case documents, and the agent which suggests

users documents whose features best suit their interests. Figure 4.1 provides

an intuitive scheme that captures stylized but real-world-inspired interac-

tions between these stakeholders. In the rest of the section, we will analyze

all stakeholders, defining their goals and how they interact with the agent to

finally formulate the whole problem as an RL problem.

4.1 Problem Formulation 51

Figure 4.1: Interactions among Recommender Stakeholders

4.1.1 The User ↔ Agent Interaction

A user issues a (possibly implicit) query to the recommendation system.

The recommender agent serves a slate of one or more items of content; the

user interacts with the recommended content according to their preferences

and emits implicit rewards, in the form of likes, clicks, and dwell times, which

are used to evaluate their affinity with the item suggested and their overall

engagement and satisfaction. Throughout this interaction, the agent and the

users influence each other; the agent changes based on user feedback, and the

users modify their preferences based on the elements the agent suggested.

The interaction between the user and the recommender agent follows

the typical setup described in Section 2.2.5, so it can be formulated as an

MDP (Su,A,P u,Ru, ρu0 , γ
u) where Su encodes the user topic preferences and

satisfaction at time t; A is the action space composed of the content available

on the platform; P u ∶ S′u ×A → ∆(Su) captures the state transition shifting

user topic preferences toward the topic of the recommended content, weighted

by how much the user liked it, ru and incrementing its satisfaction by the

52 4. EcoAgent: a Case Study

reward obtained; Ru is the user reward to a recommendation and depends on

the content’s relevance for the items (how much the content topic align with

the user features) and content quality; γu the discount factor. The MDP

is solved following the Generalized Policy Interaction introduced in Section

1.3 to find the optimal state-value and policy. The state-value function,

which we refer to as user utility, is estimated with an RNN that encodes

user interaction histories, and predict observed user utility Qu(su, a) for any
state s and action a. The user agent, then, aims to learn a policy π(⋅∣s) that
maximize the user utility by greedily taking:

maxπ

T

∑
t=0

Esut ∼duπ,t(Su
t),at∼π(⋅∣sut)[Q

u
t (sut , at)]

where Qu
t (sut , at) =

∣
∑
t′=t

τu∣(γu)t′−tru(sut′ , at′)
(4.1)

Here T is the maximum trajectory length, and τu is the user trajectory

sampled according to the policy π under the user MDP. We use duπ,t(⋅) to
denote the average user state visitation distribution at time t, and Qu(sut, at)
is the user utility calculated from time step t according to the policy π .

4.1.2 The Content Providers ↔ Agent Interaction

The recommender agent provides a slate of one or more items of content;

depending on how many CP’s contents are in the suggested slate and the user

feedback to those contents, content providers decide what to do next: create

more content, change their topic focus, and or even leave the platform if

their satisfaction falls below a certain threshold. A CP leaving the platform

affects the recommender agent since all its contents are removed from the

content corpus the agent has access to. Again, each content provider can be

formulated as an MDP (Sc,A,P c,Rc, ρc0, γ
c) where:

• Sc encodes preferences for content topics, plus possible incentives for

future content creation, and CP’s current satisfaction with the plat-

form.

4.1 Problem Formulation 53

• A is the action space composed of the content available on the platform,

• P c ∶ Sc × A → S′c: captures the state transition, and defines the next

states depending on the feedback from the recommender and the re-

action of users to its content. For instance, if some of its contents are

popular, in the next state it will continue to create content with the

same topic, otherwise, it may change topics of future creation. Its satis-

faction is incremented by the number of recommendations and summed

to the user reward signals acquired from the current time step.

• Rc is the CP’s reward to the recommendation, and is used to evaluate

the CP engagement and satisfaction with the platform. It manifests as

viability (deciding to stay or leave) and uploading new content. How-

ever, CPs do not react all in the same way to recommendations, in

fact less established content providers who receive little attention or

negative feedback from users are more likely to change their next con-

tent topics or decide to leave the platform, while established content

providers are less affected by small changes in the recommendation and

user feedback.

• γc the discount factor.

The content provider’s MDP is solved in the same way as the user one; the

content provider’s utility Qc(sc, a) is estimated using an RNN and the agent

aims to learn a policy π(⋅∣s) that maximizes the content provider utility.

4.1.3 EcoAgent: a Provider-Aware Agent

From the definition of users and content providers we have established

that recommendations affect the future state and utility of both users and

content providers, so the agent’s recommendation problem is the following

[Zha+21]:

Decide which content (from which content provider) to recom-

mend to a user so that a combined metric of both content provider

54 4. EcoAgent: a Case Study

and user utilities are maximized, given the current state of the

user and the providers of candidate content recommendations.

The system, called EcoAgent is defined as an MDP (S,A,P,R, ρ0, γ) where
S is the concatenation of user state and states of all the content providers on

the platform, A content available on the platform, P ∶ S ×A → S′ captures

the transitions, R is the concatenation of proxy rewards of the user and

all content providers, ρ0 the initial state distribution,γ as a concatenation

of user and content provider discount factors. The goal here is to learn the

policy that maximizes two objectives: the user’s utility and CPs’ utility. The

obvious objective definition is the following

maxπ

T

∑
t=0

Esct∼duπ,t(Sc
t),at∼π(⋅∣sct)[(1 − λ)Q

u
t (sut , at) + λ ∑

c∈CP

Qc
t(sct , at)] (4.2)

where is introduced a new parameter λ ∈ [0,1] that allows to interpolate

between the two objectives. If lambda = 0, it means that only the user utility

is maximized while lambda = 1 maximizes only the CP utility. One problem

of this definition concerns its scalability in situations with many CPs since it

requires the computation of all CPs’ utility. The solution adopted requires

to simplify the goal as in Eq. 4.3 where it is considered the utility obtained

by a content provider recommending the item at minus the utility we could

have obtained by recommending the item of a different CP, which is known

as utility uplift. Here cat denotes the content provider associated with the

chosen content at and b
cat
t indicates any chosen content not associated with

the content provider cat at time t.

maxπ

T

∑
t=0

E[(1 − λ)Qu
t (sut , at) + λ ∑

c∈CP

Q
cat
t (s

cat
t , at) −Qcat

t (s
cat
t , b

cat
t)´¹¹¹¸¹¹¹¶

utilityuplift

] (4.3)

4.2 Simulated Environment 55

Figure 4.2: Illustration of EcoAgent structure. EcoAgent consists of three

components: (i) a user RNN utility model that embeds user history into user

hidden states and predicts user utility; (ii) a content provider RNN utility model

that embeds content provider history into content provider hidden states and

predicts content provider utility; (iii) an actor model that inputs user hidden

state and candidates (content, content provider hidden state) to generate policy.

Actor model is optimized using REINFORCE with recommendation reward

being a linear combination of user utility and content provider utility uplift

[Zha+21]

To sum up, the multi-stakeholder problem has been formulated as an

RL problem that will be solved using the policy-gradient based algorithm,

REINFORCE. EcoAgent captures the users-recommender-providers inter-

dependence and in Figure 4.2 we have an overview of how the three compo-

nents ties together.

4.2 Simulated Environment

EcoAgent has been evaluated by Zhan et al. [Zha+21] in a simulated

setup to analyze its impact on the environment. However, in order to fully

evaluate EcoAgent they developed a new Gym [Bro+16] environment able

56 4. EcoAgent: a Case Study

to capture CP’s dynamic on top of RecSim [Ie+19], which is a configurable

platform to build simulation environments for recommender systems (RSs)

that naturally supports sequential interaction with users. The environment

captures the interaction illustrated in figure 4.1, and consists of a user model,

cp model and document model. In this section, we are going to see in detail the

configuration of these components and their dynamics in the environment.

The documents are drawn from the document corpus D. Each document

d ∈ D has an observable one-hot vector vd ∈ [0,1]K , where K is the number

of possible content topics, and an inherent quality qd, that is perceived by

the user but is hidden to the agent.

The user model assumes users u ∈ U have various degrees of interest in

topics ranging from -1 (completely uninterested) to 1 (fully interested), with

each user u associated with an interest vector u ∈ [−1,1]∣K ∣. User u’s interest
in document d is given by the dot product I(u, d) = ud and it evolves over time

as they consume different documents. By the consumption of a document d

user generates an immediate reward which is a function f(I(u, d), qd) = Ru
t of

user u’s interest and document d’s quality. In addition, the user’s satisfaction

is increased at each time step of the reward value obtained (Su
t = Su

t−1 + rut)
[Ie+19].

The CP model, as for the user model, assumes content providers c ∈ C
have various degrees of interest in topics preferences for future creation, with

each CP c associated with an interest vector vct ∈ [−1,1]∣K∣. Provider satis-

faction at time t is then defined as the sum of the reward obtained for being

exposed, or a penalty µc < 0 if it gets no recommendation, plus the user

feedback received. Thus, supposing that at time t, provider c receives recom-

mendations of her content (d1, ..., dm) and user rewards (ru1 , ..., rum) and that

ηc1, η
c
2 is its sensitivity to content exposure and user feedback, respectively,

then its satisfaction will be

Sc
t = f(

t

∑
s=0

µc + ηc1m + ηc2
m

∑
i=1

rum). (4.4)

The creation of new content depends on the reward content providers receive,

4.3 Experiments 57

which is defined to be incremental provider satisfaction:

rct = Sc
t − Sc

t−1. (4.5)

Each provider starts with a fixed number of content items, but if its current

reward rct is positive, the provider will create more content, where the number

of new items is proportional to rct . To model content providers adapting their

topic preferences based on user feedback, a content provider updates her topic

preference using the sum of her recommended content topics, weighted by

the corresponding user feedback:

vct+1 ← vct + δc
m

∑
i=1

ruivdi (4.6)

where δc represents how sensitive the content provider’s topic preferences are

to the user feedback. Each content provider also has a viability threshold; if

their satisfaction Sc
t is below the threshold, they leave the platform.

4.2.1 Environment Setup

Once the simulation environment has been described, it is possible to use

it to train the agent, by collecting data that describe the agent behavior that

will be used to update it, and then, once the training is done, to analyze

and evaluate its behavior in the environment. On each simulation, EcoAgent

interacts with a new environment which initially samples 50 users and 10

content providers uniformly from the state spaces. Each content provider is

initialized with 20 content items which are sampled from 15 topics based on

the provider’s topic preference, and they have the choice of creating more

content or leaving the platform as described in Section 4.2.

4.3 Experiments

4.3.1 EcoAgents Training and Evaluation

Once we have defined the environment within which the agent operates,

including the interface between agent and environment and how EcoAgent

58 4. EcoAgent: a Case Study

is structured, we can start training EcoAgent. We are going to train several

EcoAgents with different λ’s (content provider constant) varying from 0 to

1, so that we will have:

• user-only EcoAgent, where λ = 0. EcoAgent only optimizes user

utility;

• content provider-user EcoAgent, where λ = 0.5. EcoAgent opti-

mizes the utility of both content providers and users;

• content providers-only EcoAgent, where λ = 1. EcoAgent only

optimizes the content provider’s utility;

• RandomAgent, where the agent recommends content randomly from

the candidate set of content items.

All EcoAgents and RandomAgent have been trained for 300 epochs. For

each training epoch, EcoAgent interacts with 10 new environments as set up

above. The environment will be rolled out for 20 steps, suggesting a slate

of three items. At each time step of one rollout, all users receive recommen-

dations simultaneously, and the environment updates all users’ and content

providers’ states. We then use collected data to update EcoAgent with Ada-

grad optimizer. Throughout the experiments, we consider long-term effects

on users and content providers by setting discount factors: γu = γc = 0.99.
As Zhan [Zha+21], we compare the agent models testing them in 50 roll-

outs of new environments with the same setup they have been trained on,

and then in 50 rollouts of new environments for 100 steps (with prespecified

user and content provider dynamics but different initial states). We com-

pute the following statistics of each rollout, which summarize how the agent

influences users and content providers respectively:

• user and content providers’ satisfaction

• user accumulated reward : ∑20
t=1 rut ;

• content provider accumulated reward : ∑20
t=1 rct ;

4.3 Experiments 59

• # viable content providers: number of providers at the environment at

the current time step.

Both satisfaction and accumulated rewards characterize how satisfied users

and content providers are on the platform, while the number of viable providers

reflects how agents help less established providers. In Table 4.1 and Table

4.2 we can observe how content providers’ satisfaction grows as increases

the value of the content provider constant, λ, while decreases the user sat-

isfaction. As regards RandomAgent, we see that the satisfaction of content

providers is between that obtained with EcoAgent0 and EcoAgent0.5, while

that relative to users is just slightly higher than that obtained with EcoA-

gent1, which we recall does not take into account the user’s objective when

choosing the items to recommend. So we can see how RandomAgent, which

we consider as our baseline, gains some content providers’ satisfaction but

provides very little satisfaction to users. The same scenario can be observed

in Figures 4.3 and 4.4 where is considered the accumulated reward, defined

in Equation 4.5.

EcoAgent0 EcoAgent0.5 EcoAgent1 RandomAgent

100 steps 31810 36510 37034 34101

20 steps 5161 5698 5785 5643

Table 4.1: Content providers’ satisfaction at the end of an episode

EcoAgent0 EcoAgent0.5 EcoAgent1 RandomAgent

100 steps 2244 2187 2129 2144

20 steps 426 423 410 414

Table 4.2: Users’ satisfaction at the end of an episode

Finally, it is important to observe the plots in Figures 4.5a and 4.5b,

which represent the mean of viable content providers occurred across the 50

rollouts. We can see how Ecoagent0 and RandomAgent have the highest

number of viable content providers, respectively 9 and 10, against 8 available

60 4. EcoAgent: a Case Study

for EcoAgent0.5 and Ecoagent1. This is confirmed also by Table 4.3, which

shows the minimum number of content providers observed across the 50 roll-

outs. Here we can see how EcoAgent0.5, and EcoAgent1 have a tendency to

leave more content providers behind. These results may seem strange at first

glance since we would expect EcoAgent to help content providers to remain

on the platform as λ increase, while we have that the number of viable con-

tent providers with content provider aware EcoAgents decreases, even though

these EcoAgents have larger content provider accumulated reward as com-

pared to a user-only EcoAgent. This is due to the incapability to capture the

difference between less established content providers and established content

providers, but it is in line with the goal of optimizing the overall content

provider utilities [Zha+21] and not to keep the maximum number of content

providers.

Figure 4.3: EcoAgent evaluation in a 20 steps simulation. EcoAgent (λ close to

1) helps content providers by improving content provider accumulated reward as

compared to a user-oriented EcoAgent (λ close to 0).

4.3 Experiments 61

Figure 4.4: EcoAgent evaluation in a 100 steps simulation. EcoAgent (λ close to

1) helps content providers by improving content provider accumulated reward as

compared to a user-oriented EcoAgent (λ close to 0).

(a) (b)

Figure 4.5: EcoAgents available content providers at the end of 20 and 100 steps

simulation.

62 4. EcoAgent: a Case Study

EcoAgent0 EcoAgent0.5 EcoAgent1 RandomAgent

100 steps 7 5 5 9

20 steps 7 6 7 8

Table 4.3: Minimum content providers over timesteps

4.3.2 Simulation Analysis

Once we have defined how the agents have been trained and their val-

idation, we execute the agents on the simulated environment described as

in 4.2, which we recall initially samples 50 users and 10 content providers

uniformly from the state spaces. Each content provider is initialized with 20

documents which are sampled from 15 topics based on the provider’s topics

preferences, and they have the choice of creating more content or leaving the

platform.

Then, we will study the environment obtained at the end of the simulation

to determine how the agent affects the environment’s element such as the

users, content providers and the document catalog. We chose to test the agent

in a 100-step episode to observe the behavior of the system during extended

interaction between the parties, and to identify any long-term side effects.

Specifically, at the end of the simulations performed with the agent, we have

highlighted three main points on the environment that will be justified in the

rest of the section, namely:

1. content provider abandoned the platform due to unsatisfaction;

2. the EcoAgent’s environment presents a popularity bias over topics avail-

able on the platform;

3. the content providers in the EcoAgent’s environment present highly

different level of satisfaction, which indicate an EcoAgent’s unfair be-

havior towards content providers ;

First of all, from the environment analysis we noticed that at the end of

the simulation, EcoAgent has 8 content providers available, which means that

4.3 Experiments 63

two content providers have left the platform due to unsatisfaction. Second,

we focused on analyzing the distribution of the catalog topics recorded during

the simulation. In Figure 4.6, we trace the probability distribution of every

possible argument within the document corpus in every single passage of

the episode. At the beginning of the simulation, we note that the topics

have different distributions of probability, ranging from 0.04 to 0.9 due to

the environment’s policy of document creation based on the preferences of

content providers sampled by the environment. However, it is interesting to

note that the probability distribution of documents about topic 0 increases

faster than the others, reaching a 0.13 probability topic distribution. The

same findings can be seen, from a different point of view, in Figure 4.7 where

at the end of the simulations topic0 has 250 documents while other topics

have a maximum of 140 documents.

Figure 4.6: Overall topic distribution of documents in the simulation

environment over interactions with EcoAgent. In this figure, the plot shows how

the overall topics’ distribution of the documents changes at each steps of the

experiment, where each step represents an interaction between users and content

providers with the recommendation system.

64 4. EcoAgent: a Case Study

Figure 4.7: In this figure, it’s possible to observe the number of documents for

each topic at the beginning and at the end of the experiments.

beginning of episode end of episode

Topics cp0 cp1 cp2 cp3 cp4 cp5 cp6 cp7 cp8 cp9 cp0 cp1 cp2 cp3 cp4 cp5 cp6 cp7 cp8 cp9

topic1 1 0 2 1 3 1 4 2 1 1 4 0 6 2 4 0 222 4 2 6

topic2 0 2 1 2 0 2 0 2 0 1 3 0 11 6 3 0 83 4 1 3

topic3 1 1 1 1 1 2 0 1 0 0 5 0 3 3 2 0 82 2 3 1

topic4 4 1 2 0 2 1 0 0 1 3 6 0 6 2 4 0 108 0 1 6

topic5 1 2 3 1 2 0 1 0 1 0 3 0 5 1 3 0 81 1 1 2

topic6 3 1 0 1 1 1 4 2 2 3 5 0 2 4 2 0 87 4 4 10

topic7 0 2 1 1 2 2 0 1 4 1 0 0 3 3 4 0 93 5 4 5

topic8 3 1 1 1 1 1 1 1 1 1 4 0 8 1 4 0 103 1 4 5

topic9 0 1 1 2 1 1 5 2 1 2 1 0 4 3 1 0 120 2 2 4

topic10 3 1 3 0 2 1 2 0 0 1 7 0 7 2 2 0 98 1 0 4

topic11 1 2 2 2 1 2 1 1 1 1 2 0 6 3 3 0 97 4 3 3

topic12 1 0 0 2 0 1 1 3 0 2 6 0 4 4 2 0 88 4 1 6

topic13 0 1 2 2 0 2 0 1 1 0 2 0 4 3 0 0 78 4 2 3

topic14 0 1 1 2 2 0 0 3 4 2 2 0 4 4 3 0 73 4 5 7

topic15 2 4 0 2 2 3 1 1 3 2 4 0 2 4 2 0 114 3 3 6

Total 20 20 20 20 20 20 20 20 20 20 54 0 75 45 39 0 1527 43 36 71

Table 4.4: Content providers’ contribution to the document catalog per

topic at the beginning and at the end of an episode for EcoAgent.

Lastly, analyzing how each content provider contributes to the document

catalog throughout the simulation, we noticed that using EcoAgent, a single

4.3 Experiments 65

content provider in this case content provider 6 owns most of the documents

available on the platform, which is 1527 documents against the maximum of

75 documents owned by the other suppliers as shown in Table 4.4. More-

over, he has introduced 222 documents on topic0, which is the topic we have

identified as suffering from popularity bias in the analysis of the topics’ distri-

bution. Since the interaction dynamics defined in the simulation environment

anticipate that documents will be generated by content providers that have

gained positive rewards, this finding suggests the presence of unfair behavior

of the system, where cp6 is favored among the others. For this reason, we

proceed to measure the distributional inequality in the satisfaction of content

providers with the Gini coefficient. The Gini coefficient ranges from 0 to 1,

where 0 represents perfect equality, which means that all content providers

of the platform have the same level of satisfaction, and 1 represents complete

inequality, which means that only one content provider of the platform is

satisfied, while all others are unsatisfied. It is defined mathematically as the

ratio of the area that lies between the line of equality and the Lorenz curve,

which represents the proportion of the total content providers’ satisfaction

(y-axis) generated by the bottom x% of content providers during the exper-

iment. At the beginning of the simulation, we have a Gini coefficient equal

to 0, in fact, we can observe in Figure 4.8 that the Lorenz curve at time

step 0 coincides with the equality line. Instead, a time step 99 we have a

Gini coefficient equal to 0.830637411643133 which is also evident in the plot

in Figure 4.8 where we can see that at time step 99, the set of 9 content

providers gets less than 20% of the cumulative satisfaction.

66 4. EcoAgent: a Case Study

G100 = 0.8306

Figure 4.8: Visual representation of the Gini Coefficient at time step 0 and 100 of

EcoAgent using the Lorenz curve.

To sum up, from the analysis of the simulation we get that EcoAgent

tends to leave content providers behind and that it suffers from unfairness

towards content providers. Indeed, we have seen that content provider 6 has

a major impact on the document catalog. Moreover, we have noticed a popu-

larity bias over the creation of document treating topic0. However, although

unfairness could lead to an unhealthy system, this is not a shocking outcome

since EcoAgent, for its definition, is only trying to optimize the overall con-

tent creator objective without paying attention to being fair among content

providers. Instead, given our interest in the impact of the recommender sys-

tem on society, we have found more interesting the identification of a topical

bias, since it can be hurtful for users interacting with the platform because it

means a reduction of topic diversity to which users are subjected, that leads

to the creation of echo chamber, where users’ interests results narrowed down

increasing their risk of being manipulated by content providers who provide

them this content. So we wonder whether and to what degree this bias could

be created or amplified by both the reduction of content providers available

on the platform and the unfairness of the system towards content providers.

This point will be analyzed in detail in the next section, where we will define

some post-processing approaches that will allow us to study how these two

4.4 Post-Processing Experiments 67

characteristics of the system affects the topics’ popularity.

4.4 Post-Processing Experiments

In the previous section, from the analysis of the environment in which

EcoAgent was run, we have highlighted three main points: the tendency of

EcoAgent to leave content providers behind, the presence of a popularity

bias over topics available on the platform, and the unfairness of EcoAgent

towards suppliers. Since, as we have seen, the reduction of topics to which

users are exposed leads to the creation of an echo chamber, we are interested

in understanding the role of content providers leaving the platform and of the

unfairness of the system in the creation and amplification of such an effect.

Therefore, in this section, we are going to answer the following questions:

• does a system that keeps content providers on the platform provide a

healthier environment to users?

• does a fair system towards content providers offer a healthier system

to users?

• How does unfairness towards content provider reflects in the creation

of biases?

To answer these questions, we are going to define some post-processing

methods on EcoAgent, one reactive and one proactive, which allows us to

manipulate the agent’s behavior in order to study whether and how the topic

distribution of documents is affected. First of all, assuming that the effect

created was caused by the reduction of the content providers available for the

platform, we worked to get an agent that guarantees to do everything possible

to keep the maximum number of content providers on the platform. Thus,

we aim to have a system that given the set of content providers CP, keeps

almost 100% of its content provider on the platform after 100 interactions,

which means that all content providers’ satisfaction at time 100 is above a

68 4. EcoAgent: a Case Study

certain threshold θ:

CP100 = {c ∈ CP ∣∀c ∈ CP,Sc
k ≥ θ} and ∣CP100∣ ≥ y%∣CP ∣

We use two different approaches to reach our goal, first a reactive ap-

proach which does not behave fairly towards content providers, but greedily

ensures keeping the maximum number of suppliers on the platform. This

approach consists of checking content provider satisfaction throughout the

simulation and manually intervening in case one of the content providers noti-

fies the system that it’s about to leave. The action consists of recommending

its documents to the user in order to gain the satisfaction it needs to want to

remain on the platform. The second approach is proactive, instead. This

approach ensures to have the maximum number of suppliers on the platform

while trying to act fairly towards content providers throughout the whole

simulation by rebalancing content creators’ satisfaction at every step of the

simulation by recommending documents owned by content providers with

the lowest satisfaction. Both these approaches will be described in detail in

the next sections.

Therefore, the systems obtained will be evaluated over the same simu-

lation environment described in Section 4.2 considering the metrics listed

below:

• number of available content providers #{c ∈ CP ∣Sc
k ≥ θ};

• mean and median of content providers’ satisfaction;

• Gini coefficient to measure the distributional inequality in the satis-

faction of content providers.

As a result, we expect that both systems obtained from the application of

the two different approaches maximize the number of content providers avail-

able, while presenting different coefficients of Gini, which reflect their fair-

ness towards suppliers. Next, we will study the environment resulting from

the simulation of the agents obtained to assess how the presence of content

providers and fairness helps to provide a healthier environment for users.

4.4 Post-Processing Experiments 69

4.4.1 Reactive Approach

In this section, we will first describe the reactive post-processing ap-

proach used on EcoAgent and then study how the application of such an

approach changes the system behavior during the simulation and how it af-

fects the environment. This approach involves checking on the environment

throughout the simulation by verifying the satisfaction of content providers

and, eventually, intervening manually in the event that one of the content

providers notifies the system it is about to leave the platform.

In other words, assuming that we are at time step t, where we have a

precise environment configuration envt = (cpt, ut, at). The agent proposes a

list of documents (d1, d2, d3) with which users interact leading to an update

of their status ut+1, which is followed by an update of the status of content

providers cpt+1 based on user feedback and the reward for the recommenda-

tion. If at the end of the interaction, no content provider is willing to leave

the platform, then we update the state of the agent at+1 and initialize the

environment of the next time step, envt+1 = (ut+1, ct+1, at+1), which will be

used in the following interaction. If, on the other hand, a content provider

is willing to leave the platform as a result of the interaction, then we will re-

store the environment of time step environment t, envt, and modify the slate

of documents suggested by the agent (d1, d2, d3). The slate of documents is

changed by replacing the document belonging to the content provider with

the highest satisfaction with one of the documents of the content provider

that has expressed the intention to abandon the platform.

As a result of the application of the post-processing method described

above on EcoAgent, we reached the goal of getting a system able to keep the

majority of content providers on the platform. In fact, from the evaluation of

the agent behavior on the environment with a 100-step long simulation, we

get at the end of the simulation the totality of content providers. However,

checking the median value of the content providers’ satisfaction in Figure 4.9

at the beginning and at the end of the simulation, we can see that a time

step 1 we have a symmetrical distribution of the satisfaction among content

70 4. EcoAgent: a Case Study

providers while at time step 100 we see how the median value is closer to the

bottom of the box, and the data are evidently more spread and, therefore,

the distribution of satisfaction among content providers is skewed. The same

thing is evident in Figure 4.10 where the Gini coefficient value is equal to

0.8615. Thus, we can conclude that by applying the reactive post-processing

approach to EcoAgent, we get a system that can keep content providers on

the platform, but we have no improvement in terms of its fairness to content

providers.

Figure 4.9: Median content providers’ satisfaction observed using EcoAgent with

reactive post-processing at the beginning and at the end of the simulation.

G100 = 0.8615

Figure 4.10: Visual representation of the Gini Coefficient at time step 0 and 100

of EcoAgent with reactive post-processing using the Lorenz curve.

4.4 Post-Processing Experiments 71

4.4.2 Proactive Approach

In this section, as in the previous one, we will first describe the proac-

tive post-processing approach used on EcoAgent and then study how the

application of such an approach changes the system behavior during the simu-

lation and how it affects the environment. As before, we will monitor content

provider satisfaction throughout the simulation and act to manipulate the

agent’s behavior. Contrary to what we did in reactive post-processing, where

we only reacted when a content provider expressed its intention to leave the

platform, in this case, we will act at every step of the simulation to keep all

content providers with a similar level of satisfaction.

In other words, assuming to be at time step t, where we have an environ-

ment configuration envt = (cpt, ut, at). We start storing the content provider

with the maximum satisfaction cmax, and its respective satisfaction value

scmax
t . Following, we store the content providers that register a difference in

satisfaction with respect to cmax greater than α, which is our unfairness tol-

erance. The introduction of the unfairness tolerance value is required to pre-

serve the work of the recommendation system, which would otherwise be lim-

ited to suggesting documents of the three content providers with the lowest

satisfaction. In this case, instead, unless there are evident differences in sup-

pliers’ satisfaction, the proposed recommendations are retained. When the

agent proposes its slate of suggested documents slate = (d1, d2, d3), we pro-

ceed by searching inside the slate for the document belonging to the content

provider with the highest satisfaction among the recommended providers.

Then, we replace this document with a document of the content provider

with the lowest satisfaction. If there are other content providers with a satis-

faction difference lower than the tolerated one, the process is repeated again.

In the end, we obtain a new slate, slate′, with which users interact, leading

to an update of their status ut+1, which is followed by an update of the sta-

tus of content providers cpt+1 based on user feedback and the reward for the

recommendation. Then, we update the state of the agent at+1 and initialize

the environment envt+1 = (ut+1, ct+1, at+1) which will be used in the following

72 4. EcoAgent: a Case Study

interaction.

Figure 4.11: Median content providers’ satisfaction observed using EcoAgent with

a proactive post-processing at the beginning and at the end of the simulation.

G100 = 0.0596

Figure 4.12: Visual representation of the Gini Coefficient at time step 0 and 100

of EcoAgent with proactive post-processing using the Lorenz curve.

As a result of the application of the post-processing method described

above on EcoAgent, we reached the goal of getting a system able to keep the

majority of content providers on the platform. In fact, from the evaluation of

the agent behavior on the environment with a 100-step long simulation, we

get at the end of the simulation the totality of content providers. However,

4.4 Post-Processing Experiments 73

checking the median value of the content providers’ satisfaction in Figure

4.11 at the beginning and at the end of the simulation, we can see that a

time step 100 we still have a median value closer to the bottom of the box,

but we can see how the box plot is smaller than the one obtained with the

previous approach, so the satisfaction is less dispersed. We do not obtain a

perfectly symmetric distribution of the satisfaction because of the unfairness

tolerance, which allows some content provider to gain more satisfaction on

some time step. However, we can see in Figure 4.12 that the Gini coefficient

value is equal to 0.0596, which means that the system is pretty fair towards

content providers. Observing the Lorenz curve in Figure 4.12 we can see

how the suppliers’ satisfaction at the end of the simulation does not fall far

from the equality line. To sum up, we can say that by applying the proactive

post-processing approach to EcoAgent, we get a system that can keep content

providers on the platform and behaves fairly towards them.

4.4.3 Post-Processed Simulation and Results

In the previous section, we have seen that from the application of the

reactive and proactive methods upon EcoAgent, we get two systems:

• reactive EcoAgent, able to maximize the number of content providers

available, but with a low degree of fairness towards them.

• proactive EcoAgent, able to maximize the number of content providers

available while acting almost perfectly fairly towards them.

Therefore, we can proceed with the analysis of the simulated environ-

ment throughout the simulation in order to study how they affect the envi-

ronment’s elements such as the users, content providers, and the document

catalog, with a particular focus on the distribution of topics in the docu-

ment catalog. Again, we chose to test the agents over a 100-steps episode

to observe the behavior of the system during a long-term interaction among

parties. This will allow us to understand how the reactive and proactive

74 4. EcoAgent: a Case Study

agents, respectively, affect the catalog of documents of the environment in

order to answer the two questions we asked ourselves initially, namely:

• does a system that keeps content providers on the platform provide a

healthier environment to users?

• does a fair system towards content providers provide a healthier system

to users?

• How does unfairness towards content provider reflects in the creation

of biases?

Does a system that keeps content providers on the platform pro-

vide a healthier environment to users, with regard to their exposure

to topics? To answer this question, we proceed with the analysis of the sim-

ulated environment resulting from running the reactive EcoAgent, which

guarantees to keep all content providers on the platform, but does not pay

attention to be fair. In fact, it presents a Gini coefficient G100 = 0.86 which is

just a little bit above that of EcoAgent. So, the only difference between these

two systems is the number of content providers available throughout the sim-

ulation. From the analysis of the distribution of topics recorded during the

simulation, shown in 4.13, we can see how using the reactive EcoAgent in the

simulated environment, we get one topic, specifically topic10, prevails over

the others. This result is very reminiscent of the result observed from run-

ning EcoAgent in the same environment. Thus, the answer to this question

is no, guarantying keeping all content providers on the platform does not

ensure to provide a healthier system for users, since also in this case they

will very likely be exposed to documents on topic10, reducing over time the

number of topics they are exposed to.

4.4 Post-Processing Experiments 75

Figure 4.13: Overall topic distribution of documents in the simulation

environment over interactions with the Reactive Agent

Figure 4.14: Overall topic distribution of documents in the simulation

environment over interactions with Proactive Agent.

76 4. EcoAgent: a Case Study

(a) Reactive Agent

(b) Proactive Agent

Figure 4.15: Number of documents for each topic at the beginning and at the

end of the simulation

Does a fair system towards content providers offer a healthier

system to users, with regard to their exposure to topics?

To answer this question, we compared the results obtained from the reactive

EcoAgent and the proactive EcoAgent. Both these systems satisfy the

requirement of keeping the maximum number of content providers, while they

differ in the fairness degree towards content providers. Indeed, while reactive

EcoAgent presents a Gini coefficient G = 0.86, the proactive Gini coefficient

4.4 Post-Processing Experiments 77

G = 0.05.So, comparing the results obtained using these two agents on the

same simulation environment allows us to define how the fairness of the

system towards content providers is a discriminating element in creating a

healthier environment for users. Contrary to what was observed in Figure

4.13 where the reactive agent was run, in the environment resulted using the

proactive EcoAgent, shown in Figure 4.14, we do notice different probability

distribution, but none of the topics is prevailing over the others. The same

findings can be seen, from a different point of view, in Figure 4.15b, where

we can see how in the Reactive agent’s environment the sum of documents

covering topic10 is definitely higher than the others. Thus, the answer to

this question is yes, providing a healthier environment for content providers

helps to provide a healthier environment for users regarding their exposure

to topics as in this case we no longer notice a reduction in the number of

topics users are exposed to.

How does unfairness towards content provider reflects in the

creation of biases? To answer this question, we have further analyzed

the contribution of content providers to the corpus of documents. Using the

Reactive EcoAgent we can observe that cp7 in Table 4.5 owns most of the

documents available on the platform, which is 1744 documents compared

to other content providers that contribute with about 30 documents, which

reflects the unfairness of the reactive agent. But more interestingly, we can

see how it contributes most to the creation of documents concerning topic10.

This result is particularly interesting because it allows us to see how favoring

a single provider gives him the power to propose more and more frequently

the content from which he received the user’s approval initially. This not only

creates a bias on some topics and reduces the diversity of available content,

but also amplifies the risks of users being trapped in the echo chamber, where

there is a single source of documents that risk being polarized, preventing

the user from knowing all the facets of a given topic.

On the other hand, looking at Table 4.5 we can see that we still have some

content provider that is more active in document creation, such as content

78 4. EcoAgent: a Case Study

provider 5 and content provider 8, but unlike what happened in the Reactive

EcoAgent’s environment, in this case, the other suppliers are not cut off

from the process and are still satisfied with the platform. This affects the

system because to meet the fairness requirement between content providers,

the system will also recommend content that deals with more niche topics

encouraging suppliers to create new documents on that topic and therefore

increasing the likelihood that they will reach users. Doing so increases the

diversity of documents to which users are exposed and thus mitigates the

popularity bias on topics of which EcoAgent suffers.

Reactive Agent document catalog at step 100 Proactive Agent document catalog at step 100

Topic cp0 cp1 cp2 cp3 cp4 cp5 cp6 cp7 cp8 cp9 cp0 cp1 cp2 cp3 cp4 cp5 cp6 cp7 cp8 cp9

topic1 1 1 3 1 5 7 10 128 2 1 8 9 5 9 23 52 21 9 44 11

topic2 0 3 2 2 1 7 1 114 0 1 6 15 13 10 6 65 6 9 48 6

topic3 1 3 1 1 6 6 2 92 0 0 13 4 6 5 11 44 7 5 31 4

topic4 4 4 3 1 5 6 2 98 1 4 16 11 8 7 16 39 9 6 36 7

topic5 1 6 3 1 2 0 1 79 2 0 4 19 9 5 11 34 4 7 40 7

topic6 4 3 1 1 3 8 8 102 3 3 6 17 8 3 7 44 11 11 40 16

topic7 0 2 1 3 3 4 1 94 5 2 7 6 10 8 13 56 6 14 54 6

topic8 5 3 1 1 2 8 2 100 3 2 13 7 9 9 17 67 7 4 24 9

topic9 0 2 1 3 3 5 6 110 1 2 3 11 4 8 18 39 13 8 37 8

topic10 4 1 3 0 2 6 2 99 0 2 9 7 6 8 10 55 11 7 27 8

topic11 1 4 4 3 2 6 3 238 3 1 9 14 14 4 12 66 9 9 78 3

topic12 2 3 0 2 1 9 1 111 1 2 5 11 6 6 7 70 9 8 43 4

topic13 1 1 2 4 0 8 4 114 2 0 4 9 9 12 10 107 7 5 36 5

topic14 0 1 1 2 4 6 1 143 4 4 2 6 6 6 21 65 7 11 41 7

topic15 2 5 0 2 3 15 3 122 3 2 6 14 7 8 12 76 9 6 46 11

Total 26 42 26 27 42 101 47 1744 30 28 111 160 120 108 194 879 136 119 625 112

Table 4.5: Content providers’ contribution to the document catalog at the

end of the simulation for the Reactive Agent on the left and the

Proactive Agent on the right.

4.5 Discussion

To summarize, in this chapter, we study a content provider-aware rec-

ommendation agent that aims to maximize the combined user and content

provider utilities, which we call EcoAgent. We conducted a series of exper-

iments to identify scenarios where a content provider-aware recommender

4.5 Discussion 79

system can lead to the creation of some biases in the environment that could

undermine user behavior in long-term interaction with recommendation sys-

tems. In particular, we have identified the presence of a bias on the available

topics, specifically, we have noticed that a particular topic, is created with

a greater frequency compared to the others in the course of the simulation.

Moreover, from the analysis of the experiments, we have noticed two trends of

the RS: that is its tendency not to maximize the number of content providers

available on the platform and to treat them in an unfair way. So we tried

to see if and how changing the behavior of the system towards the content

provider could have an effect in the mitigation of the bias detected, and

therefore, what was the role of content providers in the generation of this

bias.

The results show that providing a platform with numerous content providers

does not help to create a healthy environment with reference to the topics

proposed by the platform. Instead, it makes a difference to provide a healthy

environment for content providers, where everyone is treated fairly. In fact,

by receiving recommendations, content providers are encouraged to create

new documents according to their preferences which include more niche top-

ics, thus increasing the diversity of the proposed topics. In addition, multiple

vendors creating documents on the same topics decreased the likelihood that

documents on a particular topic are polarized, and thus the user can access

different viewpoints. In this way, we reduce the elements that risk trapping

users in the echo chamber. Instead, as a result of the mitigation of popular-

ity bias over topics, we have a more diverse catalog from which to choose a

recommendation for users. This allows us to satisfy the preferences of the

users of which we are aware, but also to verify their position on those not yet

mentioned, thus increasing the probability of having novel or serendipitous

recommendations.

80 4. EcoAgent: a Case Study

Conclusion and Future Work

This thesis work aims at studying the impact that recommendation sys-

tems have on society. First, we tried to provide a sufficiently solid theoretical

basis to allow a full understanding of the tools used in the thesis. This in-

cludes an exploration of the principles of Reinforcement-Learning and an

examination of possible approaches that can be used to solve the RL prob-

lem. Followed by a general overview of the different types of recommender

system available in the literature, and an analysis of the undesirable effects

that they may have on users as a side effect of long-term interaction.

Next, to study the role played by recommender system in the creation of

these effects, a particular RS, EcoAgent, is introduced. EcoAgent, in fact,

is a multi-stakeholder recommendation system based on RL, able to grasp

the dynamics between user-agent-cps, and therefore to represent in the most

realistic way possible a real-world application. Moreover, by running sim-

ulations in which the agent interacts in an environment composed of users

and suppliers, we noticed the tendency of the agent not to maximize the

number of content providers available on the platform and to treat them un-

fairly, plus the presence of a popularity bias on some topics available on the

platform. This scenario has been identified as unhealthy, obviously towards

content providers, but also towards users. In fact, they are led to interact

more and more frequently with documents on a given topic, which have most

likely been created by the same supplier, with the consequent amplification

of his point of view on the subject; that recalls the definition of echo chamber.

81

82 4. EcoAgent: a Case Study

In conclusion, we implemented two post-processing techniques that change

the agent’s behavior towards content providers, first creating a platform that

maximizes the number of providers available and then one that behaves cor-

rectly towards them. The results show that providing a healthy environment

for content providers, where everyone is treated fairly, is reflected in mitigat-

ing the biases of popularity found on topics. In fact, by receiving recommen-

dations, content providers are encouraged to create new documents based on

their preferences that include more niche topics, thus increasing the diversity

of the proposed topics. In addition, since multiple vendors create documents

on the same topics, the possibility that documents on a particular topic are

biased decreases, and thus the user can access different viewpoints. This

reduces the risk of users being trapped in the echo chamber. Instead, as a

result of the mitigation of popularity bias over topics, we have a more diverse

catalog from which to recommend items for users. This allows us to satisfy

users’ preferences that we are aware of, but also to verify their position on

those not yet mentioned, thus increasing the probability of having a novel or

serendipitous recommendations.

However, EcoAgent is a simplistic attempt to capture the complex dy-

namics between different stakeholders and to study how they affect the en-

vironment in which they work. Here, we focused on analyzing the agent’s

effect on the document catalog, but there are several entities present in the

environment that can be studied to ensure a healthy multi stake-holder rec-

ommendation system. For example, another possible study path could be to

create an RS able to meet some requirements on the diversity of the elements

present in a slate of recommendation, for instance ensuring to have a high

value of intra-list similarity, which measure the degree of diversity between

the elements of a recommendation slate by calculating the average cosine

similarity. An RS that satisfy this constraint, would guarantee the user to

not be subject to a flattening of his interests, but it would be interesting to

study how this would affect the satisfaction of users and suppliers.

Bibliography

[Gol+92] David Goldberg et al. “Using collaborative filtering to weave an

information tapestry”. In: Communications of the ACM 35.12

(1992), pp. 61–70.

[WD92] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In:

Machine learning 8.3 (1992), pp. 279–292.

[Res+94] Paul Resnick et al. “Grouplens: An open architecture for collab-

orative filtering of netnews”. In: Proceedings of the 1994 ACM

conference on Computer supported cooperative work. 1994, pp. 175–

186.

[KLM96] Leslie Pack Kaelbling, Michael L Littman, and AndrewWMoore.

“Reinforcement learning: A survey”. In: Journal of artificial in-

telligence research 4 (1996), pp. 237–285.

[RV97] Paul Resnick and Hal R Varian. “Recommender systems”. In:

Communications of the ACM 40.3 (1997), pp. 56–58.

[Bur00] Robin Burke. “Knowledge-based recommender systems”. In: En-

cyclopedia of library and information systems 69.Supplement 32

(2000), pp. 175–186.

[Gol+01] Ken Goldberg et al. “Eigentaste: A constant time collabora-

tive filtering algorithm”. In: information retrieval 4.2 (2001),

pp. 133–151.

83

84 BIBLIOGRAPHY

[Bur02] Robin Burke. “Hybrid recommender systems: Survey and ex-

periments”. In: User modeling and user-adapted interaction 12.4

(2002), pp. 331–370.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. “Toward the

next generation of recommender systems: A survey of the state-

of-the-art and possible extensions”. In: IEEE transactions on

knowledge and data engineering 17.6 (2005), pp. 734–749.

[Che+08] Long-Sheng Chen et al. “Developing recommender systems with

the consideration of product profitability for sellers”. In: Infor-

mation Sciences 178.4 (2008), pp. 1032–1048.

[FB08] Alexander Felfernig and Robin Burke. “Constraint-based recom-

mender systems: technologies and research issues”. In: Proceed-

ings of the 10th international conference on Electronic commerce.

2008, pp. 1–10.

[DMR09] Aparna Das, Claire Mathieu, and Daniel Ricketts. “Maximizing

profit using recommender systems”. In: arXiv preprint arXiv:0908.3633

(2009).

[Par11] Eli Pariser. The filter bubble: What the Internet is hiding from

you. penguin UK, 2011.

[RRS11] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Introduction

to recommender systems handbook”. In: Recommender systems

handbook. Springer, 2011, pp. 1–35.

[Ado+13] Gediminas Adomavicius et al. “Do recommender systems ma-

nipulate consumer preferences? A study of anchoring effects”.

In: Information Systems Research 24.4 (2013), pp. 956–975.

[Bob+13] Jesús Bobadilla et al. “Recommender systems survey”. In:Knowledge-

based systems 46 (2013), pp. 109–132.

BIBLIOGRAPHY 85

[VDS13] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen.

“Deep content-based music recommendation”. In: Advances in

neural information processing systems 26 (2013).

[IFO15] Folasade Olubusola Isinkaye, Yetunde O Folajimi, and Bolande

Adefowoke Ojokoh. “Recommendation systems: Principles, meth-

ods and evaluation”. In: Egyptian informatics journal 16.3 (2015),

pp. 261–273.

[Sil15] David Silver. Lectures on Reinforcement Learning. url: https:

//www.davidsilver.uk/teaching/. 2015.

[Agg+16] Charu C Aggarwal et al. Recommender systems. Vol. 1. Springer,

2016.

[Bro+16] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540

(2016).

[Bur+16] Robin D Burke et al. “Towards multi-stakeholder utility evalu-

ation of recommender systems.” In: UMAP (Extended Proceed-

ings) 750 (2016).

[DB16] Robin Devooght and Hugues Bersini. “Collaborative filtering

with recurrent neural networks”. In: arXiv preprint arXiv:1608.07400

(2016).

[ABM17] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher.

“Recommender systems as multistakeholder environments”. In:

Proceedings of the 25th Conference on User Modeling, Adapta-

tion and Personalization. 2017, pp. 347–348.

[Aru+17] Kai Arulkumaran et al. “Deep reinforcement learning: A brief

survey”. In: IEEE Signal Processing Magazine 34.6 (2017), pp. 26–

38.

[Bur17] Robin Burke. “Multisided fairness for recommendation”. In: arXiv

preprint arXiv:1707.00093 (2017).

86 BIBLIOGRAPHY

[NDK17] Phong Nguyen, John Dines, and Jan Krasnodebski. “A multi-

objective learning to re-rank approach to optimize online market-

places for multiple stakeholders”. In: arXiv preprint arXiv:1708.00651

(2017).

[Liu+18] Feng Liu et al. “Deep reinforcement learning based recommen-

dation with explicit user-item interactions modeling”. In: arXiv

preprint arXiv:1810.12027 (2018).

[Möl+18] Judith Möller et al. “Do not blame it on the algorithm: an em-

pirical assessment of multiple recommender systems and their

impact on content diversity”. In: Information, Communication

& Society 21.7 (2018), pp. 959–977.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning:

An introduction. MIT press, 2018.

[Zha+18] Xiangyu Zhao et al. “Recommendations with negative feedback

via pairwise deep reinforcement learning”. In: Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 2018, pp. 1040–1048.

[Abd+19] Himan Abdollahpouri et al. “The unfairness of popularity bias in

recommendation”. In: arXiv preprint arXiv:1907.13286 (2019).

[Bou+19] Dimitrios Bountouridis et al. “Siren: A simulation framework for

understanding the effects of recommender systems in online news

environments”. In: Proceedings of the conference on fairness, ac-

countability, and transparency. 2019, pp. 150–159.

[Ie+19] Eugene Ie et al. “Recsim: A configurable simulation platform

for recommender systems”. In: arXiv preprint arXiv:1909.04847

(2019).

[Zha+19] Shuai Zhang et al. “Deep learning based recommender system:

A survey and new perspectives”. In: ACM Computing Surveys

(CSUR) 52.1 (2019), pp. 1–38.

BIBLIOGRAPHY 87

[Abd+20] Himan Abdollahpouri et al. “Multistakeholder recommendation:

Survey and research directions”. In: User Modeling and User-

Adapted Interaction 30.1 (2020), pp. 127–158.

[Che+20] Jiawei Chen et al. “Bias and debias in recommender system: A

survey and future directions”. In: arXiv preprint arXiv:2010.03240

(2020).

[Mah20] Batta Mahesh. “Machine learning algorithms-a review”. In: In-

ternational Journal of Science and Research (IJSR).[Internet] 9

(2020), pp. 381–386.

[Man+20] Masoud Mansoury et al. “Feedback loop and bias amplifica-

tion in recommender systems”. In: Proceedings of the 29th ACM

international conference on information & knowledge manage-

ment. 2020, pp. 2145–2148.

[MTF20] Silvia Milano, Mariarosaria Taddeo, and Luciano Floridi. “Rec-

ommender systems and their ethical challenges”. In: Ai & Society

35.4 (2020), pp. 957–967.

[ACF21] M Mehdi Afsar, Trafford Crump, and Behrouz Far. “Reinforce-

ment learning based recommender systems: A survey”. In: arXiv

preprint arXiv:2101.06286 (2021).

[Ela+21a] Mehdi Elahi et al. “Investigating the impact of recommender

systems on user-based and item-based popularity bias”. In: In-

formation Processing & Management 58.5 (2021), p. 102655.

[Ela+21b] Mehdi Elahi et al. “Towards responsible media recommenda-

tion”. In: AI and Ethics (2021), pp. 1–12.

[Luc+21] Eli Lucherini et al. “T-RECS: A simulation tool to study the

societal impact of recommender systems”. In: arXiv preprint

arXiv:2107.08959 (2021).

88 BIBLIOGRAPHY

[Zha+21] Ruohan Zhan et al. “Towards Content Provider Aware Recom-

mender Systems: A Simulation Study on the Interplay between

User and Provider Utilities”. In: Proceedings of the Web Confer-

ence 2021. 2021, pp. 3872–3883.

Acknowledgments

I would like to thank my supervisors, Dr. Asia Biega, for her guid-

ance during the development of this work and her exceptional availability in

brainstorming with me any possible ideas, and Prof. Ugo Dal Lago for the

experience and insight shared and the time dedicated to the progress of this

research.

My biggest thanks to my family for all the support you have shown me

throughout my studies and in all my decisions. Finally, I thank my friends:

from my lifelong friends to those I met on my journey and who decided to

walk by my side.

To you my most sincere love.

89

