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Abstract

This dissertation analyses time series data derived from sewage metagenomic sam-

ples, available within the VEO (Versatile Emerging infectious disease Observatory)

project, a European initiative intended to increase and improve the generation and

distribution of biological data with the scope of studying anti-microbial resistance

(AMR) and monitoring emerging infectious diseases (EIDs).

The main purpose of this work was to investigate possible spatial and temporal

patterns occurring in the sewage bacterial content of four cities (Bologna, Budapest,

Rome, and Rotterdam) over time (from March 2020 to November 2021), also consid-

ering the possible effects of the lockdown periods due to the COVID-19 pandemic.

First of all, we started the analyses by evaluating the between samples diversity,

looking for similarities (or dissimilarities) among the four cities, as well as among

different time periods (seasonality). To this aim, we computed both similarity net-

works and Principal Coordinate Analysis plots based on the Bray-Curtis metric, a

measurement of dissimilarity commonly used in ecology to compare samples based

on their taxonomic composition.

Ecological techniques were also taken into account to estimate the α-biodiversity

of the samples. This was achieved by means of different diversity indices (e.g.

Shannon, Pielou, Chao, etc.), which take into account different ecological features:

species richness, evenness, and taxonomic distance. By looking at the temporal

behaviour of the biodiversity in the four cities, we noticed an abrupt decrease in

both Rome and Budapest in the Summer of 2020. This collapse of biodiversity was

further investigated.

The first interesting result is that the Rotterdam samples seem to be very dif-

ferent with respect to those from the other cities, in terms of both variability and

stationarity. In particular, we observed a peculiar low variability in the Rotter-

dam samples, which seems to be related to the species of Pseudomonas genus. Such

species are in fact highly variable and plentiful in the other cities, but are not among

the most abundant in Rotterdam.

Secondly, we observed that no seasonality effect emerged from the time series of

the four cities.

These results are confirmed by the Bray-Curtis-based Principal Coordinate Anal-

ysis, where three clusters (corresponding to the samples of Budapest, Rome, and,

especially, Rotterdam) can be recognised, while no evident separation among sam-

ples collected during different seasons is observed.



In terms of temporal behaviour of the within-sample α-biodiversity, the most

important observed feature is the occurrence of a minimum of biodiversity in the

Summer of 2020 in Rome and Budapest, which is related to two different aspects: the

prevalence of some species when the minimum occurred, namely the Pseudomonas

spp., and the change in correlations among species, which is enriched in the period

of minimum biodiversity. Moreover, the Rotterdam time series is proved to be stable

and stationary also in terms of α−biodiversity.

The last consideration concerns the impact of the periods of lockdown imposed

by the COVID-19 pandemic: unfortunately data on several of these periods are not

available. From the limited data available, no effect of the lockdown on the time

series considered emerges.

Within the VEO project, sewage samples have been collected also for the follow-

ing periods (and are still being collected); however they have not been sequenced

yet. Once the samples will be sequenced, the analyses proposed in this dissertation

will be performed also on those data, so that the possible effects of lockdowns may

be studied.
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Chapter 1

Introduction

This dissertation analyses time series data derived from sewage metagenomic sam-

ples, available within the VEO project.

In this introduction, a brief overview of what metagenomics is, as well as, a

presentation of the VEO project are given. Lastly, the main idea behind the work

rationale is reported.

1.1 From genomics to metagenomics

The word genome was created by the German botanist Hans Winkler in his book

Dissemination and Cause of Parthenogenesis in the Plant and Animal Kingdom [1],

but its etymology is not certain (it could be the blend of the words gene and chro-

mosome or could derive from the Greek verb γίγνομαι, which means ”to become”).

The genome is the nucleotide sequence of DNA of an organism, and thus contains

the genetic information of an organism.

Genomics, which can be considered a branch of molecular biology, deals with the

study of the entire genome of living organisms. It can be said that genomics was

born in 1980, when the entire genome of a virus, the Φ-X174 phage, was sequenced.

The sequencing of the first complete genome of a bacterium (precisely Haemophilus

influenzae) dates back to 1995.

Since that time, the sequencing of the whole genome of living organisms has

progressed on increasingly complex organisms, both thanks to the use of increas-

ingly advanced sequencing techniques, and thanks to bioinformatics tools for the

management of large amounts of data.

In 1986 the Human Genome Project was launched for the sequencing of the entire

genome of humans. This project led to a first publication in 2000 (which however

concerned about 90% of the entire genome with a not always satisfactory accuracy),

to be substantially completed in 2003 with the publication of 99% of the genome

with an accuracy of 99.9%.

Parallel to the development of genomics, metagenomics was born between the
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end of the 70s and the beginning of the 80s (thanks to the pioneering work of Woese

[2], to which Pace and colleagues gave concrete application [3]). Metagenomics is also

defined as community or environmental genomics, and is based on the direct extrac-

tion, amplification, and sequencing of the microbial DNA derived from a biological

sample. The initial consideration was based on the evidence that most microor-

ganisms were not (and are not) culturable. Pace and colleagues, hence, suggested

to study the microbial content of a biological sample exploiting the sequencing of

highly conserved genes containing hyper-variable regions. Specifically, the authors

suggested the use of the 16S rRNA gene as phylogenetic marker[4]: comparing the

measured 16S rRNA sequences with previously annotated databases allows to reveal

the microbial content of a sample.

At first, metagenomics was based on two classical approaches: the first one,

called function-based screening, was based on the heterologous expression of the

gene sequences obtained from the environmental sample; the second one, called

sequence-based screening, acted selecting the clones on the basis of the presence of

a specific sequence of interest (which must be already known, at least partially).

Later, these approaches were replaced by an approach called Whole Metagenome

Shotgun Sequencing, which do not focus on the single gene or genome, but examines

the entire biodiversity of the microbial community. Among other things, this ap-

proach allows to evaluate both the microbial content (i.e. which species are present

and with which relative abundance), and the genetic content (in terms of microbial

genes) of a sample. Another great advantage of this approach is its ability to iden-

tify homology-free genes with already known sequences, which leads to enormous

potential in terms of biodiscovery.

Shotgun sequencing is based on random splitting of DNA into numerous small

segments; these segments are sequenced using the chain termination procedure,

which consists in the random incorporation of dideoxynucleotides through the ac-

tion of DNA polymerase during the in vitro DNA replication. The method then

involves electrophoresis of the DNA fragments. However, nowadays, the most used

method is the one called Next Generation Sequencing. This method is developed

in the following phases: first of all, the DNA to be sequenced is extracted, which

is then broken into fragments usually between 350 and 500 bp. The -3’ ends are

adenylated so that they can bind to a thymine placed at the end of an adapter.

At this point the DNA amplification takes place with the Polymerase Chain Re-

action (PCR) technique. The Illumina method, which is one of the most widely

used, involves the use of a slide to which specific DNA fragments are adhered which

allow the anchoring of the sections of DNA to be amplified (and subsequently to

be sequenced). When the DNA copies have been amplified by PCR, resulting in a

so-called DNA cluster, sequencing begins. In the presence of DNA polymerase and

labeled nucleotides, each time a nucleotide is added, it emits a specific fluorescence
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which is detected and recorded.

In this way, in shotgun sequencing the small DNA fragments are sequenced, ob-

taining the so-called reads. By repeating these operations of random fragmentation

and sequencing of the fragments obtained, the superposition of the reads allows the

reconstruction of the whole starting DNA.

By exploiting these procedures (which are gradually being refined) the Whole

Metagenome Shotgun Sequencing is achieved; it allows to identify, using marker

genes present in a differentiated way in all organisms, the entire structure of the

community. It was thus possible to identify, for example, the community structure

of the human gut microbiome. Whole Metagenome Shotgun Sequencing is compu-

tationally very complex; moreover, it requires reads of adequate length, which can

be combined either with a de novo assembly or mapping on a reference database.

The last step is therefore to identify what has been sequenced. However, this

task is not trivial, since most of the sequences will not find a 100% correspondence

with sequences already known and stored in dedicated databases.

It is then possible to use marker genes (single genes or gene families) to evaluate,

with phylogenetic analyses, which are the most represented taxa. For bacteria, the

marker of choice is the already cited 16S rRNA gene, that is a sequence universally

shared by all prokaryotes and presents extremely conserved regions, interspersed

with highly variable regions (numbered from V1 to V9, of different length, with dif-

ferent variability and therefore very useful for phylogenetic reconstructions). These

variable regions can be amplified and sequenced thanks to the use of primers.

Sometimes it is necessary to assemble the reads de novo to generate so-called

super-contigs (i.e. large pieces of genome) or even complete genomes to be charac-

terised.

The most common strategy is the one called binning, or the assignment of re-

dundant sequences to the same OTU (Operative Taxonomic Unit, a term based on

the arbitrary definition of a taxonomic unit exclusively based on the criterion of

sequence divergence).

The term binning means the grouping of taxa (species, genera and families) on

the basis of shared characteristics obtainable from the analysis of some properties

of their variable sequences: frequency of observation of di-, tri- or tetra-nucleotides,

content in GC (Guanine-Cytosine), etc.

In general, binning concerns the grouping of sequences deriving from the sequenc-

ing of phylogenetic markers on the basis of similarity criteria. The comparison takes

place between the reconstructed sequences and a reference database. A minimum

similarity threshold is set above which it is possible to proceed with the assign-

ment to a certain taxonomic group (for example > 97% for the species, > 90% for

the genus, > 80% for the family). It is easy to understand that these thresholds

are chosen arbitrarily, as a “rule of thumb”, derived from empirical and common

sense considerations: in fact, higher thresholds could lead to an overestimation of
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biodiversity, while the use of lower thresholds could lead to incorrect classifications.

All sequences included in an OTU must have a level of mutual similarity > 97%.

Furthermore, among all the sequences a reference one must be identified, which

should hopefully be the most abundant. It should also be noted that among the

OTUs a continuous spectrum of similarity between sequences can sometimes be

generated and this can determine the possible classification of some sequences in

more than one OTU.

Once the OTUs with their respective frequencies have been defined (essentially

by exploiting the count of reads that fall into each OTU and relating it to the

total number of informative reads) the reference sequences of each OTU must be

compared with a reference database (for example SILVA or NCBI). If the similarity

between the reference sequence of the OTU and that of the database exceeds a

certain threshold it can be reached at the species level, otherwise the classification

stops at higher taxonomic levels.

1.2 The VEO project

The Versatile Emerging infectious disease Observatory (VEO) is a European initia-

tive intended to increase and improve the generation and distribution of biological

data within the scope of studying anti-microbial resistance (AMR) and monitoring

emerging infectious diseases (EIDs).

The employed strategy of VEO in studying and analysing these subjects is the

innovative One Health perspective.

One Health is an integrated, unifying approach to health studies, based on the

fact that human health is closely linked to the healthiness of food, animals and

the environment. Thus, it “aims to sustainably balance and optimise the health of

people, animals and ecosystems” [5].

Figure 1.1: Schematic description of One Health approach

While the traditional approach on AMR and EIDs studies is human-centred
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and usually based on ecological models subsequent to spillover occurrence (from

animals to humans), the VEO approach works on an extended and longsighted

domain (as can be seen in Figure 1.2), taking advantage of collaborations among

multiple scientific branches.

Figure 1.2: Schematic description of VEO approach

The VEO project provides diverse data types which may be analysed from many

different perspectives; this underlying interdisciplinary may contribute to predict,

detect, and track many global health threats.

The work presented here is based on data available within the VEO project, that

is the metagenomic compositions (in terms of abundances) of samples taken from

sewage of different cities, and in different times. The analyses of this dissertation

and their purposes will be briefly presented in the next section, but deeply described

later on, in chapter 2.

1.3 Work rationale

The main purpose of this work was to investigate possible spatial and temporal pat-

terns occurring in the sewage bacterial content of four European cities, starting from

the metagenomic data available within the VEO project and taking into account the

possible effects of the lockdown periods due to the COVID-19 pandemic.

In order to achieve this goal, several time series techniques were used [6], and

an ecological study on the biodiversity was performed, both within and between

samples.

First of all, the samples were investigated in search of particular periodicities,

for instance related to seasonality. In order to do so, the Principal Coordinate Anal-

ysis, starting from the Bray-Curtis distance, was performed considering separately
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the samples collected in each city. Moreover, a measure of similarity among all

the samples was computed (and visualised through PCoA), so that to investigate

possible spatial patterns.

Other ecological analyses have been performed: the α-diversity of each sample

was computed by means of biodiversity indices. In this way, the temporal behaviour

of biodiversity could be explored, taking into account both species richness and

evenness, but also the taxonomic distances inside the bacterial content of sewage.

The indices considered to evaluate the within sample biodiversity were the well

known Shannon, Pielou, Gini-Simpson and Chao indices, the Hill numbers, but also

the two taxonomic distinctness indices proposed by Clarke and Warwick.

Then, an in-depth investigation of sub-periods of the time series was proposed

in order to analyse the drops of biodiversity occurring in the Rome and Budapest

time series. This analysis was based on a correlation network technique, used to

highlight changes in the relationships among species during the sub-periods, as well

as on a statistical inspection of the temporal trend of the most abundant species, in

search of significant changes in terms of abundance that could explain the drop in

biodiversity.

Finally, some brief considerations about the effects of the lockdowns due to the

COVID-19 pandemic were reported.
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Chapter 2

Material and Methods

In this chapter, a sketch of the data used in this dissertation is presented, along with

the preprocessing steps required to work properly with them.

Then, an in-depth theoretical description of the different performed analyses is

provided.

2.1 The data

Among the diverse data collected within the VEO project, this dissertation focused

on the results of metagenomic data derived from the sewage of four European cities:

Bologna, Budapest, Rome, Rotterdam. The sampling was repeated for a period of

at least 40 weeks, with a frequency of one sample every two weeks, on average.

The extracted metagenome was then sequenced and aligned to databases in order

to identify the taxa composition of each sample. The considered taxonomic levels

are seven: species, genus, family, order, class, phylum and superkingdom. The data

are then organised in abundance tables, one for each taxonomic level; a column

represents a certain taxon, while a row represents a certain sample (characterised

by city and time of isolation). The file is thus filled with the number of fragments

of DNA counted in each sample, for each taxon.

In this way, seven tsv file were built, one for each taxonomic levels. In this

dissertation, the analyses will be carried out starting from those data. Table 2.1

summarise the number of samples and the time period covered by each time series,

that is by each city’s dataset.

More details on the metagenomic samples are collected in the appendix A.

As an example, Figure 2.1 shows a piece of one tsv file (the phylum one). It

is worth noticing that the first column contains the sample ID, which in turn may

be used to get useful information interpolating it in the metadata tsv file. This file

collects sample IDs and city and date of isolation.

The power of these data resides not only in the fact that they are longitudinal
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City Samples Starting

time

Final time

Bologna 28 2020-03-12 2021-04-27

Budapest 26 2020-05-18 2021-05-17

Rome 20 2020-03-17 2020-12-09

Rotterdam 39 2020-04-08 2021-11-03

Table 2.1: Time series information

(time series may be seen as one-dimensional longitudinal data) but also in their

variety in terms of place of origin at European scale. Hence, both spatial and

temporal considerations may be taken into account.

Figure 2.1: Example of abundance table in .tsv format

Some preprocessing operations are required on these data, in order to appropri-

ately perform analyses on them. Next section will examine the main issues occurring

when dealing with this data type.

2.1.1 Data preprocessing steps

First, it is worth pointing out that each sewage sample is composed of not only

bacteria, but also eukaryotes, archaea ad viruses. Nevertheless, only the bacteria

population is examined in the performed analyses, since it is of much more interest

when the aim is to detect and monitor potential health threats or to study anti-

microbial resistance1.

1Brief clarification: also viruses may be interesting to be analysed, of course. However, metage-

nomic samples can only take into account DNA viruses, because of the inherently weaker structure

of RNA with respect to DNA. Hence, this results in an incomplete and not-large-enough portrayal

of virus communities in the samples.
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Hence, the first preprocessing step is to filter the samples, removing all those

taxa which does not belong to bacteria (at each taxonomic level, except for superk-

ingdom). To achieve this goal, the NCBI (National Center for Biotechnology Infor-

mation) database [7] and the GitHub repository “taxonomy ranks” [8] were used.

In fact, a taxonomic reconstruction of every taxa is needed in order to establish its

membership to the Bacteria superkingdom.

Unfortunately, during this step, some taxa were lost, i.e. the tool was not able

to find them in the NCBI database; the list of missing taxa is reported in appendix

A.

Also, it is worth mentioning that, at each taxonomic level, some DNA fragments

were not identified at all, during the alignment procedure. Although those fragments

give no information about the sample composition, their counts are collected in each

file into the “unknown” column. These counts are omitted in the analyses, but

further information may be found in appendix A.

All those steps, as well as, all the analyses that will be described later on, were

performed via python.

Working with compositional data

Abundances of taxa in a sample are example of compositional data, i.e. of data

representing “proportions of some whole”, as stated by the Scottish statistician

Aitchison (1982) [9]. As described in that article, this type of data requires to be

handled carefully, since they live in a particular mathematical space called simplex.

A (k − 1)-dimensional Aitchison simplex2 is a a space described by:

S =

{
x = (x1, . . . , xk) ∈ Rk

∣∣∣xi > 0, i = 1, . . . , k;
k∑

i=1

xi = α

}
(2.1)

This space is equipped with an operation called closure:

C (x1, . . . , xk) =

(
x1∑k
i=1 xi

, . . . ,
xk∑k
i=1 xi

)
. (2.2)

which allows to normalise the data on the simplex 2.1 leading to the so-called prob-

ability simplex with the constraint
∑k

i=1 xi = 1.

Another useful operation is the centred log-ratio(clr), which map the Aitchison

simplex into a subset of the real space:

clr : S −→ U, U ⊂ Rk

clr(x) =

(
log

x1

g(x)
, . . . , log

xk

g(x)

)
(2.3)

2Here, the name Aitchison simplex is used to describe the sample space of compositional data

and thus to distinguish it from the more general definition of simplex. Further details about

simplices and Aitchison simplices may be found in appendix B.
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where k and g(x) are the dimension and the geometric mean of the vector x, re-

spectively.

Further details on Aitchison simplex may be found in appendix B.

The main obstacle which occurs when dealing with compositional data living in

this space is the constraint on the x’s components. In fact, xi (for each i = 1, . . . , k)

has to be strictly positive and this means that:

• the Aitchison simplex does not include the boundary, thus it can be defined

as an interior simplex;

• the Aitchison simplex may be thought as the set of probability distributions

on a k-dimensional dataset where zero probabilities are forbidden; notice that,

as a consequence, also probabilities equal to 1 are left out.

As a consequence, each sample containing zero DNA fragments of certain taxa is

not suitable for being studied through Aitchison simplices, since the ”probability”

(that is the relative abundances, in this context) of those taxa will be null. Moreover,

forcing those data to lie in that simplex can not work, because many operations may

not be mathematically performed (for instance, the centred log-ratio will raise an

error when zeros occur).

This problem may be solved through the multiplicative replacement strategy3

[10]. Let us x = (x1, . . . , xk) ∈ S be a composition, i.e. a vector in the Aitchison

simplex in 2.1, with Z zero components; the multiplicative replacement maps x into

a new composition r ∈ S without zeros:

ri =


δ if xi = 0(
1−

Zδ

α

)
xi if xi > 0

∀i = 1, . . . , k (2.4)

where δ is a small positive correction parameter and α is the sum constraint in

2.1.

The parameter δ may be a constant set a-priori or may be a function of the

number of x components. One usual choice is to set δ equal to 1/k2 ; this choice

helps to avoid negative components in the new composition r, since they have no

meaning.

The multiplicative replacement strategy has some interesting properties:

1. the parameter δ does not depend on the number of zeros in the composition, Z

(and, if it has been fixed to a constant value, neither depends on he dimension

k);

3There are other ways to tackle the problem of zeros abundances, but, here, the multiplicative

replacement strategy is chosen among them because it guarantees coherence with the Aitchison

simplex’s structure described above.
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2. all the basic operations on the simplex (such as clr and closure) are preserved

and coherent in the sub-composition of non-zero components;

3. ratios are preserved, that is:
ri

rj
=

xi

xj

(2.5)

for all non-zero values xi and xj; this implies that the covariance structure of

non-zero components is preserved.

All the above discussion about Aitchison simplex has the purpose of highlight

the importance of using the appropriate operations when dealing with compositional

data, especially when correlation-based analyses are performed: this is a consequence

of equation 2.5.

Coming back on the sewage case study introduced in this dissertation, the centred

log-ratio transform was performed, as well as the multiplicative replacement strat-

egy, in order to avoid spurious correlations among samples and to (approximately)

maintain the properties and structure of the original data.

Working with time series

The time series structure of the data analysed in this dissertation allows several

exploratory analyses regarding the bacterial community in sewage. In fact, different

methods may be used to study significant features of the community, such as its

stability over time or its response to external effects and perturbations.

Unfortunately, among the variety of possible techniques, some of them were not

suitable for the provided dataset because of its properties and structure.

Of course, one of the main issues was the compositional data structure and the

presence of zero components in the samples; this part was tackled by adopting the

Aitchison simplex formalism and using the functions defined in this space, as already

described in the previous section.

However, this was not the only problem; a non-exhaustive list of the questions

concerning the data and their features is shown below:

1. The time series are composed of a small number of samples and the sampling

frequency is not sufficiently large; this means that every analysis which requires

a certain time series length are not suitable for the data (examples are the

Hurst exponent and the Lyapunov exponent);

2. The sampling rate is not uniform, i.e. the samples belonging to the time series

of a city were not extracted with a constant frequency (see 2.2 for further

details);
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3. Each composition, i.e. each one of the 113 samples, exhibits many zero com-

ponents (zero counts associated to certain taxa, no matter the considered

taxonomic level). Of course, this is an intrinsic feature of these type of data;

nevertheless it may cause spurious and biased results in correlation analyses;

4. The time series cover a short period of time (at most 1 year and 7 month, in

Rotterdam); this allows only minimal (and often non - significant) periodicity

analyses.

The non-uniform sampling rate mentioned in point 2 may result in the unfea-

sibility of many correlation or periodicity - based techniques. Some of these types

of analysis, namely the Fourier spectral analysis and the cross (and auto) - correla-

tion, have been performed despite the (non-satisfied) hypothesis of equidistant time

points. In fact, in many cases (and for specific techniques) the sampling rate may

be approximated to uniform because of its narrow variability; the average time gap

between two consecutive samples, as well as the standard deviation, are reported in

Table 2.2, expressed in days.

City Average time

gap [days]

Standard

deviation [days]

Bologna 15.2 2.9

Budapest 14.6 6.8

Rome 14.1 3.9

Rotterdam 15.1 4.5

Table 2.2: Descriptive statistics of time gaps

Obviously, this approximation may lead to (hopefully minor) distortions.

About point 3, instead, it is worth pointing out that the zero components is a

tricky problem when dealing with Pearson’s correlation. The Pearson’s correlation

coefficient among two vectors (Let us say X1 and X2) is defined as:

r =

∑n
i=1(x1i − x̄1)(x2i − x̄2)√∑n

i=1(x1i − x̄1)2
∑n

i=1(x2i − x̄2)2
(2.6)

where x̄j is the mean of the n-dimensional Xj = (xj1, . . . , xjn) vector’s compo-

nents.

In the context of taxa abundances in a sample, the vectors Xj (that is the sample

composition) may have many zero components, which, in turn, will be transformed
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via centred log-ratio (after the multiplicative replacement strategy). These ”trans-

formed zero components” may lead to biased correlations, since, as a consequence

of equation 2.6, vectors with many identical components result in higher Pearson’s

correlation coefficient.

For the same reasons, the same problem arises when correlations analyses are

performed not between sample compositions, but between time series of taxa abun-

dances, particularly in the presence of rare OTUs.

Finally, a more precise description of the consequences of point 1 will be presented

in the conclusive chapter 4.

From data to analyses

The above-described preprocessing steps as well as all the issues presented in the

previous sections are intended to bring to light the intrinsic complexity of this type

of data, especially when dealing with some techniques.

Before going on with a detailed description of the methods used to analyse

the sewage compositions, a data example is depicted in Figures 2.2 a-b where the

time-distribution of the seven most representative phyla of the Bologna’s samples is

shown.

(a) Absolute abundances (b) Relative abundances (centred log-ratio)

Figure 2.2: Example of time series (Bologna, at phylum level)

Few considerations about the time-distribution of taxa will be made in the next

chapter (3), especially comparing the cities’ composition and time series.

Instead, in the next sections, a theoretical overview of the techniques carried out

on the data will be presented.

2.2 Auto-correlation and cross-correlation

Auto-correlation and cross-correlation are two techniques widely used in the analysis

of time series. They allows to analyse the correlations within the same time series
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(auto-correlation) or within different time series (cross-correlation) as a function of

the separating interval between two observations (delay time or time lag).

Both techniques can be thought of as an evolution of the Pearson coefficient,

which measures the correlation, i.e. the degree of linear link between two variables

X1 and X2:

r =

∑n
i=1(x1i − x̄1)(x2i − x̄2)√∑n

i=1(x1i − x̄1)2
∑n

i=1(x2i − x̄2)2
(2.7)

where x̄j is the mean of the n-dimensional Xj = (xj1, . . . , xjn) vector’s compo-

nents.

Let us introduce more details about both these techniques.

2.2.1 Auto-correlation

As already said, auto-correlation is a technique that exploits the Pearson correlation

coefficient by applying it to the same time series at various shift levels, i.e. at various

time lags τ . Thus, the classic Pearson correlation coefficient becomes

γτ =

∑n−τ
t=1 (xt − x̄0)(xt+τ − x̄τ )√∑n−τ

t=1 (xt − x̄0)2
∑n−τ

t=1 (xt+τ − x̄τ )2
(2.8)

where x̄0 =
1

n−τ

∑n−τ
i=1 xi, while x̄τ = 1

n−τ

∑n−
i=τ+1 xi.

This index is defined as the auto-correlation index at τ interval. Obviously, when

the lag time is set to 0, this index measures the correlation of a series with itself

and thus returns the value 1.

A plot that places the time lag values τ on the x-axis and the values of γτ on

the y-axis is called auto-correlogram; it can be useful to suggest possible models to

be applied to the time series under examination.

Of course, the auto-correlation function is symmetric around τ = 0.

It is also possible to estimate the standard error for the auto-correlation coeffi-

cient γτ [11]:

SE(γτ ) =

√√√√ 1

m0

(
1 +

τ−1∑
t=1

γ2
t

)
(2.9)

where m0 is the number of non-missing values in x.

2.2.2 Cross-correlation

Cross-correlation is the correlation between two different time series, whose compo-

nent at time t are denoted by xt, yt. In this case, the observations of one series are
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correlated with the observations of the other one at different time lags (sometimes

called advances).

Hence, the cross-correlation coefficient is a function of time lag τ and it is defined

as:

rxy|τ =

∑n−τ
t=1 (xt − x̄0)(yt+τ − ȳτ )√∑n−τ

t=1 (xt − x̄0)2
∑n−τ

t=1 (yt+τ − ȳt)2
, for τ = 0, 1, 2, . . . (2.10)

rxy|τ =

∑n+τ
t=1 (yt − ȳ0)(xt−τ − x̄τ )√∑n+τ

t=1 (xt−τ − x̄τ )2
∑n+τ

t=1 (yt − ȳτ )2
, for τ = −1,−2, . . . (2.11)

where the same notation of the auto-correlation is used.

It is worth mentioning that two definitions of cross-correlations are given because

one time series may be shifted towards or backwards with respect to the other one. In

fact, in contrast with what happens in the auto-correlation case, the cross-correlation

function is not symmetric about τ = 0.

When the lag time is set to 0, the cross-correlation index coincides with Pearson’s

correlation coefficient r.

The values of rxy|τ plotted as a function of the (discrete) time lag values τ is

called cross-correlogram.

It is possible to estimate the standard error of the cross-correlation coefficient

rxy|τ [12]:

SE(rxy|τ ) ∼=

√
1

n− |τ |
. (2.12)

2.3 Correlation Networks

A useful tool to study and visualise the relationships among variables is the so-called

correlation network.

Let us consider a network G(N,E), having N nodes representing general vari-

ables X1, . . . , XN ; it is a correlation network if an edge between two variables Xi

and Xj (with i ̸= j) occurs when the correlation between Xi and Xj is greater than

a certain threshold, properly chosen depending on the considered case study.

This type of network depends not only on the choice of the threshold, but also on

the choice of the measure of correlation used (Pearson’s r, Spearman’s ρ, Kendall’s

τ , ...).

In this dissertation, correlation networks have been built using, as variables

X1, . . . , XN , both the overall samples’ composition and the taxa belonging to a
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fixed sample. The former case results in a depiction of the relationships among the

samples of the considered city; the latter is instead a sketch of the connections and

dependencies among taxa inside one given sample. Also, the Pearson’s correlation

coefficient is used, and the edges has been equipped with a weight, corresponding

to the given correlation of the variables (thus higher weights correspond to higher

degrees of correlation).

Some of the network analyses used in this work were based on the concept of

centrality measures which, according to the chosen definition, characterise in some

way the nodes.

In this dissertation, two centrality measures have been used:

• Degree Centrality: it measures the centrality of a node v, by counting the

number of links attached to it:

CD(v) = deg(v)

where deg(v) represents the number of links having the node v as an end; when

the network is weighted, the degree of a node becomes:

deg(v) =
Ev∑
j=1

wj

where wj is the weight of the j-th link, while Ev is the number of links having

v as an end;

• Betweenness Centrality: it measures the centrality of a node v, starting from

the concept of shortest path. The betweenness centrality is defined as follows:

CB(v) =
∑
s ̸=v ̸=t

σst(v)

σst

where σst(v) is the number of shortest path connecting nodes s and t and

passing through v, while σst is the total number of shortest path between s

and t; thus, each term of the sum is ≤ 1. For a weighted network the shortest

path between two nodes s and t is defined as the path, going from s to t, that

minimises the sum of the links’ weights.

It is worth pointing out that a filtering procedure is often required before the

construction of the correlation networks, when working on abundances of taxa. In

fact, some taxa are barely present in most of the samples and this results in a lot of

zero components. As already said in the previous sections, this may cause problems

when dealing with correlations, since zeros correlates between them and the results

are biased.

Sometimes, it is useful to visualise the degree distribution of the nodes of a

network. In order to do this, there are at least two ways: by means of the degree
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histogram or by means of the degree rank plot. The former is the histogram having

the possible degrees in the x-axis and the number of nodes in the y-axis. The latter,

instead, has the rank on the x-axis and the degree on the y − axis, and is the

distribution of the degree by rank, in decreasing order of degree. This means that

each node is ordered based on its degree and one point is drawn in the plot for each

node at the corresponding pair of rank and degree.

Lastly, it is important to remember that, in this work, correlations are computed

between variables transformed via centred log-ratio.

2.4 Fourier Spectral Analysis

The discrete Fourier spectral analysis (also called harmonic analysis) is a time series

technique which allows to study the periodicities of a series.

The analysis is based on the Fourier transform, a mathematical operation which

maps a function, Let us say h(t), in a complex function H(ω):

H(ω) =

∫ +∞

−∞
h(t) eiωt dt (2.13)

Equation 2.13 should be adapted to the case of a function for which N sampled

values are given4, with a certain sampling interval ∆:

hj = h(tj) = h(j∆) j = 0, 1, . . . , N − 1

The purpose of the Fourier analysis is to estimate H(ω); of course, since N values

of h are given, the procedure can only result in the estimation of N values of H,

associated to the following ω values:

ωk =
2π

N∆
k k = −

N

2
, . . . ,

N

2
(2.14)

where k “discretises” the ωk values (k may only assume values like N/2, N/3,

N/4, . . . , 0 and the negative ones).

Notice that the ωk values lie in the range [−ωc, ωc], where:

ωc =
π

∆
(2.15)

is a critical value called Nyquist frequency5.

One may notice that the sequence of ω values in 2.14 is composed of N+1 values,

and not of N values. This is not in contrast with what was previously stated; in

4For the sake of simplicity, Let us assume that N is even; an odd value of N requires some

minor adjustment in the consecutive steps.
5To be more precise, the Nyquist frequency is νc =

1
2∆ , i.e. one-half of the sampling rate 1

∆
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fact, the extreme values of k are not independent because of a phenomenon related

to the Nyquist frequency and called aliasing6.

Now, equation 2.13 is approximated to its discrete version:

Hk = H(ωk) =
N−1∑
j=0

hj e
2πikj
N (2.16)

As can be seen through equation 2.16, the discrete Fourier transform is a mapping

of N numbers (the input hj) to N numbers (the output Hk).

For what has been written so far, k can go from −N/2 to N/2; however, equation

2.16 is periodic in k with period N , i.e. H−k = HN−k. Thus k may be considered as

an index ranging from 0 to N − 1, just like the j index does. Using this notation:

0 < k < N/2 7−→ 0 < ω < ωc

N/2 < k < N 7−→ −ωc < ω < 0

while k = N/2 corresponds to both ω = ωc and ω = −ωc, which in turn results

in coincident components as a consequence of the discretisation.

Once the Fourier transform is performed, the so-called Fourier spectrum may be

plotted by putting the (harmonic) k values on the x-axis (or its relative frequency

ωk or νk) and the amplitude of the k-th harmonic, i.e. Ak =
√

Re(Hk)2 + Im(Hk)2

(since Hk generally is a complex number), on the y-axis.

When the spectrum presents a peak, the corresponding harmonic indicates the

existence of a possible periodicity in the time series. If confirmed, by means of a

specific statistical test (which will be described below), the period will be:

T =
N

k
. (2.17)

Fourier spectral analysis presents a relevant limit in the search for periodicities of

a time series. In fact, the analysis of the spectrum does not take into consideration

all the possible periodicities, but only those corresponding to the harmonics k.

Lastly, it is worth mentioning that, for the proper application of this technique,

the following two conditions must be verified:

• the time series must be completely filled, i.e. it must not have missing data;

• the time series must be scanned at regular intervals.

In the work presented in this dissertation, the second constraint is not perfectly

guaranteed, especially in some of the four cities considered. In other words, the time

interval between two consecutive samples was not always exactly 14 days (see table

2.2 in section 2.1.1). However, the Fourier analysis was performed approximating

each time gap to a value of 14 days.

6The aliasing is basically a translation of all the spectral amplitudes H(ω) of frequencies ω,

such that |ω| > ωc, from outside to inside the band [−ωc, ωc].
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2.4.1 Fast Fourier Transform

Before going on with the description of the Fisher test, used to check the significance

of a periodic component of the Fourier spectrum, the Fast Fourier Transform (FFT)

is presented.

One problem of the Fourier analysis presented in the previous section is the

computational time required to compute the transform 2.16.

Let us consider a time series (h) composed of N values, so that:

Hk =
N−1∑
j=0

WN
kjhj (2.18)

where WN = e
2πi
N . This operation may be seen as an application of a matrix

to a vector and thus requires N2 operations to be performed (plus the operations

required for the evaluation of the powers of W ); thus the discrete Fourier transform

is O(N2) computational expensive.

However, in 1965, Cooley e Tukey [13] proposed an algorithm to speed the compu-

tation up, based on the recursive “decomposition” of the discrete Fourier transform.

This algorithm allows to reduce the computation time to O(N log2N).

Many other algorithms have been proposed but each reduces the computation

time of the same amount of the Cooley-Tukey algorithm.

The Cooley-Tukey FFT algorithm is the one used in this work to perform the

Fourier analysis.

2.4.2 Fisher test

Before describing the Fisher test, some useful formulae regarding the Fourier analysis

are presented, following the same notation used in the previous sections:

Ak =
√

Re(Hk)2 + Im(Hk)2 (2.19)

ϕk = arctan
Re(Hk)

Im(Hk)
(2.20)

s2k =
Re(Hk)

2 + Im(Hk)
2

2
(2.21)

where Ak, ϕk, s
2
k are the amplitude, the phase and the variance of the k-th har-

monic, respectively, and Re(·) and Im(·) are the real and imaginary part operators.

In particular, the definition of the variance of a harmonic equation 2.21 is im-

portant for the Fisher test.

In order to test the dominant periodic component of a Fisher spectrum, Fisher

[14] developed a test: its purpose is precisely to evaluate whether the peak of a
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spectrum represents a significant periodic component, or if it can be considered a

random fluctuation.

The test statistic is:

ĝ =
s2max

s2
(2.22)

where s2max is the maximum variance, i.e. the maximum value of equation 2.21

(which, in turn, corresponds to the same k giving the maximum value of Ak), and

s2 is the variance of the entire time series. Since s2 is given by the sum of the

variances corresponding to all the harmonics of the spectrum, the test statistic may

be re-written as:

ĝ =
s2max∑N−1
j=0 s2k

. (2.23)

The critical value of the Fisher’s test statistic ĝ is given by

gc ≃ 1−

(
α

N

) 1
N−1

(2.24)

where α is the significance level (usually 0.01 or 0.05).

If the evaluated statistic ĝ exceeds the critical value g, it is possible to conclude

that the peak represents a significant periodic component; on the other hand, a

statistic ĝ less than the critical value g means that the observed peak is due to

random fluctuations.

2.5 Biodiversity

Biodiversity is a term coined in 1988 by Edward O. Wilson [15] to indicate the variety

of life forms present in a given community. Several authors have proposed indices

to measure this variety; they are based on different aspects: the species richness

(i.e., the number of species belonging to the considered community), the evenness

(i.e., the homogeneity of abundance of the different species) and the taxonomic

distinctness among the living forms present in the considered environment (that is

the biological distance between the different species). From what has been said, it

clearly emerges that biodiversity increases as each of these factors increases.

The various biodiversity indices proposed in the literature can take into account

all these aspects or just some of them.

Before going on with the definitions of some of the most known indices, it is

useful to distinguish two different frameworks when dealing with biodiversity:

• The first one is the so-called α-biodiversity, which is a measure of diversity

applied separately to each sample, i.e. it is a within sample (or intra-sample)
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biodiversity measure. However, it allows the comparison of the values of the

considered index obtained from samples belonging to environments with sim-

ilar features;

• The second one is the so-called β-biodiversity, which measures the difference

in biodiversity between different samples, i.e. it is a inter-samples biodiversity

measure.

In the next sections, these two types of biodiversity indices are presented.

2.5.1 α - biodiversity

As already said, α-biodiversity measures the diversity within a certain sample. In

this dissertation, various indices referring to α-biodiversity were used. They are all

presented below, along with their definitions and their main characteristics.

For the sake of clarity, the notation used in this section (unless otherwise indi-

cated), is listed:

S is the number of observed species;

N is the number of observed individuals;

ni is the number of observed individuals of the i-th species;

pi is the relative observed abundance of the i-th species, i.e. pi = ni/N .

The Shannon index

The Shannon-Wiener index (or simply Shannon index), named after the two scholars

in the information field who came to describe (separately) this index [16], assumes

that individuals are randomly sampled from an “indefinitely large” population, and

that all the species in the community have an equal probability of being represented

in the sample.

This index is usually indicated with H and is defined a follows:

H = −
S∑

i=1

pi log pi (2.25)

where the notations used are those already described.

As suggested by Shannon, there are no particular constraints for the choice of

the base of the logarithm but, obviously, a comparison between two values of the

indices is only possible if the same base has been used. In the present work the base

e, thus the natural logarithm, has been used.

The index takes into account both the species richness and relative abundances

(and therefore the evenness), summarising the information in a single diversity value.

H reaches its minimum value (i.e. 0) when all individuals belong to a single species.
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On the other hand, its maximum is reached when the individuals are uniformly

distributed among all the species present in the sample. For the minimum H is:

Hmin = −
S∑

i=1

pi log pi = −1 log 1 = 0.

while for the maximum:

n1 = n2 = · · · = nS = n

pi =
ni

N
=

n

S · n
=

1

S

Hmax = −
S∑

i=1

pi log pi = −
S∑

i=1

1

S
log

1

S
= −S

1

S
(− logS) = log S.

Finally, it is worth pointing out that H index is strictly related to the weighted

geometric mean7 of the relative abundances pi, performed using the same relative

abundances pi as weights; in fact,

H = −
S∑

i=1

pi log pi = −
S∑

i=1

log pi
pi = − log

S∏
i=1

pi
pi (2.26)

Now, remembering that
∑S

i=1 pi = 1 by definition, and that pi are used as

weights, the index H can be thought of as the opposite of the logarithm of the

weighted geometric mean of the relative abundances pi.

Lastly, a list of useful properties of the Shannon-Wiener index are presented:

1. it is continuous w.r.t to pi;

2. if all pi = 1/S ∀i, then H is monotonically increasing w.r.t. S;

3. it does not change if the pi values are re-ordered.

Point 3 has an important consequence: if the values of the Shannon index of two

samples are equal, then the only reasonable conclusion that one may draw is that

they have the same biodiversity. If the two samples are also composed of the same

S species, then the information encoded by the index is that the values of relative

abundance of the S species are the same in both the samples, but this does not

necessarily imply that same values of relative abundance correspond to the same

species in the two different samples.

7The weighted geometric mean (gw) of an S-dimensional vector x is gw(x) =
(∏S

i=1 xi
wi

) 1∑S
j=1

wi

where wi are the weights.
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The Pielou index

Pielou [17] proposed a normalisation of the Shannon-Wiener index so to make it

more comparable even when it comes from different contexts. By exploiting the

property of the Shannon-Wiener index for which its theoretical maximum equals

the logarithm of the number of species, the Pielou index is defined as the ratio

between the Shannon-Wiener index and the logarithm of S:

J =
H

Hmax

=
−
∑S

i=1 pi log pi

logS
. (2.27)

Hence, the Pielou index lives in the range between 0 and 1. Being a derivation

of the Shannon-Wiener index, this index also depends on both species richness and

evenness.

The Gini-Simpson index

In 1949 Simpson [18] developed an index capable of measuring biodiversity by cal-

culating the probability that two individuals randomly taken from a sample belong

to the same species. His index is therefore the following:

λ =
S∑

i=1

p2i . (2.28)

However, this index is impractical as it is inversely proportional to the observed

biodiversity. In fact, it reaches the its maximum, equal to 1, when all the individuals

belong to the same species. The index does not have a minimum but it has a lower

limit of zero. Because of its nature, it is known as (Simpson) dominance index

(rather than diversity index).

In his paper, Simpson himself proposed to consider as direct biodiversity index

the reciprocal of the dominance index. By doing so, he has built an index which in-

creases as biodiversity increases, but which has the disadvantage of have a minimum

value of 1 and, especially, the absence of an upper limit:

1

λ
=

1∑S
i=1 p

2
i

. (2.29)

This index is known as the Simpson inverse dominance index.

Some time later, a little-known paper by Gini (1912) [19] was rediscovered: in

this paper he simply proposed as an index of diversity, albeit in a different and more

general context, the following:

GS = 1−
S∑

i=1

p2i (2.30)
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which in fact can be thought as the complementary (to 1) of the Simpson dom-

inance index:

GS = 1− λ. (2.31)

It has a minimum, equal to 0, corresponding to the minimum possible biodiversity

(i.e. in the case of only one species belonging to the sample) and it tends to 1 when

biodiversity is maximum. This version of the index, known as the Gini-Simpson

index (GS), was used in this dissertation.

All the presented versions of the Simpson index take into account both species

richness and evenness.

The Hill numbers

Another type of indices has been proposed considering the reciprocal of the weighted

generalised mean of the relative abundances of the species with exponent q − 1 (in-

dicated as 1/Mq−1), where the weights are the relative abundances pi; these indices

are usually indicated with qD, they depend on the choice of q and are called Hill

numbers of order q [20]:

qD =
1

Mq−1

=
1

q−1

√∑S
i=1 pip

q−1
i

=

(
S∑

i=1

pqi

) 1
1−q

. (2.32)

It is immediate to prove that the Hill number of order 2 (2D) coincides with the

Simpson inverse dominance index 2.29:

2D =

(
S∑

i=1

p2i

) 1
1−2

=
1∑S

i=1 p
2
i

=
1

λ
. (2.33)

It is much less immediate to verify that the Hill number of order 1 (1D) tends

(for q approaching 1) to the exponential of the Shannon-Wiener index computed

with the natural logarithm:

1D = lim
q→1

(
S∑

i=1

pqi

) 1
1−q

=
1∏S

i=1 pi
pi

= exp

(
−

S∑
i=1

pi ln pi

)
. (2.34)

The mathematical proof is given in appendix C.

The Chao index

Starting from the consideration that estimating the number of species present in

a community is a difficult task due to the fact that less abundant species have a

low probability of being part of the sample, Chao [21] proposed a non-parametric

method to estimate the number of species actually present in a given community,
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starting from the number of species observed. Her approach starts from the abun-

dances of the rarest species, precisely from the number of singletons and doubletons,

defined as the number of species with absolute abundance equal to 1 and equal to

2, respectively.

Denoting with F1 the number of singletons, with F2 the number of doubletons

and with Sobs the number of species observed in the sample, the unbiased version of

the Chao index8 results:

SChao = Sobs +
F1(F1 − 1)

2(F2 + 1)
. (2.35)

where the second term of the right hand side estimates the number of “unsam-

pled” species, based on the number of low abundance species.

As can be deduced the Chao index is just a measure of the species richness.

The Taxonomic Distinctness indices

Many biodiversity indices (including all those described so far) are based on species

richness and evenness, completely neglecting taxonomic diversity. To capture this

aspect of biodiversity as well, Clarke andWarwick [22] proposed two new indices that

included, in addition to species richness and relative abundances, also information

on taxonomic relationships between species.

The first index, called Taxonomic distinctness index and denoted with ∆∗ can

be thought as a variant of the Gini-Simpson index, to which taxonomic distances

between species have been added. It is the following:

∆∗ =

∑∑
i<j ωi,jni, nj∑∑

i<j ni, nj

(2.36)

where ωi,j is defined as a distinctness weight, measuring the length of the path

linking each pair of species i, j along the taxonomic classification tree (considered

up to the common ancestor, see Figure 2.3 for a visual explanation), and ni was

already defined at the beginning of this section.

This index can be interpreted as the expected distance of the path along the tax-

onomic tree between any two individuals (belonging to different species) randomly

chosen from the sample. It is also interesting to note that Clarke and Warwick have

shown that this index is invariant with respect to changes in scale, so that instead of

absolute abundances it is possible to consider other variables of ecological interest,

such as biomass.

8The very first definition given by Chao was SChao = Sobs+
F1

2

2·F2
but it is not defined for F2 = 0

and it was proved to be biased.
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Figure 2.3: Schematic example of how the weights for the Taxonomic Distinctness

indices are computed. For each pair of families, the weight is fixed on the basis

of the common ancestor (e.g. between A and B ω = 2, between B and C ω = 1,

between A and D ω = 3, and between A and E ω = 4)

The second index, called Binary taxonomic distinctness index and denoted by

∆+) can be considered as a special case of the previous one, which is obtained when,

for each species, only the binary information of presence/absence is available:

∆+ =

∑∑
i<j ωi,j

S(S − 1)/2
. (2.37)

Therefore, when the data are expressed in terms of presence/absence, the ∆∗

index becomes ∆+, which represents the average distance between any two species

within the taxonomic tree.

It is worth mentioning that ∆+ is the average value of the taxonomic weights.

Since the evaluation of the indices is computationally expensive and time con-

suming, it has been performed starting from the family level instead of the species

level. This choice does not change the original idea behind these indices of taking

into account the taxonomic hierarchical structure.

2.5.2 β - biodiversity

β-diversity takes into account the differences between samples (two or more), both

temporal (same spatial unit, different times) and spatial (same time, different spatial

units). In this context, various indices have been proposed that make it possible to

quantify, in different situations, the similarity or dissimilarity of two samples.

In this dissertation, the Bray-Curtis dissimilarity index was chosen, and its re-

sults were, in turn, used in a so-called ordination technique, the Principal Coordinate
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Analysis (PCoA).

2.5.3 The Bray-Curtis dissimilarity index

Let us consider two samples denoted by k and l; the following notations will be used:

Sk and Sl are the number of species (with abundances ̸= 0) observed in the k

and l site, respectively;

Nk and Nl are the number of individuals observed in the k and l sample, respec-

tively;

ni,k and ni,l are the number of individuals observed for the i-th species in the k

and l sample, respectively, so that the same index i indicates the same species in

the two samples; thus i = 1, 2, . . . , Stot (where Stot is the number of species present

in at least one sample).

The Bray-Curtis dissimilarity index (denoted by BC) [23] may be written as

follows:

BC =

∑Stot

i=1 |ni,k − ni,l|∑Stot

i=1 (ni,k + ni,l)
. (2.38)

The BC index ranges in the interval [0, 1]; the value 0 (minimum dissimilarity)

occurs when the abundances in the two samples are identical for each species:

ni,k = ni,l ∀i = 1, 2, . . . , Stot

and the value 1 (maximum dissimilarity) occurs when all the species represented

in one sample are absent in the other one and vice versa:

ni,k ̸= 0 ⇐⇒ ni,l = 0 and ni,k = 0 ⇐⇒ ni,l ̸= 0 ∀i = 1, 2, . . . , Stot .

Another way to represent the Bray-Curtis index is the following:

BC = 1− 2
∑Stot

i=1 min{ni,k, ni,l}
Nk +Nl

. (2.39)

In other words, in this formulation the term
∑Stot

i=1 min{ni,k, ni,l} is the sum of

the minimum abundance (of each species) between the two samples.

Definitions 2.38 and 2.39 are equivalent.

2.5.4 Ordination techniques

The term ordination refers to a set of multivariate techniques used for dimensionality

reduction on a dataset, in order to make it viewable in a two- or three-dimensional

space. This procedure allows to highlight and find patterns or clusters that are not

easily identifiable directly from the data or from the statistics that can be derived

from them.
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In this work, in particular, a technique known as Principal Coordinate Analy-

sis (PCoA) was applied. Before proceeding with the discussion about PCoA, an

overview of the Principal Component Analysis (PCA) is proposed, since PCoA is

an “adjustment” of PCA under certain conditions.

Principal Component Analysis

The Principal Component Analysis is an ordination technique which operates ex-

clusively a rigid rotation of the axes of the multidimensional space of the data, in

order to orient them in such a way as to maximise the dispersion of the data. This

allows a set of data to be represented more effectively even in a reduced number

of dimensions, i.e. in a system of orthogonal axes (called Principal Components)

defined as linear combinations of the original variables.

Let us consider the data matrix X ∈ Mn×p, where n is the number of the samples

and p is the number of the (original) components (i.e. variables). The elements xi,j

of the matrix X are then transformed in their difference from the arithmetic mean

of the respective column. Thus, the resulting matrix, Y ∈ Mn×p, is defined by:

yi,j = xi,j −
∑n

i=1 xi,j

n

where, of course, yi,j is the element of the i-th row and j-th column of Y. The

next step is to obtain the covariance matrix as follows:

Σ =
1

n
YTY .

and from it, its p eigenvalues λk and eigenvectors uk (k = 1, 2, . . . , p). The k

eigenvectors may be arranged as columns of a matrix, denoted by U ∈ Mp×p .

These eigenvectors represents the new directions of the new system of axes.

However, in order to reduce the dimensionality, it is necessary to take only m

eigenvectors, with m < p; in particular, the ones associated to the greatest m

eigenvalues. The choice of m depends on different factors; usually, m is chosen to be

equal to 2 or 3 so that the results of the PCA may plotted and visualised in search

of clusters.

The matrix of eigenvector modified by taking only m of them is denoted by

U' ∈ Mp×m and thus, its element uj,k represents the j-th component of the k-th

eigenvector (with j = 1, 2, . . . , p and k = 1, 2, . . . ,m).

Now, Let us define F ∈ Mn×m as the matrix which gives the coordinates of the

original data points in the new system of axes (i.e. to the Principal Components);

its elements fi,j are calculated by multiplying the matrix Y by the matrix of the

taken eigenvectors U', so that:

F = Y ×U' .
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Thus, F works as a map from the input data to the low-dimensional space defined

by the m eigenvectors.

The quality of the representation obtained from the PCA may be evaluated on

the basis of the eigenvalues corresponding to the considered eigenvectors. In fact,

the percentage of variance explained by the a certain principal component is equal

to the ratio between the the associated eigenvalue and the trace of the matrix Σ,

which, in turn, is equal to the some of all the eigenvalues9.

For a proper application of the Principal Component Analysis, it is required to

deal with quantitative variables, whose distribution is normal and that the data

matrix does not contain an excessive number of zeros.

Principal Coordinate Analysis

Datasets do not always possess the properties necessary for a proper application

of Principal Component Analysis. An example is given by the case considered in

this dissertation, that is a list of species observed in a certain number of samples:

the counts (abundances) are not necessarily distributed according to a normal dis-

tribution. Moreover, the number of zeros in the data matrix, which correspond to

the absence of species from a sample, is very often even higher than the number of

non-null values.

Thus, the idea is to consider another ordination technique which allows to deal

with this type of data; an example is given by the Principal Coordinate Analysis

(PCoA) [24].

The Principal Coordinate Analysis is based on a metric, which allows to evaluate

the distances among the data. In the working case study, this metric is usually called

measure of similarity (or dissimilarity), because it computes the distances between

two samples by evaluating a sort of degree of similarity (or dissimilarity). In the

literature there are numerous measures of similarity and of dissimilarities, but in this

dissertation, the Bray - Curtis dissimilarity matrix is the chosen metric for PCoA.

PCoA starts from the matrix D ∈ Mn×n of the dissimilarities between the n

samples, which is transformed into the matrix ∆ ∈ Mn×n:

∆ = −1

2
D .

The matrix ∆ is, in turn, transformed into the matrix C ∈ Mn×n by centring

∆ in such a way that the origin of the new axes is located in the centroid of the

samples:

ci,j = δi,j −
1

n

n∑
h=1

δi,h −
1

n

n∑
k=1

δk,j −
1

n2

n∑
h=1

n∑
k=1

δh,k, (2.40)

9The eigenvalues of the p × p matrix Σ are p, of course. In this context, this means that all

those eigenvalues with multiplicity κ is considered as κ eigenvalues.
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where ci,j, δi,j are the elements of the matrices C,∆, respectively.

It is worth pointing out that the second and third terms of the expression of ci,j
represent the row and column means of the ∆ matrix, while the last term represents

the total mean of the same matrix.

Then, the eigenvalues of C are computed, and the greatest m are taken (usually

m = 2 or m = 3, which correspond to the dimensions to which the original dataset

is intended to be reduced). The m corresponding eigenvectors of the matrix C are

then arranged in the same way as in the PCA, obtaining the matrix U' ∈ Mn×m

whose elements are ui,j with i = 1, . . . , n, j = 1, . . . ,m.

The Principal Coordinate fi,j of the samples are obtained by multiplying the

eigenvectors by the square root of the corresponding eigenvalue:

fi,j = ui,j

√
λj.

As for the PCA, also in this case the quality of the ordination obtained for

each Principal Coordinate can be evaluated on the basis of the ratio between the

corresponding eigenvalue and the sum of all the eigenvalues.

2.6 Tests for comparing time series

In some cases, comparisons among some features of different time series, or even

among subsets of a given time series, were necessary.

Depending on the feature to be compared, different tests statistics have been used

in this dissertation, among which there are the Augmented Dickey-Fuller test (for

evaluating the stationarity of a time series), the Brown-Forsythe test (for comparing

the variances of time series), and the one-way ANOVA approach, followed by the

Tukey’s Honestly Significant Difference (HSD) test10 (for comparing the mean of

different time series).

All of these tests are described in the following sections.

2.6.1 The Augmented Dickey-Fuller test for time series anal-

ysis

The Augmented Dickey-Fuller (ADF) test is a widely used test to verify the station-

arity of a time series. It represents an extension of the original Dickey-Fuller (DF)

test [25], which had similar purposes. Therefore, before describing the ADF test, its

original version is presented.

10To be more precise, the one-way ANOVA approach is followed by the Tukey’s HSD test only

if the former gives significant results.
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The original Dickey-Fuller test

The model starts from a simple autoregressive model (AR(1) model) which can be

written in the following form:

yt = ρyt−1 + et (2.41)

where yt is the variable studied in the time series, t is the time instance, et is

the error term, which is supposed to have the characteristics of a white noise, with

mean 0 and standard deviation σ.

The ρ parameter is such that if |ρ| = 1 then the time-series is non-stationary.

This is referred to as a unit root situation.

If |ρ| < 1 the time series converges (for t → ∞) to stationarity. On the other

hand, if |ρ| > 1, the series diverges as t increases.

Subtracting yt−1 from both sides of the equation 2.41, one gets:

yt − yt−1 = ρyt−1 − yt−1 + et (2.42)

which can be re-written as:

∆yt = (ρ− 1) yt−1 + et . (2.43)

Now, by setting ρ− 1 = δ the model may be written in the following form:

∆yt = δyt−1 + et. (2.44)

Hence, testing the null hypothesis of unit root is equivalent to setting the null

hypothesis as:

H0 : δ = 0 =⇒ H0 : ρ = 1 .

Thus, the null hypothesis is the unit root of 2.41, while the alternative hypothesis

is:

H1 : δ ̸= 0 =⇒ H1 : ρ ̸= 1 .

To be more precise, there are two other versions of the model to be tested via

the Dickey-Fuller test:

1. Test for unit root with constant:

∆yt = b0 + δyt−1 + et

2. Test for unit root with constant and deterministic trend:

∆yt = b0 + b1t+ δyt−1 + et
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The test statistic is the same for all models and is given by:

DF =
δ̂

SE(δ̂)
. (2.45)

However, the critical values for these tests are different, and depend not only on

the model but also on the sample size.

It is worth pointing out that because of the definition of the test statistic, the

hypothesis of stationarity is basically equivalent to the alternative hypothesis when

DF is negative.

The theoretical distribution of DF under the null hypothesis has not yet been

identified, but Dickey and Fuller provided the tables of the critical values, through

the application of Monte Carlo methods.

The Augmented Dickey-Fuller test

Dickey and Fuller also proposed an extension of the test (called Augmented Dickey-

Fuller test, ADF [26]) that evaluates the same null hypothesis of unit root, but

excluding the structural effects related to auto-correlations with lag greater than 1.

The model becomes the following:

∆yt = b0 + b1t+ γyt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−p+1 + et, (2.46)

where b0 is a constant, b1 is the coefficient of a time trend, and p is the order

of the autoregressive process. As for the (simple) Dickey-Fuller test, there are three

version of the test depending on the presence or absence of the b0 and b1 terms.

In this dissertation, the model without the trend component is used:

∆yt = b0 + γyt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−p+1 + et. (2.47)

The parameter to be tested is just γ, and that is true for all the different versions;

also, the null hypothesis is always the same:

H0 : γ = 0

which, again, corresponds to a unit root process.

Also in the ADF case, as in the DF, the test statistic is the same for all the

models and is given by:

DF ' =
γ̂

SE(γ̂)
. (2.48)

Also in this case, the theoretical distribution of DF 'under the null hypothesis

has not yet been identified, but Dickey and Fuller provided the tables of the critical

values, through the application of Monte Carlo methods, for all the versions, and

for various sample sizes.
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2.6.2 Brown-Forsythe test

In addition to the evaluation of the stationarity of the time series, sometimes the

aim is to compare the variability of a time series with respect to the variability of

the others. In order to do so, the Levene’s test can be used. In this dissertation,

the Brown-Forsythe’s version of this test is used.

Levene’s test, in its original version, can be described as follows: Let us consider

k groups on which a variable X is measured, so that

xi,j = µj + ϵi,j

are the i-th observation (i = 1, 2, . . . , nj) of the j-th group (j = 1, 2, . . . , p), and

where µj is the unknown mean of the j-group, while ϵi,j is an error term, assumed

with 0 mean and possibly different variances. Let us also define n =
∑p

j=1 nj the

total number of data.

The purpose of Levene’s test [27] is to verify that the variances of the p groups

are not significantly different (in other words, Levene’s test wants to verify the ho-

moskedasticity of the distributions of the populations from which the groups come).

In order to do this, Levene started from the average absolute deviation:

z̄j =

∑nj

i=1 zi,j

nj

=

∑nj

i=1 |xi,j − x̄j|
nj

and from:

¯̄z =

∑p
j=1

∑nj

i=1 zi,j

n
,

which is the general mean of all the zi,j, i.e. considering all data of all groups.

The test statistics is:

W0 =

∑p
j=1 nj(z̄j − ¯̄z)2

p− 1∑p
j=1

∑nj

i=1(zi,j − z̄j)
2

n− p

,

and has many similarities with the one-way ANOVA (which will be described in

the following section). This test statistics follows a Fisher-Snedecor F -distribution

with (p− 1, n− p) degrees of freedom, under the null hypothesis, which is:

H0 : σ2
1 = σ2

2 = . . . = σ2
p .

Brown and Forsythe [28] showed that if the absolute deviations zi,j are evaluated

with respect to the median x̃j, instead of the mean x̄j, i.e.

zi,j = |xi,j − x̃j| ,

the homoskedasticity test was more robust than the original Levene’s test.

35



Characterisation of sewage microbiome via ecological and network modelling

2.6.3 One-way ANOVA

The purpose of the Analysis of Variance (ANOVA) is to allow a simultaneous com-

parison between the means of more than 2 samples. In fact, comparing p groups

by means of t-tests, each at a significance level α, results in a probability equal to

(1− α)c of not committing any type I error (i.e. false positive error), where c is the

number of tests. Therefore the risk of committing at least one type I error (which

is called family-wise error rate, FWER) will be:

FWER = 1− (1− α)c .

One way to overcome this problem is to use the Bonferroni correction, that is

based on adjusting the significance level α dividing it by the number of comparisons

to perform, c, so that each of the c t-tests will be performed at a significance level

of α/c. This results in a risk of committing at least one type I error equal to:

FWER = 1−

(
1−

α

c

)c

≤ α .

The Bonferroni correction is very conservative and thus increases the probability

to find false negatives, i.e. it reduces the statistical power.

Another way to counteract the problem of multiple testing’s significance level is

the Fisher’s ANOVA approach.

Let us consider p groups, each one providing an average, denoted as x̄1, x̄2, . . . , x̄p .

The null hypothesis is that there are no differences between the averages of the pop-

ulations from which the individual samples are extracted, that is:

H0 : µ1 = µ2 = · · · = µp ,

while the alternative hypothesis will be that there is at least one mean signifi-

cantly different from the others, i.e. that not all means coincide:

H1 : ∃µl, µm : µl ̸= µm , l,m = 1, 2, . . . , p .

In the one-way ANOVA design, a set of n data-points is divided into p groups;

in the considered case there are n time measurements divided into three periods

(p = 3).

The following notation will be used:

xi,j are the single observations; so xi,j is the value of the variable X, detected in

the i-th data-point of the j-th group;

i is the position indicator within the group, i = 1, . . . , nj;

j is the group indicator j = 1, . . . , p;

nj is the size of the j-th group;

n =
∑p

j=1 nj is the total number of data in the experiment;
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x̄j is the mean of the j-th group;

¯̄x is the total mean of all data.

One of the simplest Analysis of Variance model is the one with only one “exper-

imental factor”, Let us call it αj (this way the test is called one-way ANOVA):

xi,j = µ+ αj + ϵi,j . (2.49)

In other words, this model states that the value xi,j of the i-th data-point of the

j-th group depends on:

• µ: an average effect common to all groups;

• αj: a characteristic effect of the j-th group;

• ϵi,j: a deviation due to random fluctuations; this difference is called resid-

ual and it is equivalent to the difference between the observed value and the

expected value based on the model. It could indicate the effect of unknown

factors or anyway not kept under control in the experiment.

Moving from the theoretical model to the experimental data, Equation 2.49

becomes:

xi,j = ¯̄x+ (x̄j − ¯̄x) + ϵi,j . (2.50)

The Analysis of Variance is based on the decomposition of Sum of Squares. Three

different source of variations, expressed as Sum of Squares, need to be considered:

1. a total Sum of Squares, i.e. the Sum of Squares calculated from the totality

of the data with respect to the total mean:

SStot =

p∑
j=1

nj∑
i=1

(xi,j − ¯̄x)2 ;

this Sum of Squares has n − 1 degrees of freedom; in fact, n is the total

number of data-points and 1 is the parameter (the total mean) estimated from

the data;

2. a Sum of Squares between groups, i.e. the Sum of Squares of the group means

from the total mean, weighted by the group size:

SSbetween =

p∑
j=1

nj(x̄j − ¯̄x)2 ;

this Sum of Squares has p−1 degrees of freedom; in fact, p is the total number

of considered data (the p means of the groups), while 1 is the parameter (the

total mean) estimated from the data;
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3. a Sum of Squares within groups, i.e. the Sum of Squares of each data, with

respect to the mean of the group to which it belongs:

SSwithin =

p∑
j=1

nj∑
i=1

(xi,j − x̄j)
2 ;

this Sum of Squares has n−p degrees of freedom; in fact, n is the total number

of the data considered and p are the parameters (the means of each treatment

group) estimated from the data.

The following decomposition of the Sum of Squares holds:

SStot = SSbetween + SSwithin ,

and the same decomposition may be applied to the corresponding degrees of

freedom:

(n− 1) = (p− 1) + (n− p) .

Starting from the different Sum of Squares, the corresponding variances can be

obtained by dividing them by the associated degrees of freedom, and in particular:

• a variance between groups, also called explained variance (since it represents

the portion of variability that is precisely “explained” by the belonging to a

group):

V arbetween =
SSbetween

p− 1
;

• a variance within groups, also called unexplained variance or residual variance

(since it represents the portion of variability due to random fluctuations):

V arwithin =
SSwithin

n− p
.

It is now possible to proceed with the statistical test, called Fisher’s F test. The

basic idea of the test is the following: if the null hypothesis is true (i.e. if all the

means of the groups are equal) then the variance between groups and the variance

within groups are estimates of the same true variance, and should therefore assume

the same value (so their ratio should be close to 1).

On the contrary, if the alternative hypothesis is true, then the variance between

the groups should be greater than that within the groups (and therefore the ratio

between the two variances should be greater than 1). In other words, the explained

variance should be higher than (and not comparable to) the residual variance, that

is, the unexplained one.

The test-statistic is therefore given by the ratio between these two variances:
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F =
V arbetween

V arwithin

.

This test statistic is distributed as a Fisher-Snedecor distribution with (p−1; n−
p) degrees of freedom, under the null hypothesis.

2.6.4 Tukey’s HSD (post-hoc) test

Once the Analysis of Variance has given a significant result, and therefore it has

been established that not all the true means of the groups are equal, it is legitimate

to wonder between which pairs of groups there is a significant difference.

The test used in this dissertation for evaluate the significance of this difference

was the HSD (Honestly Significant Difference) developed by Tukey.

This test applies to all pairs of groups; in other words, each mean of a group is

compared with the means of all the other groups.

The Tukey test is basically a correction of the Student’s t-test, aimed at ensuring

the maintenance of the significance level (usually α = 0.05) established for the entire

family of tests.

Tukey’s test is structured as follows: two means (x̄l, x̄m) are significantly different

at an α family-wise significance level if their difference in absolute value equals or

exceeds the so-called minimum critical difference (MSD), i.e. if:

|x̄l − x̄m| ≥ MSDl,m .

The MSDl,m depends on groups l and m and is defined as follows:

MSDl,m = Qα,[p,n−p] · SE(x̄l−x̄m)

where Qα,[p,n−p] is the critical value of the Studentised range distribution at an

α significance level with p and n − p degrees of freedom, while the Standard Error

SE(x̄l−x̄m) is defined as

SE(x̄l−x̄m) =

√
V arwithin(

1
nl
+ 1

nm
)

2
.
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Chapter 3

Results and Discussion

In this chapter, the results deriving from the different analyses proposed in this

dissertation are presented by means of different plots and tables.

First of all, we started the analyses by evaluating the between samples diversity,

looking for (dis)similarities among the four cities. Also, the effects of seasonality is

inspected, by means of Principal Coordinate Analysis. Then, a temporal descrip-

tion of the time series was given, by analysing the periodicities and studying the

correlations among taxa.

Ecological techniques were then taken into account to describe the (α) biodiver-

sity of the samples, by means of nine indices, based on different features: species

richness, evenness, and taxonomic distance. By looking at the temporal behaviour

of the biodiversity in the four cities, we noticed an abrupt decrease in both Rome

and Budapest in the Summer of 2020. This collapse of biodiversity was further

investigated.

Finally, a correlation network analysis was performed, so that a depiction of the

relationships among species was provided.

All non-reported outcomes and images emerged from this work and cited in the

text are collected in the appendix D (or in the GitHub repository [29].

3.1 Between samples diversity

First of all, the samples (dis)similarities was quantified, in terms of bacterial compo-

sition (β-biodiversity), by computing the Bray-Curtis distance between each pair of

samples based on the absolute species abundances. The computation was performed

first considering all the samples, and then each city’s samples separately. In both

cases, the β-biodiversity matrix was exploited to explore the samples (dis)similarities

using two different techniques:

1. building similarity networks (using the complement to 1 of the Bray-Curtis

index);
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2. performing the Principal Coordinate Analysis (PCoA), in order to plot the

samples in a space with reduced dimensionality.

Similarity networks

Let us first consider the similarity networks, which are shown, at the species level

and for the four cities, in Figures 3.1 a-d.

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure 3.1: Similarity networks based on Bray-Curtis dissimilarity metric computed

at species level, for the four cities. The degree rank plot and the degree histogram,

giving information on the degree distribution of nodes in the network, are also shown.

The networks were built drawing a link between two samples only if their distance

(according to the Bray-Curtis metric) was smaller than a threshold value. Given
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that the Bray-Curtis distance ranges from 0 to 1, we chose to fix the threshold to

0.5.

At least two important features may be noticed looking at those networks:

1. Rotterdam is much richer in terms of links than the other cities, meaning

that many of the samples collected in Rotterdam have a similar bacterial

composition; we will show that this peculiarity of Rotterdam is confirmed by

the time series analyses.

2. In the other cities, particularly in Bologna and Budapest, the networks high-

light two main components, which include samples collected during different

time periods.

To better visualise the results, the heat map of the Bray-Curtis dissimilarities

between samples, at species level, of the time series was generated, and are shown

in Figures 3.2 a-d.

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure 3.2: Heat maps of the Bray-Curtis dissimilarities between samples of the four

time series at species level
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Notice that samples 7, 8, and 9 in Budapest, which were collected during the

Summer of 2020 are very different from the other samples. The same behaviour

may be noticed for the samples 9 and 10 in Rome, which, again, are the samples

collected in the same Summer. Also this point will be confirmed by the following

time series analyses.

Principal Coordinate Analysis

As already said, the dissimilarity matrices were also used to describe the samples in

a reduced dimensional space, performing the PCoA.

The PCoA was used to analyse the samples diversities from two different per-

spectives: on one hand, one of the aim was to find potential patterns and clusters

due to the variability of the samples’ composition over time, thus inspecting possible

effects due to seasonality; on the other hand, also spatial effects have been examined

by comparing the cities in a unique PCoA.

Let us first consider the Bray-Curtis-based PCoA plots obtained within each

city. The four PCoA plots are shown in Figures 3.3 a-d.

No seasonality effect seem to be detected from this analysis. Actually, only the

Rome samples exhibit a few recognisable clusters, specifically those related to the

Autumn and Summer seasons. It is however worth noticing that the time series of

Rome is the shortest one, with only 20 samples and covering only 10 months; thus,

as the samples do not even cover a whole year, it is difficult to explain and justify

the seasonality clusters appearing in the plots.

The second purpose of the PCoA, instead, was to verify whether samples from

the same cities collected at different time points cluster together.

The 3-dimensional PCoA plot is shown in Figure 3.4.

It is worth noticing that samples collected from the same city tend indeed to

cluster together, with the exception of samples from Bologna. In particular, it

should be noticed that the time series of Rotterdam clusters on the positive values

of the first principal coordinate.

3.2 Temporal characterisation of the sewage mi-

crobiome in the four cities

Time series of most abundant taxa

In order to explore the temporal trends of the sewage microbiome, we first plotted

the time series of the most representative taxa in each of the four cities (Bologna,

Budapest, Rome, Rotterdam).
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(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure 3.3: PCoA 3-dimensional plot based on Bray-Curtis dissimilarity between

samples in the four cities. Samples are coloured according to the season in which

they were collected.

To this aim, we considered the bacterial relative frequencies obtained transform-

ing the original absolute abundances with the centred log-ratio method, due to the

compositional nature of the data.

Figures 3.5 a-d depict the time series of the seven most abundant species in each

city. Similar plots for higher taxonomic levels (phylum, class, order, family, and

genus), and for the four cities, are shown in Figures D.1, D.2, D.3, D.4, and D.5, in

appendix D.

Overall, the time-series plots show that Klebsiella pneumoniae is the most abun-

dant species in all cities and that its relative abundance is generally stable over time.

On the other hand, other species appear among the seven most abundant ones only

for specific cities (e.g. Neisseria zalophi is one of the top 7 species only in Budapest,
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Figure 3.4: PCoA 3-dimensional plot based on Bray-Curtis dissimilarity between

samples collected from all four cities at all time points. Samples are coloured ac-

cording to their city of origin.

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure 3.5: Time series of the 7 most representative species in the four cities (abun-

dances expressed in centred log-ratio)

while Pseudomonas fluorescens is in the top 7 species in all cities but Rotterdam),

and show a much higher variability over time.
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In order to better highlight the variability of the relative abundances within each

series, the box-plots1 of the 7 most abundant species in each city are reported in

Figures 3.6 a-d.

The box-plots show that among the most representative species, those with the

highest variability belong to the Pseudomonas genus, which is not in the top 7

species in Rotterdam.

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure 3.6: Box-plots summarising the distributions within the time series of the 7

most representative species (expressed in centred log-ratio) in the four cities.

1In the box-plots: the box represents the interquartile (IQR) range; the upper (lower) whisker

represents the largest (smallest) value no further than 1.5 · IQR from the 3-rd (1-st) quartile;

the horizontal line is the median value; the red crosses indicate the outliers; the star represents

the mean value; the notches represent the 95% confidence interval of the median obtained by

“bootstrapping” (1000 re-sampling).
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Periodicity of the time series

The fluctuations of the time series observed in Figure 3.5, suggested the presence of

some periodicities. In order to verify the presence of periodicities, and in particular

of seasonality, an harmonic analysis of the time series through the Fourier Spectral

Analysis was performed.

An approximation was required for this analysis, due to the fact that the sam-

pling dates were not uniformly separated; however, this approximation appears rea-

sonable, taking into account the fact that sampling was scheduled every two weeks

and that the difference between the predicted time gaps and those actually observed

was quite small (see table 2.2 in section 2.1.1).

The peak of each time series was analysed using the Fisher’s test described

in section 2.4.2 of chapter 2, and the results showed some significant periodicities

(p < 0.05) and some highly significant peaks (p < 0.01) (see Table 3.1).

For higher taxonomic ranks, the results of the Fisher’s test for periodicities are

reported in appendix D.

Species City Period [weeks] Significance

Pseudomonas fluorescens Rome 40 *

Francisella noatunensis Rome 40 *

Klebsiella pneumoniae Budapest 26 *

Streptococcus agalactiae Budapest 26 *

Klebsiella pneumoniae Rotterdam 39 **

Streptococcus pneumoniae Rotterdam 78 **

Myroides odoratimimus Rotterdam 78 *

Table 3.1: Fisher test for periodicity of species (* means a p-value < 0.05, while **

means a p-value < 0.01)

Overall, only 3 species show a periodicity in Rotterdam, 2 species in both Rome

and Budapest, and no species result in a significant periodicity in Bologna.

It is worth pointing out that, especially in case of short time series, local minima

or maxima occurring in the middle of a time series may lead to spurious significant

periodicities. That may be the case of Rome, where the local minimum of many

taxa occurs roughly in the middle of the time series, giving thus rise to a periodicity

with a 40 weeks period (since 40 weeks is the time interval covered by the whole

time series).

Figure 3.7 shows an example of Fourier spectrum, referred to the Klebsiella

pneumoniae species in Rotterdam; it is worth noticing that a peak in the spectrum

is found for the second harmonic. The Klebsiella pneumoniae species was chosen as
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an example because the Fisher’s test applied to the peak (occurring at the second

harmonic) results in a highly significant periodicity, with period of 39 weeks, that

is half of the total number of weeks covered by the Rotterdam time series.

Figure 3.7: Example of Fourier Spectral Analysis (concerning the Klebsiella pneu-

moniae species in Rotterdam: the peak of the second harmonic, corresponding to a

period of around 9 month, was evaluated by Fisher’s test, p < 0.01)

Unfortunately, however, these results may be biased or even misleading, because

of two concurrent reasons: first, the time interval between two consecutive data is

not exactly uniform; second, the series taken into account are short and noisy (see

for example Figure 3.5).

In the future, the hope will be to apply the Fourier spectral analysis to longer

and less noisy series. For this purpose, in the VEO project, newer sewage’s samples

are being sampled and sequenced from the four cities; moreover, the bioinformatics

pre-processing step is being optimised, in order to reduce noise.

Auto-correlation and cross-correlation

The temporal stability of the bacterial relative abundances and of the pairwise rela-

tionships where investigated by means of the auto-correlation and cross-correlation

techniques. Here, we focused our analysis on phyla rather than species, so that to

consider the data at a more stable taxonomic level.

Here, the auto-correlogram of the most abundant phyla (Proteobacteria) and

the cross-correlograms of the two most abundant phyla (Proteobacteria and Firmi-

cutes) are reported (see Figures 3.8 and 3.9). The auto-correlograms of the 4 most
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abundant phyla, and their cross-correlograms are reported in appendix D (D and

D).

Notice that also in this case, the analyses were carried out starting from the data

transformed via centred log-ratio.

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure 3.8: Example of auto-correlation for the Proteobacteria phylum in the four

cities.

It is worth noticing that the auto-correlograms of all phyla have similar shape,

which is conserved in all the four cities: positive auto-correlations are shown for

small lags, while negative correlations appear for larger lags. An example is shown

in Figure 3.8 for the Proteobacteria phylum in the four cities. It is difficult to

properly interpret this behaviour, but it may be linked to the ability of bacteria to

persist over time.

Also, it is worth mentioning that the above-described behaviour occurs also for

many other taxa, and at all taxonomic levels, even if results are not shown in this

thesis for brevity.

Figure 3.9 shows the cross-correlograms of the pair of phyla Proteobacteria and

Firmicutes for all the cities.
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(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure 3.9: Example of cross-correlation between Proteobacteria and Firmicutes

phyla in the four cities.

For what concerns the cross-correlograms, no particular behaviour can be iden-

tified at first glance. In fact, the cross-correlation strongly depends not only on the

chosen pair of taxa (as expected), but also on the considered city.

It is worth mentioning that the anti-correlation occurring between Proteobacte-

ria and Firmicutes (Figure 3.9) finds some confirmations also in other very different

contexts. For instance, Li et al. [30] have shown that the manure addition in an

originally unproductive soil may considerably modify the abundances of microor-

ganisms. In particular, the abundance of Firmicutes decreases when the manure

is added, while Proteobacteria behaves in the opposite way. Hence, they results to

be anti-correlated. Even more surprising is the anti-correlation between those two

phyla, that emerges in a study which have analysed the human milk microbiota [31].
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3.3 Temporal characterisation of the sewage α -

diversity in the four cities

In order to provide an ecological characterisation of the available metagenomic

samples, we used a set of nine indices to estimate their biodiversity in terms of

α−diversity. Notice that, depending on the index used, one or more of the follow-

ing biodiversity factors will be captured: species richness, evenness and taxonomic

distance.

First of all, we considered the Shannon index (Figure 3.10a), the Pielou index

(Figure 3.10b), the Hill numbers of order 1 and 2 (1D and 2D, Figures 3.10c and

3.10d), and Gini-Simpson index (Figure 3.10e). Each index was computed for each

sample, i.e. for each bacteria population corresponding to a certain date and a cer-

tain city, and it was than plotted as a function of time to facilitate the comparisons.

The results shown in Figure 3.10 exhibit some interesting features. First of all,

Rotterdam’s biodiversity, computed by means of all the above-mentioned indices,

shows a much higher stability than that of the other cities. On the other hand,

Bologna is characterised by very large fluctuations and by high noise. Finally, Rome

and Budapest present an intermediate situation between those of Rotterdam and

Bologna; however, in both cities there is a period of biodiversity collapse correspond-

ing to the Summer of 2020, the significance of which deserved to be investigated.

Notice that all the indices considered up to now take into account both species

richness and evenness.

In order to also take into account the taxonomic distance among taxa, we used

two further indices: the Clarke and Warwick’s Taxonomic Distinctness Index and

Taxonomic Binary Distinctness Index.

Both indices required an extra preprocessing step to be computed, that is the

reconstruction of the taxonomic and phylogenetic classification of the taxa present

in the metagenomes, an information that was not available in our data. To this aim,

we exploited the NCBI database to establish the taxonomic distance between two

different taxa (i.e. the distance to the closest common ancestor).

Due to the high time consuming processes required for the computation of these

indices, they both have been calculated starting from the family level instead of the

species level and for this reason they can not be strictly compared to the previously

presented indices.

The plots of the two Clarke and Warwick’s indices are shown in Figure 3.11

Both indices confirm the low variability of the Rotterdam time series and the

presence of a decrease of biodiversity in the Rome and Budapest series during Sum-

mer of 2020.

Although the Taxonomic Binary Distinctness index embeds less information than

the other one (since, in this case, the evenness is not taken into account), it is worth
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(a) Shannon index. (b) Pielou index.

(c) Hill number of order 1. (d) Hill number of order 2.

(e) Gini-Simpson index.

Figure 3.10: Time series of α−diversity in the four cities.

of interest since it provides the trend in time of the average taxonomic distance

between families. It can be noticed, in Figure 3.11b, that it is stable around the

value of 3.7, meaning that, independently on time or city, the common ancestor is

on average at the superkingdom or phylum level.

Lastly, the Chao index and the logarithm of the total number of species, Log(S),

have been computed and plotted (Figure 3.12).

These two indices are a measure of the species richness. They have been used

to check and visualise how the number of species behaves over time in the different

cities. On one hand, the Chao index gives an estimate of the real number of species
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(a) Taxonomic distinctness index. (b) Taxonomic binary distinctness index.

Figure 3.11: Time series of the two Clarke and Warwick’s indices in the four cities.

(a) Chao index. (b) Log(S) index.

Figure 3.12: Time series of species richness in the four cities.

belonging to a population. On the other hand, the species richness S is the actual

number of species found in the population, and here is expressed in logarithmic form

(Log(S)) so that it immediately reminds of the normalisation factor applied to the

Shannon index to get the Pielou one.

It is worth noticing that also Chao and Log(S) confirm the previously observed

patterns.

As already highlighted above, there are two key points emerging from these

analyses: the first is the stationarity of the time series referred to Rotterdam; the

second is the decrease of biodiversity occurring in two specific periods of the series

of Rome and Budapest. These features of the data can be observed in all the

above-shown indices, which, indeed tends to be characterised by the same type of

fluctuations, i.e. when a local minimum (or maximum) occurs in an index, for a given

city, the other indices of the same city have a minimum (or maximum), too. This

means that the studied samples are strongly affected by all the factors concerning

the concept of biodiversity (species richness, evenness and taxonomic distinctness).
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Stationarity and variability of the α - biodiversity indices

Finally, the stationarity of the time series around a constant value has been evaluated

through the Augmented Dickey-Fuller test, applied to the Shannon, Pielou, Gini-

Simpson, and Chao indices. The results are collected in table 3.2.

Index City p-value Significance Stationarity

Shannon Bologna 0.910 No

Budapest 0.007 ** Yes

Rome 0.055 No

Rotterdam <0.001 ** Yes

Pielou Bologna 0.859 No

Budapest 0.008 ** Yes

Rome 0.028 ** Yes

Rotterdam <0.001 ** Yes

Gini-

Simpson

Bologna 0.866 No

Budapest 0.272 No

Rome 0.007 ** Yes

Rotterdam <0.001 ** Yes

Chao Bologna <0.001 ** Yes

Budapest <0.001 ** Yes

Rome 0.148 No

Rotterdam <0.001 ** Yes

Table 3.2: Augmented Dickey-Fuller test for stationarity (* and ** mean p < 0.05

and p < 0.01, respectively)

What can be noticed is that Bologna has a significant stationarity only for the

Chao index time series, while it is not stationary with respect to a constant value for

all the other indices. In fact, the trend of the biodiversity in Bologna is decreasing,

even if the species richness remains stationary in time with respect to a constant.

This is an interesting behaviour that could be further explored in the future, when

a larger amount of data will be available.

As expected, Rotterdam is stationary, no matter the index considered.
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Then, the variability of the time series of the four cities were evaluated by com-

paring the variance of four biodiversity indices (Shannon, Pielou, Gini-Simpson,

Chao)2 between all pairs of cities using the Brown-Forsythe test.

Table 3.3 summarises the results.

Bologna Budapest Rome

Shannon Budapest 0.045 *

Rome < 0.001 ** 0.161

Rotterdam < 0.001 ** < 0.001 ** < 0.001 **

Pielou Budapest 0.093

Rome < 0.001 ** 0.094

Rotterdam < 0.001 ** < 0.001 ** < 0.001 **

Gini-Simpson Budapest 0.056

Rome 0.014 * 0.494

Rotterdam < 0.001 ** < 0.001 ** < 0.001 **

Chao Budapest 0.049 *

Rome 0.010 ** 0.243

Rotterdam < 0.001 ** 0.011 * 0.524

Table 3.3: Brown-Forsythe test p-value for the homogeneity of variances of various

biodiversity indices; * and ** mean significant heterogeneity, with p < 0.05 and p

< 0.01, respectively

For the sake of clarity, it is worth highlighting that the Brown-Forsythe and the

Augmented Dickey-Fuller test give different information on the time series:

• the Brown-Forsythe test compares different time series to check if they have

the same variability; in this context it was used to verify if the Rotterdam

time series has a significant stability3;

• instead, the Augmented Dickey-Fuller test gives a significant result when a

time series has a stationary trend around a constant value, no matter how

large the fluctuations around it are.

2For the sake of clarity, only four indices have been chosen because the other ones (such as the

Hill numbers) give similar information about the samples.
3Here, the term stability is intended as a synonymous of “low variability”.
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3.4 Understanding the decrease in biodiversity in

Rome and Budapest during Summer of 2020

Proceeding with the analyses, one of the main aims was to investigate on the reasons

that have led to the drop of biodiversity occurring in Rome and Budapest around

August and September, in 2020.

Time evolution of the most abundant genera and species

To this aim, the evolution over time of the most representative genera and species

has been examined for the two cities. In this context, the concept of “most repre-

sentative” is intended as the most abundant bacteria in the period of biodiversity

minimum.

Looking at the time series of the most abundant species, we noticed that many

of the most representative species belong to the same genus and behaves in the same

way. Hence, we decided to perform the analysis of the evolution of taxa over time

not only at species level, but also at genus level.

For what concerns Rome, the observation of the time series of the individual

genera has highlighted how the drops of biodiversity coincide with an increase in the

relative abundances of 5 species; four of them belong to the genus Pseudomonas (P.

fluorescens, P. psychrophila, P. fragi, P. syringae) and one to the genus Klebsiella

(K. pneumoniae). The increase of these 5 species causes an abrupt decrease of the

others species, especially the ones belonging to the Acinetobacter genus, as can be

seen in Figure 3.13 and 3.14.

From the comparison of the time series of the biodiversity indices and the time

series of the most abundant taxa, it was possible to notice some similarities and

dissimilarities among the cities. For instance, it is noteworthy that both K. pneu-

moniae and the species of the genus Pseudomonas seem to have a significant role

in the biodiversity fluctuation over time. Also, it is interesting to point out that

no species of the genus Pseudomonas is among the most representative ones in

Rotterdam. This behaviour is reflected also at the level of genus (Pseudomonas,

Klebsiella), of family (respectively Pseudomonadaceae, Enterobacteriaceae), of or-

der (respectively Pseudomonadales, Enterobacteriales); from the class level upwards,

the two considered genera belong to the same taxa: Gammaproteobacteria for the

class and Proteobacteria for the phylum.

The same behaviours and features described for the time series of Rome may be

done also for Budapest. In this case it is worth noticing that the Streptococcus genus

is much more present in Budapest than in Rome (see Figure 3.15); also the species

Streptococcus pneumoniae and Streptococcus agalactiae seem to play the same role

played by the Acinetobacter johnsonii in Rome, i.e. it decreases when the species of
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Figure 3.13: Time series of the 7 most representative genera in Rome, highlighting

the collapse of three genera (Flavobacterium, Acidovorax, Acinetobacter) and the

rise of three others (Pseudomonas, Klebsiella, Francisella)

Figure 3.14: Time series of the 7 most representative species in Rome, highlighting

the collapse of two species (Acinetobacter johnsonii and Acinetobacter harbinensis)

and the rise of Pseudomonas fluorescens

Pseudomonas increases, and viceversa (see Figure 3.16).

Up to now, only qualitative observations have been shown to describe the dif-

ferent taxa compositions occurring during the time series. Now, a quantitative

approach to explain these observations will be deepened.

In order to understand which differences occur among the period of minimum

biodiversity and the other periods, in Rome and Budapest, we first divided the

time series of each city into three periods: before, during and after the biodiversity

minimum. The subdivision was based on the plot of the Shannon index, which

is used to recognise the sub-period related to the above-mentioned minimum of

biodiversity (see Figures 3.17a e 3.17b for the visualisation of the three periods in
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Figure 3.15: Time series of the 7 most representative genera in Budapest, highlight-

ing the collapse of five genera (Streptococcus, Trichococcus, Acidovorax, Acinetobac-

ter, Neisseria) and the rise of two others (Pseudomonas, Klebsiella)

Figure 3.16: Time series of the 7 most representative species in Budapest

Rome and Budapest, respectively). Then, the 10 most abundant species4 in the

second time interval (i.e. inside the minimum) were considered.

It is worth mentioning that some samples of the Budapest time series (those

covered by the grey region in Figure 3.17b) are excluded in the analyses of the

biodiversity minimum, because of the high fluctuations.

Thus, each series of the ten most abundant species is divided into three groups

which were analysed by one-way ANOVA, followed by Honestly Significance Differ-

ence (HSD) Tukey’s post-hoc test for multiple comparisons.

Tables 3.4 and 3.5 summarise the results for Rome and Budapest, respectively.

At least three important features can be noticed looking at the tables of both

Rome and Budapest:

4In this context, the species have been ordered according to the median value of the abundances,

expressed in centred log-ratio.
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(a) Rome (b) Budapest

Figure 3.17: Time series of Shannon index in Rome and Budapest; the time window

corresponding to the collapse of biodiversity is in green, so that a subdivision in

three periods may be done (before, inside, and after the minimum); the grey area

indicates the fraction of time series excluded in the analyses of the biodiversity

collapse, because of the high fluctuations

1. the most abundant species in the period of minimum biodiversity tend to

change more their abundances between the first and the second periods (i.e.

before and inside the minimum). Specifically, the abundances increase in the

minimum;

2. no significant changes are detected while comparing the second and the third

periods (i.e. inside and after the minimum);

3. as a consequence of both point 1 and 2, different significant results occur when

comparing the first and the third periods (i.e. before and after the minimum),

meaning that the fall in biodiversity may have caused a strong change in the

bacterial composition of the sewage.

For what concerns the feature described in point 1: it is consistent with what we

expected, since a decrease in biodiversity is related to the increases of the abundances

of one or more species.

The same reasoning and observations may be done for the 10 most abundant

genera of the second sub-period of Rome and Budapest (during the minimum), as

can be seen in Tables 3.6 and 3.7.

It is worth noticing that the abundance of the Streptococcus pneumoniae species,

in Budapest, significantly changes its behaviour inside the minimum, i.e. it reaches

its minimum value at the minimum. Then, after the biodiversity fall, it increases

again up to the abundances it had before the minimum (see Figure 3.18). This is in

contrast with the above-described behaviour of the other species.

59



Characterisation of sewage microbiome via ecological and network modelling

Figure 3.18: Behaviour of Streptococcus pneumoniae in Budapest, decreasing in the

period of biodiversity collapse and then returning to previous level

Instead, an example of the typical behaviour of the most abundant species in

the three sub-periods is depicted in Figure 3.19 by means of a box-plot.

Figure 3.19: Example of characteristic behaviour of most species both in Rome and

in Budapest, with species increasing in the period of biodiversity collapse and then

remaining to the same level (Pseudomonas filiscindens, Rome)
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Correlation networks before, during, and after the biodiver-

sity decrease

Finally, in order to investigate the minimum of biodiversity, correlation networks

have been built for the cities of Rome and Budapest, separately for three periods,

already mentioned: before, during, and after the minimum.

The nodes of these networks are all those taxa having at least 10 counts in

at least 75% of the samples5. This filtering procedure is used in order to avoid

spurious correlations which may occur when dealing with vectors with a lot of null

components.

The correlation networks are shown in Figure 3.20 for Rome and in Figure 3.21

for Budapest (in both cases, before, inside and after the minimum).

It is worth mentioning that the nodes are linked together when the Pearson’s

correlation coefficient between the two considered taxa is greater than a certain

threshold (in the images the threshold was chosen equal to 0.5) and are weighted

based on the value of the correlation (in the images, higher weights are represented

by links with darker colours).

It is immediate to observe that, during the time periods of the biodiversity

collapse, there is a greater correlation between species, which can be better visualised

by looking at the degree rank plots.

Each series of the ten most central species is divided into three groups which were

analysed by one-way ANOVA, followed by Honestly Significance Difference (HSD)

Tukey’s post-hoc test for multiple comparisons, following similar steps with respect

to the one-way ANOVA analysis performed for the most abundant species.

Two different centrality measures have been used to evaluate the centrality of

nodes, so that they could be ranked: degree centrality and betweenness centrality,

which have been already described in chapter 2, section 2.3.

Once the nodes have been ranked, the one-way ANOVA procedure is performed

to compare the mean abundances (in centred log-ratio) of the 10 most central nodes

in the three sub-periods, for both Rome and Budapest.

Tables 3.8, 3.9, 3.10 and 3.11 summarise the results, for Rome and Budapest,

and for both the centrality measures used to rank the nodes.

When considering the most central taxa, no significant feature or trend is recog-

nisable.

In conclusion, the analysis performed on the most abundant species allows to

propose a possible explanation for the biodiversity drop: in fact, the decreasing bio-

5Also other criteria (i.e. other pairs of parameter) have been used to select the taxa for the

networks, for instance, considering those taxa having 100 counts in at least 75% of the samples, and

so on. Here, it is preferred to consider the criterion written in the text since it retains information

from more taxa, allowing more precise descriptions. The correlation networks resulting from the

some of the other criteria may be found in the GitHub repository [29]
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diversity correspond to the increase of the abundances of some species, as expected,

in particular those which are the most abundant ones in the period of minimum

biodiversity.

On the other hand, the biodiversity minimum seems to affect also the relationship

among species: in fact, inside the minimum there is a richness of correlation among

species; moreover, some of the most central ones change their abundances in the

three periods, reaching their minimum when the biodiversity falls.
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3.5 Species Correlation networks in the four cities

Given the interesting results obtained from the network analysis of the three sub-

periods considered for Rome and Budapest, we decided to perform a similar analysis

to the whole time series of the four cities.

Again, the nodes of the correlation networks represent all of those species having

at least 10 counts in at least 75% of the samples.

In Figures 3.22 a-d, the degree rank plot and the degree histogram derived from

the correlation networks of the four time series are shown.

It is interesting to point out that the time series of Rotterdam seems to be the

only one with a degree distribution among the taxa that smoothly decreases in the

degree rank plot, while, due to the presence of an abrupt decrease in the degree rank

plot, the nodes of the other cities may be clustered into two subgroups, based on

their degree.

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure 3.22: Degree rank plot and degree histogram derived from the correlation

networks of the time series of the four cities

The behaviour of the degree distribution of the Rotterdam correlation network

may be related to the above-mentioned interesting stability characterising the time

series of the Dutch city.

3.6 Impact of COVID-19 lockdowns

Finally, a brief discussion on how the lockdowns caused by the COVID-19 pandemic

may be affected the time series and the biodiversity of the bacterial content of the
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sewage. Figures 3.23 a-d show the Shannon index time series for Bologna, Budapest,

Rome, and Rotterdam, also highlighting, with different colours, the lockdown peri-

ods (in blue) and those periods characterised by lighter restrictions (in green).

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure 3.23: Time series of Shannon index in the four cities with highlighted the

periods of lockdowns (in blue) and minor restrictions (in green)

It is worth pointing out that no lockdowns effects on biodiversity may be detected

from the plots. This is due to two reasons, at least: first, in most cases, the time

series cover a short period of time, so that some period of restrictions are not covered

by the samples; second, the sampling rate is too large to appreciate any possibly

significant effect due to lockdowns and changes in the lifestyle.

Within the VEO project, some other samples have been already collected but

have not been sequenced yet. Once the sequenced data will be available, the analysis

will be performed to these samples, too. In this way, possible relationships between

the sewage metagenome compositions and the lockdowns (or even other parameters

linked to the pandemic, such as the number of cases) will be investigated.
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Conclusions

The results of this work largely depend on the nature of the data, which comes from

a major project at European level in progress.

Of course, the main strength of this work is therefore that it is a large-scale

project having a great potential and vast room for improvement. However, the

fact of being a project still in progress causes some tricky issues to deal with: for

example, the short period of the time series does not allow the optimal use of several

techniques, which instead may be applied when the studied time interval will be

expanded.

Another problem is the noise characterising the data, which are absolute abun-

dances of DNA fragments belonging to different microorganisms. The data were

treated and normalised as counts, taking into account their compositional nature.

However, it is clear that a normalisation based on metagenomic features (such as

coverage size and length of the scaffolds) could clean up the data from the intrinsic

noise that appears to be, at least partially, linked to the methodology used.

Despite these issues, some interesting results emerged from the performed anal-

yses.

The results have highlighted different patterns for the four cities. In particular,

Rotterdam has a vary stable composition, which can be noticed by looking at both

the taxa compositions of the samples and the α-biodiversity indices.

On the other hand, Rome and Budapest exhibit a period with a drop in biodi-

versity. It is worth pointing out that this drop is linked to two concurrent aspects:

the change in abundance of some of the most abundant species (such as the Pseu-

domonas spp.) and the correlation among species which is enriched during the

period of minimum biodiversity.

Moreover, Bologna is characterised by noisy data and, thus, high fluctuations in

the time series of both taxa and biodiversity indices.

No relevant seasonality effects are detected, as well as no consequences of the

periods of lockdown due to the COVID-19 pandemic. However, it is worth high-

lighting that the time series does not cover all the lockdown periods and there is not
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a sufficient number of samples from those periods to obtain significant results.

4.1 Future developments of the study

Of course, it is possible to imagine further and interesting developments: first of

all, the possible increase in the size of the time series will allow both to apply the

same techniques again on an enlarged database, so as to validate or correct some of

the results found so far, and it will allow the application of other techniques, which

could not be used up to now.

Among them, for instance, the Hurst exponent [32] will allow to study the long-

term memory of time series, while the Lyapunov exponent [33] will allow to measure

the speed of increase of small perturbations applied to the sample’s composition,

hence, giving a quantitative information on the predictability of the bacterial com-

munity dynamics. Both those exponents are sensitive to the sampling frequency and

need the time series to be sufficiently long and uniformly sampled [34, 35].

The hope is also to expand this study integrating the data with other features

that can be retrieved from metagenomic samples. In particular, it will be interesting

to investigate the samples antimicrobial resistance, considering that almost all the

bacterial species that have been highlighted as particularly relevant are implicated

in antibiotic resistance processes [36].

Taking a look at the VEO European project with an eye to the future, it would

be of great help to analyse time series data covering larger time periods, so that

the results presented here may be validated, and additional ones may be revealed,

in a perspective of further enhancing the power of these biological studies for an

improved quality of life.
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Data features

In this appendix, some features of the data, cited in the text, are presented summed

up in tables.

Unknowns in the samples

One inevitable feature of a metagenomic sample is the presence of unknown taxa,

i.e. of taxa which have not been identified through the binning procedure.

Table A.1 displays the average amount (in percentage) of unknowns for each

taxonomic level.

Taxonomic level Average unknowns %

Superkingdom 0.01

Phylum 0.94

Class 2.23

Order 3.34

Family 8.64

Genus 12.43

Species 33.57

Table A.1: Average percentage of unknowns in the metagenomic dataset

Going down with the ranks, the (relative) amounts of DNA fragments not iden-

tified increases, as expected.

It is important to underline that the percentage abundances shown in the ta-

ble are referred to the complete and not-yet-filtered sample, i.e. the taxonomic

reconstruction used to maintain only bacteria has not been performed yet.

Lost taxa

During the preprocessing step, as well as during some successive analyses, a taxo-

nomic reconstruction of taxa is required, especially in order to filter the population

taking only bacteria.
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During this reconstruction, some taxa have not been found in the NCBI database,

so they have been considered as lost.

In Table A.2, a list of taxa lost during the taxonomic reconstruction through the

NCBI database. Obviously, the superkingdom level is omitted since no reconstruc-

tion is needed.

Taxonomic level Lost taxa %

Phylum 0.5

Class 0

Order 0.92

Family 0.1

Genus 0.14

Species 0.12

Table A.2: Percentage of lost taxa in the metagenomic dataset

It is worth pointing out that some of the lost taxa, belonging to the taxonomic

rank of species, genus and family and order, have been found in the Silva database

[37]. However, they all belong to the Eukaryota superkingdom, thus they are re-

moved from the samples during the filtering phase.
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Appendix B

Simplex and Aitchison simplex

In order to properly describe the differences between a general simplex and the

Aitchison simplex, some mathematical concepts should be defined.

First of all, a polytope is the generalisation of three-dimensional polyhedra to any

number of dimensions. Its precise definition strongly depends on the field of study;

this results in many not-equivalent nor consistent definitions. The most general one

allows a polytope to be open, close, self-intersecting, bounded or unbounded.

A simplex is the simplest possible polytope made with line segments and it results

in a generalisation to any dimensions of triangles. In particular, a k-simplex is a

k-dimensional polytope, which is the convex hull1 of its k + 1 vertices.

Suppose to have k + 1 points x0, . . . , xk ∈ RN which are affinely independent,

i.e. that x1 − x0, . . . , xk − x0 are linearly independent. The mathematical definition

of a simplex is given by:

C = conv{x0, . . . , xk} =
{
θ0x0 + · · ·+ θkxk| θi ≥ 0, i = 0, . . . , k; 1T θ = 1

}
(B.1)

where 1 is the k-dimensional vector with all entries equal to 1.

The Aitchison simplex is the particular case of a simplex where the k + 1 vec-

tors above described are the unit vectors of Rk+1. This leads to the definition of

probability simplex [38], described below in Rk, for the sake of simplicity.

The probability simplex is the (k− 1)-dimensional simplex determined by the k

unit vectors e1, . . . , ek ∈ Rk, i.e.:

S =
{
x1 + · · ·+ xk|xi ≥ 0, i = 1, . . . , k; 1Tx = 1

}
(B.2)

Vectors in the probability simplex correspond to probability distributions on a set

with k elements, in which xi is the probability of the ith element.

The probability simplex is not the Aitchison simplex yet. In fact, the name

Aitchison simplex is used in this dissertation to refer to a probability simplex with

the following properties and operations:

1The convex hull of a geometrical shape is the (unique) minimal convex set containing it.
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• Any operation on compositional data (points on the simplex) must be ex-

pressed by scale invariant functions of the components. These functions must

be real and 0-degree homogeneous, i.e. the condition

f(λx) = f(x) (B.3)

is satisfied for any positive constant λ and for any point x on the simplex.

This is the scale invariant analysis principle [39].

• Given x and y, two data points in the (k − 1)-dimensional simplex, a pertur-

bation operator ◦ is defined:

x ◦ y = C (x1y1, . . . , xkyk) =

(
x1y1∑k
i=1 xiyi

, . . . ,
xkyk∑k
i=1 xiyi

)
. (B.4)

• An isomorphic transform that map a simplex S into the real space Rk called

centred log-ratio (or centre log-ratio) is defined:

clr : S −→ U, U ⊂ Rk

clr(x) =

(
log

x1

g(x)
, . . . , log

xk

g(x)

)
(B.5)

where g(x) is the geometric mean of the k-dimensional vector x.

• The boundary of the simplex B.2 is excluded in the Aitchison simplex, i.e.:

S =
{
x1 + · · ·+ xk|xi > 0, i = 1, . . . , k; 1Tx = 1

}
(B.6)

As a consequence of the scale invariant analysis principle, simplex of the form2:

S =
{
x1 + · · ·+ xk|xi > 0, i = 1, . . . , k; 1Tx = α

}
(B.7)

may be transformed in probability simplex as in B.2. The operation to use is called

closure and is defined as follows:

C (x1, . . . , xk) =

(
x1∑k
i=1 xi

, . . . ,
xk∑k
i=1 xi

)
. (B.8)

Other operations could be defined on a simplex but are not included in the

appendix so that it will not be weighed down.

2Notice that a simplex like this may be found in many practical problems. The counts of DNA

fragments in a sample is a case example.
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Proof: Hill1 coincides with the

exponential of the Shannon index

Let us consider S positive numbers pi, for i = 1, . . . , S, such that
∑S

i=1 pi = 1 and

1D =

(
S∑

i=1

pqi

) 1
1−q

The aim is to prove that 1D is continuous with derivatives of all orders at q = 1

and that

1D = lim
q→1

(
S∑

i=1

pqi

) 1
1−q

= exp

(
−

S∑
i=1

pi ln pi

)
(C.1)

Setting q = 1 + b and applying the logarithm on both sides, it will be sufficient

to prove that

lim
b→0

1

b
ln

S∑
i=1

p1+b
i =

S∑
i=1

pi ln pi

Let us consider only the left hand side of this equation, that can be re-written

as

lim
b→0

1

b
ln

S∑
i=1

pip
b
i = lim

b→0

1

b
ln

S∑
i=1

pi exp(b ln pi) .

Now, remembering that, for small values of x, exp x ≃ 1+ x holds, the following

expression may be obtained:

lim
b→0

1

b
ln

S∑
i=1

pi exp(b ln pi) = lim
b→0

1

b
ln

(
S∑

i=1

pi + b

S∑
i=1

pi ln pi

)

Now, observing that
∑S

i=1 pi = 1 and using the approximation, for small values

of x, ln(1 + x) ≃ x, last equation may be re-written:
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lim
b→0

1

b
ln

(
S∑

i=1

pi + b

S∑
i=1

pi ln pi

)
= lim

b→0

1

b
· b ·

S∑
i=1

pi ln pi =
S∑

i=1

pi ln pi

In order to prove the continuity of the derivatives of 1D, Let us start from the

following consideration: suppose f(x), g(x) to be two functions that can be expanded

as power series in a neighbourhood of x = 0 and let f(0) = 0 and g(0) = 0; then,

if f(x)/g(x) is continuous in x = 0 follows that it also has derivatives of all orders,

and they can be expanded as a power series. In the considered case, g(x) is b and

f(x) is
∑S

i=1 pi ln pi. Thus,
1D has continuous derivatives.
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Supplementary material

In this appendix, the plots and outcomes mentioned in the text are reported. In

particular, the time series of the most abundant taxa, as well as the auto- and cross-

correlations of the most relevant phyla are shown. In the final section, a complete

list of the significant outcomes of the Fisher test for the evaluation of the significance

of periodicities are reported, summarised in a table.

Time series of most abundant taxa

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.1: Time series of the 7 most abundant phyla in the four cities; abundances

expressed in centred log-ratio
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(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.2: Time series of the 7 most abundant classes in the four cities; abundances

expressed in centred log-ratio

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.3: Time series of the 7 most abundant orders in the four cities; abundances

expressed in centred log-ratio
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(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.4: Time series of the 7 most abundant families in the four cities; abun-

dances expressed in centred log-ratio

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.5: Time series of the 7 most abundant genera in the four cities; abundances

expressed in centred log-ratio
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Auto-correlations of phyla

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.6: Auto-correlations of the the Proteobacteria phylum in the four cities

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.7: Auto-correlations of the Firmicutes phylum in the four cities
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(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.8: Auto-correlations of the Bacteroidetes phylum in the four cities

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.9: Auto-correlations of the Actinobacteria phylum in the four cities
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Cross-correlations of phyla

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.10: Cross-correlations of Proteobacteria and Firmicutes in the four cities

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.11: Cross-correlations of Proteobacteria and Bacteroidetes in the four cities
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(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.12: Cross-correlations of Proteobacteria and Actinobacteria in the four

cities

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.13: Cross-correlations of Firmicutes and Bacteroidetes in the four cities
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(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.14: Cross-correlations of Firmicutes and Actinobacteria in the four cities

(a) Bologna (b) Budapest

(c) Rome (d) Rotterdam

Figure D.15: Cross-correlations of Bacteroidetes and Actinobacteria in the four cities
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Significant peaks in the Fourier spectrum

Here, a table collecting the outcomes of the Fisher’s test for the significant peaks

of the time series is shown for the following taxonomic levels: phylum, class, order,

family, genus.

Taxon. level Taxon City Period Significance

Phylum Elusimicrobia Bologna 56 *

Proteobacteria Rome 40 **

Firmicutes Rome 40 **

Actinobacteria Rome 40 *

Fusobacteria Rome 40 **

Fusobacteria Rotterdam 39 **

Class Gammaproteobacteria Rome 40 *

Clostridia Rome 40 *

Gammaproteobacteria Rotterdam 78 *

Order Pseudomonadales Rome 40 *

Enterobacterales Rome 40 *

Thiotrichales Rome 40 *

Enterobacterales Budapest 26 *

Enterobacterales Rotterdam 78 *

Aeromonadales Rotterdam 78 *

Family Pseudomonadaceae Rome 40 *

Enterobacteriaceae Rome 40 *

Francisellaceae Rome 40 *

Enterobacteriaceae Budapest 26 *

Moraxellaceae Budapest 7 *

Enterobacteriaceae Rotterdam 78 *

Comamonadaceae Rotterdam 39 *

Aeromonadaceae Rotterdam 78 *

Moraxellaceae Rotterdam 39 **

Flavobacteriaceae Rotterdam 78 *

Table D.1: [1/2] Fisher test for periodicity (* means a p-value < 0.05, while **

means a p-value < 0.01); the period corresponding to the peak is expressed in weeks
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Taxon. level Taxon City Period Significance

Genus Pseudomonas Rome 40 *

Klebsiella Rome 40 *

Francisella Rome 40 *

Klebsiella Budapest 26 *

Acinetobacter Budapest 7 *

Trichococcus Budapest 52 **

Streptococcus Rotterdam 78 *

Aeromonas Rotterdam 78 *

Table D.2: [2/2] Fisher test for periodicity (* means a p-value < 0.05, while **

means a p-value < 0.01); the period corresponding to the peak is expressed in weeks
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