Damia Paciarini, Mattia
(2022)
One-loop quantum gravity in arbitrary dimensions.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (497kB)
| Contatta l'autore
|
Abstract
In the context of perturbative quantum gravity, the first three Seeley-DeWitt coefficients represent the counterterms needed to renormalize the graviton one-loop effective action in $D=4$ dimensions. A standard procedure to compute them is by means of the traditional heat kernel method. However, these coefficients can be studied also from a first quantization perspective through the so-called $\mathcal{N} = 4$ spinning particle model. It relies on four supersymmetries on the worldline and a set of worldline gauge invariances.
In the present work, a different worldline model, able to reproduce correctly the Seeley-DeWitt coefficients in arbitrary dimensions, is developed. After a covariant gauge-fixing procedure of the Einstein-Hilbert action with cosmological constant, a worldline representation of the kinetic operators identified by its quadratic approximation is found.
This quantum mechanical representation can be presented in different but equivalent forms. Some of these different forms are discussed and their equivalence is verified by deriving the gauge invariant counterterms needed to renormalize quantum gravity with cosmological constant at one-loop.
Abstract
In the context of perturbative quantum gravity, the first three Seeley-DeWitt coefficients represent the counterterms needed to renormalize the graviton one-loop effective action in $D=4$ dimensions. A standard procedure to compute them is by means of the traditional heat kernel method. However, these coefficients can be studied also from a first quantization perspective through the so-called $\mathcal{N} = 4$ spinning particle model. It relies on four supersymmetries on the worldline and a set of worldline gauge invariances.
In the present work, a different worldline model, able to reproduce correctly the Seeley-DeWitt coefficients in arbitrary dimensions, is developed. After a covariant gauge-fixing procedure of the Einstein-Hilbert action with cosmological constant, a worldline representation of the kinetic operators identified by its quadratic approximation is found.
This quantum mechanical representation can be presented in different but equivalent forms. Some of these different forms are discussed and their equivalence is verified by deriving the gauge invariant counterterms needed to renormalize quantum gravity with cosmological constant at one-loop.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Damia Paciarini, Mattia
Relatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
heat kernel,worldline model,perturbative quantum gravity
Data di discussione della Tesi
16 Dicembre 2022
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Damia Paciarini, Mattia
Relatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
heat kernel,worldline model,perturbative quantum gravity
Data di discussione della Tesi
16 Dicembre 2022
URI
Statistica sui download
Gestione del documento: