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Abstract

The idea of Grid Computing originated in the nineties and found its concrete applications in contexts

like the SETI@home project where a lot of computers (offered by volunteers) cooperated, performing

distributed computations, inside the Grid environment analyzing radio signals trying to find extrater-

restrial life.

The Grid was composed of traditional personal computers but, with the emergence of the first

mobile devices like Personal Digital Assistants (PDAs), researchers started theorizing the inclusion of

mobile devices into Grid Computing; although impressive theoretical work was done, the idea was

discarded due to the limitations (mainly technological) of mobile devices available at the time. Decades

have passed, and now mobile devices are extremely more performant and numerous than before, leav-

ing a great amount of resources available on mobile devices, such as smartphones and tablets, untapped.

Here we propose a solution for performing distributed computations over a Grid Computing

environment that utilizes both desktop and mobile devices, exploiting the resources from day-to-day

mobile users that alternatively would end up unused.

The work starts with an introduction on what Grid Computing is, the evolution of mobile devices,

the idea of integrating such devices into the Grid and how to convince device owners to participate

in the Grid. Then, the tone becomes more technical, starting with an explanation on how Grid

Computing actually works, followed by the technical challenges of integrating mobile devices into the

Grid. Next, the model, which constitutes the solution offered by this study, is explained, followed by a

chapter regarding the realization of a prototype that proves the feasibility of distributed computations

over a Grid composed by both mobile and desktop devices. To conclude future developments and ideas

to improve this project are presented.

x



Chapter 1

Introduction

This chapter provides a high-level introduction attempting to offer an easy-to-read def-
inition of the topics that are faced in this work as well as the end goal to reach; here
it will be discussed what Grid Computing is, the evolution of mobile devices, the idea
of integrating such devices into the Grid and, last but not least, how to convince device
owners to participate in the Grid.

1.1 What Grid Computing is

Grid Computing is a type of Distributed Computing where the resources of many com-
puters, connected by a network, are used in combination to reach a certain common
goal.

Figure 1.1: Example of a Grid - iVDGL, the Globus project [1]

1



CHAPTER 1. INTRODUCTION

Compared to traditional Distributed Computing such as Cluster Computing, Grid
Computing focuses on large-scale resourceswith geographically dispersed nodes that
also tend to be more heterogeneous regarding their hardware and software; this is
also due to the fact that while a Cluster is only composed of computers entirely dedicated
to perform the tasks requested inside the Cluster (thus coming from an investment and a
subsequential setup of the Cluster), a Grid is composed by machines offered mostly
on voluntary basis by regular day-to-day users scattered around the planet.

Another important aspect that differentiates Grid Computing from Cluster Computing
is how the last one tends to be more focused on a particular task while the Grid is
designed to be a general-purpose tool.

Figure 1.2: High-level comparison of Distributed Computing and Parallel Computing [2]

For certain applications, Grid Computing can be seen as a special type of Parallel
Computing that distributes computation among the nodes connected to the Grid utilizing
their resources; this approach is in contrast with the traditional notion of a supercomputer,
which has many processors connected by a local high-speed bus. From this difference in
approach comes the strength of performing parallel computations in a distributed Grid
environment: resources from the machines connected to the Grid can be quickly gathered
to perform a task and, after completion, they can be dismantled just as quickly, removing
the necessity of maintaining a highly expensive supercomputer; while this is, in a certain
way, also true for Cluster Computing, the strength of Grid Computing lies in its ability
to reach much greater levels of scalability with relative ease.

2



CHAPTER 1. INTRODUCTION

1.1.1 The "Grid problem"

The "Grid problem" is defined as "flexible, secure and coordinated resource sharing

among dynamic collections of individuals, institutions and resources" [3] While being
a powerful tool, Grid computing brings with it some inherited challenges that are a
byproduct of the flexibility that the grid aims to offer; while designing a Grid system,
diverse usage models have to be taken into consideration, ranging from single user to
multiuser and from performance sensitive to cost sensitive and hence embracing issues of
quality of service, scheduling, co-allocation, resource discovery, security and accounting.
Quoting a passage from the foundational article "The anatomy of the Grid: enabling scalable
virtual organizations" by Ian Foster, Carl Kesselman and Steven Tuecke [3]:

"The sharing that we are concerned with is not primarily file exchange but

rather direct access to computers, software, data and other resources, as is

required by a range of collaborative problem-solving and resource-brokering

strategies emerging in industry, science and engineering. The sharing is, neces-

sarily, highly controlled, with resources providers and consumers defining clearly

and carefully just what is shared, who is allowed to share and the conditions

under which sharing occurs."

1.1.2 History and applications using the Grid

Before being referred to as "Grid Computing", the idea of connecting geographically
distant computers in order to share resources was known as "Utility Computing"; the
term is based on the idea of seeing computing as a public utility, analogous to the phone
system. This field was then renamed to "Grid Computing" in the early 1990s, based on
the metaphor of making computational power as easy to access as an electric power grid.
Thus, the nomenclature of this technology shifted its focus, representing first the goal
of providing public service that could be used by anyone, then an easy-to-scale enabling
technology for gathering a vast number of computational resources. In 2007, the term
"Cloud Computing", which is conceptually similar to the definition of Grid Computing,
came into popularity. Nowadays, Grid Computing is often associated with the delivery of
Cloud Computing systems.

3



CHAPTER 1. INTRODUCTION

Volunteer computing (having people that voluntarily offer their machines to con-
tribute to a Grid) became relevant first in 1997 with distributed.net, a project that aims
to solve mathematical complex and resource-consuming problems using Grid computing;
then, in 1999, the SETI@home project used voluntarily offered computers performing
distributed computing over a Grid in order to Search for Extraterrestrial Intelligence
(hence the acronym "SETI") analyzing radio signals. Another important example of Grid
Computing application can be found in the LHC Computing Grid; this project, created by
the CERN organization, is used to support the Large Hadron Collider. This Grid is capable
of analyzing the approximately 27 TB of data generated by the collider every day.

1.2 Mobile devices and their evolution

Today, the mobile devices’ panorama is dominated by smartphones and tablets. Before
the introduction of such devices, the market was very different, with the predecessors of
the smartphones: PDAs.

1.2.1 From PDAs to smartphones

A Personal digital assistant (PDAs) is a mobile device that acts as a personal information
manager. These type of devices were the first attempt at providing the capabilities of a
computer in a relatively small mobile device (hence they were also known as handheld
PC). A PDA device typically features:

• A display (and possibly physical buttons, depending on if the specific model uses a
touch display);

• Audio capabilities (with the possibility of using it as a portable media player);

• Telephony (acting as a mobile phone);

• Internet connectivity (only via Wi-Fi);

• A web browser;

• Bluetooth connectivity.
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In 1984 Psion released the first PDA: the Organiser I; the term PDA though came
to existence in 1992, once Apple released the Apple Newton. PDAs started to include
telephony capabilities in 1994 with the IBM Simon; this device is particularly important,
since it can be considered the first smartphone.

Figure 1.3: Example of PDA device - Compaq iPAQ 3650

Although PDAs had a considerable share of the mobile market (but still dominated by
traditional mobile phones), in the mid-2000s PDAs started to be replaced more and
more with modern smartphones until they completely replaced them. Today the term
"personal digital assistant" has found a new meaning in the definition of virtual assistants
based on speech synthesis (ex: Amazon’s Alexa).

Contemporary mobile devices’ market is not remotely comparable to the market of the
PDAs era, reaching an exponentially greater number of smartphones and tablets units
sold. Despite this, some experts think that the market is saturated, and it is reaching
its peak [4]. One important aspect of today’s market is the fact that the number of
smartphones currently sold is far greater than the number of PCs sold (that is actually
gradually declining) as shown in figure 1.4.
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Figure 1.4: Global Sales of PCs and Smartphones from 2009 to 2019 [4]

1.2.2 Technological progress

Hardware has had a general improvement in the computational world and mobile
devices’ technological capabilities are no exception; as can be seen in figure 1.5, PDAs had
very poor performances able to only mildly satisfy the limited use cases of such devices.

Figure 1.5: Example of technological capabilities of 2000s PDAs [5]

To better understand the technological gap between devices from the year 2000
and today’s smartphones, figure 1.6 provides a comparison between these three exam-
ples:

• Compaq iPAQ 3650 (figure 1.3), the best PDA from figure 1.5 among the ones that
could also be connected to the internet;

• Power Mac G4 - M5184 (EMC 1864), the best possible configuration in the Power
Mac G4 line from the year 2000;

• Xiaomi Redmi Note 9 Pro, a 2020 mid-range (as far as value for money) smartphone.

6



CHAPTER 1. INTRODUCTION

Figure 1.6: Comparing a 2020 mid-range smartphone to devices from the year 2000

Despite information about the number of Gigaflops (billion floating point operations
per second) for the Compaq iPAQ 3650 is not available anywhere, it can be confidently
said that its value is far less than the 20 Gigaflops that the Power Mac G4’s CPU was
capable of; considering that the Redmi Note 9 Pro is capable of executing a number
of floating point operations per second that is 21.75 times higher than the Power Mac
G4, a modern smartphone outmatches a PDA by an enormous factor. Available RAM
and Storage have also made a significant step forward, with the chosen smartphone
having 187.5 times more RAM than the PDA and 8000 times more memory available for
the storage. The gap has also to take into consideration other technologies of modern
smartphones, such as Wi-Fi and 4G connections as a standard (with newer models moving
towards 5G connections) and a multitude of sensors, as well as high resolution cameras.
It is apparent that modern smartphones are on a vastly different technological level
compared to old PDAs, significantly outmatching also computers that coexisted with

them.

1.3 Enormous untapped potential: integrating mobile

devices into the Grid

Now, with a general understanding of what Grid Computing is and how mobile devices
evolved over the years, the main topic of this work can be discussed: integrating
(using volunteer computing) mobile devices into Grid Computing alongside desktop
computers exploiting an enormous quantity of computational resources that lay

unused in the pockets of billions of users.

1.3.1 Idea: strength in numbers

As seen in figure 1.4, the market has an enormous number of smartphones sold, thus
resulting in an abundance of available devices that billions of users use every day (tablets
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have also to be taken into consideration).

Figure 1.7: Smartphones are now used daily on a regular basis

Despite smartphones and tablets are not on the same level (in terms of hardware
capabilities) with current computers, it is possible to exploit the availability of a vast
number of devices as a leverage to compensate the performances of such mobile

devices. This concept becomes increasingly relevant also considering the tendency of
users to progressively use less and less desktop computers in favor of their mobile

devices.

1.3.2 Previous works and how limitations evolved

A number of previous works discussed the idea and all of them agreed on the potential
of exploiting mobile devices resources; quoting directly from the 2003 article "Should
one incorporate Mobile-ware in Parallel and Distributed Computation?" by Mustafa Sanver,
Sathya Prya Durairaju and Ajay Gupta [6]:

"At first glance, an individual mobile device may not have sufficient capacity

and computational power for the integration. However, if we can harness the

aggregated mobile power instead of individual power and consider exponential-

rise of mobile units marketed and significantly evolving mobile technology, then

one may conclude that it is worth the effort using this vast, pervasive, and

untouched computational source for parallel computation."

While recognizing the potential behind this concept, previous works pointed out two
important arguments against integrating mobile devices into Grid Computing:

• Challenges inherently linked with adding mobile devices to the Grid, that this
work will discuss in detail later in section 3.1;
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• Technical limitations, that will now be discussed in order to show how (mostly)
they no longer apply, and thus this idea can be realized.

1.3.2.1 Mobile devices competitive performances

The first limitation that was pointed at was the poor performances of mobile devices;
while this was certainly true for PDAs, as discussed in section 1.2.2, today’s smartphones
and tablets do offer resources that are vastly more powerful than what was available

in the past.
Wireless connectivity is also much stabler, faster and wildly available, especially

considering the possibility of limiting participation in the Grid only while the device is
connected to a Wi-Fi network.

The mobility factor of such devices is also not a limiting issue since one could
argue that a volunteer that moves its device in space (thus possibly interrupting the
connection to the Wi-Fi network) can be assimilated to a desktop volunteer that turns
off its computer or is suddenly isolated from the network, reducing the mobility to a
challenge inherently tied to Grid Computing.

1.3.2.2 Mobile users common behavior

Users current common behaviors solve two limitations addressed in the past:

• Mobile devices need to be always on to contribute to a Grid
While this was certainly a problem in the past, in today’s normal usage of mobile
devices (and with the enhancement of the capabilities of batteries), it is normal to
maintain a mobile device on 24/7, alternating cycles of running only on battery
power and cycles of recharging said batteries.

• Mobile devices do not possess enough resources to both satisfy its use cases
and, simultaneously, contribute to a Grid.

As explored before, resources in devices are wildly more available today, compared to
the past. It could be argued that while capabilities are increased, also resource usage
to run computational tasks has increased; while this is true, it must be addressed
how those devices are unused for relatively long periods of time (especially in
the case of tablets). There is also the fact that the typical mobile user uses its
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device for relatively light-weighted computational tasks such as browsing the

internet and interacting with social media applications, leaving still a great

portion of resources unused.

1.3.2.3 Economically sustainable Internet connections

In the 2000s, internet access was progressively rising, but Internet service providers still
offered their services to consumers with a connection according to a consumption

plan; that means that the more data a user consumed, the more expensive the connection
fee becomes every month. The problem with the usage of such consumption plan was that
it made it expensive for end users to voluntarily offer their devices to participate in

a Grid.
Such limitation does not exist anymore since the most common way of accessing

the Internet today is by a subscription model. It could be argued that mobile users still
get a limited amount of traffic data available each month, therefore they could be reluctant
to invest it in the participation in a Grid but, as mentioned before, the participation in the
Grid could be limited to only while the mobile device is connected to a Wi-Fi network
(that commonly has unlimited access to the Internet).

1.3.2.4 Standardized mobile market

Another important limitation pointed out in the past was poor software interoperability
and security of mobile devices.

At the time, the poor software interoperability was the result of how heterogeneous
the mobile market was, especially regarding the operative systems that ran on such
devices:

• Palm OS;

• Microsoft Windows Mobile;

• EPOC;

• Linux;

• Newton;

• QNX.
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Having a multitude of OSes resulted in making the process of integrating the

mobile devices into the Grid much more difficult, requiring to manage multiple
implementations compatible with a specific OS. While the OSes panorama was also
relatively wide in the first years of the smartphones and tablets era, over time the market
slowly converged into having primarily two main operative systems: Android and

iOS.

Figure 1.8: Mobile OSs Market Share from January 2012 to June 2021 [7]

It must also be mentioned that today there are frameworks that allow to have a
singular codebase for creating native applications for both Android and iOS, making the
maintenance process even simpler.
On the security side, having only two real competitors that constantly update

their OSes makes the current situation more favorable than the 2000s (while of course
additional security measures have to be used).

1.3.2.5 Not only mobile: devices transparency principle

As mentioned at the beginning of section 1.3, the vision of Grid Computing that this work
wants to discuss does not only include mobile devices, but continues to also use desktop
computers to expand the capabilities that can be achieved.

The coexistence of both mobile devices and computers in the Grid at the same time
makes necessary to introduce a device transparency principle: a node that participates
in the Grid is just characterized by the resources it has to offer, independently of the
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nature of the device. If this principle is respected, while performing tasks inside the
Grid, the complexity of having different types of devices disappears, making the process
transparent to someone that requests a service from the Grid.

1.4 How to convince device owners

Since this work assumes the voluntary contribution to the Grid by users, said people
have to be convinced to participate in the project; alternatively, as much as the project
allows to reach a great level of scalability, without any physical machines, no tasks can be
performed, making it useless. This section discusses ways and prerequisites to incentivize
users to participate in the dynamically allocated Grid.

1.4.1 Zero-effort configuration

In order to reduce as much as possible the barrier of the active effort needed to
participate in the Grid, users should be presented with a configuration as easy as possible,
especially considering that the vast majority of users do not want to be bothered with
technical details. The goal is possibly to just require an initial guided installation (using
easy to access methods such as applications stores and executables) and then never
require direct input from the contributor.

While the possibility of partially customizing the setup must be offered, it should
be as minimal and easy as possible, offering possibilities like enabling/disabling partici-
pation while using mobile data, while the device is alimented using only the battery and
possibly a scheduling, depending on the time of the day.

1.4.2 Unnoticeable impact: smart resource management

It is important that, while contributing to the Grid, the end user does not experience
slowdowns resulting in a worsening of the user experience during the normal activities
that the user performs; in order to achieve this, the application running on the device
must implement a smart resource management system that adjusts resource usage
depending on the current utilization of them by the user. If this mechanism is not well
implemented, there could be a risk of the user stopping its contribution because of the
discomfort created.
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1.4.3 Security and privacy

One of the most important factors is granting security and privacy inside the Grid.
This is important for multiple reasons:

• The end user wants to feel safe participating in the project, being sure that their
devices and personal data do not get compromised;

• The entities that request the services offered by the Grid also want to feel safe
that their sensitive data (including the results of the computations performed inside
the Grid) will not be accessible to non-authorized third parties;

• The stakeholders of the project do not want to be involved in legal actions
deriving from a breach in security.

This requires a particular effort on security in every component of the systems and in
the communications that are performed over the network.

1.4.4 Fair share business model

Contributors to the Grid must be economically rewarded in order to be incentivized
to offer their devices to the project. Hence, a fair share business model will be useful
to this purpose: users receive a fraction of the earnings obtained by the payments of
the requestors of Grid services; the reward is proportional to the contribution made
by the device that participated to offer the requested service.

This business model allows the owners of the Grid to make a profit (while needing
only to sustain the costs of the machines used to connect the machines of the requestors
and the nodes of the Grid) while also rewarding contributors of the Grid for the usage of
their computational resources (while not needing an active effort other than the initial
setup).
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How Grid Computing works

This chapter elaborates on Grid Computing details. The first section provides lower-
level details on the architecture that governs the functioning of Grid Computing. The
second and last section conclude this chapter presenting the intrinsic challenges of Grid
Computing; these challenges must be faced even in a Grid composed of only desktop
computers.

2.1 Layered Grid Architecture

Following the work of Ian Foster, Carl Kesselman and Stevel Tuecke [3], the Grid Archi-
tecture identifies fundamental system components, and indicates how these components
interact with one another. This Grid Architecture is first and foremost a protocol
architecture, since the interoperability among any potential participant is the cen-
tral issue and thus requires the definition of common protocols. Protocols govern the
interaction among components in the Grid and not the implementation, maintaining local
control.

"Why are protocols critical to interoperability? A protocol definition specifies

how distributed system elements interact with one another to achieve a specified

behavior and the structure of the information exchanged during this interaction.

This focus on externals (interactions) rather than internals (software, resource

characteristics) has important pragmatic benefits." [3]

In order to provide abstractions to interact with the Grid and develop applications
that use it, application programming interfaces (APIs) and software development kits
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(SDKs) must also be provided; these are built on top of the protocols. Together, APIs,
SDKs and the protocols in the architecture constitute a middleware.

The architecture is organized in a layer structure (figure 2.1), where components
within each layer share common characteristics but can build on capabilities and behaviors
provided by any lower level. The number of protocols must be contained, focusing on
Resource and Connectivity protocols.

Figure 2.1: Layered architecture relationship to Internet Protocol (IP) architecture. [3]

2.1.1 Fabric layer

Figure 2.2: Layered Grid Architecture - Fabric layer

This is the layer that implements the local, resource-specific operations that occur
on specific resources (whether physical or logical) as a result of sharing operations
at higher levels. The external access to such resources is mediated by protocols de-
fined in the Grid, while the internal workings of this layer depend on the specific
implementation that runs on a machine; this organization results in a relatively tight
interdependence between the operations defined in this layer and the operations defined
in higher layers.
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Operations in this layer should be as simple and minimal as possible in order

to easily extend compatibility with as many devices as possible; said operations must
involve:

• Enquiry functions
Allow to discover the Node inside the Grid, as well as describe its resources and
status. Resources description provides info about software and hardware capabilities,
while status handling offers mechanisms to enquire current load and queue state.

• Resource management mechanisms
Allow performing operations using the resources offered by the Node, such as access
to storage, computation and network.

2.1.2 Connectivity layer

Figure 2.3: Layered Grid Architecture - Connectivity layer

This layer defines core communication and authentication protocols that are used
for network transactions inside the Grid in order to enable the exchange of data among
fabric layer resources.

• Communication protocols
This protocols handle transport, routing and naming. Here, technologies are mapped
to the TCP/IP stack, in particular to the Internet, Transport and Application layers;
communication is built on already well-established protocols like IP, TCP, UDP, DNS,
etc...

16



CHAPTER 2. HOW GRID COMPUTING WORKS

• Authentication protocols
Mechanisms regarding authentication must possess the following characteristics:

– Single sign-on: users authenticate just once, and then they have access to a
multitude of resources;

– Delegation: a user should allow executing authorized instructions on their
machine;

– Integration with various local security solutions: the layer should include security
solutions provided by the local machine;

– Enable users’ control over authorization: the user must be able to change autho-
rizations regarding the resources that their machine offers.

2.1.3 Resource layer

Figure 2.4: Layered Grid Architecture - Resource layer

In the Resource layer, the primary focus is the secure negotiation, initiation, monitoring,
control, accounting and payment of individual resources; this means that this layer is
not concerned with the global state the Grid is in (that will be handled in the Collective
layer), but it just deals with communicating with a single machine. Here, protocols should
be limited to a small set that captures fundamental mechanisms of sharing across different
resource types while, at the same time, not overly constraining higher protocols defined
in the Collective and Application layers.
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Implementations of the Resource layer rely upon functions defined at fabric layer
in combination with previous layer’s communication and authentication protocols,
resulting in creating APIs used to utilize this layer’s capabilities. Two protocol classes are
defined at this level:

• Information protocols
Provide information about the structure and state of a resource (ex: configuration,
current load, usage policy, etc...).

• Management protocols
Deal with the negotiation process performed in order to access a shared resource
(resource requirements, operations to be performed and applying usage policies).

2.1.4 Collective layer

Figure 2.5: Layered Grid Architecture - Collective layer
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Here the main focus shifts from the management of a single specific resource to dealing
with questions that are global in nature, capturing interactions across collections of

resources. Previous layers dominated the realm of a single machine (with its resources)
acting as an endpoint, but this layer changes context, becoming a cloud-based domain.

If the limited number of protocols at the Resource layer are well-designed, this layer
can offer a wide variety of sharing behaviors that build upon those protocols. Such
sharing behaviors depend on what capabilities the Grid wants to offer. Those behaviors,
that are then accessed by using APIs, can include:

• Directory protocols
Used to discover and query resources by name and/or attributes such as availability,
type and workload.

• Co-allocation, scheduling and brokering protocols
With such protocols, resources are assigned and allocated for a specific purpose in
order to execute a scheduled task.

• Monitoring and diagnostics protocols
Through these protocols resources are monitored for failure, overload, external
attacks, etc...

• Data replication protocols
In order to maximize performances, these protocols manage data replication to
increase reliability while reducing response time.

• Workload management protocols
Used to solve situations where, through information obtained using discovery
protocols, an excessive workload is detected.

• Community accounting and payment protocols
Such protocols collect information about Grid usage; with such information pay-
ments involving resources usage can occur.

• Grid-enabled programming systems protocols
Lastly, these protocols offer familiar grid-enabled programmingmodels and paradigms
to be used to perform computations inside the Grid.
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2.1.5 Application layer

Figure 2.6: Layered Grid Architecture - Application layer

The final layer constitutes all the applications that use services offered by the Grid; the
desired behavior for the user application is constructed in terms of, and by calling

on, services defined at any layer (except fabric layer), accessed via an SDK provided
by the implementor of the Grid; through a combination of services defined in the other
layers, software development and, possibly, collaborating with third party libraries, more
complex behaviors can be built in order to satisfy specific use cases.

2.2 Intrinsic challenges of Grid Computing

While designing a Grid system, intrinsic challenges have to be taken into consideration;
that means that these challenges exist in Grid Computing independently of the
inclusion of mobile devices or operating with just desktop computers. This section
presents a list of the main challenges that a Grid system must face.
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2.2.1 Interoperability

As mentioned in section 2.1, interoperability among any potential participant is the central
issue when designing a Grid Architecture, requiring a meticulous focus on designing
reliable and versatile protocols for interaction.

Unless the system is designed with the limitation of utilizing a set of identical machines,
which is not desirable, machines connected to a Grid operate with different hardware;
this differentiation requires a layer of abstraction that separates the functioning of the
Grid from the interactionwith a single physical node that will use a specific implementation
of the standardized Fabric layer.

Anyway, not only do machines offer different hardware, but they also differentiate
each other in general by the resource they offer. In the context of distributed execution
of computational tasks, for example, nodes offer different programming languages
that they are capable of executing. This becomes a problem for interoperability since
a requestor might want to execute some task with an implementation in a specific pro-
gramming language to respect a performance requirement or just because that language
offers useful libraries for that particular task. While an implementation of a Fabric layer
using a language that is capable of running on almost any device (such as JavaScript)
is certainly possible, this creates a great limitation in the Grid’s use cases related to
distributed computing while at the same time constraining the architecture to a specific
technology, which is bad while designing any software.

Obviously, an important interoperability issue comes from the fact that nodes can
utilize any operating system, implying different ways of installing the software necessary
to run the node’s tasks and, most importantly, a differentiation with the interaction with
the file system and the security mechanisms specific for that particular OS.

Another resource where nodes differ is the network capabilities that they can offer.
Even though this is not a differentiation, in a narrow sense, that comes from the machine
in itself but from the environment where it operates, this still becomes an interoperability
problem inside a Grid system; for this reason the architecture has to be designed taking
into consideration that different nodes will offer different levels of reliability and speed
for their network connection, requiring mechanisms for handling errors, disconnections
and distributing work accordingly to the network’s speed of the node.
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2.2.2 Security

Security is an essential prerequisite in every system and the Grid makes no exception. First
of all, in order to access to the Grid, it is necessary to have an authentication mechanism
(as discussed in section 2.1.2); said mechanism must uniquely identify every user/entity
alongside their unique machines inside the Grid. While being fundamental in order to
grant security, this mechanism is also required by the resources discovery and selection
problem (section 2.2.4).

Having a unique identity given by the authentication is also required for another
important security problem: respecting resources access policies defined by the nodes
providers. Said policies define what resources are offered by a machine, as well as who
is authorized to use them. Mechanisms that regulate the enforcement of access policies
must also take into consideration the dynamic nature of said policies, since they can be
changed by a user at any time.

Unique identification becomes even more important when it is applied to requestors
of the services of the Grid. In order to grant the security of volunteers that offer their
machines, when a user or an entity request a service, it must be trustable (verified)
and accountable. While it is important that also contributors are verified and accountable,
this is a lesser concern considering that they can only act as passive entities.

Regarding privacy, once authentication is granted, it is also important that communi-
cations among entities inside the Grid are encrypted. The encryption is put in place in
order to avoid attacks from malicious entities that could intercept packets.

Finally, countermeasures have to be taken in order to avoid the execution of malicious
code; despite the accountability of uniquely identified users helps to reduce this possibility,
it is fundamental to implement security measures for avoiding the access to everything
that is outside the defined access policies.

2.2.3 Scalability, geographical distribution and load balancing

The main strength of the Grid is its ability to scale, becoming a central principle that
guides the design of the system. In such a system, it is possible to identify two main
contexts where it is necessary to design horizontal scalability:
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• The nodes’ context, i.e. the ability for the system to work with a varying amount of
machines offered by volunteers;

• The cloud’s context, i.e. the capability of the cloud architecture to scale in order to
support efficiently the nodes’ context.

It is clear the cloud’s context is the foundation of the system, therefore here it is
necessary to design a load balancing mechanism for the cloud services, increasing/de-
creasing the number of machines running such services, depending on the number of
nodes that are participating in the Grid in a certain moment.

Moreover, this load balancing has to implement a geographically-aware behavior,
since the nodes are scattered around the planet without a fixated location; this results
in the necessity of creating new replicas of the cloud services’ servers in a geographical
location that takes into consideration not only the costs of running such server, but it also
optimizes the proximity with as many nodes as possible in order to reduce latency.
Once a server is instantiated, it is necessary to let the new instance take charge of the
handling of part of the nodes connected to the overloaded service. Vice versa, if there is
not an excessive amount of traffic, an instance might be removed and its nodes given to
another previously instantiated server. Since the load balancing introduces a problem
of reachability for both the cloud services and the nodes (the dynamically instantiated
services with a geographically-aware behavior lack a fixed address), it is also necessary
to introduce discovery services that, on the contrary, have a static address and act as
intermediaries, providing the address of the required service instances.

Figure 2.7: Example of geographically-aware load balancing
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On a final note, this dynamic instantiation in the nodes’ context has to be considered
while designing the authentication mechanism (discussed in section 2.2.2), requiring for
it to work even if something changes with the servers’ status.

2.2.4 Resources discovery and selection

Not only does the Collective layer (section 2.5) handles global interactions among col-
lections of resources, but, first and foremost, it has the responsibility of managing the
discovery of resources and the selection of the correct ones to perform a task.

Cloud services devolved to this duty build a map of all the nodes connected to the
Grid, keeping track of also which resources they can offer. With this knowledge, said
services can connect a requestor to the desired resources, eventually choosing the
best fit among multiple possible resources of a certain type that satisfy the condition
for a certain task.

The map of the nodes connected to the Grid has to be designed to be stored in multiple
server instances in order to respect the scalability discussed in the previous section.

2.2.5 Scheduling, fault tolerance and Quality of Service (QoS)

An operation that needs to be performed inside the Grid needs a scheduling mechanism
in order to handle the execution of said operations. Since the operations are executed in
a distributed environment prone to errors, replication of data needs to be performed
among multiple nodes; this is done to increase fault tolerance since any node can fail
at any moment. Increasing the replication factor to strengthen the tolerance to errors
necessarily means a worsening of the performances inside the distributed system and
vice versa. The correct replication factor highly depends on the tasks that the Grid needs
to perform and how performances are valued compared to availability.

All these factors (along with what discussed in the previous sections) influence the
quality of service that the Grid can offer. Every design decision for the Grid has to be made
with the intent of maximizing the QoS, increasing performances as much as possible
while, at the same time, offering good fault tolerance, scalability, and security.
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Integrating mobile devices into the Grid

After having discussed how Grid computing works and the intrinsic challenges of such
technology, now it is time to move towards the specific objective of this work: integrating
mobile devices into Grid Computing. First, the challenges specifically derived from the
inclusion of such devices in the system will be discussed. Then, the focus will shift to a
discussion of some architectures proposed by previous works. This will be useful since
the solution that this work proposes takes some ideas from those architectures.

3.1 Challenges derived from including mobile devices

While the intrinsic challenges described in section 2.2 remain still valid, the inclusion
of mobile devices in the Grid arises new issues that have to be taken into consideration
while designing the system. Some challenges have been resolved by the evolution of
technology and the new behaviors adopted by mobile users (section 1.3.2) but other ones
still need to be dealt with.

3.1.1 Network instability

Compared to a computer, a mobile device is afflicted by network instability more
often. This issue is linked to the mobility factor [5] that comes with such devices,
creating a more dynamic and less reliable environment connection-wise.

Aside from Wi-Fi connection (that still can suffer from instability but is generally
stabler), the main source of instability comes from mobile data connection. Enormous
progress in mobile data connection technologies has been made, but still the reliability
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suffers, especially in use cases where having a stable connection is required. Recently, 5G
technology is slowly emerging as the new technological leap. But, as other works have
observed [8], 5G is still in its infancy and, while offering great performances under
optimal condition, it is affected by greater instability compared to 4G.

While discussing properties about mobile data technology, it is important to first
understand the concept of handoff:

• Horizontal handoff: occurs when the connection switches from one repeater to
another. In the case of 5G this happens more often, since the technology requires a
greater number of repeaters in order to work because of the different wave lengths
used.

• Vertical handoff: occurs when the networking technology changes. This is still
particularly a problem for 5G connections since, being less stable, they often require
a switch to 4G ones.

Figure 3.1: 5G’s throughput under different circumstances [8]

Here are a few more relevant factors affecting the quality and performance of a mobile
network:

• Traveling speed
Moving through space causes fluctuation in the stability of the connection, with
usually better performances while standing still, a slight worsening while moving
at walking pace and, finally, a progressive drop in performance with higher speeds.
Figure 3.1 (a) shows how a 5G network throughput varies over time by simply
walking for 700 meters; in this graph, dots represent horizontal and/or vertical
handoffs, showing how unstable mobile connections (especially 5G ones) are.

26



CHAPTER 3. INTEGRATING MOBILE DEVICES INTO THE GRID

• Obstacles
Having obstacles between the device and the connection source significantly alters
performances. In simple terms, 4G utilizes signal waves in a more sparse way; on
the other hand, 5G utilizes waves that are highly focused, requiring a trajectory to
reach the device, whether being on LoS (line-of-sight, i.e. there are no obstacles
between the device and the repeater) or on NLoS (non-line-of-sight, i.e. the repeater
finds an indirect trajectory that bounces the signal using objects). Figure 3.1 (b)
shows how throughput varies in response of physical obstacles (a human body and
a hand) when there are no efficient trajectories to reach the device; on the other
hand, figure 3.1 (c) shows the same phenomenon when there are many optimal
trajectories for the signal waves.

• Placement relative to the connection source
Even the way that the device is placed in space relatively to the connection source
alters performances; generally speaking, this is due to the placement of the mobile
device’s antenna but, in the 5G case, it also depends on the orientation angle
relatively to the source (figure 3.1 (d)).

• Weather
Also, atmospheric conditions slightly alter the efficiency of mobile connections,
reaching up to 30% reduction in throughput speed during rainfall on a 5G mobile
network [8].

Since it will become the standard technology in the following years, a lot of examples
using 5G have been used but, even if with different severity, the same instability issues also
apply to the other mobile data connection technologies. Three approaches (in ascending
order of complexity) can be used to deal with the mobile devices network instability:

• Allowing contributing to the Grid only while using a Wi-Fi connection.

• Limiting contribution while on mobile data connection only to a few specific
use cases that do not require stability.

• Implementing smart context-aware mechanisms that take the decision to allow or
not mobile data contribution based on a combination of technology type, throughput,
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movement in space (using accelerometers) and possibly current weather condition
(using GPS).

Considering that, currently, mobile connectivity data plans still have limited (al-
though increasing) traffic available each month, not all users may want to dedicate it
to the Grid contribution; hence, the second approach is probably the best one, since it
expands use cases and capabilities while not wasting effort on a slightly useful feature.
Finally, active contribution to the Grid using mobile data increases battery consumption,
which will now be discussed in the following section.

3.1.2 Battery consumption

Having devices that run on battery and are not connected to a reliable power source can
be a source of problems for the Grid. Sudden disconnections or failures have to be
monitored anyway since devices connected to a power source may be subjected to a
sudden interruption of energy from the energy source or, more in general, it can incur
in any kind of error. The problem with mobile devices is more about the increased
possibility of unplanned interruptions due to energy exhaustion of the battery. There
are five main factors that affect power usage in mobile devices [9]:

1. Hardware (CPU, GPU, memory, storage, display, sensors);

2. Signaling and networking modules (cellular network, Bluetooth, hotspot, Wi-Fi,
GPS, FM radio);

3. Software (operating system, background applications)

4. Usage patterns (calling, internet browsing, social networks usage, gaming, music
playback, video playback, running heavy applications);

5. Other factors (inter-device communication, heating, aging and faulty battery).

How long the battery of a mobile device lasts depends on a combination of such

factors, ranging from days to (in extreme cases) only hours.
There are a set of possible countermeasures that limit the participation to the Grid

only to devices that respect certain prerequisites that aim to mitigate this problem:
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• External power source enforcement
The first obvious countermeasure is to only allow devices to contribute to the Grid
while connected to a reliable power source. While certainly effective and totally
feasible (since commonly mobile devices tend to be charged every day), this can
limit the percentage of contributors active in a certain moment;

• Battery health status check
Another method is checking for the device’s battery health, allowing contribution
to the Grid while disconnected from an external power source only to devices that
have healthy battery units.

• Battery percentage minimum level
The final countermeasure is allowing battery-powered contribution only when the
device’s battery is above a certain battery percentage.

The best solution to mitigate this problem is a combination of the three countermea-
sures, allowing healthy devices to contribute while above a certain battery percentage
and limiting devices with an aged battery to only contribute while connected to a power
source.

On a final note, what was discussed in this section can be mostly applied also to
laptops, even though people usually tend to use them while connected to a power source.

3.1.3 Mobile-specific security

As the number of smartphone increases, the number of computers used by people are
gradually declining (figure 1.4); as a direct consequence of this phenomenon, malicious
attack efforts are now being redirected to exploiting mobile devices’ vulnerabilities.
Figure 3.2 shows how Android has more vulnerabilities compared to iOS. This can be
explained for the following two reasons:

• Android devices are more diffused
Attackers tend to attack these devices more, since the pool of individual units is
larger (as shown in image 1.8) and thus, obtaining a profit is more likely.

• iOS has more strict security measures [10]
One of the byproducts of designing Android to be able to run a vast number of
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Figure 3.2: Number (left) and distribution (right) of known vulnerabilities on iOS and
Android from 2007 to 2019 [10]

different hardware is the fact that compromises have to be made in order to grant
compatibility. On the other hand, iOS runs on only a limited number of models,
making it easier to design more effective security mechanisms.

Through the Linux Kernel, Android resources are managed and protected. Further-
more, Android employs an Application Sandbox security mechanism, meaning that
each application is run with a unique ID and the processes are executed in spaces
separated from each other and from the Kernel, therefore preventing an applica-
tion from interfering with the functioning of another. Despite this, Android employs an
authorization-based mechanism for accessing resources; while a process that has
not the correct authorizations cannot access determinate resources, the greatest
weakness of this mechanism is the fact that authorizations are granted by the user
who is not usually really aware of the implications of such choices. Application, conse-
quently, can launch various types of attacks depending on the type of authorizations
that they obtained. Another weakness of Android systems is the fact that Application
provenance is not guaranteed; the Play Store’s digital certificate can be easily obtained
from malicious parties since Google only requires a fee paid by a credit card to get it (and
payments might be done with a stolen credit card). Applications can also be installed
from third parties, making it easier to introduce malicious software that is completely
unchecked.

On the other hand, iOS utilizes a similar Sandbox system, but authorizations are
completely managed by the OS, removing the possibility of human errors. From the
Application provenance perspective, iOS’ applications are only distributed by the App
Store; developers have to register, pass a vetting process that evaluates the Application
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which, in case no harm is detected, is digitally signed and only then published on the
store. This process makes more difficult the introduction of harmful applications.

Figure 3.3: iOS and Android vulnerabilities severity score from 2015 to 2019 [10]

Even though iOS has the advantage when it comes to sheer number of security
breaches, with time the severity of Android’s breaches has decreased, becoming less
severe than the iOS’ ones (figure 3.3).

This data highlights how it is particularly important to focus on the security of the
Grid’s Fabric Layer (section 2.2) while dealing with mobile devices because, in the current
panorama, they are the greatest source of security vulnerabilities, especially considering
that the information inside them has great value for attackers.

3.1.4 Compatibility issues

Developing software for mobile devices tends to be more prone to compatibility

issues compared to desktop environments, due to the frequent changes that mobiles
OSes undergo in order to add new features, increase performances and enhance security.
It is possible to distinguish between two different types of compatibility when it comes
to software in relation to the version of the supporting SDK:

• Forward compatibility, i.e. developing software that will run even on future OS
distributions.

• Backward compatibility, i.e. developing software that runs also on older OS
distributions.
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Figure 3.4: Statcounter’s statistics for OSes distribution between Android (top) and iOS
(bottom) devices from July 2021 to July 2022

Google’s mobile OS uses an API level system in order to check for the compatibility
of applications across different versions of the OS running on devices. As the OS rapidly
evolves, so the APIs offered in the SDK frequently change, introducing compatibility
problems. Android documentation states that changes in API do not threaten forward
compatibility, but this turns out not to really be the case:

"Even if Google claims that Android apps do not suffer from forward com-

patibility issues, mainly because removed APIs are still kept in the framework

side as hidden APIs, forward compatibility induced APIs are still encouraged to

be replaced because of security and performance concerns. Furthermore, since

32

https://gs.statcounter.com/


CHAPTER 3. INTEGRATING MOBILE DEVICES INTO THE GRID

hidden APIs are also subject to remove or change, forward compatibility is also

not fully guaranteed in practice anyway." [11]

Backward compatibility, on the other hand, tends not to be a great concern,
resulting only in incompatibility issues due to developers setting an improperly low
minSdkVersion flag (in order to target as many devices as possible) without actually
testing if the application works on older Android’s releases.

"Accessing backward compatibility induced APIs, without proper protection,

will simply result in app crashes, giving poor experience to end-user." [11]

Similarly, APIs in iOS’ SDK have compatibility issues between different versions
of the OS; Since changes are generally less drastic, it is easier to test for compatibility
issues (given also the limited number of different Apple devices), but, on the other hand,
iOS development suffers from a great limitation: development of native apps can only
be done on Apple’s line of computers.

Whether the development for Android and iOS devices uses native technologies or
cross-platform technologies (such as React Native), there is really no solution to this
compatibility issue other than extensive testing for every targeted version of both
OSes, making the development on such platforms more time-consuming and complex
both at the beginning and in the maintenance life cycle.

3.2 Previous works

In the past, a number of previous works has been made about this topic. While the
participation of mobile devices to the Grid was theorized, it was never concretized
(especially due to technical limitations). This section presents three previous works that
provide interesting concepts and ideas that influence the solution offered by this work.

3.2.1 Proxy-Based Cluster Architecture (2002)

In early 2000s, Thomas Phan, Lloyd Huang and Chris Dulan proposed a solution to
integrate devices with low capabilities (such as PDAa) into Grid computing. The work is
highly influenced by the technical difficulties resulting from the technological panorama at
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the time, trying to isolate the new devices in a sub-environment that can be integrated
into the Grid without affecting its inner workings.

3.2.1.1 Architecture

Figure 3.5: Proxy-Based Cluster Architecture [5]

This architecture revolves around the idea of having a cluster constituted by a number
of BASELINE (Barely Adequate Systems Leveraging Internet NEtworking) devices that
act as Minions. Such BASELINE devices coexist (in the same wireless network) with a
proxy device powerful enough to coordinate them. In this architecture, this proxy device
is known as Interlocutor; this machine runs a software that acts as a middleware with an
existing Grid system.

"When a resource request arrives at the Interlocutor from a resource consumer,

the request is handled by the Interlocutor. For simplicity, we proceed in this

example with the assumption that the request is for CPU time to process incoming

data. The interlocutor must decompose the request accordingly among its minions;

[...]. After the problem has been distributed to the minions, the interlocutor waits

for results and sends them back to the requester. The Interlocutor has the option

of aggregating the data before responding with the result in order to amortize

the cost of per-message communication overhead." [5]
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3.2.1.2 Interesting concepts and ideas

One of the strengths of such architecture is delegation; Minions rely entirely on the
Interlocutor, making only the active decision (based on the user’s will) to either participate
or not to the Grid. Having such division in responsibilities simplifies the software
running on BASELINE devices (which was the one mostly affected by compatibility
issues given the number of OSes for PDAs) while moving such complexity on the stabler
and more standardized Interlocutor. Another advantage gained from this architecture is
the reduction of latency. Since the devices operate under the same wireless network, a
requestor that is located anywhere on the planet has only to execute a long request to
the Interlocutor, while coordination in the cluster is almost instantaneous given the short
distances. The local coordination allows managing resources more easily since the
responsibility of determining whether certain resources are available and/or adequate
becomes distributed among all Interlocutors. Device discovery is also greatly simplified
since the Grid services do not actually need to discover every single BASELINE device but
only Interlocutors. Furthermore, the Interlocutor hides devices heterogeneity from
the Grid, allowing also the possibility to apply mechanisms to compensate for BASELINE
devices performances.

While using a local Interlocutor seems very effective, every benefit gained from the
use of it comes at the cost of a great limitation: when it comes to practically scaling the
Grid, having the devices operating under the same local network makes it extremely

more difficult for volunteers to offer their devices. It is still possible to use some sort
of variation of an Interlocutor, but this obviously comes at the cost of losing some benefits
such as the reduction of latency while operating in the same network.

3.2.2 Mobile-to-Grid Middleware (2005)

While the previous work focused on mobile devices contributing to the Grid, this one
(by Umar Kalim, Hassan Jameel, Ali Sajjad and Sungyoung Lee) provides a solution
for enabling the possibility for mobile devices to utilize the Grid’s services. The
Middleware gateway represents the main element in this architecture, allowing mobile
devices (running a client) to access Grid’s services through it; using this expedient,
limitations on computational power needed on requestor’s devices are eliminated, making
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possible to trigger complex operations even from a device that is not adequate in
performances.

3.2.2.1 Architecture

A machine devolved to act as a Middleware gateway runs three different modules:

• Middleware service
The main software module that handles access to Grid’s resources by the clients
executing requested operations.

• Ontology server
Used to gain access to information that define different possible client devices.

• UDDI registry
The discovery of Middleware gateways by mobile devices is performing by using
the UDDI registry where every new instance of the gateways is registered. Hence, a
machine acting as a Middleware gateway needs this module to interact with such
registry.

Figure 3.6: Mobile-to-Grid Middleware [12]
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"Firstly the client application discovers and connects with the Middleware.

Then the service, after authentication, submits its device specification along with

the job request. The middleware then locates the relevant Grid service and after

authorization forwards the request. The client may then request some status

information (regarding the job or the service). If the client wishes to disconnect

(and collect the result later), the Middleware would facilitate a soft state registra-

tion and to which would later help in the reintegration. After disconnection all

the requests are served locally (with the cached information). Requests that result

in updates at the Middleware service are logged for execution at reconnection.

Upon reconnection pending instructions are executed and information updates

at the client end are made to maintain consistency." [12]

Being the most complex module among the three, the Middleware service is built with
a service layered architecture:

• Broker service
This service takes job requests from the Client devices and, after verifying that
adequate Grid’s services are available (using the Information service), it downloads
the code to be executed (from the device or from another source) and starts to
perform the job interacting with the Grid. Results are stored in the Knowledge
management layer.

• Knowledge management
This layer manages relevant information, both on the client side and on the Grid
side. Here results are also scaled down and/or formatted before being returned to
the Client device.

• Security service
Here there are all the security measures used to create a safe and authenticated
connection with both the mobile Client and the Grid.

• Information service
Through this service, the Middleware is able to determinate which services and
resources are available on the Grid.
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• Communication interface with the Grid
This layer handles the implementation of communication protocols established by
the Grid.

• Communication interface with the Client
Similarly, this layer has the responsibility to perform communication with the Client
running on a device; given the different types of possible clients running on different
devices, an Adaption module is added to implement device-specific communication
(using information gained by the Ontology server)

3.2.2.2 Interesting concepts and ideas

The main advantage of this idea is the versatility obtained by increasing the number
of devices capable of using the Grid’s services. Development on the requestor side is
greatly simplified, removing heterogeneity since the actual complexity is moved to the
Middleware gateway. To extend compatibility of devices, it is just necessary to implement
the communication modules on the new client and add a new Adaption module in the
Middleware service.

While this is surely a great advantage, it comes at a great price: the necessity to
provide machines that act as a Middleware gateway. Considering that the computation
is mainly done in such machines (with the collaboration of the peers inside the Grid),
this results in an intense usage, increasing costs for the Grid owners. As the paper also
states, there is also a problem with scalability. If a client submits a task and disconnects
from the gateway (whether voluntarily of involuntarily), there is no guarantee that it will
later reconnect to the same Middleware gateway, thus requiring mechanisms to deal with
this issue.

3.2.3 Autonomous Mobile Middleware (2006)

Similarly to the previous work, Fabio Navarro, Alexandre Schulter, Fernando Koch, Marcos
Assunção and Carlos B. Westphall propose a solution to enable mobile devices to utilize
the Grid’s services. Even though the idea is very similar, the Middleware changes
physical location, becoming integrated directly into the mobile devices.
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3.2.3.1 Architecture

Figure 3.7: Autonomous Mobile Middleware [13]

Figure 3.7 shows the architecture proposed by this work. The Middleware (A) acts as
a bridge that links applications (B) running on mobile devices and the Grid’s services.
The Broker Module service (D) manages resources, schedules jobs and monitors their
execution eventually saving results in a dedicated database S2. Through the use of
the LDAP protocol, the Directory Module service (C) manages information about nodes
that participate into the Grid, keeping said information also in a dedicated database S1.
Communication between a Middleware and the Grid’s services is filtered by an HTTP-XML
Server module for nodes data representation.

3.2.3.2 Interesting concepts and ideas

This solution inverts the benefits and drawbacks of the section 3.2.2’s solution: at the cost
of moving back the complexity from a dedicated external machine to the mobile device,
scalability is facilitated while, at the same time, costs to maintain the infrastructure
running are decreased for the Grid’s owners.
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Considering that the ability of easily scaling is the main strength of a Grid architecture,
this is probably a better approach compared to the previous solution, especially because
a correct application of the layered Grid architecture (section 2.1) reduces complexity on
the device side through the existence of the fabric layer.

While pursuing this solution it is important not to forget one of the reasons why the
previous work moved the Middleware out of the device: the computational load that
such software component requires to run. It is extremely important that a Middleware
running on the mobile-side is as light-weight as possible in order not to overconsume

resources and battery.
This work also highlights the necessity of using a standard protocol to represent

devices inside the Grid. While HTTP-XML is a good solution, more modern standards
can be applied such as using the JSON format.
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Chapter 4

Transparent scheduling model over

heterogeneous devices

After all the necessary context introduced by the previous chapters, here the solution
proposed by this work will start to be discussed. In particular, the first section focuses on
discussing the characteristics of the solution while the second and last chapter present an
analysis where the Domain, the Use Cases and the Requirements are addressed, preparing
the ground for the next chapter where an Architecture implementing this solution will be
shown.

4.1 Grid computing evolution: this project’s solution

Coming from the overview on how Grid Computing works (chapter 2), followed by the
challenges and previous ideas on how to integrate mobile devices into the Grid (chapter
3), it is now time to expand this project’s idea, already introduced in chapter 1.

The solution proposed by this work takes the name of "Transparent scheduling model

over heterogeneous devices"; the model aims to maintain the core characteristics of
a Grid computing system while, at the same time, redesign some aspects in order to
enhance and evolve its capabilities to better accommodate new necessities arising
from the current technological panorama.

In particular, this Grid computing system (following the Cloud Computing modern
approach) aims to offer services, ranging from simple to complex ones, to everyone
that might need access to a large pool of computational resources.
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An example of computationally demanding distributed service is the execution of a
MapReduce computation, which will be the service realized for this project’s proto-
type.

Info: See appendix A for an overview on the MapReduce paradigm.
i

This section, then, presents the project’s aspects that differ from a traditional Grid
computing approach and the reasons why it might represent a viable alternative to
current Cloud computing services.

4.1.1 Transparent heterogeneous devices: more contribution

The core difference, compared to a traditional Grid approach, comes from the inclusion
of mobile devices into the contributing devices base. This project’s aspect was discussed
previously (section 1.3 and chapter 3) and results in a broader contribution to the Grid
system coming from people that tend to primarily use their mobile devices (the vast
majority nowadays).

One core characteristic emerges from the discussion of a previous work: the con-
tributing mobile devices need to autonomously interact with the Grid system. This
autonomy principle stands in direct contrast with the approach proposed by the work dis-
cussed in section 3.2.1, but it is mandatory in a system where simplicity is key; moreover,
the limitation of an Interlocutor device is no longer justified with the performances

of current mobile devices given by the technological progress of the recent years. It
is important to specify that, while mobile devices have now better performances, tech-
nological limitations (compared to contemporary computers) still need to be taken
into account while designing the solution. The characteristics discussed in this section
influence the solution’s name:

• Transparent scheduling
Traditional Grid systems operate with the assumption of the presence of a

single type of contributing devices: computers; since this assumption does not
hold here, a layer of abstraction needs to be put into action. A device is seen
as a collection of resources that it can offer, which will be the only relevant
aspect when scheduling tasks that said devices will need to execute to collectively
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complete a service offered by the Grid; hence, the devices’ heterogeneity becomes
effectively transparent to the system.

• Heterogeneous devices
This aspect of the solution’s name is influenced not only by the fact that heteroge-
neous devices are supported for contribution, but also by the fact that different

types of devices can also access the Grid’s services (this will be discussed in
section 4.1.4).

4.1.2 Low infrastructural costs: Volunteer computing philosophy

When it comes to Cloud computing, one critical problem is the amount of resources
(hardware and, consequently, economical) needed to maintain up and running the
infrastructure required to perform the services that the Cloud computing platform wants
to offer; Grid computing combined with Volunteer computing (section 1.1.2) vastly
reduces this problem.

A typical Cloud computing platform operates, in simple terms, by a multitude of
hosted machines (running the required software) communicating among each other;
the maintenance costs of said machines is completely sustained by the Cloud computing
platform owner. With Volunteer computing, on the other hand, the machines that
compose the Grid architecture are divided in two categories:

• Maintenance costs sustained by the Grid owner
Here reside the machines running the core coordination mechanisms of the Grid
system. The instances of said machines can be dynamically increased or decreased
depending on the necessities dictated by the current workload, resulting in paying
the strict necessary to make the system work at any given time.

• Maintenance costs sustained by the Volunteers
This category comprehends the actual machines (Computers, Smartphones and
Tablets) that cooperate in order to execute the services provided by the Grid. Since
the devices are owned and used by the Volunteers, the vast majority of the costs
associated with said devices are demanded to them. Said costs are represented
mainly by the device maintenance, the electricity needed to make them work, and
the Internet traffic generated; but, as discussed in sections 1.3.2.2 and 1.3.2.3, these
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costs will be sustained by the Volunteer anyway (especially in the case of mobile
devices), regardless contributing to the Grid or not. Furthermore, the Volunteer
receives a compensation for its contribution (section 1.4.4), making it actually
convenient for them to contribute.

On a final note, this approach also has a positive effect on the environment: the vastly
diffused Cloud model results in a great consumption of electricity to run the dedicated
machines composing the infrastructure; on the other hand, demanding the execution
of software into Volunteer machines (that would be turned on anyway) reduces the
environmental impact derived by the electricity consumption.

4.1.3 Removing the complexity: broader contributing user base

Although Volunteer computing has been a concept for many years, the volunteering was
typically done by people with relative confidence in using technology, in particular
(necessarily) computers.

It is not uncommon that the typical computer user, for example, does not have the
knowledge (or the confidence) to find and launch a Windows installer or, even worse,
install a program from an integratedmanager on any Linux distribution. But, as technology
increased in diffusion, in recent years a broader audience has become familiar with
the concept of installing Apps through the use of a store (mainly the App Store and
the Play Store), making it easier to reach new users. Using such established means
of distribution makes it realistic to also reach potential Volunteers that mainly use
mobile devices and may not have the technological skills to contribute using a computer.
Furthermore, the "store" approach on mobile devices has recently generated similar stores
on the desktop OSes thus creating a new simplified distribution medium (even if still
not vastly used today).

But, even if the first barrier on reaching users is removed, it is important to keep
in mind the simplicity principle behind the idea, ensuring that the Volunteer has to
perform a setup as easy and guided as possible in order to configure its device once
and then never have to do that again.
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4.1.4 Toward ubiquitous computing: Grid services for all devices

The "heterogeneous" keyword in the solution’s name refers not only to the possibility
of using a multitude of different devices in order to contribute to the Grid, but it

also includes the feature of accessing Grid’s services from computers as well as

smartphones and tablets.

The previous work described in section 3.2.2 introduced this idea with the use of a
middleware machine; a subsequent work (section 3.2.3) improved this idea by removing
the necessity of such middleware. This approach mirrors the one previously described for
devices’ contribution to the Grid and better suits this solution, obtaining broader devices’
compatibility from both ends of the execution of a service (requestor machine side and
executor machines side). As a primary consequence, a multitude of applications
running on various devices can build complex behaviors with the support of the

Grid’s resources.

The possibility of executing computationally heavy tasks even from low-performance
devices is a step toward the ubiquitous computing idea for the future, having great
versatility and computing power accessed by day-to-day objects.

4.1.5 Cheaper access to Cloud services: Grid services for everyone

As a result of having broad compatibility for devices’ contribution (section 4.1.1) and
low infrastructural costs (section 4.1.2), the cost of accessing to the Grid services
(that can be seen as Cloud computing services from the customer point of view) becomes
cheaper than utilizing other platforms that run their infrastructures hosting their private
machines.

Realistically, performances of services ran on Grid computing systems will be

slightly worse compared to services that host their dedicated machines; this is mainly
because of the potential faults arising from the less stable connection of the devices.
Nonetheless, this is a highly viable and much cheaper alternative in domains where

performances are not a highly strict requirement and a little delay can be accepted,
opening the possibility of using such services also to entities that do not have a lot of
financial resources.
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Expanding the considerations seen up until now, the Grid owners get value and a
revenue from the Customers that, at the same time, save money accessing cheaper
services. On the Volunteer side, there is a compensation for doing absolutely nothing
more than easily configuring a device once and the environment is less impacted while
still performing advanced computations. In conclusion, everyone wins.

4.1.6 Anticipating market trends: current devices’ panorama

As discussed in section 1.2.1, the current market trend shows how computer sales are
decreasing and, as experts say [4], this trends is not expected to reverse. In light of these
considerations, as the number of computers decreases while other devices increase
(mainly mobile), it becomes increasingly important to think computational solutions
around devices that will actually be used.

The solution proposed, although already relevant, progressively increases its signifi-
cance with time with the gradual but inevitable global shift of device types composition.

4.2 Solution analysis

After a high level discussion about the characteristics of the solution proposed by this
work, now it is time to make an additional step in the road that leads to the concretization
of a working system that realizes such idea.

Here, the Domain will be explored, clarifying concepts and nomenclatures in order to
uniquely identify the building blocks needed to move forward. Then, use cases will be
discussed, explaining what the system needs to do, seen from the point of view of the
actors interacting with it. Finally, the requirements will be presented, aiming to provide
a clear set of criteria to satisfy for a system that wants to use the Transparent scheduling
model over heterogeneous devices.

4.2.1 Domain: Ubiquitous Language

Before continuing, it is important to specify the nomenclatures and relative definitions
on what composes the domain in which the projects operate; in order to do so,
the Ubiquitous Language (UL) tool, coming from the Domain Driven Design (DDD)
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discipline [14], will be used. From this point and forward, a term listed here will be
uniquely used to identify its mapped concept:

Figure 4.1: Ubiquitous Language

• Contributor
A person (up until this point identified as the Volunteer in Volunteer Computing)
which offers one or more Contributing Endpoints in order to perform a Contribution
finalized to the completion of Grid Services. Through its Contribution, it gains
Rewards that are accumulated in its Reward Balance; once a certain Reward Threshold
is reached, a Contributor can perform a Rewards Redemption. The Contributor can
manage its data through a Contributor Dashboard.
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• Contribution
The automated act performed by a Contributing Endpoint (offered by a Contributor)
in order to complete Grid Services and, consequently, gain Rewards.

• Customer
An entity (whether a single person, a business, etc...) that wants to perform a Grid
Service Invocation through an Invoking Endpoint integrated into a Customer Custom
Application. This entity can manage its data and past Service Invocations and Fees
utilizing a Customer Dashboard.

• Grid Service Invocation
The act, requested by a Customer through the use of an Invoking Endpoint, of
requesting a certain amount of Resources (paying, proportionally, a Fee) in order to
perform a Grid Service.

• Grid Owner
Entity that owns the Grid system and is therefore responsible for its maintenance,
providing all the medium to access to the Node and Invoking Endpoint software, as
well as managing the Cloud Services.

• Grid
The system as a whole (owned by the Grid Owners), based on the Grid computing
principles. It offers various Grid Services and, architecturally, it is composed by a
multitude of Cloud Services, a dynamically ever-changing number of Nodes (provided
by Contributors) and an also variable number of Invoking Endpoints (owned by
Customers) used to invoke its Grid Services. The parts composing the Grid are
organized following the Layered Grid Architecture (section 2.1).

• Grid Service
A service (computation, storage, etc...) offered by the Grid which is requested by a
Customer through an Invoking Endpoint, paying the corresponding Fee (which can
vary depending on the amount of Resources requested). In order to be performed,
the Cloud services coordinate the Contribution by the Nodes (which perform Tasks)
offered by Contributors (who gain Rewards for such Contributions). One particular
concretization of a Grid Service is the MapReduce service.
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• Task
Abstract unit of Contribution performed by a Node in order to obtain the result of a
Grid Service Invocation. Depending on the Grid Service, different Tasks exist.

• Cloud Service
A backend server, maintained by the Grid Owners, operating in the Cloud. Its duties
depend on its role, but the distinct traits of a Cloud Service include being owned
and maintained by the Grid Owners and the ability to coordinate the Contribution of
Nodes participating in the Grid and the access to Grid Services invoked by Invoking
Endpoints. In relation to the Layered Grid Architecture (section 2.1), Cloud Services
all together embody the Collective Layer (section 2.5) as shown in figure 4.2.

Figure 4.2: UL relationship with Layered Grid Architecture

• Node
A Node is an abstraction representing a software entity providing the mechanisms
used by a Contributing Endpoint (owned by a Contributor) to connect to the Grid
(through the Cloud Services) in order to perform a Contribution finalized to the
completion of Grid Services offering Resources and executing Tasks. Referring to
the Layered Grid Architecture (section 2.1), a Node can be logically mapped to
the concrete realization of the Resource and Connectivity layers (section 2.1.3 and
2.1.2), as well as the definition of the Fabric layer interfaces (section 2.2) which will
be concretely implemented in the Contributing Endpoint (figure 4.2).
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• Contributing Endpoint
An abstraction representing a client software running on a device (Computer, Smart-
phone or Tablet), owned by a Contributor, which is able to perform a Contribution
finalized to completing Grid Services; such Contribution is performed by the soft-
ware (running on the Contributing Endpoint) that is built interfacing with the Node
software abstraction. Not all Contributing Endpoints are able to perform every Grid
Service that can exist; such ability is determined by the Resources that the specific
Contributing Endpoint can offer. A Contributing Endpoint can be logically mapped
(figure 4.2) to the concrete implementation of the Fabric Layer (section 2.2) of the
Layered Grid Architecture (section 2.1).

• Resource
An abstraction representing what a Contributing Endpoint can offer (through the
Node software) in order to offer a Contribution to the completion of a Grid Service.
A resource can belong to one of the following types:

– Hardware (processor, memory, disk, etc...)

– Software (OS, supported programming languages, compatible Tasks, etc...)

– Network (connection type, download speed, upload speed, etc...)

• Invoking Endpoint
An abstraction representing a software entity providing the mechanisms used
by an Invoking Device (owned by a Customer) in order to perform a Grid Service
Invocation. This abstraction is used in a Customer Custom Application, integrating
the Grid Services into such application. Continuing the mapping (figure 4.2) to
the fundamental Layered Grid Architecture (section 2.1), an Invoking Endpoint
(together with the Customer Custom Application), embodies the Application Layer
(section 2.6).

• Customer Custom Application
Software application, developed by the Customer, that uses the Invoking Endpoint
software abstraction in order to integrate Grid Services into such custom application
ran on an Invoking Device.
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• Invoking Device
A device that runs the Customer Custom Application. Such device can be owned by
the Customer itself or by people using the Customer Custom Application that the
Customer is commercializing. In regard to the Grid, the focal point here is that it is
a device that is performing a Grid Service Invocation through the Customer Custom
Application that is utilizing the Invoking Endpoint software.

• Customer Custom Application User
End user of the Customer Custom Application. The Customer and the Customer
Custom Application User can coincide, but it highly depends on the specific Customer
Custom Application developed by the Customer.

• Contributor Dashboard
A software entity through which a Contributor can manage its Contributing Endpoints
and check its Rewards Balance (eventually performing a Rewards Redemption).

• Customer Dashboard
A software entity through which a Customer can manage its present and past Grid
Service Invocations, check the relative Fees as well as registering a payment method.

• MapReduce Service
A particular incarnation of a Grid Service that performs a MapReduce computation
over the Grid utilizing a Node asMapReduce Master and several nodes asMapWorkers
and Reduce Workers.

• MapReduce Master
Role taken by a Node in the execution of a MapReduce Service. Its roles follow the
ones described in appendix A.

• Map Worker
A Node, coordinated by the MapReduce Master, that executes Map Tasks and sends
the results to the correct Reduce Worker.

• Map Task
A concrete Task performed by a Map Worker. A Map function provided by the
Customer (obtained through the MapReduce Master coordination) is executed on
data of which the location is specified also by the Consumer.
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• Reduce Worker
A Node, coordinated by the MapReduce Master, that executes Reduce Tasks on data
received by Map Workers.

• Reduce Task
A concrete Task performed by a Reduce Worker. A Reduce function provided by the
Customer (obtained through the MapReduce Master coordination) is executed on
data received from Map Workers.

• Fee
A monetary amount that the Customer needs to pay in order to perform a Grid
Service Invocation. The amount is influenced by the type of service requested and
the quantity of resources employed to complete such service.

• Reward
A monetary compensation for the Contributor, calculated based on the Fee paid
by the Customer (minus the Grid Owner profit) proportionally to the Contribution
performed by a Contributing Device in a Grid Service Invocation. Every new Reward
contributes to the Reward Balance.

• Rewards Balance
The sum of the Rewards obtained by the Contributor for the Contribution of the Con-
tributing Endpoints owned by it. This balance can be lowered when the Contributor
performs a Rewards Redemption.

• Rewards Redemption
An action performable, by the Contributor (only if the Rewards Balance is currently
higher or equal to the Rewards Threshold), that lowers the value of the Rewards
Balance transfering that monetary value by using a payment method.

• Rewards Threshold
The value that needs to be reached in order to allow the Contributor the possibility
to perform a Rewards Redemption.

• Access Policies
Contribution Endpoint-specific Access policies defined by the Contributor, specifying
which Resources are offered to the Grid for Contribution.
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4.2.2 Use Cases

This section presents the Use Cases diagrams, graphically explaining what features
need to be available from the point of view of the two actors interacting with the

Grid: the Contributor and the Customer.
An explanation of single use cases here is omitted since the previous section already

explained the non-trivial ones indirectly; furthermore, in the next chapter, section 5.2 will
show how said use cases are realized using Grid entities collaborating among each other,
making redundant a detailed explanation here.

• Contributor

Figure 4.3: Use Cases diagram - Contributor
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• Customer

Figure 4.4: Use cases diagram - Customer

4.2.3 Requirements: MoSCoW Prioritization

Now that it is clear what the system needs to do from the perspective of the two major
actors utilizing it (Contributor and Customer), it is possible to create a list of requirements
that such system needs to satisfy; to do so, the MoSCoW method will be used.
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The MoSCoW method for requirements categorization presents four different
categories to put requirements into, ordered by priority. The categories, in descending
order, are the following:

• Must have

• Should have

• Could have

• Won’t have

Other than priority, this methodology focuses also on the concept of release, aiming to
use an evolutionary approach; this means that for a first production release it is not
necessary to satisfy all requirements but just the one with higher priority (Must
have), leaving the satisfaction of the remaining requirements to subsequent versions
(always trying to first satisfy remaining requirements with the highest priority).

Requirements in this list are also divided in three areas: Contributor, Customer and
Grid Owner; the last area in particular (which was not included in the use cases) is
introduced to assign tasks that are more technical in nature but are necessary to

the success of the project, both in the short term (first working release) and in the long
term (easily introduce new features) given the particular technical nature of this Domain.

4.2.3.1 Must have

All the requirements that are necessary for the successful completion of a first working
production release.

Contributor area

• Registration and identification

– The Contributor must be able to register to the Grid system in order to uniquely
identify Contributions performed by its Contributing Endpoints.

– Once authenticated to a Contributing Endpoint, the Contributor must not be
requested to authenticate again unless it is absolutely necessary.
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• Contribution

– It must be possible to Contribute to the Grid using a Contributing Endpoint
running on any device among Computers, Smartphones and Tablets running
the most popular respective Operative Systems.

– Configuration for the Contributor must be easy, guided and fast (5 minutes
maximum).

– Every device that the Contributor offers must be configured just once and
requires no additional efforts unless the Contributor chooses to change config-
urations like Access Policies.

• Rewards

– Every successful Contribution to the execution of a Grid Service must be
registered, increasing the Rewards Balance of the Contributor.

– The Contributor must be able to see its current Rewards Balance.

– The Contributor must be able to see past Contributions in which its Contributing
Endpoints contributed to the execution of a certain Grid Service.

– Once a certain Rewards Threshold is reached, the Customer must be able to
perform a Rewards Redemption.

• Security

– Execution environment-specific security measures must be implemented to
protect the Contributor.

• User experience

– The Contributing Endpoint running on mobile devices must be aware of battery
status in order not to drain battery in low-battery situations.

– The Contributing Endpoint running on mobile devices must be aware of the
type of connection used in order not to drain data from the Consumer mobile
plan (unless the Consumer allows this possibility).
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Customer area

• Registration and identification

– The Customer must be able to register to access Grid Services.

– The Customer must go through a verification process in order to be reliable
and accountable before being able to use Grid Services.

• Payments

– The Customer must be able to register its payment method once and use it
every time it performs a Grid Service Invocation.

– The Customer must pay individual Grid Service Invocations.

• Framework utilization

– The Customer must be able to integrate the Invoking Endpoint in its own
Customer Custom Application in order to utilize the Grid Services.

– The Customer must be able to perform Grid Service Invocations from any ade-
quate device (Computer, Tablet or Smartphone) using the integrated Invoking
Endpoint.

– The Customer must be able to easily increase/decrease the amount of Resources
tapped into, removing the underlying complexity.

• MapReduce service utilization

– The Customer must be able to implement its own Map and Reduce functions
in a MapReduce Service invocation.

– The MapReduce parameters, such as number of Map and Reduce workers, must
be configurable by the Customer.

– The Customer must be able to define the data source for the MapReduce
execution (whether from the Invoking Device or an external source).
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Grid owner area

• Scalability

– The Grid system must be able to easily scale horizontally in a fully automated
way.

– Cloud Services must be as loosely coupled as possible, resulting in a modular
composition of technologically independent services that operate exchanging
messages over defined channels.

– It must be possible to create on the go (depending on needs dictated by
the current traffic) multiple instances of the Cloud Services, employing a
mechanism to discover and contact such new instances.

• Efficiency

– Employed resources (i.e. dedicated machines) used to run the Cloud Ser-
vices must be adequate to the load that the system has to currently handle,
dynamically adjusting to cut expenses.

– The Grid must be geographically-aware and manage Nodes utilization taking
into account physical distance in order to reduce latency, improving perfor-
mances.

– When possible, Grid Services must be implemented in a way that reduces traffic
to the Grid’s systems, moving such traffic to the Nodes.

– Every execution of a Grid Service must use Nodes that have sufficient Resources
to complete the Tasks adequately.

• Compatibility

– Invoking Endpoint software and Node software must be implemented using a
technology that can be easily integrated in all major Operative Systems that
run on the target devices.

• MapReduce

– The MapReduce execution must grant an adequate level of reliability and fault
tolerance.
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– The Map Tasks and Reduce Tasks on Node side must be designed in a way that
allows to integrate support for new programming languages for the execution
of Customer-defined Map and Reduce functions.

• Expandability and maintainability

– The solution must be designed in a way that allows to easily expand the
capabilities of the Grid, allowing the creation of newer Grid Services that can
be executed using the Nodes.

– It must be possible to parallelize implementation of features and maintenance,
structuring the solution using a microservices approach allowing multiple
teams to work on multiple sub-portions of the project.

• Security

– Communications between the components of the Grid must be cyphered and
use other security measures.

– There must be an Access Policies system.

– Operations inside the Grid must be logged in order to have a fully comprehen-
sive view of every movement that happens inside the system.

4.2.3.2 Should have

Requirements that are important but not necessary for a production release and can be
postponed to subsequent releases.

Contributor area

• It should be possible to see the status of every Contributing Endpoint owned by the
Contributor.

• It should be possible, from a Contributing Endpoint, to see the local current status.

• The Contributor must be able to customize Access Policies to its Contributing End-
points.

• It should be possible to manually enable/disable Contribution of a Contributing
Endpoint.
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• It should be possible to schedule a trigger (time and/or events) to start/stop the
Contribution.

• The Contributing Endpoint should limit usage of resources if the user is actively
using the device in order not to have a negative impact on user experience (avoiding
incentives for the user to uninstall the application).

Customer area

• There should be a tool for testing the Map and Reduce functions.

• It should be possible to specify theminimumResources of the Contributing Endpoints
involved in the execution of a Grid Service.

Grid owner area

• There should be device-specific optimizations.

4.2.3.3 Could have

Requirements that are nice to have but have a much smaller impact when left out of the
release.

Customer area

• There could be a standardized MapReduce web tool that enables less specialized
organizations (from a technological point of view) to perform operations constructed
by a facilitated GUI.

4.2.3.4 Won’t have

Requirements that have not been recognized as a priority for the release timeframe.

Contributor area

• Development of a browser-based Contribution limited to certain types of Grid
Services.

Grid owner area

• Development of additional Grid Services other than MapReduce.
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Design

Here the design of a software architecture concretizing the model described in the previous
chapter will be discussed. First, the architecture itself will be discussed; following that,
the use cases described in section 4.2.2 will be explained in terms of how the entities
composing the architecture communicate among each other in order to satisfy such
use cases. Concluding this chapter, a formalization of the desired MapReduce Service’s
behavior is presented.

5.1 Architecture

This section describes the software architecture proposed by this project in order to
realize the Transparent scheduling model over heterogeneous devices and, consequently,
satisfy the requirements and use cases previously described.
Figure 5.1 provides a complete view of the Architecture; being a complex project

based on the interaction among multiple distributed entities, the schema will be divided
into three areas (easier to understand) that will be discussed in the following sections:

• Cloud Services area (section 5.1.1)

• Contributor area (section 5.1.2)

• Customer area (section 5.1.3)
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Figure 5.1: Complete view of the Architecture

5.1.1 Cloud Services Area

The Cloud Services follow a hexagonal architecture composed by a multitude of mi-
croservices (Figure 5.2). Each Microservice is accessed through communication inter-
faces (whether Rest APIs and/or Web Sockets, depending on the particular microservice
needs) and belongs to one of the following two layers:

• Business logic
Microservices that expose core business logic for Grid functionalities realization
and data managing. Entities that reside here are protected, meaning that they are
isolated from the outside and their functionalities can only be accessed through
the entities placed in the Adapters layer.

• Adapters
Microservices that expose functionalities accessed by the entities residing in
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the Contributor and Customer area; such functionalities are realized combining
the services offered by entities residing in the Business logic layer.

Figure 5.2: Architecture: Cloud Services

5.1.1.1 Business Logic

• Grid Master Service
Themain coordinator in the Grid system. It dynamically creates/removes Broker
Service instances in order to sustain and balance the traffic generated by Nodes
and Invoking Endpoints connected to the current instances of Broker Service; such
instances need to be contacted by Nodes but, being dynamically instantiated, they
do not possess a static address. As a consequence of that, the Grid Master Service
(that knows such addresses, being the creator of the instances) is connected to the
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Broker Discovery System (which will provide a Broker Service instance address to
a connecting Node).

Figure 5.3 shows a high level view of the connection between Grid Master,
Brokers and Nodes while also providing an example of load balancing. When the
new Node [N11] wants to connect to the Grid in order to Contribute, given that no
Broker instance is able to handle the Node connection, the Grid Master instantiates
[B2] to which [N11] will connect and part of the load handled by [B1] (just [N9]
in this example) will be redirected to.

Figure 5.3: Grid Master Service load balancing

Lastly, the Grid Master Service is also connected to the Grid Services Gateway
Service; through this last Cloud Service, the Invoking Endpoints request the execu-
tion of Grid Services. Thus, the Grid Master (collaborating with the Broker Service
instances) will provide the Resources needed to execute the requested Grid
Service.

To conclude, the importance of this Cloud Service’s is vital to the functioning and
scalability of the Grid, requiring to expose communication interfaces for the
discovery of Brokers, Resources obtainment and Grid coordination.
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• Customer Data Service
REST server that provides APIs used to read and write data used to uniquely
identify a Customer inside the system. It does not contain data about payments
or logs about Grid events that involve the Customer since those are handled by the
Accounting Service and the Log Service respectively.
Customers are, numerically speaking, considerably less compared to Contributors;
this results in less frequent invocations of this Cloud Service’s APIs and a far
smaller volume of data to persist. Regarding the CAP theorem, it is then important
to focus on a database technology that can grant Consistency and Partition
Tolerance sacrificing Availability (e.g. MongoDB, BigTable, etc...).

• Contributor Data Service
REST server that exposes APIs used to read and write data used to uniquely
identify a Contributor and its devices inside the system. The same rules used
in the Customer Data Service, regarding the handling of logs and payments data,
also hold here; when it comes to the CAP theorem application, on the contrary, this
Cloud Service requires AP database technologies (e.g. DynamoDB, Cassandra,
etc...).

• Accounting Service
REST server exposing APIs to perform and record the history of monetary trans-
actions, involving both Customers and Contributors (i.e. Fees payments and
Rewards Redemptions) inside the Grid; Consistency and Partition Tolerance here
are key requirements.

• Log Service
REST server providing APIs used to read and write unmodifiable logs about
Contributions and Grid Services Invocations; this Cloud Service is particularly
important to both monitor what is happening inside the Grid and also correctly iden-
tify which Node has performed a Contribution and how much of said Contribution
it has done. Access speed is the most relevant factor here, making it acceptable
to have eventual consistency but not delays; then, AP database technologies
are required here. In particular, said AP database technology should use an RDF
model (also known as Triplestore) which is particularly suited for log data.
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5.1.1.2 Adapters

• Broker Service
Cloud Service that acts as middleware between the Grid Master and the Nodes
(figure 5.3). There are as many instances as needed to sustain the load of the
connections to the Nodes; instances are created and removed by the Grid Master
taking into account the geographical location of said Nodes in order to reduce
latency for the Broker-Node connection. The Broker executes the coordination
commands given by the Grid Master while also managing the Nodes connected
through its communication channels exposed by its Web Socket.

Let us take, for example, a Grid Service Invocation: the Grid Master contacts a
Broker Service instance that is geographically convenient in relationship to the
location of the Invoking Endpoint; the Grid Master will delegate to the selected
Broker Service instance the responsibility of gathering adequate Resources for the
execution of the particular Grid Service requested. The Broker will then spread the
request of said Resources to its connected Nodes and gather the responses of the
ones that are adequate and available. The Broker will group the info needed to
contact such nodes and forward it to the Grid Master that will then be responsible
to forward in turn to the requestor.

• Broker Discovery Service
This REST server has just one simple responsibility: it provides to a Node the
address of a Broker Service in order to make possible a connection between

them. This discovery mechanism is necessary since, as already stated, the Broker
Service instances are dynamically created, and thus they do not possess a static
address; on the contrary the Broker Discovery Service will necessarily need a
static address known by the Nodes. The traffic directed to this Cloud Service and
its computational load tend to be minimal and require only one instance but, as
time goes on and the contributing user base increases, new static instances can be
added easily.

• Grid Services Gateway Service
In order for Invoking Endpoints to access Resources, they need to interact with
this REST server; it exposes APIs for a standardized and parameterized access
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to Resources through the Grid Service abstraction, meaning that a Customer
expresses its request in terms of what Grid Service it wants to execute, not in terms
of single Resources.

This Cloud Service is connected via Web Socket to the Grid Master Service
in order to gather the necessary Resources but, before that, the Grid Services
Gateway Service needs to contact the Accounting Service in order to execute the
Fee payment. Lastly, the Cloud Service is also connected to the Log Service in
order to register the Grid Service invocation and the consequent usage of Resources
happened during the computation.

Similarly to the Broker Discovery Service, the number of static instances can easily
vary in the project’s lifecycle.

• Authentication Service
Before being able to communicate with any other Cloud Service belonging to the
Adapters layer, any entity needs to authenticate to the Grid through this Cloud
Service. Given that the two actors that require authentication are the Customer
and the Contributor, the Authentication Service utilizes both the Customer Data
Service and the Contributor Data Service in its functioning. As a consequence
of the authentication, the entity that wants to interact with the Grid will receive a
token that uniquely identifies it inside the Grid system.

• Billing Service
Cloud Service exposing APIs used to make monetary transactions for Rewards
Redemptions and access monetary balances. It acts as an intermediary, protecting
the actual payment process effectuated by the Accounting Service.

• Historian Service
The Historian Service exposes APIs that allow the read-only access to event already
happened in the Grid System as well as the registration of new events such as
monetary transactions, Contribution, Grid Services Invocations, etc...

67



CHAPTER 5. DESIGN

5.1.2 Contributor area

The Contributor area, as shown in figure 5.4, comprehends three entities:

• Node

• Contributing Endpoint

• Contributor Dashboard

The relevant Cloud Services are shown in order to explain the interactions that Node
and the Contributor Dashboard have with them; in particular, the Grid Master Service is
shown to emphasize the Grid Master - Broker - Node connection seen in figure 5.3.

Moreover, the Invoking Endpoint (which belongs to the Customer area) and the
additional Node instance are included to show the connections that a Node can have with
other entities that do not belong to the Cloud Services.

Figure 5.4: Architecture: Contributor area
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5.1.2.1 Node

This is the primary entity when it comes to contribution. Continuing the definition pro-
vided in the Ubiquitous Language (section 4.2.1), this software abstraction is identifiable
as a set of core Contribution functionalities and logic which needs to be integrated
(through the offered SDK) to an actual software application (Contributing Endpoint)
capable of interacting with the specific resources of the device that is running on;
thus, a Node exists in order to get a fast integration with as many devices as possible
to maximize the compatibility for Contribution, removing the need to reimplement
everything for every new Contributing Endpoint.

The model of this solution aims to grant the access to Grid Services also to low-spec
devices; thus, it is important to delegate as much work as possible to the Nodes. In
order to complete a Grid Service, the Node can Contribute in one of the following ways
(depending on the particular Service):

• Direct communication with the Invoking Endpoint
A Node is connected, through a P2P connection, directly to the Invoking Endpoint.
Let us take, for example, a hypothetical Grid Service that consists of delegating
a computation to a single Node (i.e. non-distributed computation); the Node
(Slave) and the Invoking Endpoint (Master) will exchange messages in order for
the Invoking Endpoint to provide to the Node the necessary data and coordinating
the Node that will actually perform the resource-demanding computation. In this
communication mode a Node acts only passively. Another example, relevant for this
thesis work, is the connection between an Invoking Endpoint and a Node acting as
MapReduce Master (figure 5.16).

• Communication with another Node
A Node is connected, through a P2P connection, to another Node; there are indeed
circumstances that, for the completion of a particular Grid Service, require direct
communication among Nodes. While in the other communication type the Node
had only a passive role, here one of the two nodes needs to act as Master while
the other(s) as Slave(s). Continuing the MapReduce example, a Node acting as
MapReduce Master is connected to multiple nodes acting either as Map Workers or
Reduce Workers (figure 5.16).
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Once again, a Grid Service is performed by Nodes that Contribute, communicating
with each other, performing Tasks in order to reach the end goal; the Task concept is vital
here since, while every Node will have the same communication interfaces, different
Contributing Endpoints will implement Tasks based on the device’s capabilities.
That means that, when concretized through the Contributing Endpoint, not all Nodes
will be able to execute every possible Task, but only the ones that are compatible
with the Resources possessed (e.g.: an iPhone running iOS will not be able to perform a
MapReduce computation that uses Map and/or Reduce functions written in Java).
With the goal of reducing complexity, compatibility wise (sections 1.3.2.4 and

3.1.4), the number of different Node incarnations (that differ for the technologies used
to develop it) should be very low; ideally, just one implementation, integrable with a
great number of Contributing Endpoints, should exist to maximize the integration speed
benefits.

5.1.2.2 Contributing Endpoint

A Contributing Endpoint is a concrete application that will be used by the Contributor.
Through the Node’s SDK, it implements device-specific access to Resources and,
consequently, the Tasks that this particular Contributing Endpoint implementation

will be able to support.
In particular, it is important that a concrete implementation incorporates the security

measures available for that particular execution environment (collaborating with
the general security mechanisms of the Grid). There can be different Contributing
Endpoint implementations, with every new one expanding the number of devices able
to Contribute.

5.1.2.3 Contributor Dashboard

ADashboard, used by the Contributor, to perform operations linked to its Contribution
(Rewards Redemption, checking past Contributions, etc...); it should serve as a unified
way to access to information regarding all its different Contributing Endpoints.

This is certainly an easier and more traditional client application, requiring only to
contact Cloud Services to represent through a GUI the information obtained, as well as
performing some operations specified in the Contributor’s use case diagram (figure 4.3).
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5.1.3 Customer area

Figure 5.5 shows the three entities belonging to this area:

• Invoking Endpoint

• Customer Custom Application

• Customer Dashboard

As for the Contributor area, the relevant Cloud Services and the Node instance are shown
to emphasize how these entities collaborate with each other.

It is also important to highlight the fact that both the Customer Custom Application
User and the Customer itself are present in the figure since the actor using the Customer
Custom Application do not necessarily coincide with the Customer; who the Customer
Custom Application User actually is highly depends on the application itself.

Figure 5.5: Architecture: Customer area
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5.1.3.1 Invoking Endpoint

The Invoking Endpoint is the main software entity used by the Customer to perform
Grid Services Invocations. It is a library, developed by the Grid Owner, that can be
integrated as a dependency and utilized into any software solution through the

use of the exposed SDK; in particular, an application utilizing an Invoking Endpoint is
identified as Customer Custom Application.
Many Invoking Endpoint implementations can exist, depending on the target

execution environment and which Grid Services that specific Invoking Endpoint wants to
grant access to (a Customer may want to use only a certain type of Grid Service); the
requirement for any Invoking Endpoint is, in order to connect to a Node in a Grid
Service Invocation, to conform to the communication interfaces belonging to the Grid
Services which is interested to use.

An Invoking Endpoint (after being authenticated through the Authentication Service)
contacts the Grid Services Gateway Service in order to request a Service Invocation and,
as a consequence of that, creates a connection to the provided Node(s). In order to grant
the possibility of Grid Services invocation from low-spec devices, the Invoking Endpoint
needs just to perform a lightweight coordination of the Resources obtained while

the computationally demanding work is executed by the Nodes connected; if the
coordination is too complex and demanding to realistically be executed from any device,
the Invoking Endpoint just connects to a Node which actually performs the coordination:
an example of such occurrence is the MapReduce Service where the MapReduce Master
is the one performing the coordination of Map Workers and Reduce Workers while the
Invoking Endpoint is only connected to the MapReduce Master.

5.1.3.2 Customer Custom Application

An application utilizing the Invoking Endpoint. It is developed by the Customer
and utilizes Grid Services (offered by the Invoking Endpoint) in order to build complex
behaviors that are dependent on the application’s domain.

Grid Services Invocation happens through the invocation of the functions exposed
by the Invoking Endpoint’s SDK, masking the underlying complexity requiring for the
Customer to specify some parameters (like, eventually, the quantity of Resources that it
wants to use).
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5.1.3.3 Customer Dashboard

Similarly to the Contributor’s one, this Dashboard is a centralized means of accessing
everything connected to the Contributor’s account (past Grid Service Invocations,
payment methods, etc...) as well as performing actions specified by the Customer’s
Use cases (figure 4.4).

5.2 Use cases satisfaction: entities interactions

This section will show how the entities introduced in the Architecture just presented
actually cooperate with each other in order to satisfy the use cases previously discussed
in section 4.2.2.

5.2.1 Contributor

• Register

Figure 5.6: Contributor registration

A Contributor registers to the Grid system creating an account using the Contributor
Dashboard; once it has inputted the necessary data, the Dashboard will contact the
Authentication with the dedicated API that, in turn, will contact the Contributors
Data Service, actually completing the registration process.

• Login
When a Contributor performs a Login, both in the Dashboard case and in the Con-
tributing Endpoint, it gets a token that will be used for every subsequent operation
for both authenticating the communication with other entities and, at the same
time, providing some useful data that will be used by said entities.
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Since the token is a prerequisite for every further interaction it will be omitted for
the sake of simplicity in the subsequent single use case satisfaction discussions.

– Login to a Dashboard

Figure 5.7: Contributor Dashboard login

The login process performed by a Dashboard is very similar to the registration
one, diverging only in the invocation of a different specific API.

– Login from any Contributing Endpoint able to Contribute

Figure 5.8: Node login

Here, the Contributor Application is the one actually triggering the Login in
its integrated Node; then, the Node’s login differs from the Dashboard’s one
calling another dedicated API that also requires to provide some additional
info that will uniquely identify the device.

The Customer only needs to make the active effort of registering its account;
every Contributing Endpoint will be automatically added to its account if the
credentials are correct and no matching device for its account is found. One
important thing to notice is that the token does not exit the Node’s scope.
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• Passively Contribute offering a compatible device
When it comes to Contribution, the first step that actually needs to be performed is
for a Node to connect to the Grid.

Figure 5.9: Connection to the Grid

First, independently of the Node, the Grid Master Service creates an instance of a
Broker Service (there is always at least one instance of such Cloud Service) and,
upon creating a connection with it, saves its address; said address is also sent to the
Broker Discovery Service that, consequently, will always locally know the addresses
of the Broker Service’s instances.

The actual connection to the Grid is triggered automatically by the Contributing
Endpoint once the prerequisites are met (an available Internet connection is present,
the device’s battery is above a certain threshold, etc...). The Node will proceed
to contact the Broker Discovery Service that (without needing to contact the Grid
Master Service for every new Node request) then provides the address of the more
geographically convenient Broker Service instance; with the information obtained,
the Node completes the connection process contacting [B1].

Now that the Node is connected to the Grid, the actual Contribution can happen. In
order to have a clear understanding of the full picture, a Grid Service Invocation
needs to be explained alongside the Node’s Contribution.
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Figure 5.10: Node Contribution

The process starts with the Invoking Endpoint requesting a Grid Service to the Grid
Services Gateway Service that, will first retrieve the Customer’s payment method
data (omitted in figure 5.10 for simplicity) and then contact the Accounting Service
to pay the Fee required for the Grid Service Invocation; then, the Grid Services
Gateway Service will contact the Grid Master Service in order to obtain the address
of a Broker Service instance.

The Invoking Endpoint, now having B1’s address, contacts it and establishes a
connection that, once performed, allows the Invoking Endpoint to request Resources.
B1 broadcasts the request to all its Nodes, specifying the requirements needed for the
Grid Service requested. The Nodes that are currently available, possess compatible
Access Policies and do satisfy the requirements, take charge of the request and
contact Invoking Endpoint and, if the Endpoint accepts it, a connection is created.
Finally, the Invoking Endpoint is able to send Tasks that the Node will perform.

The process describes an Invoking Endpoint to Node connection; when the connec-
tion needs to be established between Nodes, the process is very similar. First the
Invoking Endpoint to Node connection is created; then, another Resource request
will ask for a Contribution to the Nodes but the exchanged messages (containing
the Master Node address) will specify that a Node to Node connection is required.
Depending on the particular Grid Service then, the Master Node itself will provide
the Tasks to its Slave Nodes.
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– Accumulate Rewards

Figure 5.11: Contributor’s Rewards accumulation

Upon a Node’s Contribution, the Invoking Endpoint groups Contribution info
and sends them to the Historian Service that will then proceed to store them
through the Log Service.

– Manually start/stop Contribution from the Contributing Endpoint

A Contributor can manually stop its Contributing Endpoint from performing
further Contributions; this results in that particular Contributing Endpoint
interrupting the connection (established in figure 5.9) with a Broker Service
instance. This action is performed by the Contributor’s input in the running
Contributing Endpoint that will simply invoke a Node’s function instructing it
to stop the connection and, consequently, never connecting again to the Grid
until the Contributor allows it again.

– Configure Access Policies to the Contributing Endpoint’s Resources

When a Node receives a broadcasted Contribution request by the Broker In-
stance which is connected to, in order to decide whether to take charge of the
request or not, a series of conditions are evaluated; one of such conditions is
the compatibility with the local Access Policies configured for that particular
Contributing Endpoint. A Contributor, interacting with the Contributing End-
point, can manually change the Access Policies that, from that moment, will
be checked by the Node in its decision process.

– Check if Contributing Endpoints are currently Contributing

The Node exposes functions that tell the current status regarding the Grid
connection and if a Contribution to a Task is currently being performed; such
information is displayed in the Contributing Endpoint’s GUI.
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• Manage Contribution data through a Dashboard

– Check past Contributions

Figure 5.12: Contributor’s past Contributions check

The Contributor Dashboard contacts the Historian Service, asking for the
past contributions linked to the Contributor’s Contributing Endpoints; the
Historian Service contacts the Log service where the data is stored (see figure
5.11). Finally, the information is retrieved and then shown in the Contributor
Dashboard.

– Check Rewards Balance

Figure 5.13: Contributor’s Rewards Balance check

The Contributor Data retrieves, through a communication with the Billing
Service, its current Rewards Balance. In order to calculate the current balance,
the Billing service contacts both the Log Service (to obtain the Contribution
data) and the Accounting Service (to obtain past Rewards Redemptions).
The Rewards Balance is calculated by the Billing Service by summing the
monetary value of the Contributions and subtracting from it the total Rewards
Redemption.
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– Rewards Redemption

Figure 5.14: Contributor’s Rewards Redemption

The Contributor Dashboard asks the Billing Service the execution of a Rewards
Redemption. First the Contributors Data Service is contacted in order to
retrieve the Contributor’s payment method; then, the Log Service is contacted
in order to retrieve the past Contributions data. Finally, the Accounting Service
is interpellated, asking for the actual operation. The Accounting Service (that
can access the past Rewards Redemptions on its own), performs the calculus
of the Current Balance and, if the Balance is equal or higher than Rewards
Threshold and, at the same time, compatible with the requested sum to redeem,
the operation is finalized contacting a Third-party Banking System.

5.2.2 Customer

Various Customer’s use cases are satisfied using processes that are very similar to the ones
described in the Contributor’s section; as a consequence, less dedicated diagrams will be
used unless the process differs considerably from anything presented before.

• Register
The overall process is very similar to the one shown in figure 5.6, requiring only
to interchange the Contributor Dashboard with the Customer Dashboard and the
Contributor Data Service with the Customer Data Service, respectively; while also
the dedicated APIs invoked are necessarily different, the registration process follows
the same exact logical flow.
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• Login

– Login to a Dashboard

Starting from figure 5.7, the use case is satisfied applying the exact same
entities interchanges described in the previous use case.

– Authenticate for Grid Services Invocations

Figure 5.15: Invoking Endpoint login

Very similar process to the one described in figure 5.8; given the interchanged
entities and the different APIs involved, the key difference here resides in the
fact that the Customer Custom Application will implement a custom behavior
that will trigger the Invoking Endpoint’s login.

• Easily integrate the Invoking Endpoint in a Customer Custom Application

– Invoke Grid Services through any Device

As previously explained, in certain Grid Services, the Invoking Endpoint de-
mands the coordination of the obtained Resources to another Node (e.g.:
MapReduce Service); this design choice allows to extend Grid Services in-
vocation to also low-spec devices. As far as the technological requirements
are concerned, this use case requires the existence of at least one compatible
Invoking Endpoint implementation for every major platform. The Grid Services
Invocation process was previously described in figure 5.10.

– Request MapReduce service

An Invoking Endpoint implementation will need to expose methods (through
the SDK) that enable the Customer Custom Application to perform a Grid
Services Invocation.
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While the specific design of the MapReduce Service will be explored in section
5.3, figure 5.16 shows a high level view of interactions in the execution of said
Grid Service (continuing the example seen in figure 5.3).

Figure 5.16: High level view - MapReduce Service and load balancing

The Invoking Endpoint connects with a Node acting as the MapReduce Master
which, in turn, will act as coordinator for the execution of the MapReduce
Service. Being the Contributing Nodes directly connected among each other,
the Grid’s load balancing (on the right) does not affect the execution.

∗ Define MapReduce data source
This use case requires that the SDK exposed by the Invoking Endpoint
allows to define the source of the data that needs to be analyzed, meaning
that the data can come from the Invoking Endpoint directly or from an
external source. This is done in order to actually be able to invoke the
MapReduce Service from anywhere, since not all devices are able to contain
large quantities of data.

∗ Define Resource quantity to use
A Customer needs to specify, through the SDK, the quantity of Resources
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that it wants to reserve for the MapReduce Service execution; while having
more resources certainly makes the execution faster, the Fee necessarily
increases.

∗ Define Map and Reduce functions
Lastly, the Customer necessarily needs to define the Map and Reduce func-
tions that will be utilized during the MapReduce Service execution; those
are defined and provided through the usage of the Invoking Endpoint’s
SDK.

• Manage requested Grid Services data through a Dashboard

– Check Grid Services Invocations history

Very similar to figure 5.12, using the Customer Dashboard and dedicated APIs
instead.

– Check running Grid Services Invocations

Figure 5.17: Running Grid Services Invocations check

The Customer Dashboard contacts the Grid Services Gateway Service in order
to obtain info about the running Grid Services Invocations; then, the Grid
Master is contacted which, in turn, will contact every Broker Service instance.
Finally, every single Broker will broadcast the message to its connected Invoking
Endpoints, asking for only the ones related to the Customer to respond. The
responding Invoking Endpoints (if any), will return the data containing info
about the current execution. The data will be progressively grouped and, in
the end, returned as a final list to the Dashboard.
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– Check past Grid Services Invocations Fees

Assimilable to the process seen in figure 5.12, with the Contributor Dashboard
acting as the invoking entity.

– Manage payment method

Figure 5.18: Contributor payment method retrieval

The management (retrieval, insertion, delete and update) of the Contributor’s
payment method is performed through the Contributor Dashboard collaborat-
ing with the Billing Service that, in turn, contacts the Customer Data Service,
where the payment data is actually stored.

5.3 MapReduce Service

This section will explore the logical design of the MapReduce operation performed as
a Grid Service (see appendix A for details on MapReduce). The process is modeled using
three Petri Nets, each one providing the point of view of one among the possible
entities types involved: Map Worker, Reduce Worker and MapReduce Master.

Every Petri Net that will be presented assumes that the Resources’ retrieval process
(seen in figure 5.10) has already been performed, allowing to focus on the actual
MapReduce process itself. Furthermore, in every Petri Net snapshot provided, transitions
that can be transitioned (in that particular configuration of the places) are highlighted in
red to facilitate its understanding.
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5.3.1 Map Worker

The process starts with the Map Worker establishing a connection with the MapReduce
Master (figure 5.19).

Figure 5.19: Map Worker - Start

Ignoring, for the moment, the Disconnection’ transition, the Map Worker receives
the Map function from the MapReduce Master, obtaining a token for the Execution
place and one for the Master Connected” place. The distinction between the concepts
of connection and execution is useful here since it is not necessary to be connected
to the Grid Master in order to execute the map function; through this distinction,
Resources can be used efficiently even if a temporary disconnection occurs.
Figure 5.20 shows how, once the map function is received, the MapReduce Master

starts to send the location where the data splits can be retrieved; the Map Worker re-
trieves the specified data and applies the map function to it producing the intermediate
results (IR) as output.
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Figure 5.20: Map Worker - Mapping

As can be seen from the operations executed, the Map Worker follows the instruc-
tions received by the MapReduce Master. While mapping, a data split can be assigned
to multiple Map Workers, in order to increase fault tolerance; as a direct consequence, it
is possible that a received split location is mapped by another Map Worker. Once the
IR is already obtained on a particular split, the Map Worker sends a split revoked(1)

instruction to every Map Worker assigned to that split. The two different split revoked
transitions possess a conceptual difference:

• Split revoked(1)

Here, the MapWorker that receives this instruction cannot possibly have applied
the map function to the split, since the split revoked instruction is received only
after the IR (produced by the mapping of that particular split) is reduced by a
Reduce Worker. Practically speaking, the Map Worker drops the split, removing
it from memory or avoiding downloading it entirely.

• Split revoked(2)

In this situation, the Map Worker already performed the map operation on the
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considered split. Whether the IR that will be used for the reduce operation is
actually the one locally produced or not is irrelevant; the direct consequence of
receiving a split revoked instruction here is to remove from memory the IR. This
is because the MapReduce Master can ask multiple times to the Map Worker to
send the IR to a Reduce Worker (figure 5.21), requiring to maintain in memory
(or on disk) the IR until the split revoked instruction is received.

Figure 5.21: Map Worker - Intermediate Result sent

At any given time, the Map Worker can lose the connection with the MapReduce
Master (Disconnection’ and Disconnection” transitions); before receiving the Map func-
tion, the process is necessarily locked until the connection is established once again

or a timeout is reached, leading to a local failure. On the contrary, if the token on the
execution place is present, the Map Worker is still able to apply the map function

on a split that is locally available even though it is in a disconnected state; on the
other hand, a timeout leading to a failure would also remove the execution token,
effectively stopping the entire process.
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When the MapReduce operation is completed, the Master will send a completion in-
struction that will result in the removal of the connection and execution tokens, correctly
concluding the execution (figure 5.22).

Figure 5.22: Map Worker - Completion

5.3.2 Reduce Worker

As the Map Worker’s process, a connection to the MapReduce Master is established
and a reduce function is received, gaining a connection token and an execution

token (used for the same Resources’ utilization optimization principle); as before, a
disconnection can occur and, if a timeout is reached, the process ends with a failure.
The MapReduce Master sends the data about which IRs constitute a region

(figure 5.23 shows an example of a region composed by 10 IRs); the Reduce Worker
also receives, progressively, the IRs from the Map Workers that have completed the
execution of a map function and are instructed to send said data to that particular
Reduce Worker. Once all the IRs belonging to a region are received, the Reduce Worker
performs the reduce function on said data, producing a result that is momentarily
stored locally.
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Figure 5.23: Reduce Worker - Local result

A result correctly sent to the Master is deleted locally. A Reduce Worker handles
multiple regions until the MapReduce process is completed; once the Master sends to
the Worker a completion instruction the execution ends correctly (figure 5.24).

Figure 5.24: Reduce Worker - Completion
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5.3.3 MapReduce Master

The Petri Net describing the process performed by the MapReduce Master focuses only
on a single region, meaning that this operation needs to be performed (concurrently)
for each data region.

Figure 5.25: MapReduce Master - Recruitment

For this particular example, the region is constituted by 4 splits and the Customer
required a quantity of Resources that resulted in the Contribution of 5 Map Workers; a
region is handled by a single Reduce Worker, so there is only one token representing it.

Initially, the Map and Reduce Workers are required but not connected (Requested
MWs and Requested RW places); they can transition to a connected state but, if something
goes wrong, they can also disconnect. Figure 5.25 shows a situation where 3MapWorkers
and the Reduce Worker have joined. Workers can continue to join and leave until the
MapReduce computation for the region is completed, removing the execution token.
Having at least one MW available, the mapping process can begin (figure 5.26).

A split belonging to the region is assigned to an available MW which will perform
the Map operation on it (it is assumed that the Worker possesses the map function,
abstracted for simplicity). If the mapping happens successfully, the region’s IRs are
accumulated; in case that a Map Worker is lost during the map execution, the split
needs to be computed by another Worker and is placed back in the Regions splits
place (and the another token in the requested MWs is also placed). It can also happen
that a region’s IR is lost due to the disconnection of the Map Worker that is still
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keeping the result in memory; this occurrence also adds again said split in the Region
splits that still needs to be mapped (since its IR is unreachable).

Figure 5.26: MapReduce Master - Mapping process

Once all the region’s split are mapped to intermediate results (figure 5.27), the
reduce process can start (assuming that a RW is connected).

Figure 5.27: MapReduce Master - Region Mapping completed

While the reduce function is being applied, the region token is removed due to the fact
that no more splits for this region need to be mapped (figure 5.28). A failure can also
happen here, since the Reduce Worker can disconnect during the reduce function

execution; in this case, the region token is restored and a new Reduce Worker is

required.
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Figure 5.28: MapReduce Master - Reducing process

If the reduce function is completed successfully (as shown in figure 5.29), the
region’s result is obtained. As stated before, the overall MapReduce execution will end
once every region is computed, providing to the Customer all the regional results.

Figure 5.29: MapReduce Master - Region completed
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Interconnected: a working prototype

This chapter discusses the creation of a working prototype that realizes a subset of core
functionalities of the system. Firstly, the goals and context for the prototype are discussed.
Then, the simplified architecture for the prototype is presented, providing also details on
the realization of the single entities that compose such architecture. The third section
will then contain a brief explanation of the setup related to DevOps methodologies.
After that, the Coordination section will talk about the messages exchanged between
the entities in order to realize the desired functionalities. Concluding this chapter, the
simplified Proto-MapReduce implementation realized will be discussed and, after that,
data regarding real-world experiments will be presented.

6.1 Goals and context

After having engineered a complete system that satisfies the use cases defined in section
4.2.2, it is now time to create a prototype that brings a portion of it to reality. The
prototype takes the name of the "Interconnected project".

Before explaining the work behind this prototype, a few premises have to be clarified
in order to understand some choices taken during the development.

Firstly, the focus of this work is to discuss the topic of integrating mobile devices in
a Grid system and, most importantly, engineering a solution that defines a blueprint
for actually bringing the idea to reality. Due to a lack of resources (economical, time,
equipment, team members, etc...), the prototype does not try to realize the whole
system defined in the previous chapter, but only a subset of core functionalities with
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the goal to demonstrate that the core idea is also technologically feasible.

As a direct consequence of that, the prototype will not realize aspects that, while
certainly important in a real product, do possess already well-established technolo-
gies (authentication, data storage, server instances replication, payment systems, etc...),
focusing only on the innovative aspects of the project.

6.2 Simplified architecture

Figure 6.1 shows a complete view of the entities composing the simplified architecture
for the Interconnected project (that can be compared to the full architecture shown in
figure 5.1).

Figure 6.1: Complete view of the simplified prototype’s architecture
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All the entities composing the architecture are implemented using technologies
based on Node.js which offers useful, popular and well-maintained frameworks as
well as an easy-to-use concurrency model based on an event loop.

6.2.1 Broker Service

The only Cloud Service present in this simplified architecture is the Broker Service; since
only one instance (with a static address) of such Cloud Service is required to sustain the
workload of the few devices connected, a dynamic handling and discovery of multiple
instances is thus not required. As a direct consequence of that, the complementary
entities that handled the dynamic system for scalability (Grid Master Service, Broker
Discovery Service and Grid Services Gateway Service) are not needed and thus Nodes
and Invoking Endpoints communicate directly with the Broker Service without first

undergoing the discovery processes described in section 5.2.
The prototype’s Broker Service is implemented by using the Typescript language

and utilizes Socket.io in order to create a web server that is reachable via WebSocket
protocol; through the use of this technology, Invoking Endpoints are able to deposit
requests for the recruitment of Nodes that will be used to perform computations.
The messages involved in the recruiting process and the general Grid connection will be
discussed in section 6.4.

In order to have a running instance of the Broker Service that also has a static address
reachable from anywhere, a Docker image is created which, in turn, is executed in a
container through the use of Amazon ECS (Elastic Container Service). More details
about the deployment of this entity will be discussed later in section 6.3.

6.2.2 Interconnected Node

The Node entity, which in the Interconnected project takes the name of "Interconnected
Node", contains all the logic regarding the contribution of a device, and it is dis-
tributed through NPM as a Node.js dependency that is then integrated in the concrete
clients targeting various devices.

Interconnected Node is also developed by using the Typescript language and, being
this a client in the WebSocket connection to the Broker Service, it utilizes the client-side
implementation of the Socket.io framework.
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The P2P connectivity requirements are concretized through the use of theWebRTC
(Real-Time Communication for the Web) protocol; such communication standard it is
used to send audio and video data among peers, as well as any kind of structured

non-media data. In order for the peers to establish the connection, first the signaling
process needs to be completed: the Peers, through a third intermediary (the Broker
Service), exchange some information required for the connection to happen; the Peer
that initializes the connection creates an SDP (Signaling Description Protocol) object,
denominated "offer". When the other Peer receives such data, it also creates its SDP object
denominated "answer". Once each Peer possesses both generated SDP data, they finalize
the connection exchanging some ICE (Interactive Connectivity Establishment) candidates;
such ICE candidates need to be specified when realizing a WebRTC connection since they
are the actual servers that allow the P2P connection. There are two types of servers
involved:

• STUN (Session Traversal Utilities for NAT)
Used by Peers that reside behind the same NAT; through this server the IP info of
each Peer are retrieved and a direct P2P connection can be established.

• TURN (Traversal Using Relays around NAT)
Used by Peers that reside in different NATs; through this server the limitations of a
NAT are overcome, creating an indirect P2P connection that uses the TURN server
to forward the messages among the two Peers.

Figure 6.2: WebRTC - STUN and TURN servers [15]

Free STUN and TURN servers (used by this prototype) are available to the general
public thanks to the Open Relay initiative.
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There are both a Desktop implementation and a React Native implementation of
Node.js modules that allow to perform P2P connections utilizing the WebRTC protocol
but, despite functioning in the same way and exposing the same interfaces with identical
methods, the Desktop implementation does not work on React Native and vice
versa. In order to circumvent this problem, the object handling the P2P connection is
wrapped in an interface that needs to be concretized in the specific Desktop and

Mobile implementations (figure 6.3); this also allows to add some domain-specific
logic, assigning to the Peer that initializes the connection the "Master" role and the
"Slave" role to the other Peer.

Figure 6.3: WebRTC P2P Wrappers and builders

The construction of the client-specific objects is standardized through the uti-

lization of the Builder pattern, allowing the internal logic of the Interconnected Node
to create instances of such objects without actually possessing the concrete implementa-
tion. The P2P Builders (along with a unique device identifier) will then be passed at
construction time to the InterconnectedNode Facade (6.4) which exposes simple
methods to interact with the core logic, hiding its complexity and requiring the specific
client only to deal with presentational aspects and device-specific responsibilities.

When it comes to the actual computational contribution that the Interconnected
Node needs to perform, two key abstractions are present: Job and Task; a Job is an
activity that a Slave Peer executes under the guidance of its Master that, after instructing
the start of said Job, sends Tasks to execute in that specific Job.
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Figure 6.4: Interconnected Node Facade

This abstraction results in the definition of common interfaces for Job and

Task that are then concretized realizing new functionalities that will then be used

to execute Grid Services (MapReduceMasterJob, MapReduceMapWorkerJob, etc...);
through this mechanism, expanding the support for new Grid Services only requires
to define new concrete Jobs and Tasks, realizing their logic and their handlers for the
messages exchanged among Nodes.

6.2.3 Interconnected Mobile Client

In this prototype, the mobile incarnation of the Contributing Endpoint takes the name
of "Interconnected Mobile Client". The main technology used for realizing this client is
React Native (which is also Node.js based); with this framework, it is possible to build
mobile applications targeting both Android and iOS devices with just one code base

while also taking advantage of most of the modules available on NPM.
Thanks to this Node.js compatibility, the mobile client is able to use the Intercon-

nected Node to connect to the Grid and perform contributions, only requiring to

implement previously mentioned client-specific interfaces and to provide an ID for

the device (given the limited number of devices in the prototype setting, a UUID v4 is
generated and used as the ID).

Although React Native also allows targeting iOS devices, this prototype is tested
only on Android devices; this limitation is caused by the previously mentioned lack of
resources (in particular the unavailability of Apple devices to test it on) but, in theory,
the application should also function on iPhones and iPads with little to no changes to the
code base.
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Figure 6.5: Interconnected Mobile Client

Figure 6.5 shows the GUI of the application: by simply activating the "Enable Grid
contribution" switch (figure 6.7(a)), the application starts a background process that
continues to operate even after the application is closed; Android forces the developer
to notify the user of the presence of a background activity by spawning a permanent
notification (which can be seen in figure 6.6) that will automatically be removed when
the background activity is stopped by disabling the switch.

This background process is responsible for checking a series of conditions (that are
listed in the "Prerequisites" section of the GUI) which are necessary for Grid Contribution;
when all the conditions are met, the Interconnected Node is started through the

use of the previously mentioned Facade exposed by the module. In case even one of
the prerequisites is not satisfied anymore, the Interconnected Node is stopped.

Figure 6.6: Interconnected Mobile Client - Grid contribution enabled notification
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Figure 6.7: Interconnected Mobile Client - Status

Despite being a background process, the user can check the application’s status
through the GUI’s indicators: after the activation of the background process, the
application remains in the "Not ready" state until all the Prerequisites are met (becoming
green); after that, there is a transition to the "Connecting" state (figure 6.7(b)) and, once
the Grid Connection is established, the "Online" state is reached (figure 6.7(c)).

When a contribution to a Grid Service is currently being performed, the user is

notified by a notification that, once the contribution is over, is then updated showing
that the process is complete (figure 6.8).

Figure 6.8: Interconnected Mobile Client - Grid contribution completed notification
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6.2.4 Interconnected Desktop Client

The Desktop incarnation of the Contributing Endpoint takes the name of "Intercon-
nected Desktop Client"; like the Mobile counterpart, it is developed using the Typescript
language and by relying on the Interconnected Node module dependency. For this
prototype version no GUI was developed and, then, a simple Docker image (which can
run on any computer) is provided.

Figure 6.9: Interconnected Desktop Client - Docker image run on a container

In the Interconnected Mobile Client, this prototype’s Node ID is generated by using a
simple UUID v4 (which can be seen in figure 6.9).

6.2.5 Invoking Endpoint Prototype

The last entity that composes this simplified architecture is the Invoking Endpoint

Prototype; unlike its counterpart in the complete architecture, which envisions it as a
dependency (much like the Interconnected Node) that can be used by a Customer Custom
application, this prototype version is a standalone program that can interact with
the Grid launching a MapReduce computation; more details on the subject will be
discussed in section 6.6.

This entity is developed, like the others, relaying on the Node.js framework but,
instead, by using plain JavaScript and not the Typescript superset. In order to be able to
communicate with the Broker Service and the Interconnected Nodes, it also utilizes the
Socket.io module and theWebRTC module, respectively.
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6.3 DevOps

The project utilizes a series of services to facilitate the production cycle, starting from
version control combined with automation that simplifies the release process.
GitHub was chosen as the primary hub for the code base. In particular the "GitHub

organizations" feature of such service allows creating organizations where people can
cooperate and, most importantly, it groups together repositories belonging to that specific
organization, separating them from personal accounts.

Figure 6.10: Interconnected - GitHub Organization

Furthermore, through the definition of specific GitHub actions, a lot of repetitive
tasks can be automated; in this project case, actions collaborate with external services in
order to obtain CD (Continuous Delivery) automation.

The first external service used is NPM; when a new release of the Interconnected
Node is created, a GitHub action uses the repository’s code base in order to publish

the module on NPM (figure 6.11), making it available for the Mobile and Desktop
Contributing Endpoints.

The Broker Service and the Interconnected Desktop Client both utilize Docker for
the execution on target machines; such Docker images are automatically created
and published on Docker Hub whenever a new release is created in the respective
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Figure 6.11: Interconnected - NPM

repositories. Thanks to this, a machine that wants to run a container with that specific
image will not need to access the code base and run, compile and run the Node.js
environment, but it will only need a working installation of the Docker client; knowing
the image name, this will automatically be downloaded from Docker Hub to the target
machine (figure 6.9).

Figure 6.12: Interconnected - Docker Hub

In particular, when it comes to the execution of the Broker Service’s image on a
container, Amazon ECS offers a simple hosting platform that is able to pull images from
Docker Hub by simply defining a task and running it. This way, every time the Broker
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Service is started, Amazon ECS’ defined task will retrieve the latest published image

and will run it on a dedicated container (figure 6.13).

Figure 6.13: Interconnected - Amazon ECS

Finally, despite being run on an emulator during development, the Interconnected
Mobile Client needs to be delivered in production; each time a new release is created
on its GitHub repository, an action will build an APK and publish it as an attached

file to said release. This way, a ready-to-use installer is automatically made available for
installation on real Android devices.

Figure 6.14: Interconnected - Android APK automated release

6.4 Coordination

This section analyses the messages exchanged among the entities composing the
prototype architecture. There are three phases in this coordination process:

1. Grid connection

2. Recruitment

3. P2P messaging
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6.4.1 Grid connection

This phase connects a Node (whether used by the Mobile or the Desktop client) or
an Invoking Endpoint Prototype to the Broker Service using a Socket connection

through the Socket.io framework. The Broker Service registers the connections and
uses them in the Recruitment phase.

6.4.2 Recruitment

The recruitment phase connects a requestor device (that becomes the Master in the
P2Pconnection) to an actual device that will perform a Contribution (becoming the
Slave). While a Slave is necessarily a Node, a Master can either be an Invoking
Endpoint or a Node, allowing to obtain either an Invoking Endpoint to Node connection
or a Node to Node connection.

This phase is executed exchanging messages among the soon-to-be Peers using
the previously established Socket connections, but ends with a direct P2P connection

between the Master and the Slave through the WebRTC framework.

Figure 6.15: Recruitment - Sequence Diagram

Figure 6.15 shows the actual messages exchanged in this phase: the soon-to-be Master
sends a RECRUITMENT_REQUEST to the Broker Service, containing details regarding
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which kind of resources are needed; the Broker Service, upon receiving this request,
creates a pending Recruitment Request and broadcasts a RECRUITMENT_BROADCAST

message to all the connected Nodes.
The Node checks locally if it is compatible with the received request and, if all the

conditions are true, it sends a RECRUITMENT_ACCEPT message to the Broker Service
which, upon receiving it, checks if the request is still unsatisfied, eventually forwarding
the message to the entity that first emitted the request.

From this point on, the P2P connection is initialized exchanging the WebRTC’s
required information (previously discussed in section 6.2.2): the Master sends a RE-

QUEST_CONNECTION message, containing its SPD offer and, in response, the Slave
sends its SDP answer contained in a ANSWER_CONNECTION message. Once the two
Peers possess each other’s SDP data structures, they start exchanging ICE candidates
until they reach an agreement, finally opening the P2P connection, completing the

Recruitment.
Although the broadcast is executed once, the messages contained in the "Broker

accepts Node recruitment" scope need to be exchanged every time a new P2P connection
is established among two Peers.

6.4.3 P2P messaging

Once the P2P connection is established, figure 6.16 shows the messages that the
Master and the Slave exchange in their interaction.

Figure 6.16: P2P messaging - Sequence Diagram
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TheMaster sends a START_JOBmessage to the Slave, possibly including data (which
need to be sent only once) that will later be useful when executing the specific Tasks
for that Job. Once the Slave has started said Job, the Master sends a EXECUTE_TASK
message, containing further data that, combined with the Job’s payload, is used to
perform a computation. Upon receiving the EXECUTE_TASK message the Slave sends
an ACK to the Master and enqueues the Task, sending a TASK_COMPLETED message
(containing the result) to the Master only when the task is actually completed.
This asynchronous organization allows the Master to send multiple Tasks to

enqueue without waiting that the Slave has already completed its Tasks, speeding

up the process. The Tasks submission and collection of results continues until all the
Master’s Tasks are completed and the P2P connection is terminated, removing the Job
from the Slave.
Using this Job/Task generalization, it is possible to construct various kinds of

Grid Services, starting from the MapReduce one.

6.5 Proto-MapReduce

The MapReduce implementation used in this prototype is a simplified version of
what discussed in appendix A; said simplifications, while making it easier to implement,
have the side effect of negatively influencing performances but, given the available
time limitations, they are still acceptable in a prototypical context where the focus is
to demonstrate the feasibility of mobile devices Contribution.
The first difference comes from how the data are handled. The MapReduce

paradigms handles a number of splits M and applies progressively the Map function to
said splits; the intermediate results are grouped by key (using a partitioning function)
in order to obtain R (with R<M, typically) partitions which, upon allying the Reduce
function, will produce R final results. This simplified version, on the contrary, takes
the M splits and, after applying the Map function, maintains the original grouping,
producing M intermediate results; said results are then computed applying the Reduce
function to each of them, producing the M final results. As a consequence, the number
of input data regions is equal to the regions in the final results.
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Figure 6.17: Proto-MapReduce Topology

The second important distinction comes from the topology of the connections

among the entities involved in the MapReduce operation. Normally, a Map Worker
that has completed a run of the Map function would send, under the coordination of
the MapReduce Master, its intermediate results directly to the right Reduce worker; in
this simplified version a Map Worker that has completed a Map operation sends its

results to the MapReduce Master which, after gathering all the Map results for that

particular region, will forward the data to an assigned Reduce Worker. The final
topology for the MapReduce Service performed in this prototype is shown in figure 6.17
and is obtained performing these three steps:

1. MapReduce Master recruitment
The Invoking Endpoint Prototype performs a recruitment (seen in figure 6.15),
connecting to a Node which receives a MapReduce Master Job (containing all
info about resources requested with the Map and Reduce functions definitions
as well). This marks the beginning of the next phase but, in the meantime, the
Invoking Endpoint starts sending Tasks to the MapReduce Master (figure 6.16), each
containing a data region to compute.

2. Map Workers recruitment
The MapReduce Master performs a recruitment, requesting the Map Workers speci-
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fied in its MapReduce Master Job, and it sends a Map Worker Job (containing the
Map function) upon every new connection; once all the requested Map Workers are
recruited, the next phase can begin, while, at the same time, also starting to send
Tasks containing the data to which apply the Map function.

3. Reduce Workers recruitment
Here the MapReduce Master performs the final recruitment, requesting the Reduce
Workers specified in its MapReduce Master Job, sending a Reduce Worker Job
(containing the Reduce function) to every new Node recruited. After this recruitment
is completed, the MapReduce Master is allowed to send the progressively collected
intermediate results to the Reduce Workers.

Once all the data region are computed and the results are collected by the

Invoking Endpoint, the P2P connections are closed, completing the execution.
As can be easily deduced, the Invoking Endpoint Prototype acts as a Master in its P2P

connection to the MapReduce Master, while Map and Reduce Workers only act as Slaves
in their connection to the same entity, making a Node (the MapReduce Master in this
case) able to perform both the Master and the Slave roles at the same time, with
the consequence of showing that the Map Worker to Reduce Worker connection is
perfectly feasible in a future implementation of these Jobs.
Thanks to this topology, every computationally heavy operation is delegated to

the Grid’s Nodes and, thus, the Invocation can be performed even from a low-spec

device, increasing the versatility of the Grid.
On a final note, while performing a recruitment, various parameters can be specified

about the resources that a device needs to possess; while the Map or Reduce Worker role
can be taken by any device, the MapReduce Master role is reserved to Desktop devices.
This choice is made trying to obtain more stability for the MapReduce process.

6.6 Real-world experiments

This section describes the experiments performed using the prototype in a real-world
scenario performing a distributed MapReduce computation on distributed heterogeneous
devices.
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6.6.1 Computation

The operation chosen for the experiment is a simple classification based on the distance
from centroids, each representing its corresponding class:

• Red centroid: (200,900)

• Green centroid (700,100)

• Blue centroid (1300,700)

Figure 6.18: Computation - Starting point

Given a Cartesian plane (width: [0,1500], height: [0, 1000]) and a set of 2D points
contained in it, the map function takes as input one of said points and calculates
the euclidean distance from each one of the centroids; the centroid with minimum
distance among the three is then chosen, obtaining a key-value output composed by
the chosen class as the key and an array containing the computed point as the value (the
array becomes relevant in the reduce function). It is important to note that, in comparing
the distance among two points, the square root characterizing the euclidean distance is
not needed and, therefore, it is not calculated in the map function.
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1 const mapFunction = (p) => {

2 const x = p[0];

3 const y = p[1];

4 const red = Math.pow(x - 200, 2) + Math.pow(y - 900, 2);

5 const green = Math.pow(x - 700, 2) + Math.pow(y - 100, 2);

6 const blue = Math.pow(x - 1300, 2) + Math.pow(y - 700, 2);

7 switch(Math.min(red, green, blue)){

8 case red: return ["red", [p]];

9 case green: return ["green", [p]];

10 case blue: return ["blue", [p]];

11 }

12 }

Listing 6.1: Map function

Figure 6.19: Computation - Region computation

Every data region is computed by the Map Workers and, after every point in a
particular region is classified, the output (visualized in figure 6.19) can be computed
in the reduce function which simply reunites the intermediate results with the same

key (hence belonging to the same class) in a single array.
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1 const reduceFunction = (p1, p2) => {

2 p1.push(p2[0]);

3 return p1;

4 }

Listing 6.2: Reduce function

As can be seen in figure 6.20, after every region is mapped and then reduced, each
point is assigned to one of the three classes.

Figure 6.20: Computation - Final result

Five experiments were performed:

• 1000 values (10 regions, 100 points for each region)

• 10000 values (100 regions, 100 points for each region)(shown in figure 6.20)

• 100000 values (100 regions, 1000 points for each region)

• 1000000 values (1000 regions, 1000 points for each region)

• 5000000 values (2000 regions, 2500 points for reach region)
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6.6.2 Setup

The experiment was performed in a controlled environment, meaning that only these
devices were connected to the Grid (figure 6.21):

• A: 1 smartphone

• B: 1 smartphone

• C: 1 computer

• D: 2 smartphones

• E: 1 tablet and 1 computer

Figure 6.21: Devices setup

The setup of Contributing Endpoints was thus composed by 2 Interconnected Desktop
Clients and 5 Interconnected Mobile Clients, placed in a 100 km range in central Italy,
which were forcibly chosen isolating them in a dedicated American server in order to
perform multiple experiments with the same setup.
The Invoking Endpoint Prototype instance was placed in the E location (although

it was not executed in the same computer which ran the Interconnected Desktop Client);
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said Invoking Endpoint requested the following resources for executing the MapReduce
computation:

• 4 Map Workers

• 2 Reduce Workers

Including the implicit MapReduce Master (which will be taken by one of the two
computers), this adds up to the 7 devices specified earlier, which were used in each of
the five experiments.

6.6.3 Results

Figure 6.22 shows the results for the five experiments performed, focusing on the total
time and the average time taken by each value (bothmeasured in milliseconds). Once
again, these results were obtained using a very small pool of devices and the simplified
nature of the MapReduce algorithm in this prototype significantly slows down the whole
process (primarily because the intermediate results are first sent back to the MapReduce
Master that then forwards them to the Reduce Worker, instead using a direct connection
among Map Worker and Reduce Worker).

Figure 6.22: Experiment results

The first significant observation can be made looking at the first two experiments:
the average time for each value drastically drops (~6.7 times faster); this can be
explained by considering that the total time also includes the recruitment phase

where no computation is executed. In other terms, the number of values used in the
first experiment is so small that their computation time becomes irrelevant, meaning
that the recruitment phase is basically the only factor that influences the average time.
The more values are computed (assuming the same number of devices are used),

the less impactful the recruitment time becomes.
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Figure 6.23: Average time (milliseconds) for each value

Finally, figure 6.23 focuses on comparing the average time for each value; it becomes
apparent that, despite the not optimized algorithms used in this prototype, the more
values are computed, the greater the advantage becomes, showing that a distributed

computation participated also by mobile devices is not only feasible, but it can also

provide value to the Customer.

114



Chapter 7

Future development and ideas

This final brief chapter will touch on the future development and ideas for the project,
first addressing how to expand the prototype and, then, proposing some ideas for future
Grid Services other than MapReduce.

7.1 Expanding the prototype

The prototype seen in the previous chapter is just a fraction of the architecture theorized
in this thesis work; this means that, with an incremental approach, further development
for the actual software entities has to be made, starting from:

• iOS tested compatibility

• An easy-to-use GUI for the Interconnected Desktop Client, coupled with a
guided installation process and automated start

• MapReduce’s algorithm implementation completion

• Making the Invoking Endpoint an actual dependency usable by other projects

Once these steps are completed, reaching a stability and maturity in the project
development, the cloud side must be expanded with the final goal of obtaining the
engineered cloud structure, starting from the creation of the dynamic system centered
around the Grid Master Service.

After reaching a full working architecture, the next step in the evolution of the project
comes from the implementation of new Grid Services.
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7.2 Implementing new Grid Services

Given the high focus on expandability that has driven this project, the possibilities for
expanding the Grid’s capabilities are endless. This section lists some ideas for future
Grid Services.

7.2.1 Simpler Services: Computation delegation

The MapReduce Service is a fantastic tool, but it is not ideal in every use case; MapRe-
duce’s limitations are well known in circumstances where the data pool to analyze is

very limited in size and, thus, a simple computation delegation service is more indicated
in those situations. By removing the recruitment process and the coordination among
multiple entities, an Invoking Point can delegate a computation to a more powerful
Node that will remotely execute the requested computation.

7.2.2 More than computations: Storage sharing

Another wasted resource in users’ Devices is storage space, frequently remaining unused;
thus, another possibility for a Grid Service is to allow Contributors to share said storage
space, implementing a distributed file retrieval system correlated with replication
and fault tolerance mechanisms.

7.2.3 Reaching the physical world: Collective computing

Finally, one particular trait of mobile devices is the presence of multiple sensors.
Given the participation of said devices to the Grid, some services can offer the possibility
to access said sensors in order to obtain physical world data coming from the mobile
devices of Contributors that allow such data retrieval.
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The MapReduce paradigm

As previously discussed, Grid computing is a multipurpose tool aimed to offer devices’
resources to perform various types of tasks. This project, despite being multipurpose
in nature itself (meaning that organizes its structure keeping in mind the possibility to
support additional services in the future), aims to specifically offer to a user the execution
of a MapReduce service over the Grid.

Hence, this short appendix discusses the MapReduce paradigm, concluding the
overview of the problem. Firstly, a definition and the history of such paradigm will
be provided. Then, the programming model will be discussed, explaining the basic
concepts needed to utilize MapReduce; following that, an overview of the master-slave
architecture is provided. Continuing on, in an attempt to clarify as much as possible how
the actual execution of a program that employs MapReduce works, an easy example of a
MapReduce computation is displayed. To conclude, an analysis of the execution flow is
presented.

Definition and history

MapReduce is a popular programming model designed to easily process and generate
large datasets on clusters of commodity machines. Through this paradigm, a compu-
tation can be expressed in terms of a map and reduce functions while the underlying
system deals with communication, parallelization and error handling, making it easy
to use even for programmers who have no experience with distributed systems.

117



APPENDIX A. THE MAPREDUCE PARADIGM

Google created this paradigm in 2003 in order to reduce development time and cost
on their projects; after an analysis of the problem, Google’s engineers noticed how the
majority of the computations in their products could be expressed through the

map and reduce abstractions that are typically present in functional languages. The
MapReduce paradigm has been used in a variety of Google’s project, including the
indexing system used by the Google search engine [16].
Apache Hadoop, inspired by Google’s work, integrates the MapReduce paradigm in

its free-licensed framework, making it one of the most used options when it comes to
applying distributed computations following this paradigm.

The programming model

In order to execute a MapReduce computation, it is required, as input, a set of key/value
pairs. Said values aremodified through the Map and Reduce functions and, ultimately,
they produce as output another set of key/value pairs.

The Map and Reduce functions arewritten by the user but in the background, through
the framework, they behave in the following way:

• Map: (k1, v1) =⇒ list(k2, v2)
The map function takes a single pair as input and produces a set of intermedi-
ate key/value pairs. The framework automatically merges the intermediate sets,
grouping them using the keys. Said values are then passed as input to the Reduce
function.

• Reduce: (k2, list(v2)) =⇒ list(v2)
The Reduce function uses the input provided by the automatic merge process
performed by the framework. Every Reduce execution takes a pair composed of
the intermediate key and a collection of values associated to that key; said pairs
are provided using an iterator in order to work with collections that are too large
to fit in memory. The values associated to the key are merged to form a possibly
smaller set of values, typically resulting in one or zero output values produced as
result (even though the function produces a list of values).

A programmer who implements a computation following this paradigm does not need
to provide anything else but, behind the scenes, the framework performs additional
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operations such as Splitting (that divides the input into smaller parts to be executed on
the multiple workers), Shuffling (that merges the output of the individual Map functions)
and Collect (that reunites results produced by the various workers).

Architecture

As anticipated in section A, MapReduce operations are performed over a cluster of com-
modity machines; such machines operate under a master-slave architecture, meaning
that there is one node, the Master, that coordinates the execution of the algorithm across
the worker nodes (or Slaves). Figure A.1 shows how such architecture is handled inside
Hadoop’s MapReduce.

Figure A.1: Hadoop’s MapReduce master-slave architecture[17]

A Client machine resides Outside the cluster and, when such machine needs to execute
a MapReduce operation, firstly it needs to provide the Map and Reduce functions (written
by the user who requests the task) to the Master (in Hadoop’s case the code to execute
is contained in a Jar file) which will propagate them to the Slaves. The Client also
necessarily provides the data to process, whether sending them directly to the Master or
specifying the source where to get them.

The Master machine has a Job Tracker through which it will coordinate the Slave
machines; the worker machines, on the other hand, have a Task Tracker, through which
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information about the ongoing task can be accessed by the Master. Each Slave Node will
have a queue of pending Tasks (sent by the Master) that will be executed, and it has
access to the underlying Hadoop Distributed File System (HDFS) for data replication.

Example

In this example (figure A.2), a simple word count will be performed: given a source of
text, the algorithm will count the occurrences of every word appearing in such text.

Figure A.2: Example of word count expressed through the MapReduce paradigm [18]

The process begins with splitting the input into smaller portions, in this case the text
is split by row. On the resulting portions, the Map function is performed; in this example,
every word (that is used as a key) is mapped to the value "1" (since it is one appearance of
said word). The results are then grouped through the Shuffling operation, using the key
as the grouping criteria. Finally, the Reduce function is executed, in different machines, on
every group (the example sums the values in order to get the final number of occurrences
for every word); the results of the Reduce operations is then collected, obtaining the final
collection of key/value pairs.

Even though this example is displayed with a limited quantity of input and output
data, the same mechanism can be expanded working with Big Data applications. The
key here is the performance augmentation given by parallelizing the execution of the
various computational steps across the cluster’s machines participating in the MapReduce
operation.
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Execution flow

When it comes to understanding the actual flow of execution in a MapReduce cluster, two
parameters need to be discussed:

• The number of splits M (Map input)
This value determinates how many portions the input data will be divided into; this
value should be set accordingly to have each portion between 16 and 64 Mb in size.

• The number of intermediate key partitions R (Reduce input)
The intermediate key space is partitioned into R pieces using a partitioning function
(e.g. hash(key) mod R [16]), distributing the Reduce invocations. R is usually a
small multiple of the number of cluster machines that will be used.

The partitioning function, M and R can be set by the user. Typically, MapReduce operations
performed at Google have M=200000 and R=5000 with 2000 machines [16].

The Master, acting as coordinator and intermediary among the Worker nodes, mainly
keeps two data structures in memory:

• Tasks’ state
For every Map task and every Reduce task (for a total number of M + R), the Master
keeps track of the current state, that can be either idle, in progress or completed.

• Intermediate results location
The master stores the locations and sizes of the R intermediate file regions produced
by the map task in order to communicate said data to the Reduce Workers that are
in the "in progress" state.

Figure A.3 shows an example of execution flow (the enumeration in the following
list corresponds to the numeric labels displayed in the figure) with M=5, R=2 and 6
machines (the R parameter has not an optimal value, but this is done only for explanatory
reasons):

1. The MapReduce library on the User program side splits the input accordingly to the
M parameter and starts many copies of the program on the cluster’s machines. One
of the machines acts as the Master and the others as Workers (section A). The Map
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Figure A.3: MapReduce execution flow [16]

and Reduce functions’ code is propagated to the machines and the User Program
waits to be notified by the Master after the completion of the MapReduce tasks.

2. The Master assigns the total M + R tasks to the Workers, be it a Map task or a
Reduce task.

3. A Worker that executes a Map task reads the corresponding input piece among the
M parts. The key/value pairs are processed through the User-defined Map function
and the intermediate results are buffered in memory.

4. Periodically, the buffered intermediate results are written on the local disk. Said
results are partitioned locally in R regions following the partitioning function. After
that, the Worker communicates the location of such results to the Master which, in
turn, forwards this information to the Reduce Workers.

5. When a Worker is notified about the availability of new results, it reads them (using
the location previously provided) from the correct Workers and, once it has all the
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data for its region, it sorts such data using the intermediate key, grouping together
data that belongs to the same key. If the intermediate data is too large to fit in
memory, the sorting is done using the disk.

6. The Worker iterates over the data and, for each key, performs the Reduce function
provided by the User. This produces a file containing all the Reduce results for the
region handled by the Worker.

7. After all the Map and Reduce tasks are completed, the User program is notified, and
it can resume its execution.

The final output of the R files can then be accessed as it is, combined into a single
source, or used as input for a new MapReduce execution.
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