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Introduzione

Alla base di un qualsiasi progresso scientifico c’è la collaborazione tra campi
totalmente differenti al fine di perseguire un obiettivo comune. La mate-
matica non fa eccezione e anch’essa può dare un contributo determinante,
anche se ai più questo fatto non è noto. E’ purtroppo convinzione comu-
ne che la matematica sia distante dalla vita di tutti i giorni e che rimanga
essenzialmente un campo teorico. Approfondendo gli studi in ambito mate-
matico però si può osservare come siano presenti, oltre ad ambiti di studio
prettamente teorici, anche campi della matematica fortemente applicativi,
mirati a dare risposte a problemi e interrogativi della vita ordinaria.
L’obiettivo di questo elaborato, frutto degli ultimi mesi di lavoro del mio
percorso universitario, è riassumere ed esporre un esempio di come la ma-
tematica possa cooperare con la biologia e la medicina al fine di prevedere
sviluppi di malattie. In particolare si vuole mostrare come, mediante sistemi
di PDEs, si possano descrivere quelli che sono alcuni degli elementi princi-
pali della malattia d’Alzheimer.
Perchè proprio questa patologia? Secondo l’Organizzazione Mondiale della
Sanità attualmente nel mondo sono presenti più di 55 milioni di persone
affette da demenza, di cui all’incirca il 60 − 70% presentano in particolare
la malattia d’Alzheimer. Numeri di questo genere portano la demenza ad
essere la settima causa di morte a livello mondiale [33]. La patologia d’Al-
zheimer colpisce principalmente persone di età superiore ai 60 anni e si ha
un andamento crescente dell’incidenza con il progredire dell’età. Pertanto, a
causa dell’aumento dell’età media della popolazione mondiale, si stima che
le persone affette da demenza saranno circa 78 milioni nel 2030 e 139 milioni
nel 2050.
A seguito di questi numeri importanti la comunità scientifica si sta concen-
trando molto sulla ricerca che abbia come focus la malattia d’Alzheimer, in
particolare su quelle che sono le cause biologiche e in generale il processo che
porta alla progressione della malattia al fine di trovare, se non una cura per
la stessa, un protocollo per garantire una diagnosi il più precoce possibile
ed il rallentamento del progredire della malattia.
La matematica contribuisce in questo processo elaborando modelli che per-
mettano di fare previsioni mediante simulazioni e confrontare i risultati di
queste ultime con quelli che sono i dati sperimentali. Tutto questo con il fine
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di verificare quali delle dinamiche considerate siano corrette, quali ancora
da migliorare, quali introdurre e quali accantonare.
In questo elaborato si procede quindi alla costruzione di modelli che de-
scrivano l’evoluzione temporale e spaziale di due dei principali attori della
malattia d’Alzheimer, ossia la proteina β-amiloide e la proteina τ nelle loro
versioni sane e mal ripiegate. In particolare dopo aver descritto da un punto
di vista fisiologico le dinamiche principali delle due proteine, si costruisce
un modello locale partendo dal modello eterodimero. Infatti questo modello
descrive l’interazione base tra proteine e lo si modifica andando ad integrare
osservazioni sui funzionali di Holling, relative a modelli che descrivono le
dinamiche di popolazione nel caso preda-predatore. Si passa successivamen-
te allo studio di modelli non locali che permettono una descrizione più fine
delle dinamiche interne principalmente per quanto riguarda le interazioni
tra proteine, ponendo particolare attenzione alle scelte matematiche fatte,
soprattutto riguardanti i kernel di convoluzione utilizzati. Dopo un breve
paragrafo che presenti le caratteristiche generali dei modelli non locali e le
proprietà favorevoli o meno all’utilizzo di tali modelli, si passa all’analisi
di due ulteriori modelli non locali in cui viene però considerata, rispetti-
vamente, una crescita di popolazione logistica ed una curva di crescita di
Gompertz.
Per tutti i modelli esposti si procede sia alla determinazione dei punti di
equilibrio e allo studio della loro stabilità, facendo riferimenti a come questi
rappresentino o meno stati con significato medico e non solo matematico,
sia allo studio delle disuguaglianze di clearance, ossia l’elemento matemati-
co che serve a descrivere l’inizio dello sviluppo della malattia a seconda del
valore dei parametri in gioco nel modello.
Nell’ultimo capitolo viene infine esposto come questi modelli continui possa-
no essere trasformati in modelli discreti su un grafo al fine di poter sviluppare
simulazioni e verificare la compatibilità dei modelli con i dati sperimentali
a disposizione. Mentre per l’operatore Laplaciano sul grafo vengono date
solamente le nozioni base per la sua introduzione, in quanto già presenti in
letteratura molti testi a riguardo, per l’operazione di convoluzione sul grafo
ci si sofferma in maniera più dettagliata. Questo perchè prima di tutto la
convoluzione è lo strumento fondamentale che permette la distinzione del
modello non locale da quello locale e secondariamente perchè la strada se-
guita per ottenere la convoluzione nel modello discreto non risulta essere
quella standard indicata dalla teoria matematica.
Per concludere il nostro studio terminiamo con alcune osservazioni ottenute
mediante simulazioni dei modelli esposti sul grafo.
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Introduction

The basis of any scientific progress is the collaboration among totally differ-
ent fields in order to pursue a common goal. Mathematics is no exception
and can also make a decisive contribution, even if this fact is not widely
known. Unfortunately, it is a common belief that mathematics is distant
from everyday life and remains essentially a theoretical field. If one delves
deeper into mathematical studies, however, it can be seen that, in addition
to purely theoretical fields of study, there are also fields of mathematics that
are strongly applied, aimed at providing answers to problems and questions
from everyday life.
The aim of this thesis, which is the fruit of the last few months of my aca-
demic path, is to summarise and present an example of how mathematics
can cooperate with biology and medicine in order to predict diseases devel-
opments. In particular, we want to show how, by means of PDEs systems,
we can describe some of the main elements of Alzheimer’s disease.
Why this disease? According to the World Health Organization, there are
currently more than 55 million people in the world suffering from dementia,
of which approximately 60 − 70% have Alzheimer’s disease. Such numbers
bring dementia to be the seventh leading cause of death worldwide [33].
Alzheimer’s disease mainly affects people over 60 years of age and there is
an increasing trend in incidence with advancing age. Therefore, due to the
increasing average age of the world population, it is estimated that there
will be about 78 million people with dementia in 2030 and 139 million in
2050.
As a result of these large numbers, the scientific community is focusing heav-
ily on research that has Alzheimer’s disease as its target, in particular on its
biological causes and on the process that leads to the disease progression in
order to find, if not a cure for it, at least a protocol to ensure the earliest
possible diagnosis and to slow down the disease progress.
Mathematics contributes to this process by developing models that allow to
make predictions through simulations and to compare the results of these
with experimental data. All of this with the aim to check which of the
dynamics considered are correct, compared to those that still need to be
improved, to be introduced and to be set aside.
In this work, models are built to describe the temporal and spatial evolu-
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tion of two major players in Alzheimer’s disease, namely β-amyloid protein
and τ protein in their healthy and misfolded versions. In particular, after
describing from a physiological point of view the main dynamics of the two
proteins, a local model is constructed from the heterodimer model. Indeed
this model describes the basic protein-protein interactions and it is then
modified by adding remarks on Holling’s functionals, obtained from models
describing population dynamics in the prey-predator case. We then move
on to the study of nonlocal models that allow a finer description of the in-
ternal dynamics, especially regarding protein interactions, paying particular
attention to the mathematical choices made, and especially focusing on the
convolution kernels used. After a brief paragraph presenting the general
features of nonlocal models and the characteristics that are favorable or un-
favorable to the use of such models, we move further by analyzing two other
different nonlocal models in which either a logistic population growth or a
Gompertz’s curve of growth are taken into account.
For all the models exhibited, we proceed both to the determination of the
equilibrium points and with the study of their stability, making reference to
whether or not they represent states with medical and not only mathemati-
cal meaning, and to the study of clearance inequalities, i.e. the mathematical
element that aims to describe the onset of the disease development depend-
ing on the value of the parameters involved in the model.
In the last chapter, it is finally explained how these continuous models can be
transformed into discrete models on a graph in order to develop simulations
and verify the compatibility of the models with the available experimental
data. Whilst for the Laplacian operator on the graph only the basics are
given for its introduction, as there are already many texts on the subject in
the literature, for the convolution operation on the graph we go into more
detail. This is because, on one hand, convolution is the fundamental instru-
ment that allow the distinction between the local and the nonlocal model,
on the other hand, because the path followed to obtain the convolution in
the discrete model is not the standard one indicated by the mathematical
theory.
To conclude our study, we end with some remarks obtained through simu-
lations of the exposed models on the graph .
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Chapter 1

Construction and analysis of
a local model

In order to build a mathematical model that is consistent with reality, it
is necessary to bear in mind the main players in Alzheimer’s disease (AD
for short) that we will take into account: the β-amyloid protein and the τ
protein.
The β-amyloid protein, more simply called Aβ, is a protein that is naturally
present in the parenchyma and under healthy conditions there is a bal-
ance between its production, from the transmembrane protein APP, and its
clearance. However, under altered conditions, the Aβ protein may begin to
accumulate, giving rise to more complex structures known as senile plaques
(as described in [42]). According to the amyloid cascade hypothesis, which
was the main theory for the development of Alzheimer’s disease until the
early 2000s, these plaques were the cause of a succession of cascading events
that ended with the symptoms of AD. However, recently it has become clear
that these plaques cannot be considered the sole origin of the disease but
rather we must also consider the fundamental role of the protein τ , as noted
in [7].
This protein can be naturally found within axons and normally plays a stabi-
lizing role for axons by constructing ordered structures called microtubules.
As for the Aβ protein, there is a process of production and clearance of the
protein under healthy conditions. Due to reasons that are yet unclear, the
clearance process of the protein may fail totally or partially, thus initiating
a phase of protein accumulation with the subsequent creation of fibrils. Ac-
cording to recent studies, the abnormal presence of Aβ protein induces a
toxic character in the τ proteins, and the latter in turn enhances the pres-
ence of the former. There is therefore, as remarked by Busche and Hyman
in [7], a synergistic effect on the toxicity of the two proteins. Another factor
to be taken into account is that toxicity in the case of both proteins may be
in a certain sense "transmitted", that is coming into contact with toxic Aβ
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1.1 Construction of the model (modified heterodimer)

or τ proteins leads proteins of the same type to become toxic (misfolded).
For this reason, currently developed models for modeling Alzheimer’s disease
consider the prions contribution ( [18]) or they are often based, as mentioned
in [40] and [21], on the prion-like hypothesis: neurodegenerative diseases,
in which the cause lies mainly in proteins, are characterized by the progres-
sive spread and self-induced amplification of misfolded protein assemblies
via axon channels. In the case of Alzheimer’s disease, following [40], both
the Aβ and τ proteins reflect this behavior typical of prions (hence the name
of the hypothesis), i.e. the ability to transmit the misfolded form to normal
variants of the protein with a resulting formation of deposits. Now, having
these basic dynamics in mind, we can begin to elaborate the model.

1.1 Construction of the model
We want to construct a model at the macroscopic level that is capable of ac-
curately describing the trend of the concentrations of the proteins involved,
namely Aβ and τP , in their healthy and toxic versions. Therefore, we first
introduce the following notation, common to all models that will be set
out: we will work in a spatial domain Ω of R3. For x ∈ Ω and for a time
t ∈ R+, let u = u(x, t) and ũ = ũ(x, t) be the healthy and toxic concentra-
tions of protein Aβ, respectively. Similarly, let us denote by v = v(x, t) and
ṽ = ṽ(x, t) the healthy and toxic concentrations of τP .
The basic model that links the concentrations of healthy and toxic pro-
teins is called the heterodimer model (referring to the medical term that
emphasizes the different chemical nature of the misfolded protein and the
normal variant) and was developed to model prion interactions. Since, as
mentioned above, both the Aβ and τ proteins have similar behavior, we
use the heterodimer model as a starting point for the development of more
complex models. In the case of the Aβ protein, the heterodimer model can
be expressed, following [24], as below{

∂u
∂t = a0 − a1u− a2uũ
∂ũ
∂t = −ã1ũ+ a2uũ

where a0 is the average rate of production of healthy Aβ protein, a1 and
ã1 the rates of average clearance of healthy and toxic Aβ, respectively. On
the other hand, a2 corresponds to the average conversion rate of a healthy
protein into a toxic one when they interact. For this reason the term gov-
erned by a2 is present in both equations with opposite sign. We note that
since there is no production of toxic Aβ proteins in our bodies, there is no
production term in the second equation.
These proteins, however, do not remain fixed at one point in space, rather
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1.1 Construction of the model (modified heterodimer)

they are transported within the parenchyma or through the network of ax-
onal channels and so we will have to introduce a diffusive term within the
model to consider this behavior, obtaining:{

∂u
∂t = ∇ · (D1∇u) + a0 − a1u− a2uũ
∂ũ
∂t = ∇ · (D̃1∇ũ)− ã1ũ+ a2uũ

where D1 e D̃1 are diffusion tensors that characterize diffusion of each rele-
vant protein. For example, in the case of the τ protein, for which an entirely
analogous system holds, we will have that the directions given by the ax-
ons will be favored over others. Therefore, following what was observed in
[43], one could consider D̃1 = d⊥1 + (d‖ − d⊥)γ ⊗ γ where γ = γ(x, t) is
a unit vector characterizing the direction of the axonal bundle, d⊥ is the
diffusion coefficient of the orthogonal direction to the direction of the axons
and d‖ � d⊥ is the diffusion coefficient along the axons. Instead, if isotropic
diffusion, meaning without preferential directions, is to be considered we
will have that the tensors D1 and D̃1 will be multiples of the identity and
thus we will get the usual Laplacian operator: e.g. in the case of the healthy
Aβ protein, assuming D1 = d11 we will obtain ∇ · (D1∇u) = d1∆u.
Similarly, it is also possible to derive analogous equations for the protein
τ , with parameters denoted by b0, b1, b̃1, b2 of equal meaning. The resulting
global system is the following:

∂u
∂t = ∇ · (D1∇u) + a0 − a1u− a2uũ
∂ũ
∂t = ∇ · (D̃1∇ũ)− ã1ũ+ a2uũ
∂v
∂t = ∇ · (D2∇v) + b0 − b1v − b2vṽ
∂ṽ
∂t = ∇ · (D̃2∇ṽ)− b̃1ṽ + b2vṽ

(1.1)

However, in this way we would have two pairs of equations with no con-
nection between the two protein families Aβ and τ , i.e. the equations are
uncoupled, which is not realistic from the physiological point of view.
As expressed in [40], three main components must be taken into account
when modeling interactions:

• action of the Aβ protein on τ : the creation of new toxic τP from
healthy τP is enhanced by the presence of toxic Aβ

• action of the τ protein on Aβ: the toxicity of Aβ depends on the
presence of τP , as explained in [20]

• Aβ and τP enhance each other’s toxicity, as reported in [20]

In order to introduce a model that takes the first point into account, we insert
a term into the diffusive heterodimer model for the protein τP , dependent
on a parameter b3, that governs the interaction between the toxic Aβ protein
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1.1 Construction of the model (modified heterodimer)

and the τP according to the relationship set out in the first point. We thus
obtain the following system of coupled PDEs

∂u
∂t = ∇ · (D1∇u) + a0 − a1u− a2uũ
∂ũ
∂t = ∇ · (D̃1∇ũ)− ã1ũ+ a2uũ
∂v
∂t = ∇ · (D2∇v) + b0 − b1v − b2vṽ − b3ũvṽ
∂ṽ
∂t = ∇ · (D̃2∇ṽ)− b̃1ṽ + b2vṽ + b3ũvṽ

(1.2)

Nevertheless, we must now take into account also the other two interac-
tions. The precise dynamics by which these proteins influence each other
are unclear: what is certain, however, is that their interaction leads to the
creation of aggregates of toxic proteins that damage the neuronal region. It
is therefore necessary to introduce a function q(x, t) ∈ [0, 1] measuring the
neuronal damage at point x at time instant t. In the case where q(x, t) = 0
this will mean that the neurons located at point x are healthy, whereas if it
takes the value 1, the neurons at x are irreparably damaged (this includes
both the case in which they are already dead and the case in which they
have reached such damage that they undergo apoptosis). The evolution of
the damage will then be described by the equation

∂q

∂t
= (k1ũ+ k2ṽ + k3ũṽ + k4A(q))(1− q) (1.3)

with the initial condition q(x, 0) = 0 since we assume to start from a healthy
condition at each point of Ω. In this expression, k1 and k2 express the contri-
bution of the toxic proteins Aβ and τP to the neurological damage at point
x as a result of the toxic aggregates (senile plaques and fibrils) being formed.
As for what concerns k3, this allows the damage caused by the interaction
of both these toxic proteins to be taken into account, i.e. it allows the other
two interaction hypotheses set out above to be considered. Concerning the
last term of the RHS, for the moment, we limit ourselves to say that it allows
us to model the damage that occurs in x as a result of contributions due to
nonlocal factors, as stated in [40], and it will be analyzed in detail later.
We observe that in the RHS there is the multiplication by the factor 1 − q
because in the case where q(x, t) = 1, namely the damage is irreparable and
has already reached its maximum value, this value must remain constant for
future times and therefore its derivative with respect to time must be zero.

However, the system 1.2 can be made even more precise. For example,
let us consider the case of the Aβ protein (it will be analogous for τP ). The
interaction between the healthy and toxic protein can be schematized, as
observed in [15], by means of the following three steps:

u+ ũ
t1−−→ uũ

t2−−→ ũũ
t3−−→ ũ+ ũ
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1.1 Construction of the model (modified heterodimer)

That is, when the healthy protein is approached, a time t1 is needed for its
binding to the toxic protein, then a time t2 is necessary in order to induce
misfolding and thus for the healthy protein to be converted into a toxic
one, and finally a time t3 is needed for the toxic proteins to separate again.
We have so far considered these three distinct processes as a single step by
introducing the coefficients a2 and b2, not considering these transition times
in practice. In other words, in the model presented so far, we are assuming
that the probability of the encounter between toxic and healthy proteins in
a fixed spatial region in a time interval Tt depends linearly on the density
of the healthy protein. Indeed, the relationship we assume is

Y = aTsu

where Y is the density of healthy protein consumed by a unit of toxic protein,
Ts is the time for contact to occur and a is a constant of proportionality,
also known as the rate of discovery. A phenomenology similar to this was
studied by Holling in the context of predator-prey models, as described in
[10]. In the case in which Ts = Tt, where no time is needed for the toxic
protein to change the nature of the healthy protein, Holling speaks of a
type I response and this is exactly what we have supposed for the moment:
assuming that each toxic protein acts independently from the others, in a
time Tt we will have that the density of healthy protein will have decreased
by aTtuũ and ũ will have increased by the same amount. As suggested
in [30], it can be assumed that each healthy protein requires a reaction
time t2 = h to be converted to toxic (considering instead the binding and
division processes as instantaneous, i.e. t1 = t3 = 0). Thus, following
the construction of the type II Holling’s functional described in [10], we
will have that the time available for contact between the proteins to occur,
maintaining the notation that Y represents the amount of healthy protein
attached/consumed, is Ts = Tt − hY . Consequently, the density of healthy
protein consumed by a unit of toxic protein will be given by Y = a(Tt−hY )u,
from which Y = aTtu

1+ahu (Holling’s functional of type II). Assuming again that
each toxic protein acts independently from the others, we will obtain that
in a time Tt the density of healthy protein will be decreased by aTtu

1+ahu ũ. The
exact same reasoning can be made for τP . So if in our model we denote
a2 = aβTt, b2 = aτTt, cu = aβhβ and cv = aτhτ , we obtain the following
system 

∂u
∂t = ∇ · (D1∇u) + a0 − a1u− a2u

1+cuu ũ
∂ũ
∂t = ∇ · (D̃1∇ũ)− ã1ũ+ a2u

1+cuu ũ
∂v
∂t = ∇ · (D2∇v) + b0 − b1v − b2v

1+cvv ṽ − b3ũvṽ
∂ṽ
∂t = ∇ · (D̃2∇ṽ)− b̃1ṽ + b2v

1+cvv ṽ + b3ũvṽ

(1.4)

Due to this modification, we have that the conversion rate of healthy to
toxic proteins increases as the density of the former increases, but not in
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1.2 Equilibrium points analysis

uncontrolled manner. Indeed, we will reach a point where this conversion
rate will become saturated and thus will start to tend towards a constant.
Remark 1.1. The model 1.4, proposed in [30] and taken up in [31],
ignores the times t1 and t3 of the process. Following what is described
in [19] we observe that it is possible to include them in the model using
similar procedures. Suppose, for example, that we wish to consider not only
time t2 but also time t1. Assuming that each toxic protein takes a time t1
to bind and a time t2 to introduce misfolding, we will have that the time
available for the contact is Ts = Tt − (t1 + t2)Y . It follows, with similar
reasoning to the previous case and always assuming that the toxic proteins
act independently, that the density of healthy protein will be decreased by
the factor aTtu

1+a(t1+t2)u ũ.

1.2 Equilibrium points analysis
Having a complete reaction-diffusion model at this point we can move for-
ward to the study of the temporal dynamics. In particular, we begin by
studying its equilibrium points and relative stability. Being purely temporal
dynamics, to do this we do not consider the terms that contribute solely
with the spatial dynamics, i.e. the diffusive terms, obtaining the following
system of ODEs 

du
dt = a0 − a1u− a2u

1+cuu ũ
dũ
dt = −ã1ũ+ a2u

1+cuu ũ
dv
dt = b0 − b1v − b3ũvṽ − b2v

1+cvv ṽ
dṽ
dt = −b̃1ṽ + b3ũvṽ + b2v

1+cvv ṽ

(1.5)

with non-zero initial conditions.
Let us first denote (u, ũ, v, ṽ) the coordinates of the equilibrium points .
In order to determine them, we decide to proceed in the following way:
we first determine the axial equilibrium points, that is those in which at
least one of the components is null, and then those in which none of the
components is null. Remember that, in order for these to be stationary
points, the following system must be solved for each parameter value

a0 − a1u−
a2u

1 + cuu
ũ = 0

− ã1ũ+ a2u

1 + cuu
ũ = 0

b0 − b1v − b3ũvṽ −
b2v

1 + cvv
ṽ = 0

− b̃1ṽ + b3ũvṽ + b2v

1 + cvv
ṽ = 0

(1.6a)

(1.6b)

(1.6c)

(1.6d)

Let us therefore begin by analyzing the various cases:
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1.2 Equilibrium points analysis

• by placing u = 0 we obtain from the equation 1.6a that a0 = 0. So in
general we will not have stationary points with zero first component,
since a0 > 0.

• by posing ũ = 0 we have that the equation 1.6b is satisfied for every
value of the parameters, so we proceed by substituting in the other
equations:

u = a0
a1

ũ = 0
b0 − b1v − b2v

1+cvv ṽ = 0
−b̃1ṽ + b2v

1+cvv ṽ = 0

⇒



u = a0
a1

ũ = 0
ṽ = b0−b1v

b̃1

(b0 − b1v)(−1 + b2v
b̃1(1+cvv)) = 0

Continuing the case-by-case analysis we obtain as a first solution

E1 = (a0
a1
, 0, b0

b1
, 0)

and as a second solution

u = a0
a1

ũ = 0
ṽ = b0−b1v

b̃1

−1 + b2v
b̃1(1+cvv) = 0

⇒



u = a0
a1

ũ = 0
ṽ = b0−b1v

b̃1

v = b̃1
b2−cv b̃1

that is, written in a compact way:

E2 = (a0
a1
, 0, b̃1

b2 − b̃1cv
,
b0(b2 − b̃1cv)− b1b̃1

b̃1(b2 − cv b̃1)
)

• if v = 0 the equation 1.6c would lead to b0 = 0 so in general we will
not have stationary points with zero component v, since b0 > 0.

• by posing ṽ = 0 we obtain that the equation 1.6d is satisfied for all
parameter values. Continuing with the calculations and substituting,
we get

a0 − a1u− a2u
1+cuu ũ = 0

−ã1ũ+ a2u
1+cuu ũ = 0

v = b0
b1

ṽ = 0

⇒


(a0 − a1u)(−1 + a2u

ã1(1+cuu)) = 0
ũ = a0−a1u

ã1

v = b0
b1

ṽ = 0

So the first solution we find is given by

E1 = (a0
a1
, 0, b0

b1
, 0)
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1.2 Equilibrium points analysis

which was already found, while the second solves the system
−1 + a2u

ã1(1+cuu) = 0
ũ = a0−a1u

ã1

v = b0
b1

ṽ = 0

and then is given by

E3 = ( ã1
a2 − ã1cu

,
a0(a2 − ã1cu)− a1ã1

ã1(a2 − ã1cu) ,
b0
b1
, 0)

Let us now look for stationary points that have all non-zero components.
We therefore proceed to solve the following system

a0 − a1u− a2u
1+cuu ũ = 0

−ã1ũ+ a2u
1+cuu ũ = 0

b0 − b1v − b3ũvṽ − b2v
1+cvv ṽ = 0

−b̃1ṽ + b3ũvṽ + b2v
1+cvv ṽ = 0

⇒


a0 − a1u− ã1ũ = 0
−ã1ũ+ a2u

1+cuu ũ = 0
b0 − b1v − b̃1ṽ = 0
−b̃1ṽ + b2v

1+cvv ṽ + b3ũvṽ = 0

⇒


ũ = a0−a1u

ã1

−a0 + a1u+ a2u
1+cuu

a0−a1u
ã1

= 0
ṽ = b0−b1v

b̃1

−b0 + b1v + b2v
1+cvv

b0−b1v
b̃1

+ b3
a0−a1u
ã1

v b0−b1v
b̃1

= 0

From which we obtain the following system to be studied by cases:

ũ = a0 − a1u

ã1

(a0 − a1u)(−1 + a2u

ã1(1 + cuu)) = 0

ṽ = b0 − b1v
b̃1

(b0 − b1v)(−1 + b2v

b̃1(1 + cvv)
+ b3

(a0 − a1u)v
ã1b̃1

) = 0

(1.7a)

(1.7b)

(1.7c)

(1.7d)

We proceed by distinguishing the two cases arising from 1.7b. However,
we do not report the results obtained for u = a0

a1
since they lead to ũ = 0

and therefore to a state with at least one zero component. The case we are
interested in is therefore:

u = ã1
a2−ã1cu

ũ = a0(a2−ã1cu)−a1ã1
ã1(a2−ã1cu)

(b0 − b1v)(−1 + b2v
b̃1(1+cvv) + b3

b̃1
ũv) = 0

ṽ = b0−b1v
b̃1
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1.2 Equilibrium points analysis

from which, analyzing further by cases and excluding v = b0
b1

since it would
lead to a null component, we get:

u = ã1
a2−ã1cu

ũ = a0(a2−ã1cu)−a1ã1
ã1(a2−ã1cu)

ṽ = b0−b1v
b̃1

−(1 + cvv)b̃1 + b2v + (1 + cvv)b3ũv = 0

We observe that the equation that must satisfy v is simply the last equation
of the initial system written in a different form (calculating the common
denominator and dividing by ṽ, since it is assumed to be different from
zero). We then get

u = ã1
a2−ã1cu

ũ = a0(a2−ã1cu)−a1ã1
ã1(a2−ã1cu)

ṽ = b0−b1v
b̃1

b3cvũv
2 + (b3ũ− cv b̃1 + b2)v − b̃1 = 0

Consequently, we can summarize the model’s steady states by

E1 = (a0
a1
, 0, b0

b1
, 0)

E2 = (a0
a1
, 0, b̃1

b2 − b̃1cv
,
b0(b2 − b̃1cv)− b1b̃1

b̃1(b2 − cv b̃1)
)

E3 = ( ã1
a2 − ã1cu

,
a0(a2 − ã1cu)− a1ã1

ã1(a2 − ã1cu) ,
b0
b1
, 0)

E∗ = ( ã1
a2 − ã1cu

,
a0(a2 − ã1cu)− a1ã1

ã1(a2 − ã1cu) , v∗,
b0 − b1v∗

b̃1
)

where v∗ in the point E∗ satisfies the second-degree equation

b3cvũv
2 + (b3ũ− cv b̃1 + b2)v − b̃1 = 0

Baring in mind that we are working with quantities that represent densities,
for the above points to be admissible, all their components must be non-
negative, in particular E∗ must also have non-null components. We can
therefore make the following observations:

• for the existence of E2:

i. b2 − b̃1cv > 0 i.e. b2 > cv b̃1

ii. b0(b2 − b̃1cv)− b1b̃1 ≥ 0 so b0
b1
≥ b̃1

b2−cv b̃1

• for the existence of E3:
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1.2 Equilibrium points analysis

i. a2 − ã1cu > 0 from which follows a2 > cuã1

ii. a0(a2 − ã1cu)− a1ã1 ≥ 0 consequently a0
a1
≥ ã1

a2−cuã1

• for the existence of E∗:

i. a2 − ã1cu > 0 implying a2 > cuã1

ii. a0(a2 − ã1cu)− a1ã1 > 0 that is a0
a1
> ã1

a2−cuã1

iii. b0 > b1v∗

iv. v∗ positive root: note that the determinant of the second-degree
equation to be solved is always positive, so we have always two
solutions. We remark, however, that

– v
(1)
∗ = −(b3ũ−cv b̃1+b2)+

√
(b3ũ−cv b̃1+b2)2+4b3cvũb̃1
2b3cvũ

is always posi-
tive, so it will always be acceptable

– v
(1)
∗ = −(b3ũ−cv b̃1+b2)−

√
(b3ũ−cv b̃1+b2)2+4b3cvũb̃1
2b3cvũ

turns out to be
negative when b3ũ− cv b̃1 + b2 ≥ 0.

So we will have a single equilibrium point E∗ when the following in-
equality holds: b3ũ− cv b̃1 + b2 ≥ 0.

As a consequence, we observe that the examined model always has the trivial
equilibrium state E1 without placing conditions on the model parameters
(so that it is at least mathematically meaningful): this state can be called
healthy, as both the density of toxic Aβ and τP are zero. A classification
of the other states is possible. Indeed we speak of a Aβ, respectively τ ,
toxic state in the case where the second component, respectively the fourth,
is non-zero; in the opposite case we speak of a Aβ, respectively τ , healthy
state. If the existence conditions are satisfied, we will have that E2 is a
Aβ healthy and τP toxic state; E3 is instead Aβ toxic and τP healthy.
Regarding the state E∗ we note that this can be called a pathological state,
as both the second and fourth components are non-zero.
Having identified the stationary points, we can move on to the analysis of
their stability. To do this, let us analyze the eigenvalues of the Jacobian
matrix of the system 1.5. The Jacobian matrix is

Juu Juũ 0 0
Jũu Jũũ 0 0
0 Jvũ Jvv Jvṽ
0 Jṽũ Jṽv Jṽṽ
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1.3 Clearance inequalities

where

Juu = −a1 −
a2ũ

(1 + cuu)2 Juũ = − a2u

1 + cuu

Jũu = a2ũ

(1 + cuu)2 Jũũ = a2u

1 + cuu
− ã1

Jvũ = −b3vṽ Jvv = −b1 − b3ũṽ −
b2ṽ

(1 + cvv)2

Jvṽ = −b3ũv −
b2v

1 + cvv
Jṽũ = b3vṽ

Jṽv = b3ũṽ + b2ṽ

(1 + cvv)2 Jṽṽ = −b̃1 + b3ũv + b2v

1 + cvv

Since it is a lower triangular block matrix, its eigenvalues will be given by
the eigenvalues of the diagonal blocks therefore:

• (Juu − λ)(Jũũ − λ)− JũuJuũ = 0 from which, performing the calcula-
tions, we obtain λ2− λ(Juu + Jũũ)− JũuJuũ + JuuJũũ = 0. Solving we
have

λ1,2 = Juu + Jũũ ±
√

(Juu + Jũũ)2 − 4(JuuJũũ − JũuJuũ)
2

• (Jvv − λ)(Jṽṽ − λ)− JṽvJvṽ = 0 giving
λ2 − λ(Jvv + Jṽṽ)− JṽvJvṽ + JvvJṽṽ = 0. Also in this case we obtain

λ3,4 = Jvv + Jṽṽ ±
√

(Jvv + Jṽṽ)2 − 4(JvvJṽṽ − JṽvJvṽ)
2

Given an equilibrium point, calculating the Jacobian matrix at the point
and consequently its eigenvalues, we will have that if all the eigenvalues
have a negative real part, the stationary point is stable, otherwise unstable.

1.3 Clearance inequalities
As mentioned earlier, a crucial aspect in the development of Alzheimer’s
disease is the failure of the process of "cleaning" and disposing of excess Aβ
and τ proteins, referred to in a more specific terminology as the clearance
process. Therefore, it is important to observe whether within our model
it is possible to identify in some way when this process works properly or
fails. Quite naturally, since these are the only degrees of freedom in our
model, we come to think that in order to identify the clearance process,
we will have to investigate the relationships that must exist between the
parameters themselves.
Under standard conditions, that is if the clearance process for both Aβ and τ
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1.3 Clearance inequalities

proteins functions efficiently and effectively, there is no protein accumulation
and no possibility of the misfolding process to start with consequent toxicity
of the proteins involved. Thus, for the Aβ healthy - τ healthy state to have
medical significance for our model, the following relationships must exist

a0 ≤ a1 and b0 ≤ b1

namely the production rate of Aβ (respectively of τ) must be lower than the
clearance rate of Aβ (respectively of τ). In the case of failure of the process,
so in the event that either the clearance of Aβ (so 0 ≤ a1 < a0) or that of τ
(in other words 0 ≤ b1 < b0) or both fail, we will have that our model will
not admit an healthy state that has physical significance. We then consider
the following clearance inequalities identified in the paper [30]

a0
a1

<
ã1

a2 − cuã1
and b0

b1
<

b̃1

b2 − cv b̃1
(1.8)

These allow us to relate the rates of production and clearance of healthy and
toxic proteins of Aβ and τ respectively. Assuming these two inequalities
hold, we observe that the only stationary point with clinical significance in
our system is given by E1. Let us therefore study its stability by replacing
the values of this equilibrium point within the explicit expressions of the
eigenvalues of the Jacobian matrix:

• with regard to the eigenvalues λ1,2 we first calculate the sub-root term

∆ = (Juu + Jũũ)2 − 4(JuuJũũ − JũuJuũ) =

= (a1 + ã1 − a2

a0
a1

1 + cu
a0
a1

)2 − 4(a1ã1 − a1a2

a0
a1

1 + cu
a0
a1

) =

= (a1 + ã1 −
a2a0

a1 + cua0
)2 − 4a1ã1 + 4a1

a2a0
a1 + cua0

=

= (a1 − ã1 + a2a0
a1 + cua0

)2

so we have that

λ1 = a2a0
a1 + cua0

− ã1 and λ2 = −a1

• with entirely similar calculations for the remaining eigenvalues, we
obtain that

λ3 = b2b0
b1 + cvb0

− b̃1 and λ4 = −b1

Due to the validity of both clearance inequalities, all identified eigenvalues
have a negative real part, so the healthy state E1 is stable. This means that
for parameters satisfying these inequalities, as the system is able to elimi-
nate the small amount of toxic proteins present and the excess of healthy
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1.3 Clearance inequalities

proteins produced, the steady state Aβ healthy - τ healthy will tend to be
reached.

At this point, if there are alterations which are against the clearance pro-
cess of one of the two proteins, at least one of the two inequalities 1.8 will
not be satisfied and this will make at least one of the eigenvalues with a
null or positive real part and, as a consequence, the equilibrium state E1
will no longer be stable. In the moment in which at least one of the two
inequalities is not satisfied, new stationary points can be admitted. Thus,
the considered patient will be susceptible, as defined in [40], to the state of
disease at the moment in which at least one of the two inequalities is valid
as equality. Indeed, we observe how depending on which of the following
inequalities holds

a0
a1
≥ ã1
a2 − cuã1

and/or b0
b1
≥ b̃1

b2 − cv b̃1

in addition to the examined equilibrium state E1, the states E2, E3 and the
pathological state E∗ can also come into play with physical and clinical sig-
nificance.
In order to proceed to a more specific study of these cases, which are experi-
mentally more interesting but more complicated due to the very high number
of parameters involved and to the impossibility of deriving the root value
explicitly, it is necessary to make use of model simulations. In particular,
by fixing the values of certain parameters in accordance with experimental
data, it is possible to study their stability, as done in [30] and in [29].
In this study, one can also observe how the development of the disease can
follow two alternative routes: primary tauopathy and secondary tauopathy.
In the first case, all the equilibrium points have clinical significance and
coexist, whereas in the second case, only three equilibrium points coexist
(in particular, E2 cannot be considered). On the first hand, as mentioned
in [40], we speak of primary tauopathy as the accumulation of τ protein
occurs independently of the Aβ protein and the latter only plays the role of
increasing the concentration of toxic τP . On the other hand, for secondary
tauopathy we have that the evolution of the density of τ protein depends
on the initial accumulation of Aβ protein.
Essentially, all this analysis leads us to assert that the model under consid-
eration is capable of perceiving the key role of the clearance process in the
development of the disease.
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Chapter 2

Construction and analysis of
nonlocal models

2.1 A first nonlocal model
In the above model 1.4 only the interactions of different types of proteins at
the same x-point of the domain Ω under consideration were taken in account
and then modeled. However, this does not fully reflect reality, as the conver-
sion of healthy to toxic proteins depends not only on the density of the toxic
protein at point x, but also on the densities in the spatial neighborhood of
this point, as proteins are able to move. As a consequence, it is necessary
to introduce new terms to model this type of interaction.
To do this, it is possible to consider what is proposed in [1] in the case of
a predator-prey model, by adapting it, namely by considering the healthy
protein as prey and the toxic protein as predator. Going into more detail,
if the healthy protein at point x can be attacked by toxic proteins present
at any point y in the neighborhood of x, it is logical to assume that the
spatially closer the latter are to point x, the more they will contribute to
the consumption of the healthy protein at this point. Following [31] we will
then have to introduce a function φ(x− y), a description of the competition
strength (as defined in [26]) of a quantity at point y to grab resources at
point x or even a description of the conversion efficiency. This function φ
will have to be positive, decreasing as distance increases (as proteins that
are too far apart will not be able to consume resources efficiently at point
x), even when viewed as a function of distance (since there are no prefer-
ential directions for the competitive force) and normalized (i.e. such that∫

Ω φ(x)dx = 1).
In particular, we will have that

J1(x, t) =
∫

Ω
φ(x− y)ũ(y, t)dy
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2.1 A first nonlocal model

determines the density of toxic protein that is capable of acting at the point
x. Indeed, the integral can be interpreted in the following way: after having
weighed the densities of toxic proteins present around x, by means of the
competition strength (that is in this case the conversion efficiency and thus
the ability to change the nature of healthy protein at point x), we sum them
in order to consider the totality of these contributions, obtaining the density
of toxic protein acting at point x. Applying this limitation to each spatial
point in an independent manner (so the toxic protein at point y attacks
healthy protein at point x1 independently of what it does at point x2) we
will have that the consumption of healthy protein at point x can be given
by

W1(x, t) = a2u(x, t)
1 + cuu(x, t)

∫
Ω
φ(x− y)ũ(y, t)dy (2.1)

since a2u(x,t)
1+cuu(x,t) is the density of healthy protein consumed at the point (x, t)

by each unit of toxic protein.
Following what was suggested in [6] for the model of competition between
two species in population dynamics, we now want to see what reasoning
has to be done to introduce the integral term also for ũ. The equation
2.1 describes the competition between misfolded proteins in order to hoard
healthy proteins, so to carry out a symmetrical reasoning we need to model
the competition between healthy proteins in order to survive. This com-
petition obviously also affects the density of healthy protein that can be
attacked by toxic proteins. So the term inside the integral will always keep
the same competition kernel but it will weigh the density of healthy protein
consumed. In this way we will have that

J2(x, t) =
∫

Ω
φ(x− y) a2u(y, t)

1 + cuu(y, t)dy

determines the density of healthy protein consumed by each single unit of
toxic protein located at point x (obtained as the sum of the densities con-
sumed in the neighborhood) and thus the production of toxic protein at
point x will be given by

W2(x, t) = a2ũ(x, t)
∫

Ω
φ(x− y) u(y, t)

1 + cuu(y, t)dy

An analogous reasoning can be done also with τ protein. Having in mind
that for definition of convolution we have (φ∗ ũ)(x, t) =

∫
Ω φ(x−y)ũ(y, t)dy,

we get to the model exposed in [29]

∂u
∂t = ∇ · (D1∇u) + a0 − a1u− a2u

1+cuuφ ∗ ũ
∂ũ
∂t = ∇ · (D̃1∇ũ)− ã1ũ+ a2ũφ ∗ ( u

1+cuu)
∂v
∂t = ∇ · (D2∇v) + b0 − b1v − b2v

1+cvvφ ∗ ṽ − b3ũvṽ
∂ṽ
∂t = ∇ · (D̃2∇ṽ)− b̃1ṽ + b2ṽφ ∗ ( v

1+cvv ) + b3ũvṽ

(2.2)
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2.1 A first nonlocal model

with appropriate initial conditions.
We remark that in this model there is no point mass conservation since the
convolution terms subtracted in the case of healthy proteins do not corre-
spond to the ones we summed in the equations referred to toxic proteins.
However, as noted in [1], thanks to the symmetry of the kernel we have
that ∫

Ω
W1(x, t)dx =

∫
Ω
W2(x, t)dx

so we can state that there is conservation of total mass. This fact is also in
agreement with the phenomenon to be modeled: since the healthy protein
consumed at point x is not exclusively attacked by toxic protein located
at the same point, the density of toxic protein formed as a result of the
induced misfolding will be distributed among the various spatial positions
that contributed to its formation.
At this point the equation 1.3, derived in the paper [40] and taken up
in [31], can also be described in more detail. Indeed, the term A can be
expressed by means of a convolution (with a different kernel that, in this
case, can be interpreted as the contribution to the damage) expressing how
the presence of any damage around the point under consideration contributes
to the worsening of the damage at the point. We obtain an equation of the
type

∂q

∂t
= (k1ũ+ k2ṽ + k3ũṽ + k4ψ ∗ q)(1− q) (2.3)

Thus, the parameter k4 takes the meaning of the rate of propagation of
the damage, and the convolution term represents the damage as a result of
aggregates placed around point x.
For the explicit expression of the kernel used to express the competition
strength, numerous papers can be found in the literature in which a number
of different forms with pros and cons on their use are exhibited. The first
kernel proposed by [6] was the Laplacian

φ(x) = 1
2σe

− |x|
σ

As mentioned in [17] the bigger 1
σ , the weaker the nonlocality is, which

means that the weights used are large only for tiny neighborhoods of the
kernel center. This kernel in particular can be obtained by considering an
equation describing the local resources level, as shown in [17]. However, in
later papers ( [5]) we move on to consider Gaussian kernels of the form

φ(x) = 1
σ
√
π
e−

<x,x>

σ2

There are several reasons for this. First of all, in [5] and [27], it is observed
that the basis of equations involving diffusive phenomena is always the ran-
dom walks of particles. In order to maintain mathematical consistency, it
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2.1 A first nonlocal model

makes sense to consider Gaussian kernels, with the aim of essentially intro-
duce an interaction with a stochastic character (future developments could
also work on this kernel in order to introduce an even more pronounced
stochastic character, which is lacking in the model presented). Moreover,
this form of competition is one of the most frequent in epidemiology and
ecology, as it not only leads to results in agreement with the experimen-
tal data, but also to a mathematical analysis that is easier to carry out
( [32], [34]). Following [29], in our case we consider a Gaussian competition
kernel (and this choice is also made for the kernel ψ of the equation 2.3 but
with a different standard deviation).

Remark 2.1. In our case it is important to note that the choice of a Gaus-
sian kernel may be useful as a first approximation, but its strongly isotropic
character is in clear contrast with the biological elements of the model in
which there are preferential directions, as already explained by the analy-
sis of the diffusion tensors. Furthermore, in a number of papers, including
[32], it has been observed that the Gaussian kernel has limitations because
it is exactly the borderline for completely different population dynamics:
for one class of competition kernels there is simply a redistribution of the
various species involved but uniformly in space, whereas for the second class
the species involved form aggregates in specific areas, leaving some spatial
zones completely free. Let us give an initial idea of what the discriminating
factor is for these antipodal behaviors.
The kernels exposed above can be seen as special cases of the generalized
normal distribution β

2αΓ(1/β)e
−(|x−µ|/α)β (we denoted by Γ the Euler’s gamma

function). In particular with the choice of β = 2 we obtain the Gaussian
distribution while β = 1 gives the Laplacian distribution. This generalized
normal distribution is such that for β < 2 it presents an increasingly pro-
nounced peak around its mean as β decreases, while for β > 2 it tends to
assume a shape increasingly similar to the uniform distribution.
In the case of n interacting populations in a Lotka-Volterra competition
model in [32], it is observed that for positively defined kernels the distribu-
tion of the species considered is uniform, otherwise the species will distribute
themselves to create aggregates. The Gaussian kernel in this sense turns out
to be the limit case between these two behaviors, since for values β > 2 the
positive definite character is lost and thus also the spatially uniform dis-
tribution of the species involved. For future developments, one might also
consider pursuing this study in the specific case of our model.
Another area of research in the future, concerning again convolution kernels
used, could be that of considering a Gaussian kernel that is not only a func-
tion of space but also of time and thus achieving a double integration (the
probabilistic procedure to determine this type of kernel has already been
described in [5]). However, this would make an important change in the
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2.2 Nonlocality

study of the model’s temporal dynamics since in this way the integral term
would also be strongly linked to temporal aspects and not just spatial ones.

The model 2.2 obtained consists of coupled integro-differential equations.
As with the previous model, it comes natural to study the model’s temporal
dynamics. To do this, the variables involved are studied solely from the
temporal point of view and not from the spatial one. In other words, we
will have, for example, that u = u(x, t) in this case will be considered as
u = u(t) and similarly for the other unknowns. Therefore, when analyzing
the integrals in our model, these quantities can be considered as constants
in space. To further clarify this, let us take the steps in the case of the
integral term included in the first equation of 2.2:

a2u(t)
1 + cuu(t)φ ∗ ũ(t) = a2u(t)

1 + cuu(t)

∫
Ω
φ(x− y)ũ(t)dy = a2u(t)

1 + cuu(t) ũ(t)

where, in the last step, the fact that the convolution kernel considered is
unitary is exploited. For that reason, the system of ODEs associated with
the model 2.2 for the study of temporal dynamics is given by

du
dt = a0 − a1u− a2u

1+cuu ũ
dũ
dt = −ã1ũ+ a2u

1+cuu ũ
dv
dt = b0 − b1v − b3ũvṽ − b2v

1+cvv ṽ
dṽ
dt = −b̃1ṽ + b3ũvṽ + b2v

1+cvv ṽ

(2.4)

with non-zero initial conditions. We remark that it is completely analogous
to the system already studied in the case of the model 1.4.
A study of the equilibrium points will therefore not be carried out in this
case, since the convolution terms, which modify the system exclusively in
spatial terms, do not change the calculations previously reported for the
temporal dynamics. Thus, the results seen for 1.4 are still valid for this
model too.
Instead, it makes sense to pay more attention to the fact that within the
model, through the convolution terms, we have also introduced the concept
of nonlocality.

2.2 Nonlocality
Historically, the mathematical models developed have mainly consisted of
PDEs expressing, in most cases, local information. However, over the years,
interest in the study of complex systems has increased, leading to the study
of systems with singularities as well as nonlocal interactions. What is meant
by nonlocal interactions? Intuitively, it means that what happens in a par-
ticular position in space at a specific time is conditioned, in other words it
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depends on, events/elements that may happen/are in spatial positions and
instants of time different from the one we are considering. Since nonlocal-
ity, as mentioned, can be both spatial and temporal in nature, an initial
distinction can be made between spatially nonlocal models, such as the one
analyzed in the case of AD, and temporally nonlocal models. In the latter
case, the nonlocality finds expression mainly in the initial conditions, which
are applied in a nonlocal manner that is at different times, rather than at a
single time value as in standard problems.
Among the features of nonlocal models there are the property of taking
nonlocal interactions explicitly into account and the fact that the models re-
main valid not only for smooth solutions but also for singular solutions. The
negative counterpart is that nonlocal continuous models present more com-
plexities from the point of view of rigorous mathematical analysis. Indeed,
the mathematical and numerical theory underlying these nonlocal models
are currently under development, as the interest in this type of model is
fairly recent. However, at the mathematical level it has been seen that, in
general, spatial nonlocality can often be dealt with fractional calculus, while
temporal nonlocality can be managed with some of the key ideas from the
functional calculus in particular linked to strip-type operators, as explained
in [38]. But let us go into more detail for a moment.

The theory behind nonlocal models has been developed at the same time in
different fields, due to the fact that the areas of application are very broad.
Qiang Du is one of the main representatives who has worked in this field,
collecting the main results in the monograph [13] of which we will give a
few examples to facilitate understanding.
As mentioned, the historically widespread models consist of ordinary differ-
ential equations and are called local models, in the sense that their validity
can be verified for solutions in any single state identified by continuous in-
dependent variables (in our case space and time). An example is the heat
equation ∂u

∂t (x, t) = ∆u(x, t) which can be verified by knowing the solution
and its derivatives at a point (x, t). These local models provide effective
descriptions of the macroscopic world. Equations that do not satisfy the
property of local equations are called nonlocal, so they are equations whose
validity in a particular point cannot be proven by knowing only the solution
at that point, but requires further information on the latter, typically in
some different points.

Example 2.1. Suppose working for simplicity in an interval Ω ⊂ R. The
differential equation

d2u

dx2 (x) = f(x, u(x))

with x ∈ Ω, f = f(x, u(x)) known and u = u(x) unknown, is a continuous
local model.
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2.2 Nonlocality

Example 2.2. Maintaining the notation of the previous example, we denote
by ωδ a kernel with support consisting of two or more points, expressing
nonlocal interactions. For example, if we introduce the operator

Lδu(x) =
∫ δ

−δ

u(x+ s)− 2u(x) + u(x− s)
s2 ωδ(s)ds

this will have a nonlocal nature and therefore the integral equation given by

Lδu(x) = f(x, u(x))

with δ ∈ R+ and x ∈ Ω, will be a nonlocal model.
We remark that in the case where the support of ωδ consists only in the
point of interest, then the equation will take on a local character since the
values of the unknown function around the point of interest will no longer
be involved.

The nonlocal nature of models immediately leads to increased attention.
Thinking about the field of applications, one often works on domains that
are limited. In the event that a point is close to the boundary of our domain,
the nonlocal interactions to which it is subjected may change with respect
to points in the domain further from the boundary. Moreover, mathemati-
cally speaking, some additional conditions will be required with respect to
a classical boundary problem. [41] for example observes that in the case
of Dirichlet boundary conditions, a condition must be given not only on ∂Ω
but also on a δ neighborhood of the domain under consideration.
Proceeding with the analysis, it can be observed how the concept of locality
and nonlocality can be related to the chosen description of the system and
thus to the variables used to describe the problem. Indeed, in the case of
complex systems, reductions in the model are often used in order to facil-
itate the study of the system (in particular there could be an interest in
reducing the degrees of freedom in order to obtain a lower complexity and
thus a simpler analysis).

Example 2.3. Consider the system of equations{
dx
dt = x+ y
dy
dt = x− 10y

with initial data y(0) = y0. By eliminating the variable y, namely by substi-
tuting the formula y(t) = e−10t[y0 +

∫ t
0 x(s)e10sds] obtained by means of the

appropriate solution formula into the first equation, we have the following
integral nonlocal differential equation (in this case the nonlocality manifests
itself over time, with memory effects in the system)

dx

dt
(t) = x(t) +

∫ t

0
e−10(t−s)x(s)ds+ e−10ty0
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2.2 Nonlocality

Obviously, the opposite process also remains possible: starting from a
nonlocal model, it could be derived a local model that is equivalent to it by
introducing new unknowns in order to work in a space of greater dimensions
than the initial one.

The treatment of nonlocality in time is even more difficult then the spatial
one, both from an intuitive and mathematical point of view. As observed by
T. Filk in [14], various definitions, all equally valid, can be given for the con-
cept of temporal nonlocality. The one that allows a greater parallelism with
what has been said in the case of spatial nonlocality is the one according to
which we are dealing with a reciprocal influence between the states of the
system for times that are far apart (for more details see the complete work
[14], but it is possible to implement this definition if we think of working in
the field of relativity and we consider two time-lines obtained by different
Minkowski metrics).
Actually, it is also possible to see the concept of temporal nonlocality as
the loss of consequentiality of events. Indeed, as it is well known, in the
field of classical physics, it is always possible to order events according to
a time line, whereas in the field of relativistic physics, if we consider events
that are not bound by a cause-effect relationship, their sequentiality depends
strongly on the observer.
Temporal nonlocality not only appears within the considered equations but
often occurs in the initial conditions, resulting in a nonlocal boundary prob-
lem. As mentioned in [28], this allows greater accuracy in modeling and
thus better results. Indeed, with a classical local initial condition we only
enter information regarding one time instant, whereas in the case of nonlo-
cality we are also able to introduce conditions for further time instants.

Let us now focus our attention for a moment on how nonlocality has come
into play in the biological area. In this field there is a need to collect data on
different spatial and temporal scales, so, as a consequence, there is the need
to increase the "resolution" of the models used in order to provide a mul-
tiscale description of the components involved, that could combine macro,
meso and micro considerations. As explained in [23], in local models mod-
eling an interaction for spatially neighboring points implicitly implies that
the spatial and temporal scales of movement and interaction are of the same
order of magnitude. In contrast, in nonlocal models the fact that interac-
tions appear between distant points implies that the spatial scale is larger
(but not sufficiently so that different positions can be considered indistin-
guishable) and the temporal scale smaller than in other processes that are
modeled explicitly. Thus, since there is a unification of the spatial and tem-
poral scales at work, nonlocal models represent simplifications of reality in
this sense. These characteristics correspond perfectly to the type of data
often collected in the biological field: many quantities of interest occur on
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2.3 A second nonlocal model (logistic growth)

such small temporal and spatial scales that it is practically impossible to
collect enough data, so the choice is often made to collect data on larger
scales. Since, as mentioned, nonlocal models allow the modeling of small-
scale processes within larger spatial and temporal scales, these techniques fit
exactly the type of data that is often available. These types of phenomena
in the biological sphere are often translated into the model as interaction
terms in the form of integrals over a spatial or a temporal domain in which
the integrand has a kernel, strongly dependent on the model studied, that
governs the interactions.
All this general framework can be transferred into our model. Indeed, in the
last step of construction, we decided that the conversion of healthy proteins
into toxic ones depends on the densities of the various proteins involved in
the spatial neighborhood of the point x ∈ Ω we are considering. To do this,
we have introduced a convolution with a normalized positive kernel allow-
ing each point in the neighborhood to provide the correct contribution. In
this way an interaction between spatially distant points of the domain is
introduced into the model, and this corresponds exactly to the concept of
spatial nonlocality as reported above. Indeed it is not sufficient to know the
solution of the system at a single point (x, t) to verify the validity of the
equations at the point. Therefore all the convolution terms introduced are
manifestations of the spatial nonlocality of our model.

2.3 A second nonlocal model
The model 2.2, described in the section 2.1, can be further improved by as-
suming a logistic growth rather than an exponential one in the production of
healthy proteins of both types, as suggested in [25] and [31]. This logistic
curve means that a controlled and limited growth of the healthy popula-
tions is involved. Indeed in the context of populations it is unlikely that a
population will have unlimited growth over time and therefore a carrying
capacity is often introduced as a factor indicating a threshold above which
the studied environment is no longer able to support the present population
(e.g. it is likely to be assumed that the precursors of the Aβ protein, namely
the transmembrane APP proteins, are present in a limited amount and that
therefore the population increase cannot be unlimited). Consequently, the
expression that is usually assumed to reflect the experimental data obtained
in the population is

a0u(1− u

K
)

where a0 represents the production rate and K the carrying capacity. This
expression is designed to express the fact that, in the case of limited re-
sources, growth is proportional to the percentage of resources not yet used,
i.e. 1− u

K . Indeed, it can be assumed that in the case where the population
(and thus the protein density in our case) is low, the resources available will
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2.3 A second nonlocal model (logistic growth)

appear to be sufficient and thus the growth will be fast at first. Then, as
the population increases the available resources will begin to be a limiting
factor for a such rapid population growth. Unwinding the product and uni-
fying the parameters it is possible to express this characteristic in the form
that appears in the following model with logistic growths for both healthy
proteins 

∂u
∂t = ∇ · (D1∇u) + u(a0 − a1u)− a2u

1+cuuφ ∗ ũ
∂ũ
∂t = ∇ · (D̃1∇ũ)− ã1ũ+ a2ũφ ∗ ( u

1+cuu)
∂v
∂t = ∇ · (D2∇v) + v(b0 − b1v)− b2v

1+cvvφ ∗ ṽ − b3ũvṽ
∂ṽ
∂t = ∇ · (D̃2∇ṽ)− b̃1ṽ + b2ṽφ ∗ ( v

1+cvv ) + b3ũvṽ

(2.5)

2.3.1 Analysis of equilibrium points

Having changed the growth considered within our model, let us now establish
how the equilibrium points and their stability change in this case.
As in the previous cases, since the equilibrium points and their stability are
independent from the spatial dynamics, we can study them by omitting from
our model the terms that make an exclusively spatial contribution, namely
the diffusive terms. In addition, we can carry out a similar reasoning as
before for the convolution terms: noting that these are integrals carried out
in the spatial variable, we can exploit the linearity of the integral and the
fact that the kernel considered is unitary in order to make simplifications.
Thus, the equilibrium points with the relative stability will coincide with
those of the following local ODEs system

du
dt = u(a0 − a1u)− a2u

1+cuu ũ
dũ
dt = −ã1ũ+ a2u

1+cuu ũ
dv
dt = v(b0 − b1v)− b3ũvṽ − b2v

1+cvv ṽ
dṽ
dt = −b̃1ṽ + b3ũvṽ + b2v

1+cvv ṽ

(2.6)

with non-zero initial condition.
To find all the equilibrium points of our system, we proceed as before: re-
membering that all our quantities are non-negative, we first look for equilib-
rium points that have at least one null component, and then for equilibrium
points for which all components are strictly greater than zero.
We always fix the convention that the coordinates of the stationary points
will be given by (u, ũ, v, ṽ). We begin by looking for axial equilibrium points,
i.e. the ones where at least one component is zero.

1. let us assume u = 0. Unlike the previous model, in this case u = 0
makes the first equation of the system satisfied for every value of the
parameters involved, so it makes sense to continue with the calcula-
tions.
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2.3 A second nonlocal model (logistic growth)

The system to be solved to find the axial equilibrium points will hence
become 

u = 0
−ã1ũ = 0
v(b0 − b1v)− b3ũvṽ − b2v

1+cvv ṽ = 0
−b̃1ṽ + b3ũvṽ + b2v

1+cvv ṽ = 0

However, having assumed that the rate of clearance of the Aβ toxic
protein is ã1 > 0 we will have

u = 0
ũ = 0
v(b0 − b1v)− b2v

1+cvv ṽ = 0
−b̃1ṽ + b2v

1+cvv ṽ = 0

⇒


u = 0
ũ = 0
v(b0 − b1v) = b̃1ṽ

−b̃1ṽ + b2v
1+cvv ṽ = 0

from which, continuing with the calculations

u = 0
ũ = 0
ṽ = v

b̃1
(b0 − b1v)

v(b0 − b1v)(1− b2v
(1+cvv)b̃1

) = 0

We will obtain then the following solutions:

• E0 :


u = 0
ũ = 0
v = 0
ṽ = 0

and E1 :


u = 0
ũ = 0
v = b0

b1

ṽ = 0
• E2 : 

u = 0
ũ = 0
1− b2v

(1+cvv)b̃1
= 0

ṽ = v
b̃1

(b0 − b1v)

⇒


u = 0
ũ = 0
−b̃1 − b̃1cvv + b2v = 0
ṽ = v

b̃1
(b0 − b1v)

⇒


u = 0
ũ = 0
v(b2 − b̃1cv) = b̃1

ṽ = v
b̃1

(b0 − b1v)

⇒



u = 0
ũ = 0
v = b̃1

b2−b̃1cv

ṽ = b0(b2−b̃1cv)−b1b̃1
(b2−b̃1cv)2
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2.3 A second nonlocal model (logistic growth)

2. assume ũ = 0. Again, the second equation of the initial system is valid
for every value of the model parameters. We will therefore work with
the following system:

u(a0 − a1u) = 0
ũ = 0
v(b0 − b1v)− b2v

1+cvv ṽ = 0
−b̃1ṽ + b2v

1+cvv ṽ = 0

With calculations entirely analogous to the case of u = 0 we get the
system 

u(a0 − a1u) = 0
ũ = 0
ṽ = v

b̃1
(b0 − b1v)

v(b0 − b1v)(1− b2v
(1+cvv)b̃1

) = 0

At this point, we will have to analyze two cases for the equation related
to u and three for that related to v. In the case in which u = 0, we find
a system identical to that obtained by searching for axial stationary
points with the first component zero, so we will not explain the cal-
culations again. For that reason we will only perform the calculations
for the second case of the equation for u.

u = a0
a1

ũ = 0
ṽ = v

b̃1
(b0 − b1v)

v(b0 − b1v)(1− b2v
(1+cvv)b̃1

) = 0

We then observe that, having already solved the first of the two pairs
of equations, the remaining coupled equations are the same as in the
previous case, so the values of v and ṽ that we will obtain are the
same as in the initial case. Consequently, the solutions we will have
are given by:

• E3 :


u = a0

a1

ũ = 0
v = 0
ṽ = 0

E4 :


u = a0

a1

ũ = 0
v = b0

b1

ṽ = 0

E5 :



u = a0
a1

ũ = 0
v = b̃1

b2−b̃1cv

ṽ = b0(b2−b̃1cv)−b1b̃1
(b2−b̃1cv)2

3. assume v = 0. In contrast to the previous model for v = 0, we obtain
that the third equation of the initial system is valid for every parameter
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2.3 A second nonlocal model (logistic growth)

value. So it makes sense to continue the analysis of the following
system 

u(a0 − a1u)− a2u
1+cuu ũ = 0

−ã1ũ+ a2u
1+cuu ũ = 0

v = 0
−b̃1ṽ = 0

We observe that in this case the calculations are completely symmet-
rical to those made when posing u = 0 by exchanging u for v, ũ for ṽ,
a1 for b1, a0 for b0, ã1 for b̃1, ã2 for b̃2 and cu for cv. We will therefore
obtain the system

u(a0 − a1u)(1− a2u
(1+cuu)ã1

) = 0
ũ = u

ã1
(a0 − a1u)

v = 0
ṽ = 0

which will have solutions

• E0 :


u = 0
ũ = 0
v = 0
ṽ = 0

E3 :


u = a0

a1

ũ = 0
v = 0
ṽ = 0

E6 :


u = ã1

a2−cuã1

ũ = a0(a2−ã1cu)−a1ã1
(a2−ã1cu)2

v = 0
ṽ = 0

4. let us assume ṽ = 0. The system and the calculations to be performed
are completely symmetrical to those shown for ũ = 0. We will find
also in this case the three solutions exposed previously for v = 0 in
addition to those obtained by solving

u(a0 − a1u)(1− a2u
(1+cuu)ã1

) = 0
ũ = u

ã1
(a0 − a1u)

v = b0
b1

ṽ = 0

From which, by analogous reasoning as for ũ = 0, with the appropriate
substitutions we get:

• E1 :


u = 0
ũ = 0
v = b0

b1

ṽ = 0

E4 :


u = a0

a1

ũ = 0
v = b0

b1

ṽ = 0

E7 :


u = ã1

a2−cuã1

ũ = a0(a2−ã1cu)−a1ã1
(a2−ã1cu)2

v = b0
b1

ṽ = 0
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Summarizing, all the axial equilibrium points identified are:

E0 = (0, 0, 0, 0) E2 = (0, 0, b̃1

b2 − b̃1cv
,
b0(b2 − b̃1cv)− b1b̃1

(b2 − b̃1cv)2 )

E1 = (0, 0, b0
b1
, 0) E5 = (a0

a1
, 0, b̃1

b2 − b̃1cv
,
b0(b2 − b̃1cv)− b1b̃1

(b2 − b̃1cv)2 )

E3 = (a0
a1
, 0, 0, 0) E6 = ( ã1

a2 − cuã1
,
a0(a2 − ã1cu)− a1ã1

(a2 − ã1cu)2 , 0, 0)

E4 = (a0
a1
, 0, b0

b1
, 0) E7 = ( ã1

a2 − cuã1
,
a0(a2 − ã1cu)− a1ã1

(a2 − ã1cu)2 ,
b0
b1
, 0)

Since each of the quantities involved represents a density in accordance with
the aims of the model, in order for these equilibrium points to be meaningful
not only mathematically but also physically, it is necessary to ensure that
all components are non-negative. Thus we shall have:

• for the existence of E6 and E7:

i. a2 − ã1cu > 0 i.e. a2 > cuã1

ii. a0(a2 − ã1cu)− a1ã1 ≥ 0 so a0
a1
≥ ã1

a2−cuã1

• for the existence of E2 and E5:

i. b2 − b̃1cv > 0 from which b2 > cv b̃1

ii. b0(b2 − b̃1cv)− b1b̃1 ≥ 0 therefore b0
b1
≥ b̃1

b2−cv b̃1

The equilibrium point E0 does not have a distinct physical meaning: it
corresponds to the total absence of any protein, which cannot occur in an
active brain (as there is naturally production of healthy Aβ and τ proteins)
but only in dead cells. As for the other equilibrium states, all of which
have at least one null component, they can be classified according to criteria
similar to those of the previous case. In particular we have that E1, E3, E4
are healthy states; E2 and E5 are Aβ healthy-τ toxic and viceversa E6 and
E7.
We now want to seek, if it exists, a stationary point that does not have zero
components and which will reflect for that reason, following the terminology
applied, a pathological state. By imposing that the time derivatives of the
system 2.6 are null, we get:

u(a0 − a1u)− a2u
1+cuu ũ = 0

−ã1ũ+ a2u
1+cuu ũ = 0

v(b0 − b1v)− b3ũvṽ − b2v
1+cvv ṽ = 0

−b̃1ṽ + b3ũvṽ + b2v
1+cvv ṽ = 0

⇒


u(a0 − a1u) = ã1ũ

v(b0 − b1v) = b̃1ṽ

−ã1ũ+ a2u
1+cuu ũ = 0

−b̃1ṽ + b3ũvṽ + b2v
1+cvv ṽ = 0
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The system of equations to be solved is therefore given by

ũ = u(a0 − a1u)
ã1

ṽ = v(b0 − b1v)
b̃1

− u(a0 − a1u) + a2u

1 + cuu

u(a0 − a1u)
ã1

= 0

− v(b0 − b1v) + b3
u(a0 − a1u)v2(b0 − b1v)

ã1b̃1
+ b2v

2(b0 − b1v)
(1 + cvv)b̃1

= 0

(2.7a)

(2.7b)

(2.7c)

(2.7d)

Analyzing the equation 2.7c which can be rewritten as

u(a0 − a1u)(−1 + a2u

(1 + cuu)ã1
) = 0

it is observed that the solutions given by u = 0 and u = a0
a1

(from which
ũ = 0 would follow) are not acceptable as we are looking for a stationary
point in which all concentrations are positive. As a consequence the only
possible solution in our case will be u = ã1

a2−ã1cu
. Then substituting in the

expression derived for ũ we will obtain ũ = a0a2−a1ã1−a0cuã1
(a2−ã1cu)2 .

Turning instead to the analysis of 2.7d and rewriting it as

v(b0 − b1v)(−1 + b3
u(a0 − a1u)

ã1

v

b̃1
+ b2v

1 + cvv

1
b̃1

) = 0

we have that, for reasons similar to those just stated, the only admissible
solution is obtained by solving

−1 + b3
u(a0 − a1u)

ã1

v

b̃1
+ b2v

1 + cvv

1
b̃1

= 0

But remembering that ũ = u(a0−a1u)
ã1

we will have

−1 + b3ũ
v

b̃1
+ b2v

1 + cvv

1
b̃1

= 0 (2.8)

Thus, the density of τ protein must satisfy the equation

cvũb3v
2 + (b2 + ũb3 − b̃1cv)v − b̃1 = 0

We remark that, as in the determinations of the equilibrium points of the
previous models, this expression could also be derived from the last equation
of the initial system of ODEs by simply dividing by the variable ṽ since in
this case it is assumed to be non-zero. However, by taking this quicker route,
we could not have made the following remark.
From the equation 2.8 it is possible to derive a more explicit expression for v

b̃1
.
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Indeed substituting in the expression 2.7b we get ṽ = (b0−b1v) 1+cvv
b2+b3ũ+b3ũcvv

.
For the admissibility of the just derived stationary point

E∗ = ( ã1
a2 − ã1cu

,
a0a2 − a1ã1 − a0cuã1

(a2 − ã1cu)2 , v∗, (b0 − b1v∗)
1 + cvv∗

b2 + b3ũ+ b3ũcvv∗
)

where v∗ satisfies the equation cvũb3v2 + (b2 + ũb3− b̃1cv)v− b̃1 = 0, we will
have to impose positivity of all components so:

• u > 0 whence a2 > cuã1

• ũ > 0 therefore a0
a1
> ã1

a2−cuã1

• ṽ > 0 i.e. b0 > b1v∗

• v∗ > 0 positive root of the above equation: we observe that the deter-
minant of the equation is always positive and for an analogous reason-
ing performed for the first model at least one solution will always exist
and will be given by considering the v∗ obtained with a second-degree
solution formula with a positive sign. Since the equation that must
satisfy v∗ is analogous to the case analyzed with non-logistic growth,
even here we will have that the solution is also unique in the case
where b3ũ− cv b̃1 + b2 ≥ 0.

At this point, having identified the equilibrium points of the system 2.6,
we can move on to the study of their stability. To do this, however, it
is necessary to determine the Jacobian of the system at a generic point
(u, ũ, v, ṽ) and calculate its eigenvalues.
First of all, we observe that the first two equations of the system do not
include the variables v and ṽ so there will be a block of zeros in the Jacobian.
In addition, the elements obtained by deriving the last two equations with
respect to the variable u will also be null. The Jacobian matrix will have
the following structure: 

Juu Juũ 0 0
Jũu Jũũ 0 0
0 Jvũ Jvv Jvṽ
0 Jṽũ Jṽv Jṽṽ
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where

Juu = a0 − 2a1u−
a2ũ

(1 + cuu)2 Juũ = − a2u

1 + cuu

Jũu = a2ũ

(1 + cuu)2 Jũũ = −ã1 + a2u

1 + cuu

Jvũ = −b3vṽ Jvv = b0 − 2b1v − b3ũṽ −
b2ṽ

(1 + cvv)2

Jvṽ = −b3ũv −
b2v

1 + cvv
Jṽũ = b3vṽ

Jṽv = b3ũṽ + b2ṽ

(1 + cvv)2 Jṽṽ = −b̃1 + b3ũv + b2v

1 + cvv

We note that the Jacobian is a lower-block triangular matrix, so the deter-
minant is given by the product of the determinants of the diagonal blocks
and the eigenvalues are the eigenvalues of the diagonal blocks. In particular
the eigenvalues will be given by

• (Juu − λ)(Jũũ − λ)− JũuJuũ = 0 from which we get
λ2−λ(Juu+Jũũ)−JũuJuũ+JuuJũũ = 0. Using the resolutive formula

λ1,2 = Juu + Jũũ ±
√

(Juu + Jũũ)2 − 4(JuuJũũ − JũuJuũ)
2

• (Jvv − λ)(Jṽṽ − λ)− JṽvJvṽ = 0 by further explicating
λ2 − λ(Jvv + Jṽṽ)− JṽvJvṽ + JvvJṽṽ = 0 and solving we get to

λ3,4 = Jvv + Jṽṽ ±
√

(Jvv + Jṽṽ)2 − 4(JvvJṽṽ − JṽvJvṽ)
2

It can be seen that, depending on the value of the parameters within the
model, the number of equilibrium points present changes, as does their sta-
bility. As a consequence, in order to continue the study, we will need to fix
some of these parameters.

Remark 2.2. Up to this point, we have analyzed two different nonlocal
models, one with unlimited growth (2.2) and the other with logistic growth
(2.5). In both cases, we have pursued the study of equilibrium points with
relative stability. Going to make a brief comparison between the stationary
points identified, we observe how the equilibrium points of the second sys-
tem have more than doubled, going from 4 to 9. Indeed, the introduction
of logistic growth in the system increases the number of cases to be studied,
in particular it opens up the possibility that the components of stationary
points corresponding to healthy proteins may also assume a null value.
We remark that the only equilibrium point remaining unchanged and com-
mon to both systems is given by (a0

a1
, 0, b0

b1
, 0). If in the second model we
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decide to consider the precise definition of a1 and b1, i.e. a1 = a0
K1

and
b1 = b0

K2
, we note that, in this second case, this common equilibrium point

can also be expressed as (K1, 0,K2, 0).
Finally, we observe that both 2.2 and 2.5 possess a single pathological equi-
librium state, in which the component v is not given explicitly but solves
the same second-degree equation, which can always be obtained by dividing
the last equation of the ODEs system by ṽ. It can therefore be stated that
as long as this last equation is not altered, v∗ will always be the solution of
the same second-degree equation.

2.3.2 Clearance inequalities

As with the 2.2, within the present model it is possible to identify by means
of inequalities when the clearance process either works correctly or fails.
By analogous reasoning it will be necessary for a Aβ healthy-τ healthy state
to exist, depending on the state we want to consider, that the following
relations hold

a0 ≤ a1 and/or b0 ≤ b1
These can be rewritten, remembering the definition used in this model of
a1 = a0

K1
and b1 = b0

K2
, as

K1 ≤ 1 and/or K2 ≤ 1

In the event that at least one clearance process implicated for the healthy
state under consideration fails, i.e. where 0 ≤ a1 < a0 and/or 0 ≤ b1 <
b0, we will have that our model will not admit this state with physical
significance. We therefore remark how in this model, having three non-null
healthy states and not just one as in previous models, the validity of the
inequalities a0 ≤ a1 and b0 ≤ b1 leads to a somewhat more complex analysis
of the equilibrium points. In addition to these points, the null equilibrium
state E0 will always be considered as there are particular situations in which
this can also be of interest.
Always considering the clearance inequalities given by

a0
a1

<
ã1

a2 − cuã1
and b0

b1
<

b̃1

b2 − cv b̃1
(2.9)

we move on by studying the stability of the significant equilibrium points.
Since both of these inequalities hold, we observe that the equilibrium points
with physical significance are E0, E1, E3, E4. By substituting the appropri-
ate values into the formulas derived above for the eigenvalues of the Jacobian
matrix, we obtain the following results.

• equilibrium point E0 : λ1 = −ã1, λ2 = a0, λ3 = −b̃1 and λ4 = b0.
Thus having eigenvalues with positive real part it will result unstable.
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• stationary point E1 : λ1 = −ã1, λ2 = a0, λ3 = −b̃1 + b2b0
b1+cvb0

and
λ4 = −b0. Also this state having only three eigenvalues with negative
real part will result unstable.

• steady state E3 : λ1 = −ã1+ a2a0
a1+cua0

, λ2 = −a0, λ3 = −b̃1 and λ4 = b0.
The point will therefore be unstable.

• equilibrium point E4 : λ1 = −a0, λ2 = −ã1 + a2a0
a1+cua0

, λ3 = −b0
and finally λ4 = −b̃1 + b2b0

b1+cvb0
. Since we are assuming that the clear-

ance inequalities hold, we will have that this will be the only stable
stationary point in this situation.

At this point, we observe that if there are changes that disrupt the clearance
process of one of the two proteins, at least one of the two inequalities will not
be fulfilled. This change will keep the equilibrium points E0, E1, E3 unstable
while it will make the state E4 unstable. Simultaneously, we will also have
that:

1. If the first clearance inequality fails, the points E6 and E7 must also
be considered

2. If the second clearance inequality is not satisfied, the points E2 ed E5
also become of interest

Furthermore, for appropriate parameter values even the state E∗ can acquire
physical significance as a pathological state.
Carrying out the stability study in these more complex cases without set-
ting parameter values and without the use of simulations is not convenient.
Therefore, please refer to [31] for a more complete study of the stability of
equilibrium points obtained by means of the tools outlined above. We can
however remark, thanks to the simulations set out in the paper, how in a
similar way to the previous model we can reach a distinction between differ-
ent types of tauopathies (primary and secondary) depending on whether the
toxic τ concentration exists independently of the Aβ concentration or not.
Anyhow, we will have a greater complexity in the analysis of the various
cases of development of the disease by having a greater number of equilib-
rium points within the model. We can still state that even in this case the
model is sensitive to the correct or incorrect functioning of the clearance
process within the system we are considering.
Furthermore, as studied in [31], in this case we will also have the possibility
of studying how, depending on the connections present between the various
areas of the brain, the equilibrium point to which the solution asymptotically
tends, changes. In order to make these observations, however, the discrete
models associated with the described continuous models and set out in the
last chapter, are fundamental.
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2.4 A third nonlocal model
Having observed that as the growth trend changes, the equilibrium points
of our model also change, what we propose to do in this section is to look
at another type of growth and observe what changes this choice leads to.
In particular, Gompertz-type growth can be considered within the model.
Its uses are not new in the medical and biological fields, indeed, although it
was born for a life expectancy model in the insurance field, it has also found
applications for example in the growth of tumors ( [8]), weight growth of
livestock and particular species such as rats and guinea pigs ( [45]).
This type of growth results to have features similar to logistic growth, indeed
they both turn out to be special cases of the generalized logistic distribution.
Following what was described in [44], this is a family of growths with the
characteristic S-shape, the slope of which changes as the parameter ξ that
characterizes it varies. The equation that distinguishes it, considering as
unknown function for example u = u(x, t), is given by

∂u

∂t
= a0

ξ

[
1−

( u
K

)ξ]
u (2.10)

where ξ represents the asymmetry of the growth curve to be considered.
If for example ξ = 1 is considered, we obtain a logistic growth equation in
which the curve obtained is symmetrical with respect to the curve’s inflection
point. Choosing instead ξ = 0 we obtain the Gompertz model. Obviously,
since the parameter ξ is in the denominator, this can only be done by using
limits. Recalling that limz→0

yz−1
z = ln(y) then we will have, in our case

that
lim
ξ→0

1
ξ

[( u
K

)ξ
− 1

]
= ln

( u
K

)
from which we get that the Gompertzian growth equation is given by

∂u

∂t
= −a0u ln( u

K
)

This same equation, exploiting the properties of logarithms, is often ex-
pressed in the literature, posing c1 = ln(K), as

∂u

∂t
= a0u(c1 − ln(u))

We will, however, maintain the previous expression.
Regarding the differences with logistic growth, we have that the Gompertz
curve is not symmetrical, so if one thinks that the data can take this form,
one must consider this growth. Furthermore, when compared with the lo-
gistic growth, the Gompertzian growth has a higher growth at first but
approaches the asymptote (which remains the same as the logistic growth)
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much more slowly. Thus, the two curves differ in their tails and have differ-
ent points of inflection.
Introducing this type of growth instead of the logistic one in the model 2.5
we will get

∂u
∂t = ∇ · (D1∇u)− a0u ln( u

K1
)− a2u

1+cuuφ ∗ ũ
∂ũ
∂t = ∇ · (D̃1∇ũ)− ã1ũ+ a2ũφ ∗ ( u

1+cuu)
∂v
∂t = ∇ · (D2∇v)− b0v ln( v

K2
)− b2v

1+cvvφ ∗ ṽ − b3ũvṽ
∂ṽ
∂t = ∇ · (D̃2∇ṽ)− b̃1ṽ + b2ṽφ ∗ ( v

1+cvv ) + b3ũvṽ

(2.11)

So having a new model, let’s see if and how the equilibrium points change.

2.4.1 Analysis of equilibrium points

Since only the temporal and not the spatial dynamics are of interest for
the determination of the equilibrium points, we omit the purely spatial con-
tribution terms, i.e. the diffusive terms, as before. Moreover, since the
integral terms are operated in the spatial variable, by reasoning similarly to
the previous models, exploiting the unitarity of the convolution kernel we
will have a simplified contribution. Therefore, the equilibrium points with
their stability will coincide with those of the following local ODEs system

du
dt = −a0u ln( u

K1
)− a2u

1+cuu ũ
dũ
dt = −ã1ũ+ a2u

1+cuu ũ
dv
dt = −b0v ln( v

K2
)− b3ũvṽ − b2v

1+cvv ṽ
dṽ
dt = −b̃1ṽ + b3ũvṽ + b2v

1+cvv ṽ

(2.12)

with non-zero initial conditions.
Let us determine the equilibrium points by proceeding as in the cases that
have been already discussed, namely by identifying first the axial stationary
states (with at least one null component).
We immediately observe that it is not possible to consider neither u = 0
or v = 0 as this would lead to indeterminate forms in the first and third
equation of 2.12 respectively. We shall therefore only have to analyze the
following two cases.

• ũ = 0 : the system 2.12 then becomes
u ln( u

K1
) = 0

ũ = 0
−b0v ln( v

K2
)− b2v

1+cvv ṽ = 0
−b̃1ṽ + b2v

1+cvv ṽ = 0
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However, we note that in the case-by-case analysis of the first equation,
it is not possible to consider u = 0 as this would lead to indeterminacy.
The only acceptable case is therefore that the logarithm is null, i.e.
u = K1

ũ = 0
−b0v ln( v

K2
)− b̃1ṽ = 0

−b̃1ṽ + b2v
1+cvv ṽ = 0

⇒


u = K1

ũ = 0
ṽ = − b0

b̃1
v ln( v

K2
)

b0v ln( v
K2

)− b2v
1+cvv

b0
b̃1
v ln( v

K2
) = 0

Finishing the calculations of the last equation, we obtain
u = K1

ũ = 0
ṽ = − b0

b̃1
v ln( v

K2
)

b0v ln( v
K2

)(b̃1(1 + cvv)− b2v) = 0

Here again, we observe that in the last equation v = 0 cannot be
considered due to the indeterminacy to which it would lead. Therefore
we will only have the two stationary points obtained by setting the
other two terms equal to zero, i.e.

E1 = (K1, 0,K2, 0)

E2 = (K1, 0,
b̃1

b2 − b̃1cv
,

b0

b̃1cv − b2
ln( b̃1

K2(b2 − b̃1cv)
))

• ṽ = 0: the calculations necessary in this case are completely symmet-
rical to the previous case. Indeed we will have to solve the system
given by 

−a0u ln( u
K1

)− a2u
1+cuu ũ = 0

−ã1ũ+ a2u
1+cuu ũ = 0

−b0v ln( v
K2

) = 0
ṽ = 0

Similarly, due to indeterminacy, we can only consider the following
case 

−a0u ln( u
K1

)− a2u
1+cuu ũ = 0

−ã1ũ+ a2u
1+cuu ũ = 0

v = K2

ṽ = 0
Using completely symmetrical calculations from the previous case, we
will find the following equilibrium points

E1 = (K1, 0,K2, 0)
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E3 = ( ã1
a2 − ã1cu

,
a0

ã1cu − a2
ln( ã1

K1(a2 − ã1cu)),K2, 0)

In order for the identified equilibrium points to represent densities, all their
components must be non-negative. We observe that in the case of E1 the
non-negativity is already guaranteed. Therefore, in order for the other two
equilibrium points to be admissible, we must require

• in the case of E2:

i. to be positive the density relative to v we must require that
b2 − b̃1cv > 0 i.e. b2 > cv b̃1

ii. with regard to the density of ṽ we observe that the factor before
the logarithm, because of the request made for the positivity of
v, is negative. Therefore we will only have to consider values that
give us negative logarithms and thus

b̃1

K2(b2 − b̃1cv)
≤ 1⇒ b̃1 ≤ K2(b2 − b̃1cv)

• in the case of E3:

i. for the positivity of the density relative to u is required
a2 − ã1cu > 0 so a2 > cuã1

ii. for the density of ũ we observe that, as a result of the requirement
related to the positivity of u, we will have to have a negative
logarithm. Therefore we shall only consider

ã1
K1(a2 − ã1cu) ≤ 1⇒ ã1 ≤ K1(a2 − ã1cu)

Similarly to the previous models, a classification can be made: the point E1
will be a healthy state, E2 will be Aβ healthy-τ toxic and E3 will be Aβ
toxic-τ healthy.
Let us now examine whether this model admits an equilibrium state that
has no null components. We shall then proceed to solve the following system

−a0u ln( u
K1

)− a2u
1+cuu ũ = 0

−ã1ũ+ a2u
1+cuu ũ = 0

−b0v ln( v
K2

)− b3ũvṽ − b2v
1+cvv ṽ = 0

−b̃1ṽ + b3ũvṽ + b2v
1+cvv ṽ = 0

⇒


ũ = −a0u ln( u

K1
)1+cuu
a2u

a0u ln( u
K1

)(ã1
1+cuu
a2u

− 1) = 0
−b0v ln( v

K2
)− b3ũvṽ − b2v

1+cvv ṽ = 0
−b̃1ṽ + b3ũvṽ + b2v

1+cvv ṽ = 0
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Among the cases to be analyzed for the second equation, we note that it
is not possible to consider u = 0 as this would lead to indeterminacy, nor
u = K1 as this would lead to ũ = 0 in contrast to our search for a stationary
point without null components. We will therefore only have the following
case 

ũ = − a0
a2−ã1cu

ln( ã1
K1(a2−ã1cu))

u = ã1
a2−ã1cu

−b0v ln( v
K2

)− b3ũvṽ − b2v
1+cvv ṽ = 0

−b̃1ṽ + b3ũvṽ + b2v
1+cvv ṽ = 0

Moving on, working on the equations in which the unknowns v and ṽ appear,
we can add them up to obtain one equation while the other can be derived
by dividing the last equation of the system just written by ṽ (which we are
assuming to be non-zero). The solution will then be given by

E∗ = ( ã1
a2 − ã1cu

,− a0
a2 − ã1cu

ln( ã1
K1(a2 − ã1cu)), v∗,−

b0
b1
v∗ ln( v∗

K2
))

where v∗ is solution of the second-degree equation, equal to that of the
models analyzed above, b3cvũv2 + (b3ũ− cv b̃1 + b2)v − b̃1 = 0.
This pathological state of the model in order to exist, i.e. for it to have all
non-zero and non-negative components, requires the following conditions:

i. a2 − ã1cu > 0 implying a2 > cuã1

ii. for the density of ũ we observe that, since we have required the pos-
itivity of u, we must have a negative logarithm. Therefore we shall
only consider

ã1
K1(a2 − ã1cu) < 1⇒ ã1 < K1(a2 − ã1cu)

iii. for the positivity of the component ṽ we will require a negative loga-
rithm, therefore v∗ < K2

iv. v∗ positive root: note that the determinant of the second-degree equa-
tion to be solved is always positive, so we will always have two so-
lutions. However, the one obtained by subtracting the root, as in all
previous models since the equation is the same, will turn out to be less
than zero in some cases.
We will therefore have a single equilibrium point E∗ in the case of
b3ũ− cv b̃1 + b2 ≥ 0.

At this point, in order to study the stability of the four equilibrium points,
which may be present for appropriate parameters, we must calculate the Ja-
cobian of the system at a generic point (u, ũ, v, ṽ) and study its eigenvalues.
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Since the first two equations of our model do not involve the variables related
to protein τ , the Jacobian matrix will be of the form

Juu Juũ 0 0
Jũu Jũũ 0 0
0 Jvũ Jvv Jvṽ
0 Jṽũ Jṽv Jṽṽ


with

Juu = −a0 ln( u
K1

)− a0 −
a2ũ

(1 + cuu)2 Juũ = − a2u

1 + cuu

Jũu = a2ũ

(1 + cuu)2 Jũũ = −ã1 + a2u

1 + cuu

Jvv = −b0 ln( v
K2

)− b0 − b3ũṽ −
b2ṽ

(1 + cvv)2 Jvũ = −b3vṽ

Jvṽ = −b3ũv −
b2v

1 + cvv
Jṽũ = b3vṽ

Jṽv = b3ũṽ + b2ṽ

(1 + cvv)2 Jṽṽ = −b̃1 + b3ũv + b2v

1 + cvv

As the matrix is a lower triangular block matrix, the eigenvalues will corre-
spond to the eigenvalues of the blocks and will therefore be given by

• λ2 − λ(Juu + Jũũ)− JũuJuũ + JuuJũũ = 0. That is, we shall have

λ1,2 = Juu + Jũũ ±
√

(Juu + Jũũ)2 − 4(JuuJũũ − JũuJuũ)
2

• λ2 − λ(Jvv + Jṽṽ)− JṽvJvṽ + JvvJṽṽ = 0 from which we obtain

λ3,4 = Jvv + Jṽṽ ±
√

(Jvv + Jṽṽ)2 − 4(JvvJṽṽ − JṽvJvṽ)
2

Given a stationary state, calculating the eigenvalues relative to the Jacobian
at the point means that if all eigenvalues have a negative real part, the
equilibrium point is stable, otherwise unstable.

Remark 2.3. It is interesting to observe how, by changing the growth
type of the model, the equilibrium points have changed again. In this case,
as a result of the indeterminacy that prevents taking into account some
null components, we again have only four equilibrium points as in the first
nonlocal model 2.2. We also have in this case a single healthy state in
which only the two carrying capacities for Aβ and τ are involved. Recalling,
however, that in the case of logistic growth in the 2.5 model we had indicated
a1 = a0

K1
and b1 = b0

K2
, we will have that a0

a1
= K1 e b0

b1
= K2. Therefore the
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healthy equilibrium point in all analyzed models has always remained the
same.
The other common element, in this case also with the first nonlocal model
2.2 is the second-degree equation that must satisfy the component v∗ of the
point E∗. This is because the equation can be obtained simply by dividing
the last equation of the system for v∗, so changing only the type of growth
does not affect this last equation.

2.4.2 Clearance inequalities

For this model as well, it is fundamental to determine which mathematical
inequalities describe the failure or not of the Aβ and τ protein clearance
process. We set out the reasoning in the case of Aβ but it will be analogous
in the case of τP . Under standard conditions, protein accumulation does
not take place, so for the healthy state of our model to be medically relevant
it must be the case that the rate of Aβ production (respectively τ ) is less
than the rate of Aβ clearance (respectively τ ). To express this fact math-
ematically, it is necessary to use the alternative writing for Gompertzian
growth

−a0u ln( u
K1

) = −a0u(ln(u)− ln(K1)) = u(a0 ln(K1)− a0 ln(u))

Indeed, it allows to identify for the Aβ protein the rate of production equal
to a0ln(K1) and clearance equal to a0.
Thus, for both clearance processes to function properly and therefore for the
healthy state to have medical significance, it is necessary that

a0 ln(K1) ≤ a0 and b0 ln(K2) ≤ b0

Using the notation of the previous models, in which a0, b0 denoted the pro-
duction rate of protein Aβ and τ and a1, b1 that of the clearance, these
inequalities revert to those seen in the previous models, i.e.

a0 ≤ a1 and b0 ≤ b1

If at least one of these two inequalities fails, it will not be possible to provide
medical meaning to the healthy state of the model.
Let us now consider the clearance inequalities for this model given by

ã1 > K1(a2 − ã1cu) and b̃1 > K2(b2 − b̃1cv) (2.13)

These, by substituting the constants K1 and K2 with their respective ex-
pressions as a function of a0, a1 and b0, b1, respectively, allow to relate the
rates of production to that of clearance of healthy and toxic proteins Aβ and
τ . In the event that both of these inequalities hold, we will have that the

48



2.4 A third nonlocal model (Gompertz’s growth)

only steady state that can represent densities is given by E1 . Provided that
this is also of interest in the medical field (and therefore that the inequalities
outlined above are also fulfilled) it makes sense to study its stability. By
calculating the Jacobian matrix at the point and deriving its eigenvalues
using the explicit expression already given, we obtain

• for values of λ1,2 we will have

λ1,2 = 1
2(−a0 − ã1 + a2K1

1 + cuK1
± (a0 − ã1 + a2K1

1 + cuK1
))

whence λ1 = −ã1 + a2K1
1+cuK1

and λ2 = −a0

• with regard to λ3,4 we will have

λ3,4 = 1
2(−b0 − b̃1 + b2K2

1 + cvK2
± (b0 − b̃1 + b2K2

1 + cvK2
))

from which λ3 = −b̃1 + b2K2
1+cvK2

and λ4 = −b0

Therefore, due to the validity we are assuming of the clearance inequalities
2.13, we have that all identified eigenvalues have negative real part and thus
E1 turns out to be stable.
When at least one of the two inequalities is no longer satisfied, we will have
that new equilibrium points in our system can be admitted: if, for exam-
ple, the first clearance inequality fails, the state E3 may be admitted, if the
second fails E2 may be considered and if both are violated, we may have
E2, E3, E∗.
As in previous cases, it is not possible to proceed with the study of these
much more complicated cases without making use of simulations, due to the
impossibility of explicitly determining the real part of the eigenvectors with-
out fixing certain model parameters. Since we have found no precedents in
the use of this Gompertzian growth for models similar to ours, and since we
have not developed and analyzed these cases in previous models either, this
study will not be carried out. In the future, this could be a very interesting
analysis to verify the consistency of this model, which has so far only been
developed theoretically.
In spite of this, we note that, as in previous cases, the model is able to
individuate the clearance process and gives it a decisive role for the analysis
of equilibrium points.
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Chapter 3

Construction of discrete
models

The presented continuous models do not appear to be optimal for simula-
tions. Indeed, as expressed above, if we wish to carry out a more complete
analysis of the stability of equilibrium points, and we wish to verify if the
described systems behave in a similar way to the experimental data trends,
it is necessary to consider different models. In particular, we need to proceed
by means of discretization of the continuous models.
As described in [16], the human brain consists of approximately 100 billions
(1011) neurons connected by more than 100 trillions (1014) synapses: in a
natural way this organization leads to think of modeling it as a graph. In
this context, a very important concept is the so-called connectome, that is
a matrix representing all possible connections (in pairs) between the neu-
ral elements of the brain. Strictly speaking, the term stands for an ideal
state of knowledge of the brain’s connection pattern, but in the last 10 years
research has begun to refer to this as a matrix of anatomical connections
between large-scale brain areas as well as between individual neurons. The
study related to the visualization and organization of the neural network
on different temporal and spatial scales is called connectomics. This field
appears to be very recent, on one hand because a more in-depth study of
complex network systems has begun only since the 1980s and, on the other
hand, because progresses in the neuroimaging processes on which all mod-
eling techniques are based have been made only since the 1990s.
Over the years, following the multiscale architecture of the human brain,
the study of its graph was focused on three different scales of organization

1. microscopic level: the focus is on small brain portions in which each
neuron is seen as a node in the graph and each of its connections as
an arc.

2. mesoscopic scale: the attention focuses on larger areas in which the
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nodes represent anatomical groupings of neurons (identified according
to different criteria depending on the available data) and the arcs
identify the connecting fibers among them

3. macroscopic level: at this scale, nodes represent distinct cortical re-
gions and arcs bundles of white matter, namely axon bundles. This
large scale study is possible thanks to tools as structural magnetic
resonance imaging (MRI) and data acquisition with diffusion tensor
imaging (DTI) and tractography, which essentially visualize the diffu-
sion of a tracer from the injection site to all brain areas connected to
it.

3.1 Modeling the brain connectome
For our purposes, we are interested in reconstructing the connectome at a
macroscopic level. Therefore, we are not interested in modeling each indi-
vidual synapse as an arc of our graph, but rather in finding a global repre-
sentation of the connections, foregoing the finer details.
As mentioned in [9], three main steps are required to model the connec-
tome from acquired images. First, MRI images are used to proceed to the
segmentation of the connectome: this identifies the areas of interest and the
most appropriate subdivision of the brain, thus being able to identify the
positions in space of the graph nodes. Then, using DTI and tractography,
the nerve fibers and axon bundles that connect these areas are identified and
thus also the arcs that will be present in our graph are determined. As final
step, we construct the connectivity matrix (or in mathematical language
the adjacency matrix relative to the graph), that is a matrix that is able to
express not only the connections that exist between the various nodes, but
also the relative importance of these connections.
Each of these steps can be carried out in different ways, depending on the
needs and aims of the study.
For example, for the segmentation phase we can consider the boundaries
of the brain areas given naturally by the anatomy of the brain. Since this
procedure is standard, there are numerous brain atlases available which al-
low to distinguish the main cerebral areas: two examples are the atlas of
Desikan-Killiany ( [11]) and that of Destrieux ( [12]). From these, following
what is described in [9], it is possible to create a multi-scale segmentation
(or parcellation). The result will be five distinct atlases, obtained from each
other simply by clustering neighboring regions of the most detailed atlas, to
be used accordingly to the aims of the study. To be precise, these atlases
will correspond to networks of 1015, 463, 234, 129 and 83 knots.
Instead, with regard to the phase of determining the arcs connecting these
nodes, it is necessary to use the images obtained from DTI and tractog-
raphy. In particular, as explained in [9], the former will be used both to
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calculate quantities useful for the determination of the weights to be asso-
ciated with the arcs and to implement the tractography algorithm, while
the latter will be used for the actual determination of the arcs. Different
algorithms have been developed, starting from division in voxel of the brain
volume, in order to obtain tractography images, and so the identification
of all connections. The most frequently used (due to its simplicity) is the
deterministic streamline algorithm: m points from each voxel are chosen
randomly and from these, following the data from the DTI, the connections
are constructed using a fixed step. This propagation can only take place
within the white matter, which has been identified according to the segmen-
tation used previously, and ends when the boundary between white and gray
matter is encountered, or when the diffusion is in contrast with propagation
directions identified in adjacent voxels. Through this algorithm, several dif-
ferent directions are allowed within the same voxel.
Since this technique is very sensitive to noise in DTI images and prone to
error propagation, alternative algorithms such as probabilistic tractography
and global tractography have also been developed. These differ from the
above-mentioned methodology in the choice of the starting points, which in
the first case will all be chosen within the same brain region obtained from
the initial segmentation, while in the second case no choice will be made as
the fibers will be defined by means of a minimization procedure.
Keeping in mind that element (i, j) of the connectivity matrix describes the
interaction between the i-th and j-th region of the network, each identified
fiber connecting these zones will contribute within the element (i, j).
However, we observe that the process of determining the arcs is carried out
for each image, referred to different patients. For that reason it is essen-
tial to be able to identify those connections that are common, or at least
those that occur most frequently, in order to construct a network that is
as general as possible. As a consequence, it could be convenient to use a
group representative graph: a model obtained by aggregating information
from several subjects that represents the connections, but still maintains
the typical characteristics of individuals. As described in details in [4], to
obtain such networks it is necessary to make use of thresholds that repre-
sent the percentage of individuals that must present that particular fiber, in
order to maintain it in the final network. These tolerances may be chosen
in different ways and they must take into account the biological proper-
ties of the connections that have to be modeled. Generally in our brain,
following mechanisms aimed at minimizing the cost-energy ratio, although
both short and long-range connections are present, the former are favored.
However, as mentioned in [4], longer connections are important individual
characteristics that have to be reproduced inside the modeling. Depending
on the choice of the threshold, these may or may not be missing. Indeed,
if we decide to consider a uniform tolerance τ for all connections, we will
obtain a network that underestimates the long-haul connections, as they are
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3.1 Modeling the brain connectome

present with much lower frequencies than the short ones. For that reason
it is convenient to consider a threshold τ that is a function of distance and
thus it is able to maintain the most frequent connections in relation to their
length.
Depending on the choice of the type and the value of the threshold, as
described in detail in [4], we will obtain different descriptions of the con-
nectome as different arcs will be considered.

Having now obtained a network which describes the connectome, in ad-
dition to the use we will make of it, numerous studies can be carried out.
For example, in [3] it is shown how it is possible to obtain a good repro-
duction of the image-based network by just using an algorithm known as
partition stability framework, in order to identify brain areas with related
connections in terms of a Markov process from a random walk model. As
the process evolves, this random walk will progressively explore the entire
network, and the segmentation zones (which will become the nodes of our
graph) will intuitively be groups of vertexes that "trap" the walk for a par-
ticular time scale.
Another field of study is that of generative models ( [2]): by means of an
algorithm, a synthetic network is produced thanks to the addition at each
step of an arc that connects nodes that are not yet connected, until certain
criteria are reached. These connections are created according to probabilis-
tic laws that take into account both the Euclidean distance between the
nodes (using a parameter that favors or disfavors short-range connections)
and other topological characteristics (e.g. the total number of connections,
or the number of nodes connected with both nodes considered, ...).
In both of these studies, the interest is in evaluating and comparing these
synthesized networks with image-based ones in order to identify strengths
and weaknesses of both of them.

Returning to what we are interested in, as set out in [40], we now have
at our disposal a network in which the nodes represent certain regions of
interest within the domain Ω, while the arcs represent the links, or rather
the axon bundles, the white matter tracts. Under this new point of view,
the brain connectome can be modeled by means of a graph G of nodes V
and arcs E.
We remark that among the steps indicated in the construction of the con-
nectome it is also necessary to identify the connectivity matrix. We will
postpone the discussion about this last detail to the next section, in order
to better motivate the choice of weights that we are going to place on the
arcs.
To bring our models into this new setting, we must first translate continu-
ous variables into discrete variables. Consequently, we must also define the
Laplacian operator on a graph as well as the non local convolution operator
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and then proceed to apply these definitions within our system.
With regard to the discretization of the unknown concentrations, having
fixed a node j we will denote by (uj , ũj) the concentrations of healthy and
toxic Aβ at this node and similarly by (vj , ṽj) the concentrations of healthy
and toxic τP .

3.2 Laplacian operator on a graph
In the following we will denote an undirected graph G as (V,E), where V
indicates the set of vertexes while E denotes the set of arcs. Being an
undirected graph, each arc could be represented by a pair of values (a, b)
where a and b are the connected nodes. Let us also recall that it is possible
to assign weights, that are typically positive real values, to each arc: thus
we will obtain a weighted graph. The latter will be denoted by the triplet
(V,E, ω) where (V,E) corresponds to the unweighted graph while ω : E → R

is the function that associates each arc with its weight. Since we will work
with undirected graphs we also observe that we will have ω(a, b) = ω(b, a)
for each node a, b ∈ V .

Definition 3.1. A given graph (V,E), in which |V | = n, can be associated
in a natural way with the adjacency matrix W ∈ Rn×n given by

Wij =
{

1 if (i, j) ∈ E
0 otherwise

Definition 3.2. Given an undirected graph (V,E), the degree of a node a
is defined as the number of arcs connected to it namely

d(a) = |{b : (a, b) ∈ E}|

Completely similar definitions can also be given in the case of a weighted
graph.

Definition 3.3. A given weighted graph (V,E, ω), in which |V | = n, can
be associated with the adjacency matrix W ∈ Rn×n given by

Wij =
{
ω(i, j) if (i, j) ∈ E
0 otherwise

Furthermore, for each node a it is possible to define

• the combinatorial degree, given by the number of arcs connected to
the node itself, so

d(a) = |{b : (a, b) ∈ E}|
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• the weighted degree, given by the sum of the weights of the arcs con-
nected to the node

d(a) =
∑

b:(a,b)∈E
ω(a, b)

Having then defined what is meant by the degree of a node, it is possible
to introduce the degree matrix D associated with a graph (both weighted
and unweighted) as the n×n diagonal matrix containing in the i-th diagonal
term the degree of the i-th node. In our case when we work with weighted
graphs, we will always use the combinatorial degree of the node within the
matrix D.

Definition 3.4. Given an undirected, weighted graph (V,E, ω) the non-
normalized Laplacian on the graph is the matrix defined as

L = D −W

Thus, the action of the Laplacian on any signal modeled on the graph results
in

(Lu)j =
n∑
k=1
Ljkuk =

∑
k:(j,k)∈E

Wjk(uj − uk)

Firstly, we note that the notion of derivative on the graph is no longer
a limit of an incremental ratio as in the continuous case, but a simple dif-
ference. This is an immediate consequence of the fact that the set of nodes
constituting the graph is a discrete set.
Moreover we remark that when working with an undirected graph, the ad-
jacency matrix W is symmetrical, so the matrix L is also symmetrical. As a
consequence, since it is a real and symmetrical matrix, L admits at least one
orthonormal basis of eigenvectors that we denote by {χl}l=1,...,n associated
with non-negative eigenvalues {λl}l=1,...,n, where the eigenvalue λ = 0 will
have multiplicity equal to the number of the connected components of the
graph, as observed in [35].
Often, the normalized Laplacian on a graph, defined as L̃ = D−

1
2LD−

1
2 , is

also introduced in the literature, as this allows to identify other eigenvectors
and eigenvalues that may be more convenient in certain applications (see
[37] for a more detailed analysis of the differences).

All these concepts can be applied in the discretization of our model.
As mentioned in the case under analysis, we are in the presence of a graph,
whose nodes represent brain areas of interest while the arcs represent axonal
bundles. The available graph will be a non-oriented graph: this is because
the tractography and diffusion magnetic resonance methods used do not
allow the identification of the direction of travel along the axon bundles,
but only their spatial orientation, as explained in [16]. With regard to the
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definition of the weights associated with the arcs, the last step necessary
to complete the construction of the connectome, we find that this varies
greatly depending on the interest of the study, the methodologies used for
the acquisition of the data and the discretization used (a detailed descrip-
tion is given in [16]). In our case we will use a fairly intuitive reasoning
to define the weights: depending on the number of axons constituting the
axon bundle linking the two areas of interest and how close these zones are
to each other, we will have that some arcs will be more utilized than others.
Intuitively, the more axons constitute the bundle, the stronger the commu-
nication between the two areas, and the further apart the zones are, the
more difficult the communication will be. At this point, we decide to work
with a weighted graph, where the weights could be taken according to the
criterion of electrical connectivity, namely given by the ratio between the
number of fibers connecting two distinct nodes and their average length, as
recalled in [39]. Nevertheless, following [40], the weights we will assume
are summarized by the adjacency matrix W ∈ Rn×n, where n = |V |, given
by

Wij = nij
l2ij

for i, j = 1, ..., n, where nij represents the average number (data obtained
by studying various patients) of connecting fibers while lij is the average
distance between nodes i and j. Indeed, the square in the denominator is
consistent with the trivial observation that since the Laplacian is a second
derivative, it has a squared distance in the denominator.
Having now defined what type of graph we are working with, it is also
possible to define the Laplacian associated with it. Indeed, diffusive terms
of the form∇·(A∇·) appear within the continuous models described. All the
above-mentioned concepts still hold true, with the use of the adjacency just
identified. However, due to the diffusion tensor, we will have to introduce a
diffusion coefficient ρ in front of the Laplacian on the graph. Therefore, in
our model, the non-normalized Laplacian will be given by

L = ρ(D −W )

where ρ represents the diffusion coefficient.

It is now possible to move on to express the model 1.4 on the graph. Re-
calling that (uj , ũj , vj , ṽj) are the concentrations of healthy Aβ, toxic Aβ,
healthy τP and toxic τP proteins at node j respectively, we will have for
each node j = 1, ..., n the following system of first-order differential equa-
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tions: 

duj
dt = −∑n

k=1 Ljkuk + a0 − a1uj − a2uj
1+cuuj ũj

dũj
dt = −∑n

k=1 Ljkũk − ã1ũj + a2ũj
uj

1+cuuj
dvj
dt = −∑n

k=1 Ljkvk + b0 − b1vj − b3ũjvj ṽj − b2vj
1+cvvj ṽj

dũj
dt = −∑n

k=1 Ljkṽk − b̃1ṽj + b3ũjvj ṽj + b2ṽj
vj

1+cvvj

obtained by taking the expression of the model 1.4 described in [30]. In the
case we want to consider a logistic growth, rather than exponential growth as
done in this model, the discrete modeling will not encounter major obstacles:
it will be enough to replace the terms a0 − a1uj and b0 − b1vj respectively
with uj(a0 − a1uj) and vj(b0 − b1vj).
As far as the discretization of the equation 1.3, following [40], this for each
node j = 1, ..., n will take the following form

dqj
dt

= (k1ũj + k2ṽj + k3ũj ṽj + k4

n∑
k=1

Wikqk)(1− qj)

with qj(0) = 0.

3.3 Convolution on a graph
The only terms missing for the discretization of the more complex models
2.2, 2.5 and 2.11 are the convolution ones with the normalized kernel

φ(x) = 1
σ
√
π
e−

<x,x>

σ2

Therefore, the aim now is to formally define a convolution operation on the
graph. Recalling that in the case of functions f, g : Rm → R belonging to
L1(Rm), the convolution is defined as

(f ∗ g)(x) =
∫
Rm

f(y)g(x− y)dy

the first intention would be to give a similar definition in the case of a graph.
However, it is not immediately trivial to explain the meaning of translation
on the vertexes of a graph, since the set of nodes does not constitute a
ordered set. We might think to introduce an order, chosen arbitrarily, for
the vertexes of the graph (V,E) with |V | = n and we might also define
the translation "to the right of k" for a function f : V → R as f(· − k) :=
f(mod(· − k, n)). Nevertheless, this definition would depend strongly on
the order chosen for the nodes of the graph and so it is unusable from a
mathematical point of view, as observed in [35].
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Thus, the idea is to exploit the properties of the Fourier transform: in
particular we want to define the convolution applying the inverse Fourier
transform to the convolution theorem for the Fourier transform, according to
which given two functions f, g ∈ L1(Rm) we have that f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).
To do this, it is therefore necessary to define the Fourier transform on a
graph.
In the case of a function f : Rm → R, f ∈ L2(Rm) the Fourier transform is
defined as

f̂(ξ) :=
∫
Rm

f(x)e−i<x,ξ>dx

for each ξ ∈ Rm. From a different point of view we can consider the Fourier
transform as an expansion of the function f in terms of the eigenfunctions of
the m-dimensional Laplace operator ( [35]). Indeed, considering the space
L2(Rm) and defining the scalar product between two functions of the space
as < f, g >L2 :=

∫
Rm

f(x)ḡ(x)dx, we have that for f ∈ L2(Rm) the Fourier
transform is nothing but f̂(ξ) =< e−i<·,ξ>, f >L2 where, fixed ξ ∈ Rm, the
function R

m 3 x 7→ e−i<x,ξ> is an eigenfunction of the Laplacian since

∆(e−i<x,ξ>) = −
m∑
j=1

∂2

∂x2
j

e−i<x,ξ> = −
m∑
j=1

ξ2
j e
−i<x,ξ> = −|ξ|2e−i<x,ξ>

Remark 3.5. Let (V,E) be a graph with |V | = n and let the nodes be
identified by indexes (so we identify an order for the nodes of the graph).
A function f : V → R can be thought of as a vector f ∈ R

n in which the
i-th component represents the value of the function in the i-th node of the
graph considered.

We can now define the Fourier transform, following [36], for any function
defined on the vertexes of a graph in the following way.

Definition 3.6. Let G = (V,E, ω) be an undirected, weighted graph with
V = {xl}l=1,...,n. Let {χl}l=1,...,n be an orthonormal basis of eigenvectors for
the Laplacian matrix L on the graph, ordered by increasing eigenvalues (so
in which, if we denote by λl the eigenvalue associated with the eigenvector
χl, 0 = λ1 ≤ λ2... ≤ λn). Let f : V → R be a function defined on the
nodes of the graph. The Fourier transform of f is defined as the function
Ff : V → R such that

Ff(xl) =
∑
x∈V

χl(x)f(x) =< χl, f >

for each l = 1, ..., n.

Remark 3.7. The above definition can be written in a more compact form
as follows, as noted in [46]. Let {χl}l=1,...,n be an orthonormal base of
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eigenvectors (ordered as defined above) for the matrix L of the Laplacian
on the graph. We define U ∈ Rn×n as the matrix in which

Uij = χj(xi) ∀i, j = 1, ..., n

so U is the matrix whose columns consist of the eigenvectors. Therefore, we
will have that U is an orthogonal matrix such that L = UΛUT where Λ is a
diagonal matrix containing the eigenvalues.
Furthermore, the definition of the Fourier transform on the graph for a
function f : V → R can be written compactly as Ff = UT f .

Definition 3.8. Suppose the assumptions of definition 3.6 hold. The anti-
Fourier transform is defined as the function F−1f : V → R such that

F−1f(x) =
n∑
j=1

χj(x)f(xj) = Uf(x)

with x ∈ V .

We can finally define the convolution on a graph by inverting the convo-
lution theorem for the Fourier transform. To do this we will use the compact
writing also used in [46].

Definition 3.9. Let G = (V,E, ω) be a finite graph. Then let f, g : V → R.
The convolution of f with g is defined as the function

f ∗ g := F−1(Ff �Fg) = U(UT f � UT g)

where U is the matrix obtained with the previous notation and � represents
the point-by-point product.

Remark 3.10. The convolution can be made explicit using the given def-
initions of Fourier transform and anti-transform, taking the form indicated
in [36] :

(f ∗ g)(xj) =
n∑
l=1
Ff(xl)Fg(xl)χl(xj)

However, this definition is not useful in our application, since the de-
termination of the U matrix, which is fundamental in order to make the
convolution on the graph more explicit, is strongly influenced by the num-
ber of nodes used and the choice of weights used for the arcs in our modeling.
Since we have not found a way to apply this definition, we have decided to
proceed in a much rough manner by discretizing the convolution integral in
the following way.

The aim is to define the nonlocal conversion for the discrete model for
each of the nodes j = 1, ..., n. In order to best explain the reasoning behind
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this, let us proceed maintaining a parallelism with the continuous model 2.2
and explaining what was done in [29]. Let us take the following convolution
as an example, writing it explicitly

(φ ∗ ũ)(x, t) =
∫

Ω
φ(x− y)ũ(y, t)dy =

∫
Ω

1
σ
√
π
e−

<x−y,x−y>
σ2 ũ(y, t)dy

Then, we remark how for each spatial point x ∈ Ω we consider a unitary
kernel acting on all points y ∈ Ω that can be "reached", so with which an
interaction will take place, starting from point x.
In the discrete model, we must translate this fact in the following way. We
fix a node j in the graph and we identify the set of nodes Vj,1 that are directly
connected to node j by an arc in our graph. Proceeding in a similar manner,
we then identify the nodes Vj,2 directly connected with those belonging to
Vj,1 and so on. In the end, we obtain Vj,1, Vj,2, ..., Vj,mj , so the list of all the
nodes connected by a path with node j. We note that the sets identified
are not necessarily disjointed, depending on the structure of our graph. For
that reason it is necessary to give a more precise order to the elements of
these sets. In order to do this, for example in the case of Vj,1, we decide to
order the nodes within it as the distance increases (measured in terms of the
Euclidean length of the arc connecting them with node j). Similarly, the
nodes of the sets Vj,2, ..., Vj,mj will be reordered by increasing distance from
node j (measured by the Euclidean length of the segments to be traveled).
It is now necessary to eliminate nodes present in more than one set. Let us
suppose, for example, that in the case of node j, the distinct nodes connected
to it, in addition to the node itself, are nj . For each of these nodes, we decide
to collect within the set Vj the copy that has the minimum distance (always
in terms of the path for arcs in the graph) from node j. We now denote by
k1, k2, ..., knj the nodes of the set Vj in order of increasing distance. We will
therefore have k1 = j at zero distance.
At this point, we can construct the unitary kernel that will act on node j of
the graph, which has a structure analogous to the kernel of the continuous
model. In this respect, we remark that in the continuous case, for x, y ∈ Ω
communicating

e−
<x−y,x−y>

σ2 = e−
||x−y||2

σ2

where || · || measures the Euclidean distance. In the discrete case, again for
nodes capable of communication, as distance we should consider the shorter
path by arcs connecting the two nodes of interest.
At this point we define, following this observation, the discrete kernel for
the node j as

M ′j = (1, e−η2(sjk2 )2
, e−η

2(sjk3 )2
, ..., e

−η2(sjknj )2
)

where η = 1
σ and sjki is the distance of node ki from node j following the

shorter length path by arcs.
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In this way the kernel we would use for convolution at node j would not
be unitary as in the continuous case so we proceed to its normalization.
Accordingly let Mj = M ′j/|M ′j | where

|M ′j | = (1 + e−η
2(sjk2 )2 + e−η

2(sjk3 )2 + ...+ e
−η2(sjknj )2

)

At this point, we want to be able to express the application of the normalized
kernel in the discrete case as a product of vectors. Therefore, let Kj ∈ R

n

a row vector with n = |V |, whose only non-zero elements are given by
Mj(1),Mj(2), ...,Mj(nj) respectively at positions k1, k2, ..., knj .
The convolution at node j in graph G will then be defined as

φj ∗ ũj :=
n∑
i=1

Kj(i)ũi

Then, explicating the calculations we have

φj ∗ ũj :=
n∑
i=1

Kj(i)ũi = Kj(k1)ũk1 +Kj(k2)ũk2 + ...+Kj(knj )ũknj =

= Mj(1)ũk1 +Mj(2)ũk2 + ...+Mj(nj)ũknj =

= 1
|M ′j |

ũk1 + e−η
2(sjk2 )2

|M ′j |
ũk2 + ...+ e

−η2(sjknj )2

|M ′j |
ũknj

Let us observe how the parallelism, always assuming η = 1
σ , with the con-

volution considered in the continuous case

(φ ∗ ũ)(x, t) =
∫

Ω

1
σ
√
π
e−η

2||x−y||2 ũ(y, t)dy

is immediately evident. Indeed, in both cases we have:

• a sum over all possible interaction points (y and ki respectively in
the continuous and discrete cases) with the considered point (x and j
respectively)

• addends obtained by products of exponentials (with exponents given
by the squared distance between the interacting points) normalized
according to the overall kernel weight, then multiplied by the value of
ũ calculated at the interaction point considered

Remark 3.11. It is interesting to note that in the continuous case the
kernel used was the same for every point x of the considered domain Ω. In
the discrete case we observe that, as also suggested by the notation used
(so φj ∗ ũj rather then (φ ∗ ũ)j), distinct kernels are used for distinct nodes.
While maintaining the same basic structure, we will work with vectors Ki

which may be more or less scattered depending on the number of nodes
connected by arc paths to the vertex i.
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Remark 3.12. If node j is not connected to other nodes, it follows naturally
from the definition of convolution that φj ∗ ũj = ũj .

The whole process just described can be repeated for each node of the graph
G and for each convolution that appears in our system, thus concluding the
process of discretization of the models.

Thus, taking into account both the definition of the Laplacian and the defi-
nition of convolutions, it is possible to construct the nonlocal model on the
graph G corresponding to the model 2.2. Maintaining, as we have always
done in the previous notation whereby (uj , ũj , vj , ṽj) are the concentrations
of healthy Aβ, toxic Aβ, healthy τP and toxic τP proteins at node j re-
spectively, we will have for each node j = 1, ..., n the following system of
first-order differential equations

duj
dt = −∑n

k=1 Ljkuk + a0 − a1uj − a2uj
1+cuuj φj ∗ ũj

dũj
dt = −∑n

k=1 Ljkũk − ã1ũj + a2ũjφj ∗ ( uj
1+cuuj )

dvj
dt = −∑n

k=1 Ljkvk + b0 − b1vj − b3ũjvj ṽj − b2vj
1+cvvj φj ∗ ṽj

dũj
dt = −∑n

k=1 Ljkṽk − b̃1ṽj + b3ũjvj ṽj + b2ṽjφj ∗ ( vj
1+cvvj )

(3.1)

as reported in [29].
Similarly, combining the observation made above in the case of logistic
growth in the discrete model with what is described in [31], we obtain
that the discrete model in the case of 2.5 is given by

duj
dt = −∑n

k=1 Ljkuk + uj(a0 − a1uj)− a2uj
1+cuuj φj ∗ ũj

dũj
dt = −∑n

k=1 Ljkũk − ã1ũj + a2ũjφj ∗ ( uj
1+cuuj )

dvj
dt = −∑n

k=1 Ljkvk + vj(b0 − b1vj)− b3ũjvj ṽj − b2vj
1+cvvj φj ∗ ṽj

dũj
dt = −∑n

k=1 Ljkṽk − b̃1ṽj + b3ũjvj ṽj + b2ṽjφj ∗ ( vj
1+cvvj )

(3.2)

for each node j = 1, ..., n.
The last model to be brought onto the graph is 2.11. Gompertzian growth
can be brought onto the graph in the same way as logistic growth. So the
discrete model in the case of 2.11 is for each node j = 1, ..., n

duj
dt = −∑n

k=1 Ljkuk − a0uj ln( ujK1
)− a2uj

1+cuuj φj ∗ ũj
dũj
dt = −∑n

k=1 Ljkũk − ã1ũj + a2ũjφj ∗ ( uj
1+cuuj )

dvj
dt = −∑n

k=1 Ljkvk − b0vj ln( vjK2
)− b3ũjvj ṽj − b2vj

1+cvvj φj ∗ ṽj
dũj
dt = −∑n

k=1 Ljkṽk − b̃1ṽj + b3ũjvj ṽj + b2ṽjφj ∗ ( vj
1+cvvj )

(3.3)

To conclude, it is also possible to translate the equation 2.3 on graph G.
Let qj be the neuronal damage of the cells in node j. Then for each node
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j = 1, ..., n the discretization of the equation 2.3 will lead to
dqj
dt

= (k1ũj + k2ṽj + k3ũj ṽj + k4ψj ∗ qj)(1− qj)

with initial condition qj = 0. Also in this case the convolution will be
constructed and then defined in steps similar to the previous ones. Since
the kernel ψ, as mentioned above, has a different standard deviation, we
will have the parameter µ, instead of the parameter η, defined in a similar
manner.

3.4 Simulations results
At this point, having constructed discrete models, it is more easy to carry
out simulations to validate them. In particular, in this way we can under-
stand deeply the role and the influence of certain parameters within the
model and we can also make comparisons between the results of local and
nonlocal models.
The following results and observations will not concern model 3.3 with
Gompertz-type growth, since no similar models have been found in the lit-
erature and simulations have not yet been carried out.
The first step to achieve sensible results is to set initial conditions in accor-
dance with the medical studies that have been carried out. For each node
in our graph, we are going to consider the initial condition (a0

a1
, 0, b0

b1
, 0),

namely the healthy equilibrium point found in all models. However, these
initial conditions are modified at certain nodes in order to allow the devel-
opment of the disease: it has been seen that the seeding sites for the toxic
Aβ protein are the temporobasal and frontomedial regions, while for the
toxic τ are the transentorhinal and locus coeruleus regions [40], [15], [22].
Therefore for nodes belonging to seeding site regions, as initial toxic con-
centration, instead of the null one, is assumed a percentage of the healthy
protein concentration present (usually chosen less than 1%). For example,
if we consider a node in the temporobasal region and we assume a 1% devi-
ation of the healthy protein concentration, we will have (a0

a1
, a0

100a1
, b0
b1
, 0) as

initial condition at the node.
In addition, following experimental data, values will be set for the rates of
growth a0, b0, clearance a1, ã1, b1, b̃1, protein interaction b2, b3 and misfold-
ing cu, cv. All these rates will be constant for all nodes, unless otherwise
stated.
As a result of this first step, several studies could be carried out highlighting
different conditions on the models.
A first interesting remark is set out in [30] in the continuous case and in
[29] in the discrete case, where it is observed that, for corresponding times,
the mere introduction of the Holling’s functional into the model 3.1 causes
a reduction of the toxic Aβ and τ concentrations compared to the original
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model. Indeed, having fixed the other parameters appropriately, in the local
model associated with 3.1 as cu and cv increase, a longer time is required
for the disease to propagate into the brain connectome. This remark is in
accordance with the fact that in the construction of the model the constants
cu and cv include the necessary misfolding time: the larger this time is, the
more the constants will increase and as a consequence the creation of new
misfolded proteins will take longer and longer. An entirely similar observa-
tion, set out in [31], also applies to model 3.2: an increase in the conversion
rates of healthy proteins to toxic configuration leads to an increase in the
time required for the disease to propagate throughout the connectome.
In [29], again thanks to simulations results, several interesting phenomena
characterizing model 3.1 are observed:

• the distinction between simulations of primary and secondary tauopa-
thy cases can be driven by changing only the parameters b2 and b3
(remark also valid in the case of model 3.2)

• the choice of a constant parameter b3 at all nodes leads to equal spread-
ing patterns and equal invasion time windows for the local and non-
local models associated for both primary and secondary tauopathy.
Things change if we consider a condition of mixed tauopathy, that is
assuming parameters b2 and b3 that will lead to primary tauopathy
in some nodes and different values of them in other nodes to simulate
a secondary tauopathy. Indeed, maintaining the same seeding sites
described above, it could be observed how in this case the spreading
patterns for the nonlocal model and for its associated local counterpart
are different. Thus, the introduction of nonlocal interactions leads to
changes in the spread of the disease under the more realistic conditions
of parameters non-uniformity.

Other interesting results were obtained by means of simulations of model
3.2 in [31]: in this case it is shown that depending on the spatial position
of each node, the temporal developments of the concentrations in the node
change. If all parameters at each node are kept constant, the concentrations
of toxic Aβ and τ can follow different courses. In the case of rates values
leading to a primary tauopathy, the developments of toxic Aβ (respectively
τ ) proteins concentration converges to three distinct values, depending on
whether or not the node is connected to other nodes. In the first case, the
system solution will tend towards the pathological equilibrium state E∗. In-
stead, if the node is not connected to other nodes: if it is inside the seeding
sites of Aβ or τ it will tend to the equilibrium state E7 or E5 respectively;
otherwise it will remain in the healthy stationary state E4 of the system.
Similarly in [31] the study of neuronal damage for both the nonlocal discrete
model 3.2 and the associated local model was carried out, with the choice
of appropriate parameters. In both cases the damage can follow different
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trends, tending to the value of the neuronal damage corresponding to the
equilibrium points E4, E5, E7, depending on the type of node connection. In
addition, it could be observed that in the case of the nonlocal model, the
time required to diffuse the damage to the nodes is longer than in the local
model.
This phenomenology is due to the existence of stable manifolds for the semi-
stable stationary points E4, E5, E7. This type of equilibrium points is not
present in the case of model 3.1.
A similar study can be carried out for parameters leading to secondary
tauopathy.
Finally, in [31] it is observed that in model 3.2, when simulating a mixed
tauopathy, similarly to what has been described above, the concentrations of
all four components are different at each node of the connectome and conse-
quently the time for the nodes to be damaged is also different. Furthermore,
as the parameter 1

σ , related to the competition kernel used, decreases, it is
remarked how in some nodes (identified according to the value of the their
combinatorial degree) there is an higher toxic density accumulation. We can
therefore conclude that the spreading pattern in the case of mixed tauopa-
thy is different from the primary and secondary tauopathies.

In the future, it will be interesting to observe how the introduction of
Gompertz-type growth in 3.3 could have influenced such simulations in order
to see if the true clinical dynamics were modeled in this way.
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