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Chapter 1

Introduction

Text classification encompasses those Natural Language Processing prob-

lems in which text is associated with a set of categories: sentiment anal-

ysis, topic classification, spam filtering, and emotion detection are some

of the most famous examples. Text classification is increasingly used in

real-world applications: pre-trained models (like word embeddings and

contextual embeddings) have facilitated this process, making these prob-

lems addressable with fewer resources and data.

This thesis addresses a hierarchical multi-label text classification prob-

lem in a low-resource setting. The dataset used in the experiments con-

sists of 2546 English school exercises associated with labels describing

their content. This is a hierarchical classification problem because the

set of classes is defined through a three-level hierarchical taxonomy; it is

multi-label because more than one label can be assigned to each exercise.

The goal of this thesis is to find a suitable solution to this task, including

the use of pre-trained models and few-shot learning techniques for NLP.

In chapter 2 we present the theoretical background related to this

work, focusing on text representation, multi-label classification, hierar-

chical classification, and few-shot text classification. Chapter 3 shows
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the datasets used in this work, with details on the hierarchical taxon-

omy. Chapter 4 introduces the experiments made in this project, ex-

plaining the architectures employed and showing the metrics used for

the evaluation. Chapter 5 contains the results of the experiments with

our quantitative and qualitative analysis. Chapter 6 indicates possible

directions for future work to improve and extend this work.



Chapter 2

Background

In this chapter we present the theoretical background relevant to this

work. In particular, some of the main text representation techniques

used in Natural Language Processing are presented. Subsequently, we

discuss about types of classification tasks in the field of Machine Learning,

focusing on the difference between single-label and multi-label problems

and on hierarchical classification approaches and metrics. Eventually,

we briefly introduce few-shot learning and describe SetFit, a recently

proposed framework for few-shot text classification.

2.1 Text representation

In order to be processed by computers words, sentences, paragraphs,

and documents have to be represented in a numerical form: this is

done through text representation techniques, which transforms words

and texts in multidimensional vectors within a semantic space. Many

of these techniques are based on the distributional hypothesis for which

words occurring in similar contexts tend to have similar meanings.

In this section we present some of the most important text represen-

tation techniques, highlighting the advances they have introduced to the

field of NLP.
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2.1.1 Tf-idf

Tf-idf (term frequency-inverse document frequency) is a weighting algo-

rithm applied to term-document matrixes. It can be used as a feature

extraction method in NLP classification problems (as in the experiment

described in section 4.3) and to represent documents in Information Re-

trieval (IR) systems. Tf-idf is a simple but effective model and often is

used as a baseline, before shifting to more complex models.

Term-document matrices are constructed upon a set of documents

counting the number of occurrences of each term in each document. In

other words, the cell in position i,j represents the frequency of termi

in docj . The drawback of considering only frequencies is that very fre-

quent words (which are often uninformative) have a high weight even

though they are not significant for the vector representation. tor the

vector representation. Tf-idf overcomes this limitation by weighting less

uninformative words, introducing in the weighting function the inverse

document frequency (idf). The formula of tf-idf weighting is:

wt,d = tft,d × idft

This formula is the product of two terms:

• tft,d: the frequency of the term t in the document d

• idft: the inverse document frequency of the term t, defined as:

idft = log

(
N

dft

)

where N is the total number of documents and idft is the number

of documents in the document set that contains the term t.
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2.1.2 Word embeddings

Word embeddings are representation methods that map words into short

dense vectors (earlier methods such as tf-idf e PPMI represents words

with sparse vectors).

Word embeddings have had a significant impact on NLP research:

word embeddings (respect to sparse vectors) better preserve semantic

relations as synonymy and relational similarity and “work better in every

NLP task than sparse vectors”[8].

The first word embedding method was Word2vec, proposed in Mikolov

et al. (2013) [14]. Unlike tf-idf and PPMI, word2vec is not based on fre-

quencies and does not compute co-occurrence matrices: it consists of

training a classifier in a self-supervised manner, using one of these two

architectures (shown in figure 2.1):

• Continuous Bag-of-Words (CBOW): the model predicts the current

word based on the context

• Skip-gram: the model predicts surrounding words given the current

word

Figure 2.1: CBOW and Skip-gram architectures for word2vec training.
[14, Figure 1]
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Many other word embedding models have been proposed after word2vec;

the most prominent are:

• GloVe (Pennington et al., 2014[16]), which “leverages statistical

information by training only on the nonzero elements in a word-

word co-occurrence matrix, rather than on the entire sparse matrix

or on individual context windows in a large corpus”

• fastText (Bojanowski et al., 2017) [2] which extends word2vec en-

riching word vectors with subword information. FastText, oper-

ating at the subword level, computes embeddings for n-gram of

characters: these can be used to compute embeddings for out-of-

vocabulary words

• ConceptNet Numberbatch (Speer and Chin., 2016 [26]), that com-

bines distributional word embeddings learned from text with Con-

ceptNet, a knowledge graph that encodes semantic relations be-

tween words and common sense knowledge

One of the disadvantages of word embeddings is that they provide

static vectors: each word is associated with a vector regardless of the

context in which the word occurs. This limitation makes word embed-

dings unable to deal with polysemy and semantic nuances. This aspect

is considered by contextual embeddings, which are models that attempt

to interpret words by also considering their context: the vector represen-

tation assigned to a certain word changes in relation to its context.

2.1.3 Contextual embeddings

The first contextual embedding model was ELMo (Embeddings from

Language Models), proposed in Peters et al. (2018) [17], based on bidi-

rectional LSTM; then followed by GPT (Radford et al. 2018) [20], based

on Transformer architecture (Vaswani et al., 2017) [29]. Transformer is
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a deep learning model based on attention mechanism that does not use

recurrence: this makes the model more parallelizable, thus more efficient

than LSTM.

The most popular contextual embedding model is BERT (Bidirec-

tional Encoder Representations from Transformers) proposed by Devlin

et al. (2019) [5], also based on the Transformer model.

BERT’s framework follows these two steps during training (as shown

in figure 2.2):

• pre-training: the model is trained with unlabeled data, with self-

supervision, solving simultaneously two tasks:

– MLM (Masked Language Model): 15% of the input tokens are

masked and the model has to predict them

– NSP (Next Sentence Prediction): each sample is composed of

two sentences and the models objective is to predict whether

the second sentence follows the first one in the training corpus

• fine-tuning: the model is trained on the downstream task with

labeled data

Figure 2.2: Pre-training and fine-tuning procedures for BERT. Apart
from output layers, the same architecture is used in both pre-training
and fine-tuning. [5, Figure 1]
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Anyway, pre-trained models based on BERT can also be used as a

feature extraction method or to produce embeddings, without any fine-

tuning.

Many variants of BERT have been proposed and are freely available

for experiments: mBERT, the multilingual version of BERT, is used in

this work for the experiments explained in section 4.5.

2.1.4 Sentence embeddings

Sentence embedding techniques aim to represent sentences by semantic

vectors. A simple and strong baseline to compute the embedding of

a sentence is the average of the vectors of the words that compose it.

Many models have been proposed for this task: the most popular are

Doc2vec (Le and Mikolov, 2014) [11], InferSent (Conneau et al., 2017)

[4], Universal Sentence Encoder (Cer et al., 2018) [3], LASER (Artetxe

and Schwenk, 2019) [1] and Sentence-BERT (Reimers and Gurevych,

2019) [21]. Below we examine LASER and Sentence-BERT which are

those used in this work.

LASER (Language-Agnostic SEntence Representations) is a language-

agnostic BiLSTM encoder that transforms sentences into language-independent

vectors. So that “semantically similar sentences in different languages are

close in the embedding space”[1].

Sentence-BERT (SBERT) indicates a family of sentence embedding

models based on BERT architecture, which has been proposed because

of the inability of BERT-based model to generate good sentence embed-

dings. SBERT fine-tune BERT in a siamese / triplet networks, depending

on the available data; the training arechitectures for SBERT are:

• classification objective function (the architecture at the left in fig-

ure 2.3): this can be used with classification taks datasets, like NLI

datasets
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• regression objective function: (the architecture at the left in figure

2.3): this is used with sentence similarity datasets

• triplet objective function: given a sentence a, a positive sentence p,

and a negative sentence n, triplet loss tunes the network such that

the distance between a and p is smaller than the distance between

a and n

Figure 2.3: SBERT training architectures: on the left, there is the ar-
chitecture with the classification objective function; on the right the one
with the regression objective function. The second one can also be used
during inference, to compute similarity scores between sentences. [21,
Figures 1, 2]

SBERT models are also employed by SetFit, a framework for few-

shot text classification used in this work. More details about how SetFit

works are provided in section 2.3.1.

2.2 Classification tasks and metrics

This section delves into classification tasks and metrics. The concepts

presented in this section are not related only to text classification but

apply to classification tasks in general.
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2.2.1 Single-label and multi-label classification

Classification tasks can be divided into two categories:

• single-label: each sample is assigned to exactly one label

• multi-label: each sample is assigned to a set of labels of any size

(even to no label at all)

Multi-label classification methods can be further grouped into two

categories (Tsoumakas and Katakis, 2007) [27]:

• algorithm adaptation methods: which handle multi-label problems

with tweaks in the learning algorithm

• problem transformation methods: which transform multi-label

problem into one or more single-label classification or regression

problems

Many problem transformation methods have been proposed, the most

popular are:

• binary relevance: transform a multi-label problem with N labels

into N binary classification problems. The binary classifiers are

learned independently, one for each label and the output is the

union of all the binary classifiers’ output

• label powerset: transform a multi-label problem into a multi-class

problem where the labels are all unique label combinations in the

training data

In this work binary relevance transformation is used with the Logistic

Regression classifier in the experiment explained in section 4.6; all the

other classifiers fall into the algorithm adaptation methods category.
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2.2.2 Hierarchical classification

Hierarchical classification in Machine Learning is a type of classification

problem where the classes are defined through a hierarchical taxonomy.

Hierarchical classification can be solved with different approaches as de-

lineated in Silla and Freitas, (2011) [25]:

• flat classification approach: learning a single classifier for the classes

at the leaf nodes of the taxonomy, ignoring the entire hierarchical

structure (see figure 2.4). This approach transforms the hierar-

chical classification problem into a standard multi-class (or multi-

label) classification problem where the labels are the leaf nodes of

the hierarchy. The main advantage is its simplicity, but the disad-

vantage is that the model cannot exploit hierarchical information

during training and inference

Figure 2.4: Flat classification approach. [25, Figure 3]

• local classifier approaches: building a set of local classifiers com-

bined together in the inference phase. The main advantage of lo-

cal classifier approaches is that they consider the class hierarchy

during the creation of the training sets and during inference; on

the other hand, the drawbacks are increased complexity and error
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propagation during inference. There are three standard ways of

implementing local classifiers:

– local classifier per node (LCN): training one binary classifier

for each node of the class hierarchy, except the root node

(figure 2.5)

Figure 2.5: “Local classifier per node approach (circles represent classes
and dashed squares with round corners represent binary classifiers). ”[25,
Figure 4]

– local classifier per parent node (LCPN): a classifier is trained

for each parent node in the class hierarchy, to distinguish be-

tween its child nodes (figure 2.6)

– local classifier per level (LCL): training a classifier for each

level of the class hierarchy (figure 2.7)

HiClass (Miranda et al., 2021 [15]) is an open-source Python library

(compatible with scikit-learn) that provides the implementation of

these three local classifier approaches; it also contains the imple-

mentations of hierarchical metrics (that will be explained later).

A limitation of HiClass is that it does not yet support multi-label

settings.
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Figure 2.6: “Local classifier per parent node (circles represent classes and
dashed squares with round corners in parent nodes represent multi-class
classifiers predicting their child classes). ”[25, Figure 5]

Figure 2.7: “Local classifier per level (circles represent classes and each
dashed rectangle with round corners encloses the classes predicted by a
multi-class/multi-label classifier).”[25, Figure 6]

• global classifier (or big-bang) approach: learning a single model

for all the classes of the taxonomy. The advantage over local ap-

proaches is that this approach can exploit hierarchical informa-

tion during training and inference with a single (although complex)

model.
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Metrics

All the evaluation metrics used for flat classification problems (exact

match, precision, recall, etc.) can be used also for hierarchical clas-

sification. However, “these measures are not suitable for hierarchical

categorization since they do not differentiate among different kinds of

misclassification errors.”[9].

Many metrics that consider the hierarchical structure have been pro-

posed: in this work, we will use those proposed in Kiritcheno et al. (2005)

[9]. These metrics penalize less those misclassifications where the wrong

predicted class share ancestors with the correct class, and punishes errors

at higher levels of a hierarchy more heavily; they are defined as follow:

• hierarchical precision (hP)

hP =
∑

i |Ĉi ∩ Ĉ ′
i|∑

i |Ĉ ′
i|

• hierarchical recall (hR)

hR =
∑

i |Ĉi ∩ Ĉ ′
i|∑

i |Ĉi|

• hierarchical F-measure (hF)

hFβ = (β2 + 1) · hP · hR

(β2 · hP + hR)
, β ∈ [0, +∞)

Hierarchical precision and recall extend the classical precision and recall

with the following addition: “each example belongs not only to its class

but also to all ancestors of the class in a hierarchical graph, except the

root”[9]. Indeed, in the previous formulas, Ĉi indicates the set of true

classes extended with all their ancestors (except the root); Ĉ ′
i is the same

for the predicted classes.
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These metrics can also be applied in a multi-label setting; unfortu-

nately, the only library we found that provides an implementation of

these metrics is HiClass, but they do not apply to the multi-label sce-

nario. So, we implement them from scratch.

2.3 Few-shot learning

Few-shot learning in Machine Learning refers to learning from just a

few examples. Data annotation is costly and time-consuming, so these

approaches have received a lot of attention. Below we present SetFit

(Tunstall et al., 2022) [28], a framework for few-shot text classification

based on Sentence Transformers (Reimers and Gurevych, 2019) [21].

2.3.1 SetFit

SetFit framework is composed of two components: a Sentence Trans-

former model that derives sentence embeddings and a text classification

head (a logistic regression in the original work) that performs the classi-

fication. The learning is divided in two steps, as in figure 2.8:

• ST fine-tuning: the sentence transformer model is fine-tuned on

the input data in a contrastive, Siamese manner on sentence pairs.

In particular, the training set used for this fine-tuning is formed

by pairs of examples where the objective is 1 if those two examples

belong to the same class, and 0 otherwise.

• classification head training: the fine-tuned ST encodes the origi-

nal labeled training data; these embeddings, along with their class

labels, constitute the training set for the classification head

SetFit, with respect to previous approaches, employs lighter models

and is faster at training and inference [28]. Moreover, SetFit has been
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Figure 2.8: SetFit’s training steps. [28, Figure 2]

chosen for this work because it can be applied to multi-label classifi-

cation problems and can be used with multilingual texts (employing a

multilingual sentence transformer model).



Chapter 3

Dataset

In this chapter we present the datasets employed in this work: a labeled

dataset, which is used in all the experiments (presented in chapter 4) and

an unlabeled dataset necessary for the experiment explained in section

4.5.1.

3.1 Labeled dataset

In this section, the main dataset used in this work is presented, pro-

viding information about the textual content and about the hierarchical

taxonomy used for its classification. Moreover, we also explain the pre-

processing steps performed to obtain the dataset that will be used for

the experiments and the train-test split procedure.

This dataset is a hierarchical multi-label dataset composed of 2546

school exercises. This means that each exercise is tagged with classes

coming from a hierarchical taxonomy and given its multi-label nature,

more than one class for each level of the taxonomy can be assigned to

each of them.
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3.1.1 Text

The dataset contains English language exercises for Italian secondary

schools; therefore, the texts of the exercises are multilingual and include

two languages: Italian and English. Here are three examples of exercises

taken from the dataset:

1. Scegli l’alternativa corretta.

Jessica: I’m going to the supermarket; do you need _____ (lots

/ any) groceries, Bill?

Bill: Yes, could you get me _____ (a / any) bottle of milk,

please?

Jessica: I think we’ve still got _____ (much / some) in the fridge.

Bill: No, I just drank it. There isn’t _____ (any / some) left.

Jessica: Ok. I’m going to get _____ (a little / a few) apples,

too.

Bill: Get _____ (many / lots of) apples so we can make a pie!

Jessica: That’s a great idea!

2. Completa con il verbo corretto.

_____ martial arts

_____ cricket

_____ gymnastics

_____ a horse

_____ rugby

3. Speak _____, please. slowly / slow / slowed

These texts are quite short, as shown in figure 3.1, more specifically

2499 out of 2546 exercises contain less than 300 words. This aspect allows

to apply more easily BERT-based models, which receive a fixed size input

(i.e., 512 tokens), as we will see in 4.5.
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Figure 3.1: Distribution of labeled exercises’ lengths, where length is
defined as the number of words.

As previously stated, each exercise of the dataset is tagged with at

least one label for each level of the taxonomy. The following section

provides more details about the pre-processing steps performed on the

labels to obtain the dataset and the hierarchical taxonomy used for the

experiments.

3.1.2 Content taxonomy

The labels associated with the exercises come from two hierarchical tax-

onomies: one for lower secondary education (scuola secondaria di primo

grado in the Italian educational system) and the other one for upper

secondary education (scuola secondaria di secondo grado in the Italian

educational system). Both these two taxonomies are described by a

three-level hierarchy and each label is identified by an ID and comes

with a name.

Even if the taxonomies are defined upon three levels, in this work
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we choose to ignore the third level and focus only on the first two lev-

els. This choice is made because of the extremely high number of classes

on the third level of the taxonomies and the small number of exercises

per class. Indeed, on the third level of the taxonomy, about 12% of the

classes are associated with no example and only about 14% of the classes

are associated with more than 20 examples. Trying to perform classifica-

tion at the third level with machine learning models would be extremely

challenging and goes beyond the purpose of this work. In addition, with

so scarce data we cannot produce a large enough test set that we can

rely on to test performance and compare different approaches.

Moreover, the two taxonomies mostly overlap, especially in the first

two levels, which means that there are many classes for which there is a

class in the other taxonomy that refers to the same topic. Given that the

purpose is to classify the content of the exercises we decide to generate

a new taxonomy produced from their unification and use this one for

tagging the exercises (see figure 3.2). From now on, classes on the first

level of taxonomy will be also referred to as macro-topics while those on

the second level as topics.

Figure 3.2: Structure of the hierarchical taxonomy used for the classifi-
cation of the English language exercises.

The classes in the two taxonomies that refer to the same topic have
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different IDs and sometimes also slightly different names (due to capital

letters, commas, dashes, etc.). So, the unification of the taxonomies is

performed through a semi-automatic procedure, in particular:

1. a python script tries to detect these pairs of classes, matching those

whose edit-distance computed upon their names is below a certain

threshold

2. then a manual check is performed, updating the script to:

(a) choose the better edit-distance threshold

(b) remove the false positive matching pairs detected by the script

(c) add potential pairs of labels not detected by the procedure

The script compares only the names of the classes that belong to

the same level of the taxonomy and the search is performed iteratively,

starting from an edit-distance threshold equal to zero (i.e., searching for

labels with the same name) and then the threshold is increased at the

end of each iteration. Moreover, the edit-distance is computed upon the

lowercase version of the classes’ names using polyleven library [18], which

provides a more efficient implementation, compared to other libraries like

NLTK [12].

After these steps, the new taxonomy is a two-level hierarchy that has

4 classes at the first level and 33 classes at the second level. Anyway,

in the experiments presented in this work all the classes with less than

65 examples are excluded, in order to have enough examples per class

for training and testing: with this choice, all the classes have at least 10

examples in the test set. Therefore, the dataset employed has 2 classes

on the first level and 16 classes on the second level of the hierarchy. From

now on, we refer to this version of the dataset.

In figure 3.3 there are a few examples taken from the dataset at the

end of all these steps.
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Figure 3.3: Few examples of English exercises from the labeled dataset.

3.1.3 Labels distribution

This section contains statistics about the distributions of the labels in

the dataset.

As said in section 3.1.2, there are two macro-topics: 1783 exercises

are labeled with the first one and 922 with the other one. The histogram

represented in figure 3.4 instead, shows the number of exercises associated

with each topic (i.e., the classes at the second level of the hierarchy). As

we can see the dataset has a moderate imbalance.

The histogram in figure 3.5, instead, deepens the multi-label nature

of the dataset and shows the number of exercises per number of labels

(considering only the second level of the taxonomy). It exhibits that

many exercises (1720 out of 2546) have only one label, 357 exercises have

no label assigned to them, and 469 exercises have at least two labels.

3.1.4 Training and test sets

A portion of the dataset is used as the test set to evaluate the results and

compare different approaches. Hence, the dataset is split into training
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Figure 3.4: Number of exercises per topic.

Figure 3.5: Number of exercises per number of associated labels.

and test sets using scikit-learn [22] in a stratified fashion, so that the

distribution of the classes in the training and test sets are the same. In

order to use stratification, the function provided by scikit-learn requires

that there are no examples whose combination of labels appears only one

time in the dataset. For this reason, these examples are removed before
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executing the splitting procedure.

Then 20% of the remaining part of the dataset is kept as the test set

while the remaining 80% and those examples removed before the splitting

procedure compose the training set. The result of this step consists in

having a training set of 2063 exercises and a training set of 483 exercises.

All the experiments presented in the next chapter are evaluated using

the same test set to ensure a fair comparison between all the approaches

employed.

3.2 Unlabeled dataset

The unlabeled dataset is composed of 16751 English language exercises

for Italian secondary schools, and it is only used in the experiment that

employs task-adaptive pre-training (see section 4.5.1).

Figure 3.6: Distribution of unlabeled exercises’ lengths, where length is
defined as the number of words.

The texts of the unlabeled dataset have the same characteristic as the

texts of the labeled dataset but they do not overlap. Figure 3.6 shows
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the lengths of these exercises in terms of number of words: as we can see

the histogram is analogous to the histogram of the labeled exercises.
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Experiments

This chapter present the experiments made to develop a text classifica-

tion model that automatically classifies English language exercises for

secondary school with the taxonomy presented in section 3.1.2.

All the experiments shown in this chapter apply machine learning

and deep learning models trained and tested with the dataset introduced

in chapter 3. All the approaches implement flat classifiers trained on the

second level of the taxonomy (the targets are the topics) and they are

evaluated using the same test set in order to provide a fair comparison.

If not stated otherwise the best hyperparameters have been found

using a validation set, obtained by splitting the training set with strati-

fication.

4.1 Overview

The approaches implemented in this project are:

• tf-idf features with CatBoost classifier (CatBoosttfidf)

• LASER embeddings with k-NN classifier (k-NNLASER)

• Multilingual BERT (mBERT)
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• Multilingual BERT with task-adaptive pre-training (mBERTTAPT)

• SetFit

The first approach employs tf-idf as feature extraction method and then

these features form the input used to train a model with CatBoost [19],

a gradient boosting algorithm based on decision trees.

Then, given the small size of the dataset, we decide to try also so-

lutions based on pre-trained models. After some research, we decided to

conduct experiments with LASER [1] and multilingual BERT [5].

LASER is combined with a k-NN classifier: LASER is used to produce

the embeddings of the exercises texts, which are the input used to train

the k-NN classifier. On the other end, mBERT is fine-tuned just by

adding a feed-forward neural network and a sigmoid layer as activation

function.

Then, we do another experiment with mBERT where we try to im-

prove the performance by leveraging the unlabeled data: before the fine-

tuning, we do an additional pre-training with the unlabeled data, on

the MLM (Masked Language Modeling) task. This step should adapt

mBERT to the domain and the structure of the school exercises’ text.

The last approach employs SetFit, a framework thought for providing

few-shot learning for text classification problems. This choice is made to

investigate if this could be a better approach for classifying classes with

few examples, which are the topics with less than 65 exercises that are

not included in this dataset and classes at the third level of the taxonomy

(see section 3.1.2 for more detail).

The training has been done using Google Colab’s GPU, except for

CatBoost classifier which does not support the training with GPU for

multi-label problems. It was instead trained on a CPU Intel Core i5-

1135G7.
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4.2 Metrics

The metrics used to evaluate the models in this work are:

• classical text classification metrics:

– exact match

– F1 score

– precision

– recall

• hierarchical text classification metrics, proposed in Kiritchenko et

al. (2006) [10] and discussed in section 2.2.2:

– hierarchical precision

– hierarchical recall

– hierarchical F1 score

• custom metrics relevant for the specific task:

– partial match

– partial mismatch

Partial match is defined as the fraction of samples with at least one

label predicted by the model and precision equal to 1. In other terms,

it is the fraction of exercises classified with at least a correct label and

without incorrect labels.

Partial mismatch instead is defined as the fraction of samples with at

least one label predicted by the model and precision less than 1. In other

terms, it is the fraction of exercises classified with at least an incorrect

label.
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Partial match and partial mismatch can better tell, with respect to

exact match, how many exercises are correctly labeled and how many ex-

ercises are wrongly labeled. Ideally, partial match should be maximized,

and partial mismatch should be minimized.

F1 score, precision, and recall scores unless noted otherwise are com-

puted using the macro average, so as the arithmetic average of the classes’

scores. This kind of average is chosen because of the imbalance of the

dataset: indeed, macro average weights more the less populated classes

with respect to micro and weighted averages. F1 score is also computed

using samples average because of the multi-label nature of the dataset.

In the following sections, we present in more detail the approaches im-

plemented in this work and their evaluations, which are made by testing

the models on the test set presented in section 3.1.4.

4.3 CatBoost classifier with tf-idf features

This experiment relies on a pipeline of three steps (see figure 4.1):

• text pre-processing

• tf-idf which generates sparse vectors representing the exercises

• CatBoost classifier which predicts the output labels

Figure 4.1: Pipeline employed with CatBoost.

The best pre-processing configuration and the best hyperparameters

for tf-idf and CatBoost have been found using cross-validation on the

training set. The pre-processing consists in normalizing the text (lower-

ing all the capital letters) and removing the Italian stop words. English
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stop words are not removed because this would worsen the results: this

is because many classes about grammar are correctly identified by the

model leveraging the presence of some stop words. Also, lemmatiza-

tion would be harmful because it would normalize inflected forms (e.g.,

conjugated forms, plural forms, comparative and superlative forms, etc.)

removing relevant aspects for discriminating the output classes.

The implementation of tf-idf used in this work is the one provided by

scikit-learn. The best configuration extracts unigram features at word

level, discarding all the words that appear less than 40 times. The total

number of features extracted is 411.

The main advantages of this approach are that this method is ex-

plainable and does not require high computational resources.

4.4 k-NN with LASER embeddings

LASER is a pre-trained multilingual model that transforms sentences

into language-independent vectors. In this approach LASER generates

the embeddings of the exercises, which are are then used as input for

the k-NN classifier (with k=1). In this case, there are no pre-processing

steps.

Figure 4.2: Pipeline employed with LASER.

This approach also does not require high computational resources:

only the k-NN classifier has to be trained and this is computationally

inexpensive.
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4.5 Multilingual BERT

Multilingual BERT is fine-tuned by adding a linear layer on top of the

pooled output, using the Hugging Face library [7].

The text is tokenized in order to be passed to mBERT, and the ex-

ercises which exceed 512 tokens (which is the maximum input size for

mBERT) are truncated. This choice was made because only 0.86% of

the exercises consist of more than 512 tokens, so it would not be harmful

for the classification task.

4.5.1 Multilingual BERT with TAPT

Given the limited amount of labeled data and the availability of un-

labeled data, we try to leverage the unlabeled dataset by performing

task-adaptive pre-training (TAPT) as in Gururangan et al. (2020) [6]:

before fine-tuning mBERT with the labeled dataset we perform a pre-

training with the unlabeled data (composed of 16751 exercises) on the

MLM task, the same of BERT pre-training.

4.6 SetFit

SetFit has been applied using paraphrase-multilingual-MiniLM-L12-v2 as

sentence embedding, a multilingual transformer-based model provided

by the library sentence-transformer [23], and a logistic regression as a

classifier.

4.6.1 SetFit vs mBERT: comparison with less training

data

Then, given the ability of SetFit to perform few-shot text classification

we also compare mBERT and SetFit with less training data to:
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• understand the limitations of these models

• check whether SetFit might be more appropriate to perform classi-

fication including the less populated classes that has been discarded

from the dataset (see section 3.1.2 for more details).

In order to make this comparison we train both mBERT and SetFit

using 25%, 50% and 100% of the training set and then evaluate them on

the test set.



Chapter 5

Results

Among all the approaches mBERT with TAPT reaches the best perfor-

mance (see table 5.1). Instead, CatBoosttf-idf and the k-NNLASER ap-

proaches seem inadequate for this task, because:

• CatBoost has a too low recall and struggle with more complex

exercises or classes

• LASER is not able to capture semantic aspects to discriminate the

exercises

Model F1 F1 (samples) hF1 Precision PM

CatBoosttf-idf 0.511 0.403 0.626 0.839 0.414

k-NNLASER 0.568 0.525 0.693 0.551 0.491

mBERT 0.748 0.647 0.823 0.840 0.648

mBERTTAPT 0.766 0.662 0.833 0.870 0.669

SetFit 0.760 0.663 0.822 0.782 0.615

Table 5.1: Models’ comparisons with the following metrics: F1 score
(average = macro), F1 score (average = samples), hierarchical F1 score,
precision (average = macro), and partial match

The approaches based on SetFit and mBERT give satisfactory re-

sults, but their main disadvantage is that these models are expensive to
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train and require adequate computational resources. Table 5.2 shows the

training times of the models.

Model Training time

CatBoosttf-idf 5 m

k-NNLASER ≈ 0 sec

mBERT 1hr 10min

mBERTTAPT 8 hr (TAPT) + 1 hr 10 min (fine-tuning)

SetFit 50 min

Table 5.2: Models’ training times

In the following sections we present the quantitative and qualitative

of the models in more detail.

5.1 CatBoost with tf-idf features

This approach reaches good precision, like mBERT, but it has low recall

(table 5.3). This is due to the nature of the features: with tf-idf each

feature is a word so the model can predict the correct class only if there

are words in the input exercise’s text from which to infer the correct

labels. But this is not always the case, for example with gap-fill exercises

where the correct label must be inferred from what is missing. So, the

limitations of this approach are due to its lack of a deep understanding

of semantics.

As we said CatBoost constructs an explainable classifier: this allows

us to inspect which features are most important. In our classifier the

most important features are function words, i.e., words that indicate

grammatical relationships like auxiliary verbs, pronouns, conjunctions

etc. This is because these features are important to correctly classify

labels about grammar and justify the choice of not removing the English
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Metric Score

Exact match 0.489

F1 score (macro) 0.511

F1 score (samples) 0.403

Precision (macro) 0.839

Recall (macro) 0.393

Hiearchical F1 score 0.626

Hiearchical precision 0.902

Hiearchical recall 0.479

Partial match 0.414

Partial mismatch 0.073

Table 5.3: CatBoost classifier’s quantitative evaluation (with tf-idf fea-
tures).

stopwords during pre-processing. The 20 most important features for

this classifier are: is, the, if, can, to, there, have, going, was, are, like,

frasi, past, on, will, you, and, by, how yesterday.

5.2 k-NN with LASER embeddings

k-NN classifier with LASER embeddings has a much higher recall than

CatBoost but also a much lower precision (see table 5.4).

Then, to further investigate LASER’s ability to capture semantic as-

pects relevant to this classification task, we plotted a 2D visualization

obtained by applying t-SNE to the 50 principal components. Figure 5.1

shows this visualization with the single-label exercises, where each color

indicates the topic. As we can see, LASER is not able to cluster the

exercises with respect to the topics: this is probably due to the tex-

tual differences (about domain and structure) between the texts of this
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Metric Score

Exact match 0.545

F1 score (macro) 0.568

F1 score (samples) 0.524

Precision (macro) 0.551

Recall (macro) 0.603

Hiearchical F1 score 0.693

Hiearchical precision 0.662

Hiearchical recall 0.728

Partial match 0.491

Partial mismatch 0.364

Table 5.4: k-NN classifiers quantitative evaluation (with LASER embed-
dings as input).

dataset and those used for the training of LASER. This visualization

also explains why the best value for the number of neighbors of the k-NN

classifier was 1. In conclusion, LASER is not adequate for this dataset.

Figure 5.1: t-SNE visualization of single-label exercises’ embeddings com-
puted with LASER.
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5.3 Multilingual BERT

Multilingual BERT performs well on this task: it outperforms the previ-

ous two approaches reaching a high precision (close to CatBoost) and a

higher recall. Also, the approach with task-adaptive pre-training shows

a slight improvement with respect to training mBERT with only fine-

tuning (table 5.5), at the cost of more expensive training.

Metric fine-tuning TAPT + fine-tuning

Exact match 0.706 0.716

F1 score (macro) 0.748 0.766

F1 score (samples) 0.647 0.662

Precision (macro) 0.840 0.870

Recall (macro) 0.693 0.709

Hiearchical F1 score 0.823 0.833

Hiearchical precision 0.879 0.889

Hiearchical recall 0.775 0.784

Partial match 0.648 0.669

Partial mismatch 0.122 0.101

Table 5.5: mBERT’s quantitative evaluation, with and without TAPT.

One of the disadvantages of neural networks, and in particular of

BERT-based models, is the lack of explainability. Several methods have

been proposed to explain predictions of neural networks and therefore

enhance their interpretability.

So, to enhance the explainability of mBERT, we inspect some predic-

tions on exercises of the test set with SHAP values, proposed in Lundberg

and Lee (2017) [13]. SHAP (SHapley Additive exPlanations) is a game

theoretic approach to explain the output of machine learning models.

This method is applied in this work to:
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• validate the model, checking if it is able to make the correct pre-

dictions leveraging textual elements relevant for the prediction

• inspect wrong predictions

Figures 5.2, 5.3, 5.4 show explanations based on SHAP values pro-

vided by the SHAP library [24]. This library is compatible with machine

learning models applied to textual data, providing visualizations that en-

lighten in red the textual elements that contribute positively to a certain

prediction and in blue those that contribute negatively. The intensity of

the color is proportional to the contribution.

More specifically, figure 5.2 shows an exercise correctly classified as

relating to past tenses: the textual element that contributes most to this

prediction is the verb didn’t, which is indeed a verb conjugated in the

past simple. Also figure 5.3 shows a correct prediction: this exercise is

about modal verbs and most of the words leveraged by the model to

predict the correct label are modal verbs.

Figure 5.2: Shap values of a correct prediction of an exercise about past
tenses.

Figure 5.3: Shap values of a correct prediction of an exercise about modal
verbs.
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Instead, figure 5.4 shows an example misclassified by the model. This

exercise is about present tenses but is classified with a class associated

with future tenses. Errors like this one could probably occur because

present continuous can be used both as present tense and future tenses,

so these two tenses share some common grammatical and lexical patterns.

Figure 5.4: Shap values of a wrong prediction of an exercise about present
tenses but classified by the model as one about future tenses.

In general, the predictions of the model are precise: when the pre-

diction of the model and the human annotation do not agree, often the

model assigns labels that seem correct; this leads to the assumption that

the quality of the dataset can be improved by exploiting this model.

mBERT’s main weakness is recall, which for some exercises means

not being able to capture all associated labels while for others means not

being able to assign any labels at all.

5.4 SetFit

SetFit reaches good results, close to mBERT. The main difference is

that SetFit has a lower precision and a higher recall, and this explains

the worse scores of the metrics partial match and partial mismatch for

SetFit (see table 5.6).

In many cases when the predictions disagree with the annotations, the

model assigns labels that seem correct, because relevant to the content of

the exercises. Instead, the error analysis shows that the SetFit sometimes

is misled by the presence of certain words (e.g., the model misclassifies
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Metric Score

Exact match 0.677

F1 score (macro) 0.760

F1 score (samples) 0.663

Precision (macro) 0.782

Recall (macro) 0.749

Hiearchical F1 score 0.822

Hiearchical precision 0.826

Hiearchical recall 0.818

Partial match 0.615

Partial mismatch 0.205

Table 5.6: SetFit’s quantitative evaluation.

an exercise as one about modal verbs because of the presence of a modal

verb in the exercise’s text). Also, the model struggles with some exercises

written in Italian language, like this one:

Translate the sentences into English.

In tutto il paese ci sono sia monumenti antichi sia monasteri.

Se non uscirai da casa ora, perderai il treno. Se deciderò di

rimanere a Dublino, probabilmente cambierò il mio stile di

vita. Quando mi trasferirò a Melbourne non sarà per sempre,

solo per tre o quattro anni. I turisti che visitarono Dublino,

trovarono gli abitanti della città molto amichevoli.

This exercise is about conditional sentences, but the model does not

assign any label to this exercise. So, we think that to better handle these

kinds of exercises, we could try to employ machine translation either as

a data augmentation method or as a pre-processing step.
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5.4.1 SetFit vs mBERT: comparison with less training

data

Figure 5.5: Comparison on the F1 score (average = macro) between
SetFit and mBERT on 25%, 50% and 100% of the training data.

Model F1 F1 (samples) hF1 Precision PM

mBERT25% 0.212 0.247 0.445 0.339 0.259

SetFit25% 0.539 0.512 0.693 0.592 0.470

mBERT50% 0.577 0.506 0.702 0.792 0.516

SetFit50% 0.628 0.571 0.744 0.691 0.545

mBERT100% 0.748 0.647 0.823 0.840 0.648

SetFit100% 0.760 0.663 0.822 0.782 0.615

Table 5.7: Comparison of SetFit and mBERT on 25%, 50% and 100% of
the training data with the following metrics: F1 score (average = macro),
F1 score (average = samples), hierarchical F1 score, precision (average
= macro) and partial match

As shown in figure 5.5 and in table 5.7, SetFit outperforms mBERT
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with less training data. Especially with only 25% of the training set

where mBERT struggles to classify many of the classes: 9 out of 16

classes have an F1 score equal to 0; SetFit otherwise has an F1 score

equal to 0 for only 1 class.

This comparison indicates that SetFit is a better option, with respect

to mBERT, to extend the classification with less populated classes. Also,

the results obtained with SetFit are remarkable, considering that with

25% of the training set 8 out of 16 classes have less than 30 examples.
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Future Work

Many directions could be taken for future work:

• extend the classification to all the classes belonging to the second

level of the taxonomy: in this work, some classes are discarded

because they have too few exercises associated; in section 5.4.1 we

show that SetFit (respect to mBERT) has good performances on

this task also with a small number of examples, so SetFit is the best

candidate for tackling the classification considering all the classes

at the second level of the taxonomy

• perform data augmentation to have more examples to train the

model, especially for less populated classes

• improve the quality of the dataset: given the good performances

of mBERT and SetFit, the labels predicted by the model could be

added to the dataset. The best option would be to add the labels

approved by one or more annotators

• tackle the classification of the third level of the taxonomy: in this

case SetFit would probably not be sufficient and it is also neces-

sary to investigate methods for zero-shot text classification. An

approach that we want to test is to formulate text classification as
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a textual entailment problem as in Yin et al. (2019) [30]

• exploit the hierarchical structure of the taxonomy to perform classi-

fication: all the approaches in this work employ flat classifiers, but

considering the hierarchical information during the training phase

could be helpful, especially in the case of extending the classifica-

tion to the third level of the taxonomy

• test and extend this classifier to other languages: mBERT and

our implementation of SetFit are based on multilingual models,

so they should be able, to a certain extent, to handle texts in

other languages. A quantitative test should be held to evaluate

the performances of the models in other languages. In addition, to

have a model that can classify languages school exercises in other

languages, we could add to the training set:

– school exercises in other languages

– synthetic exercises generated by translating the English exer-

cises with machine translation tools
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Conclusions

In this thesis we address a hierarchical multi-label text classification prob-

lem that consists in classifying English school exercises according to their

content.

At first, we explore the dataset and decide to simplify the task by:

• ignoring the third level of the hierarchical taxonomies and focusing

only on the first two levels; this is done because at the third level

there are too few examples per class

• unifying the two taxonomies (the lower secondary education taxon-

omy with the upper secondary education one) because they largely

overlap

• ignoring those classes at the second level which have less than 65

examples

Thus, we explore different solutions: we start with Catboost, a gra-

dient boosting algorithm based on decision tree, using tf-idf features;

then we shift to approaches based on pre-trained models like mBERT

and LASER embeddings. Eventually, we train a classifier with SetFit, a

few-shot text classification framework that employs pre-trained sentence

embeddings based on Transformer models.
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We evaluated all the approaches with text classification metrics (in-

cluding hierarchical metrics) and two custom metrics.

We argue that the use of pre-trained models is beneficial for this task.

However, this is true only with mBERT and SetFit and not for LASER:

we think the reason is that with mBERT and SetFit the weights of pre-

trained models are updated during the fine-tuning, adapting the model

to our task. LASER, on the other hand, cannot be fine-tuned and is

unable to cluster exercises according to their content.

Then, we compare SetFit and mBERT with less training data and

show that SetFit performs better than mBERT when training with 25%

of the training set.

In conclusion we think SetFit would be the most adequate approach

for solving this task, considering the labels of the first two levels of the

taxonomy. Instead, to address the third level of the taxonomy further

experiments should be carried out exploring zero-shot text classification,

data augmentation and methods to exploit the hierarchical structure of

the taxonomy.
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