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Look up at the stars, not down your feet.
- Stephen Hawking

Saving someone means helping them when they are frightened;
but true heroes not only save lives but also people’s hearts. . .

No matter how scared you are, always smile as if everything is alright.
In this world, those who smile are the strongest!

- Kōhei Horikoshi





Sommario

Spinti dalle recenti scoperte del deep learning, i modelli di generazione
del linguaggio naturale (NLG) sono stati al centro di costanti progressi negli
ultimi anni. Tuttavia, poiché la nostra capacità di generare testo artificiale
indistinguibile dall’uomo è in ritardo rispetto alla nostra capacità di valutarlo, è
fondamentale sviluppare e applicare metriche di valutazione automatica ancora
migliori. Per facilitare ai ricercatori una valutazione generale dell’efficacia dei
loro modelli, proponiamo NLG-Metricverse—una libreria open-source end-
to-end per la valutazione NLG basata su Python. Questo framework fornisce
una raccolta vivente di metriche NLG in un ambiente unificato e di facile utilizzo,
fornendo strumenti per applicarli, analizzarli, confrontarli e visualizzarli in
modo efficiente. Ciò include (i) l’ampio supporto a metriche automatiche
eterogenee con gestione delle n-arità, (ii) la meta-valutazione sulle prestazioni
individuali, le correlazioni metrica-metrica e metrica-umano, (iii) interpretazioni
grafiche per aiutare gli esseri umani a ottenere meglio le intuizioni del punteggio,
(iv) categorizzazione formale e documentazione conveniente per accelerare la
comprensione delle metriche. NLG-Metricverse mira ad aumentare la
comparabilità e la replicabilità della ricerca NLG, auspicabilmente stimolando
nuovi contributi nell’area.
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Abstract

Driven by recent deep learning breakthroughs, natural language generation
(NLG) models have been at the center of steady progress in the last few years.
However, since our ability to generate human-indistinguishable artificial text
lags behind our capacity to assess it, it is paramount to develop and apply
even better automatic evaluation metrics. To facilitate researchers to judge
the effectiveness of their models broadly, we suggest NLG-Metricverse—an
end-to-end open-source library for NLG evaluation based on Python. This
framework provides a living collection of NLG metrics in a unified and easy-
to-use environment, supplying tools to efficiently apply, analyze, compare,
and visualize them. This includes (i) the extensive support of heterogeneous
automatic metrics with n-arity management, (ii) the meta-evaluation upon
individual performance, metric-metric and metric-human correlations, (iii)
graphical interpretations for helping humans better gain score intuitions, (iv)
formal categorization and convenient documentation to accelerate metrics
understanding. NLG-Metricverse aims to increase the comparability and
replicability of NLG research, hopefully stimulating new contributions in the
area.
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Introduzione

Motivazioni e contributi

La generazione del linguaggio naturale (NLG) è una branca dell’elaborazione
del linguaggio naturale (NLP) che si concentra sulla generazione automatica del
testo a partire da dati di input come prompt, tabelle, grafici e immagini com-
prensibili dagli esseri umani. Incredibilmente, il prerequisito per l’Intelligenza
Generale Artificiale (AGI), il Santo Graal dell’IA, è la capacità di una macchina
di produrre testo che non può essere distinto dal testo scritto da esseri umani. I
recenti sviluppi nel deep learning hanno notevolmente migliorato il campo della
NLP, rendendo NLG il fulcro di un interesse di ricerca in rapida espansione,
come adeguatamente illustrato da GPT-3 [1]. Con prestazioni mai viste prima,
i modelli linguistici pre-addestrati su architetture basate su trasformatori [2]
continuano a spingersi avanti, oltre e ad ispirare nuove applicazioni. In effetti,
oggi in NLG è inclusa un’ampia gamma di task, tra cui traduzione automatica,
riepilogo di uno o più documenti, conversione dato-testo e testo-testo, gene-
razione di dialoghi, risposta a domande in formato libero e immagini/video
didascalia [3].

Man mano che i modelli NLG migliorano, valutarli accuratamente diventa
una priorità sempre più importante per tenere traccia dei progressi e ricono-
scere in modo convincente i sistemi all’avanguardia. Tuttavia, la valutazione
dell’output di modelli NLG è un problema notoriamente difficile [4, 5]. Implica
la presa in considerazione di molteplici intrinseche dimensioni della qualità (ad
esempio informativa, fluidità, coerenza, adeguatezza) nonché scenari aperti in
cui possono esistere diverse risposte plausibili o di uguale significato allo stesso
input dell’utente. La valutazione umana è comunemente considerata il gold
standard. Tuttavia, la progettazione di esperimenti di crowdsourcing con linee
guida elaborate è un processo costoso e dispendioso in termini di tempo che
non si adatta facilmente a una pipeline quotidiana di sviluppo di modelli con la
necessità di benchmarking automatico e ottimizzazione su larga scala. Inoltre,
man mano che i modelli NLG migliorano, ai valutatori viene chiesto di leggere
passaggi di testo più lunghi con molto contesto. In questi casi, gli errori sono
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xii Introduzione

spesso basati sul contenuto piuttosto che sulla fluidità (ad esempio, inesattezze
fattuali o incoerenze di contesto), rendendo insufficienti le letture superficiali e
gli annotatori non esperti [6].

Dati questi problemi, i ricercatori di NLG hanno optato per metriche
di valutazione automatiche che calcolano un punteggio olistico o specifico
della dimensione, che funge da proxy accettabile per efficacia ed efficienza.
Sfortunatamente, nonostante la rapida ascesa del linguaggio generato dalle
macchine, le metriche di valutazione sono rimaste in ritardo, basandosi sull’uso
conservativo di somiglianze lessicali a livello superficiale, che non riescono a far
fronte alla diversità e a catturare il significato sottostante del testo. Per superare
questo grave collo di bottiglia, la comunità ha assistito a una produzione di
ricerca prolifica, diversificata e originale in un periodo di tempo relativamente
breve. Nuove metriche NLG con una o più delle seguenti caratteristiche vengono
costantemente proposte nelle migliori conferenze: (i) l’incorporamento di parole
contestualizzati [7], (ii) pre-training su corpora massicci senza etichetta [8], (iii)
la messa a punto dei dati annotati con i giudizi umani [9] e (iv) la gestione
delle varianti di task [10].

In contrasto, le metriche NLG sono spesso progettate e implementate da
zero, con ambienti, ipotesi, proprietà, impostazioni, benchmark e funzionalità
unici. A causa della loro eterogeneità e segregazione, sono difficili da confrontare
o spostare in contesti leggermente diversi. In particolare, la mancanza di un
repository ben documentato e continuamente aggiornato che copra l’intera
pipeline di valutazione di NLG scoraggia l’uso di soluzioni moderne e ne
rallenta la comprensione e l’applicazione pratica. Anche recenti sondaggi hanno
evidenziato questa barriera [11]. Per colmare questa lacuna, viene presentato
NLG-METRICVERSE 1, una libreria end-to-end open source (con licenza
MIT) per la valutazione NLG, basata su Python, progettata per fornire una
codebase collaborativa e condivisa per rapide applicazioni, analisi, confronti,
visualizzazioni e prototipazione di metriche automatiche.

Organizzazione della tesi

La tesi è organizzata come segue:

• Capitolo 1 - Viene presentato un quadro generale sui concetti di NLP e
NLG. Inoltre, viene data la definizione di metrica di valutazione e di vari
concetti che ne derivano.

1Il termine "Metricverse" viene utilizzato per descrivere il microcosmo delle metriche di
valutazione automatica spinto dall’inconfondibile ascesa dei modelli NLG. Vedo le metriche
come pianeti appartenenti a galassie e superammassi, secondo la tassonomia presentata nei
capitoli seguenti.
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• Capitolo 2 - Viene chiarito il contesto e riassume lavori pre-esistenti
correlati a questo progetto.

• Capitolo 3 - Sono descritti i principi di progettazione alla base di NLG-
METRICVERSE, oltre al framework di valutazione NLG che costituisce
la base concettuale per i nostri contributi. Successivamente, vengono
esaminati i moduli principali della libreria: metriche, meta-valutazione e
visualizzazione.

• Capitolo 4 - Caso di studio.





Introduction

Motivation and contribution

Natural language generation (NLG) is a branch of natural language proces-
sing (NLP) that focuses on automatic text generation starting from input data
such as prompts, tables, graphs, and images that is understandable by humans.
Unbelievably, the prerequisite for Artificial General Intelligence (AGI), the holy
grail of AI, is a machine’s ability to produce text that can’t be distinguished
from text written by humans. Recent developments in deep learning have signi-
ficantly improved the NLP field, making NLG the focus of rapidly expanding
research interest, as aptly illustrated by GPT-3 [1]. With previously unheard-of
performance, pre-trained language models on transformer-based architectures
[2] keep pushing the envelope and inspiring new applications. Indeed, a wide
range of tasks are included in NLG today, including machine translation, sum-
marization of one or more documents, data-to-text and text-to-text conversion,
dialogue generation, free-form question answering, and image/video captioning
[3].

As NLG models improve, accurately evaluating them becomes an increa-
singly important priority for tracking progress and convincingly recognizing
state-of-the-art systems. However, evaluating NLG model output is a noto-
riously difficult problem [4, 5]. It entails taking into account multiple intrinsic
quality dimensions (e.g., informativeness, fluency, coherence, adequacy) as well
as open-ended scenarios in which different plausible or equal-meaning responses
to the same user input may exist. Human evaluation is commonly regarded
as the gold standard. However, designing crowdsourcing experiments with
elaborated guidelines is an expensive and time-consuming process that does not
easily fit into a daily model development pipeline with the need for automatic
benchmarking and tuning at scale. Furthermore, as NLG models improve,
evaluators are asked to read longer passages of text with a lot of context. In
these cases, errors are frequently content-based rather than fluency-based (e.g.,
factual inaccuracies or context inconsistencies), rendering superficial reads and
non-expert annotators insufficient [6].
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xvi Introduction

Given these issues, NLG researchers have settled on automatic evaluation
metrics that compute a holistic or dimension-specific score, which serves as
an acceptable proxy for effectiveness and efficiency. Unfortunately, despite
the rapid rise of machine-generated language, evaluation metrics have lagged,
relying on the conservative use of surface-level lexical similarities, which fail
to cope with diversity and capture the underlying meaning of the text. To
overcome this severe bottleneck, the community has witnessed a prolific, diverse,
and original research production in a relatively short period. New NLG metrics
with one or more of the following characteristics are constantly being proposed
in top conferences: (i) the use of contextualized word embeddings [7], (ii) pre-
training on massive unlabeled corpora [8], (iii) fine-tuning on data annotated
with human judgments [9], and (iv) the management of task-specific nuances
[10].

In contrast, NLG metrics are frequently designed and implemented from
the ground up, with unique environments, assumptions, properties, settings,
benchmarks, and features. Because of their heterogeneity and segregation, they
are difficult to compare or move to slightly different contexts. In particular,
the lack of a well-documented and continuously updated repository covering
the entire NLG evaluation pipeline discourages the use of modern solutions and
slows their understanding and practical application. Recent surveys have also
highlighted this barrier [11]. To fill this gap, we present NLG-METRICVERSE
2, an open-source (MIT-licensed) end-to-end library for NLG evaluation, based
on Python, designed to provide a shared and collaborative codebase for fast
application, analysis, comparison, visualization, and prototyping of automatic
metrics.

Thesis Organization
The thesis is organized as follows:

• Chapter 1 - Presents a general framework on the concepts of NLP and
NLG. Furthermore, is given the definition evaluation metric and resulting
concepts.

• Chapter 2 - Clarify the context and summarize prior work related to
this project.

• Chapter 3 - Describes the design principles at the basis of NLG-
METRICVERSE. Also, the overwatching NLG evaluation framework

2we coin the term "Metricverse" to describe the microcosm of automatic evaluation metrics
propelled by the unmistakable rise of NLG models. We see metrics as planets belonging to
galaxies and superclusters, according to the taxonomy presented in the following chapters.
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that constitutes the conceptual foundation for our contributions. Next, it
examines the main modules of the library: metrics, meta-evaluation, and
visualization.

• Chapter 4 - Case study.
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Chapter 1

Theoretical Framework

This chapter will describe the worlds of natural language processing and
natural language generation, and then move on to discuss evaluation metrics
and resulting concepts.

1.1 Natural Language Processing

Natural Language Processing (NLP) is a branch of computer science that
bridges the gap between human and computer language [12]. The main issues
faced in the NLP field concern the aspects required by machines to understand
natural language text. Among these, we find:

• Language modeling that focuses on quantifying the associations between
the set of words.

• The morphological processing, which consists of the segmentation of the
significant components of words and the identification of the parts of
speech.

• Syntactic processing, the process of constructing sentences according to
the constraints dictated by the language.

• Semantic processing that deals with extracting the meaning of words,
phrases, or text components.

1.1.1 Natural Language Generation

Natural language generation (NLG) is a subcategory of NLP that deals
with building systems that can generate coherent and readable text [13]. NLG
is a broad term that refers to a variety of tasks that take input in various forms

1



2 Chapter 1. Theoretical Framework

(for example, a dataset or table, a natural language prompt, or even an image)
and produce a sequence of text that humans can understand. Translations,
generation of automatic answers to questions (Question Answering), document
synthesis, and verbalization of graphs are among the most popular.

1.1.2 NLP techniques

Most natural language processing (NLP) activities include the task of
representing words and documents. As a result, it has been discovered that
it is useful to express texts and sentences as vectors, which facilitates very
expensive operations for systems such as similarity calculation, particularly in
the presence of a large amount of data. Among the most influential models
for encoding words and documents as vectors, we can find the Vector Space
Model by Gerard Salton [14]. He proposed a coding scheme in which each
document in a collection is represented by a t-dimensional vector, with each
term within the vector, which can be a real or binary number, describing a
unique textual element within the document. Since vectors can represent entire
sections of text, operations like calculating similarity are greatly simplified for
the machine.

1.2 Transformer architecture
Language modeling received a further boost in 2017 with the birth of the

Transformer architecture [15]. It is a model that focuses on tracing dependencies
between inputs and outputs. It is very efficient in translating texts, in fact, it
is able to reach the state of the art after a few hours of training.

The model consists mainly of two components, an encoder that maps a
sequence of input symbols

(x1, ..., xn)

into a sequence of continuous representations z = (z1...zn) and a decoder that
generates a sequence of output (y1...yn) one element at a time. The generation
occurs token after token, where the prediction of the token t depends only on
those generated up to t − 1. As shown in Figure 1.1, both the encoder and
the decoder are formed by a stack of N layers, all identical, each layer has two
other sublayers. The former refers to the multi-head Attention mechanism,
while the latter is simply a Feed-Forward network. The decoder has an extra
sublayer of multi-head attention that operates on the encoder output.

An Attention function is defined like this:

Attention(Q,K, V ) = softmax(
QKT

√
dK

)
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Figure 1.1: The Transformer - model architecture.
From [15]

where Q is the matrix that contains the queries, i.e. the vectors representing
the words in the sequence K are the keys and V the values. The function
outputs a weighted sum of the values, where the weight assigned to each value
is calculated through Q and K. The multi-head allows you to pay attention to
information from different representations in different positions. Multi-head
Attention is used in three distinct ways in the model:

1. Encoder-decoder Attention: queries come from the decoder’s previous
layer, memory keys instead from the decoder’s output. This allows each
decoder position to occupy each position in the input sequence.

2. The encoder contains layers of self-Attention: all keys, values, and queries
come from the output of the previous layer of the encoder. Each position
can occupy all positions in the previous level.

3. Similarly, the self-attention layers in the decoder allow any position in
the decoder to occupy all positions up to the current one.

The transformer has swiftly overtaken other neural models as the industry
standard for natural language processing, exceeding them both in compre-
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hension and text production. The architecture is especially well-suited for
pretraining on huge datasets, which significantly improves performance on
tasks like classification, machine translation, and text summarization. As a
result of these advancements, using these models at scale poses new obstacles,
necessitating the need for systems to train, assess, and scale the model on the
domain. The transformer skeleton is used to create extensions and extremely
complex models [16], but as technology advances, new obstacles arise when
trying to apply them on a broad scale, necessitating the refinement of the task’s
scope.

1.3 Evaluation Metric

There are two common ways to assess the quality of the generated text:

• Human assessment: the process of a human rater judging the quality
of text that has been generated. In order to boost variety, the produced
outputs are often given to a group of human raters.

• Metrics: the process of grading the text that has been generated using
an automated metric that might have to be created by a person. Despite
the fact that many of them were designed to focus on a particular task
(such as MT), they are often applied to various NLG activities.

The trade-off between integrity and effort/time is the primary distinction
between the two approaches. The produced texts can be better evaluated by
humans, but this is more expensive. Metrics, on the other hand, are more
affordable and may be used with large amounts of generated text, however,
they might not be as accurate as human evaluation and also require a reliable
reference corpus to compare created text to.

1.3.1 Categories

The evaluation metrics for generated text can be mainly (not exclusively)
classified as follows:

• String metrics

• N-gram based metrics

• Embedding based metrics

• Learned functions
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String Metrics These are the earliest measures for textual outputs in the
area of AI. They operate at the phoneme or character level. These metrics
belong to the edit distance family in general. The majority of the metrics in
this group employ insertion (I), deletion (D), and substitution as their three
main edit distance components (S).

Figure 1.2: Edits made to convert “tailor” to “sailing”, ED = 4.
From [17]

The metrics in this group’s earlier iterations mostly only considered lexical
consistency and did not evaluate fluency, syntactic integrity, or semantic inte-
grity. Improved versions, on the other hand, made an effort to close the gap by
taking into account phrasal shifts, paraphrasing, synonyms, etc. In addition to
text-to-text operations, speech recognition software also uses these metrics.

N-gram Based Metrics Calculations between the produced text and the
reference corpus are done using n-grams in these measures. This group’s most
popular and well-known example is BLEU [18], which searches for n-gram
correspondence in the reference corpus but ignores syntactic integrity and
grammatical accuracy. See 2.3.6 for details.

Embedding Based Metrics This category of metrics uses language model
(LM) representations to determine how similar or different two sets of data
are. For both the produced text and the reference corpus, the embeddings are
obtained using an LM, and the similarity or dissimilarity is then determined
using cosine similarity or comparable metrics. With the right LM, embeddings
may be retrieved at the character, word, phrase, paragraph, or corpus level.
Simple custom calculations using embeddings and a similarity or dissimilarity
measure are possible.

Because there are so many different levels of embeddings and LMs, the
metrics in this category are rather varied. One can create a universal metric or
a metric for a specific activity by combining several levels of embeddings and
LMs. BERTScore, a member of this group that is often employed, computes
the similarity (cosine similarity) of candidate and reference words with regard
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to both candidate words and reference words using BERT word embeddings.
See 2.3.5 for details.

Learned Functions This group of metrics aims to find a mapping f :
(P,R) → HumanRating, where P are the predictions (or generated texts) and
R are the references. These offer a comprehensive assessment of references and
predictions using a regression model that has been pretrained.

These models’ inputs might vary greatly; some employ word or text embed-
dings, others simple metrics (accuracy (2.3.2), F1 (2.3.15), etc.) from references
and predictions, and so on. See 2.3.7 for more details.



Chapter 2

Background

This chapter clarifies the context and summarizes prior work related to this
project.

2.1 Overview
Early lexical NLG metrics, such as the BLEU [18], and ROUGE [19],

appear to still dominate the landscape, while alternatives that are feasible,
robust, and widely adopted await. Despite a slew of criticisms and studies
demonstrating their poor correlation with human judgment [20], the popularity
of first-generation metrics has grown alongside the emergence of deep neural
networks and new tasks. The central pillars of this success are simplicity,
consistency, unsupervision, lightweight, and fast computation.

However, it has become clear that such adoption is not always prudent.
Surface-level overlap metrics are unsuitable for advanced evaluation, particularly
for modern text generation systems trained on massive amounts of data and
with impressive paraphrasing capabilities [21]— where ideal metrics should be
sensitive to the underlying semantics. As a solution, NLG researchers have
begun to incorporate learned/learnable components into their metrics, shifting
from a discrete space of word tokens to a continuous high-dimensional space of
word vectors, capturing distributional semantics. Many strong NLG evaluation
metrics, particularly transformer-based ones like BLEURT [8], BERTScore [7],
and BARTScore [22], have been proposed over the years.

The trend toward model-based metrics and the resolution of task-specific
needs has created fertile ground for research. According to Sai et al. [11],
there were only about 10 automatic NLG evaluation metrics in use from 2002
(when BLEU was proposed) to 2014 (when Deep Learning became popular);
since 2015, at least 36 new metrics have appeared. On the other hand, metrics
are frequently dispersed online, unmaintained, undocumented, implemented in

7
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multiple languages, and inconsistent with paper results. This not only impedes
reproducibility but also scalability, as each research paper ends up creating its
own implementation almost entirely from scratch.

2.2 Related work

Some libraries have already attempted to create a unified environment.
To the best of our knowledge, the only resources available are NLGEval [23],
HugginFace Datasets [24], Evaluate1, TorchMetrics [25], and Jury2. However,
none of them have all of the following characteristics: (i) a large number of
heterogeneous NLG metrics, (ii) concurrent computation of multiple metrics,
(iii) support for multiple references and/or predictions, (iv) meta-evaluation,
and (v) visualization. The discrepancies between NLG-Metricverse and
related work are summarized in Table 2.1 below.

NLG-Metricverse NLGEval Datasets Evaluate TorchMetrics Jury
#NLG-specific Metrics 38 + Datasets 8 22 22 13 19 + Datasets
More metrics at once ✓ × × ✓ × ✓
Multiple refs/preds ✓ ✓ × × × ✓
Meta-evaluation ✓ × × × × ×
Visualization ✓ × × × × ×

Table 2.1: Comparison of our library (v1.0.0) with existing NLG evaluation packages: NL-
GEval (v2.3.0), Datasets (v2.4.0), Evaluate (v0.2.2), TorchMetrics (v0.8.2), Jury (v2.2).
"+ Datasets" stands for an automatic fallback towards HuggingFace Datasets in case of
unsupported metrics (lower bound).

2.3 Implemented metrics

2.3.1 Abstractness

The Abstractness metric measures how many new n-grams are present in
the hypothesis compared to the references.

A decrease in the abstractness of the sentence evaluated with respect to its
reference was found by recent studies [26]: as the number of nodes in input to
the model increases, the generated hypothesis becomes less and less abstract.

1https://github.com/huggingface/evaluate
2https://github.com/obss/jury

https://github.com/huggingface/evaluate
https://github.com/obss/jury
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2.3.2 Accuracy

As described in the official HuggingFace Evaluate page [27]: Accuracy [28] is
the proportion of correct predictions among the total number of cases processed.
It can be computed with:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

where:

• TP : True positive

• TN : True negative

• FP : False positive

• FN : False negative

2.3.3 Average Unique N-gram Ratio (AUN)

Proposed in Peyrard et al. (2017) [29], this metric measures n-grams
uniqueness [30]; the lower it is, the more redundant the document is.

Uniq_ngram_ratio =
count(uniq_ngram)

count(ngram)

On four well-known datasets for summarization [31], analyzing the redun-
dancy of long vs. short papers with regard to this parameter and it turned out
that large documents are much more redundant than short ones.

2.3.4 BARTScore

BARTScore formulates evaluating generated text as a text generation task
from pre-trained seq2seq models. It operationalizes this idea using BART, an
encoder-decoder based pre-trained language model. BARTScore is conceptually
simple and empirically effective, directly evaluating text through the lens of
its probability of being generated from or generating other textual inputs and
outputs. BARTScore has three main advantages.

• It allows to fully take advantage of the parameters learned during the
pre-training phase, without requiring extra architectural parameters or
human judgments, i.e., parameter- and data-efficient.
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• BARTScore can better support evaluation of generated text from seven
different perspectives (informativeness, relevance, fluency, coherence,
factuality, semantic coverage, adequacy) by adjusting the inputs and
outputs of the conditional text generation problem. This is in contrast to
most previous work, which mostly examines correlation of the devised
metrics with output quality from a limited number of perspectives.

• BARTScore can be further enhanced by providing textual prompts or
updating the underlying model by fine-tuning BART based on downstream
generation tasks (e.g., text summarization). BARTScore achieves the
best performance on 16 of 22 settings against existing top-scoring metric.

BARTScore =
m∑
t=1

wtlogp(yt|y<t, x, θ)

where θ are model parameters.

The authors present four methods for using BARTScore based on different
generation directions.

• Faithfulness (s → h): from source document to hypothesis p(h|s, θ).
This direction measures how likely it is that the hypothesis could be
generated based on the source text (factuality, relevance). This measure
can also be used for estimating measures of the quality of only the target
text (coherence, fluency).

• Precision (r → h): from reference text to system-generated text p(h|r, θ).
This direction assesses how likely the hypothesis could be constructed
based on the gold reference and is suitable for the precision-focused
scenario.

• Recall (h → r): from system-generated text to reference text p(r|h, θ).
This version quantifies how easily a gold reference could be generated by
the hypothesis and is suitable for pyramid-based evaluation (semantic
coverage).

• F-score (r ↔ h): consider both directions and use the arithmetic average
of Precision and Recall ones. This version can be broadly used to evaluate
the semantic overlap (informativeness, adequacy) between reference texts
and generated texts.
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2.3.5 BERTScore

BERTScore leverages the pre-trained contextual embeddings from BERT
and matches words in candidate and reference sentences by cosine similarity.
First, it computes a pairwise cosine similarity between each token embedding
in the candidate and reference texts. Then, it produces a meaning overlapping
measure by calculating a weighted average where only the cross-text token
pairs with maximum similarity are taken into account with an IDF weight.

BERTScore has been shown to correlate with human judgment on sentence-
level and system-level evaluation; it supports around 130 models.

It can be seen as a special case of MOVERScore [32], with an hard (1:1)
alignment between tokens. In fact, they are both set-based metrics used to mea-
sure the semantic similarity between hypothesis and reference. BERTScore uses
greedy alignment to compute the similarity between two sets of BERT-based
word embeddings from hypothesis and from reference, while MOVERScore uses
optimal alignments based on Word Mover’s Distance [33] to do so.

Moreover, BERTScore computes precision, recall, and F1 measure, which
are useful for evaluating a range of NLG tasks.

Figure 2.1: Computation of BERT recall.
From “Bertscore: Evaluating text generation with bert.”, 2020 [7]

2.3.6 BLEU

BLEU (bilingual evaluation understudy) scores were originally developed in
the context of machine translation, but they are applied in other generation
tasks as well. Quality is considered to be the correspondence between a
machine’s output and that of a human: "the closer a machine translation is to a
professional human translation, the better it is" – this is the central idea behind
BLEU. BLEU was one of the first metrics to claim a high correlation with
human judgements of quality, and remains one of the most popular automated
and inexpensive metrics. For BLEU scoring, we require a dataset consisting of
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instances (a,B) where a is a candidate (a model prediction) and B is a set of
gold texts.

What percentage of predicted n-grams (text string clusters) can be found in
the reference text?

The metric has two main components.

• Modified n-gram precision. A direct application of precision would divide
the number of correct n-grams in the candidate (n-grams that appear in
any translation) by the total number of n-grams in the candidate. This
has a degenerate solution in which the predicted output contains only
one n-gram. BLEU’s modified version substitutes the actual count for
each n-gram in the candidate by the maximum number of times appears
in any gold text.

• Brevity penalty (BP). To avoid favoring outputs that are too short,
a penalty is applied. Let be the sum of all minimal absolute length
differences between candidates and referents in the dataset , and let if be
the sum of the lengths of all the candidates. Then: BP (Y ) = 1 if c > r,
BP (Y ) = exp

(
1− r

c

)
otherwise.

The BLEU score itself is typically a combination of modified n-gram precision
for various n (usually up to 4):

BLEU(Y ) = BP (Y ) · exp

(
N∑

n=1

wn · log (modified− precision(Y, n)

)

where Y is the dataset, and wn is a weight for each n-gram level (usually set to
1/n).

By definition, BLEU is a corpus-level metric, since the statistics above are
computed across sentences over an entire test set. The sentence-level variant
requires a smoothing strategy to counteract the effect of 0 n-gram precisions,
which are more probable with shorter texts. Scores are calculated for individual
translated segments—generally sentences—by comparing them with a set of
good quality reference translations. Those scores are then averaged over the
whole corpus to reach an estimate of the translation’s overall quality.

It has many affinities with WER, but seeks to accommodate the fact that
there are typically multiple suitable outputs for a given input.

2.3.7 BLEURT

Bilingual Evaluation Understudy with Representations from Transformers
(BLEURT) is a fully learned evaluation metric modeling human judgments
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for generated text, i.e., it is a regression model trained on ratings data. It
takes a pair of sentences as input, a reference and a candidate, and it returns
a score that indicates to what extent the candidate is fluent and conveys the
mearning of the reference. BLEURT is based on BERT and a novel (additional)
pre-training scheme based on millions of synthetic reference-candidate pairs,
generated through perturbations (i.e., mask-filling, backtranslation, dropping
words) and aimed to help the model generalize (greater robustness). Differently
from existing sentence pairs evaluate, synthetic data allow to capture the
errors and alterations that NLG systems produce (e.g., omissions, repetitions,
nonsensical substitutions). Extra BERT pre-training on such syntethic data
considers several lexical- and semantic-level supervision signals with a multitask
loss, i.e., a weighted sum aggregation of task-level regression or classification
losses (BLEU/ROUGE/BERTScore emulation, backtranslation likelihood/flag,
textual entailment). So, BLEURT models are trained in three steps: regular
BERT pre-training [34], pre-training on synthetic data, and fine-tuning on
task-specific ratings (like translation and/or data-to-text using public WMT
human annotations). Note: rating data prediction at the third step is done
with a classification layer on top of BERT’s [CLS].

2.3.8 CER

As described in the official HuggingFace Evaluate page [35]: Character Error
Rate (CER) is a common metric of the performance of an automatic speech
recognition (ASR) system. CER is similar to Word Error Rate (WER) [36],
but operates on character instead of word.

Character Error Rate can be computed as:

CER = (S +D + I)/N = (S +D + I)/(S +D + C)

where:

• S is the number of substitutions;

• D is the number of deletions;

• I is the number of insertions;

• C is the number of correct characters;

• N is the number of characters in the reference (N = S +D + C).

CER is useful for comparing different models for tasks such as automatic
speech recognition (ASR) and optic character recognition (OCR), especially
for multilingual datasets where WER is not suitable given the diversity of
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languages. However, CER provides no details on the nature of translation
errors and further work is therefore required to identify the main source(s) of
error and to focus any research effort.

Also, in some cases, instead of reporting the raw CER, a normalized CER is
reported where the number of mistakes is divided by the sum of the number of
edit operations (I + S + D) and C (the number of correct characters), which
results in CER values that fall within the range of 0–100%.

2.3.9 CharacTER

CharacTER (Translation Edit Rate on Character Level) [37] is a novel
character level metric inspired by the commonly applied Translation Edit Rate
(TER) [38]. It is defined as the smallest number of character modifications,
normalized by the length of the hypothesis phrase, needed to modify a hypo-
thesis till it exactly matches the reference. While shifting edits are being made
at the word level, CharacTER estimates the edit distance at the character
level. A hypothesis word is regarded to match a reference word and may be
moved, unlike the stringent matching requirement in TER, if the edit distance
between them is less than a threshold number. On the character level, the
Levenshtein distance between the reference and the shifted hypothesis sequence
is calculated. Additionally, the edit distance is normalized using the lengths of
hypothesis sequences rather than reference sequences, which successfully solves
the problem that shorter translations typically result in smaller TER.

2.3.10 ChrF

ChrF and ChrF++ are two MT evaluation metrics. They both employ the
F-score statistic for character-to-character n-gram matches, while ChrF++ also
includes word-to-word n-grams, which more closely resembles direct evaluation.

Instead of matching word n-grams as is done in BLEU, ROUGE, etc., ChrF
compares character n-grams in the reference and candidate sentences. For
different values of n (up to 6), the precision and recall are calculated across the
character n-grams, and they are merged using arithmetic averaging to provide
the overall precision (chrP) and recall (chrR), respectively. In other words,
chrP indicates the proportion of character n-grams from the reference that are
also present in the hypothesis, and chrR represents the proportion of character
n-grams from the hypothesis that match the reference. The final chrF score is
then computed as:

chrFβ = (1 + β2)
chrPchrR

β2chrP + chrR
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where β indicates that recall is given β times more weightage than precision.
ChrF++ considers word unigrams and bigrams in addition to character

n-grams.

2.3.11 Cider

Recent advances in object recognition, attribute classification, action classi-
fication and crowd- sourcing have increased the interest in solving higher level
scene understanding problems. One such problem is generating human-like
descriptions of an image. In spite of the growing interest in this area, the evalua-
tion of novel sentences generated by automatic approaches remains challenging.
Evaluation is critical for measuring progress and spurring improvements in the
state of the art. This has already been shown in various problems in computer
vision, such as detection, segmentation, and stereo.

The objective is to automatically assess for each picture Ii how well a
candidate sentence ci conforms to the consensus of a group of image descriptions
Si = {si1, ..., sim}. Each word in the sentences, including both references and
candidates, is first mapped to its stem or root form. In other words, "fish"
replaces "fishes," "fishing," and "fished."

The average cosine similarity between the candidate phrase ci and the
reference sentences sij , which takes both accuracy and recall into consideration,
is used to calculate the CIDer score CIDErn [39] for n-grams of length n:

CIDern(ci, Si) =
1

m

∑
j

gn(ci) · gn(sij)
||Gn(ci)|| · ||gn(sij)||

where gn(ci) is a vector formed by gk(ci) (the TF-IDF weighting) corresponding
to all n-grams of length n and ||gn(ci)|| is the magnitude of the vector gn(ci).
Similarity for gn(sij).

2.3.12 ColemanLiau

The Coleman-Liau index [40] is a readability test developed by Meri Coleman
and T. L. Liau to assess text comprehension. Its output, like the Flesch-Kincaid
Grade Level [41] and Gunning-Fog index [42], approximates the grade level
thought necessary to comprehend the text in the United States.

Coleman-Liau is based on characters rather than syllables per word, similar
to the ARI but different from the majority of the other indexes. Computer
programs count characters more simply and correctly than syllables, yet opinions
on its accuracy in relation to the syllable/word and complicated word indexes
vary.
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The Coleman-Liau index was developed so that it could be quickly and
mechanically calculated using hard-copy text samples. In contrast to syllable-
based readability indexes, it just requires that words be measured in terms
of their length in characters. This would eliminate the need for manual
keypunching or complete optical character recognition and allow it to be
utilized with potentially straightforward mechanical scanners that just need to
distinguish letter, word, and sentence boundaries.

The Coleman–Liau index is calculated with the following formula:

CLI = 0.0588L− 0.296S − 15.8

where L is the average number of letters per 100 words and S is the average
number of sentences per 100 words.

2.3.13 COMET

Crosslingual Optimized Metric for Evaluation of Translation (COMET) is
an open-source neural framework for generating multilingual-MT evaluation
prediction estimates of three types of human judgments (HTER, DA’s or MQM),
training a model for each judgment type, achieving high-level correlations with
the ground-truth scores and better robustness. To encompass the distinct
scoring types, the COMET framework supports two architectures with differnet
training objectives: (i) the Estimator model (targets = real values, i.e., HTER
and MQM); (ii) the Translation Ranking model (targets = relative rankings,
i.e., DA). While the Estimator is trained to regress directly on a quality score,
the Translation Ranking model is trained to minimize the distance between
a "better" hypothesis and both its corresponding reference and its original
source. Both models are composed of a pre-trained cross-lingual encoder (e.g.,
XLM-RoBERTa, multilingual BERT), and a pooling layer to produce sentence
embeddings.

• The Estimator model independently encode the hypothesis and the re-
ference (encoding), transforming the word embeddings into a sentence
embedding for each segment (pooling). Finally, the resulting sentence
embeddings are combined and concatenated into one single vector that
is passed to a feed-forward regressor. The entire model is trained by
minimizing the Mean Squared Error (MSE).

• The Translation Ranking model receives 4 segments: the source, the
reference, a "better" hypothesis, and a "worse" one. These segments
are independently encoded using a pretrained cross-lingual encoder and
a pooling layer on top. Finally, using the triplet margin loss [43], the
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resulting embedding space is optimized to minimize the distance between
the "better" hypothesis and the "anchors" (source and reference). With
the release of the framework the authors also released fully trained models
that were used to compete in the WMT20 Metrics Shared Task achieving
SOTA in that years competition.

2.3.14 EED

Levenshtein distance is the foundation of Extended Edit Distance (EED).
This measure adheres to the following standards:

• It is bound between zero and one.

• Its definition is kept simple, as it does not depend on external dictionaries
or language analysis.

• It has competitive human correlation.

• It is fast to compute.

Each metric has an input component, which is often tokenized. EED also
adds a white space at the start and conclusion of each phrase. Punctuation
marks are separated from words by a white space, while acronym dots are
preserved adjacent to the word, e.g. “e.g.”.

EED uses the concept of leaps to increase the edit distance. It is characteri-
zed as operating at the character level and going as follows:

EED = min(
(e+ α · j) + ρ · v

|r|+ ρ · v
, 1)

where e is the sum of the edit operation with uniform cost of 1 for insertions and
substitutions and 0.2 for deletions. j denotes the number of jumps performed
with the corresponding control parameter α = 2.0. v defines the number of
characters that have been visited multiple times or not at all and scales over
ρ = 0.3. EED is normalised over the length of the reference |r| and the coverage
penalty. To keep it within the [0, 1] boundary, the minimum between 1 and the
metric score is taken. This makes the metric more robust in cases of extreme
discrepancy between candidate and reference length.

2.3.15 F1

The F1 score [28] is the harmonic mean of the precision and recall. It can
be computed with the equation:

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall)
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Figure 2.2: EED alignment lattice. Identity operations are marked with solid points, jumps
with dashed lines, edit operations with full lines and blanks with ⊔.

From “Extended Edit Distance Measure for Machine Translation.”, 2019 [44]

“In statistical analysis of binary classification, the F-score or F-
measure is a measure of a test’s accuracy. It is calculated from the
precision and recall of the test, where the precision is the number
of true positive results divided by the number of all positive results,
including those not identified correctly, and the recall is the number
of true positive results divided by the number of all samples that
should have been identified as positive. Precision is also known as
positive predictive value, and recall is also known as sensitivity in
diagnostic binary classification.

The F1 score is the harmonic mean of the precision and recall. The
more generic Fβ score applies additional weights, valuing one of
precision or recall more than the other.

The highest possible value of an F-score is 1.0, indicating perfect
precision and recall, and the lowest possible value is 0, if both
precision and recall are zero.” 3

2.3.16 FleschKincaid

The Flesch-Kincaid readability tests [41] are used to determine how difficult
a passage in English is to understand. There are two exams: the Flesch Reading-
Ease and the Flesch-Kincaid Grade Level tests. The weighting variables differ,

3From https://en.wikipedia.org/wiki/F-score

https://en.wikipedia.org/wiki/F-score
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despite the fact that the essential metrics (word length and sentence length)
are the same.

A text with a high Reading Ease score should have a lower Grade-Level
score since the outcomes of the two tests are approximately inversely connected.
Rudolf Flesch created the Reading Ease evaluation, and he and J. Peter Kincaid
subsequently created the Grade Level evaluation for the US Navy.

Higher results on the Flesch reading-ease test suggest simpler reading
material, whereas lower scores imply harder reading passages. The Flesch
reading-ease score (FRES) test’s formula is:

FRES = 206.835− 1.015 · ( total words
total sentences

)− 84.6 · (total syllables
total words

)

Scores can be interpreted as shown in the table below.

Score School level (US) Notes
100.00–90.00 5th grade Very easy to read. Easily understood by an average 11-year-old student.
90.0–80.0 6th grade Easy to read. Conversational English for consumers.
80.0–70.0 7th grade Fairly easy to read.
70.0–60.0 8th & 9th grade Plain English. Easily understood by 13- to 15-year-old students.
60.0–50.0 10th to 12th grade Fairly difficult to read.
50.0–30.0 College Difficult to read.
30.0–10.0 College graduate Very difficult to read. Best understood by university graduates.
10.0–0.0 Professional Extremely difficult to read. Best understood by university graduates.

Table 2.2: Scores interpretation for Flesch-Kincaid index

2.3.17 GunningFog

A linguistics readability test for English text is the Gunning Fog Index. The
index determines how many years of formal education are needed to comprehend
the material after only one reading. For instance, a fog index of 12 calls for
reading proficiency equivalent to that of a senior in high school in the United
States (around 18 years old). The exam was developed in 1952 by American
businessman Robert Gunning, who had previously worked in textbook and
newspaper publishing [42].

The fog index is routinely used to make sure that the intended audience
can read the content without difficulty. A fog index of less than 12 is often
needed for texts intended for a wide readership. Usually, texts needing almost
universal comprehension have an index lower than 8.

The following algorithm is used to calculate the Gunning fog index:

1. Select a passage (such as one or more full paragraphs) of around 100
words. Do not omit any sentences;
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2. Determine the average sentence length. (Divide the number of words by
the number of sentences.);

3. Count the "complex" words consisting of three or more syllables. Do
not include proper nouns, familiar jargon, or compound words. Do not
include common suffixes (such as -es, -ed, or -ing) as a syllable;

4. Add the average sentence length and the percentage of complex words;

5. Multiply the result by 0.4.

The complete formula is:

0.4 ·
[
(

words
sentences

) + 100 · ( complex words
sentenceswords

)

]
Scores can be interpreted as shown in the table below.

Fog index Reading level by grade
17 College graduate
16 College senior
15 College junior
14 College sophomore
13 College freshman
12 High school senior
11 High school junior
10 High school sophomore
9 High school freshman
8 Eighth grade
7 Seventh grade
6 Sixth grade

Table 2.3: Scores interpretation for Gunning-Fog index

2.3.18 Mauve

As described in the official HuggingFace Evaluate page [45]: MAUVE
[46] is a library built on PyTorch and HuggingFace Transformers to measure
the gap between neural text and human text with the eponymous MAUVE
measure. It summarizes both Type I and Type II errors measured softly using
Kullback–Leibler (KL) divergences4.

4https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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2.3.19 METEOR

METEOR (Metric for Evaluation of Translation with Explicit Ordering) is
an automatic metric originally designed to address some of the issues found in
BLEU and has been widely used for evaluating machine translation models.
Compared to BLEU, which only measures precision, METEOR is based on
the harmonic mean of the unigram precision and recall, in which recall is
weighted higher than precision. It is based on a generalized concept of unigram
matching between the machine-produced translation and human-produced
reference translations. METEOR has several variants that extend exact word
matching that most of the metrics in this category do not include, such as
stemming and WordNet-based synonym matching (if English is the target).
These variants address the problem of reference translation variability, allowing
for morphological variants and synonyms to be recognized as valid translations.
The metric has been found to produce good correlation with human judgments
at the sentence or segment level [47]. This differs from BLEU in that METEOR
is explicitly designed to compare at the sentence level rather than the corpus
level. Once all generalized unigram matches between the two strings have
been found, METEOR computes a score for this matching using a combination
of unigram-precision, unigram-recall, and a measure of fragmentation that
is designed to directly capture how well-ordered the matched words in the
machine translation are in relation to the reference. To take into account
longer n-gram matches, a penalty factor is introduced: the longer the adjacent
mappings between the candidate and the reference, the fewer chunks there are
(a translation that is identical to the reference will give just one chunk). The
penalty has the effect of reducing the harmonic mean by up to 50% if there are
no bigram or longer matches.

• precision: P = m
wt

where m is the number of unigrams in the hypothesis
that are also found in the reference, and wt is the number of unigrams in
the hypothesis.

• recall: R = m
wr

where wr is the number of unigrams in the reference.

• harmonic mean: Fmean = 10PR
R+9P

with recall weighted 9 times more than
precision.

• penalty: p = 0.5( c
um

)3 where c is the number of chunks, and um is
the number of unigrams that have been mapped. c

m
is also known as

fragmentation fraction. The exponential value determines the functional
relation between fragmentation and the penalty; it is also known as beta.

• final score: M = Fmean(1− p). To calculate a score over a whole corpus,
or collection of segments, the aggregate values for P, R and p are taken
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and then combined using the same formula. The algorithm also works
for comparing a candidate translation against more than one reference
translations. In this case the algorithm compares the candidate against
each of the references and selects the highest score (freduce = max).

2.3.20 MoverScore

MoverScore [32] is an automated evaluation metric assigning a single holistic
score to any system-generated text (neural or non-neural) by comparing it
against human references for semantic content matching. It is a monolingual
measure evaluating meaning similarities between pairs of sentences written in
the same language. It combines contextualized representations coming from
language models (trained to capture distant semantic dependencies) with the
Word Mover’s distance (WMD). So, MoverScore generalizes WMD by working
on n-grams.

Specifically, it computes the minimum cost of transforming (transporta-
tion distance) the generated text to the reference text, taking into account
Euclidean distance between vector representations of n-gram as well as their
document frequencies. According to the authors, MoverScore can be seen as a
generalization of BERTScore. Both of them use contextualized representations,
but they have a different focus. BERTScore aligns each hypothesis word with
a single reference word (1:1), while MoverScore makes a soft alignment (1:N).

MoverScore demonstrates strong generalization capability across multiple
tasks, achieving much higher correlation with human judgments than BLEU
on machine translation, summarization and image captioning.

Figure 2.3: Confrontation between BERTScore e MoverScore.
From “MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance”, 2019 [32]
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2.3.21 NIST

NIST is a method for evaluating the quality of text which has been translated
using machine translation. Its name comes from the US National Institute of
Standards and Technology.

The NIST metric was designed to improve BLEU by rewarding the trans-
lation of infrequently used words. It is based on the BLEU metric, but with
some alterations. Where BLEU simply calculates n-gram precision adding
equal weight to each one, NIST also calculates how informative a particular
n-gram is. That is to say when a correct n-gram is found, the rarer that n-gram
is, the more weight it will be given. For example, if the bigram "on the" is
correctly matched, it will receive lower weight than the correct matching of
bigram "interesting calculations", as this is less likely to occur. The final NIST
score is calculated using the arithmetic mean of the ngram matches between
candidate and reference translations. In addition, a smaller brevity penalty is
used for smaller variations in phrase lengths. NIST also differs from BLEU in
its calculation of the brevity penalty insofar as small variations in translation
length do not impact the overall score as much.

The reliability and quality of the NIST metric has been shown to be superior
to the BLEU metric in many cases. The metric can be thought of as a variant
of BLEU which weighs each matched n-gram based on its information gain,
calculated as:

Info(n− gram) = Info(w1, . . . , wn) = log2
|occurences of w1, . . . , wn−1|
|occurences of w1, . . . , wn|

To sum up, the idea is to give more credit if a matched n-gram is rare and
less credit if a matched n-gram is common. This also reduces the chance of
gaming the metric by producing trivial n-grams.

2.3.22 Nubia

A SoTA evaluation metric for text production is called NUBIA [48]. NeUral
Based Interchangeability Assessor is what it’s called. In addition to a score
for interchangeability, NUBIA also provides ratings for grammaticality, logical
consistency, contradiction, and semantic connection.

Nubia is composed of three modules.

• The first is neural feature extraction. Semantic similarity, logical inference,
and sentence readability are the three key brain properties driving the
score. Powerful (pretrained) language models RoBERTa STS for semantic
similarity, RoBERTa MNLI for logical inference, and GPT-2 for sentence
legibility are exposed to extract these layers.
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• The second module is the aggregator. This module has been trained to
roughly convert neural feature input to a quality score that indicates how
interchangeable the phrases are. The goal is to mimic human judgement
as closely as feasible.

• The final module is calibration. This is required since neither the aggre-
gator, which compares a reference phrase to itself, nor a regressed score,
are always constrained between 0 and 1. In order to calibrate, the output
is then constrained between 0 and 1 and normalized against the reference
sentence’s score when compared to itself.

Figure 2.4: NUBIA main modules.
From “NUBIA: NeUral Based Interchangeability Assessor for Text Generation.”, 2020 [48]

2.3.23 Perplexity

Perplexity evaluates the likelihood that a model will produce an input text
sequence given a model and an input text sequence. Perplexity, then, is a
widely used metric for evaluating the degree to which a sample of text closely
resembles the distribution of text that the input model was trained on.

The exponentiated average negative log-likelihood of a sequence is what is
referred to as perplexity. If we have a tokenized sequence X = (x0, x1, . . . , xt).
Then, the perplexity of X is

PPL(X) = exp

(
1

t

t∑
i

log pθ(xi|x<i)

)
where log pθ(xi|x<i) is the log-likelihood of the ith token conditioned on the
preceding tokens x<i according to our model. So, the final perplexity is obtained
by averaging all the obtained log-likelihoods (geometric mean).
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It may be conceptualized as an assessment of the model’s capacity to
predict consistently across the collection of defined tokens in a corpus. This
is significant because it shows that the tokenization process directly affects a
model’s perplexity, which must always be taken into account when comparing
various models.

The job of anticipating the following word in a text given the preceding
words is known as language modeling, or more precisely, history-based language
modeling (as opposed to whole sentence models). Consider the history "Mary
prefers her coffee with milk and", for instance. We’ll let our learnt model
suggest a probability distribution over all potential following phrases because
there is no "correct" response. If this model gives "sugar" and "socks" different
probabilities, we claim that it is excellent.

The entropy difference between the empirical distribution—the distribution
of objects that actually occur in the data—and the expected distribution is all
that perplexity gauges (what your model likes).

The inverse of probability (perplexity) can be approximated as the cross-
entropy between the model’s predictions and the actual underlying sequence
probabilities given certain assumptions [49]. The fundamental tenet of perple-
xity is that a successful model will give the sequences in the test data a high
probability. This intrinsic evaluation is quick and intuitive, and it fits the goal
of models trained with a logistic or cross-entropy objective well.

Perplexity is intended for any language generation task.
If the context size of a model were not a constraint, we would analyze

the perplexity of the model by autoregressively factorizing a sequence and
configuring each step on the complete preceding subsequence. However, the
amount of tokens the model can normally handle is limited (e.g., 1024 for the
GPT-2 largest version). Therefore, when predicting each token using fixed-
length models (like the majority of transformers), we can’t always condition on
the full previous subsequence.

Many people’s first response to this issue is to divide the whole sequence
into segments that are equal to the maximum input size of the model and
individually calculate the likelihoods of each segment. This is not the optimal
strategy, though, as it offers the model very little information to work with
when making predictions at the start of each segment. For instance, even
though there are n words preceding it (belonging to the previous segment), the
model must attempt to predict the first word without any context when the
second segment begins.

Instead, a sliding window technique is preferable (window size = max
length), in which the context is continuously moved across the sequence (by
a specified stride, i.e., not necessarily 1 token at a time), enabling the model
to utilize the available context. Even though it takes longer to compute, this
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method often produces higher scores and is more closely aligned with how
the sequence probabilities are formally deconstructed. The stated perplexity
will normally be better and the model’s predictions will be more accurate
the smaller the stride. Stride=1 has the drawback of necessitating a separate
forward pass for each token in the corpus (slower computation). As a result,
the stride approximates (trade-off). The below-optimal, non-sliding-window
approach is comparable to setting the stride length to the maximum input
length.

Figure 2.5: Sliding window strategy for Perplexity.
From “Perplexity of fixed-length models” [50]

2.3.24 Precision

Precision is the fraction of correctly labeled positive examples out of all of
the examples that were labeled as positive. It is computed via the equation:

Precision = TP/(TP + FP )

where TP is the True positives (i.e. the examples correctly labeled as positive)
and FP is the False positive examples (i.e. the examples incorrectly labeled as
positive).

Precision 5 and recall 6 are complementary and can be used to measure
different aspects of model performance – using both of them (or an averaged
measure like F1 7 score to better represent different aspects of performance.
See Wikipedia 8 for more information.

2.3.25 Prism

Prism is an autonomous MT metric that scores MT system outputs based
on the relevant human references using a sequence-to-sequence paraphraser. As
a zero-shot paraphraser, Prism employs a multilingual NMT model, eliminating
the requirement for synthetic paraphrase data and producing a single model
that is functional across several languages.

5https://huggingface.co/metrics/precision
6https://huggingface.co/metrics/recall
7https://huggingface.co/metrics/F1
8https://en.wikipedia.org/wiki/Precision_and_recall

https://huggingface.co/metrics/precision
https://huggingface.co/metrics/recall
https://huggingface.co/metrics/F1
https://en.wikipedia.org/wiki/Precision_and_recall
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As segment-level human correlation, Prism outperforms or statistically ties
with all measures submitted to the WMT 2019 metrics shared task [51]. A
sizable, pre-trained multilingual NMT model that is utilized as a multilingual
paraphraser and is made available by the official library may also be useful
to the research community in fields other than MT metrics. Prism evaluates
untokenized, raw text; all internal preparation is used.

Multilingual Translation The Prism model is simply a multilingual NMT
model, and can be used for translation—see the multilingual translation doc. 9

Paraphrase Generation When using naïve beam search to "translate"
sentences from one language to another, such as from French to English, the
results are frequently trivial duplicates. On the official repository, however, there
is a straightforward technique to prevent duplication and permit paraphrase
production in a variety of languages—see the paraphrase generation doc. 10

2.3.26 Repetitiveness

Nearly all text generating models exhibit the repetition problem [52]. Un-
fortunately, the characteristics of our language itself are the root of this issue.
There are far too many words that have a high likelihood of predicting the
same word as the next word. It is very simple to return to that term and create
repeats.

The Repetitiveness metric measures the average number of n-gram re-
petitions in the hypotheses sentences; the result is normalized by sentence
length.

2.3.27 ROUGE

“ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of
metrics and a software package used for evaluating automatic summarization
and machine translation software in natural language processing. The metrics
compare an automatically produced text against one or more (human-produced)
references. Note that ROUGE is case insensitive, meaning that upper case
letters are treated the same way as lower case letters. ROUGE metric variants
are: ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S.”11

9https://github.com/thompsonb/prism/blob/master/translation/README.md
10https://github.com/thompsonb/prism/blob/master/paraphrase_generation/REA

DME.md
11From https://huggingface.co/spaces/evaluate-metric/rouge

https://github.com/thompsonb/prism/blob/master/translation/README.md
https://github.com/thompsonb/prism/blob/master/paraphrase_generation/README.md
https://github.com/thompsonb/prism/blob/master/paraphrase_generation/README.md
https://huggingface.co/spaces/evaluate-metric/rouge
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• ROUGE-N is similar to BLEU-N in counting the n-gram matches
between the hypothesis and reference, however, it is recall-based (not
precision-based).

• ROUGE-L measures the longest common subsequence (LCS) between
a pair of sentences. ROUGE-L is a F-measure where the precision and
recall are computed using the length of the LCS. Note that ROUGE-L
does not check for consecutiveness of the matches as long as the word
order is the same. It hence cannot differentiate between hypotheses that
could have different semantic implications, as long as they have the same
LCS even with different spatial positions of the words w.r.t the reference.

PLCS =
|LCS|

|words_in_hypothesis|

RLCS =
|LCS|

|words_in_reference|

ROUGE-L = FLCS =
(1 + β2)RLCSPLCS

RLCS + β2PLCS

• ROUGE-W addresses this by using a weighted LCS matching that adds
a gap penalty to reduce weight on each non-consecutive match.

• ROUGE-S uses skip-bigram co-occurrence statistics to measure the
similarity of the hypothesis and reference. Skip-bigrams are pairs of
words in the same sentence order, with arbitrary words in between.
ROUGE-S is also computed as an F-score similar to ROUGE-L.

2.3.28 SacreBleu

“SacreBLEU [53] provides hassle-free computation of shareable, comparable,
and reproducible BLEU scores. Inspired by Rico Sennrich’s multi-bleu-detok.perl,
it produces the official WMT scores but works with plain text. It also knows all
the standard test sets and handles downloading, processing, and tokenization
for you.

Comparing BLEU scores is harder than it should be. Every decoder has
its own implementation, often borrowed from Moses, but maybe with subtle
changes. Moses itself has a number of implementations as standalone scripts,
with little indication of how they differ (note: they mostly don’t, but multi-
bleu.pl expects tokenized input). Different flags passed to each of these scripts
can produce wide swings in the final score. All of these may handle tokenization
in different ways. On top of this, downloading and managing test sets is a
moderate annoyance.
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Sacre bleu! What a mess.
SacreBLEU aims to solve these problems by wrapping the original reference

implementation [54] together with other useful features.
Because what this metric calculates is BLEU scores, it has the same limita-

tions as that metric, except that sacreBLEU is more easily reproducible.”12

2.3.29 TER

TER (Translation Edit Rate, also called Translation Error Rate) is a metric
to quantify the edit operations that a hypothesis requires to match a reference
translation.

We use the implementation that is already present in sacrebleu [53], which
in turn is inspired by the TERCOM implementation 13.

2.3.30 WER

Word error rate (WER) [55, 56] is a common metric of the performance of
an automatic speech recognition (ASR) system.

The general difficulty of measuring the performance of ASR systems lies in
the fact that the recognized word sequence can have a different length from
the reference word sequence (supposedly the correct one). The WER is derived
from the Levenshtein distance 14, working at the word level.

Dynamic string alignment is used to first align the recognized word sequence
with the reference (spoken) word sequence in order to tackle this difficulty. The
power law theory, which posits a link between perplexity (2.3.23) and word
error rate, is used to examine this problem.

WER is a useful technique for comparing several systems and assessing
changes made to a single system. However, because this type of assessment
does not offer information on the origin of translation problems, more study is
necessary to pinpoint the primary source(s) of error and to narrow the scope of
any investigation.

2.3.31 WMD

By aligning words with comparable semantic meanings and calculating the
amount of flow between them, the Word Mover’s Distance (WMD) algorithm
[57] calculates the semantic distance between texts. It has been demonstrated

12From https://huggingface.co/spaces/evaluate-metric/sacrebleu
13https://github.com/jhclark/tercom
14https://en.wikipedia.org/wiki/Levenshtein_distance

https://huggingface.co/spaces/evaluate-metric/sacrebleu
https://github.com/jhclark/tercom
https://en.wikipedia.org/wiki/Levenshtein_distance
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to be effective for text categorization and text similarity tasks. MOVERScore
uses n-grams to generalize WMD.

The minimum distance that the embedded words of one document must
"travel" in order to reach the embedded words of another document is used as
the WMD distance to compare two text documents.

Figure 2.6: An illustration of the word mover’s distance. All non-stop words (bold) of both
documents are embedded into a word2vec space. The distance between the two documents
is the minimum cumulative distance that all words in document 1 need to travel to exactly
match document 2.

From “From word embeddings to document distances.”, 2015 [57]

Figure 2.7: (Top:) The components of the WMD metric between a query D0 and two sentences
D1 , D2 (with equal BOW distance). The arrows represent flow between two words and are
labeled with their distance contribution. (Bottom:) The flow between two sentences D3 and
D0 with different numbers of words. This mismatch causes the WMD to move words to
multiple similar words.

From “From word embeddings to document distances.”, 2015 [57]
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Method

This chapter describes the design principles at the basis of this library. Also,
the overwatching NLG evaluation framework that constitutes the conceptual
foundation for our contributions. Next, it examines the main modules of the
library: metrics, meta-evaluation, and visualization.

3.1 Design Principles

NLG-Metricverse has been designed with five main principles in mind,
which can help researchers and practitioners in a number of ways.

3.1.1 Comprehensiveness

Given the field’s impressive growth rate, comprehensiveness is essential,
with the ultimate goal of providing a unique, smooth, and up-to-date access
point to all of the most relevant NLG evaluation metrics disseminated in
various streams of literature. The library includes organization and consistency,
as well as consistent interaction between modules and sub-modules. This
principle is based on integrating ready-to-use n-gram- and embedding-based
metrics—supervised and unsupervised, trained and untrained, reference- and
statistics-based, task-specific and general-purpose, sentence- and document-
level. Hoping that this collaboration will encourage the adoption of newly
proposed contributions, unlocking their potential and concretizing the view
of Sellam [8] that "Machine Learning (ML) engineers should enrich their
evaluation toolkits with more flexible, semantic-level metrics".

31
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3.1.2 Ease-of-use

Another important factor in fostering impact and usability is the emphasis
on simplicity, which allows users to write less code, reduce errors, and prototype
faster. It is also intended to reduce the implementation burden and accelerate
the transition from papers to practical applications. One goal was to create
an easy-to-use Application Programming Interface (API) that is accompanied
by extensive documentation and a curated list of executable notebooks and
examples. As a result, the software is applicable to both academia and industry.

3.1.3 Reproducibility

Reproducibility is a critical concept in ML and NLP, and it is required
for trustworthiness. NLG evaluation exacerbates the problem even further,
with well-known pitfalls such as lengthy undocumented preprocessing pipelines,
opaque dataset selections, and hidden parameter settings [53, 58, 59]. The
ability to seamlessly reproduce experimental evaluation results is a critical
design goal of NLG-Metricverse, promoting a fully detailed specification.
Users can then easily integrate their original research into the shared codebase
and compare their solution fairly to the existing literature. Reproducibility,
in addition to promoting sound and consistent scientific research, is a means
of hastening the development of new metrics. Transparency also applies to
hardware setup, runtime metrics, and CO2 impact when it comes to model-based
metrics.

3.1.4 Modularity

In the NLG-Metricverse, simplicity is occasionally sacrificed in favor
of modularity and reusability. This principle is critical for ensuring scalability
and collaboratively maturing the codebase. To ensure the stand-alone usability
of individual module functionalities and to facilitate learning of each library
component, an emphasis on module independence is maintained.

3.1.5 Education

Another principle is taking on an educational role. NLG-Metricverse is
ideal for non-expert users, as it helps to sharpen their understanding. We believe
that it is critical to democratize the field and raise awareness about how metrics
work. To unlock the teaching potential, we intend to release standardized
and content-rich metric cards, as well as visualization tools designed to aid
unprecedented levels of score interpretation.
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3.2 Framework
NLG-Metricverse is implemented as a Python library (pip install

nlg-metricverse) that provides a wrapper around a panoply of NLG evalua-
tion metrics and complementary needs.

Regardless of the task, an NLG model will typically generate one or more
predictions (i.e., hypotheses, candidates) p = p1, . . . , pk based on a given context
or source c = c1, . . . , cp. The evaluation may then be aided by one or more
human-created references (i.e., ground-truths) r = r1, . . . , rl. Table 3.1 shows
examples of contexts, predictions, and references for common NLG tasks that
can be solved using NLG-Metricverse.

NLG Task Context Pred/Ref
Machine Translation Source language sentence Translation
Document Summarization Document(s) Summary

Data-to-Text (Semi-)structured data,
e.g., graphs, tables Verbalization

Dialogue Generation Conversation history Response
Question Answering Question (+ context) Answer

Question Generation Passage / Image /
Knowledge Base Question

Image/Video Captioning Image / Video Caption
Text Completion Prompt Continuation

Table 3.1: Popular NLG tasks settings.

With these assumptions in place, NLG automatic evaluation metrics can be
classified depending on several overlapping criteria. To delve deeper into these
distinctions, a taxonomy is presented (Figure 3.1) and will serve as a foundation
for experts and the general public to develop a shared understanding of the
various solutions and their characteristics.

Metrics are classified broadly based on their input format and data availa-
bility. Context-free metrics, which are typically task-agnostic and adaptable
to a wide range of NLG tasks, do not consider the context when judging the
appropriateness of the prediction. Context-dependent metrics, on the other
hand, take the context into account and are thus task-specific. Reference-based
metrics compare generated text to one or a small number of reference text
samples. Reference-free metrics are primarily statistics-based and do not rely
on gold-standard references (e.g., full sequence distribution comparison). Fur-
thermore, they are appropriate for an open-ended generation in which there
are typically several plausible continuations for each context, and creative
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Figure 3.1: Taxonomy of automatic evaluation metrics. Different color nodes represent
partially overlapping classification criteria (i.e., orthogonal categories).

generations are desired; popular examples include Perplexity [60] and MAUVE
[61].

Finally, metrics can be classified based on their methods. Metrics can have
learnable (trained) components or not (untrained). In the first case, metrics
can use human annotation data (supervised) or be human judgment-free (even
with end-to-end architectures) (unsupervised). We mean model-based NLG
metrics trained on human-annotated data to directly output evaluation scores
without the use of additional techniques based on learned representations and
placed outside the backpropagation process. They usually refer to solutions
that are based on regression, ranking, or classification tasks (e.g., COMET [62],
FactCC [63], BLEURT [8], NUBIA [9]).

Untrained and unsupervised metrics rely on a predefined set of heuristics
and input features such as n-gram overlapping, edit distance, static or contex-
tualized embeddings. Grammar-based measures, in this context, do not rely on
ground-truth references and attempt to quantify aspects such as readability
(i.e., the ease with which a reader can understand a passage) and grammatica-
lity. BERTScore, for example, is a context-free, reference-based, trained and
unsupervised metric.
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3.3 Main Modules
Metrics, Meta-Evaluation, and Visualization are the three main modules of

NLG-Metricverse. The library is meant to be an ongoing and collaborative
project that will be expanded as new solutions become available. The following
sections describe the features available at the current stage of development.
Figure 3.2 depicts an operational representation of the modules and their
interactions within the framework described in §3.2. NLG-Metricverse is
built on open-source libraries such as Datasets [24], NumPy [64], SciPy [65],
and Matplotlib [66]. Metrics are implemented using canonical repositories
released by authors whenever possible.

Metrics
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Figure 3.2: NLG-Metricverse operational representation. Dashed boxes denote optionality.
A set of automatic metrics is selected to build a Scorer object, concurrently appliable to
contexts, predictions, and references with arbitrary n-arity. A Meta-Evaluation module allows
the inspection of metrics’ performance on the input data or standard benchmarks. Finally,
a Visualization module can be applied to overcome opacity and understand metric-specific
scoring processes.

3.3.1 Metrics

The selection methodology is critical for collecting metrics with desired
properties in order to build a full-scale NLG evaluation library. Let’s focus on



36 Chapter 3. Method

four factors:

• Diverse classes, supervision constraints, and evaluation tasks, as defined
in §3.2 NLG is a broad field with many different input/output scenarios
and evaluation strategies. Sometimes the predicted text is short and
includes human target references; other times, diversity is preferred; and
still other times, the generation is open-ended, long, and lacks references.

• Diverse application tasks. Metrics can be applied to multiple NLG
evaluation tasks or used to manage task-specific quality requirements.
As a result, we include a wide range of real-world tasks to increase the
relevance of our library.

• Eval dimension. Different quality perspectives can be used to evaluate.
Most existing metrics only cover a subset of these axes. Nonetheless,
some of them, particularly trainable ones, can handle multiple dimensions
by requiring them to maximize correlation with each type of judgment
separately or not.

• Popularity. Metrics commonly used in NLG research are prioritized.
Currently, 38 metrics are supported (see §2.3 for more information).
Future contributions can be easily incorporated into NLG-Metricverse.
Automated tests are used to ensure the integrity of each metric within
the codebase.

Input Format A unified metric input type has been designed, which handles
n-arity for candidate and reference texts (Table 3.2)—a feature that is both
critical and underutilized in current systems. In fact, multiple equally good
outputs for the given input may exist, and comparing the prediction against a
single gold reference may be incorrect. The raw data from files and directories
are processed by an extensive set of out-of-the-box data loaders.

Cardinality Syntax
1:1 preds = [p1, . . . , pk], refs = [r1, . . . , rk]

1:N preds = [p1, . . . , pk]
refs = [[r11, . . . , r1n], . . . , [rk1, . . . , rkn]]

N:M preds = [[p11, . . . , p1n], . . . , [pk1, . . . , pkn]]
refs = [[r11, . . . , r1m], . . . , [rk1, . . . , rkm]]

Preds only preds = [p1, . . . , pk]

Table 3.2: Prediction-reference input formats.
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Metrics Application Artificial text evaluation requires only two lines of
code: (i) create a Scorer object with the desired metrics first; then (ii) apply
the Scorer object to the input data. As a result, many metrics can be run
at once. During step (ii), the proper strategy for computing each metric is
automatically selected depending on the recognized input format.

If a prediction needs to be compared against multiple references, the user
is left with the possibility to specify the aggregation strategy of preference
through the reduce_fn parameter. For example, reduce_fn="max" considers
only the prediction-reference pair with the highest score for each dataset
instance. Inherently, NLG-Metricverse allows all NumPy function names
and custom aggregation functions as well.

An asynchronous execution with a separate process for each metric can
be specified to push efficiency and scalability (run_concurrent), bringing
parallelism to the evaluation loop. Additionally, to contain the library size,
all the packages required for running every supported metric are not directly
included, but the user is invited to install them if necessary.

Figure 3.3 provides a practical example.

1 scorer = NLGMetricverse(metrics=["bertscore", "bartscore"], run_concurrent=True)
2 score = scorer(preds, refs) # reduce_fn

Figure 3.3: Definition and application of a Scorer object for the concurrent evaluation of
multiple metrics.

By employing the load_metric() function for step (i), NLG-Metricverse
falls back to the Datasets implementation in case of metrics not yet supported.
Consequently, the library englobes at least any metrics that the Datasets
package has.

A maximum degree of freedom is retained when defining the Scorer to allow
the setting of metric-specific hyperparameters and different instantiations of
the same metric (Figure 3.4). Furthermore, because metrics typically involve
multiple hyperparameters and results can vary significantly for other options,
we include a configuration report (hyperparameter settings, hardware setup,
etc.) with the output to improve comparability and replicability.

The Scorer application is designed to return a dictionary containing the
score(s) for each metric, as well as tracked performance metadata such as
computation time and CO2 emissions (measured with codecarbon [67]).
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1 metrics = [

2 load_metric("bleu", resulting_name="bleu_1", compute_kwargs={"max_order": 1}),

3 load_metric("bleu", resulting_name="bleu_2", compute_kwargs={"max_order": 2}),

4 load_metric("rouge")]

5 scorer = NLGMetricverse(metrics=metrics)

Figure 3.4: Definition and application of a Scorer object through the load_metric() function,
encompassing two versions of BLEU with distinct hyperparameters.

Metric Documentation and Search NLP practitioners typically use auto-
mated metrics to achieve a specific goal, such as answering a research question
or developing a practical application system. To that end, they must quickly
determine which metric is most appropriate for the task at hand and compre-
hend how various attributes/properties may aid or hinder their goal. There is
a set of structured tags for each metric to allow the user to sift through the
NLG evaluation toolbox (based on §3.2). Figure 3.5 depicts APIs that enable
users to list supported metrics and search for those with desired properties.
Metric cards that are inspired by the Datasets ones are provided and contain
standardized information about metric functioning, technical aspects, output
bounds, and so on.

Because the life of a metric extends beyond its initial release—from discove-
red flaws to newly discovered task adaptabilities—the metric card is conceived
as a living document. The contributors who introduce the metrics to the
library manually fill out the tags and metric cards. The NLG-Metricverse
community-driven nature and the GitHub-backend versioning provide an op-
portunity to keep the documentation up-to-date as further information comes
to light.

1 NLGMetricverse.list_metrics()
2 # All
3 NLGMetricverse.filter_metrics(category=Categories.Embedding,

appl_task=ApplTasks.DataToText)↪→
4 # ["moverscore", "bleurt", "bartscore"]
5 NLGMetricverse.filter_metrics(trained=True, unsupervised=True,

quality_dim=QualityDims.Factuality)↪→
6 # ["bartscore"]

Figure 3.5: Taxonomy-guided metrics exploration.

Custom Metric NLG-Metricverse offers a flexible and uniform API for
easily creating custom user-defined metrics. It only requires inheriting the
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MetricForNLG class (i.e., the common base class for each metric) and imple-
menting the abstract functions linked to the possible input formats (Figure 3.6).
The idea is to enable the user to create complex setups without superimposing
constraints that may not suit future research.

1 class CustomMetric(MetricForNLG):
2 def _compute_single_pred_single_ref(self, preds, refs, reduce_fn=None, **kwargs):
3 # ...
4 def _compute_single_pred_multi_ref(self, preds, refs, reduce_fn=None, **kwargs):
5 # ...
6 def _compute_multi_pred_multi_ref(self, preds, refs, reduce_fn=None, **kwargs):
7 # ...

Figure 3.6: Custom metric implementation.

3.3.2 Meta-Evaluation

With the ever-increasing number of proposed metrics, evaluating NLG eva-
luation has become a pressing necessity. The NLG-Metricverse meta_eval
module includes the most widely used methodologies for judging and comparing
the effectiveness, reliability, and efficiency of automatic metrics. Few lines of
code are required to assess a large number of published or prototype metrics
on shared benchmarks equitably.

Correlation Measures and Significance Tests Examining a set of NLG
metrics typically entails computing various correlation measures on paired
data {(x1, y1), . . . , (xn, yn)}, depending on the goal and type of relationship
between the two variables of interest X and Y . Below, we list the four standard
correlation coefficients supported:

• Pearson Correlation [68], measures the X-Y linear dependence;
• Spearman Correlation [69], measures the X-Y monotonic relationships

(whether linear or not);
• Kendall’s τ [70] measures the X-Y ordinal association (ranking preserva-

tion);
• DARR [71], a robust variant of Kendall’s τ to account for potential noise

in Y through pairs filtering.
Coefficients take values in the range [−1, 1], indicating low to high agreement,

with 0 indicating total independence.
NLG-Metricverse considers the p-value of a hypothesis test examining

the evidence against the null hypothesis that "population correlation coefficient
equals 0" to compute the statistical significance of the quantified dependency
strength. A lower p-value indicates stronger evidence in favor of the alternative
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hypothesis, indicating that the population correlation is not zero. Bootstrapping
methods [72] for rigorous pair-wise significance tests are also supported by the
library. Following previous works [73, 5], the Williams’ test [74] is included
for determining the significance of two dependent correlations that share one
variable (i.e., X1, X2, and Y ).

1 metric_human_correlation(preds, refs, metrics=load_metric("rouge",
compute_kwargs={"rouge_types": ["rougeL"]}), human_scores=Benchmarks.WMT17,
corrs=[CorrelationMeasures.Pearson])

↪→
↪→
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Figure 3.7: Segment-level metric-human correlation scatterplot. ROUGE vs. human scores
on WMT17.

Metric-Human Correlation One of meta-eval’s primary goals is to exami-
ne how well different automatic evaluation metrics agree with human judgments
(Figure 3.7). To that end, we provide tools for computing constructive metric-
human correlations on popular benchmarks or custom user ground truths,
where X and Y represent metric and human scores, respectively.

As for benchmarking, the importance of standardized datasets containing
<context, prediction, reference, and human scores> tuples for multi-
ple tasks, quality dimensions, and languages has been emphasized. The avai-
lability of NLG evaluation metrics is critical for both training and evaluation
purposes. Unfortunately, despite growing interest, there are still few contribu-
tions in this area. The annual public records from the WMT Metrics Shared
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Task [75]—the largest collection of human ratings at the time of writing—are
currently present (i.e., human-annotated machine translation pairs).

Metric-Metric Comparison Following the most common evaluation setups
used in the literature, there are provided functional features for comparing the
behavior of multiple metrics side by side. Indeed, metrics are best understood
when they are compared to one another on common datasets. This comparison
focuses on performance aspects (for example, computation time and CO2
impact for model-based metrics) as well as correlations (i.e., input-output
similarities). Finally, NLG-Metricverse displays the results in the form of
a series of meaningful charts designed to encourage scientific documentation
(examples in Figures 4.1 4.2 4.3).

3.3.3 Visualization

Automatic metrics, in contrast to human evaluation, generally assign a single
score to a given hypothesis, and it is often unclear which quality perspective this
score captures or corresponds to; thus, they are difficult to interpret [11]. Score
uninterpretability affects both modern model-based solutions and historical
n-gram approaches [20]. In general, visualization tools have become an essential
component of NLP explainability research. We provide static and interactive
visual tools for understanding why certain scores are produced to increase
the transparency of NLG evaluation metrics. Visually inspecting internal
mechanisms is especially useful when metrics disagree.

people     enjoy     driving     foreign     cars     .

imported     cars     are     preferred     by     people     .

Most Similar Least Similar

Figure 3.8: BERTScore, Color-coded cosine similarity word matching.

The interactive visualizations are created with web technologies and D3.js
[76]. Soft and hard alignments from MOVERScore and BERTScore are
supported.
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[SEP]
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Figure 3.9: MOVERScore, IDF-weighted n-gram soft-alignment.



Chapter 4

Case Study

In this chapter, we examine the summaries generated by a language model
infused with semantic parsing graphs using NLG-Metricverse. Injecting
explicit semantic structures, such as events [77, 78], abstract meaning represen-
tations (AMRs) [79], and corpus-level knowledge [80, 81], is a new trend being
pursued by the NLP community in order to overcome lexical superficiality
and chart a complementary path to architectural scaling, which is critical in
low-resource settings. Graph-augmented methods enable greater abstraction
and more precise emulation of human interpretation, rewriting, and paraphra-
sing. When dealing with semantic-driven models, researchers must avoid using
traditional overlap-based metrics and monolithic quality dimensions, laying the
groundwork for a valuable testbed for this library.

4.1 Experimental Setup
CogitoErgoSumm [82] is a language model for biomedical single-document

summarization that has been enhanced with AMRs and structured represen-
tations of factual evidence extracted from the source text. We train and
evaluate the neural network on CDSR [83]: a dataset designed for health
literacy that contains 5178, 500, and 999 samples, respectively, using the same
hyperparameters proposed by the authors.

We use NLG-Metricverse to compute ROUGE-1/2/L (F1), BERTScore,
BARTScore (Recall), Abstractness, and Repetitiveness to quantitatively inspect
model performance on the test set. Furthermore, because CDSR is concerned
with the accessibility of biomedical literature, we compute readability scores such
as the Gunning Fog Index, Flesch-Kincaid Reading Ease, and Coleman-Liau
Index. See 2.3 for details about metrics functioning, and 4.2 for replicability.

To better gauge the summary quality and compare metrics’ effectiveness,
we conduct a human evaluation study. We randomly select 30 test set instances
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and invite 3 expert annotators to score generated summaries in conformity with
four independent perspectives, each measured on a Likert scale from 1 (worst)
to 5 (best): (i) informativeness, i.e., conveying salient content; (ii) factualness,
i.e., being faithful with respect to the article; (iii) fluency, i.e., being fluent,
grammatical, and coherent; (iv) succinctness, i.e., non containing redundant
and unnecessary information.

4.2 Results
Figures below report human and automatic evaluation results, together with

computation times, metric-metric, and metric-human correlations (Pearson).
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Figure 4.1: Relationship between metric computation time and average correlation with
human judgment.

Human scores are averaged for each dimension; the mean Kendall coefficient
among all evaluators’ inter-rater agreement is 0.16.

We observe that the abstractive and semantically-consistent nature of the
model is not appreciable by the ROUGE scores alone. The highest correlations
with human judgment are achieved by BERTScore, Abstractness, and Flesch-
Kincaid—especially according to factualness and succinctness (see 4.2). These
results prove that the model tends to be more factual when it re-frames the
target concept units, further testifying the inadequacy of overlap-based metrics.
Notably, in contrast to other model-based metrics like BERTScore, BARTScore
appears significantly slower (72× compared to ROUGE).
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Figure 4.2: Heatmap with pairwise metric correlations.

Human Informativeness Factualness Fluency Succinctness
3.67 3.61 3.61 3.50

Auto

ROUGE-1/2/L BERTScore BARTScore Abstractness
0.49/0.19/0.25 0.87 -2.68 0.36

Repetitiveness Gunning Fog
Index Flesch-Kincaid Coleman-Liau

Index
0.37 13.45 12.64 13.84

Figure 4.3: Qualitative and quantitative evaluation scores.





Conclusions and Future Challenges

The NLG evaluation community advocates for greater transparency, repro-
ducibility, and openness in research. There is a lot of potential in having easy
access to a wide range of automatic metrics and related features. A central
hub would democratize research, improve comparability, reduce computatio-
nal/implementational burdens, and, hopefully, steer innovation toward more
robust contributions. Indeed, researchers would be able to evaluate their NLG
systems at scale without being constrained by a small set of metrics whose code
is easily accessible. They’d also be able to scrutinize existing metrics, launch
white-box attacks, and carefully craft adversarial examples.

With NLG-Metricverse, we take an important step towards a single, uni-
fied, coherent, end-to-end, and easily extendable framework for NLG evaluation.
A solid reference point and shared resource for researchers and practitioners
working in the area.

Being a community-driven effort, the plan in both the near and medium
terms is to support more recent task-specific metrics, benchmarks, meta-
evaluation techniques for robustness, and skew factor analyses. Additionally,
we intend to include more document-level measures.

The hope is that this library may trigger a positive reinforcement loop
within our community, nudging it to explore the metric universe.
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Appendix

Supported Metrics
Table A.2 and Table A.3 enumerates the metrics currently supported by

NLG-Metricverse.

Case Study Replicability and Details
We used NLG-Metricverse on a workstation having one Nvidia Tesla

T4 GPU with 16GB of dedicated memory, and an Intel® Xeon™ CPU @
2.20GHz. Where applicable, we ran the metrics on GPU. For the sake of
reproducibility, Table A.1 lists all metrics’ hyperparameters. Please note that
ROUGE, BERTScore, Abstractness, and Repetitiveness bounds are in [0, 1],
BARTScore in ]−∞, 0[. Gunning Fog Index, Flesch Kincaid Reading Ease,
and Colemain-Liau Index estimate the years of education generally required
to understand a text document; lower scores indicate that the text is easier to
read (U.S. college-level readability belongs to the range [13−16]).

Metric Hyperparameters

ROUGE

rouge_types=["rouge1","rouge2","rougeL"],
use_aggregator=True,
use_stemmer=False,
metric_to_select="fmeasure"

BERTScore

lang="en", idf=False,
batch_size=64, nthreads=4,
rescale_with_baseline=False,
use_fast_tokenizer=False,
return_average_scores=False

BARTScore model_checkpoint="bartscore-large-cnn",
batch_size=4, segment_scores=False

Abstractness ngrams=1

Table A.1: Hyperparameters initialization for metrics applied in the case study.
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Metric Technique Property Appl. Tasks Trained Unsupervised
Gunning Fog Index
[42] G readability test for English writing: count of sentences, words, and complex

words consisting of three or more syllables in the text SUM × ✓

Flesch-Kincaid
[41] G the most widely used readability test for English writing; two versions

(Flesch Reading-Ease and Flesch-Kincaid Grade Level) SUM × ✓

Coleman-Liau Index
[40] G character-based readability test for English writing SUM × ✓

Accuracy
[28] N proportion of correct predictions among the total number of cases processed MT × ✓

Precision
[28] N fraction of correctly labeled positive examples out of all of the examples

that were labeled as positive MT × ✓

Recall
[28] N fraction of positive examples correctly labeled by the model as positive MT × ✓

F1
[28] N harmonic mean of the precision and recall MT × ✓

MER
[36] N % words incorrectly predicted and inserted (match error rate) SR × ✓

Abstractness
[84] N % novel n-grams in the predictions, compared to the references SUM × ✓

Repetitiveness
[31] N average number of n-grams with at least one repetition in the generated

sequences SUM × ✓

Coverage
[85] N % summary words present in the source text SUM × ✓

Density
[85] N average length of extracted fragments which every word from the

summary belongs to SUM × ✓

Compression
[85] N ratio between the length of the original text and the length of the

generated abstract SUM × ✓

BLEU
[18] N n-gram precision MT, IC, DG,

QG, RG × ✓

NIST
[86] N n-gram precision w/ IDF-weighted n-grams MT × ✓

ORANGE (SentBLEU)
[87] N n-gram precision w/ smoothing MT × ✓

ROUGE
[19] N n-gram recall MT × ✓

WER
[88] N % of insert, delete, replace MT, SR × ✓

METEOR
[89] N n-gram harmonic mean w/ paraphrase knowledge (e.g., stemming,

synonyms) and penalty factor for fragmented matches MT, IC, DG × ✓

CIDEr
[90] N cosine similarity between TF-IDF weighted n-grams IC × ✓

TER
[38] N translation edit rate (i.e., WER + shift movement as extra editing step) MT × ✓

ChrF(++)
[91] N character-level precision and recall MT, IC, SUM × ✓

WMD
[92] E, D earth mover’s distance on words IC, SUM × ✓

SMS
[93] E, D earth mover’s distance on sentences IC, SR, SUM × ✓

CharacTER
[94] N character-level TER MT × ✓

SacreBLEU
[53] N standardized BLEU MT × ✓

METEOR++
[95] N METEOR w/ copy knowledge and syntactic-level paraphrase matching MT × ✓

Table A.2: NLG-Metricverse supported metrics for the v1.0.0 release, in ascending order
of publication. We use the following abbreviations for different techniques and features:
G – Grammar-based, N – N-gram-based, D – Distance-based, E – Embedding-based, S –
Statistics-based. For tasks, SUM – Summarization, MT – Machine Translation, SR – Speech
Recognition, IC – Image Captioning, DG – Document or Story Generation, QG – Query
Generation, RG – Dialogue Response Generation, D2T – Data-to-Text, TC – Text Completion;
we only list the ones justified by the original paper or by the first NLG application.
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Metric Technique Property Appl. Tasks Trained Unsupervised

MOVERScore
[96] E

IDF-weighted n-gram soft-alignment (WMD generalization) via
contextualized embeddings; it computes the minimum cost of
transforming the generated text to the reference text, taking into account
Euclidean distance between vector representations of n-grams, as well
as their document frequencies

MT, SUM,
D2T, IC

✓
ELMo/BERT ✓

EED
[44] D Levenshtein distance + jump operation MT × ✓

COMET
[62] E

multilingual-MT human judgment predictions through pre-trained
cross-lingual encoders (word embeddings) + pooling layers (sentence
embeddings) + feed-forward regressor or triplet margin loss depending
on the judgment type (real-value or relative ranking)

MT
✓

XML-RoBERTa
end-to-end

×

FactCC(X)
[63] E weakly-supervised document↔summary-sentence factual consistency

evaluation based on BERT’s [CLS] embedding SUM
✓

BERT
end-to-end

×

BLEURT
[8] E

robust human score prediction based on fine-tuning a BERT model
with an additional pre-training scheme characterized by millions of
synthetic reference-candidate pairs and lexical-/semantic-level tasks
combined through an aggregated loss

MT, D2T
✓

BERT
end-to-end

×

NUBIA
[9] E

human score prediction with three modules: neural feature extractor
on reference-hypothesis pairs (multiple pre-trained transformers
capturing semantic similarity, logic entailment, sentence intelligibility)
+ aggregator (features→quality score mapping) + calibrator

MT, IC

✓
RoBERTa

GPT-2
end-to-end

×

BERTScore
[7] E IDF-weighted n-gram hard-alignment via contextualized embeddings MT, IC ✓

BERT ✓

BARTScore
[22] E

multi-perspective evaluation as text generation via a pre-trained
seq2seq model to measure how likely hypothesis and reference are
paraphrased according to the probability of one giving the other

MT, SUM,
D2T

✓
BART ✓

Perplexity
[60] E how likely a model is to generate the input text sequence SR ✓ ✓

PRISM
[97] E sequence-to-sequence paraphraser to score MT system outputs

conditioned on their respective human references TC
✓

GPT-2
Grover

✓

MAUVE
[61] E, D comparison measure for open-ended text generation w/ divergences

in a quantized embedding space TC
✓

GPT-2
Grover

✓

Table A.3: Table A.2 continuation.
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Figure A.4: Pearson correlations between automatic metrics and human annotations for
each quality dimension inspected in the case study, i.e., informativeness, factualness, fluency,
succinctness.
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