
Alma Mater Studiorum · Università di Bologna

School of Engineering
Electrical, Electronic, and Information Engineering ”Guglielmo Marconi” - DEI

Master Degree in Automation Engineering

VIRTUALIZATION OF WIRING
HARNESS MANIPULATION TASKS

THROUGH THE PYCHRONO
SIMULATION ENGINE

Supervisor:
Chiar.mo Prof.
PALLI GIANLUCA

Co-Advisor:
GALASSI KEVIN

Author:
GANGEMI JACOPO

MARIA

Academic Year 2021-2022 - Session II

Abstract

The purpose of this thesis work is the study and creation of a harness modelling system.
The model needs to simulate faithfully the physical behaviour of the harness, without
any instability or incorrect movements. Since there are various simulation engines that
try to model wiring’s systems, this thesis work focused on the creation and test of a 3D
environment with wiring and other objects through the PyChrono Simulation Engine.
Fine-tuning of the simulation parameters were done during the test to achieve the most
stable and correct simulation possible, but tests showed the intrinsic limits of the Engine
regarding the collisions’ detection between the various part of the cables, while collisions
between cables and other physical objects such as pavement, walls and others are well
managed by the simulator.
Finally, the main purpose of the model is to be used to train Artificial Intelligence
through Reinforcement Learnings techniques, so we designed, using OpenAI Gym APIs,
the general structure of the learning environment, defining its basic functions and an
initial framework.

2

Contents

Introduction 8

1 DLO Model 10
1.1 B-Spline . 10

1.1.1 B-spline basis functions . 10
1.1.2 B-spline curve . 12
1.1.3 B-spline curve properties . 12
1.1.4 De Boor’s Algorithm . 13

1.2 Lagrange Equations . 14
1.3 Geometrically Exact Dynamic Spline . 14

1.3.1 Beam geometry definition . 14
1.3.2 Elastic Domain and Strain Energy 15
1.3.3 Twisting in dynamic splines . 17
1.3.4 Energy Evaluation . 18

1.4 Model final expression . 19
1.5 Project Chrono . 20
1.6 OpenAI Gym . 21

2 Code Analysis 22
2.1 PyChrono Implementation . 22
2.2 CableModels.py . 27

2.2.1 General Structure . 27
2.2.2 Straight Cable . 28
2.2.3 Straight Wiring . 28
2.2.4 General wiring . 30

2.3 OpenAI Gym Implementation . 33
2.4 Data Collection and Analysis . 34

3 Tests performed and results 36
3.1 Simulation parameters and Velocity Profile 36
3.2 Cable to Object collisions detection . 39

3

3.3 Cable to Cable collisions detection . 42
3.4 Straight wiring movement and collisions detection 46
3.5 General wiring movement and collisions detection 47
3.6 Test Results . 50

4 Conclusions 52

Bibliography 53

List of Figures

1.1 Order 4 B-spline with uniform knot vector 11
1.2 Clamped cubic B-spline . 12
1.3 De Boor’s algorithm . 13
1.4 Scheme of a small with with its geometrical parameters 15
1.5 General stress-strain curve . 20

2.1 PyChrono Nodes . 23
2.2 PyChrono Cable Element . 23
2.3 PyChrono 3D objects . 25
2.4 CableModels.py scheme . 27
2.5 Straight cable . 29
2.6 Straight wiring . 29
2.7 Direction of the nodes . 31
2.8 Pointcloud and final result . 32
2.9 Class GymEnv.py scheme . 33

3.1 Velocity profile . 38
3.2 Cable-to-object collisions setup - Red object mesh - Blue cable mesh . . . 40
3.3 Cable-to-object collisions time instant 0.5s - Red object mesh - Blue cable

mesh . 40
3.4 Cable-to-object collisions time instant 0.6s - Red object mesh - Blue cable

mesh . 41
3.5 Cable-to-object collisions time instant 0.7s - Red object mesh - Blue cable

mesh . 41
3.6 Node 4 absolute velocity profile . 42
3.7 Cable-to-cable collisions setup . 43
3.8 Cable-to-cable collision time instant 0.2s 43
3.9 Cable-to-cable collision time instant 0.3s 44
3.10 Cable-to-cable collision time instant 0.4s 44
3.11 Node 2 absolute velocity profile . 45
3.12 Straight wiring Time instant 0 . 46
3.13 Straight wiring Time instant 0.1s . 46

5

3.14 Wiring interpenetration close-up . 47
3.15 Wiring collisions setup . 48
3.16 Wiring collisions time instant 0.3s . 48
3.17 Wiring collisions time instant 0.4s . 49
3.18 Wiring collisions time instant 0.5s . 49
3.19 Main Cable Last Node absolute velocity profile 50

6

List of Tables

2.1 Structure of label.yaml File . 30
2.2 DataFrame Schematic Structure . 35

3.1 Pavement and Cube parameters . 37
3.2 Cable Parameters . 37
3.3 Solver Parameters . 39

7

Introduction

Various applications in mechanical and electric engineering require wiring in order to
transmit the electrical energy from the logical interfaces to the users, that can be motors,
sensors, ecc..
This kind of deformable materials can be found everywhere, and their behaviour changes
drastically from one object to the other. Since every object has its own mechanical char-
acteristics, most of the handling and assembly is done through humans. One of the main
works that needs human interventions is the wiring of mechanical machines, using thin
cables.
Since this process is repetitive, the use of a robotic arm suits well the task but, in order
to automatize this process, a precise model of the wiring needs to be known, and its
mechanical characteristics need to be precisely defined.
Introducing robotic manipulators to handle such flexible objects tends to lessen phys-
ical burden on workers, and also grants tremendous economical benefits. Many of the
techniques used for the manipulation of rigid objects cannot be applied directly to de-
formable objects, since rigid object manipulation considers mostly the control of the
grasped object’s pose, but, when dealing with deformable objects, one should consider
also their deformations. The deformable objects considered in this work of thesis are
wiring and cables, uniparametric objects that have no compression strength.[1] Several
tasks that need to manipulate DLOs require an accurate estimate of the object’s shape,
hence the creation of a correct model is fundamental.
One of the approaches used to model the wiring is through thin cables, each of one has
a given diameter, length, and physical properties. This cables can be modeled through
usage of spline functions and Lagrange’s Equations[2], and the resulting mathematical
model is used to create various simulation engines, each of one with its pros and cons.
Thin cables are part of the Deformable Linear Objects models(DLO), that are charac-
terized by having a dimension bigger than the other two. DLO models are used for
modeling in a simulated environment the evolution in time of the physical configuration
of the cable. This model can then be used by a robotic arm, assisted by an artificial
intelligence, in order to simulate the various steps to reach a desired final configuration.
This project of thesis deals with the design of the mechanical model of a wiring using
modern programming language and packages. This model will be used to train an arti-

8

ficial intelligence using Reinforced Learning techniques
The tools used to define the model are inside the package PyChrono, a Multi-Physics
Simulation Engine written in Python, that is computationally efficient and achieve sta-
ble results in the simulation. Some other functions were inside NumPy, but the general
structure of the model is written starting from PyChrono modules.
There are several other tools that can be used to simulate wiring and cables, such
Blender’s Physics.

9

Chapter 1

DLO Model

In this chapter we describe the base theory behind the definition of the model for De-
formable Linear Objects. Such model is defined using the Lagrange’s equations and the
definition of B-Spline, and is based on the work done by Theettena et all in the paper
Geometrically exact dynamic splines[2]. Lagrange Equations are used in order to for-
mally define the energy equations based on some spatial control points, and B-Spline
curves are used to create a geometrically exact formal expression of the curve.

1.1 B-Spline

In this section, we will explain the basic theory behind the B-spline, used throughout
the theory of the DLO model. Generally, a spline is a function consisting of a set of
connected polynomials, whose purpose is to interpolate a set of points, also known as
nodes, in an interval, so that the function is continuous at least up to a given order of
derived at any point in the interval.

1.1.1 B-spline basis functions

The Model uses a particular version of a spline curves, called B-Spline, that are dis-
tinguished from splines because they are actually a special case in which Beziér curves
are used as polynomial curves. B-Spline of order k is the union of several pieces of
polynomials of order (k-1) with, at most, C(k−2) continuity at the breakpoints.

Such breakpoints are defined in a non-decreasing order, forming the so called knot
vector :

T = [t0, t1, ..., tm], t0 ≤ t1 ≤ t2 ≤ ≤ tm (1.1)

The vector T defines the characteristics of the basis functions.
The corresponding B-spline basis functions can be defined as:

10

Ni,1(t) =

{
1 for ti ≤ t ≤ ti+1

0 otherwise
(1.2)

where k = 1 and

N1,k(t) =
t− ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1

Ni+1,k−1(t) for k > 1 and i = 0, 1, .., n (1.3)

The B-spline Basis functions have the following properties:

- Ni,k(t) > 0 for ti < t < ti+k called Positivity

- Ni,k(t) = 0 for t0 ≤ t ≤ ti and ti+k ≤ t ≤ tn+k called Local support

-
∑n

i=0 Ni,k(t) = 1 for tϵ[t0, tm] called Partition of unity

- Ni,k(t) has C
k−2 continuity at each simple knot

The following figure is an example of an order four B-spline.

Figure 1.1: Order 4 B-spline with uniform knot vector

11

1.1.2 B-spline curve

A B-spline curve is defined as linear combination of the control point pi and the spline
basis function Ni,k(t). This leads to:

r(t) =
n∑

i=0

piNi,k(t) k − 1 ≤ n tϵ[tk−1, tn+1] (1.4)

The control points are called de Boor points. The knot vector T contains n + k + 1
elements, where n+1 is the number of control points and k is the order of the curve. Each
knot span is mapped into a polynomial curve between two successive r(ti) and r(ti+1).

1.1.3 B-spline curve properties

The B-spline curve has this following properties:

• Geometry invariance property : the shape of the B-spline curve is invariant to
translation and rotation thanks to the Partition of unity

• End points geometric property : Usually, B-spline curves do not pass through the
two end control points. The curve has Ck−p−1 continuity at a knot that has mul-
tiplicity p(≤ k). In order to assure that the curve passes through the end points,
we need to repeat the knots at the two end of the knot vector k times. Thus, the
knot vector will become T = (t0, t0, .., t0, ...tk+1, ..., tn+k, ...tn+k). Such knot vectors
are known as clamped. A clumped B-spline curve is illustrated in figure 1.2.

Figure 1.2: Clamped cubic B-spline

12

• A particular property of clamped B-spline curves is that they are tangent to the
control polygon at their endpoints. This is given by the fact that

ṙ(t) =
∑n−1

i=0 (k − 1)(pi+1−pi
ti+k−ti+1

)Ni,k−1(t)

where the knot vector is obtained by dropping the first and last knot element and

ṙ(0) = k−1
tk−t1

(p1 − p0)

ṙ(1) = k−1
tn+k−1−tn

(pn − pn−1)

1.1.4 De Boor’s Algorithm

The B-spline can be evaluated in a specific parameter t using the De Boor’s algo-
rithm[3]. This algorithm computes the spline with an equivalent recursion formula.
Starting from:

r(t) =
∑n+j

i=0 pjiNi,k−j(t) j = 0, 1, ..., k − 1

Where
pji = (1− αj

i)p
j−1
i−1 + αj

ip
j−1
i j > 0

with
αj
i =

t−ti
ti+k−j−ti

and p0j = pj

For j = k−1, the spline basis function reduces toNl,1 for tϵ[tl, tl+1]) and pk−1
l coincides

with the curve
r(t) = pk−1

l

The figure below shows the De Boor’s algorithm graphically.

Figure 1.3: De Boor’s algorithm

13

1.2 Lagrange Equations

Lagrange equations are differential equations of the second order and can describe a
mechanical conservative system, and yields to the equation of motion. The fundamental
theorem states that Lagrange equations are identical to the second principle of dynamics,
that relates position and velocity of any other element of the system.
These equations are based on a defined control point, usually the position of the element
of the system, and its first derivative. These equations involve the kinetic energy T and
potential energy U of the system itself.

We define the Lagrangian as:
L = T − U (1.5)

Performing the derivative of the Lagrangian we obtain:

d

dt
(
dL

dq̇i
)− dL

dqi
= Fi (1.6)

qi is the generalized coordinate and Fi are corresponding generalized forces. Rewriting
it in terms of T and U:

d

dt

dT

dq̇i
− d

dt

dU

dq̇i
− dT

dqi
+

dU

dqi
= Fi (1.7)

Since potential energy does not depend on velocity nor time, the term d
dt

dU
dq̇i

is null
and, in our case, the kinetic energy does not depend on position. The final equation
become:

∀ i ϵ 1,, n,
d

dt

dT

dq̇i
= Fi −

dU

dqi
(1.8)

Fi is the sum of the generalized external forces at qi

1.3 Geometrically Exact Dynamic Spline

The Geometrically Exact Dynamic Spline is the results of the combination of the La-
grange Equations with the B-Spline representation of the control points. In this way we
obtain a geometrically exact model of the cable.

1.3.1 Beam geometry definition

In order to define the Dynamic Splines, consider a cross-section of diameter D and
section S as shown in Fig.1.4.

We define as neutral fiber f the oriented curve of length L that passes through the
center of every cross-section. The whole volume defined by every cross-section creates

14

Figure 1.4: Scheme of a small with with its geometrical parameters

the beam.
We can describe the beam configuration using two different fields: the first one, called
position field r = (x, y, z), describes the natural fiber position in space; the second one,
called rotation field θ describes the roll of the natural fiber.
Defined the two fields, they can be combined in order to describe a unique field

q = (r, θ) = (x, y, z, θ) (1.9)

Each resulting spline is the obtained by

q(u) =
n∑

i=1

bi(u)qi (1.10)

In equation (1.3), bi are the ith spline basis functions of the control points qi, and u is
the value between 0 and L, that is the natural fiber length. Given the resulting spline,
the jth derivative of q with respect to u is given by:

q(j)(u) =
n∑

i=1

b
(j)
i (u)qi (1.11)

We will denote arc length and derivatives of point q, position r and roll θ as, respec-
tively, s, q′, r′ and θ′. Displacement elements ds and du are interrelated by ds = ∥r′∥du.
Control points are important to define the Lagrange equations by considering them as
degrees of freedom, since they define completely the position of the spline and the ori-
entation of the cross section.

1.3.2 Elastic Domain and Strain Energy

To obtain the motion of control points with the Lagrange formulations, we need first
to define deformation energies starting from the physical parameters. After this passage,
we need to differentiate with respect of degrees of freedom.
We can express every action on the natural fiber f as forces and torques in the local
frame, since they are proportional to stress and easier to manipulate. We can define a
vector F made of three different forces:

15

• FS is the normal force to the cross-section. The resulting motion is the streching
of the natural fiber.

• FT is the torsional torque, responsible of the rotation of the cross-section.

• FB denotes the bending force, that corresponds to the oriented curvature of the
natural fiber.

So the vector F can be defined as:

F =

FS

FT

FB

 (1.12)

By the usage of the Kirchhoff assumption, we can presume that the cross-sections are
stiff and only that the neutral axis is distorted. This yields to the Rayleigh model. Force
F is related to the strain ϵ. Their elastic relationship is described by Courbon[4]. The
rest strain is denoted by ϵ0.
To facilitate calculations of strain energies, we work under the small strain assumptions.
The result of these considerations is the following equation, derived from Hooke’s law:

F = H(ϵ− ϵ0) =

ES 0 0
0 GI0 0
0 0 EIS

 (ϵ− ϵ0) (1.13)

I0 is the polar momentum of inertia, IS is the cross-section momentum of inertia, and
ES, GI0 and EIS are the streching, twisting and bending rigidities. The whole matrix
define the H Hooke matrix.[4]
Since the assumptions state that the cross-section is circular and the diamenter is costant,
we can rephrase the Hooke matrix as:

H =
D2π

4

E 0 0

0 GD2

8
0

0 0 ED2

16

 (1.14)

Strain energy U can be formulated by the following integration along the beam:

U =
1

2

∫ L

0

(ϵ− ϵ0)tFds (1.15)

Changing the expression of F with (1.13), we obtain:

U =
1

2

∫ L

0

(ϵ− ϵ0)tH(ϵ− ϵ0)ds (1.16)

Now that we have all the mechanics necessary to determine our motion, we will study
the two terms of the Lagrange equations.

16

1.3.3 Twisting in dynamic splines

The kinetic energy of the object comprises translational and rotational energy, since
our one-dimensional object is specified by position and rotation. In order to formulate
kinetic energy, first we need to define inertia matrix J, which is the same everywhere
along the spline, since the diameter is costant:

J =

µ 0 0 0
0 µ 0 0
0 0 µ 0
0 0 0 I0

 (1.17)

µ corresponds to the linear density. We can define now the kinetic energy as:

T =
1

2

∫ L

0

dqt

dt
J
dq

dt
ds (1.18)

To obtain the left term of the Lagrange equations, we need to differentiate the kinetic
energy with respect to the control point qi. This yields to:

d

dt

δT

δq̇i
=

1

2

∫ L

0

d

dt

δ dqt

dt
J dq

dt

dq̇i

ds (1.19)

By replacing q with expression (1.10), yields to:

d

dt

δT

δq̇i
=

n∑
j=1

J

∫ L

0

(bi(s)bj(s))ds
d2qj

dt2
(1.20)

We can define a more compact version of the expression above considering a matrix

M with components Mi,j = J
∫ L

0
(bi(s)bj(s)) and a vector A of components Aj =

d2qj

dt2
.

This yields to:

d

dt

δT

δi
=

n∑
j=1

Mi,jAj (1.21)

Considering all degrees of freedom, this sum can be written as a matrix-vector prod-
uct:

MA (1.22)

17

1.3.4 Energy Evaluation

Now we need to express the right term of the Lagrange equation. The derivative of
the potential energy has a more complicated expression:

P i = − δU

δqi

= −1

2

∫ L

0

δ(ϵ− ϵ0)tH(ϵ− ϵ0)

δqi

ds (1.23)

This term can be generalized by sum three forces:

• PS, that is the stretching force;

• Pt, that is the twisting force;

• Pb, that is the bending force.

We need to express these generalized forces with respect to the position r up to the
third derivative r

′
, r

′′
, r

′′′
, and also the spline basis function bi up to its third derivative

b
′

i, b
′′

i , b
′′′

i .
For compactness of equations, we introduce the following variables:

• C = r
′ × r

′′
;

• P = δr
′×r

′′

δri
;

• T = Cb
′′′
i − P × r

′′′ − 2τ(CxP).

× denotes the cross product. Now we can express the generalized forces described
above.

- Stretching Force
In small strains, the streching strain is defined by ϵs = 1− ||r′ ||. This leads to:

P i
S(r) = −πED2

4

∫ L

0

(1− ||r′
0||

||r′ ||
)r

′
b
′

ids (1.24)

We can also assert that:
P

′

S(θ) = 0 (1.25)

since stretching strain energy Us does not depend on θ.

- Twisting Force
To define the twisting force, we need to consider the Frenet twisting τ and the roll
θ. Frenet or geometrical twisting is due to the bending of the neutral fiber, whereas
roll corresponds to the rotation of the cross-section of the material. As described

18

by Chouaieb[5], twisting is the sum of Frenet twisting and a rotation about the
tangent. The twisting result in the following expression:

ϵt = θ
′
+ τ

τ = r
′×r

′′ ·r′′′

||r′×r′′ ||2 = C·r′′′

||C||2 (1.26) We can now express the two contribution. The geomet-

rical twisting yields to:

P i
t (r) = −πGD4

32

∫ L

0

(ϵt − ϵ0t)
T

||C||2
ds (1.27)

The roll contribution is:

P i
t (θ) = −πGD4

64

∫ L

0

(ϵt − ϵ0t)(
b
′
i

||r′||
)ds (1.28)

- Bending Force
The bending force is function of the scalar Frenet curvature k, which is equal to
the bending strain:

ϵb = k =
||r′ × r

′′ ||
||r′ ||3

=
||C||
||r′ ||3

(1.29)

The bending force term P i
b yields:

P i
b (r) = −πGD4

64

∫ L

0

ϵb − ϵ0b
||r′ ||2

(
C × P

||C||||r′||
− 3kb

′

ir
′
)ds (1.30)

Similarly to the stretching energy, the bending energy Ub does not depend on θ, so
P i
b (θ) = 0

All the forces computed can be summed and described by a vector P = Ps+Pt+Pb.

1.4 Model final expression

Considering all the equations expressed above, we can put the whole relation in a more
compact matrix form, obtaining:[

M LT

L 0

] [
A
−λ

]
=

[
F + P
E

]
(1.31)

L is the matrix of constraints and λ are the Lagrange multipliers. At each step, the
system is solved multiplying the equation by the pesudoinverse of the first matrix, and
the obtained velocities and accelerations are integrated in order to find the new state of
each control point, that is each position a velocity.

19

1.5 Project Chrono

The theory explained above led to various models, each of one created for a specific
environment. The one used for our project of thesis is Project Chrono[6]. Project Chrono
is an Open Source Multi-Physics Simulation Engine. The original project is written in
C++, and it’s based on a platform-independent open-source design. The libraries can be
used in a project to simulate various physical systems, such as wheeled vehicles, robots,
and many others mechatronic systems. The systems can be made of rigid and flexible
elements, and each element has its own three-dimensional shape for collision detection.
PyChrono[7] is the Python library that wraps the Chrono C++ simulation library. In
our project, we used the version 7.0.3, the latest one. The advantages of this library are
various, such as a fast comprehension of the code, and its ease of use.
One of the intrinsic limit of the PyChrono suite is the absence of the plastic deformations.
Plastic deformations happen when on the body are applied excessive loads and, when
the load is finally ceases, the final configuration of the wire is not the same as the initial
one, with a permanent deformation ruled, in general, by the stress-deformation curve.
A general curve is represented in the Fig. 1.5 below:

Figure 1.5: General stress-strain curve

In our model, the stress applied to the wire is not strong enough to reach the plastic
deformation’s region, so we can not take into account plastic deformations.

PyChrono’s APIs are based on an alternative work, called A geometrically exact
isogeometric beam for large displacements and contacts[8], where the model is based

20

on the shear-flexible Cosserat rod theory implemented in the context of Isogeometric
Analysis.
Similarly to the theory explained above, the fiber of the beam is parametrized using
splines and time integration of rotations is performed using the exponential map of
quaternions.

1.6 OpenAI Gym

Gym[9] is an open source Python library for developing and comparing reinforcement
learning algorithms by providing a standard API to communicate between learning al-
gorithms and environments, as well as a standard set of environments compliant with
that API. Since its release, Gym’s API has become the field standard for doing this.
In this work of thesis, Gym’s API are used to build the skeleton for the reinforcement
learning algorithms. The documentation can be found at https://www.gymlibrary.dev/.
Reinforcement learning is a machine learning technique that aims to create autonomous
agents able to choose actions to be taken to achieve certain objectives through interac-
tion with the environment in which they are immersed. It’s one of the three principal
paradigms of the automatic learning, and it takes care of sequential decisions’ problems.
These problems are characterized by the fact that an action to be taken depends on the
initial state of the system and determines the future one.
The quality of the action is based on a reward-like numeric value, modelized through the
Markov decision-making processes[10].
The training follows the agent paradigma, in which we call the objective we want to
train as agent, and we uses some of its characteristics as observation parameter, such as
its position or its velocity.

21

Chapter 2

Code Analysis

In this section, we will explain the tools used to create the model, using the program-
ming language Python, and the reasons behind this choices.
The whole code is divided into three different parts, the main.py, the GymEnv.py, a
class in which we created the main functions to implement the reinforced learning, and
CableModels.py, the most important class, in which we create the models of the wires.
The function of the main.py is to create and manage the 3D environment, using Gy-
mEnv.py classes and functions. Inside the main.py we manage the simulation’s steps
and saves the informations needed to a further analysis.

2.1 PyChrono Implementation

In PyChrono, the cable can be defined through the Chrono API. Once the model is
defined, the behaviour is studied using the Finite Element Analysis (FEA).
The cable is defined using the pychrono.fea module, in which we find all the functions
used to define the spatial configuration of the cable, its physical properties and the
collisions models. After importing the module fea module, we can begin to create the
cable, starting from its spatial configuration and physical properties.
Before defining the cable, we need to define the physical properties of the cable through a
fea.ChBeamSectionEulerAdvanced [11], in which you can assing all the physical variables,
like the Young Modulus, the section of the beam and so on. In our specific cases, the
section of the beam is set to circular, with a diameter that varies depending on the
section of the cable we are considering.
The nodes of the cable are simply created through the API fea.ChNodexyzrot [12]. This
function takes as an input a chrono.ChFrameD, an object made of a position vector
chrono.ChVectorD, and a direction, defined as a quaterion. The positions can be defined
in any way someone wants, and in the study cases, we defined the positions of the nodes
in two different ways: as a mathematical function and from a input file. Nodes are stored

22

inside lists in Python. The resulting element in the enviroment is shown in figure 2.1.

Figure 2.1: PyChrono Nodes

After the nodes are defined, the next thing we need to create is the cable itself.
For the sake of simplicity, we will call as cable element, the section of the cable cre-
ate from one node to the following. A cable element is created through the API
fea.ChElementBeamEuler [13]. We used this function since is the one compatible with
the Beam Section described above. To create the cable element, we just need to set the
nodes and the section we want to use. Every cable element is stored, like the nodes, in
lists. The resulting element in the enviroment is shown in figure 2.2.

Figure 2.2: PyChrono Cable Element

23

In order to simulate collision and visualize the various element, we need to create the
mesh, an object in which we will assign nodes and other elements.
The mesh[14] can be used to define the elements of the simulation that will interact
with the other elements inside, or by mean of visualization. In our project of thesis, we
decided to create three different mesh.
The first one, called simply cable mesh, is responsible only on the visualization of the
cable elements, that is nodes and the resulting cable.
The second one, called in the code contact mesh node, is responsible to detect the
node-to-node collisions. In order to detect collisions, you have to assign the fea elements
to a specific mesh, that will be used by the simulator during the simulation process.
The third one, called contact mesh cable, is responsible to detect the cable-to-cable
collisions. Similarly to the contact mesh node, we need to assign the cable elements.
From various tests, we decided to create two different mesh for the collisions to strengthen
the simulation. Without the collision detection, the cable would just ”go through itself”
when touching another of its parts. This, of course, leads to errors in the final simulation.
Both contact mesh cable and contact mesh node requires some parameters, used
only to manage the interpenetration between the two meshes. This parameters were
modified during various tests, to find the ones that impede interpenetration and also
bouncing between the elements.
The cable than can be moved inside the enviroment by applying forces or velocities to
each node. The simulator, after a single step, computes the new positions of the nodes
of the cable, taking into considerations the whole model.
Other than the cables, PyChrono provides simple APIs to create various 3D objects
that can be used to simulate obstacles inside the simulation. In the project, we used
chrono.ChBodyEasyBox [15], that takes as input the dimension of the box we want to
create, its density and the material.
Since we used this function to create both the pavement, the walls and the obstacle, we
defined two different materials through chrono.ChMaterialSurfaceSMC, a function that,
similarly to fea.ChBeamSectionEulerAdvanced, allows us to assign the Young Modulus,
restitution coefficient and so on to every 3D object we want.
The Restitution coefficient is defined as the ration between the relative velocity of
the object with the other after and before the collision:

CoR =
|Relativevelocityaftercollision|
|Relativevelocitybeforecollision|

(2.1)

Another important parameter that can be assigned is the Adhesion coefficient, that
is the ration of adhesive force to vertical load between two objects. It’s generally defined
for weels interacting with roads.
Lastly, the Friction coefficient is the ration between the resistive friction force and the

24

normal force:

fr =
Fr

N
(2.2)

with fr friction coefficient, Fr resistive force and N normal force.
The first material created is called pavementmaterial and is used to define the properties
of the pavement and the walls. We have set the Young Modulus to 0.5 MPa, friction
coefficient to 0.3 and restitution coefficient to 0.2. This values are only assign based on
the stability of the simulation. In particular, the Young Modulus needs to be not to high,
in order to impede the cable to bounce inside the simulation, nor to low. Especially, if
the Young Modulus is to low, the collision detection of the system doesn’t work properly,
and the cable will go through the pavement (or the walls) instead of being blocked.
The second and last one is the cubematerial. It used to define the properties of the
obstacle (in our specific case a simple cube). We have set the Young Modulus to 1 GPa,
friction coefficient to 0.3 and restitution coefficient to 0.2.
The 3D elements created are used to practically define the 3D environment in which our
cable can move and interact. The collision-detection is automatically handled by the
simulator, but one can decide to change its shape based on some preferences.

Figure 2.3: PyChrono 3D objects

PyChrono provides also a various number of solver, and we went with the MinRes
solver because it provides good performances with a stable simulation. Such solver
works with the Minimum Residual method, where it is a short-recurrence method with
a constant memory requirement.[16] The parameters one can define are the number of
step for every iteration, the time step of the single iteration and the minimum resolution.

25

We tested other solutions, such as the Pardiso MKL solver, that didn’t work at all,
since there were some conflicts with the installed drivers. In general, all the Pardiso-based
solver proposed by PyChrono were not functioning. Another choice was the Sparse QR
solver, a sparse left-looking rank-revealing QR factorization. This showed similar results
to the MinRes solver, but with higher time needed per step. A particularity of the 3D
environment of PyChrono is the axis definition. Generally, the plane X − Y − Z has as
vertical axis the Z-axis, but PyChrono takes as ground the X − Z plane and as vertical
axis the Y-axis.

26

2.2 CableModels.py

The functions described above are used inside CableModels.py, in which we created three
different configurations to test the stability of the environment. These functions are then
used inside GymEnv.py to then develop the reinforced learning techniques. The three
configurations are developed as classes, that differentiate one from the other only on the
initial spatial configuration of the cable, while the main structure of the classes remain
the same. Below we will describe the different configurations for the cables, and the
general structure of the class.
A schematic of CableModels.py is represented in the image below.

Figure 2.4: CableModels.py scheme

2.2.1 General Structure

CableModels.py is a module containing classes regarding the cable models, and also the
main items used to create the 3D environment.
The cable models’ classes are similar in the main structure, but differ one from the other
only on the initial configuration. The main function of the cable models’ classes is the

init , in which we create the cable itself with the contact and visualization meshes.
It takes as input only the meshes used to simulate the cable-to-cable contacts and the
visualization. If we are creating a wiring that has multiple bifurcations, we need also to

27

input the system to create the constraints that the main cable has with its bifurcations.
The cable model’s class has also other auxiliary functions, used to define its behaviour
inside the simulation, such as SetVelocity or SetForce, that both takes respectively as
input the velocity or the force, the node in which we want to apply it, and the cable
defined by its ID.
Since we need also to save and then process the state of the cable, we defined some func-
tions, CreateDataBase and AddDataFrame, that allow us to save in a NodePosition.csv
file the main informations about the cable. The way we do so is explained in a section
below.
In order to simulate various kind of wiring, we created three different cable’s models,
that will be fully described in the sections below:

• Straight Cable: simple straight cable with fixed lenght and diameter

• Straight Wiring: straight wiring made of three different cables, all tied together
to simulate a more complex wiring, with fixed length and diameter

• General Wiring: Wiring made with multiple cables with different length, diam-
eter and physical conformation

Along with the classes to create the cable, there are also the functions used to create the
obstacle, the walls and the pavement. This are used directly in the GymEnv.py class,
that will be described after the different kind of cables.

2.2.2 Straight Cable

The Straight Cable is the simplest one. The class’s name is StraightCable. As the
name states, it’s a wiring made only of a straight cable, and so the nodes a created along
the X-axis, using the default direction of the nodes when they are created.
Since it’s the most basic one, it was used preliminary to check if the initial parameters
of the objects inside the simulations where correct. Below there’s the figure representing
the cable inside the environment.

2.2.3 Straight Wiring

The Straight Wiring is similar to the Straight Cable but, instead of being made only
of one cable, it’s made of 3 different cables, all of them parallel to the other along the
X-axis. The class’s name is Straight3Cable
The wiring can be ideally dived into the main cable and the two slave cables. Each
slave cables’ node has a constraint that force its position to follow the main cable’s node
evolution. Since we need to define the constraints, in this class we input also the system
we created in the GymEnv.py environment.

28

Figure 2.5: Straight cable

It was mainly used to find a way to initially create wirings, but the idea was set aside
for some instability of the collision detection system, along with a better idea to create
a wiring that was randomly generated.

Figure 2.6: Straight wiring

29

2.2.4 General wiring

The most important model, what will be used for the reinforced learning, is the General
wiring, that has a spatial conformation randomly.
The positions of the nodes are stored inside a label.yaml file, a dictionary divided in
sections. The table below shows how is made a cable of the wiring stored inside the
.yaml file.

Cable ID1:
branches:

id: 3
Spline index: 99
id: XX
Spline index: XX

diameter: 0.025
intersections:

k1: X1
k2: X2
point: [XX, YY]

points:
XX YY
.. ..
XX YY

spline:
XX YY
.. ..
XX YY

Cable ID2:
..

Table 2.1: Structure of label.yaml File

Each dictionary’s section is defined by the Cable ID, that ranges from 0 to N, where
N is the number of cables that composes the wiring. The subsections of the dictionary
are defined as follows:

• branches: This section contains the id of the cable that’s originated from the
principal one and the index of the spline matrix where this bifurcation starts.

• diameter: This section contains the diameter of the cable

• intersections: This section contains the point where the principal cable, whose
ID is defined by the variable k1, intersect with the cable whose ID is defined by k2

30

• points: This section contains the points where the given spline interpolation needs
to go through

• spline: This is the most important section. Here we store the final points of the
spline as a Matrix of 100 elements, each element contains the spatial coordinates
of the point.

Since it’s spatial coordinates are randomly generated, we needed also to define a way
to give to its nodes the correct direction, in order to eliminate some initial instability
given by the fact that, as a default parameter, the direction of the nodes is along the
X-axis, and the evolution of the cables is random. To address this issue, we assigned
as direction of the node the vector that connects the previous node to the next one, as
schematized in the figure below.

Figure 2.7: Direction of the nodes

31

To obtain the spatial coordinates of the wiring sections, points we created automat-
ically starting from a Blender’s script for the generation of synthetic datasets.
It’s used initially the structure of the wiring, so we start from the first point of the main
cable to then generate the various branches forcing the cables’ interstactions. If not, the
points would be purely casuals.
Once we’ve obtained the 2D points, we plot them in the 3D environment generating a
volume of points around the guide at a distance equal to the diameter of the segment
from which we obtain the pointcloud. The initial pointcloud and the final result are
showed in the figure below.

Figure 2.8: Pointcloud and final result

The class that implements this cable is called MultiCable.
Since the number of points per cable obtained from the method described before is too
high, we decided to use only a portion of them, by spanning the file by a fixed number
for every wiring element. This of course reduces the precision of the resulting wiring, and
it is well represented in the figure 2.8, where the 3D wiring obtained by the Blender’s
script differs slightly from the corresponding wiring in PyChrono.
This is due by the fact that the resulting cable elements obtained with a lesser number
of nodes will have a different spatial evolution, but this is slightly mitigated by the fact
that we change the nodes’ direction in the way described above.

32

2.3 OpenAI Gym Implementation

Gym’s API are used to create an initial structure for the reinforced learning section.
Since it’s created like a class, we can divide its structure into three different functions.
The module is imported inside the main.py, and from the initial call we can create the
3D environment specifying only the cable that we want to use as a training.
The figure below schematize the class.

Figure 2.9: Class GymEnv.py scheme

In the init section we define the cable we want to use and also the action
that our agent can take. Since we are using Gym’s API, actions are defined through
gym.spaces.Space superclass[17], that is used to define observation and action spaces.
We use two specific functions of the class, namely gym.spaces.Box, a possibly unbounded
box in IRn, and gym.spaces.Discrete, a space consisting of finitely many elements.
The first one takes as an input a lower value, an higher value and the shape of the
resulting matrix. The second one only takes as an input the number of the elements.

The action is divided into three sub-actions:

• The first action, called action space cable, decides what wire we want to move.
The choice is done using cable’s IDs, a simple way to differentiate a cable from the
other. In case we have only one cable, the default ID is set to 0.

• The second action is called action space node and decides which node we want
to move. Since nodes are stored in a list, we can simply decide which node we want
to move by using a simple index.

• The last action is called action space dir and is a spaces.Box action in which

33

we decide the direction of the movement, specified by the angle in the X−Z plane,
from 0 to 2π.

Also, in the init section we define the system in which we simulate the evolution of
the cable, and we use it by practically ”adding” to itself the items created, such as the
pavement and the walls, and also the constraint that a section of the cable has with the
other, in case we are working on a cable with various bifurcations.
The other main function of the GymEnv.py class is the reset function. We use this
function inside the main.py to start anew the simulation, with different final position
for a given cable, randomly selecting the specific node we want to move inside the 3D
environment. This action must be performed every time we start the training to create
random objectives.
Last main function of the GymEnv.py class is the step function. We call it every step
in the main simulation loop and takes as input the kind of action we want to apply, so
the direction, the node and the cable we want to move, a timer to specify the velocity
of the node, and a flag done to check when the final position is reached.
Since this has to be a preliminary implementation for the reinforced learning techniques,
we also defined some minor functions to check the state of the agent, called get obs.
It returns the position of the agent (a.k.a. node) and the final position it needs to reach.
Similar to get obs, the function get info returns the distance between the agent and
the objective.
All this functions will be used during a future training section.

2.4 Data Collection and Analysis

In order to analyze the evolution in time of the cable’s model, we need to save the
positions of every node in a format that can be analyzed with the use of Python’s
functions.
This is done using Python’s Pandas [18] module, a fast, powerful, flexible and easy to use
open source data analysis and manipulation tool, built on top of the Python programming
language. The main use of this module is to create a DataFrame, Panda’s way to define
a data table, that can be spreadsheets and databases.
The rows of the DataFrame are composed of the nodes of each cable, divided by their
respective IDs. The first column has the rest position and the following ones have the
position at the give Data Time. The sampling time can be decided as a multiple of
the Time Step of the simulation. If the sampling time is too similar to the Time Step,
the fragmentation of the DataFrame becames too instable for the simulator. In general,
during the experiments, it was set to 100 times bigger than the step time.
The DataFrame we created has the following conformation, represented in the table
below.

34

Rest Position Time interval 1 Time interval 2
Cable ID
Node ID0 Position [x,y,z] Position [x,y,z] Position [x,y,z]
Node ID1 Position [x,y,z Position [x,y,z] Position [x,y,z]
....
Node IDn Position [x,y,z] Position [x,y,z] Position [x,y,z]
Cable ID
Node ID0 Position [x,y,z] Position [x,y,z] Position [x,y,z]
Node ID1 Position [x,y,z Position [x,y,z] Position [x,y,z]
....
Node IDn Position [x,y,z] Position [x,y,z] Position [x,y,z]

Table 2.2: DataFrame Schematic Structure

The DataFrame is then saved as a NodePositions.csv file, that can be opened in
different scripts, all managed by Pandas functions.
Since Pandas saves the data as string, to analyze the evolution of the cable we created
a script that converts every section of the DataFrame in rows of a single list. Every
element of the row is converted into a 3x1 vector. As a section we refer to the rows
between the IDs.
This data can then be further analyzed to ensure the correct behaviour of the simulation,
and to extract specific information we want to use.

35

Chapter 3

Tests performed and results

In this chapter we will describe the tests we performed to validate the model, along with
the parameters the simulation used.
The tests covered mainly the collision detections with other objects, which can be either
with another wiring or with an obstacle. Furthermore, this tests were also used to modify
the physical parameters of the other objects, in order to reach the most stable condition
possible.

3.1 Simulation parameters and Velocity Profile

Similarly to the information about the wiring, the parameters of the simulation are
stored inside a dictionary, namely parameters.yaml. This is done to ease the modification
process of the simulation behaviour.
Pavement, walls and the obstacle practically behaves in the same way, so the physical
parameters are equal, with the exception of the Young’s Modulus, for the reasons
explained in Chapter 2.1. During the tests, the model showed a particular instability
regarding the gravity interactions between the wiring and the floor: in fact, if the wiring is
too light, i.e. the diameter of the cable is too small, the cable itself would start bouncing
without any kind of force or velocity applied. Modifying the Young’s Modulus of only
the pavement resulted in a better general behaviour of the simulation while standing
still. Parameters used for the cube and the pavement are showed in the table below.

36

Pavement
E: Young Modulus 0.5e3 Pa
R: Restitution 0.5
F: Friction 0.3
A: Adhesion 0.0
Cube
E: Young Modulus 1e6 Pa
R: Restitution 0.5
F: Friction 0.3
A: Adhesion 0.0

Table 3.1: Pavement and Cube parameters

The most important parameters of the simulations are the one regarding the cable
itself. The table 3.2 shows such parameters.

Cable
nodes 10
E0: Young Modulus 3.5e6 Pa
E1: Young Modulus 4.5e6 Pa
E2: Young Modulus 5.5e6 Pa
F: Friction 0.3
R: Restitution 1
A: Adhesion 1
d: damping 0.05
ro1: density 2e3 Kg/m3

ro1: density 3e3 Kg/m3

ro1: density 4e3 Kg/m3

length 1 m
diameter 0.015 m
starting pos: [0, 0.06, 0]
max vel 0.5 m/s
acc 2.5 m/s2

meshE0: Young Modulus 5e2 Pa

Table 3.2: Cable Parameters

37

Starting from the first, nodes decide the number of nodes each cable has. This
number should be as high as possible, to ensure a granular representation of the cable.
A drawback of having a high number of nodes is that the simulation becomes more and
more unstable, and the computational load of the simulator becomes unbearable.
This is the reason behind having 10 nodes per cable. Going from 10 to 20 nodes per
cable created a simulation too unstable, and the cable itself had a behaviour where its
configuration started collapsing while doing nothing.
E0, E1 and E2 are three different Young’s Modulus used through the tests. The values
were selected starting from a previous experiment[19]. Similarly to the various Young’s
Modulus, also the different densities ro1, ro2 and ro3 were obtained starting from the
experiment[19].
The parameters max vel and acc describe the velocity profile we wanted to assign to
the nodes when performing a single movement. The last parameter, meshE0, is used
to define the collisions meshes behaviour, and is set to 500 Pa in order to avoid the
interpenetrations during the contact. This values was found after several tests.
The decided velocity profile is the trapezoidal one, and its general behaviour is described
by the figure below:

Figure 3.1: Velocity profile

Lastly, starting pos, diameter and length are parameters only used by
StraightCable and Straight3Cable models.

38

Lastly, we needed to define solver’s parameters, shown in the table below:

solver
maxiterations 40
tolerance 1e-22
forcetolerance 1e-10
timestep 0.0001

Table 3.3: Solver Parameters

Mainly we used the default parameters with respect to the max iterations the solver
could do before signaling an error, the tolerance and the force tolerance.
The one that needed tweeks is the timestep. This decide how much time occurs between
two steps. One could think that a low value would result in a more precise simulation but,
as we found out during the tests, the timestep’s value shows two different behaviours:

• If the timestep is set to a high value, in the order of the tenth or hundredth of
a second, the simulation is too unstable. This is due to the precision of the final
result, that needs a low value for the time step

• If the timestep is set to a low value, in the order of 10−8 seconds and below, the
simulation shows strange behaviours, where the wiring starts to move randomly.

The parameter also affect the computational load of the simulation, and its length in
time.

3.2 Cable to Object collisions detection

The first thing tested is the behaviour of the cable when it collides with another physical
object other than itself. This test was performed with a single straight wiring with
diameter of 1.5 centimeters and a total length of 1 meter.
The object used to detect the collision is a simple cube of side of 10 centimetres and
density of 5000 kg/m3.
The figure below show some salient frames of the simulation, along with a schematic
representation of nodes positions and the velocity of the one we moved.

39

Figure 3.2: Cable-to-object collisions setup - Red object mesh - Blue cable mesh

The movement used to cause the collision is a simple linear translation with maximum
velocity of 0.5m/s along the Z direction. The timestep is set to 0.0001.

Figure 3.3: Cable-to-object collisions time instant 0.5s - Red object mesh - Blue cable
mesh

After 0.5s, the cable still needs to reach the object. This is because the distance
between the cube and the cable is of 25 centimetres.

40

Figure 3.4: Cable-to-object collisions time instant 0.6s - Red object mesh - Blue cable
mesh

After 0.6s, the collision between the cable and the object started and, as you can see
by the frame, the node 5 stopped with 0 velocity.

Figure 3.5: Cable-to-object collisions time instant 0.7s - Red object mesh - Blue cable
mesh

After 0.7s, the node 5 is still attached to the cube, but other nodes continue moving.
This is because the simulator tend to apply always the velocity to the node if you not
say otherwise. So the node 5, that still has applied a velocity of 0.5 m/s, tends to stay
stick to the object surface, while the other nodes, because of the inertia, continue to
move along the Z direction until the friction stops them.
As you can see, the cable interact with the object in the correct way. Since the object
is way heavier than the cable, it stops immediately the cable’s movement. The Young
Modulus is high enough to impede interpenetrations between the cable and the cube,
and the contact happens without any bouncing of the cable.
Last figure shows the absolute velocity of the 4th node. As you can see, until the node
reaches the object, its velocity is 0.5m/s but, as it collides, the velocity goes to 0 after
some time. We can clearly see the deceleration phase.

41

Figure 3.6: Node 4 absolute velocity profile

3.3 Cable to Cable collisions detection

The second set of tests performed aimed to show the stability of cable-to-cable colli-
sions.In this case, we created the environment with two identical cables and no other
object to interact with.
Both cables were made of 10 nodes each, 15 centimetres of diameter and 1 meter of
length. As of velocities, the main cable was driven towards the second one with a ve-
locity of 0.3m/s along the Z direction. The main cable was also shifted 5 centimetres
towards the X-axis, to ensure that the collisions were detected also node-to-cable ele-
ment and not only node-to-node. That’s why we created two different meshes to detect
collisions, one containing the nodes and one containing the tests.

42

Figure 3.7: Cable-to-cable collisions setup

The main purpose of this test was to find the perfect parameters of the contact
meshes. In fact, during the tests, we needed to heavily modify such parameters, like the
Young’s modulus of the contact mesh, since an high value caused a rebound between
the cables, and a low value instead caused a interpenetration, resulting in an unstable
simulation.

The following images shows some salient shots of the simulation.

Figure 3.8: Cable-to-cable collision time instant 0.2s

As you can see from the figure 3.11, after 0.2s cables start the collision. The param-
eters are chosen in a manner that no bouncing happens between the two cables. The
collision begins little before the real contact between the cable elements, maybe to assure
a stable simulation.

43

Figure 3.9: Cable-to-cable collision time instant 0.3s

After 0.3s, the collisions between the two cables is still going on. The collisions
meshes, along with the cable elements, tend to interpenetrate a little. Anyway, this
interpenetration is low enough to assure a stable simulation with a correct result.

Figure 3.10: Cable-to-cable collision time instant 0.4s

After 0.4s, the movement is still going on and we can see that the collisions are well
managed by the simulator. Both cables react with each other without any rebound, and
the general stability of the simulation is ensured. We can see some bouncing of the end
parts of the secondary cable, caused probably by some partial interpenetration of the
cable with the pavement, but they eventually stops, without any interference with the
main simulation.

44

Last figure shows the absolute velocity of the second Node. Its velocity is practi-
cally constant, with some fluctuations given by the collisions between the cable and the
pavement, but the collision between the two cables doesn’t affect such value.

Figure 3.11: Node 2 absolute velocity profile

45

3.4 Straight wiring movement and collisions detec-

tion

One of the cable’s models described in Chapter 2 had the purpose of testing how a single
wiring made of multiple cables could be done. The results of the solution proposed were
not satisfactory.

Figure 3.12: Straight wiring Time instant 0

As shown by the figure above, initially the wiring has a general structure not com-
pletely correct. We can see some waves in his shape, probably given by the fact that the
simulator could not manage the whole collision detection.

After some time instants, the initial and intended shape is completely lost, as shown
by the figure below.

Figure 3.13: Straight wiring Time instant 0.1s

The instability of the whole simulation was so bad that the wiring could not even
do a single step without the nodes shifting into random places. Some of them also
inteprenetrated the pavement itself.

46

This got us to the conclusion that, in order to create a wiring made of multiple cables
connected without any branch, the best solution was to just create a single cable with
the resulting diameter congruous with the original wiring.

3.5 General wiring movement and collisions detec-

tion

Starting from the previous test, we found that the most simple way to create a compound
cable is also the most efficient. The cable firstly used is the one described in chapter
2, but tests showed a limit of the simulator that can’t be solved by simple means, but
needs a completely rework on how we create the general cable.

Figure 3.14: Wiring interpenetration close-up

As you can see from the image above, the trajectories of two of the cables composing
the wiring intersect. This intersection, in the initial time instants of the simulation, needs
to be resolved and, when the two sections of the cable divide, the general stability of the
simulation become less, at point where the nodes of the general wiring starts bouncing
in every direction possible.
This behaviour shows that, at the moment of the creation of a wiring, we need to
eliminate all possibility of intersection between different part of the wiring.
In order to address this unexpected behaviour, we decided to design another cable,
simpler from the physical configuration point of view. This is done because we need only
to test if the simulation is stable enough to address this kind of wiring, but the way they
are loaded into the simulation itself can be arbitrarily modified later on.
The new cable is similar to the more complex one, where it’s made of a main and bigger
structure, with a single branch starting from the middle, that has half it’s diameter. It’s
represented in the figure below.

47

Figure 3.15: Wiring collisions setup

As the test itself, we decided to move the end of the main cable toward the secondary
one, with a fixed velocity of 0.5m/s over the Z direction, in order to test if this kind of
configurations would work with PyChrono.

Following figures represent salient frames of the simulation.

Figure 3.16: Wiring collisions time instant 0.3s

After 0.3s, the end of the main cable still has to reach the branch, but the physical
position of the branch itself start moving along a little.

48

Figure 3.17: Wiring collisions time instant 0.4s

After 0.4s, the simulator starts to record the collision between the main cable and
the branch, similarly to what happened in section 3.4. The branch modify its position
along with the movement of the main cable’s node.

Figure 3.18: Wiring collisions time instant 0.5s

After 0.5s, the main cable starts to penetrate the branch, but this interpenetration
doesn’t destabilize the simulation, that continues to show a good behaviour of the colli-
sions.

49

Lastly, similarly to the velocity profile of the cable to cable collision, the velocity
of the last node of the main cable has a regular behaviour with some fluctuations given
by the collisions with the pavement, while the collision with the branch doesn’t creates
much modifications in its profile.

Figure 3.19: Main Cable Last Node absolute velocity profile

3.6 Test Results

Test results have highlighted the current limits of this approach, along with some needs
in improving cable’s parameters. The first experiment regarding collisions between cable
and object showed that the collision is only registered between nodes and the 3D ob-
jects: this limit has a simple solution, that is increase the number of nodes, but an higher
number of nodes makes the simulation too unstable or complex to compute. So there’s
a trade-off between the number of nodes and the stability-correctness of the simulation,
in which we decided to stay in the range of 10 nodes per wiring section.
Furthermore, the high number of nodes creates more instability when dealing between
cable to cable collisions. In fact, during the other experiments, the collisions are regis-
tered also when a node hits the cable element. This shows a correct behaviour of the
model, so higher number of nodes doesn’t mean a more correct management of the col-
lision itself, but a more realistic representation of the cable spatial evolution under the
conditions applied. Going from 10 nodes per cable to 20 nodes per cables shows in some
way expected results: the general simulation slows down, since it has to compute twice
the amount of collision per time instant, but the stability of the cables starts to fall

50

apart, since they start bouncing with the pavement and interpenetrate with it, as shown
by the experiment dealing with the wiring made of three different cables bounded one
to the other.
Another interesting result regards velocity profiles of the nodes. As you can see from the
results regarding cable to cable collisions, the node that we move by injecting a specific
velocity, doesn’t show any change in behaviour even when colliding with the other cable.
This shows that the velocity that the node has every time instant is not so much influ-
enced by the collision with a similar object, such as another cable, but instead is only
affected by the value we inject as an input. In fact, on the graphs we can see a little
fluctuation to the downside, that is recovered slowly after.

51

Chapter 4

Conclusions

Through this work of thesis, we studied the effectiveness of a 3D environment in which
we simulate and move a wiring using the PyChrono library. The model itself was created
using PyChrono’s API, starting from the physical structure of the wiring, and then de-
signing the collision system between the wiring and other objects, and the wiring against
other cables.
As shown by the results obtained during the tests, the model presents a stable behaviours
when managing the collisions between a cable and an object, but shows some limits when
dealing with cable-to-cable collisions. Such collisions present unstable behaviours, ac-
centuated by the number of the nodes.
The main favorable feature of the PyChrono Simulation Engine is the process that allows
us to create the environments. The ease of building new cables’ configurations starting
from spatial data reduces the time invested in developing specific functions for a given
cable. Furthermore, the definition of the cable’s physical behaviour is simplified by Py-
Chrono’s APIs.
The ease in developing new configurations for the cable brings also some drawback in
managing interpenetration when creating the cable from scratch. The presence of in-
terpenetrations between cable’s meshes isn’t something that the current simulator can
manage, resulting in a simulation where the wiring itself is uncontrollable.
Furthermore, future developments will focus on a more specific algorithm that takes also
in consideration such interpenetrations, in order to establish the final stability that this
physical engine needs.

52

Bibliography

[1] Jose Sanchez et al. “Robotic manipulation and sensing of deformable objects in
domestic and industrial applications: a survey”. In: The International Journal of
Robotics Research 37.7 (2018), pp. 688–716. doi: 10.1177/0278364918779698.
eprint: https://doi.org/10.1177/0278364918779698. url: https://doi.org/
10.1177/0278364918779698.

[2] A. Theetten, L. Grisoni, and B. Barsky C. Andriot. “Geometrically exact dynamic
splines”. In: (2008).

[3] Carl de Boor. “Package for Calculating with B-Splines”. In: SIAM Journal on
Numerical Analysis 14.3 (1977), pp. 441–472. issn: 00361429. url: http://www.
jstor.org/stable/2156696 (visited on 10/17/2022).

[4] Courbon J. Theorie des poutres. 1980.

[5] Chouaıebu. “Chouaıeb N. Kirchhoff’s problem of helical solutions of uniform rods
and their stability properties”. PhD thesis. 2004.

[6] University of Parma-Italy University of Wisconsin-Madison. Project Chrono. url:
https://projectchrono.org/.

[7] University of Parma-Italy University of Wisconsin-Madison. PyChrono. url: https:
//projectchrono.org/pychrono/.

[8] Alessandro Tasora et al. “A geometrically exact isogeometric beam for large dis-
placements and contacts”. In: Computer Methods in Applied Mechanics and En-
gineering 358 (2020), p. 112635. issn: 0045-7825. doi: https://doi.org/10.
1016/j.cma.2019.112635. url: https://www.sciencedirect.com/science/
article/pii/S0045782519305195.

[9] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
Second. The MIT Press, 2018. url: http://incompleteideas.net/book/the-
book-2nd.html.

53

[11] University of Parma-Italy University of Wisconsin-Madison. ChBeamSection doc-
uments. url: https://api.projectchrono.org/classchrono_1_1fea_1_1_ch_
beam_section_euler_advanced.html.

[12] University of Parma-Italy University of Wisconsin-Madison. ChNode documents.
url: https://api.projectchrono.org/classchrono_1_1fea_1_1_ch_node_f_
e_axyzrot.html.

[13] University of Parma-Italy University of Wisconsin-Madison. ChBeam documents.
url: https://api.chrono.projectchrono.org/classchrono_1_1fea_1_1_ch_
element_beam_euler.html.

[14] University of Parma-Italy University of Wisconsin-Madison. ChMesh documents.
url: https://api.projectchrono.org/classchrono_1_1fea_1_1_ch_mesh.
html.

[15] University of Parma-Italy University of Wisconsin-Madison. ChBodyEasyBox doc-
uments. url: https://api.projectchrono.org/classchrono_1_1_ch_body_
easy_box.html.

[16] C. C. Paige and M. A. Saunders. “Solution of Sparse Indefinite Systems of Linear
Equations”. In: SIAM Journal on Numerical Analysis 12.4 (1975), pp. 617–629.
doi: 10.1137/0712047. eprint: https://doi.org/10.1137/0712047. url:
https://doi.org/10.1137/0712047.

[17] Greg Brockman et al. Gym Documentation. url: https://www.gymlibrary.dev/
api/spaces/.

[18] Inc. Hosted by OVHCloud NumFOCUS. Pandas. url: https://pandas.pydata.
org/.

[19] Hongwang Du, Qinwen Jiang, and Wei Xiong. “Dynamic geometrical configura-
tion predictions during robotic manipulation for automated cable assembly”. In:
Journal of Manufacturing Systems 64 (2022), pp. 121–132. issn: 0278-6125. doi:
https : / / doi . org / 10 . 1016 / j . jmsy . 2022 . 06 . 001. url: https : / / www .
sciencedirect.com/science/article/pii/S0278612522000966.

54

