
Alma Mater Studiorum - University of Bologna

Department of Computer Science and Engineering

Master’s Degree in Artificial Intelligence

Final Thesis in
Natural Language Processing

SynBA: A contextualized

Synonim-Based adversarial Attack

for Text Classification

Supervisor
Prof. Paolo Torroni

Co-supervisors
Dr. Federico Ruggeri
Dr. Giulia De Poli

Candidate
Giuseppe Murro

Academic Year 2021-2022- Third session

Giuseppe Murro: SynBA: A contextualized Synonim-Based adversarial Attack

for Text Classification, Final Thesis, © 06 December 2022.

Dedicated to my parents

who have always believed in me

supported me in every choice

raised the man I am now

Abstract

With the advent of high-performance computing devices, deep neural networks

have gained a lot of popularity in solving many Natural Language Processing tasks.

However, they are also vulnerable to adversarial attacks, which are able to modify

the input text in order to mislead the target model. Adversarial attacks are a

serious threat to the security of deep neural networks, and they can be used to craft

adversarial examples that steer the model towards a wrong decision.

In this dissertation, we propose SynBA, a novel contextualized synonym-based

adversarial attack for text classification. SynBA is based on the idea of replacing

words in the input text with their synonyms, which are selected according to the

context of the sentence.

We show that SynBA successfully generates adversarial examples that are able

to fool the target model with a high success rate. We demonstrate three advantages

of this proposed approach: (1) effective—it outperforms state-of-the-art attacks

by semantic similarity and perturbation rate, (2) utility-preserving—it preserves

semantic content, grammaticality, and correct types classified by humans, and (3)

efficient—it performs attacks faster than other methods.

v

“The algorithms that cause AI systems to work so well are imperfect, and their

systematic limitations create opportunities for adversaries to attack. At least for the

foreseeable future, this is just a fact of mathematical life.”

– Marcus Comiter

Acknowledgements

Firstly, I would like to express my deepest gratitude to Professor Paolo Torroni and

Federico Ruggeri for their precious advice and support during the development of

this thesis. My thanks also go to Giulia De Poli, my industrial supervisor in 3rdplace,

for her guidance and for the opportunity to work on this project during the internship.

Secondly, I would like to thank my parents for the trust they have placed in me and

which I hope I have repaid with the results obtained during my studies.

Thirdly, many thanks to my girlfriend for her patience and for putting up with my

stressful times over the past two years.

And least but not last, an acknowledgements to my friends and colleagues for their

support and for the pleasant moments spent together.

Bologna, 06 December 2022 Giuseppe Murro

vii

Contents

1 Introduction 1

1.1 Topic definition . 1

1.2 Problem statement . 2

1.3 Research question . 2

1.4 Solution . 2

1.5 Thesis organization . 3

2 Background 5

2.1 Natural Language Processing . 5

2.1.1 Lexicon . 6

2.1.2 Word Embeddings . 7

2.1.3 Masked Language Models . 8

2.1.4 Text classification . 9

2.1.5 Sentiment analysis . 10

2.1.6 Natural language inference 11

2.1.7 Seq2Seq . 11

2.2 Adversarial Machine Learning . 12

2.2.1 Adversarial examples . 13

2.2.2 Paradigm shift . 14

2.2.3 Taxonomy of textual adversarial attacks 16

2.2.4 Adversarial attack methods from literature 19

2.3 Machine Learning hardening . 24

2.3.1 Vanilla adversarial training 24

2.3.2 Attack to Training . 25

2.4 Text Attack . 26

2.4.1 Framework structure . 26

2.4.2 HuggingFace integration . 26

ix

x CONTENTS

3 Methodology 29

3.1 Goal . 29

3.1.1 Problem to solve . 30

3.1.2 Research objective . 30

3.2 Research design . 31

3.2.1 Attack category . 31

3.3 Proposed solution . 31

3.3.1 Intuition . 32

3.3.2 SynBA components . 32

3.4 Evaluation metrics . 36

3.4.1 Attack metrics . 36

3.4.2 Quality metrics . 37

3.4.3 Efficiency metrics . 38

3.5 Calibration . 38

3.5.1 Hyperparameter Tuning . 38

3.5.2 Transformation ranking calibration 40

4 Experimental results 43

4.1 Data collection . 43

4.1.1 Experimental setup . 43

4.1.2 Datasets perturbed . 43

4.1.3 Model attacked . 44

4.2 Evaluation framework . 44

4.2.1 Semantic preservation evaluation 44

4.2.2 Cost assessment . 45

4.2.3 Human evaluation . 46

4.3 Ablation study . 49

5 Final discussions 51

5.1 Summary of findings . 51

5.1.1 Limitations . 52

5.2 Future developments . 52

5.3 Conclusions . 52

Glossary 53

Acronyms 57

CONTENTS xi

Bibliography 59

List of Figures

2.1 Components of NLP . 6

2.2 An example of a sequence-to-sequence model for machine translation. 12

2.3 Examples of Artificial Intelligence Attacks 13

2.4 Adversarial technology trend in CV and NLP fields [42] 15

2.5 Categorization of textual adversarial attack methods [42] 16

2.6 Adversarial examples generated by different methods [42] 21

2.7 Main features of of TextAttack . 27

3.1 Textual adversarial attack in sentiment analysis [19] 29

3.2 SynBA score . 35

3.3 SynBA components . 41

4.1 Example of the interface used by human judges to evaluate the

consistency of the adversarial examples 48

xii

LIST OF TABLES xiii

List of Tables

2.1 Several adversarial attack methods from literature 19

2.2 Comparison of Adversarial Attacks performance [42] 22

3.1 Some adversarial samples generated with TextFooler and BAE . . . 30

3.2 Comparing SynBA components with TextFooler and BAE 33

3.3 Hyperparameter tuning results for SynBA score weights 39

4.1 Attack results on IMDB dataset . 45

4.2 Attack results on Rotten Tomatoes dataset 46

4.3 Runtime analysis on IMDB dataset in seconds 47

4.4 Runtime analysis on Rotten Tomatoes dataset in seconds 47

4.5 Adversarial example counting for labels annotated by human evaluators 48

4.6 Some adversarial examples annotated as “inconsistent” by human

judges . 49

4.7 Some adversarial examples annotated as “unclear” by human judges 49

4.8 Ablation study results on Rotten Tomatoes dataset 50

Chapter 1

Introduction

1.1 Topic definition

In the era of digital transformation, the amount of data produced by humans

is growing exponentially. We are continuously exposed to an immense quantity of

information, and by interacting with digital devices we are constantly generating

data in the form of text, images, videos, and audio.

This data is used to train Machine Learning (ML) models able to perform tasks

that were previously accomplished by humans. However, the security and integrity of

these models are still a concern. In particular, the ability of ML models to generalize

to unseen data is challenging.

The mathematics behind ML models is complex, and it is difficult to understand

how they make decisions. This lack of transparency can be exploited by Adversarial

Machine Learning, a novel research area that lies at the intersection of machine

learning and cybersecurity. It refers to a class of attacks that aims to deteriorate

the performance of classifiers on specific tasks. The goal behind adversarial attacks

is to circumvent existing parameters and data rules so that the ML model confuses

its instructions and makes a mistake.

With machine learning rapidly becoming core to organizations’ value proposition,

the need for organizations to protect them is growing fast. Hence, Adversarial

Machine Learning is becoming an important field in the software industry.

Gartner, a leading industry market research firm, advised that application

leaders must anticipate and prepare to mitigate potential risks of data corruption,

model theft, and adversarial examples.

1

2 CHAPTER 1. INTRODUCTION

1.2 Problem statement

One critical issue in adversarial settings is to understand whether and to what

extent a classifier may resist to specifically targeted attacks.

An adversarial example is an instance with small, intentional feature perturba-

tions that cause a machine learning model to make a false prediction. These carefully

curated examples are correctly classified by a human observer but can fool a target

model, raising serious concerns regarding the security and integrity of existing ML

algorithms. On the other hand, it is shown that the robustness and generalization

of ML models can be improved by crafting high-quality adversaries and including

them in the training data.

While existing works on adversarial examples have obtained success in the image

and speech domains, it is still challenging to deal with text data due to its discrete

nature.

The intrinsic difference between images and textual data makes it extraordinarily

difficult for researchers to employ methods dealing with images to adversarial attacks

in the NLP domain.

1.3 Research question

Focusing on text classification task, we are motivated to address the following

two fundamental research questions (RQs):

RQ1: Does state-of-the-art attack methods generate adversarial examples that are

legible, grammatical, and similar in meaning to the original texts?

RQ2: How can we craft high-quality adversaries?

1.4 Solution

Researchers proposed special adversarial attacks in the text domain in order to

maintain semantic consistency and syntactic correctness. But those methods fail in

generating high-quality adversarial examples since they frequently violate linguistic

constraints.

This thesis concentrates on the adversarial attacks for text classification, in

particular, the attacks based on sentiment analysis datasets, like IMDB [30] and

Rotten Tomatoes [38]. Two state-of-the-art approaches, TextFooler [24] and BERT-

based attack [14], are compared to analyze weaknesses and strengths.

1.5. THESIS ORGANIZATION 3

Then, their shortcomings are addressed by proposing a novel method, called

SynBA, to generate adversarial examples for text data. It is a word-level attack

that generates adversarial examples by substituting words with candidates that have

both a synonymy and contextual relationship with the original token.

The key contributions of this survey can be summarized as follows:

• we introduce a simple but strong attack method, SynBA, to quickly generate

high-profile utility-preserving adversarial examples that force the target models

to make wrong predictions under the white-box setting;

• we propose a comprehensive automatic and human evaluation of adversarial

attacks to evaluate the effectiveness, efficiency, and utility preserving properties

of our system;

• we compare the adversarial examples generated by our method with TextFooler

and BERT-based attack in terms of semantic similarity, semantic consistency,

perturbation rate, success rate, perplexity and execution time.

1.5 Thesis organization

First chapter introduces the general content about thesis and gives a short pre-

sentation of the topic, the problem and the solution we propose;

Second chapter a deepening about the theoretical foundations used during the

project;

Third chapter presents the methodology used to build the proposed adversarial

attack solution;

Fourth chapter presents the experimental results obtained during the project;

Fifth chapter discusses about the results and possible future developments.

During the drafting of the essay, following typography conventions are considered:

• the acronyms, abbreviations, ambiguous terms or terms not in common use

are defined in the glossary, in the end of the present document;

• the first occurrences of the terms in the glossary are highlighted like this: word;

• the terms from the foreign language or jargon are highlighted like this: italics.

Chapter 2

Background

2.1 Natural Language Processing

The field of Natural Language Processing (NLP) is a branch of linguistics,

computer science, and artificial intelligence focused on the technology of processing

language. It encompasses a variety of topics, which involves the engineering of

computational models and processes to solve practical problems in understanding

and generating human languages. These solutions are used to build useful software.

Linguistics has two subfields—computational linguistics and theoretical linguis-

tics. Computational linguistics has been concerned with developing algorithms for

handling a useful range of natural language as input. While theoretical linguis-

tics has focused primarily on one aspect of language performance, grammatical

competence—how people accept some sentences as correctly following grammatical

rules and others as ungrammatical. They are concerned with language universals—

principles of grammar which apply to all natural languages [10].

Computational linguistics is concerned with the study of natural language

analysis and language generation. Further, language analysis is divided into two

domains, namely sentence analysis, and discourse and dialogue structure. Much more

is known about the processing of individual sentences than about the determination

of discourse structure. Any analysis of discourse structure requires a prerequisite

as an analysis of the meaning of individual sentences. However, it is a fact that

for many applications, thorough analysis of discourse is not mandatory, and the

sentences can be understood without that [17].

The sentence analysis is further divided into syntax analysis and semantic

analysis. The overall objective of sentence analysis is to determine what a sentence

“means”. In practice, this involves translating the natural language input into

5

6 CHAPTER 2. BACKGROUND

a language with simple semantics, for example, formal logic, or into a database

command language. In most systems, the first stage is syntax analysis. Figure 2.1

shows the relations among different components of NLP [8].

Figure 2.1: Components of NLP

Some of the common applications of NLP are Classification of text into cate-

gories, Index and search large texts, Automatic translation, Information extraction,

Automatic summarization, Question answering, Knowledge acquisition, and Text

generations/dialogues. Some of those tasks are discussed in sections 2.1.4, 2.1.5,

2.1.6, 2.1.7.

2.1.1 Lexicon

Dictionaries are special texts whose subject matter is a language, or a pair of

languages in the case of a bilingual dictionary. The purpose of dictionaries is to

provide a wide range of information about words— etymology, pronunciation, stress,

morphology, syntax, register—to give definitions of senses of words, and, in so doing,

to supply knowledge not just about language, but about the world itself.

The term “dictionary” is typically related to printed wordbook for human

readers. Instead “lexicon” will refer to the component of a NLP system that

contains information (semantic, grammatical) about individual word strings [18].

A lexicon which provides an effective combination of traditional lexicographic

information and modern computing is called WordNet [33]. It is an online lexical

database designed for use under program control. English nouns, verbs, adjectives,

2.1. NATURAL LANGUAGE PROCESSING 7

and adverbs are organized into sets of synonyms, each representing a lexicalized

concept. WordNet contains more than 118,000 different word forms and more than

90,000 different word senses. Approximately 40% of the words in WordNet have one

or more synonyms.

The cognitive synonyms which are called synsets are presented in the database

with lexical and semantic relations. WordNet includes the following semantic

relations:

• Hypernymy: A hypernym is a word that is more general than the word in

question. For example, a hypernym of “dog” is “canine”.

• Hyponymy: A hyponym is a word that is more specific than the word in

question. For example, a hyponym of “dog” is “poodle”.

• Synonymy: A synonym is a word that has the same meaning as the word in

question. For example, a synonym of “good” is “tasty”.

• Antonymy: An antonym is a word that has the opposite meaning of the word

in question. For example, a antonym of “good” is “bad”.

2.1.2 Word Embeddings

The way machine learning models process data is different from how humans

do. For example, we can easily understand the text “I saw a cat”, but our models

can not — they need vectors of features. Such vectors, called word embeddings, are

representations of words which can be fed into a model.

2.1.2.1 Word-count-based embedding

A common approach to represent a text document is to use a column vector of

word counts. This embedding is often called a bag-of-words, because it includes only

information about the count of each word, and not the order in which the words

appear. The bag-of-words representation ignores grammar, sentence boundaries,

paragraphs — everything but the words. Yet the bag of words model is surprisingly

effective for text classification.

Another word-count-based method, widely used in the information retrieval, is

TF-IDF, short for term frequency-inverse document frequency, which aims to reflect

the significance of the specified term in the document collection and is one of the

most popular term weighting schemes.

8 CHAPTER 2. BACKGROUND

2.1.2.2 Dense embeddings

Bag-of-words embeddings are sparse and long vectors with dimensions corre-

sponding to words in the vocabulary or documents in a collection. A more powerful

word representation is a dense vector, where instead of mostly-zero counts, the values

will be real-valued numbers that can be negative. It turns out that dense vectors

work better in every NLP task than sparse vectors.

Bengio et al. [1] presented a model which learned word representations using

distributed representation. The authors presented a neural model which obtains word

representations as to the product while training a language model. The popularity

of word representation methods are due to two famous models, Word2Vec [32] and

GloVe [41].

2.1.2.3 Contextual embeddings

To address the issue of polysemous and the context-dependent nature of words,

we need to distinguish the semantics of words in different contexts.

Contextualised word embeddings are variable vectors that are dependent on the

context in which the word is used. So, representations of a given word are multiple

and are directly computed from their context. The context of a word is usually

composed of the words surrounding it.

These contextualized representations are set to the hidden states of a deep

neural model, which is trained as a language model. By running the language model,

we obtain contextualized word representations, which can then be used as the base

layer in a supervised neural network for any task. This approach yields significant

gains over pre-trained word embeddings on several tasks, presumably because the

contextualized embeddings use unlabeled data to learn how to integrate linguistic

context into the base layer of the supervised neural network.

2.1.3 Masked Language Models

A Masked language model (MLM) is a pre-training technique which first masks

out some tokens from the input sentences and then trains the model to predict the

masked tokens by the rest of the tokens. A special [MASK] token is used to replace

some words randomly in the original text.

Masked Language Modelling is usually solved as a classification problem. We

feed the masked sequences to a neural encoder whose output vectors are further fed

into a softmax classifier to predict the masked token.

2.1. NATURAL LANGUAGE PROCESSING 9

The most popular MLM is BERT [12], which is a bidirectional encoder repre-

sentation from a particular deep learning architecture called transformer [50]. It

uses self-supervised training on the masked language modelling and next sentence

prediction tasks to learn/produce contextual representations of words.

Concurrently, there are multiple research proposing different enhanced versions

of MLM to further improve BERT. Instead of static masking, RoBERTa [29] im-

proves BERT by dynamic masking. While other models aim to optimize BERT’s

performance, DistilBERT [47] has a different goal. Its target is to reduce the large

size and enhance the speed of BERT while still keeping as much strength as possible.

DistilBERT reduces the size of BERTBASE by 40%, enhances the speed by 60%

while retaining 97% of its capabilities. ALBERT [26] also reduces the model size of

BERT and it does not have to trade-off the performance. Compared to DistilBERT,

which uses BERT as the teacher for its distillation process, ALBERT is trained from

scratch (just like BERT).

2.1.4 Text classification

Classification lies at the heart of both human and machine intelligence. Deciding

what letter, word, or image has been presented to our senses, recognizing faces or

voices, sorting mail, assigning grades to homeworks; these are all examples of

assigning a category to an input. In this section, we introduce text classification,

the task of assigning a label or category to an entire text or document.

Given a text document, assign it a discrete label y ∈ Y , where Y is the set of

possible labels. Text classification has many applications, from spam filtering to the

analysis of electronic health records, or the categorization of news articles.

Classification is essential for tasks below the level of the document as well.

An example of this is period disambiguation (deciding if a period is the end of a

sentence or part of a word), or word tokenization (deciding if a character should be

a word boundary). Even language modelling can be viewed as classification: each

word can be thought of as a class, and so predicting the next word is classifying the

context-so-far into a class for each next word. A part-of-speech tagger classifies each

occurrence of a word in a sentence as, e.g., a noun or a verb.

The goal of classification is to take a single observation, extract some useful

features, and thereby classify the observation into one of a set of discrete classes.

One method for classifying text is to use handwritten rules. There are many

areas of language processing where handwritten rule-based classifiers constitute a

state-of-the-art system, or at least part of it. Rules can be fragile, however, as

10 CHAPTER 2. BACKGROUND

situations or data change over time, and for some tasks humans aren’t necessarily

good at coming up with rules. Most cases of classification in language processing

are instead done via supervised machine learning, where an algorithm learns how to

map from an observation to a correct output [25].

Many kinds of machine learning algorithms are used to build classifiers. For-

merly, statistical and machine learning approaches, such as naïve Bayes, k-nearest

neighbours, hidden Markov models, conditional random fields (CRFs), decision trees,

random forests, and support vector machines, were widely used to design classifiers.

However, during the past several years, there has been a wholesale transformation,

and these approaches have been entirely replaced, or at least enhanced, by neural

network models [37].

2.1.5 Sentiment analysis

A popular application of text classification is sentiment analysis, the extraction

of sentiment, the positive or negative orientation that a writer expresses toward some

object. A review of a movie, book, or product on the web expresses the author’s

sentiment toward the product, while an editorial or political text expresses sentiment

toward a candidate or political action. Extracting consumer or public sentiment is

thus relevant for fields from marketing to politics [25].

The simplest version of sentiment analysis is a binary classification task, and

the words of the review provide excellent cues. Consider, for example, the following

phrases extracted from positive and negative reviews of movies and restaurants.

Words like great, richly, awesome, pathetic, awful and ridiculously are very informa-

tive cues:

+ ...zany characters and richly applied satire, and some great plot twists

− It was pathetic. The worst part about it was the boxing scenes...

+ ...awesome caramel sauce and sweet toasty almonds. I love this place!

− ...awful pizza and ridiculously overpriced...

The area of sentiment analysis it is becoming increasingly popular and utilizing

deep learning. Applications are varied, including product research, futures prediction,

social media analysis, and classification of spam [59]. Good results were obtained

using an ensemble, including both LSTMs and CNNs [9]. But the current trend

in state-of-the-art models in all application areas is to use pretrained stacks of

transformer units in some configuration, whether in encoder-decoder configurations

or just as encoders.

2.1. NATURAL LANGUAGE PROCESSING 11

2.1.6 Natural language inference

The task of Natural Language Inference (NLI), also known as recognizing textual

entailment, asks a system to evaluate the relationships between the truth-conditional

meanings of two sentences or, in other words, decide whether one sentence follows

from another. The relationship can be entailment, contradiction, or neutral.

Specifically, natural language inference is concerned with determining whether

a natural language hypothesis h can be inferred from a premise p, as depicted in the

following example from [31], where the hypothesis is regarded to be entailed from

the premise.

p: Several airlines polled saw costs grow more than expected, even after adjusting

for inflation.

h: Some of the companies in the poll reported cost increases.

2.1.7 Sequence-to-Sequence models

All the tasks we have discussed so far are classification-based, where the input

is a text and the output is a label. However, there are many tasks where the

input and output are both sequences of tokens. For example, machine translation,

summarization, and question answering are all tasks where we want to generate a

sequence in human-like language as output.

A Sequence to Sequence (seq2seq) model is is a special class of Recurrent Neural

Network (RNN) architectures that can be used to solve these tasks.

In the general case, input sequences and output sequences have different lengths

(e.g. machine translation) and the entire input sequence is required in order to start

predicting the target. This requires a more advanced setup:

• An encoder processes the input sequence and returns its own internal state.

This vector is called the context vector.

• A decoder is a neural network that takes the context vector as input and

outputs a sequence of tokens. It is trained to predict the next characters of

the target sequence, given previous characters in the generated text.

An example of this architecture is shown in Figure 2.2.

12 CHAPTER 2. BACKGROUND

Figure 2.2: An example of a sequence-to-sequence model for machine translation.

2.2 Adversarial Machine Learning

Deep Learning algorithms have achieved the state-of-the-art performance in

many tasks. However, the interpretability of deep neural networks is still unsatis-

factory as they work as black boxes, which means it is difficult to get intuitions

from what each neuron exactly has learned. One of the problems of the poor

interpretability is evaluating the robustness of deep neural networks.

Adversarial Machine Learning is a collection of techniques to train neural

networks on how to spot intentionally misleading data or behaviors. This differs

from the standard classification problem in machine learning, since the goal is not

just to spot “bad” inputs, but preemptively locate vulnerabilities and craft more

flexible learning algorithms.

The objective of an adversary could be to attempt to manipulate either the

data collection or the data processing in order to corrupt the target model, thus

tampering the original output.

Unlike traditional cybersecurity attacks, these weaknesses are not due to mis-

takes made by programmers or users. They are just shortcomings of the current

state-of-the-art methods. Actually, the algorithms that cause AI systems to work so

well are imperfect, and their systematic limitations create opportunities for adver-

saries to attack. At least for the foreseeable future, this is just a fact of mathematical

life [11].

Two main types of AI attacks can be defined according to the time at which

the attack happens [7]:

• Adversarial Attacks (Evasion): this is the most common type of attack in

the adversarial setting. The adversary tries to evade the system by adjusting

malicious samples during the testing phase. This setting does not assume any

influence over the training data. In Figure 2.3a is depicted how adding an

2.2. ADVERSARIAL MACHINE LEARNING 13

imperceptible and carefully constructed noise to the input originally recognized

as “panda” with 57.7% confidence, we can change the classification output

given by the same neural network toward another target (in the example

“gibbon” with 99.3% confidence).

• Data Poisoning Attacks: This type of attack, known as contamination of

the training data, is carried out at training phase of the machine learning model.

An adversary tries to inject skilfully crafted samples to poison the system in

order to compromise the entire learning process. The Figure 2.3b shows as in

normal machine learning (left), the learning algorithm extracts patterns from

a dataset, and the “learned” knowledge is stored in the machine learning

model—the brain of the system. In a poisoning attack (right), the attacker

changes the training data to poison the learned model.

(a) Evasion attack on image classification [48] (b) Poisoning attack on training data [11]

Figure 2.3: Examples of Artificial Intelligence Attacks

In this thesis, we will focus on the first type of attack: Adversarial Attacks.

Over the past few years, researchers [15, 48] used small unperceivable perturbations

to evaluate the robustness of deep neural networks and found that they are not

robust to these perturbations.

2.2.1 Adversarial examples

Szegedy et al. [48] first evaluated the state-of-the-art deep neural networks

used for image classification with small generated perturbations on the input images.

They found that the image classifiers were fooled with high probability, but human

judgment is not affected. The perturbed image pixels were named adversarial

examples and this notation is later used to denote all kinds of perturbed samples in

a general manner.

14 CHAPTER 2. BACKGROUND

Formally, adversarial example x′ is an example created via worst-case perturba-

tion of the input to a deep learning model. An ideal deep neural network would still

assign correct class y (in the case of classification task) to x′, while a victim deep

neural network would have high confidence on wrong prediction of x′.

The adversarial example x′ can be formalized as:

x′ = x+ η, f(x) = y, x ∈ X,

f(x′) ̸= y,

or f(x′) = y′, y ̸= y′

(2.1)

where η is the worst-case perturbation. The goal of the adversarial attack can be

deviating the label to incorrect one (f(x′) ̸= y) or specified one (f(x′) = y′) [56].

2.2.2 Paradigm shift: from CV to NLP

Adversarial examples were first proposed for attacking DNNs for object recog-

nition in the Computer Vision (CV) community. The former work on this field

by Szegedy et. al. [48] was based on L-BFGS, but despite the effectiveness of the

method, it was computationally expensive and impractical. Goodfellow et al. [15]

proposed a Fast Sign Gradient Method (FSGM) that popularized this research topic.

It is a simplification of the L-BFGS method since it adds a small perturbation

to the input of a model, which is computed by taking the sign of the gradient of

the loss function with respect to the input. Most follow-up research was based

on optimization methods (eg. JSMA [40], DeepFool [34], C&W [5]) or leveraging

Generative Adversarial Network (GAN) to generate adversaries [58].

As shown in Figure 2.4, adversarial technology has attracted attention and has

developed rapidly. Based on the paper list1 collected by Carlini, the chart counts

the number of publications related to adversarial machine learning in the CV and

NLP fields. Compared with studies in the CV field, the publications in the NLP

domain are far fewer. However, due to the wide application of NLP technology

in text classification, sentiment analysis, text question-answering, neural machine

translation, text generation and other tasks, as well as the continuous deepening

of adversarial attack and defence technologies, textual adversarial technology has

gradually gained researchers’ attention.

Papernot et al. [39] are the first to investigate adversarial attacks on texts.

Inspired by the idea of generating adversarial images, they crafted adversarial texts

through the forward derivative associated with texts’ embeddings, by modifying

1https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

2.2. ADVERSARIAL MACHINE LEARNING 15

Figure 2.4: Adversarial technology trend in CV and NLP fields [42]

characters or words in original texts.

2.2.2.1 Particularities of adversarial text

Publications related to adversarial technology in the NLP field are far less

than those in the CV field. The reason is that three extra constraints need to be

considered when generating textual adversarial examples. Specifically:

• Discrete: Unlike images represented by continuous pixel values, the symbolic

text is discrete. Therefore, finding appropriate perturbations is critical to

efficient textual adversarial example generation. It is hard to define the

perturbations on texts. Carefully designed variants or distance measurements

for textual perturbations are required.

• Perceivable: The well-performed adversarial image generation method is

based on the premise that a few pixel value changes in an image are invisible

to human eyes. However, a slight modification of a character or word is

easily realized by human eyes and spelling checkers. Hence, finding textual

adversarial examples that are hard to be observed by human eyes is vital for

successful adversarial attacks.

• Semantic: Compared with images whose overall semantics do not change

when changing a few pixel values, the semantics of a text could be altered

by even replacing or adding a character, violating the principle that adver-

sarial examples are perceivable to humans. Therefore, keeping the semantics

consistent is the key to crafting influential adversarial texts.

16 CHAPTER 2. BACKGROUND

Figure 2.5: Categorization of textual adversarial attack methods [42]

These differences make it extraordinarily difficult for researchers to employ

methods dealing with images to adversarial attacks. Moreover, one of the first

tasks of NLP models is to work on real data to check their generalization ability.

Although adversarial attacks are a practical approach to evaluate robustness, most

of them have the problem of being task-specific, not being well generalized, and not

presenting comprehensive guidelines for evaluating system robustness.

2.2.3 Taxonomy of textual adversarial attacks

Textual adversarial attack methods can be categorized according different

criteria. In this section, we will introduce the taxonomy of textual adversarial

attacks based on model access, adversarial goal, semantic granularity and attack

strategy, as shown in Figure 2.5.

2.2.3.1 Model access

Adversarial attacks at the testing time do not tamper with the targeted model

but rather forces it to produce incorrect outputs. The effectiveness of such attacks

is determined mainly by the amount of information available to the adversary about

the model. Testing phase attacks can be broadly classified into either white-box or

black-box attacks [7].

White-Box Attacks. In white-box attack on a machine learning model, an

adversary has total knowledge about the model used for classification (e.g., type of

neural network along with number of layers). The attacker has information about the

algorithm used in training (e.g. gradient-descent optimization) and can access the

2.2. ADVERSARIAL MACHINE LEARNING 17

training data distribution. He also knows the parameters of the fully trained model

architecture. The adversary utilizes available information to identify the feature

space where the model may be vulnerable, for which the model has a high error rate.

Then the model is exploited by altering an input using adversarial example crafting

method.

Black-Box Attacks. Black-box attack, on the contrary, assumes no knowledge

about the model and uses information about the settings or past inputs to analyse

the vulnerability of the model. For example, in an oracle attack, the adversary

exploits a model by providing a series of carefully crafted inputs and observing

outputs. For example, to identify meaningful words in given texts, works in [24,

45, 46] computed the probability change value, word saliency, and classification

probability by using the victim model’s output.

2.2.3.2 Adversarial goal

According to the attack purpose of an adversary, adversarial attack methods

are categorized into targeted and non-targeted attacks [42].

Non-targeted attack. The adversary hopes to generate an adversarial example

x′ that makes the victim model f produce a wrong output f(x′) ̸= y, where y is the

correct label of the input x. Since there is no limit on the target’s wrong output,

this kind of attack is more frequently employed.

Targeted attack. In this scenario, the adversary intends to generate adversarial

examples that make victim models output a specified wrong prediction. More

specifically, the adversary hopes that the generated example x′ to cause the victim

model f outputting t = f(x′), where t is the output specified by the adversary.

2.2.3.3 Attack strategy

According to different strategies in the adversarial example generation process,

Shilin Qiu et al. [42] divide adversarial attacks into six types: gradient-based,

optimization-based, importance-based, edit-based, paraphrase-based, and generative

model-based methods. Among them, strategies like the gradient-based method

are evolved from adversarial image generation methods, and the implementation

process of these attacks is usually relatively straightforward. While other methods

like the optimization-based and edit-based methods are proposed for discrete data,

they generally show better performance in maintaining semantic consistency and

grammatical correctness; however, they have enormous difficulty when designing

well-turned algorithms.

18 CHAPTER 2. BACKGROUND

Gradient-based. These methods calculate the forward derivative to the input

and obtain adversarial perturbations by gradient backpropagation. Therefore, the

vectorization for text needs to be implemented at first.

Optimization-based. It regards the adversarial example generation as a

minimax optimization problem, i.e., maximizing the victim model’s prediction error

while the difference between the adversarial example and the original one is within

an acceptable range. Currently, researchers craft adversarial texts essentially based

on evolutionary algorithms, such as the GA and PSO.

Importance-based. This means that which object is to be modified and how

to modify it are determined by each object’s importance related to the victim model.

Since the more critical the changed word is, the easier it is to change the prediction

of the victim model, even if the change is small enough. The adversarial example

generated by this strategy generally maintains semantic consistency, grammatical,

and syntactic correctness well.

Edit-based. It crafts adversarial examples by operations like inserting, re-

moving, and swapping characters, words, or sentences. These editing operations

are also used in other approaches, such as gradient-based, optimization-based, and

importance-based methods. Therefore, the edit-based method refers to attacks

that utilize the above editing operations but do not use the gradient information,

optimization algorithm, or item importance.

Paraphrase-based. The adversary takes the paraphrase of a sentence as its

adversarial example. In the paraphrase generation process, the adversary introduces

different extra conditions to fool the victim model without affecting human judgment.

The sentence-level attacks commonly use these approaches.

Generative model-based. This method uses the generative model like the

GAN and encoder-decoder model to generate adversarial texts, and is frequently

used in sentence-level attacks. Since there are gradient back propagations when

training the generative model or crafting adversarial examples, these methods are

usually combined with other techniques, such as RL.

2.2.3.4 Semantic granularity

Since the text is discrete, classifying adversarial attacks according to semantic

granularity is more intuitive than NLP tasks or black/white-box scenarios. Thus,

Huq et al. [22] divided textual adversarial attacks into four categories: character-level,

word-level, sentence-level, and multi-level attack.

Character-Level Attack. Individual characters in this attack are either

2.2. ADVERSARIAL MACHINE LEARNING 19

modified with new characters, special characters, and numbers. These are either

added to the text, swapped with a neighbour, removed from the word, or flipped.

Word-Level Attack. In this attacks words from the texts are changed with

their synonyms, antonyms, or changed to appear as a typing mistake or removed

completely.

Sentence-Level Attack. This attack inserts extra distractor sentences, gener-

ates the paraphrase, or modifies the original sentence structure to fool the victim

model.

Multi-Level Attack. Attacks which can be used in a combination of character,

word, and sentence level are called multi-level attacks.

2.2.4 Adversarial attack methods from literature

Several adversarial attack methods have been proposed in the literature. In this

section, we present a brief overview of the most popular ones, listed in Table 2.1.

Those methods are categorized according to the classification defined in Sec.

2.2.3.4: 1 character-level attack (DeepWordBug [13]), 4 word-level attacks (Proba-

bilistic Weighted Word Saliency (PWWS) [45], TextFooler [24], BERT-based attack

[28] and Semese-PSO [54]), 2 sentence-level attacks (Synthetically Controlled Para-

phrase Networks (SCPNs [23]), and GAN-based attack [58]), and 1 multi-level attack

(TextBugger [27]).

DeepWordBug determines top critical tokens and modify them by character-

level transformations introducing typos. PWWS is a synonym-based substitution

method that makes use of the word saliency and classification probability. TextFooler

identifies important words, and replaces them with the most semantically similar

and grammatically correct substitutes.

Method Granularity Strategy Model access Attack goal

DeepWordBug Character-level Importance-based Black-box Non-targeted

PWWS Word-level Importance-based Black-box Non-targeted

TextFooler Word-level Importance-based Black-box Non-targeted

BERT-based Word-level Importance-based Black-box Non-targeted

Semese-PSO Word-level Optimization-based Black-box Non-targeted

SCPNs Sentence-level Paraphrase-based Black-box Non-targeted

GAN-based Sentence-level Generative model-based Black-box Non-targeted

TextBugger Multi-level Importance-based Black/White-box Non-targeted

Table 2.1: Several adversarial attack methods from literature

20 CHAPTER 2. BACKGROUND

BERT-based attack finds the vulnerable words for the target model and replaces them

with candidates from a pre-trained BERT model. Semese-PSO reduces search space

by a sememe-based word replacement method, searching for adversarial examples

through the PSO algorithm in the reduced search space. SCPNs generates adversarial

examples by paraphrasing the original sentence using an encoder-decoder model.

GAN-based attack generates adversarial examples using iterative stochastic search

and hybrid shrinking search. The framework consists of a GAN and a converter.

TextBugger generates character-level and word-level adversarial texts according to

the importance in black-box and white-box scenarios.

To give readers a more intuitive understanding of these attack methods, in

Figure 2.6 are showed adversarial examples generated by each method. The original

examples are two randomly selected from the Stanford Sentiment Treebank (SST)

dataset, and both of them are correctly classified as Positive by the pre-trained

BERT model for sentiment analysis.

From the perspective of example quality, character-level attack methods maintain

the semantics of original texts well. However, they are easily detected by human

eyes or spelling check tools. In contrast, word-level attacks compensate for the

vulnerability of adversarial examples to detection but affect the semantics of the text

to some extent. sentence-level attacks enhance the diversity of generated examples.

However, it is clear to see that these adversarial examples crafted by sentence-level

SCPNs and GAN-based methods are very different from the original ones in both

semantics and readability.

2.2. ADVERSARIAL MACHINE LEARNING 21

Figure 2.6: Adversarial examples generated by different methods [42]

For comparing the attack performance of the above methods, Shilin Qiu et. al.

[42] randomly selected 5000 examples from the SST dataset to generate corresponding

adversarial texts and attack the selected victim model using the above methods.

The end goal of the attack algorithms is to trick the model to make wrong prediction

by manipulating the input. So the attack success rate of an evasion algorithm is

defined as the percentage of wrong prediction by the victim model on the adversarial

examples [49]. Table 2.2 shows the result. In terms of attack success rate, TextBugger

is the highest, and its execution time is also relatively low. The reason might be that

TextBugger uses the Jacobian matrix to calculate the importance of each word at

once. In comparison, the average model queries of sentence-level methods (SCPNs

and GAN-based method) are the lowest, but their attack success rates are not

satisfactory. As mentioned above, the differences between the adversarial examples

generated by sentence-level methods and the original ones are quite significant, so

researchers should focus on maintaining the semantic consistency and imperceptibility

of texts for sentence-level methods. Focusing on word-level attacks, the model query

22 CHAPTER 2. BACKGROUND

are comparatively numerous. However, TextFooler and BERT-based attack have a

relatively high attack success rate and a low execution time.

Since this thesis focuses on the word-level attack, we will introduce the details

of TextFooler and BERT-based attack in the following sections and use them as the

baseline for our proposed method.

Method Attack Average Model Average Running
Success Rate (↑) Queries (↓) Time in seconds (↓)

DeepWordBug 59.46% 23.626 0.000439
PWWS 75.74% 117.82 0.002190

TextFooler 74.86% 61.68 0.053360

BERT-based 88.44% 61.94 0.036131

SCPNs 75.66% 11.75 2.366100

GAN-based 42.06% 2.42 0.009495

TextBugger 90.54% 48.79 0.001722

Table 2.2: Comparison of Adversarial Attacks performance [42]

2.2.4.1 TextFooler

TextFooler [24] is a word-level attack in the black-box setting designed to evade

two fundamental natural language tasks, text classification and textual entailment.

For generating semantics-preserving texts with minimum modifications, it uses

an importance-based strategy. First, a selection mechanism is performed to choose

the words that most significantly influence the final prediction results. Those words

are ranked in descending order according to the class probability changes, which were

obtained by removing words one by one and measuring the difference between the

prediction confidence before and after deleting each word. After ranking the words

by their importance score, stop words (such as “the”, “when”, and “none”)

derived from NLTK2 are filtered out. This simple step of filtering is important to

avoid grammar destruction.

Starting from these importance ranked words, three strategies (synonym ex-

traction, part-of-speech checking, and semantic similarity checking) are combined

to replace words with the most semantically similar and grammatically correct

substitutes.

Synonym Extraction. Word replacement candidates are initiated with 50

closest synonyms according to the cosine similarity between wi and every other word

2https://www.nltk.org/

https://www.nltk.org/

2.2. ADVERSARIAL MACHINE LEARNING 23

in the vocabulary. To represent the words, counter-fitted word embeddings from

Mrkšić et al. [36] are used. These GloVe vectors are specially curated for injecting

antonymy and synonymy constraints into vector space representations. They achieve

the state-of-the-art performance on SimLex-999, a dataset designed to measure how

well different models judge the semantic similarity between words [21].

POS Checking. To ensure the grammatical correctness of the generated

adversarial examples, the Part of Speech (POS) tags of the original words are

checked against the POS tags of the replacement candidates, and only the words

with the same POS tags are kept.

Semantic Similarity Checking. Each remaining candidate word is substi-

tuted into the original sentence X, and obtain the adversarial example Xadv. Then,

the sentence semantic similarity is calculated between the source X and adversarial

counterpart Xadv. Specifically, Universal Sentence Encoder (USE) [6] is used to

encode the two sentences into high-dimensional vectors and use their cosine similarity

score as an approximation of semantic similarity. The words resulting in similarity

scores above a preset threshold are placed into the final candidate pool.

Finally, the target model F to compute the corresponding prediction scores

F (Xadv). If there exists any candidate that can already alter the prediction of the

target model, then it is selected the word with the highest semantic similarity score

among these winning candidates. But if not, then it is selected the word with the

least confidence score of label y as the best replacement word for wi, and repeat

synonym extraction to transform the next selected word by importance rank.

2.2.4.2 BERT-based attacks

A shortcoming of traditional synonym-based attacks like TextFooler or PWWS

is that they do not take the context into account when building their candidate

set. This can lead to problems if a word is polysemic, i.e., has multiple meanings in

different contexts, which are easily human-identifiable. Many attacks also do not

take part-of-speech into account, which leads to unnatural and semantically wrong

sentences [20].

BERT-based attacks claim to produce more natural text by relying on a BERT

masked language model for proposing the set of candidate words. Compared with

previous approaches using rule-based perturbation strategies, the masked language

model prediction is context-aware, thus dynamically searches for perturbations rather

than simple synonyms replacing.

A prominent example of such an attack is BERT-Attack [28]. BERT-Attack

24 CHAPTER 2. BACKGROUND

calculates the importance scores similar to TextFooler, but instead of deleting words,

BERT-Attack replaces the word for which the importance score is calculated with

the [MASK] token:

Iwi = Fy(X)− Fy(Xwi→[MASK]) (2.2)

The candidate set Li is constructed from the top 48 predictions of the masked

language model and the replacement word is chosen as the word which changes the

prediction the most, subject to cosUSE(X,Xadv) ≥ 0.2. Stopwords are filtered out

using NLTK.

Another similar method is BAE, which corresponds to BAE-R in [14]. Like

BERT-Attack, BAE is an attack based on a MLM. The word importance is estimated

as the decrease in probability of the correct label when deleting a word, similar to

TextFooler. BAE uses the top 50 candidates of the MLM to build the candidate set

and tries to enforce semantic similarity by requiring cosUSE(X,Xadv) ≥ 0.936.

2.3 Machine Learning hardening

Adversarial examples demonstrate that many modern machine learning algo-

rithms can be broken easily in surprising ways. An essential purpose for generating

adversarial examples for neural networks is to utilize these adversarial examples to

enhance the model’s robustness.

The overwhelming amount of work in the last few years for adversarial defences

has given good competition to the novel adversarial attack algorithms and consid-

erably improved the robustness of existing deep learning models. These defence

mechanisms are also used as regularization techniques to avoid overfitting, and

making the model more robust [16].

2.3.1 Vanilla adversarial training

One of the most popular adversarial defence approach is adversarial training.

It was first introduced in the work proposed in [15]. It is a method of defending

against adversarial attacks by introducing adversarial examples in the training data.

The strength of adversarial examples decides the final robustness and generalization

achieved by the model.

This method can be seen as a data augmentation mechanism that extends the

original training set with the successfully generated adversarial examples and try

to let the model see more data during the training process. Adversarial examples

2.3. MACHINE LEARNING HARDENING 25

need to be carefully designed when training on adversarial examples to improve the

model.

Although adversarial training can effectively improve the robustness of NLP

models, this approach has some problems:

• extensive adversarial examples need to be prepared in advance, resulting in a

massive computational cost

• it is likely to reduce the model classification accuracy

2.3.2 Attack to Training

High computational cost hinders the use of vanilla adversarial training in NLP,

and it is unclear how and to what extent such training can improve an NLP model’s

performance.

Yoo et al. [52] propose to improve the vanilla adversarial training in NLP with

a computationally cheaper adversary, referred to as Attack to Training (A2T). A2T

attempts to generate adversarial examples on the fly during training of the model

on the training set, which is much cheaper than generating adversarial examples in

advance. This approach can improve an NLP model’s robustness to the attack it

was originally trained with and also defend the model against other types of word

substitution attacks.

The attack component in A2T is designed to be is faster than previous attacks

from the literature. Previous attacks such as [14, 24] iteratively replace one word

at a time to generate adversarial examples. One issue with this method is that an

additional forward pass of the model must be made for each. word to calculate

its importance. For longer text inputs, this can mean that we have to make up to

hundreds of forward passes to generate one adversarial example.

A2T instead determines each word’s importance using the gradient of the loss.

For an input text including n words: x = (x1, x2, ..., xn) where each xi is a word,

the importance of xi is calculated as:

I(xi) = ∥∇eiL(θ, x, y)∥1 (2.3)

where ei is the word embedding that corresponds to word xi. For BERT and

RoBERTa models where inputs are tokenized into sub-words, we calculate the

importance of each word by taking the average of all sub-words constituting the

word. This requires only one forward and backward pass and saves us from having

to make additional forward passes for each word.

26 CHAPTER 2. BACKGROUND

2.4 Text Attack

The only textual adversarial attack toolbox currently available are TextAttack

[35] and OpenAttack [55]. TextAttack is the earliest implemented tool and it is

python framework to launch adversarial attacks, enable data augmentation and

implement adversarial training for natural language process models. It can launch

model-specific and evaluate the results, and improve robustness in the downstream

and model generalization.

TextAttack provides clean, readable implementations of 19 adversarial attacks

from the literature. All of these attacks are implemented as attack recipes in

TextAttack and can be benchmarked with just a single command.

2.4.1 Framework structure

To unify adversarial attack methods into one system, NLP attacks are decom-

posed into four components: a goal function, a set of constraints, a transformation,

and a search method:

• Goal function: determines whether the attack is successful in terms of the

model outputs (eg. untargeted classification, targeted classification)

• Constraints: determine if a perturbation is valid with respect to the original

input (eg. maximum word embedding distance, part-of-speech consistency)

• Transformation: generates a set of potential perturbations (eg. word swap,

word insertion)

• Search method: successively queries the model and selects promising pertur-

bations from a set of transformations (eg. greedy search, genetic algorithm)

This modular design enables us to easily assemble attacks from the literature

while reusing components that are shared across attacks.

TextAttack’s design also allows researchers to easily construct new attacks

from combinations of novel and existing components. Figure 2.7 shows the main

components and features of TextAttack.

2.4.2 HuggingFace integration

TextAttack is model-agnostic—meaning it can run attacks on models imple-

mented in any deep learning framework. Model objects must be able to take a string

(or list of strings) and return an output that can be processed by the goal function.

2.4. TEXT ATTACK 27

Figure 2.7: Main features of of TextAttack

TextAttack allows users to provide their own models and datasets. Moreover,

it is directly integrated with HuggingFace3’s transformers and NLP libraries. This

allows users to test attacks on models and datasets publicly available on the platform.

For benchmark purpose, TextAttack provides users with 82 pre-trained models,

including word-level LSTM, word-level CNN, BERT, and other transformer-based

models pre-trained on various datasets provided by HuggingFace NLP. Since Tex-

tAttack is integrated with the NLP library, it can automatically load the test or

validation data set for the corresponding pre-trained model [35].

3https://huggingface.co

https://huggingface.co

Chapter 3

Methodology

3.1 Goal

Most recent adversarial attack methods described in 2.2.3 successfully decrease

the accuracy of the target model. However, since the main goal of the research is to

enhance the robustness of the target model, we need to ensure that the quality of

the crafted adversarial examples should be high, because the target model will be

re-trained with them.

A successful natural language adversarial example can be defined as a perturba-

tion that fools the model and fulfils a set of linguistic constraints. As an example

in sentiment analysis (Figure 3.1), an attacker can fool the system by changing

only one word from “Perfect” to “Spotless” which can completely change the

predicted output without being discerned by humans.

Figure 3.1: Textual adversarial attack in sentiment analysis [19]

Formally, besides the ability to fool the target models, the outputs of a natural

language attacking system should meet three key utility-preserving properties, defined

by Jin et al. [24] as follows:

29

30 CHAPTER 3. METHODOLOGY

1. human prediction consistency - prediction by humans should remain unchanged;

2. semantic similarity - the crafted example should bear the same meaning as

the source, as judged by humans

3. language fluency - generated examples should look natural and grammatical

3.1.1 Problem to solve

Although attacks in NLP aspire to meet linguistic constraints, in practice, they

frequently violate them. Focusing on TextFooler and BERT-based attacks, they

claim to create perturbations that preserve semantics, maintain grammaticality, and

are not suspicious to readers. However, our inspection of the perturbations revealed

that many violated these constraints.

On one hand, the perturbations generated by TextFooler solely account for the

token level similarity via word embeddings, and not the overall sentence semantics.

This can lead to out-of-context and unnaturally complex replacements.

On the other hand, with the capability of BERT, the perturbations crafted by

BERT-based attacks are generated considering the context around. Therefore, the

perturbations are fluent and reasonable. Nevertheless, candidates generated from

the masked language model can sometimes be antonyms or irrelevant to the original

words, causing a semantic loss.

Table 3.1 highlights some examples of adversaries suffering from aforementioned

issues.

Method Label Samples

TextFooler Original (POS) generates an enormous feeling of empathy for its characters

Perturbed (NEG) leeds an enormous foreboding of empathy for its fonts

BAE Original (NEG) bears is even worse than i imagined a movie ever could be.

Perturbed (POS) bears is even greater than i imagined a movie ever could be.

Table 3.1: Some adversarial samples generated with TextFooler and BAE

3.1.2 Research objective

In order to address the research questions defined in Section 1.3, we propose a

new approach to generate adversarial examples that meet linguistic constraints. In

particular, we aim to demonstrate that:

• using our evaluation framework defined in section 4.2, we can identify the

weaknesses of existing attack methods;

3.2. RESEARCH DESIGN 31

• the utility-preserving properties measured on the proposed solution outperform

the state-of-the-art;

3.2 Research design

Although adversarial attacks are a practical approach to evaluate robustness,

most of them have the problem of being task-specific, not being well generalized.

Thus, this thesis is focused only on the text classification task, including sentiment

analysis, topic classification, and natural language inference.

As baseline methods for adversarial attacks, we choose TextFooler [24] and BAE

[14]. Those are compared with the proposed method from a qualitative perspective.

In addition, an efficiency assessment is carried out to measure the execution time.

3.2.1 Attack category

There are exploding combinations of the categories listed in Section 2.2.3 into

which our proposed attack method can fall into. As a design choice, we defined the

category of the attack in which we want to conduct our research.

Mainstream work has focused on word-level perturbation because of the large

search space of substitution words and the hardness to maintain sentence semantics.

Word-level methods usually maintain imperceptibility better than other attacks, so

we also explored this category of attacks.

Differently from the baseline methods (TextFooler and BAE), our proposal

attempt to generate adversarial examples in a white-box setting, which means that

the attacker has access to the target model. This is a more realistic scenario, since

the goal of the attacker is to craft adversaries with the purpose of enhancing the

robustness of the target model. Thus, it has full access to the model and can exploit

it to generate the perturbations.

The attack strategy and the adversarial goal are the same as the baselines,

respectively importance-based and non-targeted attack.

3.3 Proposed solution

TextFooler and BERT-Attack suffer respectively from a lack of context and

semantic similarity. We tried to combine their strengths in a novel method called

SynBA (contextualized Synonym-Based adversarial Attack). The main idea is to

generate a set of synonyms for each word in the sentence, and then select the best

32 CHAPTER 3. METHODOLOGY

synonym for each word based on the context and semantic similarity.

3.3.1 Intuition

In order to achieve semantic-consistent adversaries, we need to consider the

cosine similarity between word embeddings or exploit a synonym dictionary. While

the synonyms retrieved from a thesaurus like WordNet are often somewhat related

to the original word, the relationship is often the wrong one for the given context.

Conversely, BERT has the potential to generate more fluent substitutions for an

input text.

Our intuition is that the ranked list of candidates for word replacement is

obtained from the so called SynBA score, a weighted function summing up three

scores:

• MLM score - the confidence of the candidate obtained by MLM (BERT)

• Thesaurus score - a score assigned to synonyms, hyponyms, and hypernyms

of the original word in WordNet

• Word embedding score - the cosine similarity between the original word

and the candidate

Combining these three scores, we can obtain a ranked list of candidates that

results in a more contextualized and semantically consistent adversary.

3.3.2 SynBA components

SynBA has been implemented using TextAttack, a Python framework for

implementing adversarial attacks in NLP (refer to section 2.4 for more details).

Following the framework structure, we decomposed our attack method into four

components: a goal function, a set of constraints, a transformation, and a search

method.

We reused some of the pre-existing components in TextAttack, such as the

UntargetedClassification goal function, the GreedyWordSwapWIR search method

and the constraints. The innovative part of SynBA is the WordSwapMultimodal

transformation, implementing the SynBA score mechanism. Table 3.2 summarizes

the differences between SynBA and the two baselines.

3.3. PROPOSED SOLUTION 33

Components TextFooler BAE SynBA

Search Method Deletion-based Deletion-based Gradient-based

for Ranking Words Word Importance Word Importance Word Importance

Transformation Word Embedding BERT MLM SynBA score

POS POS POS

Constraints USE USE Sentence-BERT

Word Embedding Distance Word Embedding Distance

Max Modification Rate

Table 3.2: Comparing SynBA components with TextFooler and BAE

3.3.2.1 Search Method

The search method is responsible for going through the search space of possible

perturbations and finding a sequence of transformations that produce a successful

adversarial example.

Greedy algorithms with word importance ranking are linear concerning input

length, with a complexity of O(W ∗ T), where W indicates the number of words in

the input, T is the maximum number of transformation options for a given input

[53].

So in SynBA we use the GreedyWordSwapWIR search method, which is a greedy

search method that iteratively applies the transformation to the input text, and

selects the best candidate for each word based on the Word Importance Ranking

(WIR) score. Words of the given input are ranked according to the importance

function. Then, in order of descending importance, each word is substituted with

the best candidate given by the transformation that maximizes the scoring function

until the goal is achieved, or all words have been perturbed.

The WIR is gradient-based, which means that it is able to rank the words in

the input text exploiting the gradient of the loss function with respect to each token.

It is the same search method used by the attack component in A2T (see section

2.3.2). Yoo et al. [53] showed that the gradient-ordering method is the fastest

search method and provides a competitive attack success rate when compared to

the deletion-based method.

3.3.2.2 Transformation

To enforce semantic preservation, we designed the WordSwapMultimodal trans-

formation function, which is not provided by TextAttack. It computes a set of k

perturbations given a word in the input text selected by the search method, where k

34 CHAPTER 3. METHODOLOGY

is the number of candidates to be generated.

The transformation function is based on the SynBA score, which is described

in Figure 3.2. It is calculated for each word in the vocabulary and then they are

ranked in descending order. Tree components are used to compute the SynBA score:

the MLM score, the thesaurus score, and the word embedding score.

The MLM score is the confidence of the candidate obtained by bert-base-uncased4

MLM masking the word that we want to perturb. Since confidence is a probability

value, we need to normalize it in order to have each component magnitude in the

same range [0, 1]. So the vector output of the MLM is rescaled using a min-max

scaling:

x′ =
x−min(x)

max(x)−min(x)
(3.1)

The thesaurus score makes use of WordNet, a lexical database for the English

language. Each word in the vocabulary is associated with a score depending on the

relation with the original word:

• synonym - the score is equal to 1

• hyponym - the score is equal to 0.5

• hypernym - the score is equal to 0.5

• antonym - the score is equal to -100 (to push the antonym out of the top k

candidates)

If the candidate is not in the WordNet synset, the score is equal to 0.

The word embedding score is the cosine similarity between the original word and

the candidate. We used counter-fitting GloVe vectors [36] exploiting the property of

antonym repeal and synonym attraction. This score falls already in the range [0, 1],

so it does not need to be normalized.

The vocabulary of the MLM is likely different from the one of WordNet and

GloVe, so we consider the union of the three vocabularies. Then the three scores are

combined using a weighted sum, where the weights λ1, λ2, λ3 are hyperparameters

that can be tuned.

Reference words in the original text that are numbers, non-alphabetical, stop

words or one-character words are not perturbed, since they could easily influence

the meaning of the sentence (e.g. in a movie review, if we alter the number of stars

from 5 to 1, the polarity of the review changes). Meanwhile, candidates that are

subwords, punctuations or contain multiple words are discarded.
4https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased

3.3. PROPOSED SOLUTION 35

Figure 3.2: SynBA score

Before replacing each candidate with the reference word in the input text,

we recover the original capitalization of the word, since the MLM and the word

embedding models are case insensitive.

3.3.2.3 Constraints

Constraints are used to avoid the generation of adversarial examples that are

too different from the original input text. Those perturbations that do not satisfy

all constraints are discarded.

We reused the following constraints, which are already implemented in the

framework:

• PartOfSpeech - constraints perturbations to only swap words with the same

part of speech. It uses the NLTK universal part-of-speech tagger;

• WordEmbeddingDistance - throws away perturbations for which the distance

between the original word and the candidate is lower than a threshold t = 0.6;

• MaxModificationRate - limits the number of words that can be perturbed in

the input text to a maximum percentage p = 0.2%. Since text length can vary

a lot between samples, and a p modification limit might not make sense for

very short text, it is guaranteed that at least 4 words can be perturbed;

• BERT - checks whether the Semantic Textual Similarity (STS) between the

original and the perturbed text is higher than a threshold t = 0.7. The

sentence embeddings are computed using a Sentence-BERT [44] pre-trained

model. In particular, we used the stsb-mpnet-base-v25 model, which is first

trained on NLI data, and then we fine-tuned them on the STS benchmark

5https://huggingface.co/sentence-transformers/stsb-mpnet-base-v2

https://huggingface.co/sentence-transformers/stsb-mpnet-base-v2

36 CHAPTER 3. METHODOLOGY

dataset. This generates sentence embeddings that are especially suitable to

measure the semantic similarity between sentence pairs. It has a higher STSb

performance score (88.57) compared to USE (74.92). This performance metric

is the Spearman rank correlation ρ between the cosine similarity of sentence

representations and the gold labels for various STS tasks.

3.3.2.4 Goal Function

The goal function in SynBA is UntargetedClassification, which attempts

to minimize the score of the correct label until it is no longer the predicted label.

The attack ends when the predicted label of the perturbed text is different from the

original one. Otherwise, a transformation is performed on the next most important

word, until all words are perturbed.

The goal function result status can be:

• Succeded - the attack was successful and the predicted label is different from

the original one;

• Failed - the attack method was not able to find a perturbation that fooled

the model;

• Skipped - the ground truth label is different from the predicted one

3.4 Evaluation metrics

Since our objective is to evaluate the quality of the adversarial examples crafted

by SynBA, TextFooler and BAE, we need to define some sets of metrics that can be

used to compare the effectiveness and efficiency of the different methods.

3.4.1 Attack metrics

The first set of metrics is used to evaluate the statistics of the attack process:

• Succeeded / Failed / Skipped: number of input samples that are respec-

tively successfully attacked, failed to be attacked, or skipped;

• Original accuracy: accuracy of the model on the original input samples;

• Accuracy under attack: accuracy of the model on the attacked input

samples;

3.4. EVALUATION METRICS 37

• Attack success rate: percentage of input samples that are successfully

attacked;

• Average perturbed word: average percentage of words that are perturbed

in the attacked input samples;

3.4.2 Quality metrics

The second set of metrics is used to evaluate the quality of the adversarial

examples generated:

• Average SBERT similarity: average semantic similarity between the original

and the attacked input samples. It uses the same model of BERT constraint

(stsb-mpnet-base-v2) to compute the sentence embeddings of the texts;

• Average original perplexity: average perplexity of the original input sam-

ples;

• Average attacked perplexity: average perplexity of the attacked input

samples;

• Attack contradiction rate: percentage of adversarial examples that results

in a contradiction between the original and the attacked input samples.

Fixing a good LM, perplexity can be used to measure the language fluency of a

text. It is defined as the inverse probability of the text, so the lower the perplexity,

the more fluent the text is. We used a pre-trained small GPT-2 [43] model to

compute the perplexity of input texts before and after the attack.

Instead, the contradiction rate makes use of an NLI model to assess whether

the original input (premise) contradicts the adversarial example (hypothesis). The

idea is that if the perturbation introduces antonyms or changes the polarity of

the sentence, a textual entailment model should be able to detect it. The lower

the rate of contradiction, the better the attack method. We used the pre-trained

cross-encoder nli-deberta-v3-base6, which takes as input a text pair and outputs

a probability distribution over the three classes: entailment, contradiction, and

neutral. It is trained on the SNLI [4] and MultiNLI [51] datasets and achieves a

high accuracy of 90.04% on the MNLI mismatched set. Only the pairs for which the

contradiction output probability is the highest are considered contradictory.

6https://huggingface.co/cross-encoder/nli-deberta-v3-base

https://huggingface.co/cross-encoder/nli-deberta-v3-base

38 CHAPTER 3. METHODOLOGY

3.4.3 Efficiency metrics

In order to evaluate the efficiency of the attack methods, we also define a set of

metrics that can be used to compare the execution time of the different methods:

• Average attack time: average time needed to craft an adversarial example;

• Average WIR time: average time needed to compute the word importance

ranking;

• Average transformation time: average time needed to perform a transfor-

mation step;

• Average constraints time: average time needed to check the constraints;

• Average query number: average number of queries to the target model used

to craft an adversarial example.

3.5 Calibration

3.5.1 Hyperparameter Tuning

In the SynBA score formula defined in 3.3.2.2, the weights λ1, λ2, λ3 are hy-

perparameters that need to be tuned. Those values are used to balance the three

components of the formula, and they should sum up to 1.

The calibration of the hyperparameters is performed by using the HypeOpt [2]

library, which is a hyperparameter optimization library for Python. TPE [3] is a

default algorithm for the HypeOpt. It uses the Bayesian approach for optimization.

At every step, it is trying to build a probabilistic model of the function and choose

the most promising parameters for the next step. Generally, this type of algorithms

works like this:

1. generate a random initial point x∗

2. calculate F (x∗)

3. using the history of trials try to build the conditional probability model P (F |x)

4. choose xi that according to P (F |x) will most probably result in better F (xi)

5. compute the real value of the F (xi)

6. repeat steps 3-5 until i > max_eval

3.5. CALIBRATION 39

Since HypeOpt doesn’t support multi-objective optimization, we have to define

a single objective function to ensure that the method performs well. So we designed

the following loss function that the optimization algorithm aims to minimize:

loss = −(avg_sbert_similarity ∗ (1− contraddiction_rate)) + penalty

where penalty = 0.35 ∗ failed_attacks

successful_attacks+ failed_attacks

(3.2)

It combines two quality metrics defined in 3.4.2 and penalizes the attacks

that frequently fail to generate adversarial examples. A particular version of the

contradiction rate metric is used, which instead of comparing the whole original

and perturbed text, it splits the text into sentences and counts as contradiction the

samples containing at least a pair of sentences that are contradictory.

The search space of the hyperparameters is defined by the combination of three

decimal values ∈ [0, 1] that sum up to 1.

The optimization algorithm performed 50 trials, attacking a fine-tuned BERT

model for sentiment analysis using 500 samples from yelp-polarity [57] dataset (which

is on purpose different from benchmark datasets used for evaluation in 4.2). The

best hyperparameters are chosen as the ones that minimize the loss function. Table

3.3 shows the ten optimal results of the optimization process.

λ1 λ2 λ3 Succ Fail Skip Contradiction SBERT (↑) Loss (↓)
(↑) (↓) (↓) rate (↓) similarity

0.284 0.107 0.608 431.0 58.0 11.0 0.501 0.915 -0.41507
0.247 0.104 0.648 431.0 58.0 11.0 0.501 0.915 -0.41507

0.488 0.463 0.047 356.0 133.0 11.0 0.441 0.908 -0.41237

0.365 0.057 0.576 429.0 60.0 11.0 0.503 0.916 -0.41230

0.238 0.215 0.545 430.0 59.0 11.0 0.505 0.915 -0.41069

0.323 0.150 0.526 431.0 58.0 11.0 0.506 0.915 -0.41049

0.376 0.116 0.507 428.0 61.0 11.0 0.505 0.916 -0.40975

0.495 0.486 0.018 356.0 133.0 11.0 0.444 0.907 -0.40909

0.487 0.480 0.032 357.0 132.0 11.0 0.445 0.907 -0.40890

0.008 0.215 0.775 399.0 90.0 11.0 0.489 0.924 -0.40774

Table 3.3: Hyperparameter tuning results for SynBA score weights

40 CHAPTER 3. METHODOLOGY

3.5.2 Transformation ranking calibration

The candidate pool range k is another hyperparameter used in the SynBA

transformation. Intuitively, increasing candidate size led to a higher attack success

rate, although, a larger k would result in less semantic similarity.

So it is not trivial to choose the best value for k. We selected an arbitrary value

of k = 30 and we computed a set of additional metrics:

• Average max rank - the maximal transformation ranking that is applied to

the input averaged over all the samples;

• Average min rank - the minimal transformation ranking that is applied to

the input averaged over all the samples;

• Average mean rank - the mean transformation rankings that are applied to

the input averaged over all the samples;

• Average std rank - the standard deviation of the transformation rankings

that are applied to the input averaged over all the samples;

• Average mean reciprocal rank - the MRR metric averaged over all the

samples.

The MRR measures how far down the ranking of the perturbed candidate is. It is

calculated as:

MRR =
1

|C|
∑
c∈C

1

rank(c)
(3.3)

where C is the candidate pool of k tokens.

Evaluating the rank metrics on a fine-tuned BERT model for sentiment analysis

using 1000 samples from yelp-polarity dataset, we obtained the following results:

• Average max rank: 23.12

• Average min rank: 3.31

• Average mean rank: 11.69

• Average std rank: 6.83

• Average mean reciprocal rank: 0.20

3.5. CALIBRATION 41

Those results evidence that there is no need to increase the candidate pool size,

since the average max rank is lower than the chosen threshold.

The final version of SynBA with all the parameters tuned is reported in Figure

3.3, highlighting the component division of the TextAttack framework.

Figure 3.3: SynBA components

Chapter 4

Experimental results

4.1 Data collection

SynBA has been evaluated under the same contradictions against TextFooler

[28] and BAE [14], two baseline attack methods that represent the state-of-the-art

in the field of text classification attacks.

4.1.1 Experimental setup

We ran our experiments on a machine running Ubuntu 20 with GeForce RTX

2070 SUPER (8 GB) GPU and a AMD Ryzen 9 3900X 12-Core processor. The

version of PyTorch used is 1.11.0 and the version of Python is 3.8.10. Performing

adversarial attacks under the same resources allows us to have a fair comparison

between the methods.

4.1.2 Datasets perturbed

The number of words in the input affects the running time and success rate for

each attack method. Indeed the more words the input has, the more time it takes to

generate the attack. On the other hand, if the input sequence is long, the attack is

more likely to succeed because there are more words to perturb.

We have chosen to use the following benchmark datasets for our experiments,

that are very well known in literature and have been used in many previous works:

• IMDB [30]: a dataset of 50,000 movie reviews from IMDB, labelled as positive

or negative. The dataset is split into 25,000 reviews for training and 25,000

reviews for testing;

• Rotten Tomatoes [38]: a dataset for binary sentiment classification containing

43

44 CHAPTER 4. EXPERIMENTAL RESULTS

containing 5,331 positive and 5,331 negative processed sentences from Rotten

Tomatoes movie reviews.

We sampled 1000 examples from each dataset, and we used them as input for

the attacks. IMDB and Rotten Tomatoes test sets obtained results in very different

numbers of words in the input. While the former has an average of 229 words

(±162) per example, the latter has an average of 19 words (±9) per example. This

distinction allows generalizing the results achieved without focusing on the property

of a specific dataset.

4.1.3 Model attacked

The target models for the attacks performed during this work are BERT-base-

uncased models provided by the Hugging Face Transformers, fine-tuned according

to the dataset used as input:

• IMDB7 for 5 epochs, reaching an accuracy of 89.08% on the eval set;

• Rotten Tomatoes8 for 10 epochs, reaching an accuracy of 87.52% on the eval

set.

4.2 Evaluation framework

In order to answer the research questions defined in section 1.3, we have designed

an evaluation framework that allows us to compare the performance of the proposed

method against the state-of-the-art in the field of text classification attacks.

4.2.1 Semantic preservation evaluation

We started evaluating the statistics of the attack processes measuring the attack

metrics. To investigate the quality of adversarial examples, we used the quality

metrics, namely the Sentence BERT similarity, the perplexity and the contradiction

rate.

Table 4.1 shows the results of the three attacks under analysis performed on

the IMDB dataset. Table 4.2 does the same for the Rotten Tomatoes dataset.

TextFooler is by far the most effective attack, since it has the highest number

of successful attacks and it reaches the lowest accuracy under attack. Whilst SynBA

7https://huggingface.co/textattack/bert-base-uncased-imdb
8https://huggingface.co/textattack/bert-base-uncased-rotten-tomatoes

https://huggingface.co/textattack/bert-base-uncased-imdb
https://huggingface.co/textattack/bert-base-uncased-rotten-tomatoes

4.2. EVALUATION FRAMEWORK 45

has a high success rate on IMDB (92.7%), it drops to 68.56% on Rotten Tomatoes,

where the attack is more challenging due to the limited amount of words. But still,

it performs better than BAE.

Moreover, SynBA effectively attack the model by perturbing just a few words

(4.95% on IMDB and 14.05% on Rotten Tomatoes), while TextFooler and BAE

generally tend to swap more words.

Regarding the quality metrics, we can clearly see that SynBA outperforms

TextFooler on both datasets. In particular, it is able to generate more fluent adver-

sarial examples, since the attack perplexity is lower than the one with TextFooler.

Although BAE has a better attack perplexity than SynBA, the latter has a signifi-

cantly higher semantic similarity on Rotten Tomatoes (0.901). The good perplexity

obtained by BAE is justified by the fact that it uses a language model to generate

candidates, which are more natural than those generated by SynBA. Nevertheless,

BAE has the drawback of generating adversarial examples inconsistent with the orig-

inal counterpart, indeed it has a significant contradiction rate (53.6% on IMDB and

16.4% on Rotten Tomatoes). Whereas SynBA successfully reduces the contradiction

rate (4.9% on IMDB, 12.3% on Rotten Tomatoes), meaning that the adversarial

samples are more likely to be consistent with the original text.

Generally speaking, those outcomes highlight that our proposed solution is able

to craft high-quality adversarial examples that are able to fool the target model,

while preserving the original semantics of the text and the fluency of the sentences.

TextFooler BAE SynBA

Successful attacks (↑) 917 608 864

Failed attacks (↓) 15 324 68

Skipped attacks (↓) 68 68 68

Original/pertuberd accuracy (↓) 93.2/1.5 93.2/32.4 93.2/6.8

Attack success rate (↑) 98.39 65.24 92.7

Avg word perturbed (↓) 8.76 4.49 4.95

Avg original/perturbed perplexity (↓) 41.48/63.0 41.78/48.4 41.5/50.74

Avg SBERT similarity (↑) 0.928 0.964 0.944

Attack contradiction rate (↓) 0.053 0.164 0.049

Table 4.1: Attack results on IMDB dataset

4.2.2 Cost assessment

For a comprehensive evaluation of the proposed method, we have also measured

the running time for each component of SynBA and compared it with the baselines.

46 CHAPTER 4. EXPERIMENTAL RESULTS

TextFooler BAE SynBA

Successful attacks (↑) 754 522 578

Failed attacks (↓) 89 321 265

Skipped attacks (↓) 157 157 157

Original/pertuberd accuracy (↓) 84.3/8.9 84.3/32.1 84.3/26.5

Attack success rate (↑) 89.44 61.92 68.56

Avg word perturbed (↓) 19.48 15.07 14.05
Avg original/perturbed perplexity (↓) 72.58/154.52 76.96/99.91 72.05/112.08

Avg SBERT similarity (↑) 0.805 0.776 0.901
Attack contradiction rate (↓) 0.196 0.536 0.123

Table 4.2: Attack results on Rotten Tomatoes dataset

Table 4.3 and 4.4 show the results of the experiments respectively on IMDB and

Rotten Tomatoes datasets.

A glance at the tables reveals that SynBA is the fastest attack, since it requires

less time to generate the adversarial examples (on average 7.7 seconds on IMDB,

1.4 seconds on Rotten Tomatoes). In particular, it takes advantage of the word

importance ranking, which is the most time-consuming component of the attack.

Indeed the gradient-based method saves us from having to make several queries to

the model for each word in the sentence. This affects also the average number of

queries to the model during the whole attack, which results in a dramatically lower

value for SynBA compared to the other two attacks.

As expected the SynBA transformation takes a little longer than the one of

TextFooler and BAE, since it computes three different pools of candidates that then

are combined together.

The only constraint that strongly impacts the runtime analysis is Sentence-

BERT, and the longer the inputs, the more time it takes to compute the semantic

similarity between the original and the perturbed example — approximately 48 ms

on IMDB and 15 ms on Rotten Tomatoes.

4.2.3 Human evaluation

Up to now, we have evaluated the proposed method in terms of semantic

similarity and language fluency using automatic metrics. We still have to accomplish

one of three utility-preserving properties described in section 3.1: human prediction

consistency.

The only way to measure this property is to ask human annotators to evaluate

the generated adversarial examples.

4.2. EVALUATION FRAMEWORK 47

TextFooler BAE SynBA

Avg attack time (↓) 16.61 23.462 7.686

Avg WIR time (↓) 3.25 3.341 0.087

Avg transformation time (↓) 0.147 0.252 0.191

Avg constraints time (↓) 0.0140 0.0217 0.0555

WordEmbeddingDistance 0.0002 0.0001

PartOfSpeech 0.0065 0.0115 0.0073

UniversalSentenceEncoder 0.0073 0.0102

BERT 0.0481

Avg num queries (↓) 604.85 352.21 191.14

Table 4.3: Runtime analysis on IMDB dataset in seconds

TextFooler BAE SynBA

Avg attack time (↓) 2.049 1.578 1.439

Avg WIR time (↓) 0.189 0.189 0.083

Avg transformation time (↓) 0.011 0.073 0.105

Avg constraints time (↓) 0.0116 0.0195 0.0226

WordEmbeddingDistance 0.0002 0.0001

PartOfSpeech 0.0057 0.0111 0.0069

UniversalSentenceEncoder 0.0058 0.0084

BERT 0.0156

Avg num queries (↓) 110.15 56.77 45.27

Table 4.4: Runtime analysis on Rotten Tomatoes dataset in seconds

We sampled 100 successful adversarial examples from the results obtained with

TextFooler, BAE and SynBA on the Rotten Tomatoes dataset. We ask three human

annotators to evaluate each set of 100 pairs (original and perturbed sample). The

task is to decide if the perturbed sample is consistent with the original one, meaning

that the label predicted by human judges on the input and the adversary should be

the same. Language fluency and grammatical or spelling errors are not considered

in this task.

During the survey, participants were asked to rate the sample pairs with one of

the following three annotation labels:

• Consistent: the perturbed sample is consistent with the original one.

• Inconsistent: the perturbed sample is not consistent with the original one.

• Unclear: the perturbed sample is not clear enough to be evaluated.

A Jupyter notebook has been developed to collect the annotations. In particular,

48 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.1: Example of the interface used by human judges to evaluate the consistency of
the adversarial examples

we use pigeon9, a python library to easily annotate each adversarial sample one by

one according to the consistency perceived. An example of the interface used by

human judges is shown in Figure 4.1.

We averaged the counts of the adversarial samples based on the labels with

which they were annotated. Table 4.5 presents the results of the survey. The human

judgement on BAE confirms the outcome of the contradiction rate metric (see Table

4.2), since more than half of the adversarial examples are inconsistent with the

original sample or unclear. TextFooler instead generates a considerable amount of

unclear adversaries (about 17.6%), meaning that the perturbations frequently end

up in sentences that do not make sense. SynBA seems to be the best attack in terms

of human prediction consistency, since it generates only roughly 5% of inconsistent

and 9.3% of unclear adversarial examples.

To give readers a more detailed insight into the human evaluation, Tables 4.6

and 4.7 report some of the adversarial examples annotated as “inconsistent” and

“unclear” by all three human judges.

Label TextFooler BAE SynBA

Consistent 70.666 49.333 85.666

Inconsistent 11.666 40.666 5.0

Unclear 17.666 10.0 9.333

Table 4.5: Adversarial example counting for labels annotated by human evaluators

9https://github.com/agermanidis/pigeon

https://github.com/agermanidis/pigeon

4.3. ABLATION STUDY 49

Method Original Perturbed

TextFooler POS (99.84%): charlotte sometimes is

a gem. it’s always enthralling.

NEG (99.84%): charlotte rarely is a

gem. it’s stubbornly puzzling.

BAE POS (99.34%): the most ingenious film

comedy since being john malkovich

NEG (99.94%): the most difficult film

comedy since being john malkovich

SynBA POS (99.93%): intriguing and stylish NEG (99.66%): puzzling and stylish

Table 4.6: Some adversarial examples annotated as “inconsistent” by human judges

Method Original Perturbed

TextFooler POS (99.95%): lan yu is a genuine love

story , full of traditional layers of awak-

ening and ripening and separation

NEG (76.99%): lan woo is a genuine

affectionate conte , full of routine grades

of causing and mature and seperate

BAE POS (99.74%): the story is smart and

entirely charming in intent and execu-

tion

NEG (99.88%): the guy is drunk and

entirely charming in disguise and exe-

cution

SynBA NEG (99.87%): even fans of ismail mer-

chant’s work , i suspect , would have a

hard time sitting through this one

POS (83.9%): even amateurs of ismail

merchant’s work , i suspect , would have

a intense time hearing through this one

Table 4.7: Some adversarial examples annotated as “unclear” by human judges

4.3 Ablation study

Finally, an ablation study has been conducted to understand how much each

component of the SynBA score contributes to the overall performance. We computed

the attack and quality metrics on three different versions of SynBA, each one with

one of the hyperparameter weights λn set to zero. The dataset used for the attack

is Rotten Tomatoes and the target model is BERT fine-tuned on the same dataset.

The results are reported in Table 4.8.

The thesaurus-score, denoted by the column λ2 = 0, is the least significant

component of the SynBA score. In fact, the attack success rate obtained without it

(68.92%) is even higher than the one obtained with the final SynBA score (68.56%).

But the semantic similarity is slightly higher when the thesaurus-score is included

in the SynBA score, as shown by the quality metrics.

The word-embedding-score, represented in the fourth column λ3 = 0, seems to be

the most effective. Indeed without it, all the metrics are significantly lower, especially

the number of successful attacks which drops to 378 over 1000 total examples.

The second column λ1 = 0 represents the case in which the MLM-score is not

used, and the results are slightly worse than the ones obtained with the final version

50 CHAPTER 4. EXPERIMENTAL RESULTS

of the proposed attack.

Those results confirm the importance of the three components of the SynBA

score, and that their combination is the best way to generate high-quality adversarial

examples.

λ1 = 0 λ2 = 0 λ3 = 0 SynBA

Successful attacks (↑) 570 581 378 578

Failed attacks (↓) 273 262 465 265

Skipped attacks (↓) 157 157 157 157

Original/pertuberd accuracy (↓) 84.3/27.3 84.3/26.2 84.3/46.5 84.3/26.5

Attack success rate (↑) 67.62 68.92 44.84 68.56

Avg word perturbed (↓) 13.86 14.12 14.32 14.05

Avg original/perturbed perplexity (↓) 72.58/113.04 76.96/113.52 72.05/115.32 72.05/115.32

Avg SBERT similarity (↑) 0.9 0.9 0.891 0.901
Attack contradiction rate (↓) 0.119 0.12 0.095 0.123

Table 4.8: Ablation study results on Rotten Tomatoes dataset

Chapter 5

Final discussions

5.1 Summary of findings

Overall, we study adversarial attacks against state-of-the-art text classification

models. In this dissertation, we propose a high-quality and effective method, called

SynBA, to generate adversarial samples using a novel word transformation mechanism.

It attempts to propose word perturbations that are semantically correlated to the

original word and fit into the context of the sentence.

Experiment results demonstrate the strength and effectiveness of our proposed

system in generating untargeted adversarial texts. It achieves a high semantic

similarity score while maintaining a minimum perturbation and a low contradiction

rate.

Using a human evaluation, we have shown that most perturbations introduced

through state-of-the-art adversarial attacks do not preserve semantics. This is

contrary to what is generally claimed in papers introducing these attacks. We

believe the main reason for this discrepancy is that researchers working on attacks

have not paid enough attention to preserving semantics because attacks with new

state-of-the-art success rates are easier to publish. Moreover, annotations are useful

to validate that most of the time the generated adversarial texts by SynBA are

consistent in meaning to the original texts.

The proposed contradiction rate metric turns out to be correlated with human

judgement, so it is a good indicator of human prediction consistency and allows it

to be assessed automatically without the need for annotations requiring significant

human effort.

51

52 CHAPTER 5. FINAL DISCUSSIONS

5.1.1 Limitations

It might be possible that all the word candidates with a high thesaurus and

word embedding score are rejected by the constraints, so the perturbed words are

defined only by candidates suggested from the masked language model. In this case,

we end up again in the same situation of BERT-based attacks, where the perturbed

words could be inconsistent or unrelated to the original counterpart.

Furthermore, we assessed the proposed method only on movie reviews dataset,

so it is not clear if it still performs well on other datasets.

And besides, the contradiction rate metric seems to be promising in the context

of sentiment analysis, but it could be less informative for other classification tasks.

5.2 Future developments

A promising direction for future work is to extend SynBA to other NLP tasks

such as machine translation, question answering, and text summarization. In this

dissertation we mainly focused on sentiment analysis, but the proposed method can

be easily adapted to work with different scenarios.

Another interesting improvement would be to add a new constraint which

penalizes the use of words that lead to a contradiction with the original text.

Additionally, enhancing language models to generate more semantically related

perturbations can be one possible solution to perfect SynBA in the future.

5.3 Conclusions

Our hope is that this work encourages readers to think more carefully about

appropriate perturbations to text which do not change meaning of sentences. We

believe that the proposed method is a step forward in the direction of generating

adversarial texts that are semantically consistent with the original texts.

Having better adversarial attacks is important for the development of robust

NLP systems. The awareness that NLP models are far from perfect should push

towards the intensive study of these Adversarial Machine Learning techniques to

improve security in this field.

Glossary

A2T Attack to Training is a method to generate adversarial examples. It consists

in training a model while generate adversarial examples. 55

Attack success rate The attack success rate is the percentage of adversarial ex-

amples that are not correctly classified by the victim model. 21, 53

Bag-of-words The bag-of-words model is a simplifying representation used in

natural language processing and information retrieval. In this model, a text

is represented as the bag of its words, disregarding grammar and even word

order but keeping multiplicity. 7, 53

BERT BERT is a transformer-based machine learning technique, which obtains

state-of-the-art results on a wide array of Natural Language Processing (NLP)

tasks. BERT was created and published in 2018 by Jacob Devlin and his

colleagues from Google. BERT is conceptually simple and empirically powerful.

It obtains new state-of-the-art results on eleven natural language processing

tasks. 55

CNN Convolutional Neural Networks are a class of deep neural networks, most

commonly applied to analyzing visual imagery. They are also known as

shift invariant or space invariant artificial neural networks, based on their

shared-weights architecture and translation invariance characteristics. They

have applications in image and video recognition, recommender systems, image

classification, medical image analysis, natural language processing, and financial

time series. 55

CV Computer Vision is the field of study that deals with how computers can gain

high-level understanding from digital images or videos. From the perspective

of engineering, it seeks to automate tasks that the human visual system can

do. 55

53

54 Glossary

FSGM Fast Sign Gradient Method is a method to generate adversarial examples.

It consists in adding a small perturbation to the input of a model. The

perturbation is computed by taking the sign of the gradient of the loss function

with respect to the input. 55

GA Genetic algorithms are search heuristics that mimic the process of natural

selection. This algorithm repeatedly modifies a population of individual

solutions. It does so by using operators such as selection, crossover, and

mutation to create new generations of individuals. 55

GAN Generative Adversarial Networks are a class of machine learning systems

invented by Ian Goodfellow in 2014. Two neural networks contest with each

other in a game. Given a training set, this technique learns to generate new

data with the same statistics as the training set. 55

Language model A language model is a probability distribution over sequences

of words. Given such a sequence, say of length m, it assigns a probability

P (w1 : w2 : ... : wm) to the whole sequence. 8, 53

Lexicon A lexicon is a collection of words along with associated information such

as part of speech and sense definitions. 6, 53

LSTM Long Short-Term Memory is a type of recurrent neural network architecture

used in the field of deep learning. Unlike standard feedforward neural networks,

LSTM has feedback connections. It can not only process single data points

(such as images), but also entire sequences of data (such as speech or video).

For example, LSTM is applicable to tasks such as unsegmented, connected

handwriting recognition or speech recognition. 55

ML Machine learning is the study of computer algorithms that improve auto-

matically through experience. It is seen as a subset of artificial intelligence.

55

MLM Masked language model is a pre-training technique for NLP. It consists in

masking some words in a sentence and then train a model to predict the

masked words. 55

MRR Mean Reciprocal Rank is a measure to evaluate systems that return a ranked

list of answers to queries. 55

Glossary 55

NLI Natural Language Inference (NLI) is a text classification task, where given

a premise sentence and a hypothesis sentence, the model must predict the

relationship between them. The relationship can be entailment, contradiction,

or neutral. 55

NLP Natural Language Processing is an important field of Artificial Intelligence,

linguistics and computer science. It ’s about the interactions between computers

and human language, in particular, how to program computers to process and

analyze large amounts of natural language data. 55

POS Part of Speech is a category of words or, more generally, of lexical items which

have similar grammatical properties. 55

PSO Particle Swarm Optimization is a computational method that optimizes a

problem by iteratively trying to improve a candidate solution with regard

to a given measure of quality. It solves a problem by having a population

of candidate solutions, here dubbed particles, and moving these particles

around in the search-space according to simple mathematical formula over the

particle’s position and velocity. 55

RL Reinforcement learning is an area of machine learning concerned with how

software agents ought to take actions in an environment in order to maximize

the notion of cumulative reward. 55

RNN Recurrent Neural Networks are a class of artificial neural networks where

connections between nodes form a directed graph along a temporal sequence.

This allows it to exhibit temporal dynamic behavior. Derived from feedforward

neural networks, RNNs can use their internal state (memory) to process

variable length sequences of inputs. This makes them applicable to tasks such

as unsegmented, connected handwriting recognition or speech recognition. 55

Seq2seq Seq2seq is a model that maps a sequence of symbols to another sequence

of symbols. 56

SST The Stanford Sentiment Treebank is a corpus of sentences labeled with fine-

grained sentiment labels. It is used to train models for sentiment analysis.

56

STS Semantic Textual Similarity is a task in natural language processing to measure

the similarity between two sentences. 56

56 Glossary

TF-IDF TF-IDF is a numerical statistic that is intended to reflect how important a

word is to a document in a collection or corpus. It is often used as a weighting

factor in information retrieval and text mining. 56

Transformer The Transformer is a model architecture for NLP. It is a neural

network that uses attention mechanisms to learn contextual relations between

words in a sentence. 9, 53

USE The Universal Sentence Encoder encodes text into high-dimensional vectors

that can be used for text classification, semantic similarity, clustering and

other natural language tasks. 56

WIR Word Importance Ranking is a method to generate adversarial examples.

It consists in ranking the words of a sentence by their importance and then

removing the least important words. 56

Word Example of a term in the glossary. 3, 53

Word embedding Word embeddings are a type of word representation that allows

words with similar meaning to have a similar representation. 7, 53

Acronyms

A2T Attack to Training. 25

BERT Bidirectional Encoder Representations from Transformers. 9

CNN Convolutional Neural Network. 10

CV Computer Vision. 14

FSGM Fast Sign Gradient Method. 14

GA Genetic Algorithm. 18

GAN Generative Adversarial Network. 14

LSTM Long Short-Term Memory. 10

ML Machine Learning. 1

MLM Masked language model. 8

MRR Mean Reciprocal Rank. 40

NLI Natural Language Inference. 11

NLP Natural Language Processing. 5

POS Part of Speech. 23

PSO Particle Swarm Optimization. 18

RL Reinforcement Learning. 18

RNN Recurrent Neural Network. 11

57

58 Acronyms

seq2seq Sequence to Sequence. 11

SST Stanford Sentiment Treebank. 20

STS Semantic Textual Similarity. 35

TF-IDF Term Frequency-Inverse Document Frequency. 7

USE Universal Sentence Encoder. 23

WIR Word Importance Ranking. 33

Bibliography

[1] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. “A Neural Probabilistic

Language Model.” In: (2000). Ed. by Todd K. Leen, Thomas G. Dietterich,

and Volker Tresp, pp. 932–938. url: http://dblp.uni-trier.de/db/conf/

nips/nips2000.html#BengioDV00 (cit. on p. 8).

[2] James Bergstra, Daniel Yamins, and David D. Cox. “Making a Science of

Model Search: Hyperparameter Optimization in Hundreds of Dimensions for

Vision Architectures.” In: JMLR Workshop and Conference Proceedings 28

(2013), pp. 115–123. url: http://dblp.uni-trier.de/db/conf/icml/

icml2013.html#BergstraYC13 (cit. on p. 38).

[3] James Bergstra et al. “Algorithms for Hyper-parameter Optimization”. In:

NIPS’11 (2011), pp. 2546–2554. url: http://dl.acm.org/citation.cfm?

id=2986459.2986743 (cit. on p. 38).

[4] Samuel R. Bowman et al. “A large annotated corpus for learning natural

language inference.” In: CoRR abs/1508.05326 (2015). url: http://dblp.uni-

trier.de/db/journals/corr/corr1508.html#BowmanAPM15 (cit. on p. 37).

[5] Nicholas Carlini and David A. Wagner. “Towards Evaluating the Robustness of

Neural Networks.” In: CoRR abs/1608.04644 (2016). url: http://dblp.uni-

trier.de/db/journals/corr/corr1608.html#CarliniW16a (cit. on p. 14).

[6] Daniel Cer et al. “Universal Sentence Encoder.” In: CoRR abs/1803.11175

(2018). url: https://arxiv.org/pdf/1803.11175.pdf (cit. on p. 23).

[7] Anirban Chakraborty et al. “Adversarial Attacks and Defences: A Survey.”

In: CoRR abs/1810.00069 (2018). url: http://dblp.uni-trier.de/db/

journals/corr/corr1810.html#abs-1810-00069 (cit. on pp. 12, 16).

59

http://dblp.uni-trier.de/db/conf/nips/nips2000.html#BengioDV00
http://dblp.uni-trier.de/db/conf/nips/nips2000.html#BengioDV00
http://dblp.uni-trier.de/db/conf/icml/icml2013.html#BergstraYC13
http://dblp.uni-trier.de/db/conf/icml/icml2013.html#BergstraYC13
http://dl.acm.org/citation.cfm?id=2986459.2986743
http://dl.acm.org/citation.cfm?id=2986459.2986743
http://dblp.uni-trier.de/db/journals/corr/corr1508.html#BowmanAPM15
http://dblp.uni-trier.de/db/journals/corr/corr1508.html#BowmanAPM15
http://dblp.uni-trier.de/db/journals/corr/corr1608.html#CarliniW16a
http://dblp.uni-trier.de/db/journals/corr/corr1608.html#CarliniW16a
https://arxiv.org/pdf/1803.11175.pdf
http://dblp.uni-trier.de/db/journals/corr/corr1810.html#abs-1810-00069
http://dblp.uni-trier.de/db/journals/corr/corr1810.html#abs-1810-00069

60 Bibliography

[8] K. R. Chowdhary. “Natural Language Processing”. In: (2020), pp. 603–649. doi:

10.1007/978-81-322-3972-7_19. url: https://doi.org/10.1007/978-

81-322-3972-7_19 (cit. on p. 6).

[9] Mathieu Cliche. BBtwtratSemEval−2017Task4 : TwitterSentimentAnalysiswithCNNsandLSTMs.

2017. doi: 10.48550/ARXIV.1704.06125. url: https://arxiv.org/abs/

1704.06125 (cit. on p. 10).

[10] Ronald A. Cole et al., eds. Survey of the State of the Art in Human Language

Technology. Oregon Graduate Institute: CSLU, 1996. url: http://www.cse.

ogi.edu/CSLU/HLTsurvey/ (cit. on p. 5).

[11] Marcus Z. Comiter. “Attacking Artificial Intelligence AI ’ s Security Vulner-

ability and What Policymakers Can Do About It”. In: 2019 (cit. on pp. 12,

13).

[12] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding”. In: (2018). cite arxiv:1810.04805. url: http:

//arxiv.org/abs/1810.04805 (cit. on p. 9).

[13] Ji Gao et al. “Black-box Generation of Adversarial Text Sequences to Evade

Deep Learning Classifiers.” In: CoRR abs/1801.04354 (2018). url: http:

//dblp.uni-trier.de/db/journals/corr/corr1801.html#abs-1801-

04354 (cit. on p. 19).

[14] Siddhant Garg and Goutham Ramakrishnan. “BAE: BERT-based Adversar-

ial Examples for Text Classification.” In: (2020). Ed. by Bonnie Webber et

al., pp. 6174–6181. url: http://dblp.uni-trier.de/db/conf/emnlp/

emnlp2020-1.html#GargR20 (cit. on pp. 2, 24, 25, 31, 43).

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

Harnessing Adversarial Examples. 2014. url: http://arxiv.org/abs/1412.

6572 (cit. on pp. 13, 14, 24).

[16] Shreya Goyal et al. “A survey in Adversarial Defences and Robustness in NLP”.

In: (2022). doi: 10.48550/ARXIV.2203.06414. url: https://arxiv.org/

abs/2203.06414 (cit. on p. 24).

[17] Ralph Grishman. Computational linguistics : an introduction. Cambridge,

Mass.: Cambridge University Press, 1986 (cit. on p. 5).

https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.1007/978-81-322-3972-7_19
https://doi.org/10.48550/ARXIV.1704.06125
https://arxiv.org/abs/1704.06125
https://arxiv.org/abs/1704.06125
http://www.cse.ogi.edu/CSLU/HLTsurvey/
http://www.cse.ogi.edu/CSLU/HLTsurvey/
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://dblp.uni-trier.de/db/journals/corr/corr1801.html#abs-1801-04354
http://dblp.uni-trier.de/db/journals/corr/corr1801.html#abs-1801-04354
http://dblp.uni-trier.de/db/journals/corr/corr1801.html#abs-1801-04354
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2020-1.html#GargR20
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2020-1.html#GargR20
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.48550/ARXIV.2203.06414
https://arxiv.org/abs/2203.06414
https://arxiv.org/abs/2203.06414

Bibliography 61

[18] Louise Guthrie et al. “The role of lexicons in natural language processing”. In:

Commun. ACM 39.1 (1996), pp. 63–72. issn: 0001-0782 (cit. on p. 6).

[19] Xu Han et al. “Text Adversarial Attacks and Defenses: Issues, Taxonomy, and

Perspectives”. In: Sec. and Commun. Netw. 2022 (Jan. 2022). issn: 1939-0114.

doi: 10.1155/2022/6458488. url: https://doi.org/10.1155/2022/

6458488 (cit. on p. 29).

[20] Jens Hauser et al. BERT is Robust! A Case Against Synonym-Based Adversarial

Examples in Text Classification. 2021. doi: 10.48550/ARXIV.2109.07403.

url: https://arxiv.org/abs/2109.07403 (cit. on p. 23).

[21] Felix Hill, Roi Reichart, and Anna Korhonen. SimLex-999: Evaluating Semantic

Models with (Genuine) Similarity Estimation. cite arxiv:1408.3456. 2014. url:

http://arxiv.org/abs/1408.3456 (cit. on p. 23).

[22] Aminul Huq and Mst. Tasnim Pervin. “Adversarial Attacks and Defense

on Texts: A Survey”. In: (2020). doi: 10.48550/ARXIV.2005.14108. url:

https://arxiv.org/abs/2005.14108 (cit. on p. 18).

[23] Mohit Iyyer et al. “Adversarial Example Generation with Syntactically Con-

trolled Paraphrase Networks.” In: (2018). Ed. by Marilyn A. Walker, Heng Ji,

and Amanda Stent, pp. 1875–1885. url: http://dblp.uni-trier.de/db/

conf/naacl/naacl2018-1.html#IyyerWGZ18 (cit. on p. 19).

[24] Di Jin et al. “Is BERT Really Robust? Natural Language Attack on Text

Classification and Entailment.” In: CoRR abs/1907.11932 (2019). url: http:

//dblp.uni-trier.de/db/journals/corr/corr1907.html#abs-1907-

11932 (cit. on pp. 2, 17, 19, 22, 25, 29, 31).

[25] Dan Jurafsky and James H. Martin. Speech and language processing : an

introduction to natural language processing, computational linguistics, and

speech recognition. Upper Saddle River, N.J.: Pearson Prentice Hall, 2009. url:

http://www.amazon.com/Speech-Language-Processing-2nd-Edition/

dp/0131873210/ref=pd_bxgy_b_img_y (cit. on p. 10).

[26] Zhenzhong Lan et al. “ALBERT: A Lite BERT for Self-supervised Learning

of Language Representations”. In: (2019). cite arxiv:1909.11942. url: http:

//arxiv.org/abs/1909.11942 (cit. on p. 9).

https://doi.org/10.1155/2022/6458488
https://doi.org/10.1155/2022/6458488
https://doi.org/10.1155/2022/6458488
https://doi.org/10.48550/ARXIV.2109.07403
https://arxiv.org/abs/2109.07403
http://arxiv.org/abs/1408.3456
https://doi.org/10.48550/ARXIV.2005.14108
https://arxiv.org/abs/2005.14108
http://dblp.uni-trier.de/db/conf/naacl/naacl2018-1.html#IyyerWGZ18
http://dblp.uni-trier.de/db/conf/naacl/naacl2018-1.html#IyyerWGZ18
http://dblp.uni-trier.de/db/journals/corr/corr1907.html#abs-1907-11932
http://dblp.uni-trier.de/db/journals/corr/corr1907.html#abs-1907-11932
http://dblp.uni-trier.de/db/journals/corr/corr1907.html#abs-1907-11932
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942

62 Bibliography

[27] Jinfeng Li et al. “TextBugger: Generating Adversarial Text Against Real-world

Applications.” In: (2019). url: http://dblp.uni-trier.de/db/conf/ndss/

ndss2019.html#LiJDLW19 (cit. on p. 19).

[28] Linyang Li et al. “BERT-ATTACK: Adversarial Attack Against BERT Using

BERT.” In: (2020). Ed. by Bonnie Webber et al., pp. 6193–6202. url: http:

//dblp.uni- trier.de/db/conf/emnlp/emnlp2020- 1.html#LiMGXQ20

(cit. on pp. 19, 23, 43).

[29] Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining

Approach”. In: (2019) (cit. on p. 9).

[30] Andrew L. Maas et al. “Learning Word Vectors for Sentiment Analysis”. In:

(June 2011), pp. 142–150. url: http://www.aclweb.org/anthology/P11-

1015 (cit. on pp. 2, 43).

[31] Christopher D. Manning and Bill MacCartney. “Natural language inference”.

In: 2009 (cit. on p. 11).

[32] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector

Space”. In: (2013). cite arxiv:1301.3781. url: http://arxiv.org/abs/1301.

3781 (cit. on p. 8).

[33] George A. Miller. “WordNet: A lexical database for English”. In: Communi-

cations of the ACM 38.1 (1995), pp. 39–41. doi: 10.1145/219717.219748

(cit. on p. 6).

[34] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “Deep-

Fool: a simple and accurate method to fool deep neural networks.” In: CoRR

abs/1511.04599 (2015). url: http://dblp.uni-trier.de/db/journals/

corr/corr1511.html#Moosavi-Dezfooli15 (cit. on p. 14).

[35] John X. Morris et al. “TextAttack: A Framework for Adversarial Attacks

in Natural Language Processing.” In: CoRR abs/2005.05909 (2020). url:

http://dblp.uni-trier.de/db/journals/corr/corr2005.html#abs-

2005-05909 (cit. on pp. 26, 27).

[36] Nikola Mrksic et al. “Counter-fitting Word Vectors to Linguistic Constraints.”

In: (2016). Ed. by Kevin Knight, Ani Nenkova, and Owen Rambow, pp. 142–

148. url: http://dblp.uni-trier.de/db/conf/naacl/naacl2016.html#

MrksicSTGRSVWY16 (cit. on pp. 23, 34).

http://dblp.uni-trier.de/db/conf/ndss/ndss2019.html#LiJDLW19
http://dblp.uni-trier.de/db/conf/ndss/ndss2019.html#LiJDLW19
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2020-1.html#LiMGXQ20
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2020-1.html#LiMGXQ20
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/219717.219748
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#Moosavi-Dezfooli15
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#Moosavi-Dezfooli15
http://dblp.uni-trier.de/db/journals/corr/corr2005.html#abs-2005-05909
http://dblp.uni-trier.de/db/journals/corr/corr2005.html#abs-2005-05909
http://dblp.uni-trier.de/db/conf/naacl/naacl2016.html#MrksicSTGRSVWY16
http://dblp.uni-trier.de/db/conf/naacl/naacl2016.html#MrksicSTGRSVWY16

Bibliography 63

[37] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. “A Survey of

the Usages of Deep Learning in Natural Language Processing.” In: CoRR

abs/1807.10854 (2018). url: http://dblp.uni-trier.de/db/journals/

corr/corr1807.html#abs-1807-10854 (cit. on p. 10).

[38] Bo Pang and Lillian Lee. “Seeing Stars: Exploiting Class Relationships for

Sentiment Categorization with Respect to Rating Scales”. In: (June 2005),

pp. 115–124. url: http://www.aclweb.org/anthology/P/P05/P05-1015

(cit. on pp. 2, 43).

[39] Nicolas Papernot et al. “Crafting Adversarial Input Sequences for Recurrent

Neural Networks.” In: CoRR abs/1604.08275 (2016). url: http://dblp.uni-

trier.de/db/journals/corr/corr1604.html#PapernotMSH16 (cit. on

p. 14).

[40] Nicolas Papernot et al. “The Limitations of Deep Learning in Adversarial

Settings.” In: CoRR abs/1511.07528 (2015). url: http://dblp.uni-trier.

de/db/journals/corr/corr1511.html#PapernotMJFCS15 (cit. on p. 14).

[41] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove:

Global vectors for word representation”. In: (2014), pp. 1532–1543 (cit. on

p. 8).

[42] Shilin Qiu et al. “Adversarial attack and defense technologies in natural

language processing: A survey”. In: Neurocomputing 492 (2022), pp. 278–

307. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2022.

04.020. url: https://www.sciencedirect.com/science/article/pii/

S0925231222003861 (cit. on pp. 15–17, 21, 22).

[43] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In:

(2018). url: https://d4mucfpksywv.cloudfront.net/better-language-

models/language-models.pdf (cit. on p. 37).

[44] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks”. In: (2019). cite arxiv:1908.10084Comment:

Published at EMNLP 2019. url: http://arxiv.org/abs/1908.10084 (cit.

on p. 35).

[45] Shuhuai Ren et al. “Generating Natural Language Adversarial Examples

through Probability Weighted Word Saliency.” In: (2019). Ed. by Anna Ko-

rhonen, David R. Traum, and Lluís Màrquez, pp. 1085–1097. url: http:

http://dblp.uni-trier.de/db/journals/corr/corr1807.html#abs-1807-10854
http://dblp.uni-trier.de/db/journals/corr/corr1807.html#abs-1807-10854
http://www.aclweb.org/anthology/P/P05/P05-1015
http://dblp.uni-trier.de/db/journals/corr/corr1604.html#PapernotMSH16
http://dblp.uni-trier.de/db/journals/corr/corr1604.html#PapernotMSH16
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#PapernotMJFCS15
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#PapernotMJFCS15
https://doi.org/https://doi.org/10.1016/j.neucom.2022.04.020
https://doi.org/https://doi.org/10.1016/j.neucom.2022.04.020
https://www.sciencedirect.com/science/article/pii/S0925231222003861
https://www.sciencedirect.com/science/article/pii/S0925231222003861
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/1908.10084
http://dblp.uni-trier.de/db/conf/acl/acl2019-1.html#RenDHC19

64 Bibliography

//dblp.uni-trier.de/db/conf/acl/acl2019-1.html#RenDHC19 (cit. on

pp. 17, 19).

[46] Suranjana Samanta and Sameep Mehta. “Towards Crafting Text Adversarial

Samples.” In: CoRR abs/1707.02812 (2017). url: http://dblp.uni-trier.

de/db/journals/corr/corr1707.html#SamantaM17 (cit. on p. 17).

[47] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster,

cheaper and lighter”. In: arXiv preprint arXiv:1910.01108 (2019) (cit. on p. 9).

[48] Christian Szegedy et al. “Intriguing properties of neural networks”. In: (2013).

url: http://arxiv.org/abs/1312.6199 (cit. on pp. 13, 14).

[49] Yi-Ting (Alicia) Tsai, Min-Chu Yang, and Han-Yu Chen. “Adversarial Attack

on Sentiment Classification.” In: WNLP@ACL. Ed. by Amittai Axelrod et al.

Association for Computational Linguistics, 2019, pp. 166–173. isbn: 978-1-

950737-42-0. url: http://dblp.uni-trier.de/db/conf/acl-wnlp/acl-

wnlp2019.html#TsaiYC19 (cit. on p. 21).

[50] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural

Information Processing Systems 30. Ed. by I. Guyon et al. Curran Associates,

Inc., 2017, pp. 5998–6008. url: https://papers.nips.cc/paper/7181-

attention-is-all-you-need (cit. on p. 9).

[51] Adina Williams, Nikita Nangia, and Samuel R. Bowman. “A Broad-Coverage

Challenge Corpus for Sentence Understanding through Inference.” In: CoRR

abs/1704.05426 (2017). url: http://dblp.uni-trier.de/db/journals/

corr/corr1704.html#WilliamsNB17 (cit. on p. 37).

[52] Jin Yong Yoo and Yanjun Qi. “Towards Improving Adversarial Training of

NLP Models”. In: (2021). doi: 10.48550/ARXIV.2109.00544. url: https:

//arxiv.org/abs/2109.00544 (cit. on p. 25).

[53] Jin Yong Yoo et al. “Searching for a Search Method: Benchmarking Search Algo-

rithms for Generating NLP Adversarial Examples.” In: CoRR abs/2009.06368

(2020). url: http://dblp.uni-trier.de/db/journals/corr/corr2009.

html#abs-2009-06368 (cit. on p. 33).

[54] Yuan Zang et al. “Word-level Textual Adversarial Attacking as Combinatorial

Optimization.” In: (2020). Ed. by Dan Jurafsky et al., pp. 6066–6080. url:

http://dblp.uni-trier.de/db/conf/acl/acl2020.html#ZangQYLZLS20

(cit. on p. 19).

http://dblp.uni-trier.de/db/conf/acl/acl2019-1.html#RenDHC19
http://dblp.uni-trier.de/db/conf/acl/acl2019-1.html#RenDHC19
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SamantaM17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SamantaM17
http://arxiv.org/abs/1312.6199
http://dblp.uni-trier.de/db/conf/acl-wnlp/acl-wnlp2019.html#TsaiYC19
http://dblp.uni-trier.de/db/conf/acl-wnlp/acl-wnlp2019.html#TsaiYC19
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
http://dblp.uni-trier.de/db/journals/corr/corr1704.html#WilliamsNB17
http://dblp.uni-trier.de/db/journals/corr/corr1704.html#WilliamsNB17
https://doi.org/10.48550/ARXIV.2109.00544
https://arxiv.org/abs/2109.00544
https://arxiv.org/abs/2109.00544
http://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-06368
http://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-06368
http://dblp.uni-trier.de/db/conf/acl/acl2020.html#ZangQYLZLS20

Bibliography 65

[55] Guoyang Zeng et al. “OpenAttack: An Open-source Textual Adversarial Attack

Toolkit.” In: CoRR abs/2009.09191 (2020). url: http://dblp.uni-trier.

de/db/journals/corr/corr2009.html#abs-2009-09191 (cit. on p. 26).

[56] Wei Emma Zhang et al. “Adversarial Attacks on Deep-learning Models in

Natural Language Processing: A Survey.” In: ACM Trans. Intell. Syst. Technol.

11.3 (2020), 24:1–24:41. url: http://dblp.uni-trier.de/db/journals/

tist/tist11.html#ZhangSAL20 (cit. on p. 14).

[57] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level Convolutional

Networks for Text Classification”. In: (2015). cite arxiv:1509.01626Comment:

An early version of this work entitled "Text Understanding from Scratch" was

posted in Feb 2015 as arXiv:1502.01710. The present paper has considerably

more experimental results and a rewritten introduction, Advances in Neural

Information Processing Systems 28 (NIPS 2015). url: http://arxiv.org/

abs/1509.01626 (cit. on p. 39).

[58] Zhengli Zhao, Dheeru Dua, and Sameer Singh. “Generating Natural Adversarial

Examples.” In: CoRR abs/1710.11342 (2017). url: http://dblp.uni-trier.

de/db/journals/corr/corr1710.html#abs-1710-11342 (cit. on pp. 14,

19).

[59] Lijuan Zheng, Hongwei Wang, and Song Gao. “Sentimental feature selection

for sentiment analysis of Chinese online reviews”. English. In: International

Journal of Machine Learning and Cybernetics 9.1 (Mar. 2018), pp. 75–84. doi:

10.1007/s13042-015-0347-4 (cit. on p. 10).

http://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-09191
http://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-09191
http://dblp.uni-trier.de/db/journals/tist/tist11.html#ZhangSAL20
http://dblp.uni-trier.de/db/journals/tist/tist11.html#ZhangSAL20
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626
http://dblp.uni-trier.de/db/journals/corr/corr1710.html#abs-1710-11342
http://dblp.uni-trier.de/db/journals/corr/corr1710.html#abs-1710-11342
https://doi.org/10.1007/s13042-015-0347-4

	Dedicate
	Abstract
	Thanks
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Topic definition
	1.2 Problem statement
	1.3 Research question
	1.4 Solution
	1.5 Thesis organization

	2 Background
	2.1 Natural Language Processing
	2.1.1 Lexicon
	2.1.2 Word Embeddings
	2.1.3 Masked Language Models
	2.1.4 Text classification
	2.1.5 Sentiment analysis
	2.1.6 Natural language inference
	2.1.7 Seq2Seq

	2.2 Adversarial Machine Learning
	2.2.1 Adversarial examples
	2.2.2 Paradigm shift
	2.2.3 Taxonomy of textual adversarial attacks
	2.2.4 Adversarial attack methods from literature

	2.3 Machine Learning hardening
	2.3.1 Vanilla adversarial training
	2.3.2 Attack to Training

	2.4 Text Attack
	2.4.1 Framework structure
	2.4.2 HuggingFace integration

	3 Methodology
	3.1 Goal
	3.1.1 Problem to solve
	3.1.2 Research objective

	3.2 Research design
	3.2.1 Attack category

	3.3 Proposed solution
	3.3.1 Intuition
	3.3.2 SynBA components

	3.4 Evaluation metrics
	3.4.1 Attack metrics
	3.4.2 Quality metrics
	3.4.3 Efficiency metrics

	3.5 Calibration
	3.5.1 Hyperparameter Tuning
	3.5.2 Transformation ranking calibration

	4 Experimental results
	4.1 Data collection
	4.1.1 Experimental setup
	4.1.2 Datasets perturbed
	4.1.3 Model attacked

	4.2 Evaluation framework
	4.2.1 Semantic preservation evaluation
	4.2.2 Cost assessment
	4.2.3 Human evaluation

	4.3 Ablation study

	5 Final discussions
	5.1 Summary of findings
	5.1.1 Limitations

	5.2 Future developments
	5.3 Conclusions

	Glossary
	Acronyms
	Bibliography

