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Introduction

The being-altering 21st century has evolved the human race towards sustainable

living habits. It has schooled engineers whose design objectives are not just to meet

the needs of the present but also to verify that it will not compromise the ability

of future generations to meet their own needs. Henceforward, More powerful and

faster technology is not the prime target of a modern design and Telecommunication

Engineering is no exception amongst disciplines. Future generations of wireless

communications will focus on adaptations of a more sociotechnical design into the

system and its applications.

Human-to-Human (H2H) communication has been the main driving force for

the development of communications technologies and was addressed by the third

generation of wireless mobile telecommunications technology (3G) and below. Ever

since millions of distant people are end-to-end real-time connected with voice call-

ing capabilities of 2G, along with data transfer, video calling, and mobile internet

capabilities of 3G. The objective of H2H communications has been met with excel-

lency by LTE, and LTE-Advanced embodying 4G, and their vital technologies, e.g.,

Multiple Input Multiple Output (MIMO) as well as orthogonal frequency-division

multiplexing (OFDM), delivering higher speed, higher quality, and higher capacity,

with lower cost per bit to users.

Machine-to-Machine (M2M) communications was addressed in 4G, along with

mobile and internet, to support the need for a shift from human-centric to machine-

centric communications with strongly evolved requirements of connectivity every-

where and every time. The Internet of Things (IoT) technology has come forth with

the basic premise to have smart devices collaborate directly without human involve-

ment and deliver a new class of applications by connecting physical objects together

in support of intelligent and coordinated decision making. The IoT market is pro-

jected to grow from USD 478.36 billion in 2022 to USD 2,465.26 billion by 2029;

based on end-use industry, the market is shared in 2022 with healthcare, manufac-
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2 Introduction

turing, agriculture, BFSI, transportation, sustainable energy, IT & Telecom, retail,

government, and others [1].

The 3rd Generation Partnership Project (3GPP) standards body has defined

a set of “flexible” (supremely-doped with complexity!) specifications as 5G New

Radio (NR); addressing different use cases and their own particular requirements.

5G Core Network includes: enhanced Mobile BroadBand (eMBB), massive Ma-

chine Type Communications (mMTC), and Ultra Reliable Low Latency Commu-

nications (URLLC). eMBB provides greater data-bandwidth complemented by

moderate latency improvements; this will help to develop today’s mobile broad-

band use cases (e.g., Augmented and Virtual Realities, 360-degree video stream-

ing). mMTC has been already developed as part of 3GPP Release 13/14 Low

Power Wide Area (LPWA) technologies, which includes Narrowband Internet of

Things (NB-IoT). Thus this technology has inherent advantages such as global

coverage, an integrated application platform, interference mitigation, massive con-

nectivity, and security. URLLC requiring more bandwidth will need the 5G Core de-

ployment for full end-to-end latency reduction for mission critical applications that

are especially latency-sensitive e.g., remotely-controlled automated surgery proce-

dures, or a subtle Quartet in the Victoria Hall with the piano, the saxophone, the

cello, and the drums each in a separate continent!

6G, a self-contained ecosystem with flexible management, control, and auto-

mated human-like decision-making processes, is expected to deliver efficiency clearly

superior to 5G and satisfy evolving services and applications. 6G will link every-

thing to enable full-vertical applications; provide full-dimensional wireless coverage,

and combine all features, such as sensing, connectivity, computing, caching, mon-

itoring, positioning, radar, navigation, and imaging. It will build on top of the

current human-centric network architecture engaging any type of connectivity and

device. With substantial growth in satellite communication (SatCom), and Non-

terrestrial Network (NTN) in general, a great deal of interest and research went

towards a unified architecture: a unified 6G, where Terrestrial and NTN commu-

nication infrastructure are to co-exist i.e., utilizing dynamic spectrum management

and sharing between the two the segments as well as among different layers of the

architecture, e.g., Geostationary Earth Orbit (GEO) and Non-geostationary Earth

Orbit (NGSO) nodes, space- and air-borne nodes; that can be therefore orchestrated

to provide cost-efficient network configuration by dynamically moving functionality

creating a flexible network topology.
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Pervasive and distributed Internet of Things (IoT) devices demand ubiquitous

coverage beyond No-man’s land. To satisfy plethora of IoT devices with resilient

connectivity, Non-Terrestrial Networks (NTN) will be pivotal to assist and com-

plement terrestrial systems. In a massiveMTC scenario over NTN, characterized by

sporadic uplink data reports, all the terminals within a satellite beam shall be served

during the short visibility window of the flying platform, thus generating congestion

due to simultaneous access attempts of IoT devices on the same radio resource. The

more terminals collide, the more average-time it takes to complete an access which is

due to the decreased number of successful attempts caused by Back-off commands of

legacy methods. A possible countermeasure is represented by Non-Orthogonal Mul-

tiple Access scheme, which requires the knowledge of the number of superimposed

NPRACH preambles. This work addresses this problem by proposing a Neural Net-

work (NN) algorithm to cope with the uncoordinated random access performed by

a prodigious number of Narrowband-IoT devices. Our proposed method classifies

the number of colliding users, and for each estimates the Time of Arrival (ToA).

The performance assessment, under Line of Sight (LoS) and Non-LoS conditions in

sub-urban environments with two different satellite configurations, shows significant

benefits of the proposed NN algorithm with respect to traditional methods for the

ToA estimation.
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Chapter I

NB-IoT Standard

In an IoT perspective, every domain specific application is interacting with domain

independent services, whereas in each domain sensors and actuators communicate

directly with each other. The IoT elements consist of: i) Identification (to name

and match services with their demand), ii) Sensing (gathering data from related

objects within the network and sending it back to a data warehouse, database, or

cloud), iii) Communication (connecting heterogeneous objects together), iv) Com-

putation (hardware, software, and cloud platforms), v) Services (Identity-related

Services, Information Aggregation Services, Collaborative-aware Services and Ubiq-

uitous Services), and vi) Semantics (the ability to extract knowledge smartly)[2].

NB-IoT is one of Low Power Wide Area Network (LPWAN) technology devel-

oped by the 3GPP to enable a wide range of cellular devices and services. IoT

Technology is well known and has become diversified. Now several types of internet

of small things appeared following IoT. Typical small IoT technologies are LoRa,

Sigfox, LTE-M and NB-IoT. Currently LoRa and Sigfox have made their own busi-

ness models and compared to those, NB-IoT is staggered in business expansion.

Moveover, NR Reduced Capability (RedCap) device has appeared in 5G and 5GB

networks (3GPP Rel. 16 and above), and will address the wide range of applications

termed Mid-Speed Smart IoT with connectivity demands and services requirements

higher than LPWAN (LTE-M/NB-IoT) but do not require URLLC and eMBB.

NB-IoT User Equipment (UE) operates in the Downlink (DL) using 12 subcar-

riers with a subcarrier Bandwidth (BW) of 15kHz, and up to the maximum BW of

180 kHz with all permissible smaller resource allocations. In the Uplink (UL) using

a single subcarrier with a subcarrier BW of either 3.75kHz or 15kHz or alternatively

3, 6 or 12 subcarriers with a subcarrier BW of 15kHz (maximum UL BW of also 180

5



6 NB-IoT Standard

kHz corresponding to 12× 15kHz) [3]. The radio frame structure type 1 is only ap-

plicable to frequency division duplexing (FDD) (for both full duplex and half duplex

operation) and has a duration of 10ms and consists of 20 slots with a slot duration

of 0.5ms. Two adjacent slots form one subframe of length 1ms. When the subcarrier

bandwidth is 15kHz, a slot can be further subdivided into three subslots of length 2

or 3 OFDM or single-carrier frequency-division multiple access (SC-FDMA) symbols

for reduced latency operation. The radio frame structure type 2 is only applicable

to time division duplexing (TDD) and consists of two half-frames with a duration of

5ms each [4]. The scope of this work only considers FDD mode which is preferable

for NTN, as described in [5]. This is because TDD mode requires a guard time that

directly depends on the propagation delay between UE and satellite to prevent UE

from transmitting and receiving simultaneously. However, such a guard time might

be excessive in NTN and would lead to a very inefficient radio interface [6].

I.1 Random Access Procedure

Digital communications, whether wired or wireless, require precise synchronization

in time and frequency between the transmitter and the receiver. This is the most

important precondition that needs to be satisfied upon connection request in both

DL and UL. The synchronization process in the DL is pretty straight forward; when

a UE wakes up, it begins listening to specific signals broadcast with a known fre-

quency and periodicity in time by the covering Base Station (BS)s of its area, named

gNodeB (gNB) in NR context. UE chooses the strongest reference signal, which be-

longs to the electromagnetically-closest gNB to itself (or the beam with the highest

directivity), and synchronizes with the DL channel of the corresponding beam/cell.

Where in frequency, when in time, and what gNB is conveying is understood by the

UE – we are half way through this relationship. From a complexity point of view,

DL synchronization is easy since everything about the gNB as a fixed BS (or the

ephemeris information of the satellite in NTN case) is known a priori or is included

in the received reference signals. However, UL synchronization is explicitly complex

and essentially needs a number of handshakes i.e., two-way communications, which is

known as Random Access (RA) Procedure; Nonetheless, failure in synchronizations

phase would fundamentally deprive users to access the network.

With the RA procedure, the UEs can start UL data transmission, achieve UL

synchronization, and obtain a permanent ID to allow the rest of the communications
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between the terminal and the network. Prior to sending a connection request to the

network i.e., the preamble, a UE has to learn where, when, and how to perform

the initial access procedure i.e., synchronize with the UL. These information are

signalled as narrowband reference signal (NRS) with a fixed periodicity, and the UE

needs to listen before talking. To be able to listen properly, a UE acquires time and

frequency synchronization with a cell and detects the narrowband physical layer Cell

ID by a procedure known as cell search.

To facilitate cell search for NB-IoT devices the narrowband primary synchroniza-

tion signal (NPSS) and the narrowband secondary synchronization signal (NSSS) are

transmitted in the DL which are generated from a frequency-domain Zadoff-Chu se-

quence defined in [TS 36.211][4]. These signal blocks are packed with narrowband

physical broadcast channel (NPBCH) carrying the system information (SI) and to-

gether are periodically broadcast by the cell/beam in fixed subframes depending

on the frame structure type used. There are 504 unique narrowband physical layer

cell identity NNcell
ID indicated by the NSSS. The UE can synchronizes in the UL

after finding the strongest SS/PBCH (the packed NPSS, NSSS, and NPBCH) block

and decoding the data carried in its NPBCH which is scrambled by an initialization

value cinit = NNcell
ID . Narrowband Physical Random Access Channel (NPRACH)

parameters (configuration) are obtained by the decoded NPBCH block and are in-

formed to the Physical Layer (PHY) layer. From the PHY layer perspective, the

L1 RA procedure encompasses the transmission of RA preamble and random ac-

cess response (RAR). The remaining messages are scheduled for transmission by

the higher layer on the shared data channel and are not considered part of the L1

random access procedure [7].

I.1.1 4-step RACH

The contention based RA procedure is made up by a handshaking procedure of four

messages, in which the first two represent the actual RA phase while the latest two

constitute the contention resolution phase. The legacy RA procedure between the

UE and the BS is illustrated in fig. I.1.

The UE, after synchronizing in DL, begins its synchronization procedure in UL

by transmitting the RA preamble, as Msg1 through a dedicated bandwidth part

(BWP) i.e., NPRACH, based on the configuration broadcast by the network. The

preamble is the first UL signal sent by a UE to establish connection with the gNB.

Hence, it is designed to efficiently and reliably support attachment of several UEs
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Figure I.1: General overview of 4-step RACH.

in a wide area but for a limited number of devices, i.e., comparable to the number

of resources defined for NB-IoT.

The BS, upon reception of the preamble, estimates the round-trip delay (RTD) of

each user based on Time of Arrival (ToA) of the received preamble. In this way, the

received waveforms from multiple terminals are aligned, both in time and frequency.

After the preamble detection and the estimation of the synchronization parameters,

the gNB transmits the RAR message as Msg2 through the narrowband physical

downlink control channel (NPDCCH) and allocates radio resources for Msg3. The

RAR carries the Timing Advance (TA) command, UL grants, and the temporary

identity of the UE (T-RNTI). The header of Msg2 is constituted by the Random

Access Preamble Identifier (RAPID) which identifies the first random subcarrier

used to send the preamble. Therefore, the user chooses the one that matches the

first subcarrier of the preamble sent. It is worth highlighting that Msg1 is not user

dependent and collisions will occur if the same preamble is chosen by more than one

UE i.e., they all will have to look for a RAR with the same RAPID header.

Upon reception of a successful RAR, and an UL grant, the UE through Msg3,

replies by sending his own temporary identity (T-CRNTI) to the network using

the scheduled resource. It transmits also the data volume status and power head-
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room, to facilitate the BS scheduling and power allocation decision for the following

transmissions [7].

In the last step of this handshake procedure, the network sends a contention res-

olution message as Msg4 to solve the contentions due to multiple UEs transmitting

the same random access preamble in the first step. i.e., if more than one UE use

the same Msg1, they will transmit the Msg3 on the same resources, since the RAR

header is equal for all colliding preambles. Among the colliding devices, only one can

conclude the procedure successfully; the remaining users re-attempt the procedures

after a Back-off time indicated by their RAR.

I.1.2 2-step RACH

Conventional and existing RA Procedure consist of a 4-step handshake, used in

both terrestrial and NTN scenarios. An alternatively proposed access protocol for

terrestrial networks reduces the number of handshake steps to 2 by combining, in

pairs, the 4 communicated messages between gNB and UE, known as 2-step Random

Access Channel (RACH). Since one of the most challenging characteristics of an

NTN channel is the introduced RTD due to the high altitude of the flying platform,

2-step RACH can be supremely beneficial as it performs the same task from half

the conventionally required time to maximum the same time as of the parent 4-step.

And despite the latency improvement, signal overhead and power consumption is

also reduced.

Figure I.2: 2-step RACH, NTN-IoT.

2-step RACH, as illustrated in fig. I.2, can be regarded as a simplified random
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access process, where in the first step MsgA contains the Msg1 preamble and Msg3

payload, and in the second step MsgB contains the Msg2 and Msg4. So there is

only one interaction between BS and UE before the establishment of radio resource

control (RRC) CONNECTED mode from RRC IDLE of the terminal.

The MsgA, as illustrated on an example grid in fig. I.3, includes a preamble

transmitted on NPRACH, and an additional payload transmitted in narrowband

physical uplink shared channel (NPUSCH) which includes at least the equivalent

content of Msg3 in 4-step RACH, and potentially also carrying some small data.

The time and frequency resource of MsgA payload is preconfigured by the broadcast

SI blocks known as random access occasion (RAO) and PUSCH occasion i.e., again

different UEs may choose the same access occasions, causing collision.

Figure I.3: MsgA: Preamble on a RAO + Payload on a PUSCH occasion

If MsgA preamble is correctly detected, BS will transmit MsgB which can be

divided into Success RAR and Fallback RAR depending on whether MsgA NPUSCH

is correctly decoded. Fallback RAR will instruct UE to fall back from 2-step RACH

to 4-step RACH by re-transmitting Msg3 instead of MsgA. With this fallback mech-

anism, it can be guaranteed that the latency performance is no-worse than 4-step

RACH.

I.2 NB-IoT Preamble

The NB-IoT is designed to accommodate a massive number of low-rate, low-cost,

and delay-tolerant IoT devices. It adopts Long-Term Evolution (LTE)-like trans-
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mission technology of SC-FDMA, with a BW defined as only 180 kHz for low-rate

applications. To support extended coverage, massive connections, and long battery

lifetime, the legacy LTE RA preamble based on Zadoff-Chu sequences is not appro-

priate due to its high peak-to-average power ratio (PAPR). This has resulted in the

NPRACH being defined as a single-tone frequency-hopping preamble [8]. The use

of single tone transmission is particularly interesting for satellite communications.

Because of the required transmitted power, optimizing the efficiency of the power

amplifier is necessary. The low PAPR of single tone transmission is therefore partic-

ularly adapted. However, there is no free lunch specially in such limited BW where

the time duration of a packet could be very important, and hence the necessary en-

ergy to transmit the packet. With NB-IoT, increasing the bandwidth by using the

multitone transmission is possible. Nevertheless, it comes at the price of an increase

of the PAPR and therefore a loss on power amplifier efficiency.

I.2.1 Time and Frequency Structure

The physical layer random access preamble is based on single-subcarrier frequency-

hopping symbol group (SG)s. A symbol group is illustrated in Figure fig. I.4, con-

sisting of a cyclic prefix (CP) of length TCP and a sequence of N identical symbols

with total length TSEQ. The CP is designed such that it is long enough to cover the

maximum RTD to suppress inter-symbol interference (ISI). Recall that the RTD

i.e., twice the propagation time, thus twice the ToA, is to be estimated by the BS.

And the value of N is kept small enough such that the effect of channel variation is

negligible within TCP +N · TSEQ samples which altogether are defined as a Symbol

Group [9]. There are three possible CP lengths specified for FDD mode, each defin-

ing a preamble format. CP lengths of 66.7µs (for format 0), 266.67µs (for format 1),

and 800µs (for format 2) are designed to support cell radius of up to 10 km, 40 km,

and 120 km, respectively. In terms of propagation delay, the three formats account

for maximum RTDs of 66.67µs, 266.67µs, and 800µs, respectively [6]. The total

number of time-contiguous SGs which shall be transmitted in a preamble repetition

unit NNPRACH
rep is denoted by P , and the number of time-contiguous SGs is given by

G. The parameter values for frame structures 1 are listed in Table I.1[4]. Moreover,

the basic time unit for LTE is defined as Ts = 1/(∆fref ·Nf,ref ) with ∆fref = 15·103

Hz and Nf,ref = 2048 [10].

P SGs can be repeated up to Nrep = 2j , j ∈ {0, 1, ..., 7} times for coverage

extension. Accordingly, the length of a preamble equals P ·Nrep SGs. The NPRACH
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Figure I.4: Random access symbol group

Table I.1: Random access preamble parameters for frame structure type 1.

Preamble format G P N TCP TSEQ

0 4 4 5 2048Ts 5 · 8192Ts

1 4 4 5 8192Ts 5 · 8192Ts

2 6 6 3 24576Ts 3 · 24576Ts

transmission supports either a 3.75kHz or a 1.25kHz sub-carrier spacing (SCS) i.e.,

∆f , with a fixed hopping pattern. SGs in preamble format 0 and 1 (with 3.75kHz

SCS) hop by one or six subcarriers in frequency (equivalently 3.75kHz or 22.5kHz,

respectively), whereas SGs in format 2 (with 1.25kHz SCS) hop by one, three, or

eighteen subcarriers in frequency as defined in [4]. Since the hopping pattern is

deterministic, several users choosing the same initial subcarrier will thus collide

for the entirety of the NPRACH preamble sequence. The number of orthogonal

preamble sequences is therefore the number of allocated NPRACH subcarriers.

The frequency location of each repetition of the NPRACH transmission is con-

strained within the size of narrowband RA resource NRA
sc = 12 or for format2

NRA
sc = 36 contiguous subcarriers. The frequency hopping scheme used within

the NRA
sc is configured with frequency location of the ith symbol group as given

by nRA
sc (i) = nstart + ñRA

sc (i) where nstart = NNPRACH
scoffset + ⌊ninit/N

RA
sc ⌋ · NRA

sc with

NNPRACH
scoffset frequency location of the first subcarrier allocated to NPRACH (nprach-

SubcarrierOffset) and ninit being the subcarrier selected by the Medium Access Con-

trol (MAC) layer from {0, 1, . . . , NNPRACH
sc −1}, and the quantity ñRA

sc (i) (subcarrier

occupied by NPRACH resource considered) is frame structure type dependent, and

are detailed for also different P, and G in [4]. The channel hopping scheme used in

this work is defined in specifications as frame structure type 1, preamble format 0

and 1, with G=4, and P=4, hopping as:
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ñRA
sc (i) =















































(

ñRA
sc (0) + f(i/4)

)

mod NRA
sc i mod 4 = 0 and i > 0

ñRA
sc (i− 1) + 1 i mod 4 = 1, 3 and ñRA

sc (i− 1) mod 2 = 0

ñRA
sc (i− 1)− 1 i mod 4 = 1, 3 and ñRA

sc (i− 1) mod 2 = 1

ñRA
sc (i− 1) + 6 i mod 4 = 2 and ñRA

sc (i− 1) < 6

ñRA
sc (i− 1)− 6 i mod 4 = 2 and ñRA

sc (i− 1) ≥ 6

f(t) =

[

f(t− 1) +

[ 10t+9
∑

n=10t+1

c(n)2n−(10t+1)

]

mod (NRA
sc ) + 1

]

mod NRA
sc , f(−1) = 0

where ñRA
sc (0) = (ninit mod NRA

sc ) is the frequency location of the ith SG, and

the m-sequence-based pseudo random sequence generator c(n) is initialized with

NNcell
ID . The above specification means there are two pattern of hopping 1 or 6 tones

as also illustrated in fig. I.5. Within a repetition (Nrep) of P=4 SGs, each including

a CP and N=5 symbols, the hopping distance is 1 between SGs at index 0 and 1,

and between index 2 and 3. The hopping distance is always 6 between indices 1

and 2. Note that if preamble format1 is chosen, the CP size equals a symbol size of

8192Ts or 266.67µs (Table I.1), all together making a SG of length 1.6ms occupying

6 symbols in time transmitted in the same subcarrier, and repeated for P ×Nrep.

Figure I.5: Hopping pattern

Using the LTE-compatible sampling rate fs = 1.92 M Sample/sec and a SCS of

∆f = 3.75kHz, the Discrete Fourier Transform (DFT) length for preamble formats

0 and 1 is L = 512 (i.e., one symbol is L samples long in time; in frequency, a DFT
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of 512 points is used to have a SCS of 3.75 kHz with that sampling frequency.), and

the CP length is Lformat0
CP = 128, and Lformat1

CP = 512. Theoretically, up to 48 UEs

can simultaneously send their NPRACH preambles within the NB-IoT bandwidth

of 180 kHz. However, the IoT device might be limited to fewer number of starting

points to choose from Nsc ∈ {12, 24, 36, 48}. The jth UE is identified by its ninit(j)

parameter in the range {0, . . . , Nsc − 1}, which is used to generate the preamble

hopping pattern for consecutive single-tone SGs.

The channel hopping procedure aids in the estimation of ToA and also reduces

inter- and intra-cell interference. The ToA should be estimated by the BS for suc-

cessful UL signal decoding and it further enables device positioning. Error in the

ToA estimation results in the user not being able to receive the RAR. ToA estima-

tion therefore has a great impact on performance in NB-IoT.



Chapter II

Non-Terrestrial Networks

NTNs are one of the enabling technologies for the realization of the global 6G system

[11]. The NTN component fully integrated into the 6G infrastructure is not only

capable of integrating and extending terrestrial networks, both in densely populated

and rural areas, but also providing increased resilience, improved sustainability,

high spectrum availability, and greater flexibility. To this aim, the 6G NTN net-

work leverages multi-dimensional, multi-layer architecture, consisting of both space

and airborne flying nodes, and encompasses novel enablers, such as the artificial

intelligence (AI) [12].

3GPP has started integrating NTN into the NR architecture from Rel. 17 and

the NTN journey in the 5G ecosystem continues in Rel. 18 and beyond. At the same

time, several scientific publications have addressed various aspects of this integration

processes: [13] proposes an overview of the possible challenges; the effects of the

high Doppler and delay induced by non-geostationary satellites and the possible

countermeasures are elaborated in details in [14], [15]. And A thorough link budget

analysis for NB-IoT applications over NTN, following the 3GPP specifications, is

presented in [16].

II.1 Architecture

An NTN refers to a network, or segment of networks using radio frequency (RF)

resources on board a satellite (or Unmanned Aircraft System (UAS) platform) as

defined in [TS 38.821] [5]. Figure fig. II.1 depicts a heterogeneous architecture pro-

posed in 2009 as integrated space infrastructure for global communication (ISICOM)

[17]. An NTN architecture can be divided into i) space segment: a single or constel-

15
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lation of flying platforms GEO Synchronous Orbit (GSO)/GEO, or NGSO from very

large platform to nano-satellites; ii) ground segment: with Gateway (GW)s feeding

the platforms and keeping the satellites connected to the core network for overall

system management; iii) user terminals; being served by the beams generated by

the antenna of the flying platform.

A satellite may implement either a transparent or a regenerative (with on board

processing) payload. A transparent payload performs RF filtering, frequency conver-

sion and amplification, resulting in an unchanged waveform signal repeated by the

payload. A regenerative payload would also allow to implement gNB functionalities

on-board the satellite, thus, more advanced system configurations, such as amplifica-

tion as well as demodulation/decoding, switch and/or routing, coding/modulation,

functional split and Inter-Satellite Links (ISL), are implemented at higher cost.

Figure II.1: NTN architecture; once a vision, now a reality. [17]

NTN platform types vary depending on the orbit and the altitude of the flying

platforms. Low Earth Orbit (LEO), and Medium Earth Orbit (MEO) satellites

circularly orbit the Earth from 600-1500 km and 7000-25000 km, respectively (very

Low Earth Orbit (vLEO) satellites at 300-600 km are also defined and have gathered

industry’s interest); with beam footprint size ranging from 100 to 1000 km used to

provide services in both Northern and Southern hemispheres with constellations
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possible to provide global coverage including polar regions – given that appropriate

orbit inclination, sufficient beams are considered, and inter-satellite links (ISL)s

are provided. GEO satellites orbiting at an exact altitude of 35768 km above the

earth with notional station keeping position fixed in terms of elevation/azimuth with

respect to a given Earth point, with beam footprint size of 200-3500 km. A High

Elliptical Orbit (HEO) satellite can elliptically orbit the Earth with a perigee of

400km altitude up to apogee of 50000 km altitude with a beam footprint size of

200-3500 km. Another type of platform defined as UAS (including High-altitude

Platform Systems (HAPS)) fly at an altitude of 8-50 km having 5-200 km of typical

beam footprint size.

Considered NTN reference scenarios in 3GPP specifications, including circularly

and notional station keeping platforms, the highest impairment constraints (e.g.,

RTD and Doppler), type of payload, and fixed or steerable beams, as given by Table

II.1. In the latter, the on-board antenna keeps serving the same on-ground area

while the satellite moves on its orbit (steerable antennas). In the fixed beam case,

the served on-ground area is moving together with the satellite.

Table II.1: NTN reference scenarios

Transparent Sat Regenerative Sat

GEO based NTN Scenario A Scenario B

LEO based NTN: steerable beams Scenario C1 Scenario D1

LEO based NTN: moving with the Sat beams Scenario C2 Scenario D2

II.2 Channel Impairments

High speed of the platforms (more than 7 Km/sec for a LEO satellite, relative to

earth) translates into Doppler, and the high altitude extends the propagation delay

in order of mili-seconds (10s for LEO up to 100s for GEO satellites). In this section,

typical satellite channel impairments such as large Doppler shifts and propagation

delays are discussed.

Delay

Different types of delay are involved in satellite communications. Among them,

the propagation delay is not only the predominant one, but it also reaches values
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much larger than those of terrestrial networks, being a bottleneck for NR 5G/6G

communications [13]. In satellite communication where distances are very large, such

delay that yields a misalignment between UL and DL frames, as shown in fig. II.2 is

critical to be coped with. The gNB calculates the TA needed for the UL frame i that

needs to start advanced in time with respect to the corresponding DL frame number

i for transmission from the UE. The initial Timing Advance Command (TAC) is

signalled via RAR in Msg2. At the UE side TTA is controlled by the MAC layer and

implemented by the PHY layer to synchronize UL and DL frames at the gNB.

Figure II.2: UL-DL timing relation.

The RTD is approximated by twice the propagation delay between the trans-

mitter and the receiver with negligible signal processing time in this context, and

the propagation delay depends on the satellite orbit, type of payload, and elevation

angle. In order to estimate the propagation delay in the considered scenarios, we

further assume to be in a pessimistic scenario in which the transmitter and the re-

ceiver are not perfectly aligned and, thus, they have different elevation angles. The

overall RTD can thus be computed as [13]:

RTD ≈ 2× T1way = 2
dGW−SAT (θGW ) + dSAT−Rx(θRx)

c
(II.1)

where T1way is the one-way propagation delay, dGW−SAT is the distance between

the GW and the satellite as a function of its elevation angle θGW , and the dis-

tance between the satellite and the receiver is given by dSAT−Rx as a function of its

elevation angle θRx, and c the speed of light (299792458 m/s).

The worst case NTN scenarios to be considered for the delay constraint are given

by [TS 38.821] [5] and are summarized in the table II.2. The maximum and minimum

propagation delay are given as their contribution to the RTD on the radio interface

between the gNB and the UE. Also, the Maximum RTD variation as seen by the
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UE measures how fast the RTD (function of UE-Sat-NTN GW distance) varies over

time. The worst case considered for the calculations in the table is when the satellite

moves towards/away from the UE at 10◦ elevation angle, and also assuming the UE

speed higher than of a commercial jet aircraft cruise speed, 1200 km/h! However,

general design specifications of on-ground receivers consider UE speed of maximum

500 km/h, as of a bullet train.

Table II.2: NTN reference scenarios vs. delay constraints

NTN scenarios A B C1-C1 D1-D2

Relative speed of

the Satellite
negligible 7.56 km/s

Min elevation 10◦ for service link and 10◦ for feeder link

Maximum RTD
541.46 ms

(worst case)
270.73 ms 25.77 ms 12.89 ms

Minimum RTD 477.48 ms 238.74 ms 8 ms 4 ms

Maximum RTD

variation
negligible

up to ±93.0

µs/sec (worst

case)

up to ±47.6

µs/sec

Considering UEs within a beam footprint, there is a common delay defined

at the center of the beam experienced by every user in the same manner. Satellite

ephemeris information broadcast in the concerned beam easily compensate most of

this common delay and the offsets introduced depending on the prediction accuracy

can be handled by protocols. As shown in fig. II.3, the UEs located elsewhere of

the beam but the center, experience an additional delay known as the differen-

tial delay. Compensating this UE-specific delay via protocols needs further study,

however in current 3GPP (up to Rel 18) specification Global Navigation Satellite

Systems (GNSS) capability of the terminals are responsible for compensating such

delay by means of a priori known location of the UE, at the price of the introduced

complexity to the terminal which translates into power consumption.

It can be noticed, as expected, for the mMTC or particularly NB-IoT scenario,

the propagation delay might be an issue for all procedures and steps, since it is

several orders of magnitude above typical terrestrial networks delays. The impact

of the delays shall be evaluated on a case-by-case basis also taking into account the

type of communication that the considered procedure is requesting.
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Figure II.3: Common and differential delay/Doppler. [14]

Doppler Shift

The Doppler shift consists in the change in the carrier frequency due to the rela-

tive motion between the satellite and the user terminal i.e., carrier frequency off-

set (CFO). The Doppler shift that the UE experiences due to its relative motion to

the relay node can be calculated as fd = (ν · fc/c) · cos θ [18], which in an NB-IoT

sense can be assumed negligible due to the fixed position of the device. When con-

sidering a satellite communication channel, the Doppler shift only caused by the

satellite movement on its orbit is provided by authors of [15] in a closed-form ex-

pression as a function of the satellite orbital velocity (relative to the user terminal)

and the elevation angle:

fd(t) =
fc · ωSAT ·RE · cos (θUE(t))

c
(II.2)

where ωSAT =
√

GME/(RE + hSAT )3 is the satellite orbital velocity, θUE(t) is

the elevation angle of the UE at a fixed time, RE the Earth radius, G = 6.67 ·

10−11Nm2/kg2 the Gravitational constant, and ME = 5.98 · 1024kg is the Earth’s

mass. It shall be noticed that, in GEO systems the Doppler shift can be assumed to

be negligible. On the other hand, in LEO satellites the Doppler shift can introduce

significant frequency shifts with respect to those expected in terrestrial systems as

seen in fig. II.4. This could deeply impact the frequency synchronisation of the

resources used to transmit through the air interface. Furthermore, the received

signals are impacted by a significant Doppler rate as well, thus leading to additional

degradation of the detection performance in case of longer preamble/data packets.

The Doppler experienced by the ith user in the DL channel and, vice-versa, on the

satellite with respect to the ith user in the UL channel can be described as fDoppler =
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Figure II.4: Doppler variation depending on the elevation angle [6]

fDcommon + ∆fDdiff
, where fDcommon is the common Doppler experienced in the

same way by all UEs within a beam footprint, while ∆fDdiff
, the differential

Doppler, depends on the relative positions of users in the footprint [13]. A UE

with GNSS capability performs the pre-compensation of Doppler shifts by itself

thanks to the knowledge of satellite ephemeris and available UE location. And for

a UE without GNSS capability, the satellite performs the pre-compensation of the

Doppler shift at the center of the beam on the ground and broadcasts the common

Doppler to all UEs inside the concerned beam to be taken into account for the uplink

transmission.

II.3 Random Access Adaptations

Pre-/Post- compensation techniques for such impairments are given by 3GPP speci-

fications [5] and include broadcasting satellite ephemeris information as SI messages

to aid the UE in compensating the common delay, Doppler shift, and variations in

NTN. Moreover, the design of a NB-IoT receiver in the presence of Doppler effects

at the GW side is addressed in [19]; the assessment and the evaluation of the RA

procedure for a satellite-based NB-IoT system, with a particular emphasis on the

effect of the large RTD typical of the NTN, is proposed in [20, 21, 22, 23]. However,

only the last two works consider the congestion generated during the message flows

of the RA procedure due to the short visibility window of the satellite.

Since IoT communications are mainly characterized by sporadic UL data report-
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ing, non-continuous satellite coverage, provided by cost efficient incomplete constel-

lations, is the baseline approach for most of the foreseen IoT-NTN architectures.

Thus, all the terminals within the satellite beam, simultaneously competing to ac-

cess the network, must be served within the short visibility period of the flying

platform, generating congestion. For the moment being, 3GPP in its Rel. 18 rec-

ognizes the congestion has a problem [24], since it may cause the deterioration of

system performance or even the unavailability of the service. However, solutions

will be most likely proposed in Rel. 19, where more sophisticated architectures are

considered also for IoT scenario. A possible counter measure to this issue is rep-

resented by the application of Non-Orthogonal Multiple Access (NOMA) schemes

to the Msg3 of the RA protocol, [25]. However, in order to fully benefit from the

advantages brought by NOMA, it is of paramount importance to identify and count

the terminals transmitting on the same time/frequency resources.



Chapter III

Neural Network Algorithms

The areas of intervention in 6G key technologies include extensive use of AI and Ma-

chine Learning (ML) to facilitate innovative services. The processing of data is rather

complex where AI and ML are expected to play a crucial role. The intertwining of

communication and computation algorithms requires a communication/computation

co-design that falls under the scope of in-network AI governance (incl. AI-based al-

location and instantiation of network functions; management of collaborative AI

components across the network; design of distributed AI mechanisms based on

e.g., Federated Learning (FL); or the deployment of AI-output/decision justifica-

tion mechanisms leading to explainable AI). In 6G intelligent context-aware net-

works, deployment, operation, and energy usage will be minimized subject to the

information gathered without human intervention, [11]. Despite the effective assis-

tance AI/ML offers in communication systems, they cannot be treated as a black

box without verifying the undergone process to train a usable model. This chapter

is responsible for illuminating such black box by describing Neural Networks (NN)

Algorithms to make sense of the offered AI/ML assisted solutions.

III.1 Artificial Intelligence and Machine Learning

AI encompasses several approaches and paradigms. ML, DL, Reinforcement Learn-

ing (RL) and their intersections are all parts of AI. Thus, a major part of AI follows

the learning approach, although approaches without any learning aspects are also

included. Overall, research into AI aims to make the machine smarter (i.e., the

ability to accomplish complex intellectual tasks normally necessitating a human),

either by following some rules or by facilitating guided learning. The former refers

23
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to symbolic AI, which implements sophisticated handcrafted commands as an ex-

tensive set of rules that encompasses the humans’ expertise; the latter refers to ML

which, in contrast to symbolic AI, requires a learning approach. Thus, rather than

giving the rules to solve a problem, the machine is provided with the context to

learn the rules by itself to solve the issue i.e., accomplish a complex task such as

classification, regression, clustering, detection, recognition, segmentation, planning,

scheduling, or decision making.

An ML system is trained rather than programmed with explicit rules. The learn-

ing process requires data to extract patterns and hidden structures; the focus is on

finding optimal representations of the data to get closer to the expected result by

searching within a predefined space of possibilities using guidance from a feedback

signal, where representations of the data refer to different ways to look at or en-

code the data. Supervised, unsupervised and semi-supervised learning are all ML

approaches that can be employed to solve a broad variety of problems.

During supervised learning, all of the training data is labeled, i.e., tagged with

the correct answer. The algorithm is thus fully supervised, as it can check its

predictions are right or wrong at any point in the training process. The supervised

model learns the patterns from the training data to then be able to predict labels

for non-labeled data during inferencing. Supervised learning has been applied for

classification and regression tasks. As labeling can be impossible due to a lack

of information or infeasible due to high costs, unsupervised learning employs an

unlabeled data set during training. Using unlabeled data, the model can extract

hidden patterns or structures in the data that may be useful to understand a certain

phenomenon or its output could be used as an input for other models. Unsupervised

learning has been commonly used for clustering, anomaly detection, association and

autoencoders. As a middle ground between supervised and unsupervised learning,

semi-supervised learning allows a mixture of non-labelled and labaled portions of

training data.

III.1.1 Supervised Learning

In a supervised learning setting, the learning algorithm experiences a data set con-

taining examples and their respective labels or targets. An example will typically

be denoted as x and its label, or target, as y. Together, we have training exam-

ples (x, y) ∈ D existing in our data set D. In supervised learning problems, we

attempt to learn to predict the label y from the example x, or equivalently, estimate
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the conditional distribution p(y|x). Taking this approach, we will want to obtain a

model of this conditional distribution and we will denote the parameters of such a

model as θ. Assuming a set of independent and identically distributed (i.i.d) data

D = {x1, x2, . . . , xn} drawn from the true but unknown data-generating distribu-

tion pdata(x). We let pmodel(x; θ) be a parametric family of probability distributions

over the same space indexed by θ. In other words, pmodel(x; θ) maps any configura-

tion x to a real number estimating the true probability pdata(x; θ). The maximum

likelihood estimator for θ is then defined as [26]:

θML = argmax
θ

pmodel(D; θ) = argmax
θ

n
∏

i=0

pmodel(xi; θ) (III.1)

where Pmodel is a function space of probability distributions over the parameters

θ. A convenient product into sum transform makes the above more computationally

appealing, with equivalent optimization problem; we can also take the logarithm on

both sides, which gives us:

θML = argmax
θ

n
∑

i=0

log(pmodel(xi; θ)) (III.2)

Additionally, we can divide the right hand side of the equation by n, as rescaling

the cost function does not change the argmax, and we obtain the expectation of the

log-probability of the model over the empirical data-generating distribution p̂data;

i.e., we can quantify the amount of uncertainty in an entire probability distribution

using the Shannon entropy which is the expected amount of information in an event

drawn from that distribution:

θML = argmax
θ

Ex∼p̂data log(pmodel(x; θ)) (III.3)

One way to interpret maximum likelihood estimation is to view it as minimizing

the dissimilarity between the empirical distribution p̂data, defined by the training

set and the model distribution, with the degree of dissimilarity between the two

measured by the Kullback-Leibler (KL) divergence. The KL divergence of these

distributions is defined as:

DKL(p̂data||pmodel) = Ex∼p̂data [log p̂data(x)− log pmodel(x)] (III.4)

The term on the left is a function only of the data-generating process, not the

model. This means when we train the model to minimize the KL divergence, we

need only minimize:
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−Ex∼p̂data log(pmodel(x)) (III.5)

which is exactly equivalent to the maximization problem stated in the maximum

likelihood formulation (III.3). The above is referred to as the negative log-likelihood

of the model distribution and minimizing it results in the minimization of the cross-

entropy between the data-generating distribution and the model distribution. The

significance of this is two-fold. Firstly, the terms cross entropy and negative log-

likelihood are often used in literature to describe the loss functions that are being

used to evaluate a given ML model and the above minimization problem is what is

being referred to. Secondly, this gives rise to the narrative that the model associated

with the maximum likelihood estimate is, in fact, the same model that most closely

resembles the empirical data distribution. This is important considering what we

want our model to do, namely, produce correct labels or targets for data drawn from

the data-generating distribution that the model has not seen before [27].

For completeness, the maximum likelihood estimator for the conditional distri-

bution, which provides a label’s probability for xi i.i.d examples, is given as:

θML = argmax
θ

n
∑

i=0

log(pmodel(yi|xi; θ)) (III.6)

Often times, regularization on the parameters of the model is desirable, as reg-

ularization can lead to better generalization of the model. This is most frequently

seen in the different types of neural network models. Building on the maximum

likelihood perspective of the loss function, we can show that adding a regularization

function to our optimization function can be seen as inducing a prior over the model

parameters and subsequently changing our estimator to the maximum a posteriori

(MAP) point estimate. Inducing a prior probability on the model parameter results

in the following optimization problem [27],

θMAP = argmax
θ

p(θ|D) = argmax
θ

log(p(D; θ)) + log(p(θ)) (III.7)

where, Bayes’ Rule, the properties of logarithm, and the fact that the optimiza-

tion problem does not depend on the data-generating distribution have been made

use of.
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III.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN)s are a specialized kind of neural network for

processing data that has a known grid-like topology. Examples include time-series

data, which can be thought of as a 1D grid taking samples at regular time intervals,

and image data, as an example shown in Fig. III.1 a 2D grid of pixels. In CNN

terminology, the first argument of the convolution operation is often referred to as

the input, and the second argument as kernel, which both in ML applications

usually are a multidimensional array of data and parameters, respectively; called

tensors. And the output is sometimes referred to as the feature map. The sparse

weights in CNN is accomplished by making the kernel smaller than the input. This

means that we need to store fewer parameters, which both reduces the memory

requirements of the model and improves its statistical efficiency. It also means that

computing the output requires fewer operations.

Neural Networks can be used for regression by predicting continuous values or

for classification by predicting probabilities for each class. A typical layer of a con-

volutional network consists of three stages. In the first stage, the layer performs

several convolutions in parallel to produce a set of linear activations. In the sec-

ond stage, sometimes referred to as the detector stage each linear activation is

run through a non-linear activation function, such as the rectified linear activation

function (ReLu). A nonlinear activation function is generally chosen to add more

complexity to the model by eliminating the linearities. In the third stage, a pooling

function is used to modify the output of the layer further. A pooling function

replaces the output of the net at a certain location with a summary statistic of the

nearby outputs. For example, the max-pooling operation reports the maximum

output within a rectangular neighborhood. Other popular pooling functions include

the average of a rectangular neighborhood, the L2 norm of a rectangular neighbor-

hood, or a weighted average based on the distance from the central pixel. In all

cases, pooling helps to make the representation approximately invariant to small

translations of the input. Invariance to translation means that if we translate the

input by a small amount, the values of most of the pooled outputs do not change. In-

variance to local translation can be a useful property if we care more about whether

a feature is present than exactly where it is [26].

Because pooling summarizes the responses over a whole neighborhood, it is pos-

sible to use fewer pooling units than detector units, by reporting summary statistics

for pooling regions spaced k pixels apart rather than 1 pixel apart. This improves
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the computational efficiency of the network because the next layer has roughly k

times fewer inputs to process. When the number of parameters in the next layer is a

function of its input size (such as when the next layer is fully connected and based on

matrix multiplication), this reduction in the input size can also result in improved

statistical efficiency and reduced memory requirements for storing the parameters.

Figure III.1: The illustration of a sample CNN with 2 convolution and one

fully-connected layers. [28]

Fig. III.1 illustrates the basic blocks of a sample 2D CNN configuration that

classifies a 24 × 24-pixel grayscale image into two categories. This sample network

consists of two convolution and two pooling layers with 4 and 6 neurons, respectively.

The output of the last pooling layer is processed by a single fully-connected layer and

followed by the output layer that produces the classification output. The intercon-

nections feeding the convolutional layers are assigned by weighting filters ω having

a kernel size of (Kx,Ky). The convolution takes place within the boundaries; there-

fore, the feature map dimension is reduced by the (Kx − 1,Ky − 1) pixels from the

width and height, respectively. The sub-sampling factors (Sx, Sy) are set in advance

in the pooling layers. In the sample illustration above, the kernel sizes correspond-

ing to the two convolution layers were set to Kx = Ky = 4, while the sub-sampling

factors are set as Sx = Sy = 3 for the first pooling layer and Sx = Sy = 4 for the

second one. Note that these values were deliberately selected so that the outputs of

the last pooling layer (i.e., the input to the fully-connected layer) are scalars (1x1).

The output layer consists of two fully-connected neurons corresponding to the num-

ber of classes to which the image is categorized. The complete forward-propagation

process steps of this example are described in [28].

CNNs are predominantly trained in a supervised manner by the so-called back

propagation (BP) algorithm. During each iteration of the BP, the gradient magni-

tude (or sensitivity) of each network parameter such as the weights of the convolution

and fully-connected layers is computed. The parameter sensitivities are then used to

iteratively update the CNN parameters until a certain stopping criterion is achieved.
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The training of Neural Networks is all about finding the best weights; to do so, a loss

function is designed to compare the output of the model and the ground truth for

each output, to find the weights that minimize that loss function. There are several

gradient-descent optimization methods that can be used in BP such as Stochastic

Gradient Descent, AdaGrad, RMSProp, and adaptive momentum (ADAM).

There is a significant difference in terms of computational complexities of 1D and

2D convolutions, i.e., an image with N ×N dimensions convolve with K ×K kernel

will have a computational complexity ∼ O(N2K2) while in the corresponding 1D

convolution (with the same dimensions, N and K) this is ∼ O(NK). This means that

under equivalent conditions (same configuration, network, and hyperparameters)

the computational complexity of a 1D CNN is significantly lower than the 2D CNN.

Also, a general observation shows, most of the 1D CNN applications have used

compact (with 1-2 hidden CNN layers) configurations with networks having < 10 K

parameters whereas almost all 2D CNN applications have used “deep” architectures

with more than 1 M (usually above 10 M) parameters. Obviously, networks with

shallow architectures are much easier to train and implement. As a result, training

deep 2D CNNs requires a special hardware setup (e.g., Cloud computing or GPU

farms). On the other hand, any CPU implementation over a standard computer is

feasible and relatively fast for training compact 1D CNNs with few hidden layers

(e.g.2 or less) and neurons (e.g.< 50). Thus, compact 1D CNNs, due to their low

computational requirements, are well-suited for real-time and low-cost applications,

especially on mobile or hand-held devices.

An example of 1D CNN is illustrated in Fig III.2, two distinct layer types are

proposed in such network: 1) the so-called “CNN-layers” where both 1D con-

volutions, activation function, and sub-sampling (pooling) occur, and 2) Fully-

connected (dense) layers that are identical to the layers of a typical Multi-layer

Perceptron (MLP) [28]. The configuration of a 1D-CNN is formed by the following

hyper-parameters:

1. Number of hidden CNN and dense layers/neurons (in the illustrated sample

1D CNN, there are 3 and 2 hidden CNN and MLP layers, respectively).

2. Filter (kernel) size in each CNN layer.

3. Sub-sampling factor in each CNN layer.

4. The choice of pooling and activation functions.
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Figure III.2: A sample 1D CNN configuration with 3 CNN and 2 MLP (dense)

layers. [28]

Figure III.3: Three consecutive hidden CNN layers of a 1D CNN. [29]

As in the conventional 2D CNNs, the input layer is a passive layer that receives

the raw 1D signal and the output layer is a fully-connected MLP layer with the

number of neurons equal to the number of classes. Three consecutive CNN layers of

a 1D CNN are presented in Fig. III.3. As shown in this figure, the 1D filter kernels

have size 3 and the sub-sampling factor is 2 where the kth neuron in the hidden

CNN layer l, first performs a sequence of convolutions, the sum of which is passed

through the activation function f , followed by the sub-sampling operation. This

is indeed the main difference between 1D and 2D CNNs, where 1D arrays replace

2D matrices for both kernels and feature maps. As a next step, the CNN layers

process the raw 1D data and “learn to extract” such features which are used in the
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classification/regression task performed by the fully connected layers. As a conse-

quence, both feature extraction and classification/regression operations are fused

into one process that can be optimized to maximize the classification performance.

This is the major advantage of 1D CNNs which can also result in a low computa-

tional complexity since the only operation with a significant cost is a sequence of

1D convolutions which are simply linear weighted sums.

III.2 State-of-the-Art

The demonstration of successful applications of AI in healthcare, finance, business,

industries, robotics, autonomous cars and wireless communication including satel-

lites has led it to become a subject of high interest in the research community, indus-

tries, and media. Many researchers have discussed AI and its applications to wireless

communication in general [30, 31, 32, 33]. Others have focused on the application

of AI to one aspect of wireless communication, such as wireless communications in

the IoT [27], network management [34], emerging robotics communication [35], an-

tenna design [36] and Unmanned Aerial Vehicle (UAV) networks [36, 37]. Moreover,

[38] briefly discussed some promising use cases of AI for satellite communication,

whereas [39] discussed the use of AI for space-air-integrated networks.

AI can assist a wide variety of satellite communication aspects including beam-

hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry

mining, ionospheric scintillation detecting, interference managing, remote sensing,

behavior modeling, space-air-ground integrating, and energy managing. [40] dis-

cusses several challenges facing diverse aspects of satellite communication systems,

and their proposed and potential AI-based solutions. Another comprehensive survey

of the state-of-the-art in the application of ML techniques to address key problems

in IoT wireless communications with an emphasis on its ad hoc networking aspect

are given by [28].

The application of ML techniques to make the PRACH receiver more robust to

false peaks, which are responsible for performance degradation in the extension of the

4G technique to 5G, are discussed in [41], where authors proposed a hybrid method

based on the combination of two ML algorithms, which are k-NN and näıve Bayes.

Although even with the hybrid ML method they were not able to satisfy the 3GPP

requirements, a considerable improvement is observed. In addition, [42] proposes

ML-based solution for enhancing the NB-IoT coverage and to reduce the energy
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consumption, where instead of employing a random spectrum access procedure,

dynamic spectrum access is used which reduces the number of required repetitions,

increases the coverage, and reduces the energy consumption.

Regarding the RA repetition, an ML-based adaptive repetition scheme for a

3GPP NB-IoT system is proposed in [43] to improve overall network transmission

efficiency. In [44] a comparison regarding the path loss prediction of two ML meth-

ods, namely the Artificial Neural Networks and the Random Forests, was carried

out for the two NB-IoT bands at 900 MHz and 1800 MHz. The authors have also

discussed how the input data information plays a key role in predicting path loss

via ML methods. Also, [45] leverages ML techniques to design a system that is able

to estimate the collision multiplicity and thus gather information about how many

LTE-M (NB-IoT) devices chose the same preamble, which is later used by the eNB

to resolve collisions, increase the supported system load and reduce transmission

latency.



Chapter IV

Results and Simulations

Figure IV.1: High-level NTN architecture

With reference to fig. IV.1, the main elements of the high level system architec-

ture used in this work are: i) a plethora of UE, which are fixed position NB-IoT

sensors; ii) satellites (LEO and vLEO platforms and HAPS) providing connectivity

to the UE through the user link (Uu/air interface); iii) ground segment, i.e., the

GW. The 5G-Advanced Core Network manages the overall system and provides

inter-connectivity within the constellation with the Operations Support Systems

(OSS) entity. This work assumes the following system configuration: direct ac-

cess, i.e., the user is directly connected to the flying platform, transparent payload,

LEO single-beam platform operating in S-band, with moving beam. In addition, we

make the following assumptions: i) the feeder link is assumed ideal; ii) a standalone

NB-IoT deployment is considered; iii) the UEs are equipped with a GNSS receiver

so as to pre-compensate the common Doppler shift and the propagation delay.

33
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IV.1 Baseband NPRACH Signal

The transmitted SG in the time-domain is expressed in eq. (IV.1) [6]:

xp,n,j(l) =
P−1
∑

p=0

Xp,n,j [Nsc(p)]e
j2π

Nsc(p)

L
l

(IV.1)

where xp,n,j(l) represents lth sample of the nth symbol in the pth SG of the

jth user and Xp,n,j [Nsc(p)] is the nth unitary symbol on Nsc(p) subcarrier where

SG p is transmitted; l = [Lp,n − LCP , . . . , Lp,n + L − 1], n = [0, . . . , N − 1], and

Lp,n = pLSG + nL, where LSG = LCP +NL is the duration of one SG, LCP is the

length of the CP, while one symbol is L samples long.

Considering one user, the received signal after CP removal and DFT, assuming

a negligible inter-carrier interference, is expressed as eq. (IV.2) [6]

Yp,n = hpe
j2πη(Lp,n − τ) × e

−j2πnRA
sc (p)

τ

L

(

1− ej2πηL

1− ej2πη

)

+Zp,n (IV.2)

where η is the CFO normalized by the sampling frequency, τ is the RTD nor-

malized by the symbol duration, hp is the channel coefficient for the pth SG, nRA
sc (p)

is the subcarrier occupied by the pth SG, and Zp,n is the noise term. Combining the

symbols within the same pth SG, we get the so-called SG-sum (SG-S) as follows:

Yp =
N−1
∑

n=0

Yp,n = hpe
j2πη(pLSG − τ) × e

−j2πnRA
sc (p)

τ

L

(

1− ej2πηNL

1− ej2πη

)

+Zp

(IV.3)

The received signal at the BS as a superposition of signals from multiple users

can be given as:

Y =
J−1
∑

j=0

ajYj + Z (IV.4)

where J is the maximum number of concurrent users, and aj ∈ {0, 1} indicates

whether the jth user is active or not.

IV.1.1 Traditional Preamble Detection and ToA Estimation

From the received NPRACH (Msg1) the BS must detect active users and perform

synchronization parameter estimation; different algorithms for this process has been

proposed in literature.
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As a benchmark for the detection of the number of users, an amplitude-based

estimator is considered. The mean amplitude of the received signal for different

number of colliding users is compared to the amplitude of the received signal. The

closest match then yields an estimate of the number of colliding users present in the

received signal.

A traditional estimation algorithm is given by [6] and is used in this work for

comparison; after the CP removal and applying the DFT, a differential processing is

performed by the pth SG-S with the complex conjugated (p+1)th SG-S of the same

repetition. Defining ∆(p) = nRA
sc (p+ 1)− nRA

sc (m) as the hopping step between the

pth and (p+ 1)th SGs, resulting in:

Zp,1 = YpY
∗

p+1 ∝ e−j2πηLSGe
j2π∆(m)

τ

L (IV.5)

Then, the symbols in the same SG are summed to obtain the SG-S, This differ-

ential processing is performed for all the SGs and their outputs, i.e., the symbols

Zp,1, are collected in an array νu . Within the vector νu, the symbols are ordered

based on their hopping difference, i.e., ∆(p) = Nsc(p+1)−Nsc(p). Then, the Rife &

Boorstyn (R&B) algorithm is applied to each array element considering 512 points

NDFT :

Vu[k] =

NDFT−1
∑

n=0

νu[n]e
−j2πk

n

NDFT (IV.6)

where k refers to the subcarrier index. Since the number of arrays νu is equal to

Nrep, Vu[k] is non-coherently combined over Nrep:

X[k] =

Nrep−1
∑

u=0

|Vu[k]|
2. (IV.7)

With Xmax = X[kmax] compared to a threshold, presence of a preamble is de-

clared, where kmax = argmaxk X[k]. And finally, the ToA is computed as:

ToA =
kmax

NDFT ·∆f
(IV.8)

One interesting property of the above method is its insensitivity to CFO when

estimating the ToA. The term e−j2πηLSG is common for all Zp,1 symbols (i.e.,

common for all ν[n] and affects only the phase of ν[n], not its magnitude. Similarly,

since the DFT operation is linear, this factor affects only the phase of V [k], not
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its magnitude, such that by taking the absolute of V [k], the impact of CFO is

completely eliminated [6].

All in all, it should be noted that with traditional methods it is possible to

estimate only a single value of ToA, regardless of the number of interferes.

IV.1.2 Channel Characteristics

In the considered coverage area, we assume U users uniformly distributed. Within

the beam, each user is described by a complex channel coefficient representing the

channel between the jth user and the satellite, given by:

hj =

√

GTxGRxΩ(θsj )

4π
dj
λ

√

Aloss,jPz

e−j
2πdj
λ (IV.9)

where i) GTx represents the transmission gain of the device antenna, which is

equivalent for all users. For the purpose of the work it is assumed that the NB-IoT

terminals are quipped with an omnidirectional antenna; ii) GRx is the maximum

receiving gain of the satellite; iii) dj is the slant range between the jth user in

the beam and the satellite; iv) λ is the carrier wavelength; v) Pz is the noise power,

which depends on the satellite antenna equivalent noise temperature, T , and the user

bandwidth, B. vi) Aloss represents the additional losses. The latter are computed

as Aloss,j = Ashadowfading + Aatmospheric + Ascintillation + Aclutter; these terms vary

depending on the user position and are computed as per 3GPP [TR 38.821] [5].

Finally, the term Ω(θsj ) defines the satellite radiation pattern, which is a function of

the angle between the antenna pointing of the jth user and the sth satellite, i.e., θsj ,

which does not depend on the satellite antenna index due to antenna co-location.

In this study, we consider a Bessel radiation pattern [46]. Based on the above

assumptions and definitions, the signal received at the satellite can be computed as

follows:

Yp =
J
∑

j=1

√

Ptxhjsp,j + zp (IV.10)

where J is the number of concurrent users, i.e., the users transmitting the same

preamble identified by the sub-carrier p, Ptx is the transmitting power, which is

assumed to be the same for all users, and zp is a complex circularly-symmetric

Gaussian random variable with zero-mean and unit variance. The latter is a licit
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assumption, since the noise power is included in the term Pz in eq. (IV.9). Finally,

sp,j denotes the signal from the jth user, given by:

sp,j =
P−1
∑

p=0

Xp,n,j [Nsc(p)]e
j2πη

l − τ

L
Nsc(p)

(IV.11)

where τ is the ToA due to the RTD and η is the CFO. At the receiver side, the

DFT is applied to each symbol of each SG, included the CP.

IV.2 NN Approach to Preamble Detection

In the proposed scenario, two Convolutional Neural Networks are designed to extract

the non-linear relationship between the DFT coefficients of each symbol of each SG

and their targets; the two CNNs are used in cascade: the first one is dedicated to the

collision classification, i.e., it classifies the number of users transmitting the same

preamble, and its output is used as input for the ToA estimation network.

IV.2.1 Neural Network Implementation

The CNN architectures for the collision classification and the ToA estimation are

depicted in fig. IV.2 and fig. IV.3, respectively. Both the schemes follow the same

structure up to the last layer, where they differ to perform the two different tasks,

i.e., the classification of the number of users and the regression; the latter aims

at yielding ToA values close to the original ones in the Mean Square Error (MSE)

sense. With respect to the networks input, both the CNNs take the DFT coefficients

of the received symbols and the second network, in charge of the ToA estimation,

leverages also the number of colliding users identified by the collision classification

network. The first two layers are implemented with convolutional layers followed

by max-pooling operations. Thus, the input is processed so as to extract spatially

correlated features that are exploited for the task learning. The 1D convolution

layer is followed by batch normalization, ReLu activation function, and max-pooling.

The latter aims at reducing the output dimension of the CNN and making the

network invariant to the small changes in the input and, therefore, to the noise in

the training samples. It is worth noting that the ToA and the CFO are assumed to

be constant throughout a transmission, therefore the 1D convolution layer is capable

of extracting invariant features of the frequency-domain signal. Subsequently, these

features are shaped into a single vector that feeds three fully connected layers. The
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first two are followed by the ReLu activation (large corrections), while the last one

is softmax activation (refining corrections) for the classification network and a linear

layer for the regression.

Figure IV.2: Structure of the 1D CNN for collision classification.

Figure IV.3: Structure of the 1D CNN for ToA estimation.

IV.2.2 Collision Classification

The collision classification is commonly applied to all the available preambles and

separates them into several classes. This network accepts (Re(y), Im(y)) of the DFT

coefficients of each symbol as an input and it is trained to predict the number of

devices transmitting the same preamble. To this aim, the following U + 1 different

classes are considered: i) CLASS 0: the preamble is unused, meaning there is

only noise. ii) CLASS 1: the preamble is selected by a single UE, i.e., collision-

free. iii) CLASS u: the preamble is chosen by u out of U terminals for u ∈

{2, . . . , U − 1}, therefore, there are u collisions. iv) CLASS U: the same preamble

has been selected by U terminals. The label of each U +1 class consists of a one-hot

vector t = OneHot(U), where the index u in the truth label t = [t0, t1, . . . , tU ] is one
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and zero everywhere. Therefore, the number of collided users per preamble is given

by the L0 norm of the sparse vector t. This network is trained so as to minimize

the softmax cross entropy loss function (or negative log-likelihood), given by:

Lcc(t, p) = −
U
∑

u=0

tu log(pu) (IV.12)

where pu is the output of the softmax function, which computes the probability

associated to each category by taking the scores of the Fully Connected layer, as

follow:

pu =
eau

∑U
j=0 eau

(IV.13)

where [a0, . . . , aU ] are the outputs of the Fully Connected layer. Therefore, the

index (umax) associated to the highest probability value, i.e., pmax = argmax p,

within the vector p = [p0, . . . , pU ] is selected to obtain the number of colliding users.

IV.2.3 Delay Estimator

Following the preamble collision classification, the ToA estimation is performed

by the second CNN. For each preamble, the neural network takes as input the

(Re(y), Im(y)) of the DFT coefficients of each symbol together with the class value

that identifies the number of non-orthogonal users, i.e., umax, and it is trained to

estimate the ToA of the colliding terminals in each signal. To this aim, the ToA val-

ues are normalized on the highest value, thus enabling the training convergence, and

they are collected in the vector Y = [τ0, τ1, . . . , τU−1]. Therefore, the network finds

an estimate Ŷ of Y so as to minimize the MSE loss function i.e., E = ||Y − Ŷ||2.

IV.3 Numerical Results

In this section, we evaluate the performance of the proposed CNN-based Random

Access. We first examine the accuracy of the number of colliding users classification

and then the ToA estimation performance. For the first network, the learning rate is

fixed to 5× 10−4, while for the later it is 1× 10−4, which guarantee the convergence

of both the CNNs. The dataset consists of 42 × 106 samples generated in Matlab

following a Monte Carlo simulation, and organized in 4200 batches with 10000 ex-

amples each, where every input is the couple of the real and imaginary part of 96

DFT symbols, trained over 20 epochs in TensorFlow Keras, Python. Each preamble
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Figure IV.4: Real part time-domain representation of the interfered preambles

consists of four SGs, each one with five symbols plus the CP, whose length over time

is the same as a symbol, i.e., 266.7µs. Therefore, considering four repetitions, the

total amount of symbols sent is given by {6 × 4 × 4 = 96}. For both the collision

classification and the ToA estimation, we generated a dataset with DFT symbols

containing from 0 to 4 colliding users per preamble; Real part of the time-domain

received preamble signal of four randomly selected examples that are fed to the Neu-

ral Networks are given in fig. IV.4; each subplot corresponds to a different number

of interfered terminals’ signals that have been collided (CLASS 0,1,2,3). 80% of

the samples are used for training with the stochastic optimization method based

on ADAM, and 20% for testing. The estimation performance of the ToA is evalu-

ated in terms of the Root Mean Square Error (RMSE) (Table IV.3). For each user

transmitting the same preamble, the network estimates the ToA and the estimation

accuracy is obtained by averaging all the RMSEs up to the value umax.

RMSE =

√

√

√

√

1

umax

umax
∑

u=1

‖Yu − Ŷu‖
2

(IV.14)

Both the CFO and ToA are randomly selected in the range [−40, 40]Hz and

[−50, 50]µs, respectively [47]. The proposed method is evaluated considering the

frequency and the timing residual error after the pre-compensation done with the

GNSS. Moreover, all datasets are generated considering the following scenarios: i)

one coverage enhancement zone, i.e., all the 48 sub-carriers are available for the
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preamble transmission; ii) NB-IoT transmitting power equal to Ptx = −7 dB; iii)

receiver noise power equal to Pz = −163.8 dB; iv) two different satellite configura-

tions proposed in [48], i.e., set 3 and set 4, whose parameters are shown in Table

IV.1; v) one propagation environment, i.e., sub-urban, in both Line of Sight (LoS)

and Non Line of Sight (NLoS) conditions, whose parameters are available in [49];

vi) UEs uniformly deployed in the beam coverage.

Table IV.1: Satellite parameters [48]

Satellite orbit Set 3 LEO 600 km Set 4 LEO 600 km

Equivalent satellite antenna aperture 0.4 m 0.097 m

Sat Tx/Rx max Gain 16.2 dBi 11 dBi

3dB beamwidth 22.1 degree 104.7 degree

Sat beam diameter 234 km 1700 km

G/T -12.8 dB K−1 -18.6 dBK−1

It shall be noticed that, in UL, the interference towards the satellite is clearly

depending on the specific interfering UE location. Therefore, both the shadow fading

and the interference source location vary through each example, in addition to the

subcarrier index of the preamble. The shadow fading is modeled as a log-normal

random variable Ash ∼ (0, σ2) with the values of σ2 depending on the UE’s elevation

angle [46]. In addition, we consider the Carrier to Noise Ratio (CNR) ranges reported

in Table IV.2. For each of the proposed scenarios, we trained the network with the

minimum achievable CNR and we tested it by randomly choosing users within the

beam coverage. As recorded, the CNR variance in NLoS condition is higher than

the one in the LoS, due to presence of the clutter loss (CL). Notably, the larger the

beam size, the greater the variance of σ2.

IV.3.1 Collision Classification Performance

Fig. IV.5a and IV.5b depict the inputs of both the CNNs, i.e., the {Re, Im} parts

of the DFT symbols in LoS and NLoS conditions varying the number of colliding

users per preamble. The datasets are equally distributed among the five classes. It

is worth emphasizing that the annulus in the figures, which correspond to the outer

edge of an interfered preamble, gains a different dimension based on the number of

colliding terminals (shown in different colors).

Indeed, the three outer colored area host symbols that have been constructively

interfered by 1,2, or 3 more users in a received signal and the values of the {Re, Im}
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Table IV.2: Mean and variance of CNR

Satellite Set Propagation condition CNR dB

µ = 9.3
LoS

σ = 1.42

µ = −6.9
Set 3

NLoS
σ = 7.03

µ = 0.1
LoS

σ = 2.14

µ = −15.05
Set 4

NLoS
σ = 10.04

(a) LoS condition (b) NLoS condition

Figure IV.5: Real and Imaginary part of the DFT symbols. Set 3

parts are key in the learning process. Given that the symbols of an interfered sig-

nal set belong to a circle (radius extending from the center to the outlined edges)

and not an annulus, the larger the number of collisions per signal the less symbols

will be accommodated in the Learning Range (LR) of the given group, i.e., the

amplitude of the signal with a constructive interference. This means that destruc-

tively interfered symbols (sitting more towards the center of the circle) might cause

a misclassification if there are no other symbols in the preamble that have acquired

sufficient amplitude to fit within the LR annulus of that class.

Thus, with the same number of examples per class, the CNN is able to correctly

classify 0, 1, and 2 interferers per preamble, as reported in Figs. IV.6a - IV.7b
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(a) LoS condition (b) NLoS condition

Figure IV.6: Outcome of the classification: Set 3

(a) LoS condition (b) NLoS condition

Figure IV.7: Outcome of the classification: Set 4

(the confusion matrices). Indeed, with a maximum of two colliding terminals, the

network is able to correctly classify the number of colliding users with a probability

of about 0.99. On the other hand, classes 4 and 5 are the most difficult to correctly

classify. The classification accuracy decreases due to the fact that the network has

fewer examples in the corresponding LR.

In NLoS condition, edges of the LR have less outlined boundaries compared to the

LoS condition, because symbols of a collision class are placed outside the LR of the

corresponding group. This leads to a degradation of the classification performance.

Due to the large beam sizes and, consequently, the low elevation angles, resulting in
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large values of CL, the classification of users within Set 4 in NLoS condition shows

the worst performance.

IV.3.2 Delay Estimator Performance

Referring to Table IV.3, it is observed that, despite low CNR values and uncom-

pensated CFO, the RMSE of the ToA is around 5 µs in absence of collision, while

the performance decreases by increasing the number of superimposed symbols, as

expected. It should be noted that, fixed the number of interferers, the estimation

accuracy remains constant across the two different satellite sets in both the LoS and

NLoS conditions.

Subsequently, to understand the goodness of the CNN based ToA estimation,

we compare it with the technique applied in [6] which was described in subsec-

tion IV.1.1. The accuracy of the R&B estimation algorithm is measured as follow:

ER&B = min‖Y − ˆYR&B‖. Considering only one UE, the proposed CNN approach

provides higher accuracy under the NLoS condition with respect to the one achiev-

able with the R&B method, as shown in Table IV.3. Clearly, the CNN based ToA

estimation provides advantages in case of collisions, as it is able to estimate the ToA

for each colliding users also in presence of CFO as well as with low CNR values.

The proposed method is designed to work with the GNSS but it could also be

adopted in case where the UEs do not have GNSS capabilities. On the other hand,

to provide more accurate estimation, the network needs as input a large number of

examples with different types of channel coefficients. In fact, the ToA estimation in

set 4 is slightly better, since the Neural Networks can learn from different types of

coefficients due to the wider beam dimension.
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Table IV.3: RMSE of ToA [µs]

Satellite Set Prop. condition N.users CNN Output R&B Output

1 5.3 µs 0.27 µs

2 16.4 µs 26.7 µs

3 19.8 µs 30.3 µs
LoS

4 22.5 µs 32.7 µs

1 5.7 µs 5.8 µs

2 17.0 µs 74 µs

3 20.5 µs 142.2 µs

Set 3

NLoS

4 23.1 µs 165.1 µs

1 4.8 µs 1.4µs

2 15.3 µs 27.2 µs

3 18.1 µs 57.3 µs
LoS

4 21.7 µs 112.6 µs

1 4.2 µs 4.89 µs

2 14.7 µs 27.8 µs
NLoS

3 17.3 µs 87.8 µs

Set 4

4 20.9 µs 120 µs
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Chapter V

Conclusions

In this Thesis we proposed an innovative detection and estimation method in support

of NOMA approaches for mMTC. In particular, the collision classification and

the ToA estimation are performed by two different CNNs. The latter are trained

and tested in real propagation environment, under the NLoS and LoS conditions,

considering two different satellite configurations. The extensive simulations show

that Deep Learning is a promising tool for these two learning tasks. Thus, future

works foresee the exploitation of the information related to number of colliding

devices and their ToA to enhance the capacity of the system by designing a Non

Orthogonal Random Access scheme, where it is possible to schedule the Msg2 based

on the number of colliding devices and their ToA and, then, apply NOMA techniques

on Msg3 and, subsequently, on the data. The greater the accuracy of the estimation

of these parameters, the greater the network performance in terms of network access

time, access probability and, thus, throughput [50].

The study on adaptation of 2-step RACH to NTN(-IoT) has shown great benefits

in terms of reducing the whole RA procedure from half the average-access-time to

maximum the same time as conventional 4-step guaranteeing latency performance

no worse than before, specially when solutions like the one proposed in this work

is implemented to also serve the colliding terminals. In particular, in an NB-IoT

scenario in which the UE may also transmit its packet of data along with MsgA

in an assigned NPUSCH and conclude not only its access but also its mission by

means of a protocol called small data transmission (SDT). Future work will focus on

adaptation of NR 2-step RACH to NTN with minimal to no modification on current

specifications for a Unified 6G.
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