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Abstract

The decomposition of Feynman integrals into a basis of independent mas-
ter integrals is an essential ingredient of high-precision theoretical predictions,
that often represents a major bottleneck when processes with a high number
of loops and legs are involved. In this thesis we present a new algorithm for
the decomposition of Feynman integrals into master integrals with the formal-
ism of intersection theory. Intersection theory is a novel approach that allows
to decompose Feynman integrals into master integrals via projections, based
on a scalar product between Feynman integrals called intersection number.
We propose a new purely rational algorithm for the calculation of intersec-
tion numbers of differential n−forms that avoids the presence of algebraic
extensions. We show how expansions around non-rational poles, which are a
bottleneck of existing algorithms for intersection numbers, can be avoided by
performing an expansion in series around a rational polynomial irreducible
over Q, that we refer to as p(z)−adic expansion. The algorithm we developed
has been implemented and tested on several diagrams, both at one and two
loops.
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1 | Introduction

Particle physics studies the tiniest building blocks of the universe: par-
ticles and their interactions. From a theoretical point of view, particles are
described as excited quantum states of physical fields. By now, their inter-
acting nature can be described only perturbatively, within the framework
of Quantum Field Theory (QFT). Within QFT, a special role is played by
gauge theories, that describe fields and their interactions following a sym-
metry group. So far, the most accurate description of particles and their
interactions is the Standard Model (SM) of particle physics. In a nutshell, it
is a gauge theory based on the symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y ,
where SU(3)C contains the description of strong interactions with the theory
of Quantum Chromodynamics (QCD) and SU(2)L⊗U(1)Y describes electro-
weak interactions, that combine Quantum Electro-Dynamics (QED) and weak
interactions. While SU(3)C is an exact symmetry of nature, SU(2)L⊗U(1)Y
is broken into U(1)EM via the Higgs mechanism, that is responsible for giving
mass to all the particles in nature.

The discovery of the Higgs boson at the Large Hadron Collider (LHC)
[1, 9] is only the last of the innumerable verifications of the Standard Model.
Behind this enormous success, however, there are also many aspects that are
not accounted for and therefore we cannot regard at it as our final answer to
the mysteries of the subatomic world. The most obvious example is that it
fails in incorporating a description of gravity into the framework of QFT, but
it also does not address the problem of the observed neutrino oscillations, the
asymmetry between matter and antimatter and the existence of dark matter
and dark energy. It is therefore of extreme importance to obtain precise
theoretical predictions to be compared with experimental data. This necessity
is twofold, in order to both investigate with high accuracy the properties of
known particles, such as the top quark and the Higgs boson, and to look for
deviations from experimental data, in order to see clearly where the theory
deviates from reality and seek signals of new physics.

The main tool to investigate fundamental interactions, both at the the-
oretical and at the experimental level, are scattering processes. The proba-
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bility for a certain process to happen is encoded in the so-called S-matrix,
or scattering matrix, that contains as its main ingredient the scattering am-
plitude. Therefore, scattering amplitudes are a topic of central importance.
From the theoretical point of view, they help in enclosing hidden properties
of the theory that are not manifest in the Lagrangian formulation. From
a phenomenological point of view, they constitute the bridge between the-
ory and experiment, allowing to make theoretical predictions that can be
falsified against the experimental data. For a given order in perturbation
theory, scattering amplitudes are calculated as the sum of the Feynman di-
agrams contributing to the process at study, with each diagram associated
to a corresponding Feynman integral. Depending on the process, one can
count hundreds or thousands of Feynman integrals that need to be calcu-
lated. This seemingly insurmountable task is actually simplified by noticing
that Feynman integrals obey linear relations, and therefore not all of them are
independent. The task, in the end, reduces to the calculation of the minimal
set of independent integrals, that are known as master integrals (MI). It is
therefore of extreme importance to have efficient methods that perform the
decomposition of Feynman integrals into master integrals and for the calcula-
tion of the latter. The current state of the art for Feynman integrals decom-
position is given by the Laporta algorithm [25], that performs the reduction
of a set of Feynman integrals via the solution of a large system of identities,
known as integration-by-parts (IBP) system. This method is computationally
challenging when applied to integrals corresponding to diagrams with a large
number of loops and legs, that is precisely what happens when one considers
high-precision predictions. Because of the upcoming High Luminosity phase
at LHC, the accuracy that needs to be reached in order to be comparable
with the experiments corresponds to percent level [7, 50, 15] which usually
corresponds to at least Next-to-Next-to-Leading-Order (NNLO).

It is extremely interesting to look for alternative methods relying on direct
decompositions and bypassing the resolution of large linear systems. The use
of intersection theory is a recent proposal in this direction. Its approach is
purely algebraic and stems from a recent branch of algebraic geometry and
topology, namely intersection theory of differential forms applied to the study
of Aomoto-Gel’fand hypergeometric functions [12, 34, 35, 2]. This class of
multivalued functions has the property that their integrand vanishes on the
boundary of the integration contour, exactly as Feynman integrals in dimen-
sional regularization. Via a change of variables (in this thesis we will use the
so-called Baikov representation) it is possible to cast the Feynman integral
in consideration in a form that reflects the one of a generic hypergeometric
integral, allowing us to exploit the tools of intersection theory for its study.
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The most important property of hypergeometric integrals that can be used to
obtain a new strategy of decomposition of Feynman integrals is the fact that
they obey a vector space structure. Identifying the basis vectors as the master
integrals, we can reduce the problem of decomposition into master integrals
into the problem of projecting an element belonging to a vector space into
the space basis. To do this, we introduce a scalar product between Feynman
integrals called intersection number. In this way we find a strategy that can
be used on a single Feynman integral at time and that bypasses completely
the creation and the solution of a large system of identities. In this approach
it suffices to build the metric matrix of scalar products between the basis
vectors, that is, between the master integrals, and decompose the Feynman
integral in consideration by finding the coefficients of the projection. Our
problem therefore reduces to the computation of the intersection numbers
between the Feynman integral and each one of the master integrals.

The standard procedure to carry out intersection numbers is based on
a recursive algorithm [17, 16] that considers at each step univariate inte-
grations, even if recent progresses are paving a way for new strategies that
directly carry out a multivariate integration [10]. At the time of the writing,
these algorithms present as a downside the appearance of non-rational poles
in intermediate steps. There have been attempts in proposing algorithms
that avoid non-rational poles [56] but at the price of introducing complicated
integral transformations in order to satisfy certain conditions on the nature
of poles of the functions appearing in the algorithm.

In this thesis we propose a new approach that solves the problem of find-
ing a purely rational algorithm without posing conditions on the order of the
poles of the function and without the need of changes of bases or integral
transformations. The main novelty in our proposal is constituted by the con-
cept of series expansion of a rational function around a polynomial irreducible
over Q, that we refer to as p(z)−adic expansion. It allows us to consider the
contribution to the intersection number of all the non-rational poles satis-
fying a certain irreducible rational polynomial equation at once, completely
avoiding the explicit appearance of non-rational poles which are the roots of
such polynomial. The results presented here show that the algorithm is in
agreement with the results obtained with the traditional Laporta method and
is a promising candidate to be implemented on frameworks based on finite
fields. The latter is a technology that can be used to efficiently implement
rational algorithms and that in the last years has seen many applications in
the field of high-energy physics (see [42] and reference therein).

The algorithm that we are going to present is the first example of a purely
rational algorithm for the computation of intersection numbers for Feynman
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integrals decomposition that does not rely on complex integral transforma-
tions or changes of bases. Its full-automation can open the possibility of
using these novel techniques for integrals decomposition for future precision
calculations.

The thesis is organized as follows. In Ch. 2 we give a brief overview of
Feynman integrals and their properties, introducing some terminology that
will be used throughout this work. We also summarize the main steps of
the Laporta algorithm. In Ch. 3 we introduce the formalism of intersection
theory for Feynman integrals. We define a scalar product between Feynman
integrals and the necessary tools to obtain a decomposition into master inte-
grals. We describe how to obtain a representation of Feynman integrals that
mirrors the one of hypergeometric integrals. In particular, we focus on the
strategies used to find the number of elements in the vector space and we
propose a new procedure that we refer to as master monomial analysis. In
Ch. 4 we present the main novelty of this thesis. We describe our rational
algorithm, the procedure to obtain the p(z)−adic expansion of a rational
function and its usage in computing intersection numbers. In Ch. 5 we apply
our new algorithm to several examples at one and two loops and we check
them against the decomposition obtained via the Laporta algorithm. The
appendices complement the work by giving insights on various aspects of
algebraic geometry (App. A), on Baikov representation (App. B), on the de-
composition into basis vectors via intersection theory (App. C), on the main
formula used to compute intersection numbers (App. E) and on finite fields
technology (App. F).



2 | Feynman integrals

The very advanced counting
system used by elementary
particle theorists for counting
the loops is: ‘One, two, many,’

E. Remiddi [57]

We introduce the main object of study of this thesis, namely scalar Feyn-
man integrals, starting from their definition and discussing their properties.
We expand on the procedure of decomposing them into a linearly independent
set of master integrals and on the state of the art to conduct this procedure,
the Laporta algorithm. We set the main notation used throughout the work.
In the following, we assume the reader to be familiar with Quantum Field
Theory (QFT) concepts and we do not attempt in making an exhaustive
review of the subject, which can be found in many textbooks [46, 44].

2.1 | Feynman integrals

Multiloop Feynman integrals are an essential ingredient to make theo-
retical predictions about scattering processes via perturbative QFT. Every
scattering process is in turn characterized by a cross section, an important
constituent of which is the scattering amplitude, that encodes the probabil-
ity for a certain asymptotic initial state to evolve into another in the distant
future. Scattering amplitudes are computed at a given order in perturbation
theory as the sum of all the Feynman diagrams contributing to the process
at study. The number of diagrams and their complexity increases with the
order in perturbation theory and the number of external particles involved
in the process. Therefore Feynman diagrams, and the associated Feynman
integrals, are the building blocks of scattering amplitudes. In order to reach a
certain level of precision in theoretical calculations, that can be compared to
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the experimental one, we need to consider diagrams presenting an increasing
number of loops and legs.

As opposed to tree level diagrams, when dealing with diagrams presenting
loops, we are faced with the problem of them being divergent. Such divergen-
cies need to be accounted for by introducing a regularization prescription. For
the purposes of our work we will consider Feynman integrals in dimensional
regularization, analytically continuing the number of spacetime dimensions
from 4 to d. This allows us to avoid the divergencies that manifest when
integrating over loop momenta in 4 spacetime dimensions and to exploit the
properties obeyed by Feynman integrals in dimensional regularization.

As we have seen, the calculation of scattering amplitudes leads to multi-
loop Feynman integrals. As an example, consider an L loop Feynman dia-
gram with E + 1 external legs. We indicate with p1, . . . , pE the independent
external momenta, their number being E as one is fixed by momentum con-
servation. The associated Feynman integral can be written as∫ L∏

i=1

ddki
N(kµi )

zα1
1 . . . z

αt′
t′
, (2.1)

where the numerator N(kµi ) presents an arbitrary complicated tensor struc-
ture that we can write as

N(kµi ) = kµ1

1 . . . kµn

1 . . . kν1L . . . kνmL . (2.2)

The denominators zi, or inverse propagators, have a quadratic structure

zi = P 2
i −M2

i , (2.3)

where Pi and Mi are respectively linear combinations of momenta k1, . . . , kL,
p1, . . . , pE and masses imposed by the structure of the diagram in considera-
tion. We indicate with t′ the number of propagators appearing the integral,
out of which t are independent.

It is desirable to write such a complicated integral in a simpler form in
order to manipulate it and ultimately solving it. The standard procedure
for dealing with the tensorial structure of multiloop Feynman integrals goes
under the name of tensor reduction and consists in factoring out the tensorial
part, leaving the full dependence on loop momenta in scalar factors, called
scalar Feynman integrals. The amplitude therefore takes the form

A =
∑
i

aiIi, (2.4)

where the coefficients ai are rational functions of the kinematic invariants
and of the dimensional regulator. This can be done in several ways: with
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Passarino-Veltman [40] reduction, decomposition into tensors and form fac-
tors or integrand reduction [37, 19, 32, 4, 58, 33]. After this procedure, we
obtain the factorization of the tensorial multiloop integral in the product
of two terms, one containing the whole tensorial structure, whose form is
only determined by Lorentz invariance and symmetry considerations, and
the other consisting in scalar integrals with the entire dependence on loop
variables. The scalar Feynman integral takes the form∫ L∏

i=1

ddki
1

zα1
1 . . . zαn

n

, (2.5)

where n is the number of independent scalar products between loop momenta
and external momenta and between the loop momenta themselves. Scalar
Feynman integrals presents also n − t auxiliary propagators, or irreducible
scalar products, that we will define in Sect. 2.1.1. Scalar Feynman inte-
grals in dimensional regularization obey a set of linear relations classified in
integration-by-parts identities (IBP), Lorentz invariance identities (LI) and
symmetry relations (SR) that allow to write a generic scalar Feynman inte-
gral in terms of a smaller set of integrals, called master integrals. It is of great
importance to solve these relations in order to perform the decomposition of
a generic Feynman integral into master integrals for a variety of reasons, most
notably:

• only after the reduction to master integrals certain properties of the
theory, such as gauge invariance, are manifest and can be effectively
checked;

• typically, when calculating an amplitude, one is faced with the compu-
tation of a large number of scalar Feynman integrals. It is desirable
to reduce the ones to be effectively calculated to a smaller set of in-
dependent integrals that usually present a less complicated and more
manageable structure;

• these relations allow to write linear first-order differential equations for
the master integrals with respect to the kinematic invariants. Solving
the differential equations is the most effective strategy to calculate the
master integrals as opposed to a direct integration.

We therefore concentrate on how to obtain these relations and how to apply
them in a suitable way in order to decompose a generic Feynman integral
into master integrals. The endpoint of this Chapter is the description of the
Laporta algorithm, the by-now standard procedure used for the decomposi-
tion into master integrals. Before starting, we introduce a bit of terminology,
to set a common ground for the rest of the work.
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2.1.1 | Families and sectors

We begin by introducing a classification of integrals that is useful to orga-
nize a calculation. For clarity, we rewrite our generic scalar Feynman integral
with L loops, E + 1 external legs in d dimensions [3]

I[α1, . . . , αn] =

∫ L∏
i=1

(
ddki
iπd/2

)
1

zα1
1 . . . zαn

n

. (2.6)

We recall that only E external momenta are independent because of momen-
tum conservation and we indicate them with p1, . . . , pE. We suppose that the
integral presents t independent propagators, their number determined by the
structure of the diagram under study. We recall that propagators are objects
defined as

1

zi
, (2.7)

the zi are therefore inverse propagators, with the quadratic structure

zi = P 2
i −M2

i , (2.8)

with Pi a combination of loop and external momenta and Mi internal masses.
Within scalar Feynman integrals, the propagators alone are often not enough
to express every scalar product between loop momenta or loop momenta
and external momenta. In fact, we can have n independent scalar products
between any independent external momenta and a loop momenta, or between
two internal loop momenta, obtained as:

ki · pj 1 ≤ i ≤ L, 1 ≤ j ≤ E,

ki · kj 1 ≤ i ≤ j ≤ L.
(2.9)

n can be therefore calculated as

n = LE +
L(L+ 1)

2
, (2.10)

where the first term takes into account the total number of possible scalar
product between independent external momenta and a loop momenta, whereas
the second term calculates the combinatorics for the scalar products between
two loop momenta.

Therefore, t of the n the scalar products can be written in terms of the
inverse propagators, the remaining q = n − t are called irreducible scalar
products or ISPs and will be used as auxiliary variables. We can divide the
denominators appearing in eq. (2.6) as

I[α1, . . . , αn] =

∫ L∏
i=1

(
ddki
iπd/2

)
1

zα1
1 . . . zαt

t z
αt+1

t+1 . . . zαn
n

, (2.11)
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with

αi

{
≥ 0 i = 1, . . . , t

≤ 0 i = t+ 1, . . . , n
. (2.12)

The only difference between irreducible scalar products and denominators
(“true” propagators) is therefore the sign of the exponent. Here and in the
following we will refer to both ISPs and denominators as propagators, without
distinction.

Example 2.1.1. For example, considering the massless double box integral
(fig. 2.1, all figures in this thesis were drawn with Jaxodraw [5] based on
Axodraw [51]) we have

• L = 2 loops, E +1 = 4 external momenta and N = 2 · 3+ (2 · 3)/2 = 9
independent scalar products;

• it counts 7 propagators, therefore we need to add 2 irreducible scalar
products.

z2

z1

z3

z4

z5

z6

z7

Figure 2.1: Massless double box diagram with indicated the seven propagators
z1, . . . , z7.

The scalar integral in consideration is identified by a vector of integer
indices α = (α1, . . . , αN).

We introduce the concept of family of Feynman integrals:
Family [29]: A family of Feynman integrals is identified with integrals having
the same complete set of propagators {z1, . . . , zn}.

As an example, the box integral lies in the same family of the four-points
bubble integral, that is in fact obtained from the box by “pinching” (removing)
two propagators (fig. 2.2). We will make use of the following:
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Figure 2.2: Box diagram and four-points bubble.

Dot notation [3]: the presence of n dots on a certain propagator indicates
that it is elevated to the power n+ 1.

z1

z4

z3

z2

Figure 2.3: Box diagram where the propagator z1 is elevated to the power 2 and
the propagator z3 to the power 3.

Finally, we define what we mean by “cutting” a propagator:

Cut of a propagator: To cut a propagator zi means imposing on it the
on-shell condition, that corresponds to the substitution:

1

zi
→ δ(zi) (2.13)

The configuration where all the denominators are on the cut corresponds to
the so-called maximal cut.

We now define the concept of sectors:

Sector [29]: Two integrals belong to the same sector if and only if their
subset of propagators with positive powers is the same, i.e. if they have the
same denominators, possibly raised to different powers and/or with different
irreducible scalar products.
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Figure 2.4: Sunrise diagram on the max cut.

For each α we define a vector θ = (θ1, . . . , θn) where the θi are set to one
if and only if αi > 0 and zero otherwise [29]:

θi = Θ

(
αi −

1

2

)
, (2.14)

where Θ is Heaviside step function. All scalar integrals within one sector
lead to the same θ.

Corner integral [29] The scalar integral for which αC = θ(αC) is called
the corner integral of the sector.

The corner integral of a sector is then the integral presenting no numera-
tors and all denominators elevated to 1. If n is the total number of generalized
propagators, the total number of sectors is 2n.

We are now equipped with a “vocabulary” that is useful in the organization
of calculations and algorithms involving many Feynman integrals. The next
step is the introduction of some numbers giving us an idea of the complexity
of each Feynman integral, in order to identify the more complex ones and
express them as a function of the simpler ones using the linear relations. To
this end, we define the vector of positive propagators powers (r1, . . . , rt) which
is obtained from α by removing all non-positive indices while preserving the
order and the vector of negative propagators powers, (s1, . . . , sn−t), again
taken from α while preserving the order. We formally define t, the number
of independent propagators, as

t =
n∑

i=1

θi. (2.15)

Within a given sector, we define the sum of all positive powers and the nega-
tive sum of all non-positive powers to be a measure of the complexity of an
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integral [29]. To this end, we define:

r =
t∑

i=1

ri, s = −
n−t∑
i=1

si. (2.16)

We further notice that the number of dots of an integral is given by

ndots = r − t. (2.17)

It is generally understood that the higher r, s and t are, the more complicated
is the integral. Before reducing to master integrals, we must introduce a
weight associated to each integral, which indicates how “complicated” we
perceive that integral. The basis integrals present the lowest weight, as we
prefer to express every other integral as a function of them. Whenever we
solve any linear system satisfied by Feynman integrals we therefore express
integrals with higher weight in terms of those with lower weight. Associating
a weight to an integral means creating an ordering between them. The
ordering is arbitrary, and therefore the list of master integrals is not unique,
but every ordering yields the same number of master integrals. It is equivalent
to the choice of the basis of a vector space. Some bases may be more effective
than others, depending on the particular problem we are considering, but the
dimension of the vector space, therefore the number of elements in the basis,
stays the same. Examples of orderings can be found in [42, 29, 30].

We finally highlight that there exists also other criteria of ordering, such
as finiteness [38] or analytic properties which make integration easier [22].

2.2 | Reduction to master integrals

After introducing the necessary terminology to organize Feynman inte-
grals and some numbers that gauge their complexity, we turn to the de-
scription of the linear relations obeyed by Feynman integrals in dimensional
regularization and to the algorithm that exploits them to obtain their decom-
position into master integrals.

Each integral in the set constituting our amplitude obeys a set of linear
relations, making the integrals in the set not all linearly independent. We
want to write all of them as linear combinations of a smaller set of indepen-
dent integrals in order to reduce the number of them to be computed. This
procedure is called reduction to master integrals, which is the name we give
to the integrals in the minimal, linearly independent set. Linear relations
between Feynman integrals are classified in



Reduction to master integrals 19

• integration-by-parts identities (IBP)

• Lorentz invariance identities (LI)

• symmetry relations (SR)

We will describe how to obtain each of them in the following sections.

2.2.1 | Integration-by-parts identities

Integration-by-parts identities were first proposed around 1980 by Chetyrkin
and Tkachov [11, 49] and are a remarkable property of dimensionally regu-
lated Feynman integrals. The core idea is the extension to arbitrary d di-
mensions of Gauss’ theorem for the vanishing of the integral of a divergence.
Integration-by-parts identities derive from the vanishing of total derivatives
in dimensional regularization, which can be derived following [59, 55].

Exploiting the Poincarè invariance of a generic loop integral
∫
ddkf(k)

in dimensional regularization under loop momentum shift by an arbitrary
momentum k → k + p ∫

ddk f(k + p) =

∫
ddk f(k), (2.18)

and expanding around small values of the shift p,∫
ddk f(k + p) =

∫
ddk f(k) + pµ

∫
ddk

∂f(k)

∂kµ
+O

(
p2
)
. (2.19)

That implies the vanishing of total derivatives∫
ddk

∂

∂kµ
f(k) = 0. (2.20)

Therefore we can find linear relations between Feynman integrals by applying
integration-by-parts identities. We consider a complete set of identities which
take the following form∫

ddk1 . . . d
dkL

∂

∂kµi
·
(

vµj
za11 . . . zaNN

)
= 0,

vµj =

{
kµ1 . . . k

µ
L

pµ1 . . . p
µ
E

,

(2.21)

where we omitted the normalization of the integrals as it is not relevant to
our discussion.
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After the differentiation, one has to express the scalar products in terms
of the denominators and of the chosen irreducible scalar products to obtain
a set of relations of the form [47]∑

i

ciI[α1 + βi,1, . . . , αn + βi,n] = 0, (2.22)

with ci being polynomials depending on the dimensional regulator d, kine-
matic invariants, masses and indices, while I[α1, . . . , αn] are Feynman inte-
grals of the same sector or of subsectors, if some of the indices are zero or
negative. By solving these relations, one can express a generic Feynman inte-
gral in terms of a linear combination of linearly independent master integrals.
It has been proved [47] that the number of master integrals is finite. In gen-
eral, the reduction to master integrals is not a unique process, since, as we
said, there is arbitrariness in choosing an ordering and one usually tries to
reduce the integral and calls master integrals the ones that cannot be reduced
further.

2.2.2 | Lorentz invariance identities

We review Lorentz invariance identities following [3, 48]. Lorentz invari-
ance identities arise by exploiting the nature of Lorentz scalars of the inte-
grals in consideration. Considering an infinitesimal Lorentz transformation
on the external momenta pµi → pµi + δpµi with δpµi = ωµνpiν and ωµν a totally
antisymmetric tensor, we have

I[α1, . . . , αn] = I[α1, . . . , αn] +
∑
n

∂I[α1, . . . , αn]

∂pµn

= I[α1, . . . , αn] + ωµν
∑
n

pnν
∂I[α1, . . . , αn]

∂pµn
,

(2.23)

therefore ∑
n

(
pnµ

∂

∂pνn
− pnν

∂

∂pµn

)
I[α1, . . . , αn] = 0, (2.24)

to be contracted with all possible antisymmetric combinations of the form

pµi p
ν
j − pνi p

µ
j , (2.25)

that leads to E(E−1)/2 equations between integrals with shifted indices. For
example, following [3, 48], consider the three-points and four-points functions
(respectively known as “vertex” and “box” topologies, fig. 2.5). In the former
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case, we have two independent momenta, p1 and p2. We can build only one
LI identity for Ivertex,

(pµ1p
ν
2 − pν1p

µ
2)

2∑
i=1

(
piµ

∂

∂pνi
− piν

∂

∂pµi

)
Ivertex = 0. (2.26)

While for the four-points function Ibox we have three independent momenta,
p1, p2 and p3. We can therefore build 3 LIs,

(pµ1p
ν
2 − pν1p

µ
2)

3∑
i=1

(
piµ

∂

∂pνi
− piν

∂

∂pµi

)
Ibox = 0,

(pµ1p
ν
3 − pν1p

µ
3)

3∑
i=1

(
piµ

∂

∂pνi
− piν

∂

∂pµi

)
Ibox = 0,

(pµ2p
ν
3 − pν2p

µ
3)

3∑
i=1

(
piµ

∂

∂pνi
− piν

∂

∂pµi

)
Ibox = 0.

(2.27)

Since it has been proved that LIs [26] are not linearly independent from IBPs,
in principle we could avoid using Lorentz invariance identities in the Laporta
algorithm. LIs can be reproduced with only IBPs by generating and solving
a larger system of IBPs identities. This, however, would make the procedure
computationally much more expensive, therefore it is not reasonable to avoid
using LIs.

p1

p2

p3

p1

p2

p3

p4

Figure 2.5: Vertex and box topologies.

2.2.3 | Symmetry relations

In general, other identities between Feynman integrals emerge when it
is possible to shift the loop momenta such that the integral value does not
change, but its integrand is expressed as a combination of different integrands.
Then, considering the original integral and imposing its equivalence with the
combination of integrals obtained via the shift, it is possible to write identities
between integrals belonging to the same sector or even to different ones.
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As an example, considering the one loop bubble

I[α1, α2] =

∫
ddk

1

(k2 −m2)α1 ((k + p)2 −m2)α2
, (2.28)

we have the symmetry relation

I[α1, α2] = I[α2, α1], (2.29)

corresponding to the momentum shift

k → k⋆ = −k − p. (2.30)

In general, symmetry relations can be derived from loop momentum shifts

k⋆i =
L∑

j=1

Mijkj +
E∑

j=1

c
(i)
j pj, i = (1, . . . , L), Mij, c

(i)
j ∈ {0,±1}. (2.31)

Applying it to an integral containing also negative powers (ISPs elevated to
nonzero exponents) results in a linear combination of integrals. Symmetries
that relate integrals within the same sector are referred to as sector symme-
tries. Those relating different sectors of the same or of different families are
called sector mappings. We also highlight an observation about symmetry
relations obtained for diagrams presenting symmetries with respect to per-
mutations of external legs, i.e. symmetries involving permutations of external
momenta preserving the kinematic invariants [42]. For these diagrams we call
normal mappings the shift of loop momenta mapping a sector into another
one. We call generalized mappings a permutation of external momenta that
preserves the kinematic invariants that can be or cannot be followed by a shift
of loop momenta. It has been verified [42] that for a given set of seed integrals
(see the definition of seed integrals in Sect. 2.3) the identities generated for
a generalized mapped sector are not all covered by the identities generated,
for the same set of seed integrals, by combining the sector mappings with
identities generated for the unmapped sectors. The missing identities can be
recovered by adding more seed integrals in the unique and mapped sectors
and therefore complicating the system of equations. It is therefore reason-
able to include IBPs,LIs and SRs obtained for sectors that are “generalized”
mapped in our system of identities.

2.2.4 | Identification of trivial sectors

Another important step when dealing with a huge system of identities
is the possibility of a-priori identification of integrals yielding zero. In fact,
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within dimensional regularization, scaleless integrals are set to zero. We
can prove it by exploiting the property of scaling of the measure under a
transformation of the type k → sk∫

dd kk2a =

∫
dd (sk)(sk)2a = sd+2a

∫
dd kk2a, (2.32)

therefore ∫
dd kk2a = 0. (2.33)

Which implies that for generic a and s,
∫
k2a = 0. This implies that whenever

we find a scaleless integral, we can safely ignore it in all our identities.
An important clue to look for is the vanishing of the corner integral of a

given sector. To test it, a possible strategy consists in performing a reduction
for it and see whether it is zero. If it is, then all other integrals belonging
to the sector are zero as well [27]. A sector whose corner integral is zero is
called trivial sector or zero sector.

2.3 | Laporta algorithm

By exploiting the properties of dimensionally regulated Feynman integrals,
we end up with large sets of linear identities among integrals, with rational
coefficients depending on the dimension d and on the kinematic invariants.
Not all integrals are independent in the sense of these identities and therefore
can be expressed as linear combinations of a minimal set of integrals, called
master integrals.

At first glance, the solution of such a system of identities may look easy,
but in reality the number of equations can grow up to hundreds, or thousands,
or even millions, depending on the process under study. High-performance
computer algebra is needed to handle the complexity of the expressions ob-
tained and, even with that, the size of the intermediate expressions makes
difficult the inversion of such enormous system.

Recent progresses in this direction include approaches based on finite
fields to sidestep the appearance of large intermediate expressions [43, 31].

The Laporta algorithm constitutes the standard procedure used for per-
forming Feynman integrals decomposition. It exploits a huge system of iden-
tities, called IBP system, in order to express complex Feynman integrals to
master integrals. The procedure works as follows. It first builds the IBP
system obeyed by the set of integrals we want to decompose. To create these
identities, it exploits integration-by-parts identities, Lorentz invariance iden-
tities and symmetry relations. The identities are written for integrals of the
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form (2.6) with symbolic exponents αi and the equations obtained are called
template equations. Then, it evaluates the αis on explicit numerical values,
called seeds. The key point is that the system eventually “closes”, presenting
more equations than unknowns and can therefore be solved for the set of
integrals we want to reduce. It is also interesting to point out that, when
writing down the equations for the seed integrals, other integrals not in the
set to be reduced may appear. They are known as auxiliary integrals. We
can summarize the entire procedure in three points:

• creation of the IBP identities made of template equations;

• for a set of seeds, evaluation of the template equations for explicit nu-
merical values for the αis and generation of the system of seed equations;

• solution of the system of seed equations with the chosen ordering.

At the end of the procedure the integrals {Ii} in the set to be decomposed
are expressed as linear combinations of a few master integrals {Gi}

Ii =
∑
j

cijGj. (2.34)

2.3.1 | Example: one loop Bubble Iα1,α2

We propose a simple example of reduction to master integrals. We con-
sider the so-called “bubble” diagram with a massive loop in d-dimensions, also
known as the two-points one loop topology [3]:

z2

z1

Figure 2.6: “Bubble” diagram.

We write a generic bubble integral as

I[α1, α2] =

∫
ddk

1

(k2 −m2)α1((k − p)2 −m2)α2

=

∫
ddk

1

zα1
1 zα2

2

.

(2.35)
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It is parametrized by the powers α1 and α2 of the two propagators. For
convenience we adopt the notation I[α1, α2] ≡ Iα1,α2 . The vanishing of the
total derivative is given by the following two integration-by-parts identities,
obtained by considering the total derivative with respect to the internal mo-
mentum kµ contracted either with the loop momentum (first IBP) or with
the external momentum (second IBP):∫

ddk
∂

∂kµ

(
vµ

zα1
1 zα2

2

)
= 0


∫
ddk ∂

∂kµ

(
kµ

z
α1
1 z

α2
2

)
= 0∫

ddk ∂
∂kµ

(
pµ

z
α1
1 z

α2
2

)
= 0

,

vµ = kµ, pµ.

(2.36)

Thanks to the IBPs we can show that the generic Iα1,α2 can be written as
a linear combination of two master integrals: the bubble I1,1 and tadpole
I1,0. The other tadpole, identified by I0,1 is mapped to I1,0 with a symmetry
relation (see Sect. 2.2.3), that amounts to shifting the loop momentum kµ →
kµ − pµ.

We build the system of template equations for generic exponents α1, α2

by calculating the IBPs in eq. (2.36). The first template equation, that we
indicate with [bubble1], is obtained from the first IBP:∫

∂

∂kµ

(
kµ

zα1
1 zα2

2

)
= 0, (2.37)

and gives∫
d− 2α1 − α2

zα1
1 zα2

2

−
∫

2α1m
2

zα1+1
1 zα2

2

−
∫

α2(z1 − p2 + 2m2)

zα1
1 zα2+1

2

= 0, (2.38)

while the second template equation, [bubble2], is obtained from the second
IBP: ∫

∂

∂kµ

(
pµ

zα1
1 zα2

2

)
= 0, (2.39)

we obtain: ∫
α2 − α1

zα1
1 zα2

2

−
∫

α1(p
2 − z2)

zα1+1
1 zα2

2

−
∫

α2(z1 − p2)

zα1
1 zα2+1

2

= 0. (2.40)

We can now give explicit values to α1 and α2 in order to build explicit relations
between integrals of the bubble and tadpole families. We consider the seeds:

α1 = 0, α2 = 1,

α1 = 1, α2 = 0,

α1 = 1, α2 = 1.

(2.41)
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For α1 = 0, α2 = 1 we obtain∫
d− 1

z2
−
∫

z1 + 2m2 − p2

z22
= 0 [bubble1] ,

−
∫

1

z2
+

∫
z1 − p2

z22
= 0 [bubble2] .

(2.42)

That allows us to we find the following relation (fig. 2.7)

2m2

∫
1

z22
= (d− 2)

∫
1

z2
. (2.43)

= (d− 2)2m2

Figure 2.7: Diagrammatic identity for eq. (2.43).

For α1 = 1, α2 = 0 we obtain∫
d− 2

z1
−
∫

2m2

z21
= 0 [bubble1] ,∫

z1 − z2 + p2

z21
= 0 [bubble2] .

(2.44)

That allows us to find the same identity of eq. (2.43) for the propagator z1.
This is a consequence of the fact that, as we said, I1,0 and I0,1 are mapped
and therefore satisfy the same identities. For α1 = 1, α2 = 1 we obtain∫

d− 3

z1z2
−
∫

4m2

z21z2
+

∫
p2

z1z22
−
∫

1

z22
= 0 [bubble1] ,∫

1

z21z2
−
∫

1

z1z22
= 0 [bubble2] .

(2.45)

That allows us to find the identities (fig. 2.8)∫
1

z1z22
=

∫
1

z21z2
, (2.46)

and (fig. 2.9) (
4m2 − p2

) ∫ 1

z21z2
= (d− 3)

∫
1

z1z2
−
∫

1

z22
. (2.47)
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=

Figure 2.8: Diagrammatic identity for eq. (2.46).

(4m2 − p2) = (d− 3) −

Figure 2.9: Diagrammatic identity for eq. (2.47).

We generated enough identities and relations that can be used to decom-
pose, for example, I[1, 2] as a function of the two master integrals I[1, 1] and
I[1, 0]

I1,2 =
d− 3

4m2 − p2
I1,1 −

1

4m2 − p2
d− 2

2m2
I1,0. (2.48)

Giving more values to α1 and α2 and generating more identities allows to
decompose integrals presenting more dots in the propagators.

2.4 | Differential equations

Feynman integrals decomposition into master integrals is also used to
obtain differential equations for the master integrals, in order to compute
them without recurring to a direct integration. We follow [48, 3] for a brief
review of this approach.

The differential-equations method consists in using IBPs to derive linear
first-order differential equations in the external kinematic invariants satisfied
by MIs. It is one of the most successful and effective methods devised to
tackle the problem of evaluation of Feynman integrals without employing
direct integration. Historically, it was first proposed by Kotikov [24], who
considered only differential equations with respect to the internal masses and
was then extended and generalized to differential equations with respect to
all external invariants by Remiddi and Gehrmann [45, 18], who made this
method feasible to be applied to diagrams with massless internal propagators.
For clarity, let us refer to a process with E+1 external legs with independent
external momenta p1, . . . , pE. At any loop order the process depends up to



28 Feynman integrals

(E + 1)E/2 kinematic invariants, i.e. sij ≡ pi · pj. Following [48] we adopt
the notation

x =
(
x1, . . . , xE(E+1)/2

)
= (s11, . . . , s1E, . . . , sEE). (2.49)

We can write E relations using the chain rule:

∂

∂pµi
=
∑
j

∂xj
∂pµi

∂

∂xj
, (i = 1, . . . , E). (2.50)

That can be contracted with any of external momenta producing E2 scalar
equations:

pµk
∂

∂pµi
= pµk

∑
j

∂xj
∂pµi

∂

∂xj
, (i, k = 1, . . . , E). (2.51)

The relations in eq. (2.51) can be inverted to re-express E(E+1)/2 derivatives
in the external invariants as linear combinations of derivatives in the external
momenta. The system is often overcostrained since

E2 − (E + 1)E

2
=
E(E − 1)

2
≥ 0 ∀(E + 1) ≥ 2. (2.52)

Lorentz invariance —see Sect. 2.2.2— provide E(E − 1)/2 relations among
the derivatives with respect to the external momenta. Using LIs one can
prove that these different representations are all equivalent to one another.
All these considerations are independent of the loop order we are considering,
but only depend on the Lorentz invariance properties of the process. Once a
choice is made, we end up with

∂

∂xj
=
∑
ik

A
(j)
ik p

µ
l

∂

∂pµi
, (2.53)

with A(j)
ik rational functions in the dimensional regulator ϵ and of the E(E +

1)/2 external invariants x. Considering any scalar integral I we can then
write its derivative with respect to invariants as

∂I

∂xj
=
∑
ik

A
(j)
ik p

µ
l

∂I

∂pµi
. (2.54)

We can apply this procedure to write differential equations for a set of master
integrals {Gi}

∂Gn

∂xj
=
∑
ik

A
(j)
ik p

µ
l

∂Gn

∂pµi
, (n = 1, . . . , nMI), (2.55)
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where the right hand side (r.h.s.), having undergone derivatives, it is not
expressed as a linear combination of master integrals. This does not pose a
problem since we can now decompose the integrals appearing on the r.h.s.
into master integrals and substitute them again in eq. (2.55). In this way we
obtain a differential equation for the MIs

∂Gn

∂xj
=
∑
k

M
(j)
nkGk (n = 1, . . . , nMI). (2.56)

To summarize, the method of differential equations consists of:

• writing down derivatives of the MIs with respect to external invariants;

• reducing to MIs the right hand side;

• obtaining a system of differential equations for the MIs.
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3 | Intersection Theory

One of the most remarkable
discoveries in elementary
particle physics has been that of
the existence of the complex
plane

R.J. Eden, P.V. Landshoff, D.I.
Olive, J.C. Polkinghorne [14]

In this Chapter we introduce the formalism of intersection theory and
its applications to the decomposition of multiloop Feynman integrals in mas-
ter integrals. We include the presentation of a novel procedure to analyze
the number of master integrals for a given diagram. Throughout the whole
chapter we closely follow the presentation developed in [17, 16].

3.1 | Overview

Intersection theory of differential forms is a branch of algebraic geometry
and topology, originally developed to study Aomoto-Gel’fand hypergeometric
functions [12, 34, 36] and only recently its techniques have been borrowed
and applied to the study of Feynman integrals [17, 16, 35]. By drawing
a connection between Feynman integrals and hypergeometric functions, it
allows to describe in a pure algebraic way the problem of decomposition
of a Feynman integral into master integrals. This rather novel procedure
is an alternative to the regularly used Laporta method. It presents as its
main asset the direct decomposition of multiloop integrals and therefore the
advantage of sidestepping the solution of large and sparse systems of IBP
identities. This is done by noticing that Feynman integrals obey a vector
space structure and therefore, after having identified the vector space basis
with the master integrals, their decomposition turns into the projection of a
vector into the vector space basis. In order to show that Feynman integrals
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obey a vector space structure, it is necessary to change their representation
from the commonly used momentum parametrization to one that mirrors
the structure of an hypergeometric function. In our work we choose the
Baikov representation, where integration variables are changed from loop
momenta to generalized propagators. Other alternatives are possibles, such as
representations that integrate over Lorentz invariant scalar products [8]. The
vector space is called twisted cohomology and it consists of equivalence classes
of Feynman integrals. The equivalence relation is conveniently expressed as
an integration-by-parts identity. That is, in our case, we consider Feynman
integrals whose integrands are equivalent up to an IBP in Baikov space.

To summarize, first we write Feynman integrals in a suitable represen-
tation to be used with the formalism of intersection theory. Then, we de-
compose them into a basis of master integrals via the calculation of several
scalar products, called intersection numbers. The main point in the calcula-
tion of intersection numbers consists in summing over the residues, calculated
around a set of poles, of the product of two functions, one of them being the
solution of a differential equation around each pole in consideration. The
calculation of intersection numbers of differential n−forms is done via a re-
cursive procedure.

3.2 | Hypergeometric functions vector space

As we anticipated, intersection theory allows for a direct decomposition of
Feynman integrals into master integrals in terms of projections into a basis,
bypassing the resolution of large systems of identities. In this section we
expand on the Feynman integrals parametrization we use in order to perform
intersection theory calculations and on the decomposition strategies. There
are various ways in which we can represent a generic Feynman integral. As
discussed in Ch. 2, the usual representation we use for an L loop Feynman
integral in d-dimensions is the momentum parametrization, that we rewrite
here for convenience

I[α1, . . . , αn] =

∫ ( L∏
i=1

ddki
iπd/2

)
1

zα1
1 . . . zαn

n

, (3.1)

where zi are generalized inverse propagators of the form zi = P 2
i −M2

i as
described in Ch. 2. We first look at the so called Aomoto-Gel’fand general-
ized hypergeometric integrals, in order to find a representation for Feynman
integrals mimicking their structure. Our goal is to take advantage of the
properties obeyed by generalized hypergeometric integrals to decompose our
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Feynman integrals written in a convenient representation. We closely fol-
low [16, 17]. Aomoto-Gel’fand hypergeometric functions are integrals of the
type

I =

∫
C
u(z)φ(z), (3.2)

where u is a multivalued function, called twist. In the context of Feynman
integrals decomposition it takes the form

u =
∏
i

Bγi
i , (3.3)

with γi “generic” exponents. φ is a rational single-valued and holomorphic
differential n-form. Both u and φ depend on n variables z = (z1, . . . , zn). We
indicate φ as

φ(z) =
f(z)

zα1
1 . . . zαn

n

dz1 ∧ · · · ∧ dzn =
f(z)

zα1
1 . . . zαn

n

dnz, (3.4)

with f(z) a rational function and αi ∈ Z.
A key assumption is that u regulates all the poles present in φ.

u(z)φ(z)
z → pole of φ

finite. (3.5)

Within Feynman integrals, this assumption is often violated and, in order to
accommodate for it, we need to introduce some regulators, as we explain in
Sect. 3.4

Another fundamental assumption is for the function u(z) to vanish on the
boundary of C:

u(∂C) = 0. (3.6)
This property is the key to give rise to the vector space structure, that is in
turn the key object of the decomposition via intersection theory. We consider
the integral of the total derivative of the product of two functions, u, which
is our multivalued function, and ξ which is a differential (m− 1)−form.

By Stokes’ theorem and eq. 3.6, the integral is zero:∫
C
d[uξ] =

∫
∂C
uξ = 0. (3.7)

Expanding the differential we obtain∫
C
d[uξ] =

∫
C
du ∧ ξ + u dξ

=

∫
C
u

[
du

u
∧+d

]
ξ

≡
∫

u∇ωξ.

(3.8)
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For ease of notation we introduce the function ω and we rewrite all inside
the brackets as a covariant derivative ∇ω

du

u
= d log u ≡ ω, ∇ω ≡ d + ω ∧ . (3.9)

Therefore we find that the integral of the product of the multivalued function
u and the covariant derivative of a differential (m− 1)-form, ∇ωξ (which is
an m−form), is zero: ∫

u∇ωξ = 0. (3.10)

So we can see that if we have an integral of a certain u and an m−form φ we
can add to the integrand the product of u times the covariant derivative of
any (m− 1)−form and the integral remains the same. This is equivalent to
say that two integrands are the same up to integration-by-parts identities.

This leads us to define the concept of twisted cohomology class, namely
the class of functions ω⟨φ| integrating to the same result and that differ by a
total covariant derivative:

φ ∼ φ+∇ωξ. (3.11)

The functions φ modulo the equivalence class obey a vector space structure
called twisted cohomology, where the word “twisted” comes from the replacing
of the usual derivative by the twisted version represented by the covariant
derivative ∇ω. This is the same generalization that happens when considering
the gauge transformation in an abelian gauge theory, like QED, and gener-
alizing it to a non abelian one, like QCD [54]. We indicate the equivalence
class of φ with the bra notation:

ω⟨φ| : {ψ | ∃ξ , ψ +∇ωξ = φ }, (3.12)

and the twisted cohomology group with Hn
ω .

In the same fashion we can define a twisted homology group consisting of
the equivalence classes of contours of integration that give rise to the same
result. It can be seen that it also obeys a vector space structure, this time
indicated with Hω

n , with its members identified by the square ket notation
|C].

Here and in the following we will not be interested in the homology group,
as in order to have integration-by-parts identities it is not necessary to specify
the contour of integration, it suffices to just choose integrands obeying certain
properties, such as the vanishing of u on the boundaries. Therefore we focus
our discussion only on the twisted cohomology group and its properties.
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It is now manifest that hypergeometric integrals can be seen as bilinear
pairings between an element of the twisted cohomology and one of the twisted
homology, the result being independent of the representative chosen:

I =

∫
C
u(z)φ(z) = ⟨φ| C]. (3.13)

The pairing means that in practice we have to perform an integration over
the contour C of the product between φ and u.

Fixing the contour of integration C, we can see that the integral I =
⟨φ| C] inherits the vector space structure of the ⟨φ|. As we will present in
the following sections, connections are made between integrals I and the
multiloop Feynman integrals we are interested in decomposing. The fact
that I obeys a vector space structure opens up the possibility to perform the
decomposition into master integrals via a direct projection into the vector
space basis.

In order to perform projections into the vector space basis we need to
define a scalar product and therefore firstly introduce a dual vector space.
This is done by introducing a dual integral:

I⋆ =

∫
C⋆

u−1 φ⋆ = [C⋆ |φ⋆⟩ , (3.14)

where we consider the following covariant derivative:

∇−ω = d− ω∧, ω = d log u , (3.15)

which just switches ω → −ω since the dual integral presents u−1 instead of
u. The equivalence classes of φ⋆ are therefore given by

φ⋆ ∼ φ⋆ +∇−ωξ
⋆. (3.16)

We can define the dual twisted cohomology vector space as the vector space
of the equivalence classes:

|φ⋆⟩ω : {ψ⋆ | ∃ξ⋆ , ψ⋆ +∇−ωξ
⋆ = φ⋆ }. (3.17)

We will indicate the dual twisted cohomology vector space with (Hn
ω)

⋆ = Hn
−ω

and its members with |φ⋆⟩.
As above, the equivalence relation can also be found between duals of inte-

gration contours, obtaining the dual twisted homology vector space (Hω
n )

⋆ =
H−ω

n with its members indicated with [C⋆|.
This ultimately leads to the interpretation of the dual integral as a pairing

between two equivalence classes, belonging respectively to the dual twisted
homology and cohomology vector spaces.
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Having introduced a vector space and its dual we can now proceed to
define a scalar product between the two spaces. As mentioned before, we
will focus on the twisted cohomology group, leaving the contour of integration
constant.

Given two integrals I = ⟨φL| C] and I⋆ = [C⋆ |φR⟩, the scalar product
between φL, belonging to the twisted cohomology vector space and φR be-
longing to its dual is called intersection number and is defined by Cho and
Matsumoto as [12]

⟨φL|φR⟩ω =
1

(2πi)n

∫
X

ιω(φL) ∧ φR, (3.18)

where we used the L and R notation instead of the ⋆ one in order to recognize
the φs from their position in the bra-ket product. the contour of integration
X represent the whole complex space Cn stripped of the poles of ω. ιω(φL) [6]
performs a regularization on φL by mapping it to an equivalent form (so the
value of the integral is unchanged) with compact support. Since both φL and
φR are holomorphic on the domain of integration X, omitting the mapping
ιω would cause the intersection number to vanish. Following [6] we report a
brief justification of why this is true and so this prescription actually yields
an integral that is nonzero.

We focus on the 1−dimensional case in the variable z ∈ C. X is therefore
C without the points corresponding to the poles of ω. We can always decom-
pose any function f(x, y) overC in its real and imaginary part f(x, y) = u+iv.
By introducing the following change of variables{

z = x+ iy

z̄ = x− iy
, (3.19)

we end up with a function f̃(z, z̄). Because of the Cauchy-Riemann condi-
tions, if a function f̃ is holomorphic, then its dependence on z, z̄ reduces to
f̃(z). In general, any 1−form φ can be decomposed as

φ = φz dz + φz̄ dz̄. (3.20)

When doing the wedge product between two forms, because of the antisym-
metric nature of the wedge product, only the term proportional to dz ∧ dz̄
survives. If although the forms are holomorphic, then they are decomposed
as φ = φz dz giving rise to only terms proportional to dz∧dz that inevitably
vanish.

In the multivariate case, the integration over X is done by iteration, split-
ting it into one-dimensional fibers and proceeding one variable at time, con-
sidering the others as constant parameters.

Intersection numbers obey interesting properties such as
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• independence from the representative chosen for each equivalence class
of the twisted and dual twisted cohomology groups

⟨φL|φR⟩ = ⟨φ̃L|φR⟩ = ⟨φL|φ̃R⟩ = ⟨φ̃L|φ̃R⟩ , (3.21)

with
φ̃L = φL +∇ωξL,

φ̃R = φR +∇−ωξR,
(3.22)

where the (n− 1)-differential forms ξL and ξR are chosen so that they
have poles regulated by u;

• obey the symmetry relation

⟨φL|φR⟩ω = (−1)n ⟨φR|φL⟩−ω . (3.23)

To summarize, in this section we introduced hypergeometric integrals as bi-
linear pairings between cohomology and homology classes of equivalence, we
gave a brief account of their properties, the most important one being the fact
that hypergeometric integrals with the same contour of integration obey a
vector space structure. We introduced a dual vector space in order to perform
scalar products and ultimately projections. Now we turn to the description
of the dimension of the vector space, ultimately corresponding to the number
of master integrals.

3.3 | Dimension of twisted cohomology group

An important characteristic in the description of the twisted cohomology
vector space is its dimension, that we indicate with ν and can be calculated
in different ways. The first way is presented in [16], and we report it for
completeness: using the complex Morse (Picard-Lefschetz) theory, we can
determine ν as the number of critical points of the function log u(z) [28].
Critical points are defined as the solutions of ∂zi log u(z) = 0, which can be
expressed more conveniently using ω. Since ω = d log(u), then

ω =
n∑

i=1

ω̂idzi, ω̂i =
∂ log(u)

∂zi
=
∂ziu

u
. (3.24)

Therefore counting the number of critical points means counting the number
of solutions of

ω̂i = ∂zi log u(z) = 0, (i = 1, . . . , n). (3.25)
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A strategy based on the Shape Lemma (see App. A) allows to count the
number of solutions without explicitly solving the system. Since in our appli-
cations to the decomposition of Feynman integrals the function u takes the
form

u =
∏
j

Bγj
j , (3.26)

eq. (3.25) turns into

ω = d log (u) =
∑
j

γj log (Bj), (3.27)

where each ω̂i is given by

ω̂i =
∑
j

γj
∂ziBj

Bj

, (i = 1, . . . , n). (3.28)

Then, assuming we do not have critical points at infinity, the number of
solutions equals the dimension of the quotient space of the ideal I:

I =

〈
β1, . . . , βn, z0

∏
j

Bj − 1

〉
, with βk ≡

∑
i

γi(∂zkBi)
∏
i ̸=j

Bj, (3.29)

where the βi are the numerators of each term in the sum constituting ω̂i. The
last term with the additional variable z0

z0
∏
j

Bj − 1, (3.30)

is introduced in order to exclude from the solutions of the system the case
for any of the Bj to be zero (as they appear in the denominator of the ω̂i).
The Shape Lemma ensures that the number of zeroes of I, and therefore
the number of solutions of eq. (3.29), is the dimension of the quotient ring
(App. A)

ν = dim(V(I)/I), (3.31)

where we need to consider the ideal I as generated by a Gröbner basis GI
and we indicate with V(I) the algebraic variety of polynomials vanishing on
the zeroes of I.

We now present our strategy to find the dimension of the twisted coho-
mology group.
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3.3.1 | Master monomial analysis

In our work we use a method inspired by the Laporta algorithm to calcu-
late the dimension of the twisted cohomology group, that we name master
monomials analysis.

As we anticipated and we will explain thoroughly in Sect. 3.4.2, in our
applications the function u has the form

u =
∏
j

Bγj
j . (3.32)

In particular
u =

∏
j

z
ρj
j Bγ, (3.33)

where B is the Baikov polynomial and z
ρj
j are denominators elevated to pa-

rameters ρj acting as regulators of the poles of ω. As the Shape Lemma
ensures, the basis of the quotient ring V(I)/I is given by the number of
points in V(I), therefore we are looking for the solution of the system gener-
ated by the generators of the ideal I. The generators are the ones appearing
in eq. (3.29)

{βi}ni=1 ∪ {z0
∏
j

Bj − 1}, with βk ≡
∑
i

γi(∂zkBi)
∏
i ̸=j

Bj. (3.34)

Suppose our Feynman diagram in Baikov representation counts n propaga-
tors, nisp of which are irreducible scalar products. As we will show later,
irreducible scalar products do not need to be regulated by any ρj. Therefore
we have three types of equations to put to zero in our system.

The first one is the case in which the variable zi is a propagator that needs
to be regulated. In that case ω̂i gives:

ω̂i =
∂zi

(
zρ11 . . . zρii . . . z

ρn−nisp
n−nisp

Bγ
)

zρ11 . . . zρii . . . z
ρn−nisp
n−nisp

Bγ

=
ρiz

ρ1
1 . . . zρi−1

i . . . z
ρn−nisp
n−nisp

Bγ

zρ11 . . . zρii . . . z
ρn−nisp
n−nisp

Bγ
+
zρ11 . . . zρii . . . z

ρn−nisp
n−nisp

∂ziBγ

zρ11 . . . zρii . . . z
ρn−nisp
n−nisp

Bγ

=
ρi
zi

+
γBγ−1∂ziB

Bγ

=
ρiB + γzi∂ziB

ziBγ
.

(3.35)
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The second case is when zk is an irreducible scalar product, in that case ω̂k

simplifies with respect to the previous equation as:

ω̂k =
∂zk

(
zρ11 . . . z

ρn−nisp
n−nisp

Bγ
)

zρ11 . . . z
ρn−nisp
n−nisp

Bγ

=
zρ11 . . . z

ρn−nisp
n−nisp

∂zkBγ

zρ11 . . . z
ρn−nisp
n−nisp

Bγ

=
γBγ−1∂zkB

Bγ

=
γ∂zkB
B .

(3.36)

While the third case is an equation, indicated with ω̂extra, that we add in
order to prevent the appearance of solutions as Bj = 0 for any j:

ω̂extra = z0

n−nisp∏
j=1

z
ρj
j Bγ − 1. (3.37)

Our goal is then to determine the number of solutions of the system
ω̂i = 0 (i = 1, . . . , n− nisp)

ω̂k = 0 (k = n− nisp, . . . , n)

ω̂extra = 0

, (3.38)

that reads 
ρiB + γzi∂ziB = 0 (i = 1, . . . , n− nisp)

γ∂zkB = 0 (k = n− nisp, . . . , n)

z0
∏n−nisp

j=1 z
ρj
j Bγ − 1 = 0

. (3.39)

That is a multivariate polynomial system in the variables z1, . . . , zn. To solve
this system of equations we adopt the following strategy. We see a polynomial
equation as a linear relation satisfied by monomials, which relates monomi-
als elevated to different powers. Following this reasoning, the monomials
appearing in the equations are not all linearly independent (in the sense of
the relations drawn by the polynomial equations). We look for the number
of independent monomials, which corresponds to the number of solutions of
the system and, therefore, to the dimension of the quotient space. Consider
the following example
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Example 3.3.1. The polynomial equation

z2 + bz + c = 0, (3.40)

can be seen as a linear relation between the monomials z2, z and 1. We can
write a template equation for symbolic n for eq. (3.40) by multiplying it for
an arbitrary monomial zn

zn+2 + bzn+1 + czn = 0. (3.41)

By giving several seeds (explicit values) to n, we build a system of equations.
Its solution yields that any zn(n ≥ 2) can be expressed as linear combination
of a factor linear in z and a term of order 0 in z. Therefore, the linearly inde-
pendent quantities with respect to the relation (3.41) are z and 1. A possible
monomial basis contains two “master monomials” and can be identified with
the set {z, 1}. In fact, eq. (3.40) has usually two solutions.

Therefore, in order to find the number of solution of eq. (3.39), we generate
more polynomial equations, called template equations, by multiplying the
equations in the system (3.39) by monomials elevated to arbitrary powers,
that is 

zα(ρiB + γzi∂ziB) = 0

zα(γ∂zkB) = 0

zα
(
z0
∏n−nisp

j=1 z
ρj
j Bγ − 1

)
= 0

. (3.42)

For clarity of notation, we indicate a monomial elevated to arbitrary powers
α1, . . . , αn in the variables z1, . . . , zn with zα where both z and α are vectors
with n components,z = (z1, . . . , zn) and α = (α1, . . . , αn), and the expanded
notation reads:

zα = zα1
1 . . . zαn

n . (3.43)

We then set the symbolic powers α in the seed equations (3.42) to integer
numbers to obtain a large number of equations called seed equations. As in
the Laporta procedure, we generate a large number of identities and then we
solve them in order to find the independent variables. In this case we solve the
system of seed equations we generated in order to find the master monomials.
Their number corresponds to the dimension of the twisted cohomology vector
space.

Before solving it we need to specify an order for the monomials, to express
which are the criteria for the monomials we prefer to have in our basis. For
this procedure we implemented a Mathematica routine which relies on the
framework FiniteFlow [42, 43] in order to generate the seed equations and
solve them.
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3.3.2 | Basis projection

Considering the twisted cohomology group Hn
ω equipped with a basis of

master forms {⟨e1| , . . . , ⟨eν |} and the dual twisted cohomology group Hn
−ω

with the dual master forms’ basis {|h1⟩ , . . . , |hν⟩}, we can decompose any
vector ⟨φ|:

⟨φ| =
ν∑

i=1

ci ⟨ei| , ci =
ν∑

j=1

⟨φ|hj⟩
(
C−1

)
ji
, (3.44)

and any dual vector |φ⋆⟩:

|φ⋆⟩ =
ν∑

i=1

c⋆i |hi⟩ , c⋆i =
ν∑

j=1

(
C−1

)
ij
⟨ej|φ⋆⟩ . (3.45)

Therefore, pairing the ⟨φ| (|φ⋆⟩) with a constant contour |C] ([C⋆|), we can
write the decomposition of any hypergeometric integral I (I⋆) in terms of the
basis integrals Ji (J⋆

i ).

I =
ν∑

i=1

ciJi I = ⟨φ| C] Ji = ⟨ei| C],

I⋆ =
ν∑

i=1

c⋆iJ
⋆
i I⋆ = [C⋆ |φ⋆⟩ J⋆

i = [C⋆ |hi⟩ .
(3.46)

The basis integrals will correspond to the master integrals when dealing with
Feynman integrals decompositon. In eqq. (3.44),(3.45) we introduced the
metric Cij as the ν × ν matrix of intersections of the master forms:

Cij = ⟨ei|hj⟩ , (3.47)

which in general differs from the identity, as we will not be using orthonormal
bases. We also used the resolution of the identity in the cohomology space

Ic =
ν∑

i,j=1

|hi⟩
(
C−1

)
ij
⟨ej| . (3.48)

We give an account for the formulae used for the decomposition of a vector
of the (dual) twisted cohomology space into its (dual) basis in App. C. The
same reasoning can be applied to the twisted homology vector space, defining
a scalar product between representatives of the twisted homology and its dual.

As we have seen, linear relations between elements of the cohomology
vector space translate into vector decomposition and ultimately in integrals
decomposition by keeping constant the integration contour.
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3.4 | Feynman Integrals decomposition

The intersection-theory approach allows us to identify Feynman integrals
with elements of the twisted cohomology vector space, I = ⟨φ| C], the master
integrals being identified with integration over the same contour of the basis
forms Ji = ⟨ei| C]. Within this framework, we see the problem of decompo-
sition into master integrals as finding the coefficients of the projection of a
vector into its basis elements via the scalar product we defined in Sect. 3.2.

Since we want to decompose a Feynman integral I into a basis of MIs
{Ji}νi=1, we first need to put the Feynman Integrals into a suitable represen-
tation to be used in combination with intersection theory. In the following
we describe two possibilities, which do not exhaust all the possible strategies
but are the ones used in our work.

Throughout this work we performed calculations starting from Feynman
integrals in Baikov representation.

3.4.1 | Baikov representation

One way to transform our Feynman integrals so they look like an hy-
pergeometric function is by means of the Baikov representation, which was
invented recently, in the 1990s.

We follow closely the treatment presented in [21, 55, 39]. We consider an
L loop Feynman integral with E + 1 external legs in d = 4− 2ϵ dimensions.
We label loop momenta as k1, . . . , kL. Because of momentum conservation,
only E of the external momenta will be linearly independent and we indicate
them with p1, . . . , pE. We collectively indicate loop and external momenta
as q with qi = ki, i = 1, . . . , L and qL+i = pi, i = 1, . . . , E. As we said in
Ch. 2 we have n = L(L + 1)/2 + LE independent scalar products that can
be obtained as:

ki · pj 1 ≤ i ≤ L, 1 ≤ j ≤ E,

ki · kj 1 ≤ i ≤ j ≤ L.
(3.49)

and we will collectively indicate them as si,j = qi·qj with si,j = sj,i. For clarity
we report the form of the Feynman integral in consideration in momentum
parametrization, that is written as

I[α1, . . . , αn] =

∫ ( L∏
i=1

ddki
iπd/2

)
1

zα1
1 . . . zαn

n

, (3.50)

with zi = P 2
i −M2

i , Pi and Mi respectively indicating a combination of mo-
menta and masses imposed by the kinematics of the diagram in consideration.
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The main idea behind Baikov representation is to switch integration vari-
able from the loop momenta to the denominators:

{kµi }Li=1 → {zi}ni=1. (3.51)

After the change of variables the integral takes the form

I[α1, . . . , αn] = K

∫
C

dz1 . . . dzn
zα1
1 . . . zαn

n

B
D−L−E−1

2 , (3.52)

where B is the Baikov polynomial calculated as a determinant of the Gram
matrix of scalar products qi · qj

B = G(q1, . . . , qn) = Det(qi · qj), (3.53)

K is a constant prefactor depending on the kinematic invariants and on the
regulator d and C is an integration contour such that the Baikov polynomial
vanishes on its boundaries. From this representation we can recognize the
structure of an hypergeometric integral by writing

I[α1, . . . , αn] = K

∫
C
uφ, (3.54)

with
u = B

D−L−E−1
2 , φ =

dz1 . . . dzn
zα1
1 . . . zαn

n

. (3.55)

More details on the Baikov representation and how to obtain it can be found
in App. B. Cuts of propagators are implemented in Baikov representation
simply setting the cut propagators zis to zero in the Baikov polynomial. For
example, cutting the set of propagators τ = {z1 . . . zm} we get

uτ = u(z)

∣∣∣∣
zi∈τ→0

. (3.56)

The cut prescription in Baikov representation coincides with the replacement

1

zi
→ δ(zi), (3.57)

inside the φ, when the diagram in consideration has no dots on the cut
propagator. The integration contour, on the other hand, is deformed into

Cτ cut =⟲1 ∧ · · · ⟲m ∧C ′
, (3.58)
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where ⟲i indicates a small circle in the complex plane around the pole at
zi = 0 and C ′ is given by the intersection of the original domain with the
on-shell conditions zi = 0, (i = 1, . . . ,m)

C ′
=
⋂
zi∈τ

{zi = 0} ∩ C. (3.59)

Integrating out the cut variables, the hypergeometric integrals takes the form

I[α1, . . . , αn]

∣∣∣∣
τcut

∼
∫
C′
u

′
φ

′
. (3.60)

with

u
′
= u

∣∣∣∣
zi∈τ, zi=0

, φ
′
= φ̂

′
dn−mz, dn−mz = dm+1z ∧ · · · ∧ dnz. (3.61)

where φ̂′ has an expression accommodating for the presence of dotted cut
propagators

φ̂
′
=
f(zm+1, . . . , zn)

z
αm+1

m+1 . . . zαn
n

1

u

(
m∏
i=1

∂
(αi−1)
zi u

(αi − 1)!

)
. (3.62)

We expand a bit on eq. (3.62). The complicated expression actually just
indicates the treatment that the function φ needs to undergo in order to
apply the cut prescription in the form of eq. (3.57) whenever it presents one
or more dots on the cut propagator. For clarity, we propose an example to
explicitly see what happens when the cut propagator has one dot.

Example 3.4.1. We consider the box diagram with one dot on the propaga-
tor z2, indicated with I[1, 2, 1, 1].

I[1, 2, 1, 1] =

∫
C
d4z u

1

z1z22z3z4
. (3.63)

Suppose we want to decompose this diagram but on the cut {2, 4}. We can
not do it directly because the prescription of eq. (3.57) is limited to un-dotted
propagators. Therefore, we need to recast the integral in a suitable form such
that it keeps the hypergeometric structure of the integrand while removing
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the dot. By integrations by parts identities we get

I[1, 2, 1, 1] =

∫
C
d4z u

1

z1z22z3z4

= −
∫
C
d4z u∂z2

(
1

z1z2z3z4

)
= − u

z1z2z3z4

∣∣∣∣
∂C

+

∫
C
d4z ∂z2(u)

1

z1z2z3z4

= −0 +

∫
C
d4z ∂z2(u)

1

z1z2z3z4
,

(3.64)

where the last passage is justified by the vanishing of boundary terms in
dimensional regularization. We write the remaining term in the form u · φ′

∫
C
d4z ∂z2(u)

1

z1z2z3z4
=

∫
C
d4z u

∂z2(u)

u

1

z1z2z3z4

=

∫
C
d4z u

∂z2 log(u)

z1z2z3z4
.

(3.65)

So that we can apply the cut prescription. Therefore we have that the differ-
ential form associated to I[1, 2, 1, 1] on the cut {2, 4} reads

φ′ =
∂z2 log(u)

z2z4

∣∣∣∣
z2=z4=0

dz2 ∧ dz4. (3.66)

The procedure for the presence of a higher number of dots is the same, just
repeated, and leads to the expression for φ′ given in eq. (3.62)

3.4.2 | Decomposition strategies

Our goal is finding the coefficients ci of the decomposition of a generic
Feynman integral I in a basis of master integrals {Ji}

I =
∑
i

ciJi. (3.67)

In [16] three strategies are presented: we report here the two we use through-
out the work. We start by describing the first step, common to all the strate-
gies, that consists in finding the master integrals.
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Finding the MIs

We label the propagators of the Feynman integral in consideration with
integer numbers and indicate the set with Σ.

Any sector (following the definition given in Ch. 2) of the integral in
consideration is identified by its denominators, which form a subset σ of Σ.
Considering a sector of a given integral means cutting all zi ∈ σ. This means
that we have to operate on u by sending to zero all the zi ∈ σ:

uσ = u(z)

∣∣∣∣
zi∈σ→0

. (3.68)

where u is the Baikov polynomial to the power γ. In order to find the number
of master integrals we analyze all sectors of the integral family in consider-
ation following one of the procedure outlined in Sect. 3.3. In particular,
we follow the master monomial analysis presented in Sect. 3.3.1. The total
number of MIs is given by the sum of the MIs in each sector

ν =
∑
σ

νσ. (3.69)

where symmetry relations are not taken into account, therefore the number
is usually higher than the one found via Laporta algorithm. The master
integrals are then arbitrarily chosen and identified with the pairing

Ji = ⟨ei| C]. (3.70)

Straight decomposition

We directly decompose the integral I following eq. (3.67), that expanded
looks like

I =

∫
C
uφ = ⟨φ| C] =

ν∑
i=1

ci ⟨ei| C] =
ν∑

i=1

ci

∫
C
u ei =

ν∑
i=1

ci Ji, (3.71)

where ci are given by the decomposition as seen in eq. (3.44). This ap-
proach takes the Feynman integral and directly decomposes it into the basis
of chosen master integrals. It implies that one needs to calculate intersec-
tion numbers of (nden + nisp)−differential forms, since all Baikov variables
are taken into account, making it the approach that needs to calculate the
intersection numbers with higher n and is therefore the one computationally
more demanding.

In the definition of hypergeometric functions in Sect. 3.2, we said that u
must regulate all poles of φ. This assumption is often violated in Feynman
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integrals, and is taken care of via the introduction of a regulated u, denoted
by uρ that contains all the monomials zρii for each non regulated pole present
in the differential form φ

uρ =

(∏
i∈Σ

zρii

)
u(z). (3.72)

ω takes the regulated form, ωρ

ωρ = d log(uρ) = d log(u) +
∑
i∈Σ

ρi
dzi
zi

= ω +
∑
i∈Σ

ρi
dzi
zi
. (3.73)

Intersection numbers calculated through the regulated uρ and ωρ lead to a set
of coefficients that are a function of the regulators, ci(ρk). The coefficients ci
appearing in eq. (3.67) are obtained taking the limit

ci = lim
ρk→0

ci(ρk) = lim
ρk→0

ν∑
j=1

⟨φ|hj⟩ρ
(
C−1

ρ

)
ji
, (Cρ)ij = ⟨ei|hj⟩ρ . (3.74)

Bottom up decomposition

For this strategy, called bottom up approach, we first need to make some
definitions, following [16]. We define a spanning set of cuts as the minimal
set of cuts in which each master integral appears at least once and we denote
an element of the set, called a spanning cut, with τ .

The bottom up approach consist in performing the decomposition on the
set of spanning cuts of the integral in consideration. This implies calculating
intersection number of n forms with n being the number of propagators and
irreducible scalar products on the set of cuts in consideration. Clearly, n <
nden + nisp, therefore making this approach less computationally demanding
than the straight decomposition.

Considering a spanning cut τ we indicate with Sτ the set of sectors sur-
viving on the cut τ , namely the sectors that contain all the denominators
that are on the cut on τ

Sτ = {σ |σ ⊆ τ}. (3.75)

On the spanning cut τ , u becomes

uτ = u(z)

∣∣∣∣
zi∈τ→0

, (3.76)

and the decomposition is performed considering uτ instead of u. The coeffi-
cient ci,τ obtained are identical to those appearing in the straight decompo-
sition as coefficients are invariants under cuts in unitarity-based approaches.
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The coefficients obtained from the straight decomposition can be obtained
combining all the coefficients obtained from all τ in the set of spanning cuts.
Integral decomposition on the spanning cut τ takes the form

Iτ =

∫
Cτ
uτ φτ = ⟨φτ | Cτ ]

=

νSτ∑
i=1

ci ⟨ei,τ | Cτ ] =
νSτ∑
i=1

ci

∫
Cτ
uτ ei,τ

=

νSτ∑
i=1

ci Ji,τ ,

(3.77)

where νSτ is the number of MIs surviving on the spanning cut. The coeffi-
cients are given by

ci =

νSτ∑
j=1

⟨φτ |hj,τ ⟩
(
C−1

τ

)
ji
, (Cτ )ij = ⟨ei,τ |hj,τ ⟩ . (3.78)

Also in this case we need to introduce a regularized uτ , indicated with uτ,ρ
whenever φτ presents poles non regulated by uτ . The decomposition takes
the form analogous to the one obtained in the case of straight decomposition,
but everything is considered on the cut τ . We report for clarity the form of
the functions uτ,ρ

uτ,ρ =

 ∏
i∈Σ\τ

zρii

uτ , (3.79)

and ωτ,ρ

ωτ,ρ = d log(uτ,ρ) = d log(uτ ) +
∑
i∈Σ\τ

ρi
dzi
zi

= ωτ +
∑
i∈Σ\τ

ρi
dzi
zi
. (3.80)

The coefficients obtained after taking the limit

ci = lim
ρk→0

ci(ρk) = lim
ρk→0

νSτ∑
j=1

⟨φτ |hj,τ ⟩ρ
(
C−1

τ,ρ

)
ji
, (Cτ,ρ)ij = ⟨ei,τ |hj,τ ⟩ρ .

(3.81)

3.5 | Calculation of Intersection numbers

We finally turn to the description of the actual calculation of intersec-
tion numbers and their properties. We follow [16, 17], highlighting that the
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method hereby described leads to the appearance of non-rational poles in
intermediate steps of the calculation. In Ch. 4 we propose a novel approach
that allows to avoid the presence of non-rational poles. We start by describ-
ing how to calculate intersection numbers in the univariate case as the sum
of residues around a set of poles of the product of two functions. For each
residue, we express one of the functions as the local solution of a differen-
tial equation around the pole in consideration. For the multivariate case we
introduce a recursive approach.

3.5.1 | Univariate case

We start by describing how to calculate intersection numbers of differen-
tial one-forms, or one-forms intersection numbers.

Given two differential one-forms ⟨φL| = φL dz and |φR⟩ = φR dz, re-
spectively associated to the integral I =

∫
C dz uφL and the dual integral

I⋆ =
∫
C⋆ dz u−1 φR, we calculate their intersection number as

⟨φL|φR⟩ =
∑
p∈Pω

Resz=p(ψφR), (3.82)

where the sum is extended over p ∈ Pω:

Pω = {z | z is a pole of ω} ∪ {∞}, ω = d log u. (3.83)

A more detailed derivation of eq. (3.82) can be found in App. E. ψ is the
local solution around the point p of the differential equation

∇ωψ = φL, (3.84)

with the covariant derivative defined as

∇ωψ ≡ dψ

dz
+ ωψ. (3.85)

As it is not necessary (and most of the times it is not even possible) to find a
global solution, it is preferable to look for ψ as a Laurent expansion around
z = p:

ψ =
max∑
i=min

ci(z − p)i +O
(
(z − p)max+1), (3.86)

by plugging the ansatz in eq. (3.84) and solving for ci.
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Endpoints of the expansion: univariate case

We make a brief digression over the maximum and the minimum orders
in the expansion of ψ in eq. (3.86). We use the following notation: for a
function f(z) we indicate with

ordpf(z), (3.87)

the order of the first term of the expansion of f(z) around a point p. We
indicate with

endpf(z), (3.88)

the maximum order we are interested in when considering the expansion of
f(z) around the point p. Considering the expansion of ψ, for the minimum,
min, we need to expand ψ so that the left hand side of eq. (3.84) has the
same order as φL around p, otherwise the system is impossible, so we want
that

min[ordp(ψ)− 1, ordp(ω) + ordp(ψ)] = ordp(φL). (3.89)

Since ω in the case of 1−forms can only have simple poles, because it is a
logarithmic form, we have that

ordp(ω) + ordp(ψ) = ordp(ψ)− 1, (3.90)

that is the same result obtained for the term under the derivative. ω can only
have simple poles because it is defined as ω = u′(z)/u(z). In fact, suppose
u(z) ∼ O(τn), then u′(z) ∼ O(τn−1) and therefore

ω ∼ O
(
τ−1
)
. (3.91)

So we have that
ordp(ψ)− 1 = ordp(φL), (3.92)

therefore
ordp(ψ) = ordp(φL) + 1. (3.93)

For the maximum, max, we need to expand ψ so that the product ψφR

presents a pole in order to have a residue different from zero, that is:

endp(ψ) + ordp(φR) = −1,

endp(ψ) = −1− ordp(φR).
(3.94)

These consideration bring up the following formulae for the orders of the
expansion of the ansatz of ψ

min = ordp(φL) + 1,

max = −1− ordp(φR).
(3.95)
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The calculation of any residue around p therefore presents as a preliminary
step the calculation of the orders of the functions φL, φR and ω and proceeds
through if and only if it is satisfied the requirement max ≥ min.

3.5.2 | Multivariate case

We then proceed to the generalization of the procedure outlined in the
previous section to the calculation of intersection numbers of two differential
n−forms. As before, we start from two differential n-forms,

〈
φ
(n)
L

∣∣∣ associated
to I: 〈

φ
(n)
L

∣∣∣ = φL(z1, . . . , zn) dz1 ∧ · · · ∧ dzn = φL(z1, . . . , zn) d
nz,

I =

∫
C(n)

dnz u(z1, . . . , zn)φL(z1, . . . , zn),
(3.96)

and
∣∣∣φ(n)

R

〉
associated to I⋆∣∣∣φ(n)

R

〉
= φR(z1, . . . , zn) dz1 ∧ · · · ∧ dzn = φR(z1, . . . , zn) d

nz,

I⋆ =

∫
C(n)⋆

dnz u−1(z1, . . . , zn)φR(z1, . . . , zn).
(3.97)

To extend the univariate procedure, we first need to take into account the
fact that, being n-forms, they depend on n variables and not just one. The
recursive procedure we are going to outline was first presented in [35]. We
follow the description presented in [16]. The recursive procedure proceeds
through one variable at time and, during the calculation, considers the other
variables as constant parameters. It divides the problem in the calculation
of intersection numbers in z1, . . . , zn−1 and then the intersection number de-
pending only on zn. Each passage turns out to be a sort of generalization of
the 1−forms algorithm presented in Sect. 3.5.1 with an additional step.

Variables’ ordering

First of all, since we will proceed one variable at time, we need to order the
n variables from the innermost (the first to be integrated) to the outermost
(the last to be integrated) and proceed to calculate the intersection number
following this ordering. For clarity, let’s assume that our n variables are
ordered from the innermost to the outermost as

z1 → z2 → · · · → zn.

↓ ↓
inner outer

(3.98)
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Imagine we are integrating the variable zi, the dimension of the vector space
is given by considering the variable we are integrating (zi) and the ones in the
inner layers with respect to it {zj}j<i and calculating the number of solutions
of the system

{ω̂k = ∂zkω = 0, with k | zk ≤ zi, (3.99)

or by calculating the number of master monomials in the variables {zj}j≤i

following the procedure outlined in Sect. 3.3.1, which is the one we follow.

Algorithm

After having ordered the variables and calculated the number of MIs for
each step, in order to calculate the intersection numbers of two n-forms we
turn to the recursive procedure that relies on the intersection numbers of
(n−1)-forms, that are assumed to be known, and consists in a generalization
of the intersection numbers of 1−forms for the variable we are considering
where in the final part it is added a resolution of a differential equation that
generalize the one present in the 1−forms algorithm.

We first have to make a distinction between the inner and the outer space,
the inner space consisting of the variables from the 1-st one to the (n − 1)-
th one, with dimension ν(n−1) where we introduce the basis of master forms{〈

e
(n−1)
1

∣∣∣ , . . . ,〈e(n−1)
ν(n−1)

∣∣∣} and the dual basis
{∣∣∣h(n−1)

1

〉
, . . . ,

∣∣∣h(n−1)
ν(n−1)

〉}
. The

outer space instead consists of the n-th variable we are considering, say zn,
and has dimension νn.

z1 → z2 → . . . zn−1︸ ︷︷ ︸
inner space

→ zn︸︷︷︸
outer space

(3.100)

The differential n-forms
〈
φ
(n)
L

∣∣∣ and
∣∣∣φ(n)

R

〉
can be projected onto the (n−

1)-forms space as

〈
φ
(n)
L

∣∣∣ = ν(n−1)∑
i=1

φL,i

〈
e
(n−1)
i

∣∣∣ ∧ dzn,

∣∣∣φ(n)
R

〉
=

ν(n−1)∑
i=1

φR,i

∣∣∣h(n−1)
i

〉
∧ dzn,

(3.101)

with
φL,i = φL,i(zn),

φR,i = φR,i(zn),
(3.102)



54 Intersection Theory

and the sums
ν(n−1)∑
i=1

φL,i

〈
e
(n−1)
i

∣∣∣ = 〈φ(n−1)
L

∣∣∣ ,
ν(n−1)∑
i=1

φR,i

∣∣∣h(n−1)
i

〉
=
∣∣∣φ(n−1)

R

〉
,

(3.103)

are the decomposition on the inner space of
〈
φ
(n−1)
L

∣∣∣ , ∣∣∣φ(n−1)
R

〉
. The coeffi-

cients are obtained via a projection similar to the one used for the intersec-
tions of 1-forms: we first introduce a metric on the inner space formed by
the intersection numbers of the inner space basis and dual basis vectors:(

C(n−1)

)
ij
=
〈
e
(n−1)
i

∣∣∣h(n−1)
j

〉
, (3.104)

and we calculate the coefficients as

φL,i dzn =
〈
φ
(n)
L

∣∣∣h(n−1)
j

〉(
C−1

(n−1)

)
ji
,

φR,i dzn =
(
C−1

(n−1)

)
ij

〈
e
(n−1)
j

∣∣∣φ(n)
R

〉
.

(3.105)

The intersection number of two n−forms is given by〈
φ
(n)
L

∣∣∣φ(n)
R

〉
=
∑

p∈PΩ,n

Reszn=p

(
ψ

(n)
i

(
C(n−1)

)
ij
φR,j

)
. (3.106)

ψ
(n)
i , analogously to the 1-forms case, is the local solution around the pole p

of the equation

∂znψ
(n)
i + ψ

(n)
j Ω

(n)
ji = φL,i, (i = 1, . . . , n). (3.107)

This time is an ν(n−1)−dimensional vector. In order to apply eq. (3.106)
it is not necessary to find a global solution but it is sufficient to have an
ansatz of it as a holomorphic Laurent series expansion around the pole p in
consideration:

ψ
(n)
k =

global-max∑
i=global-min

cki(zn − p)i +O
(
(zn − p)global-max+1). (3.108)

Ω
(n)
ji is an ν(n−1) × ν(n−1) matrix defined as

Ω
(n)
ji =

〈
(∂zn + ωn)e

(n−1)
j

∣∣∣h(n−1)
k

〉 (
C−1

(n−1)

)
ki
. (3.109)
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And the sum in eq. (3.106) runs over the set Pn:

PΩ,n = {z | z is a pole of Ω(n)} ∪ {∞}, (3.110)

Combining eq. (3.105) and eq. (3.106) we notice that we can rewrite the
formula for the intersection of two n-forms as〈

φ
(n)
L

∣∣∣φ(n)
R

〉
=
∑

p∈PΩ,n

Reszn=p

(
ψ

(n)
i

〈
e
(n−1)
i

∣∣∣φ(n)
R

〉)
. (3.111)

Endpoints of the expansion: multivariate case

In order to find a local solution for ψ(n) we need to expand it as we did in
the case of 1-forms. There is an additional complication due to the fact that
eq. (3.107) is a vectorial equation. Each term ψ

(n)
i enters all the equations

because of the product ψ(n) · Ω(n). A conservative solution can be found
by expanding each ψ

(n)
i with the same maximum and minimum, that are

found as global maximum, global-max, and global minimum, global-min, of
the equations.

The global-min is given by the same procedure outlined in Sect. 3.5.1,
that we can summarize as

min[ordp(ψi)− 1, ordp(Ωji) + ordp(ψj)] = ordp(φL,i), (3.112)

this time Ωji can have higher poles than simple ones and since we look for a
common global minimum for each component of ψ, we can calculate it as

ordp(ψi) = mink[ordp(φL,k)]− maxkj[ordp(Ωkj)], (i, j, k = 1, . . . , n).
(3.113)

while for the global-max we need to expand each ψ(n)
i so that its product with(

C(n−1)

)
ij
φR,j has a pole. So that:

endp(ψi) = maxk

[(
C(n−1)

)
kj
φR,j

]
, (i, j, k = 1, . . . , n). (3.114)

and the sum over j is implicit.

3.5.3 | Summary

We summarize the necessary steps in order to calculate the intersection
numbers of two differential forms, starting from the univariate case.
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Univariate case

Suppose we are integrating in the variable z:

• find the poles of the function ω;

• consider the order of φL, φR and ω around each one of the poles and
calculate the orders for the ψ expansion;

• if max<min, then the contribution of the considered pole to the inter-
section number is zero. Otherwise, build the differential eq. (3.84) and
solve it close to the pole using the ansatz in eq. (3.86);

• calculate the residue of the product ψφR around the pole in considera-
tion.

Multivariate case

We need a preliminary step:

• order the variables from the innermost to the outermost;

• for each “layer” calculate the number of master forms.

Then, one can calculate intersection numbers of two n−forms by relying on
the already-calculated intersection numbers of (n− 1)−forms

• project φ(n)
L and φ(n)

R on the basis of (n− 1)−forms;

• find the poles of the function Ω(n);

• for each pole calculate the order of each term in φL,i, φR,i and Ω
(n)
ij .

Calculate global-max and global-min. If global-max<global-min, the
the contribution of the considered pole to the intersection number is
zero;

• if not, build the differential eq. (3.106) and solve it close to the pole
using the ansatz in eq. (3.108);

• the contribution to the intersection number is given by the residue of
the product ψ · φ̃R around the pole in consideration.



4 | A Rational algorithm for in-
tersection numbers

In this chapter we introduce the main novelty presented in this thesis: a
purely rational algorithm for the computation of intersection numbers. We
give an account of the key ideas behind the algorithm and discuss the im-
plementation details. The algorithm is implemented in a Mathematica
routine and has been successfully tested on a variety of diagrams, as summa-
rized in Ch. 5.

4.1 | Eluding non-rational poles

The algorithm for the calculation of intersection numbers presented in
Ch. 2 allows for the presence of non-rational contributions, such as square
roots, appearing when looking at the poles of the functions ω and Ω and
entering the calculations because at a certain stage we write the solution of
a differential equation as an expansion in series around them. The intersec-
tion number resulting from the calculation, instead, is a rational function
of the kinematic invariants and of the dimensional regulator. Therefore, a
cancellation of the non-rational terms must happen in intermediate stages of
the calculation. In computer algebra systems, if possible, it is preferable to
work with algorithms avoiding the presence of square roots, to have better
computational efficiency and performance. Such algorithms are called purely
rational, as they do not present algebraic extensions in any step of the calcu-
lation. Another reason is the possibility to use purely rational algorithms in
combination with finite-fields based technologies (see App. F), a widely used
tool to achieve analytical results in a fast and exact way, that recently has
found applications in the context of theoretical predictions in high energy
physics [42, 43, 31, 23, 29]. Before presenting our rational algorithm we first
need to introduce some tools that are necessary to avoid the explicit appear-
ance of non-rational contributions. In the calculation of intersection numbers
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we are faced with the necessity to calculate the sum of the residues of the
product of two functions, one of them, ψ, being the solution of a differential
equation, calculated as the series expansion around the poles of the function
ω (or Ω in the multivariate case). The alarming point is that these poles can
be non-rational. To avoid dealing with them explicitly we instead consider
the fact that they combine in order to satisfy rational polynomial equations
in the form p(z) = 0. We therefore try to calculate the contribution to
the residues of the non-rational poles “all at once” by considering expansions
around the rational polynomial they satisfy. In order to do this, we exploit
techniques such as the calculation of the polynomial reminder modulo p(z),
the univariate global residue theorem and we draw an analogy from p−adic
numbers to obtain an expansion of a generic rational function with respect
to polynomials prime over the field of rational numbers.

4.1.1 | Polynomial reminder modulo p(z)

Since it is a concept that we will make large use of, we begin by introducing
the concept of polynomial reminder modulo a univariate polynomial p(z) in
the variable z. We consider, as an example, a polynomial p(z) of degree
deg p = 2, so that it can be explicitly written as p(z) = az2 + bz + c, with
a, b, c ∈ Q. Moreover, we assume it has two distinct real solutions, z1 and
z2, that can be non-rational. The polynomial reminder modulo p(z) of a
function f(z) consists in the recursive substitution of

z2 → −bz − c

a
, (4.1)

which is valid on the solutions of p(z), namely when evaluating f(z1) and
f(z2). This means that whenever we find terms with degree ≥ 2 in z we
substitute eq. (4.1) until we end up with terms that are at most linear in z.
For example, if we have a term proportional to z3 we need to substitute two
times:

z3 = z · z2 eq. (4.1)

= z ·
(−bz − c

a

)
= −bz

2

a
− cz

a
eq. (4.1)

= − b

a

(−bz − c

a

)
− cz

a

=
b2z + bc

a2
− cz

a
.

(4.2)
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We introduce the following notation for the polynomial reminder modulo p(z)
of a generic function f(z)

⌊f(z)⌋p(z) ≡ f(z) mod p(z). (4.3)

The polynomial reminder modulo p(z) can be generalized to the case when
f(z) is a rational function, f(z) = n(z)/d(z). It consists in rewriting 1/d(z)
as its so called multiplicative inverse, namely a function d̃(z) that multiplied
by d(z) gives 1 modulo p(z)

d̃(z) =
1

d(z)
mod p(z) ⇐⇒ d̃(z)d(z) = 1 mod p(z). (4.4)

For a more in-depth explanation of polynomial division and the multiplicative
inverse see App. A.

4.1.2 | A case study

We consider an explicit example with the intent of showing that, in order
to calculate the contribution of a given set of irrational poles to the intersec-
tion number, it is not necessary to know the exact position of the irrational
poles, but it suffices to know the rational polynomial they satisfy. A more gen-
eral and systematic approach for achieving this will be presented in Sect. 4.3.
We highlight that all the calculations are performed by keeping the irrational
poles symbolic, without giving them an explicit numerical value, and only at
the end we will see how they combine giving rise to rational quantities that
are effectively evaluated.

For simplicity, we consider the case of univariate intersection numbers in
the variable z. Suppose we have at most a single pole with respect to the
solutions z1, z2 of p(z) in all the functions of our interest ω, φL, φR. In that
case, we can write ω, φL, φR as

ω =
ω̄

p(z)
=

ω̄

a(z − z1)(z − z2)
,

φL =
φ̄L

p(z)
=

φ̄L

a(z − z1)(z − z2)
,

φR =
φ̄R

p(z)
=

φ̄R

a(z − z1)(z − z2)
.

(4.5)

The expansion highlights the order of the poles of the functions around the
solutions of p(z) in the denominator. Considering the expansion around one
of the solutions of p(z), for example z = z1 (but the exact same reasoning can
be applied to z = z2), we make the substitution τ = z − z1. ψ is expanded
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around τ with endpoints max = min = 0, and we can write ψ = ψ0 +O(τ).
We get the following differential equation:

(
d

dτ
+
ωτ

τ

)
ψ0 =

φL,τ

τ
, τ = z − z1, (4.6)

where we wrote ωτ = ω̄/(z − z2) and φL,τ = φ̄L/(z − z2) because of the τ
expansion. Notice that in these expansions we are not considering the explicit
value of the pole z1 (z2) but we are treating them as symbolic quantities.

Then ψ is obtained as

ψ0 =
φL,τ

ωτ

=
φ̄L(z1)

ω̄(z1)
, (4.7)

where the last equivalence comes from the fact that in this case we had a
simple pole in both functions and this lead to the cancellation of the factors
(z − z2). Then the residue is expressed as

Resz=z1(ψ(z)φR(z)) = Resz=z1

(
ψ(z)

φ̄R(z)

a(z − z1)(z − z2)

)
= ψ0

φ̄R(z1)

a(z1 − z2)

=
φ̄L(z1)φ̄R(z1)

aω̄(z1)(z1 − z2)
.

(4.8)

Then, we perform the polynomial reminder modulo p(z1) on the function
(φ̄L φ̄R)/ω̄ to obtain ⌊φ̄Lφ̄Rω̄

′⌋p(z), where ω̄′ is the multiplicative inverse of
1/ω̄. This step is necessary since, when quantities that have already undergo
polynomial division with respect to p(z) are multiplied, we can have the
appearance of terms proportional to z2, that still need to undergo polynomial
division. After this passage, we obtain an expression linear in z1:

Resz=z1(. . . ) =
⌊φ̄Lφ̄Rω̄

′⌋p(z)
∣∣
z=z1

a(z1 − z2)
=

c0 + c1z1
a(z1 − z2)

, c0, c1 ∈ Q. (4.9)

Doing the same reasoning again around the pole z = z2, we get an analogous
expression, this time linear in z = z2. In the end, as prescribed by the
algorithm, we need to sum over the contributions from the solutions of p(z)
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and therefore we sum the two terms

φ̄L(z1)φ̄R(z1)

aω̄(z1)(z1 − z2)
+

φ̄L(z2)φ̄R(z2)

aω̄(z2)(z2 − z1)
=

⌊φ̄Lφ̄Rω̄
′⌋p(z)

∣∣
z=z1

a(z1 − z2)
+

⌊φ̄Lφ̄Rω̄
′⌋p(z)

∣∣
z=z2

a(z2 − z1)

=
c0 + c1z1
a(z1 − z2)

+
c0 + c1z2
a(z2 − z1)

=
c1
a
.

(4.10)
In the end we see that the only terms containing non-rational poles are pro-
portional to z1 − z2 and they simplify against the denominator. This allows
us to have our intersection number written as a combination of only ratio-
nal factors, without introducing explicitly the non-rational solutions. This
can be done in computer algebra systems by the calculation of polynomial
reminders modulo p(z) and symbolically introducing the solutions z1 and z2
without giving their explicit expression that contains square roots. After suc-
cessive polynomial division the expression simplifies in a way that does not
contain the single solutions but only rational combinations of them.

This example explicitly shows how non-rational poles combine to give
rise to rational contributions to the intersection number and that the exact
position of the non-rational poles it is not a necessary information in order to
calculate their contribution to the intersection number. We now generalize
this example to ultimately obtain a rational algorithm calculating intersection
numbers. The generalization conceptually is the same as the example hereby
presented, and has as its core step the definition of expansion of a rational
function with respect to a polynomial irreducible over Q, that we refer to
as p(z)−adic expansion. We define this operation in analogy to the p−adic
expansion of a rational number, of which we now give a brief account.

4.2 | p−adic numbers

We review a few concepts about p−adic numbers, well-known mathemati-
cal objects that have recently found some applications in loop calculations [13]
and that we use as foundations for building an analogy justifying the proce-
dure of expansion of a rational function in series of polynomials. We indicate
the field of p−adic numbers with Qp, where p indicates a prime number. The
p−adic expansion of any integer number can be written as a finite expan-
sion that is equal to its representation in base p. For example, the 7−adic
expansion of 18 can be written as

18 = 4 + 2 · 7, (4.11)
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so 18 = 24 in 7−adics. Instead, considering rational numbers r = n/d, their
p−adic representation can be written as a formal series in p with integer
coefficients

r =
∞∑

i=−k

aip
i = a−kp

−k + · · ·+ a−1p
−1 + a0 + a1p+ . . . , (4.12)

where the integers ais lie in the range [0, p−1]. The expansion is obtained by
first checking whether r presents factors of p the denominator or if gcd(p, d) =
1. In the former case, we factor out the power pk in the denominator to get
an expression of the form r = p−k n

d
. Then, we use repeated division with

reminder on n/d to obtain the coefficient of the expansion. The division step
is given by first calculating the multiplicative inverse of 1/d with the extended
Euclidean algorithm. It exploits the Bézout identity, which, starting from
r = n

d
with p, d coprime, implies that exists u, t that satisfy td + up = 1.

Therefore we can write r as

r =
n

d
=
n

d
(td+ up) = tn+ p

un

d
. (4.13)

Then, we do the Euclidean division of nt by p obtaining

nt = qp+ a, (4.14)

with reminder 0 ≤ a < p. So the first term in the expansion is given by a

r = (qp+ a) + p
un

d

= a+ p
qd+ un

d
= a+ pr′.

(4.15)

The iteration proceeds considering the quotient r′ as the new r and repeating
the procedure. We present an example to clarify the procedure.

Example 4.2.1. We calculate the first terms of the 5−adic expansion of 1
2
,

following [20]. Since 2 and 5 are coprime we can use the Bézout identity to
find u, t such that

2t+ 5u = 1, (4.16)

that is satisfied for t = 3 and u = −1 since

2 · 3− 5 · 1 = 6− 5 = 1. (4.17)

Therefore we can easily divide 1
2

by 5 as

1

2
=

1

2
(3 · 2− 5) =

−1

2
· 5 + 3, (4.18)
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and we take 3 as the first term in the expansion. We continue treating the
quotient −1/2 as the new rational number to expand. We find the Bézout
identity for −1/2

− 2t+ 5u = 1, (4.19)

satisfied for t = 2, u = 1

− 2 · 2 + 5 = −4 + 5 = 1, (4.20)

then we can divide −1/2 by 5 to obtain

− 1

2
= −1

2
(−2 · 2 + 5) =

−1

2
· 5 + 2. (4.21)

Therefore, the second term in the expansion is 2. The second quotient is
again −1/2 so successive division will always lead to reminder 2. We can
therefore write the 5−adic expansion of 1/2 as

1

2
= 3 + 2 · 5 + 2 · 52 + · · · = 3 +

∑
k

2 · 5k. (4.22)

This may seem strange but notice that it works: if we multiply by 2 we get
1 on the left hand side while on the right hand side we obtain 2 · 3 = 6 but
the coefficient of the expansion must lie in the range [0, 4] so we write 1 and
carry a 1 to be added to the successive terms. In the second term we get
2 · 2+1 = 5 so again we write 0 and we carry 1. The same for the third term
and for all the successive.

4.3 | p(z)−adic rational functions

In close analogy to p−adic numbers, we build a procedure for the expan-
sion of rational functions with respect to a polynomial p(z) prime over Q, that
is, irreducible over Q. In this thesis we refer to it as p(z)−adic expansion of
rational functions or simply as polynomial expansion.

Consider a function f(z) and a polynomial p(z) irreducible over Q with
degree deg p. We want to express f(z) as a series expansion with respect to
p(z), in the form

f(z) =
∞∑

i=min

ci(z)p
i(z), (4.23)

where the coefficients ci(z) are given by

ci(z) =

deg p−1∑
j=0

cijz
i. (4.24)
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To compute this, we start with the case where f(z) is a polynomial. We use
repeated polynomial division with reminder to obtain the coefficients of the
expansion. To obtain the first term in the expansion, c0(z), it is sufficient to
write f(z) as

f(z) = c0(z) + q1(z)p(z), (4.25)

where q(z) is the quotient of the division of f(z) modulo p(z) and c0(z) is
the remainder. Then, we consider q1(z) as our “new” f(z) and we repeat the
polynomial division to get the successive terms

q1(z) = c1(z) + q2(z)p(z), (4.26)

where c1(z) is the term of order O(p(z)) in the expansion. We continue with
the same procedure on q1(z) and so on

q2(z) = c2(z) + q3(z)p(z),

q3(z) = c3(z) + q4(z)p(z),

. . . . . . . . . . . . .

(4.27)

This procedure allows us to compute the coefficients ci(z) up to the order we
need in our expansion.

If, instead, the function f(z) is a rational function, we can write it as

f(z) =
n(z)

d(z)
, assuming gcd(d(z), p(z)) = 1. (4.28)

If the assumption gcd(d(z), p(z)) = 1 is not satisfied, and therefore f(z) has
a singularity in p(z), we first need to write it in the form

f(z) =
n(z)

d(z)

1

p(z)k
, (4.29)

obtained by factoring out the singularity in the denominator. Then, we can
calculate its polynomial expansion by exploiting the concept of multiplicative
inverse modulo a polynomial p(z) and successive divisions with respect to p(z)
. The multiplicative inverse can be calculated via the Euclidean algorithm
or through an ansatz and allows us to write 1/d(z) as

d̃(z) =
1

d(z)
mod p(z) (4.30)

with d̃(z) a polynomial of degree deg p − 1 (for more details see App. A).
Then we can write f(z) as

f(z) mod p(z) = n(z)d̃(z) mod p(z), (4.31)
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and calling
f̃(z) ≡ f(z) mod p(z), (4.32)

we can write
f̃(z)d(z) mod p(z) = n(z) mod p(z). (4.33)

Therefore, we can write the numerator n(z) decomposed as

n(z) = f̃(z)d(z) + q(z)p(z), (4.34)

where q(z) is the quotient of the division of n(z)− f̃(z)d(z) with respect to
the polynomial p(z). In this way we obtained the first term of the expansion
of f(z), namely f̃(z),

f(z) =
n(z)

d(z)
=
f̃(z)d(z) + q(z)p(z)

d(z)
= f̃(z) +

q(z)p(z)

d(z)
, (4.35)

in the case of f(z) being a rational function.
We now look at the expansion we want to obtain as showed in eq. (4.23).

Since we factored out the terms proportional to p(z) in d(z), we have that
d(z) and p(z) satisfy gcd(d(z), p(z)) = 1, so the first term in the expansion
is of order O(p(z)0)

f(z) =
∞∑
i=0

ci(z)p
i(z). (4.36)

The first term can be obtained as

c0(z) =
n(z)

d(z)
mod p(z), (4.37)

so we can write n(z) following eq. (4.34)

n(z) = c0(z)d(z) + q1(z)p(z), (4.38)

and we can calculate the difference between f(z) and c0(z), that amounts to

f(z)− c0(z) =
n(z)

d(z)
− c0(z) =

n(z)− c0(z)d(z)

d(z)
=
q1(z)p(z)

d(z)
. (4.39)

We continue, calculating the first term as

c1(z) =
q1(z)

d(z)
mod p(z), (4.40)
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that amounts to considering q1(z)/d(z) as the new f(z). We can calculate
the difference between q1(z)/d(z) and c1(z) as

q1(z)

d(z)
− c1(z) =

q1(z)− c1(z)d(z)

d(z)
=
q2(z)p(z)

d(z)
, (4.41)

that allows us to obtain c2(z)

c2(z) =
q2(z)

d(z)
mod p(z). (4.42)

We can iterate this procedure to obtain all the terms we need in our expansion.
Then, for the purpose of our calculations, we consider the limit of our expan-
sion for p(z) → 0. This is because in the calculation of intersection numbers
we often need to expand around the poles of either ω or Ω. The irrational
poles, that we ultimately want to avoid, satisfy polynomials p(z) irreducible
over Q. Therefore our expansion around p(z) for p(z) → 0 ultimately means
to consider the expansion of a function near all the poles satisfying p(z) = 0
at once.

4.3.1 | Symbolic shortcut

The repeated divisions can be avoided by means of a shortcut to compute
the p(z)−adic expansion of a rational function. Assume the degree of the
polynomial p(z) is n. The whole procedure explained above can be easily
done in two steps. We first perform the polynomial reminder with respect
to p(z) − δ where δ represent a symbolic small quantity that will later be
expanded in series around 0. In this way what we really are doing to calculate
the polynomial reminder is to recursively substitute each zn with

zn = −qn−1

qn
zn−1 − · · · − q1

qn
z − q0

qn
+ δ, (4.43)

so we will obtain an expression that has a dependence on δ and whose degree
with respect to z is less or equal to n− 1. We highlight that this procedure
actually amounts to a simple redefinition of p(z) ≡ δ1. In this way we can
expand in series for arbitrary small p(z) by expanding in series around δ → 0.
The notation for the polynomial reminder introduced in Sect. 4.1 in this case
becomes

⌊f(z)⌋p(z)−δ ≡ f(z) mod p(z)− δ, (4.44)
1This redefinition eliminates the explicit dependence of p(z) from z, therefore needs to

be done with care. For example, when we need to calculate the p(z)−adic expansion of
the derivative in z of a function f(z) we first need to perform the derivative and then take
the polynomial reminder with respect to p(z)− δ.
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and effectively amounts to the substitution p(z) = δ. We then expand the
obtained expression in series for small δ,

⌊f(z)⌋p(z)−δ =
max∑
i

deg p−1∑
j=0

cijz
jδi +O

(
δmax+1

)
. (4.45)

In this way we obtained the p(z)−adic expansion of a generic rational function
around p(z) up to the order we need.

We summarize the two steps necessary to implement the shortcut for the
p(z)−adic expansion of a rational function f(z):

• from f(z) obtain ⌊f(z)⌋p(z)−δ by taking the polynomial reminder w.r.t.
p(z)− δ, i.e. substituting p(z) with δ;

• expansion of ⌊f(z)⌋p(z)−δ for small δ up to O(δmax+1).

This procedure is in close analogy with the p−adic expansion of a rational
number. For p−adic numbers we expand a rational number with respect
to a prime p, our expansion allows to expand a rational function f(z) with
respect to a polynomial p(z) that is prime over Q. We can thus formally
take the limit p(z) → 0, considering at once the expansion around all the
zi satisfying p(z) = 0. The point is that such expansion can be used when
dealing with a polynomial presenting non-rational roots in its solutions. We
consider the expansion around the whole polynomial, and, for the limit of
vanishing polynomial, we effectively account for all the solutions at once,
instead of multiple expansions around its non-rational roots.

4.4 | Application to intersection numbers

The generic outline of the algorithm for calculating n-forms intersection
numbers remains similar but with some modifications when looking for the
poles of the functions ω andΩ and in the operations carried out for calculating
the residue of the product of ψφR (or ψ · φ̃R), that varies depending on the
nature of the pole in consideration. Let us first consider the part concerning
the search of the poles of the functions ω and Ω. Suppose we are integrating
the variable z. If we are in the univariate case, since ω is a function, we
simply factor its denominator over Q. If, instead, we are in the multivariate
case, since Ω is a matrix, we run through all of its entries and we factor over
Q the denominator of each one of them. We thus group all distinct factors.
In both cases we end up with a list of factors that are irreducible over Q. For
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convenience we call each factor pi(z) and the whole list, both in the univariate
and in the multivariate case, takes the form

factors = {p1(z), . . . , pn(z)}. (4.46)

We calculate the intersection number ⟨φL|φR⟩ as the sum of all the contri-
butions from all the factors pi(z) in the list. We indicate the contribution
given from the factor pi(z) with ⟨φL|φR⟩pi(z), where we highlight that looking
at the contribution from pi(z) means that we are, at once, considering the
contribution of all its roots,

⟨φL|φR⟩ =
∑

pi(z)∈factor

⟨φL|φR⟩pi(z) . (4.47)

We then check each pi(z) to see what is its degree with respect to z. We
consider all other variables as constant parameters just like the dimensional
regulator, the regulators ρi and the kinematic invariants. We have two pos-
sibilities, namely whether the pi(z) we are considering is linear or not in the
integration variable z. For convenience, in the following we call a generic
factor pi(z) simply p(z).

Factor linear in z

If p(z) is linear with respect to z then it has the form

p(z) = z − q0, (4.48)

where q0 is a rational number. This case does not need any further inquiry and
we can safely proceed with the algorithm described in Sect. 3.5, calculating
the contribution that this rational pole gives to the sum of the residues for
the intersection number in consideration.

Factor non linear in z

The other possibility consist in p(z) having a degree higher than 1 in
the integration variable z. Heuristically, we have noticed that the degree is
usually 2, but there are no reasons we should restrict to this case. Supposing
the factor p(z) has degree n, we can write it in the form

p(z) = qnz
n + qn−1z

n−1 + · · ·+ q0, (4.49)

where each qi is a rational number. This is the case where the factoriza-
tion over R or C would lead to the presence of algebraic extensions, as the
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factorization over Q could not reduce the polynomial to the product of lin-
ear factors. This is the case where we need to make some changes in the
algorithm in order to prevent the appearance of non-rational contributions.

As explained above, our general line of reasoning will be to consider sep-
arately each p(z), which is a polynomial irreducible over Q, and expand our
functions of interest with respect to it, using the concept of p(z)−adic expan-
sion explained in Sect. 4.3. We will then exploit the univariate global residue
theorem [56] (for more details see App. A) in order to obtain the residue of
the product ψφR (or ψiφ̃R,i in the multivariate case) around the non-rational
solutions of the polynomial in consideration. The univariate global residue
theorem [56] allows us to do it without ever explicitly write the solutions.

We begin by describing what happens in the univariate case. We first
check whether the irreducible factor p(z) presents a leading coefficient, lc,
different than 1 in front of its higher degree variable, zn. If so, we save it for
later use,

lc = qn. (4.50)

We then find the order of the p(z)−adic expansion of the functions φL, φR

and ω with respect to z, obtained by first taking the polynomial reminder
with respect to the polynomial p(z) − δ, where δ is an auxiliary parameter,
as we explained in Sect. 4.3.1 and then expanding in series for small δ. We
find the endpoints max and min in the univariate case given by

min = O(φL)−O(ω),

max = −O(φR)− 1.
(4.51)

So that in the univariate case the expansion for ψ in terms of p(z) looks like

ψ =
max∑
i=min

deg p−1∑
j=0

cijz
jpi(z) +O

(
p(z)max+1

)
. (4.52)

We build the univariate differential equation, eq. (3.84), that for convenience
we rewrite here

∂

∂z
ψ + ωψ = φL, (4.53)

and we perform a p(z)−adic expansion around p(z) − δ (as explained in
Sect. 4.3.1) in order to obtain⌊ ∂

∂z
ψ
⌋
p(z)−δ

+ ⌊ωψ⌋p(z)−δ = ⌊φL⌋p(z)−δ. (4.54)

Then, we expand in series for δ → 0 and we solve it for the coefficients cji.
We substitute the obtained solutions for cji in ⌊ψ⌋p(z)−δ and we multiply it by
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φR. We p(z)−adic expand the product ψφR, namely we take the polynomial
reminder of the product ⌊ψ⌋p(z)−δ φR = ⌊ψφR⌋p(z)−δ and we expand in series
for small δ up to order O(δ0)

⌊
ψφR

⌋
p(z)−δ

=
−1∑
i

deg p−1∑
j=1

c̃ijz
jδi +O

(
δ0
)
, (4.55)

where the sum over i starts from the order of ⌊ψφR⌋p(z)−δ around δ → 0.
Following the univariate global residue theorem [56], we calculate the residue
of the product ψφR around the solutions of p(z) by taking in the term of order
O(δ−1) (that corresponds to the term of order O(p(z)−1)) the coefficient of
term proportional to zdeg p−1 and dividing it by the leading coefficient. The
contribution to the intersection number around the irreducible polynomial
p(z) is therefore

⟨φL|φR⟩p(z) =
c̃−1,deg p−1

lc
. (4.56)

In the multivariate case the situation is analogous, the main difference
being the vectorial nature of φL, φ̃R and ψ and the fact that Ω(n) is a matrix.
We begin by considering the order of each one of the p(z)−adic expansion of
all each entry of φL,i,φ̃R,i and Ω

(n)
ij and calculate global-max and global-min

as follows
global-min = mini(O(φL,i))− maxij

(
O(Ω

(n)
ij )
)
,

global-max = maxi(−O(φ̃R,i)− 1),
(4.57)

where i and j run over the number of MIs in the inner space. Remember that
in the multivariate case we have φ̃R,i ≡ CijφR,j. Then, the expansion of each
ψk in terms of p(z) looks like

ψ
(n)
k =

global-max∑
i=global-min

deg p−1∑
j=1

ckijz
jpi(z). (4.58)

We build the multivariate differential equation, eq. (3.107), that we rewrite
here for convenience

∂

∂z
ψ

(n)
i + ψ

(n)
j Ω

(n)
ji = φL,i, (4.59)

and we apply to it the p(z)−adic expansion around p(z)− δ (as explained in
Sect. 4.3.1) in order to obtain⌊ ∂

∂z
ψ

(n)
i

⌋
p(z)−δ

+ ⌊ψ(n)
j ·Ω(n)

ji ⌋p(z)−δ = ⌊φL,i⌋p(z)−δ. (4.60)
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Then, we expand around δ → 0 in all the terms constituting our differen-
tial equation and we solve it for the coefficients ckij. We then substitute
the obtained expressions for ckij in ⌊ψ(n)

i ⌋p(z)−δ and we multiply it by φ̃R,i.
We then take the polynomial reminder of the product ⌊ψ(n)

i ⌋p(z)−δφ̃R,i =

⌊ψ(n)
i φ̃R,i⌋p(z)−δ and we expand it for δ → 0,

⌊ψ(n)
i φ̃R,i⌋p(z)−δ =

−1∑
i

deg p−1∑
j=1

c̃ijz
jδi +O

(
δ0
)
. (4.61)

Again, following the univariate global residue theorem [56], we calculate the
residue of the product ψi φ̃R,i around the solutions of p(z) by taking, in the
term of order O(δ−1), the coefficient of the term proportional to zdeg p−1 and
dividing it for the leading coefficient. The contribution to the intersection
number around the irreducible polynomial p(z) is therefore〈

φ
(n)
L

∣∣∣φ(n)
R

〉
p(z)

=
c̃−1,deg p−1

lc
. (4.62)

After calculating for each factor in the list of eq. (4.46) its contribution
to the intersection number, we sum all the contributions to obtain the value
of the intersection number.
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5 | Applications to Feynman in-
tegrals

In the following we use the new method presented in Ch. 4 to compute
the decomposition of several Feynman integrals belonging to different families,
both at one and two loops. All these results have been checked against the
decomposition obtained with the traditional Laporta approach implemented
on the framework FiniteFlow. For each family we report the relevant
master forms considered at each layer of the recursive algorithm.

5.1 | One Loop cases

We begin with some examples of Feynman integrals at one loop.

5.1.1 | Triangle with a massive loop

z1

z2

z3

Figure 5.1: Massive triangle at one loop.

We compute the decomposition of several integrals belonging to the family
of massive one loop triangle. We begin with an overview of the kinematics.
The family has one Mandelstam invariant,

s = 2p1 · p2. (5.1)
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For the external momenta we have

p21 = 0, p22 = 0,

p3 = −p1 − p2.
(5.2)

We identify the propagators with

z1 = k2 −m2, z2 = (k + p1)
2 −m2, z3 = (k + p1 + p2)

2 −m2. (5.3)

therefore we are computing intersection numbers of differential 3−forms. The
Baikov polynomial is given by

B = −1

4
s
(
m2s+ sz2 − (z1 − z2)(z2 − z3)

)
. (5.4)

Therefore the regularized twist takes the form

uρ = B
d−4
2 zρ1z

ρ
2z

ρ
3 . (5.5)

We consider the following ordering for the integration variables, from the
innermost to the outermost:

z2 → z3 → z1. (5.6)

The dimension and the choice for the master forms in the inner spaces found
as illustrated in Sect. 3.3.1 are given by

integration in z2:
{
1,

1

z2

}
,

integration in z3:
{
1,

1

z3
,

1

z2z3

}
.

(5.7)

For the outermost integration we have that master forms correspond to mas-
ter integrals and we make the following choice (fig. 5.2)

Itri = I1,1,1, Ibub = I1,0,1, Itad = I0,0,1. (5.8)

z1

z3

z3

Figure 5.2: Master integrals for the massive triangle.
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Following the procedure outlined in Sect. 3.5.2, we calculate the metric
Cρ given by the intersection numbers between the master integrals

Cρ =

 ⟨Itri|Itri⟩ ⟨Itri|Ibub⟩ ⟨Itri|Itad⟩
⟨Ibub|Itri⟩ ⟨Ibub|Ibub⟩ ⟨Ibub|Itad⟩
⟨Itad|Itri⟩ ⟨Itad|Ibub⟩ ⟨Itad|Itad⟩

 , (5.9)

where each intersection number is given by

⟨Itri|Itri⟩ =
6ϵ

ρ3(2ϵ− 3ρ)
, (5.10)

⟨Itri|Ibub⟩ =
ϵs

ρ2(2ϵ− 3ρ)(2ϵ− 3ρ+ 1)
, (5.11)

⟨Itri|Itad⟩ = − ϵs(4m2(2ϵ2 + ϵ(3− 9ρ) + (1− 3ρ)2) + ρs(ϵ− 2ρ+ 1))

ρ2(2ϵ− 3ρ+ 1)(2ϵ− 3ρ+ 2)(2ϵ2 + ϵ(2− 9ρ) + 3ρ(3ρ− 1))
,

(5.12)

⟨Ibub|Itri⟩ =
ϵs

ρ2(2ϵ− 3ρ− 1)(2ϵ− 3ρ)
, (5.13)

⟨Ibub|Ibub⟩ = − ϵs(ϵ2(s− 4m2) + 2ϵρ(9m2 − 2s) + 2ρ2(2s− 9m2))

ρ2(2ϵ− 3ρ)(2ϵ− 3ρ+ 1)(2ϵ2 − ϵ(9ρ+ 1) + 3ρ(3ρ+ 1))
,

(5.14)

⟨Ibub|Itad⟩ =
1

ρ(2ϵ− 3ρ+ 1)(2ϵ− 3ρ+ 2)(2ϵ2 + ϵ(2− 9ρ) + 3ρ(3ρ− 1))
1

(2ϵ2 − ϵ(9ρ+ 1) + 3ρ(3ρ+ 1))

(
ϵs2(ϵ3(s− 8m2)

+ ϵ2(2m2(24ρ− 5)− 6ρs+ s)− 2ϵ(m2(48ρ2 − 20ρ+ 1)

+ 2ρ(1− 3ρ)s) + ρ(m2(63ρ2 − 39ρ+ 4) + 4ρ(1− 2ρ)s))
)
, (5.15)

⟨Itad|Itri⟩ =
ϵs(ρs(−ϵ+ 2ρ+ 1)− 4m2(2ϵ2 − 3ϵ(3ρ+ 1) + (3ρ+ 1)2))

ρ2(ϵ− 3ρ− 1)(2ϵ− 3ρ− 2)(2ϵ− 3ρ− 1)(2ϵ− 3ρ)
,

(5.16)
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⟨Itad|Ibub⟩ =
1

ρ(ϵ− 3ρ− 1)(2ϵ− 3ρ− 2)(2ϵ− 3ρ)(2ϵ− 3ρ+ 1)
1

(2ϵ2 − ϵ(9ρ+ 1) + 3ρ(3ρ+ 1))

(
ϵs2(ϵ3(s− 8m2)

+ ϵ2(2m2(24ρ+ 5)− (6ρ+ 1)s)− 2ϵm2(48ρ2 + 20ρ+ 1)

+ 4ϵρ(3ρ+ 1)s+ ρ(m2(63ρ2 + 39ρ+ 4)− 4ρ(2ρ+ 1)s))
)
, (5.17)

⟨Itad|Itad⟩ =
1

(ϵ− 3ρ− 1)(2ϵ− 3ρ− 2)(2ϵ− 3ρ+ 1)(2ϵ− 3ρ+ 2)
1

(2ϵ2 + ϵ(2− 9ρ) + 3r(3ρ− 1))(2ϵ2 − ϵ(9ρ+ 1) + 3ρ(3ρ+ 1))(
ϵs2(−s2(ϵ− 2ρ)2(ϵ2 − 4ϵρ+ 4ρ2 − 1) +m4(−48ϵ4

+ 360ϵ3ρ− 28ϵ2(36ρ2 − 1) + 6ϵρ(207ρ2 − 17)− 567ρ4

+ 99ρ2 − 4) + 2m2s(6ϵ4 − 47ϵ3ρ+ ϵ2(139ρ2 − 6)

+ ϵ(23ρ− 183ρ3) + 90ρ4 − 22ρ2))
)
, (5.18)

and we use it to perform the decomposition of the following integrals following
the straight decomposition procedure outlined in Sect. 3.4.2

I1,2,1, I1,1,2, I2,1,1, (5.19)

where the coefficients are obtained following eq. (3.74) after taking the limit
ρ→ 0. We successfully computed the decomposition of

I1,2,1 =
(−2ϵ2 + 3ϵ− 1)

m4s
Itad +

(1− 2ϵ)

m2s
Ibub −

ϵ

m2
Itri. (5.20)

I1,1,2 =
(ϵ2m2 − ϵ2s

4
− 3ϵm2

2
+ ϵs

4
+ m2

2
)

m6s− m4s2

4

Itad

+
(ϵ− 1

2
)

m2s− s2

4

Ibub = I2,1,1. (5.21)
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5.1.2 | Massless box diagram

z1

z2

z3

z4

Figure 5.3: Massless box at one loop.

We compute the decomposition of several integrals belonging to the family
of massless one loop box. We begin with an overview of the kinematics. The
family has two Mandelstam invariants

s12 = 2p1 · p2, s13 = 2p1 · p3. (5.22)

For the external momenta we have

p21 = 0, p22 = 0, p23 = 0, p24 = 0,

p4 = −p1 − p2 − p3.
(5.23)

We identify propagators with

z1 = k2, z2 = (k + p1)
2, z3 = (k + p1 + p2)

2,

z4 = (k + p1 + p2 + p3)
2.

(5.24)

The Baikov polynomial is given by

B =
1

16

(
s412 + 2s312(s13 − z1 + z2 − z3 + z4) + s212(s

2
13 + 2s13(−2z1 + z2 − 2z3 + z4)

+ (z1 − z2 + z3 − z4)
2)− 2s12s13(s13(z1 + z3)− z21 + z1(z2 + z4)

+ z2z3 − 2z2z4 − z23 + z3z4) + s213(z1 − z3)
2
)
.

(5.25)
Therefore the regularized twist u takes the form

uρ = B
d−5
2 zρ1z

ρ
2z

ρ
3z

ρ
4 . (5.26)
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From the master monomials analysis, performed out of the cut, we find three
master integrals, that we identify as

Ibox = I1,1,1,1,

Ibub1 = I1,0,1,0,

Ibub2 = I0,1,0,1.

(5.27)

z1

z3 z4

z2

Figure 5.4: Master integrals for the massless box.

We consider the decomposition of the following integrals

I2,1,1,1, I1,2,1,1, I1,1,2,1,

I1,1,1,2, I1,2,2,1.
(5.28)

We follow the bottom-up decomposition as presented in Sect. 3.4.2, based
on spanning-cuts. Since the decomposition of a generic integral, performed
without cuts, can be written as

I = c0Ibox + c1Ibub1 + c2Ibub2. (5.29)

we need two spanning cuts to obtain all the coefficients of the decomposition:
the cut {1, 3} corresponding to the cut of propagators z1 and z3 and the cut
{2, 4} where we cut the propagators z2, z4. These two set of cuts allow us to
find the coefficients

cut {1, 3}: I = c0Ibox + c1Ibub1,

cut {2, 4} : I = c0Ibox + c2Ibub2.
(5.30)

By combining the results obtained in these two sets of cuts, we are able to
recover all the coefficients of the decomposition.

Spanning cut {1, 3}
In the spanning cut {1, 3} the regularized twist takes the form

uρ,1,3 = B
d−5
2

1,3 z
ρ
2z

ρ
4 . (5.31)
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where B1,3 is the Baikov polynomial on the cut {1, 3}

B1,3 =
1

16

(
s412 + 2s312(s13 + z2 + z4) + s212(s

2
13

+ 2s13(z2 + z4) + (−z2 − z4)
2) + 4s12s13z2z4

)
.

(5.32)

we calculate 2−forms intersection numbers in the variables z2, z4. We con-
sider the following ordering from the innermost to the outermost

z2 → z4. (5.33)

with the following internal master forms in z2

integration in z2:
{
1,

1

z2

}
. (5.34)

We write the integrals we want to decompose as (following the cut prescrip-
tion for dotted propagators explained in Sect. 3.4.1)

I1,2,1,1 =

∫
uρ,1,3

1

z22z4
, I1,1,1,2 =

∫
uρ,1,3

1

z2z24
,

I2,1,1,1 =

∫
uρ,1,3

∂z1 log(u)

z2z4

∣∣∣∣
z1=z3=0

, I1,1,2,1 =

∫
uρ,1,3

∂z3 log(u)

z2z4

∣∣∣∣
z1=z3=0

,

I1,2,2,1 =

∫
uρ,1,3

∂z3 log(u)

z22z4

∣∣∣∣
z1=z3=0

. (5.35)

As explained above, this gives us c0 and c1.

Spanning cut {2, 4}
In the spanning cut {2, 4} the regularized twist takes the form

uρ,2,4 = B
d−5
2

2,4 z
ρ
1z

ρ
3 . (5.36)

where B2,4 is the Baikov polynomial on the cut {2, 4}

B2,4 =
1

16

(
s412 + 2s312(s13 − z1 − z3) + s212(s

2
13

+ 2s13(−2z1 − 2z3) + (z1 + z3)
2)− 2s12s13(s13(z1 + z3)

− z21 − z23) + s213(z1 − z3)
2
)
.

(5.37)

we have 2−forms intersection numbers in the variables z1, z3. We consider
the following ordering for the variables from the innermost to the outermost

z1 → z3. (5.38)
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with the following internal master forms in z1

integration in z1:
{
1,

1

z1

}
. (5.39)

Similarly to the previous cut, we write the integrals that we decompose as

I1,2,1,1 =

∫
uρ,2,4

∂z2 log(u)

z1z3

∣∣∣∣
z2=z4=0

, I1,1,1,2 =

∫
uρ,2,4

∂z4 log(u)

z1z3

∣∣∣∣
z2=z4=0

,

I2,1,1,1 =

∫
uρ,2,4

1

z1z3
, I1,1,2,1 =

∫
uρ,2,4

1

z1z3
,

I1,2,2,1 =

∫
uρ,2,4

∂z2 log(u)

z1z23

∣∣∣∣
z2=z4=0

. (5.40)

This cut yields the coefficients c0 and c2. Combined with the previous one
we obtain

I1,2,1,1 =
(8ϵ2 − 2)

ϵs312 + ϵs212s13 + s312 + s212s13
Ibub1

+
(−2ϵ− 1)

s12 + s13
Ibox = I1,1,1,2. (5.41)

I2,1,1,1 =
(2− 8ϵ2)

ϵs312 + 2ϵs212s13 + ϵs12s213 + s312 + 2s212s13 + s12s213
Ibub2

+
(2ϵ+ 1)

s12
Ibox = I1,1,2,1. (5.42)

I1,2,2,1 =
(−4ϵ2 − 6ϵ− 2)

s212 + s12s13
Ibox +

(16ϵ2 − 4)

s412 + s312s13
Ibub1

+
(16ϵ2 − 4)

s412 + 3s312s13 + 3s212s
2
13 + s12s313

Ibub2. (5.43)

5.2 | Two Loops cases

We present the results obtained in the decomposition of several Feynman
integrals at two loops.
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5.2.1 | Massless boxtriangle diagram

z1

z2

z3

z4

z5

z6

Figure 5.5: Massless boxtriangle.

We compute the decomposition of several integrals belonging to the family
of massless boxtriangle. We begin with an overview of the kinematics. The
family has one Mandelstam invariant,

s12 = 2p1 · p2. (5.44)

For the external momenta we have

p21 = 0, p22 = 0,

p3 = −p1 − p2.
(5.45)

We identify the propagators with

z1 = k21, z2 = (k1 − p1)
2, z3 = (k1 − p1 − p2)

2,

z4 = (k1 − k2)
2, z5 = k22, z6 = (k2 − p1 − p2)

2,

z7 = (k2 − p1)
2.

(5.46)

The master integrals are

Im1 = I0,1,0,1,1,1,0, Im2 = I1,0,1,0,1,1,0,

Im3 = I1,0,0,1,0,1,0, Im4 = I0,0,1,1,1,0,0.
(5.47)
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z5

z6

z4z2

z1

z3

z5

z6

z1

z4

z6

z3

z4

z5

Figure 5.6: Master integrals for the massless boxtriangle.

We compute the decomposition of the following integrals, using the span-
ning cuts approach,

I1,1,1,1,1,1,−1, I1,1,1,1,1,1,−2, I2,1,1,1,1,1,−1,

I1,1,1,2,1,1,−2, I1,1,0,1,1,1,−1, I1,2,1,1,1,1,0,

I1,2,1,2,1,1,0, I2,1,2,1,1,1,−1.

(5.48)

Since the decomposition of a generic integral can be written as

I = c1Im1 + c2Im2 + c3Im3 + c4Im4. (5.49)

It is sufficient to consider the following spanning cuts: {2, 4, 5, 6}, {1, 3, 5, 6},
{1, 4, 6} and {3, 4, 5} to get all the coefficients of the decomposition of a
generic Feynman integral belonging to the boxtriangle family. In particular
we see the coefficient corresponding to each spanning cuts are

cut {2, 4, 5, 6}: I = c1Im1,

cut {1, 3, 5, 6}: I = c2Im2,

cut {1, 4, 6} : I = c3Im3,

cut {3, 4, 5} : I = c4Im4.

(5.50)

At the end of the section we report the integrals for which we calculated all
the coefficients of the decomposition.
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Spanning cut {2, 4, 5, 6}

We compute 3−forms intersection numbers in the variables z7, z1, z3. We
chose the ordering, from the innermost to the outermost, as

z7 → z1 → z3. (5.51)

with the following choice for the internal master forms

integration in z7:
{
1
}
,

integration in z1:
{
1,

1

z1

}
.

(5.52)

Spanning cut {1, 3, 5, 6}

We compute 3−forms intersection numbers in the variables z7, z2, z4. We
chose the ordering, from the innermost to the outermost, as

z7 → z2 → z4, (5.53)

with the following choice for the internal master forms

integration in z7:
{
z7

}
,

integration in z2:
{ 1

z2

}
.

(5.54)

Spanning cut {1, 4, 6}

We compute 4−forms intersection numbers in the variables z7, z2, z5, z3.
We chose the ordering, from the innermost to the outermost, as

z7 → z2 → z5 → z3, (5.55)

with the following choice for the internal master forms

integration in z7:
{
1
}
,

integration in z2:
{ 1

z2

}
,

integration in z5:
{ 1

z2z5

}
.

(5.56)
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Spanning cut {3, 4, 5}
We compute 4−forms intersection numbers in the variables z1, z2, z6, z7.

We chose the ordering, from the innermost to the outermost, as

z7 → z2 → z6 → z1, (5.57)

with the following choice for the internal master forms

integration in z7:
{
z7

}
,

integration in z2:
{ 1

z2

}
,

integration in z6:
{ 1

z6

}
.

(5.58)

We report the complete decompositions

I1,1,1,1,1,1,−1 =

− 2(6ϵ2 − 5ϵ+ 1)

ϵ(2ϵ− 1)s12
Im1

− 2(2ϵ3s12 − 3ϵ2s12 + ϵs12)

ϵ2(2ϵ− 1)s212
Im2

− 2(−9ϵ3 + 18ϵ2 − 11ϵ+ 2)

ϵ2(2ϵ− 1)s212
Im3

− 2(−9ϵ3 + 18ϵ2 − 11ϵ+ 2)

ϵ2(2ϵ− 1)s212
Im4. (5.59)

I1,1,1,1,1,1,−2 =

− (1− 2ϵ)(2ϵ− 1)

(ϵ− 1)ϵ
Im1

− (2ϵ− 1)(2ϵs12 − ϵ2s12)

2(ϵ− 1)ϵ2s12
Im2

− (2ϵ− 1)(3ϵ2 − 8ϵ+ 4)

2(ϵ− 1)ϵ2s12
Im3

− (2ϵ− 1)(3ϵ2 − 8ϵ+ 4)

2(ϵ− 1)ϵ2s12
Im4. (5.60)

I2,1,1,1,1,1,−1 =
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− 3(2ϵ+ 1)(6ϵ3 + ϵ2 − 4ϵ+ 1)

ϵ(ϵ+ 1)2(2ϵ− 1)s212
Im1

− (2ϵ+ 1)(4ϵ5s12 + 2ϵ4s12 − 6ϵ3s12 − 2ϵ2s12 + 2ϵs12)

ϵ2(ϵ+ 1)2(2ϵ− 1)s312
Im2

− (2ϵ+ 1)(−54ϵ5 + 108ϵ4 − 93ϵ3 + 66ϵ2 − 33ϵ+ 6)

ϵ2(ϵ+ 1)2(2ϵ− 1)s312
Im3

+
3(2ϵ+ 1)(9ϵ4 − 9ϵ3 − 7ϵ2 + 9ϵ− 2)

ϵ2(ϵ+ 1)2(2ϵ− 1)s312
Im4. (5.61)

I1,1,1,2,1,1,−2 =

− 2(2ϵ+ 1)(6ϵ2 − 5ϵ+ 1)

ϵ(2ϵ− 1)s12
Im1

− (2ϵ+ 1)(2ϵ4s12 − 3ϵ3s12 − 3ϵ2s12 + 2ϵs12)

ϵ2(ϵ+ 1)2(2ϵ− 1)s212
Im2

− (2ϵ+ 1)(18ϵ5 − 72ϵ4 + 85ϵ3 − 21ϵ2 − 12ϵ+ 4)

ϵ2(ϵ+ 1)2(2ϵ− 1)s212
Im3

− (2ϵ+ 1)(18ϵ5 − 72ϵ4 + 85ϵ3 − 21ϵ2 − 12ϵ+ 4)

ϵ2(ϵ+ 1)2(2ϵ− 1)s212
Im4. (5.62)

5.2.2 | Massless doublebox diagram

z2

z1

z3

z4

z5

z6

z7

Figure 5.7: Massless doublebox.

We consider the decomposition of several integrals of the doublebox family
with massless propagators. We first give a brief review of the kinematics. We
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have two Mandelstam invariants,

s12 = p1 · p2, s13 = p1 · p3, (5.63)

while for the external momenta we have
p2i = 0, (i = 1, . . . , 4),

p4 = −
3∑

i=1

pi.
(5.64)

We indicate the loop momenta with k1 and k2. The denominators z1, . . . , z7
and the ISPs z8, z9 are

z1 = k21, z2 = (k1 − p1)
2, z3 = (k1 − p1 − p2)

2,

z4 = (k1 − k2)
2, z5 = k22,

z6 = (k2 − p1 − p2 − p3)
2,

z7 = (k2 − p1 − p2)
2,

z8 = (k1 − p1 − p2 − p3)
2, z9 = (k2 − p1)

2.

(5.65)

We consider the decomposition of a set of integrals on three different cuts, as
illustrated below.

Maximal cut

We analyze the integrals first on the maximal cut, which corresponds
to the calculations of 2−forms intersection numbers in z8, z9. The Baikov
polynomial on the maximal cut is given by

Bmax cut =
1

16
s12z8z9(s

2
12 + s12(s13 + z8 + z9) + z8z9), (5.66)

and the regularized twist takes the form

uρ,max cut = B
d−6
2

max cutz
ρ
8z

ρ
9 . (5.67)

The master monomials analysis on the max cut yields two master integrals

I1,1,1,1,1,1,1,0,0 ≡ I0, I1,1,1,1,1,1,1,0,−1 ≡ I−1. (5.68)

z9

Figure 5.8: Master integrals for the massless double box on the max cut.
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We calculate intersection numbers of differential 2−forms with the order-
ing

z9 → z8, (5.69)
with the following internal master forms

integration in z9:
{
1, z9

}
(5.70)

We consider the decomposition of the following integrals

I1,1,1,1,1,1,1,−1,−1, I1,1,1,1,1,1,1,−2,−1, I1,1,1,1,2,1,1,−1,−2,

I1,1,1,1,1,1,1,−2,−2, I1,2,1,1,1,1,1,0,0, I1,2,1,1,1,1,1,−1,−1,

I1,1,1,1,1,1,2,−2,−1.

(5.71)

We obtain the following decompositions,

I1,1,1,1,1,1,1,−1,−1 = −s12(s12 + s13)

2
I0 −

(3s12)

2
I−1. (5.72)

I1,1,1,1,1,1,1,−2,−1 =
(3ϵ− 1)s212(s12 + s13)

2(2ϵ− 1)
I0

+
s12((7ϵ− 3)s12 − 2ϵs13)

2(2ϵ− 1)
I−1. (5.73)

I1,1,1,1,1,1,1,−1,−2 =
(3ϵ− 1)s212(s12 + s13)

2(2ϵ− 1)
I0

+
s12((7ϵ− 3)s12 − 2ϵs13)

2(2ϵ− 1)
I−1. (5.74)

I1,1,1,1,1,1,1,−2,−2 =

− s212(s12 + s13)((7ϵ
2 − 6ϵ+ 1)s12 + (−2ϵ2 + 3ϵ− 1)s13)

2(1− 2ϵ)2
I0

− (3ϵ− 1)s212((5ϵ− 3)s12 + (3− 4ϵ)s13)

2(1− 2ϵ)2
I−1. (5.75)

I1,2,1,1,1,1,1,0,0 = − 6ϵ2 + 5ϵ+ 1

(ϵ+ 1)(s12 + s13)
I0 −

2ϵ(2ϵ+ 1)

(ϵ+ 1)s12(s12 + s13)
I−1. (5.76)

I1,2,1,1,1,1,1,−1,−1 = 2ϵ I−1. (5.77)

I1,1,1,1,1,1,2,−2,−1 =
ϵ(3ϵ− 1)s12(s12 + s13)

2ϵ− 1
I0

+
ϵ((7ϵ− 3)s12 − 2ϵs13)

2ϵ− 1
I−1. (5.78)
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Maximal cut −z5
We then consider the family of massles doublebox where all the denomi-

nators are on the cut except z5. The master integrals on this cut are the same
that we found in the maximal cut, namely I0 and I−1. We calculate intersec-
tion numbers of differential 3−forms with the ordering (from the innermost
to the outermost)

z9 → z8 → z5. (5.79)

We choose the following internal master forms

integration in z9:
{
1
}
,

integration in z8:
{
1, z9

}
.

(5.80)

We consider the decomposition of the following integrals

I1,1,1,1,1,1,1,−1,−1, I1,1,1,1,0,1,1,−1,−1, I1,1,1,1,2,1,1,−1,−1,

I1,1,1,1,2,1,1,−2,−1, I1,1,1,1,2,1,1,−2,−2, I2,1,1,1,1,1,1,−1,−1,

I2,1,1,1,1,1,1,−1,−2.

(5.81)

The decomposition obtained for I1,1,1,1,1,1,1,−1,−1 is in agreement with the one
obtained on the maximal cut. The other decompositions yield

I1,1,1,1,0,1,1,−1,−1 = 0. (5.82)

I1,1,1,1,2,1,1,−1,−1 = −ϵ(s12 + s13) I0 − 3ϵ I−1 (5.83)

I2,1,1,1,1,1,1,−1,−1 = −ϵ(s12 + s13) I0 − 3ϵ I−1. (5.84)

I1,1,1,1,2,1,1,−2,−1 =
ϵ(3ϵ− 1)s12(s12 + s13)

2ϵ− 1
I0 +

ϵ((7ϵ− 3)s12 − 2ϵs13)

2ϵ− 1
I−1.

(5.85)

I1,1,1,1,2,1,1,−2,−2 =
s12(s12 + s13)((7ϵ

2 − 6ϵ+ 1)s12 + (−2ϵ2 + 3ϵ− 1)s13)

2− 4ϵ
I0

+
(3ϵ− 1)s12((5ϵ− 3)s12 + (3− 4ϵ)s13)

2− 4ϵ
I−1. (5.86)

I2,1,1,1,1,1,1,−1,−2 =
ϵ(3ϵ− 1)s12(s12 + s13)

2ϵ− 1
I0 +

ϵ((7ϵ− 3)s12 − 2ϵs13)

2ϵ− 1
I−1.

(5.87)
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Maximal cut −z5 − z3

We then consider the massles doublebox where all the denominators are
on the cut except z5 and z3. The master integrals on this cut are

I−1, I0,

I1,1,0,1,0,1,1,0,0 ≡ Idiag.
(5.88)

z9 z4

z1

z2 z6

z7

Figure 5.9: Master integrals for the massless double box where the denominators
z5, z3 are not on the cut.

We calculate intersection numbers of differential 4−forms with the vari-
ables’ ordering (from the innermost to the outermost)

z8 → z3 → z5 → z9. (5.89)

We choose the following internal master forms

integration in z8:
{
1
}
,

integration in z3:
{ 1

z3

}
,

integration in z5:
{
1,

1

z5
,
1

z3

}
.

(5.90)

We calculate the decomposition of the following integrals

I1,1,1,1,1,1,1,−1,−1, I1,1,1,1,0,1,1,−1,−1, I1,1,1,1,2,1,1,−1,−1,

I1,1,1,1,2,1,1,−2,−2, I2,1,1,1,1,1,1,−1,−2.
(5.91)

Obtaining:

I1,1,1,1,1,1,1,−1,−1 = −1

2
s12(s12 + s13) I0 −

1

2
(3s12) I−1 +

2s12 + 9s13
2s12

Idiag.

(5.92)
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I1,1,1,1,0,1,1,−1,−1 =
(s12 + s13)(2ϵ

2s12 − 3ϵs12 − 3ϵs13 + s12 + s13)

(6ϵ2 − 5ϵ+ 1)s13
Idiag.

(5.93)

I1,1,1,1,2,1,1,−1,−1 = −ϵ(s12 + s13) I0 − 3ϵ I−1 +
3(3ϵs13 + s13)

s212
Idiag. (5.94)

I1,1,1,1,2,1,1,−2,−2 =
s12(s12 + s13)((7ϵ

2 − 6ϵ+ 1)s12 + (−2ϵ2 + 3ϵ− 1)s13)

2− 4ϵ
I0

+
(3ϵ− 1)s12((5ϵ− 3)s12 + (3− 4ϵ)s13)

2− 4ϵ
I−1

+
1

2(6ϵ2 − 5ϵ+ 1)s12s13

(
(4ϵ2 − 6ϵ+ 2)s312

+ 2(2ϵ2 − 9ϵ+ 3)s212s13 + (135ϵ3 − 171ϵ2

+ 45ϵ− 1)s12s
2
13 + 3(−18ϵ3 + 27ϵ2 − 16ϵ+ 3)s313

)
Idiag.

(5.95)

I2,1,1,1,1,1,1,−1,−2 =
ϵ(3ϵ− 1)s12(s12 + s13)

2ϵ− 1
I0 +

ϵ((7ϵ− 3)s12 − 2ϵs13)

2ϵ− 1
I−1

+
1

(2ϵ2 + ϵ− 1)s12s13

(
ϵ((4ϵ2 − 6ϵ+ 2)s212

+ 4(ϵ2 − 4ϵ+ 1)s12s13 − 3(7ϵ2 + 8ϵ− 3)s213)
)
Idiag. (5.96)

5.2.3 | Massless pentabox diagram

z1

z2

z3

z4

z5

z6

z7
z8

Figure 5.10: Massless pentabox.



Two Loops cases 91

We consider the decomposition of several diagrams of the pentabox topol-
ogy with massless propagators. The kinematics presents five external mo-
menta, p1, . . . , p5 of which only p1, p2, p3, p4 are independent due to momen-
tum conservation

p2i = 0, (i = 1, . . . , 5),

p5 = −
4∑

i=1

pi.
(5.97)

There are 5 Mandelstam invariants sij = pi · pj, that we chose cyclically as

s12 = p1 · p2, s23 = p2 · p3, s34 = p3 · p4,
s45 = p4 · p5, s51 = p5 · p1.

(5.98)

We indicate the loop momenta with k1 and k2. The propagators z1, . . . , z8
and the ISPs z9, z10, z11 are identified as

z1 = k21, z2 = (k1 − p1)
2, z3 = (k1 − p1 − p2)

2,

z4 = (k1 − k2)
2, z5 = k22,

z6 = (k2 − p1 − p2 − p3 − p4)
2,

z7 = (k2 − p1 − p2 − p3)
2, z8 = (k2 − p1 − p2)

2,

z9 = (k1 − p1 − p2 − p3 − p4)
2,

z10 = (k1 − p1 − p2 − p3)
2, z11 = (k2 − p1)

2.

(5.99)

Working on the maximal cut where all the “real” propagators are set to zero,
we are left with only the ISPs,z9, z10, z11, and, therefore, with the calculation
of 3-forms intersection numbers. Since we work on the maximal cut, for
simplicity we adopt the notation:

I1,1,1,1,1,1,1,1,a1,a2,a3 ≡ Ia1,a2,a3 . (5.100)

We find as master integrals

I0,0,0 =
1

z1z2z3z4z5z6z7z8
,

I0,−1,0 =
z10

z1z2z3z4z5z6z7z8
,

I0,0,−1 =
z11

z1z2z3z4z5z6z7z8
.

(5.101)
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z10

z11

Figure 5.11: Master integrals for the massless penta box on the max cut.

And we calculate the decomposition into master integrals of the following
integrals

I−1,0,0, I−1,−1,0, I0,−2,0,

I−1,−1,−1, I−1,−1,−2, I−1,−2,−1,

I−2,−1,−1.

(5.102)

We choose the following ordering of variables, from the innermost to the
outermost

z10 → z9 → z11. (5.103)

And the internal master forms as

integration in z10:
{
1
}
,

integration in z9:
{
1
}
.

(5.104)

We find the following decompositions. In our calculation with the intersec-
tion theory approach we set the Mandelstam invariants to random numerical
values, keeping the ϵ dependence analytic. We report the analytic form of
decompositions as obtained with the reconstruction performed with Finite-
Flow by solving the Laporta system, which is in agreement with our numer-
ical results.

I−1,−1,−1 =

1

2(2ϵ− 1)(s12 + s23 − s45)

(
ϵs12s23(−3s212 − s12(2s23 − 3s34 − 3s45
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+ s51) + 2s23s34 + s45(s51 − 3s34))
)
I0,0,0

+
1

4ϵ− 2

(
ϵ(3s212 − 3s12(s34 + s45) + s34s45)

)
I0,0,−1

+
1

(2ϵ− 1)(s12 + s23 − s45)

(
ϵs12(3s

2
12 + s12(2s23 − 3s34

− 3s45 + 2s51)− 2s23s34 + s23s51 + 3s34s45 − 2s45s51)
)
I0,−1,0.

(5.105)

I−1,−1,0 =

1

2(2ϵ− 1)(s12 + s23 − s45)

(
s23((2ϵ+ 1)s212 + s12(ϵs23

− 2ϵs34 − 2ϵs45 + ϵs51 + s23 − s34 − s45)− (ϵ+ 1)s23s34

+ s45(2ϵs34 − ϵs51 + s34))
)
I0,0,0

+
1

2− 4ϵ

(
(2ϵ+ 1)(s12 − s34 − s45)

)
I0,0,−1

+
1

(2ϵ− 1)(s12 + s23 − s45)

(
− ((2ϵ+ 1)s212)− s12(ϵs23 − 2ϵs34

− 2ϵs45 + ϵs51 + s23 − s34 − s45 + s51) + s23(ϵs34 + s34 − s51)

+ s45(−2ϵs34 + ϵs51 − s34 + s51)
)
I0,−1,0. (5.106)

I0,−2,0 =

1

2(2ϵ− 1)(s12 − s34 + s51)

(
s23((2ϵ+ 1)s212 + s12(ϵs23 − 2ϵs34 − 2ϵs45

+ ϵs51 + s23 − s34 − s45)− (ϵ+ 1)s23s34 + ϵs45(2s34 − s51))
)
I0,0,0

− 1

2(2ϵ− 1)(s12 − s34 + s51)

(
(2ϵ+ 1)(s12 + s23 − s45)(s12 − s34 − s45)

)
I0,0,−1

+
1

(2ϵ− 1)(s12 − s34 + s51)

(
− ((2ϵ+ 1)s212) + s12(2ϵs34 + 2ϵs45 − 2ϵs51

− 2s23 + s34 + s45) + 2ϵs45(s51 − s34) + s23(2s34 − s51)
)
I0,−1,0.

(5.107)

I−1,0,0 =

1

2(s12 + s23 − s45)

(
s12(s51 − s23) + s23s34 − s45s51

)
I0,0,0
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+
s12 − s34 + s51
s12 + s23 − s45

I0,−1,0. (5.108)

I−1,−2,−1 =

1

4(2ϵ2 − 3ϵ+ 1)(s12 + s23 − s45)(s12 − s34 + s51)
(ϵs12s23((9ϵ− 3)s412

+ s312(2ϵ(5s23 − 9s34 − 9s45 + 5s51) + 6s34 + 6s45 − 5s51) + s212(2(ϵ+ 1)s223
− s23(ϵ(20s34 + 10s45 − 9s51) + 2s51) + (9ϵ− 3)s234 + s34(34ϵs45 − 10ϵs51

− 12s45 + 5s51) + 9ϵs245 − 20ϵs45s51 + 2ϵs251 − 3s245 + 10s45s51 − s251)

+ s12(−((ϵ+ 1)s223(4s34 − s51)) + ϵs23(10s
2
34

+ 18s34s45 − 9s34s51 − 9s45s51 + s251)

+ (6− 16ϵ)s234s45 + s34s45((6− 16ϵ)s45

+ 9(2ϵ− 1)s51) + (2ϵ− 1)s45s51(5s45 − 2s51)

+ 2s23s51(s34 + s45)) + (ϵ+ 1)s223s34(2s34 − s51)− s23s45(ϵ(8s
2
34 − 7s34s51 + s251)

+ s34s51) + s245((7ϵ− 3)s234 + (4− 8ϵ)s34s51 + (2ϵ− 1)s251))) I0,0,0+

− 1

4(2ϵ2 − 3ϵ+ 1)(s12 − s34 + s51)
(ϵ((9ϵ− 3)s412

+ s312((4ϵ+ 2)s23 + (6− 18ϵ)s34 − 18ϵs45 + 7ϵs51 + 6s45 − 4s51)

+ s212(−(2ϵ+ 1)s23(4s34 + 2s45 − s51) + (9ϵ− 3)s234 + s34(28ϵs45 − 7ϵs51

− 10s45 + 4s51) + s45(9ϵs45 − 14ϵs51 − 3s45 + 8s51)) + s12((2ϵ+ 1)s23(s34

+ s45)(2s34 − s51) + s45((4− 10ϵ)s234 + (4− 10ϵ)s34s45

+ (8ϵ− 5)s34s51 + (7ϵ− 4)s45s51)) + (ϵ− 1)s34s
2
45(s34 − s51))) I0,0,−1+

− 1

2(2ϵ2 − 3ϵ+ 1)(s12 + s23 − s45)(s12 − s34 + s51)
(ϵs12((9ϵ− 3)s412

+ s312(ϵ(10s23 − 18s34 − 18s45 + 13s51) + 6(s34

+ s45 − s51)) + s212(2(ϵ+ 1)s223 − s23(ϵ(20s34 + 10s45 − 13s51) + 2s51)

+ (9ϵ− 3)s234 + s34(34ϵs45 − 13ϵs51 − 12s45 + 6s51)

+ 9ϵs245 − 26ϵs45s51 + 4ϵs251 − 3s245 + 12s45s51 − 2s251) + s12(−2(ϵ+ 1)s223(2s34

− s51) + ϵs23(10s
2
34 + 18s34s45 − 13s34s51 − 13s45s51 + 3s251) + (6− 16ϵ)s234s45

+ s34s45((6− 16ϵ)s45 + (24ϵ− 11)s51) + s45s51((13ϵ− 6)s45

+ (4− 8ϵ)s51) + 2s23s51(s34 + s45)) + s223(2(ϵ+ 1)s234
− 2(ϵ+ 1)s34s51 + s251)− s23s45(ϵ(8s

2
34 − 11s34s51

+ 3s251) + s34s51) + s245(s34 − s51)((7ϵ− 3)s34 + (2− 4ϵ)s51))) I0,−1,0.
(5.109)

I−2,−1,−1 =
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1

4(2ϵ2 − 3ϵ+ 1)(s12 + s23 − s45)2

(
ϵs12s23((9ϵ− 3)s412

+ s312((13ϵ− 6)s23 + (6− 18ϵ)s34 − 18ϵs45 + 7ϵs51 + 6s45 + s51)

+ s212((4ϵ− 2)s223 + s23((12− 26ϵ)s34 − 13ϵs45 + 8ϵs51 + 6s45) + (9ϵ− 3)s234
+ s34(34ϵs45 − 7ϵs51 − 12s45 − s51) + 9ϵs245 − 14ϵs45s51 + ϵs251
− 3s245 − 2s45s51 + s251) + s12(s

2
23(−8ϵs34 + ϵs51 + 4s34 + s51) + s23((13ϵ− 6)s234

+ (24ϵ− 11)s34s45 − 8ϵs34s51 + ϵs51(s51 − 8s45)) + s45((6− 16ϵ)s234
+ 2s34((3− 8ϵ)s45 + 6ϵs51 + s51) + s51(7ϵs45 − 2(ϵ+ 1)s51 + s45)))

+ s223s34((4ϵ− 2)s34 − (ϵ+ 1)s51) + s23s45((5− 11ϵ)s234 + s34(6ϵs51 + s51)

− ϵs251) + s245((7ϵ− 3)s234 − s34(5ϵs51 + s51) + (ϵ+ 1)s251))
)
I0,0,0

+
1

4(2ϵ2 − 3ϵ+ 1)(s12 + s23 − s45)

(
ϵ((3− 9ϵ)s412

− s312((7ϵ− 4)s23 + 2((3− 9ϵ)s34 − 9ϵs45 + 2ϵs51 + 3s45 + s51))

+ s212(s23(2(7ϵ− 4)s34 + 7ϵs45 − 2ϵs51 − 4s45 − s51)

+ (3− 9ϵ)s234 + 2s34(−14ϵs45 + 2ϵs51 + 5s45 + s51) + s45(−9ϵs45

+ 8ϵs51 + 3s45 + 4s51)) + s12(s23((4− 7ϵ)s234 + s34(−8ϵs45

+ 2ϵs51 + 5s45 + s51) + (2ϵ+ 1)s45s51) + 2s45(s34 + s45)((5ϵ− 2)s34

− (2ϵ+ 1)s51)) + (ϵ− 1)s234s45(s23 − s45))
)
I0,0,−1

− 1

2(2ϵ2 − 3ϵ+ 1)(s12 + s23 − s45)2

(
ϵs12((9ϵ− 3)s412

+ s312((13ϵ− 6)s23 + 2((3− 9ϵ)s34 − 9ϵs45 + 5ϵs51 + 3s45))

+ s212((4ϵ− 2)s223 + s23((12− 26ϵ)s34 − 13ϵs45 + 13ϵs51

+ 6s45 − 2s51) + (9ϵ− 3)s234 + 2s34(17ϵs45 − 5ϵs51 − 6s45) + 9ϵs245
− 20ϵs45s51 + 2ϵs251 − 3s245 + 2s251) + s12(s

2
23((4− 8ϵ)s34

+ 3ϵs51) + s23((13ϵ− 6)s234 + (24ϵ− 11)s34s45 + (2− 13ϵ)s34s51

+ (2− 13ϵ)s45s51 + 2(ϵ+ 1)s251)− 2s45((8ϵ− 3)s234
+ (8ϵ− 3)s34s45 − 9ϵs34s51 + s51(−5ϵs45 + 2ϵs51 + 2s51)))

+ s223((4ϵ− 2)s234 − 3ϵs34s51 + s251)− s23s45((11ϵ− 5)s234
+ s34(s51 − 11ϵs51) + 2(ϵ+ 1)s251) + s245((7ϵ− 3)s234

− 8ϵs34s51 + 2(ϵ+ 1)s251))
)
I0,−1,0. (5.110)

I−1,−1,−2 =

1

4(2ϵ− 1)(s12 + s23 − s45)(s12 − s34 − s45)

(
s12s23((9ϵ− 3)s412
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+ s312((7ϵ− 3)s23 − 2((9ϵ− 3)s34 + 9ϵs45 − 2ϵs51 − 3s45 + s51))

+ s212((6− 14ϵ)s23s34 + (3− 7ϵ)s23s45 + 2(ϵ− 1)s23s51 + (9ϵ− 3)s234
+ (28ϵ− 9)s34s45 + (2− 4ϵ)s34s51 + (9ϵ− 3)s245 + (4− 8ϵ)s45s51)

+ s12(s23((7ϵ− 3)s234 + (8ϵ− 3)s34s45 − 2(ϵ− 1)s34s51

− 2(ϵ− 1)s45s51)− s45(s34 + s45)((10ϵ− 3)s34

+ (2− 4ϵ)s51)) + ϵs234s45(s45 − s23))
)
I0,0,0

+
1

4(2ϵ− 1)(s12 − s34 − s45)

(
(3− 9ϵ)s412 + s312(−ϵs23

+ 6(3ϵ− 1)s34 + 18ϵs45 − ϵs51 + s23 − 6s45 + s51)

+ s212((ϵ− 1)s23(2s34 + s45) + (3− 9ϵ)s234 + (7− 22ϵ)s34s45

+ (ϵ− 1)s34s51 + (3− 9ϵ)s245 + 2(ϵ− 1)s45s51)

+ s12(s23s34(−ϵs34 + s34 + s45) + s45((4ϵ− 1)s234 + s34(4ϵs45

− s45 + s51)− (ϵ− 1)s45s51)) + ϵs34s45(s45(s34 − s51)− s23s34)
)
I0,0,−1

+
1

2(2ϵ− 1)(s12 + s23 − s45)(s12 − s34 − s45)

(
s12((3− 9ϵ)s412

+ s312((3− 7ϵ)s23 + 6(3ϵ− 1)s34 + 18ϵs45 − 7ϵs51 − 6s45

+ 3s51) + s212(s23(2(7ϵ− 3)s34 + 7ϵs45 − 5ϵs51 − 3s45

+ 3s51) + (3− 9ϵ)s234 + s34(−28ϵs45 + 7ϵs51 + 9s45 − 3s51)

+ s45(−9ϵs45 + 14ϵs51 + 3s45 − 6s51)) + s12(s23((3− 7ϵ)s234
+ (3− 8ϵ)s34s45 + (5ϵ− 3)s34s51 + (5ϵ− 3)s45s51)

+ s45((10ϵ− 3)s234 + (10ϵ− 3)s34s45 + (3− 8ϵ)s34s51

+ (3− 7ϵ)s45s51)) + ϵs34s45(s23 − s45)(s34 − s51))
)
I0,−1,0. (5.111)
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Scattering amplitudes are a fundamental object in the study of funda-
mental interactions. They enter in the calculation of the S-matrix, whose
modulus squared represents the probability of a certain process to occur and
therefore plays a fundamental role in the connection between theory and ex-
periment. Moreover, their theoretical study allows to unveil properties of the
theory that are not manifest in the Lagrangian formulation. Their building
blocks are the Feynman diagrams participating in the process, thus making
the study of the associated Feynman integrals of primary importance. Among
the several aspects to be considered when dealing with the so-called Feynman
integrals calculus, in this thesis we focused on the techniques to perform the
decomposition of Feynman integrals into a minimal, linearly independent set,
the so-called master integrals.

The importance of decomposing Feynman integrals into master integrals
lies in the possibility of reducing the number of integrals to be effectively cal-
culated from hundreds or thousands into a smaller set. Up to now, the main
decomposition strategy has been the one based on the Laporta algorithm,
which exploits linear relations obeyed by Feynman integrals in order to build
a large system of identities, whose resolution yields the decomposition of the
set of needed Feynman integrals into master integrals. The solution of such
a system is a major bottleneck in terms of computational resources when
diagrams with an high number of loops and legs are involved. It is therefore
very interesting to look for decomposition strategies that avoid large systems
of identities, preferring direct approaches. Intersection theory is a purely al-
gebraic approach to the decomposition of Feynman integrals, that exploits
their nature of elements of a vector space. It allows to reduce any Feynman
integral into a basis of master integrals in the same way a vector is decom-
posed into its basis elements via projections. This is made possible by the
introduction of a scalar product in the space of Feynman integrals, called
intersection number, that is a rational function of the kinematic invariants
and of the dimensional regulator. The state of the art for decomposition via
intersection theory is given by a recursive algorithm in which non-rational
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poles explicitly appear in intermediate stages. In order to compute intersec-
tion numbers several steps need to be carried out for each pole of a function:
it is necessary to solve a differential equation around it, followed by taking
the residue of the product of two functions, one of which being the solution
of the differential equation.

In this thesis we focused on the implementation of a purely rational algo-
rithm that avoids the explicit use of non-rational poles. In order to do so, we
introduced the concept of p(z)−adic expansion of a rational function, in anal-
ogy to the already known concept of p−adic expansion of a rational number,
that allowed us to expand any rational function in terms of the polynomial
irreducible over Q, whose zeroes are the non-rational poles. The final result
consists in an algorithm that treats non-rational solutions satisfying the same
rational polynomial equation “all at once” and calculates their contribution
to the intersection number by expanding around the irreducible polynomial
in consideration. The algorithm has been implemented on a Mathemat-
ica routine and has been tested on the decomposition of several Feynman
integrals, both at one and two loops. The results have been checked against
the decomposition obtained using the traditional Laporta algorithm in the
framework FiniteFlow.

It is the first time that a purely rational algorithm for the computation
of intersection numbers that does not require complex transformations of the
integrals or any change of basis is presented. We see this as a promising result,
that can lead, in the future, to an effective implementation of the algorithm
in frameworks based on finite fields, such as FiniteFlow. This and similar
tools allow very efficient implementations of rational algorithms, and have
already been used for cutting-edge calculations in high energy physics. The
results presented in this thesis thus opened up the possibility of using this
technology for computing intersection numbers between Feynman integrals
in the context of multi-loop predictions. In conclusion, the effective full-
automation of the algorithm and its distribution could lead to improvements
in making cutting-edge predictions for theoretical high energy physics.



A | A short tour of Algebraic Ge-
ometry

In this Appendix we review some basic concepts about algebraic geometry.
We don’t seek mathematical rigorousness, preferring to focus on ideas and
concepts. We closely follow the presentation in Appendix B of [41].

Algebraic geometry is the branch of mathematics studying polynomial
equations and their solutions. We indicate with P [z] = P [z1, . . . , zn] the ring
of polynomials in the variables z = {zi}ni=1 over the field F, which is usually
Q, R, C or Z/p.

We recall some basic definitions about polynomials and rational functions,
following [43]. We indicate a monomial in the variables z = z1, . . . , zn with

zα =
n∏

i=1

zαi
i , (A.1)

with α = (α1, . . . , αn) an n-dimensional vector with αi ≥ 0. Its total degree
is defined as

|α| =
n∑

i=1

αi. (A.2)

A polynomial in z is defined as a finite linear combination of monomials
with coefficients in a field F. The set of polynomials in the variables z with
coefficients in F forms a ring that we indicate with F[z]. Any polynomial
f ∈ F[z] is uniquely identified by a set of exponents {α} and coefficients
cα ∈ F

f(z) =
∑
α

cαz
α. (A.3)

We indicate with F(z) the field of rational functions in the variables z
with coefficients in F. Any rational function f ∈ F(z) can be expressed as
the ratio of two polynomials p,q ∈ F[z]

f(z) =
p(z)

q(z)
=

∑
α nαz

α∑
β dβz

β
, nα, dβ ∈ F. (A.4)
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A.1 | Polynomial ideals

An important concept in algebraic geometry is the ideal. Suppose we have
a set of polynomials p = {p1, . . . , pm} in the variables z = (z1, . . . , zn). We
define the ideal J generated by p as the set of linear combination of generic
polynomials hk(z) ∈ P [z] multiplied by elements of p:

J ≡< p1, . . . , pm >=

{
m∑
k=1

hk(z)pk(z), hk(z) ∈ P [z]

}
. (A.5)

Notice that if z* is a solution of the set of polynomials p, that is,

z* | p1(z*) = 0, . . . , pm(z*) = 0, (A.6)

then all elements of J are zero on z*

∀q ∈ J , q(z*) = 0. (A.7)

The inverse is not always true: if a polynomial vanishes on all the solutions
of the system p = 0 it doesn’t necessarily belong to the ideal J .

Given an ideal J , we call algebraic variety the set of points on which all
the polynomials of the ideal vanish:

V(J ) = {z | q(z) = 0, ∀q ∈ J }. (A.8)

The algebraic variety is associated to the generators of the ideal J . The set
of polynomials vanishing on the elements of an algebraic variety V is itself
an ideal and we call it I(V):

I(V) = {h ∈ P [z] | h(z) = 0, ∀z ∈ V}. (A.9)

For any ideal J we can see that

J ⊆ I(V(J )). (A.10)

That is, the ideal is contained in the set of polynomials that vanish on the
zeroes of the ideal. But, as we said, these two sets are not always equal. The
equality is reached when the ideal J has a certain property and is called
radical. The radical of an ideal is indicated as

√
J and is defined as

√
J = {p ∈ P [z] | pk ∈ J for some integer k > 0}. (A.11)

Therefore an ideal is called radical if it is true that
√
J = J .
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An important theorem is Hilbert’s Nullstellensatz: it proves the equality
between an ideal and the set of polynomials vanishing on the elements of the
algebraic variety associated to that ideal. The theorem states

I(V(J )) =
√
J . (A.12)

It is obvious that, if J is radical we have

I(V(J )) = J . (A.13)

In the case when the variety V(J ) = ∅, that is, the system of equations
p1(z) = · · · = pm(z) = 0 generated by the ideal J has zero solutions, it holds
the weak version of Hilbert’s Nullstellensatz theorem:

V(J ) = ∅ ⇐⇒ ∃h1, . . . , hm ∈ P [z] |
m∑
i=1

hi(z) pi(z) = 1. (A.14)

If the conditions of Hilbert’s weak Nullstellensatz are satisfied, then J =
P [z] and any polynomial p in P [z] can be written as a linear combination of
the generators of J .

A.2 | Monomial ordering

Given a polynomial ring P [z], it is important to fix an ordering between
the monomials. In one variable it is easy as there is only one possible ordering,
but when it comes to more than one variable there are several possibilities.
A monomial order, or monomial ordering, in the ring of polynomials P [z] is
a total order relation in the set of monomials of the ring that satisfies

• if m1 < m2 then m1m3 < m2m3,

• ∀m1 ̸= 1 then m1 > 1.

with m1,m2,m3 monomials in P [z]. In the case of univariate polynomials in
the variable z the only monomial ordering satisfying these conditions is

1 < z < z2 < . . . .

In the case of multivariate polynomials in the variables z1, . . . , zn several
orderings can be defined, such as the lexicographical order and the degree
reverse lexicographical order(see [41] for more details).
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A.3 | Polynomial division

Given a set of polynomials {p1, . . . , pm} in the variables z and a monomial
ordering, the polynomial division algorithm allows to write any polynomial
f ∈ P [z] as

f(z) = Q(z) +R(z), with Q(z) =
m∑
i=1

qi(z) pi(z). (A.15)

Q(z) and R(z) respectively identified as the quotient and the reminder of the
polynomial division. Notice that, following what we have defined, Q(z) ∈ J ,
J =< p1, . . . , pm >. It is also said that f is reduced to R modulo the
polynomials {p1, . . . , pm} or:

f(z) = R(z) mod {pi}mi=1. (A.16)

Unfortunately, this decomposition is in general not unique and the quotient
and the reminder can depend on the order in which the polynomials pk are
taken. Moreover, the reminder could be different from zero even if f belongs
to the ideal J , a situation that we necessarily want to avoid. These downsides
can be avoided by introducing the concept of Gröbner basis, defined as the
set {g1, . . . , gℓ} satisfying the following:

• generates J
J =< p1, . . . , pm >=< g1, . . . , gℓ >; (A.17)

• the reminder of the polynomial division modulo {gi}ℓi=1 is unique once
the monomial ordering is fixed. In particular:

– the reminder of the division modulo the Gröbner basis RGJ de-
pends only the ideal J and on the dividend f ;

– RGJ (z) = 0 if and only if the dividend is a member of the ideal,
f ∈ J .

It can be shown that every ideal has a Gröbner basis. In general the number
of its elements can be different from the number of the generators used to
define the ideal, i.e. ℓ ̸= m. In the univariate case the polynomial division
has already the “good properties” that we obtain using a Gröbner basis in the
multivariate case. Having introduced the Gröbner basis in the multivariate
case, we now can talk, both in the univariate and in the multivariate case,
of reduction modulo a polynomial ideal. Consider a polynomial ring P [z], an
ideal J and a Gröbner basis GJ . A polynomial f(z) is said to be reduced
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to R(z) modulo J if R(z) is the reminder of the polynomial division of f(z)
modulo the Gröbner basis GJ . We indicate the reduced f with ⌊f⌋J and the
definition takes the form

⌊f⌋J = f modGJ . (A.18)

In P [z], for any ideal J , we can define an equivalence relation ∼J between
polynomials: two polynomials p(z), q(z) are in the same class of equivalence
if their difference belongs to the ideal J

p ∼J q ⇐⇒ p− q ∈ J . (A.19)

Another way to say this is that polynomials are equivalent if the reduction
of their difference modulo a Gröbner basis of J is zero.

It can be shown that the set of equivalence classes defined by ∼J is a
polynomial ring, called quotient ring and denoted by

P [z]/J ≡ {[p]J | p ∈ P [z]}. (A.20)

We can perform algebraic operation between classes by doing that operation
on the representative (as the result does not depend on the representative).
The most natural way to identify an equivalence class with a representative
is by doing

[ p ]J ↔ ⌊ p ⌋J . (A.21)

That is, each equivalence class is identified with the reminder of a represen-
tative modulo GJ . This reasoning allows us to perform operation between
polynomials in the quotient ring using the same concepts of modular arith-
metic. For each nonzero polynomial q(z) ∈ P [z], assuming q(z) and each
generator of the ideal have no common zeroes, we can define the multiplica-
tive inverse modulo the ideal J generated by the Gröbner basis {gi(z)}ℓi=1.
By Hilbert’s Nullstellensatz, in fact, there exist polynomials q̃(z), {g̃i(z)}ℓi=1

such that

q̃(z)q(z) +
ℓ∑

i=1

g̃i(z)gi(z) = 1 (A.22)

that is,

q̃(z) =
1

q(z)
modGJ (A.23)

or, in other words
q̃(z)q(z) = 1 modGJ (A.24)

The multiplicative inverse can be calculated via the Euclidean algorithm or
through an ansatz.
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A.4 | Zero-dimensional ideals

We collect some result that we use as hidden hypotheses when performing
the master monomials analysis in Sect. 3.3.1. Statements of theorems are
reported from [41]. We begin with the Finiteness theorem.

Theorem A.4.1. Finiteness. Let J be an ideal in P [z]. The following two
conditions are equivalent:

• P [z]/J is a finite-dimensional space;

• V(J ) is a finite set.

If the conditions in the Finiteness Theorem are satisfied, the ideal J is
said to be zero dimensional. The following proposition holds:

Lemma A.4.2. Let J be a zero-dimensional ideal.(
J =

√
J
)

⇐⇒ every solution in V(J ) has multiplicity 1. (A.25)

We now turn to the Shape Lemma which is the theorem used to prove
the dimension of the twisted cohomology vector space.

Theorem A.4.3. Shape Lemma. Let J be a zero dimensional radical ideal
in P [z]. Then, the following condition is satisfied: if V(J ) has ns points,
then the quotient ring P [z]/J is ns−dimensional, i.e. admits a basis of ns

monomials.

To summarize, if a system {pi(z) = 0} has ns solutions with multiplicity
1, then the dimension of the quotient ring P [z]/J (J =< pi >) is ns. This
justifies our procedure of counting the number of master integrals presented
in Sect. 3.3.1.

A.5 | Univariate global residue

We give an account of the univariate global residue theorem as reported
in [56], that is the main result we use to calculate intersection numbers
through the rational algorithm proposed in Ch. 4.

The result is obtained for one variable, indicated with z, and it suits our
needs as intersection numbers are calculated proceeding with one variable at
time, leaving the other variables as constant parameters at each passage.
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Given a polynomial p(z) ∈ K[z] and f(z) ∈ K(z) we denote the ideal
generated by p(z) with< p >. Let f(z) be rational function (in our algorithm,
K = Q) that we write as

f(z) =
n(z)

d(z)
, n(z), d(z) ∈ K[z], with gcd(n(z), d(z)) = 1. (A.26)

We want to compute the global residue

Res<p>(f(z)), (A.27)

where the global residue of a function f(z) is defined as

Res<p>(f) ≡
∑

zi∈V(<p>)

Resz=zi

(
f(z)

p(z)

)
. (A.28)

That is, the residue computed on all the zeroes of the ideal generated by p(z)
of the function f(z)/p(z). Since f(z) is rational, assuming gcd(d(z), p(z)) =
1, we can calculate the inverse of d(z) modulo p(z) exploiting the concept of
multiplicative inverse. We denote it with d̃(z). This procedure allows us to
write the global residue as

Res<p>(f(z)) = Res<p>

(
n(z)d̃(z)

)
. (A.29)

That allows us to replace a calculation with rational functions with a calcu-
lation with polynomials. This can be proved as follows: because of Hilbert’s
Nullstellensaz there exist two polynomials in z, denoted with p̃(z) and d̃(z)
such that

p̃(z)p(z) + d̃(z)d(z) = 1, (A.30)

so we can multiply f(z) by 1 and substituting the l.h.s. of eq. (A.30) in the
definition of global residue

Res<p>(f(z)) =
∑

zi∈V(<p>)

Resz=zi

(
f(z)

p(z)

)
=

∑
zi∈V(<p>)

Resz=zi

(
n(z)

d(z)

1

p(z)

)

=
∑

zi∈V(<p>)

Resz=zi

(
n(z)

d(z)

1

p(z)

(
p̃(z)p(z) + d̃(z)d(z)

))

=
∑

zi∈V(<p>)

Resz=zi

(
n(z)

d(z)
p̃(z) + n(z)d̃(z)

1

p(z)

)

=
∑

zi∈V(<p>)

Resz=zi

(
n(z)d̃(z)

1

p(z)

)
= Res<p>

(
n(z)d̃(z)

)
.

(A.31)
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where in the last expression the first term has been removed because it gives
zero contribution to the residue as it is an holomorphic function for all zi and,
as we assumed, gcd(d(z), p(z)) = 1. We have the following proposition [56],
that we refer to as univariate global residue theorem

Theorem A.5.1. Univariate global residue. Let p(z), n(z), d(z) ∈ P [z] with
gcd(p(z), d(z)) = gcd(n(z), d(z)) = 1. Let deg p = n and let d̃(z) be the
multiplicative inverse of d(z) with respect to the ideal < p >. Then

Res<p>

(
n(z)

d(z)

)
=
an−1

cn
. (A.32)

where an−1 is the coefficient of zn−1 in the reduction of n(z)d̃(z) modulo p(z)
and cn is the coefficient of zn of p(z) (namely, its leading coefficient).



B | Baikov representation

We write more in detail the derivation of Baikov representation, following
closely [21, 55]. Starting from an L loop Feynman diagram in d dimensions
with E + 1 external legs and p1, . . . , pE independent external momenta, we
can write its momentum parametrization as

∫ ( L∏
i=1

ddki
iπd/2

)
1

zα1
1 . . . zαN

N

, (B.1)

with zi = P 2
i −M2

i , with Pi and Mi respectively indicating a combination of
momenta (both internal and external) and masses, dictated by the structure
of the diagram in consideration. Let qi = k1, . . . , kL, p1, . . . , pE. We introduce
the following notation for scalar products

si,j = qi · qj, (i, j = 1, . . . , L+ E), j ≥ i. (B.2)

where the last condition is added to take into account that si,j = sj,i and
we consider only the independent scalar products. Since we have L loop mo-
menta and E independent external momenta, the number of independent si,j
corresponds to the number of independent Lorentz invariant scalar products
involving loop momenta and is n = L(L+ 1)/2 + LE.

The basic idea behind Baikov representation consists in splitting each
loop momentum into two sets, where the integrand of (B.1) depends trivially
on one set and not trivially on the other. In the former case the strategy is to
integrate over the trivial-dependence set, in the latter one needs to perform
a change of variables to the Baikov variables. We split each loop momentum
ki in a parallel and orthogonal space

ki = ki∥ + ki⊥. (B.3)

So that
k2i = k2i∥ + k2i⊥, (B.4)
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where the parallel component of ki lies in the subspace spanned by

ki∥ ∈ span⟨ki+1, . . . , kL, p1, . . . , pE⟩. (B.5)

The integration measure becomes

ddk1 d
dk2 . . . d

dkL

= dE+L−1k1 d
d−E−L+1k1 d

E+L−2k2 d
d−E−L+2k2 . . . d

EkLd
d−EkL

=
L∏
i=1

dE+L−iki∥ d
d−E−L+iki⊥.

(B.6)

We now have to treat separately the integration over the parallel and the
orthogonal spaces, starting from the parallel. We can write each volume
element dE+L−iki∥ as

dE+L−iki∥ =
dsi,i+1 . . . dsi,L+E

G(ki+1, . . . kL, p1, . . . pE)
1/2
, (B.7)

where
G(v1, . . . , vn) = Det(vi · vj). (B.8)

On the other hand, we can write the orthogonal space measure for each ki
by going in spherical coordinates

dd−E−L+iki⊥ = kd−E−L+i−1
i⊥ dki⊥Ωd−E−L+i

=
1

2
(ki⊥)

d−E−L+i−2
2 dk2i⊥Ωd−E−L+i,

(B.9)

where Ωn is the n−dimensional sphere volume. Then, noticing that

k2⊥ = k2 − k2∥, (B.10)

we see that si,i = k2i hence dk2i⊥ = dsi,i.
Computing k2i⊥ as a function of ki, . . . , kL, p1, . . . , pE one can show

k2i⊥ =
G(ki, . . . , kL, p1, . . . , pE)

G(ki+1, . . . , kL, p1, . . . , pE)
, (B.11)

therefore

dd−E−L+iki⊥ =
1

2

(
G(ki, . . . , kL, p1, . . . , pE)

G(ki+1, . . . , kL, p1, . . . , pE)

) d−E−L+i−2
2

dsi,i Ωd−E−L+i.

(B.12)
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Therefore we can rewrite eq. (B.1) as∫ ( L∏
i=1

ddki
iπd/2

)
1

zα1
1 . . . zαn

n

=
1

(iπd/2)L

∫
ds1,2ds1,3 . . . ds1,L+E

G(k2, . . . , kL, p1, . . . , pE)
1/2

. . .
dsL,L+1 . . . dsL,L+E

G(p1, . . . , pE)
1/2

× 1

2
Ωd−E−L+1

(
G(k1, . . . , kL, p1, . . . , pE)

G(k2, . . . , kL, p1, . . . , pE)

) d−E−L−1
2

ds1,1 . . .

× 1

2
Ωd−E

(
G(kL, p1, . . . , pE)

G(p1, . . . , pE)

) d−E−2
2

dsL,L
1

zα1
1 . . . zαn

n

=
1

(2iπd/2)L

(
L∏
i=1

Ωd−E−L+i

)
G(p1, . . . , pE)

(−d+E+1)/2

∫ (
L∏
i=1

L+E∏
j=1

dsi,j

)
G(k1, . . . , kL, p1, . . . , pE)

(d−E−L−1)/2 1

zα1
1 . . . zαn

n

.

(B.13)
Then we can exchange variables from the si,j to the denominators. Since
we said that the independent scalar products are n, we can indicate the n
independent si,j as σk, k = (1, . . . , n), in order to write the generalized inverse
propagators as

zi =
n∑

j=1

Cijσj + fi, (B.14)

where we introduced the n× n matrix C and the term fi is independent of
the loop momenta. We can invert the relation in order to go into the Baikov
variables

σi =
∑
j

(C−1)ij(zj − fj), (B.15)

and we therefore have an additional jacobian that takes into account this
change of variables

L∏
i=1

L+E∏
j=1

dsi,j ≡ dσ1 . . . dσn = Det(C−1)dz1 . . . dzn. (B.16)

Rewriting everything we have the Baikov representation written as

1

(2iπd/2)L

(
L∏
i=1

Ωd−E−L+i

)
G(p1, . . . , pE)

(−d+E+1)/2

DetC

×
∫

dz1 . . . dzn
zα1
1 . . . zαn

n

G(k1, . . . , kL, p1, . . . , pE)
(d−E−L−1)/2

(B.17)
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We now give a brief justification for the expression of the integration measures
in eqq. (B.11),(B.7) starting from the expression of dki∥ in eq. (B.7). Since
for each ki we treat the “outer” loop momenta ki+1, . . . , kL as if they were
additional external momenta, it is sufficient to prove that the formula holds
at one loop. The generalization to more loops comes naturally by simply
considering a larger set of external momenta that includes the additional
ki+1, . . . , kL. For simplicity we indicate kµi ≡ kµ.

The vector kµ∥ can be written as linear combinaton of p1, . . . , pE as

kµ∥ =
E∑
i=1

cip
µ
i . (B.18)

We first change the variables to ci and later to si ≡ k∥ · pi.

dEk∥ = dc1 . . . dcE|J |. (B.19)

we need to compute the Jacobian J

J = Det

(
∂kµ∥
∂ci

)
, (B.20)

with ∂kµ∥ /∂ci seen as a matrix with indices µ, i. It is easier to compute

J2 = Det

(
∂kµ∥
∂ci

∂k∥µ
∂cj

)
, (B.21)

with matrix indices i, j. Since

∂kµ

∂ci
= pµi , (B.22)

then
J2 = Det(pi · pj) = G(p1, . . . , pE), (B.23)

and therefore
J = ±G(p1, . . . , pE)1/2. (B.24)

Now we change the variables to the si

dEk∥ = dc1 . . . dcE|J | = ds1 . . . dsE|JJ ′|, (B.25)

with the jacobian J ′ given by

J ′ = Det
(
∂ci
∂sj

)
=

1

Det
(

∂si
∂cj

) , (B.26)
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where ∂si/∂cj is a matrix with indices i, j

∂si
∂cj

=
∂

∂cj

(
k∥ · pi

)
= pi · pj, (B.27)

and so

1

J ′ = Det(pi · pj) = G(p1, . . . , pE). (B.28)

From eq. (B.25), replacing J and J ′

dnk = ds1 . . . dsn
1

G(p1, . . . , pE)1/2
. (B.29)

Now for the orthogonal measure we prove eq. (B.11). Also in this case it
is sufficient to prove it at one loop and we use the notation kµi ≡ kµ. We
expand kµ as {

kµ = kµ∥ + kµ⊥
kµ∥ =

∑E
i=1 cip

µ
i

, (B.30)

where we observe the vanishing of the scalar products

k∥ · k⊥ = pi · k⊥ = 0, (B.31)

and therefore

k · k⊥ = k2⊥. (B.32)

Because of eq. (B.30) k, k⊥, p1, . . . , pE are linearly dependent and therefore

G(k⊥, k, p1, . . . , pE) = 0. (B.33)
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Expanding it, we obtain

G(k⊥, k, p1, . . . , pE) = Det


k2⊥ k⊥ · k k⊥ · p1 . . . k⊥ · pE
k⊥ · k k2 k · p1 . . . k · pE
k⊥ · p1 k · p1 p21 . . . p1 · pE

... . . .
...

k⊥ · pE k · pE p1 · pE . . . p2E



= Det


k2⊥ k2⊥ 0 . . . 0
k2⊥ k2 k · p1 . . . k · pE
0 k · p1 p21 . . . p1 · pE
... . . .

...
0 k · pE p1 · pE . . . p2E


= k2⊥G(k, p1, . . . pE)

− k2⊥Det


k2⊥ k · p1 . . . k · pE
0 p21 . . . p1 · pE
... . . .

...
0 p1 · pE . . . p2E


= k2⊥G(k, p1, . . . , pE)− k4⊥G(p1, . . . , pE) = 0.

(B.34)

Therefore
k2⊥ =

G(k, p1, . . . , pE)

G(p1, . . . , pE)
, (B.35)

which proves eq. (B.11).



C | Master decomposition formula

After introducing a basis for the space of twisted cocycles, {⟨e1| , . . . , ⟨eν |},
a basis for the dual space of twisted cocycles {|h1⟩ , . . . , |hν⟩} and a metric
Cij = ⟨ei|hj⟩ we now look at finding the decomposition formula for arbitrary
⟨φ| and |φ⋆⟩ in terms of the basis vectors. We follow closely the treatment
presented in [16].

We build the (ν + 1) × (ν + 1) matrix M of intersection numbers, for
arbitrary ⟨φ| and |φ⋆⟩, defined as

M ≡


⟨φ|φ⋆⟩ ⟨φ|h1⟩ . . . ⟨φ|hν⟩
⟨e1|φ⋆⟩ ⟨e1|h1⟩ . . . ⟨e1|hν⟩

...
... . . . ...

⟨eν |φ⋆⟩ ⟨eν |h1⟩ . . . ⟨eν |hν⟩

 ≡
(
⟨φ|φ⋆⟩ A⊺

B C

)
. (C.1)

The second equivalence re-express the matrix M using the column vectors
Ai = ⟨φ|hi⟩, Bi = ⟨ei|φ⋆⟩ with i = (1, . . . , ν) and the metric Cij = ⟨ei|hj⟩.

Since we assume the dimension of the twisted cocycles space to be ν and
that each entry of M is bilinear, then the determinant of M vanishes. Using
the identity for the determinant of a block matrix we get

DetM = DetC
(
⟨φ|φ⋆⟩ −A⊺C−1B

)
= 0, (C.2)

because the metric matrix is nonzero. Therefore,

⟨φ|φ⋆⟩ −A⊺C−1B = 0, (C.3)

that can be rewritten as

⟨φ|φ⋆⟩ = A⊺C−1B. (C.4)

This last equivalence can be expanded to get the decomposition of a generic
intersection number in terms of intersection numbers between basis vectors

⟨φ|φ⋆⟩ =
ν∑

i,j=1

⟨φ|hj⟩
(
C−1

)
ji
⟨ei|φ⋆⟩ . (C.5)
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Given the arbitrariness of ⟨φ| and |φ⋆⟩ we can extract from eq. (C.5) some
really important relations:

• because of the equivalence between the r.h.s and the l.h.s. we have the
expression of identity operator in the cohomology space

⟨φ| Ic |φ⋆⟩ =
ν∑

i,j=1

⟨φ|hj⟩
(
C−1

)
ji
⟨ei|φ⋆⟩ . (C.6)

obtained by stripping the r.h.s. and the l.h.s. of ⟨φ| and |φ⋆⟩ because
of their arbitrariness and getting:

Ic ≡
ν∑

i,j=1

|hj⟩
(
C−1

)
ji
⟨ei| ; (C.7)

• because of the arbitrariness of |φ⋆⟩ we can strip it out of eq. (C.5) and
obtain the decomposition of ⟨φ| in terms of the basis vectors {⟨ei|}νi=1

⟨φ| =
ν∑

i=1

ν∑
j=1

⟨φ|hj⟩
(
C−1

)
ji︸ ︷︷ ︸

ci

⟨ei| , (C.8)

where we isolated the coefficients ci;

• the same reasoning can be applied to strip out ⟨φ| from eq. (C.5) and
obtain the decomposition of |φ⋆⟩ in terms of the dual basis vectors
{|hi⟩}νi=1

|φ⋆⟩ =
ν∑

i=1

ν∑
j=1

(
C−1

)
ij
⟨ej|φ⋆⟩︸ ︷︷ ︸

c⋆i

|hi⟩ , (C.9)

where we isolated the coefficients c⋆i .



D | Derivation of Ω

We closely follow [16] to give a brief account on how the connection Ω
appears in the algorithm for multivariate intersection numbers.

We start from the univariate case in the variable z1, recalling how we
obtain the univariate connection ω = Ω(1) = dz1 log u. It comes from the
total derivative of the product of u = u(z1) and an (n− 1)-differential form
ξ = ξ(z1)

0 =

∫
C
dz1(ξu) =

∫
C
(dz1ξ + dz1 log u ∧ ξ)u

=

∫
C
∇Ω(1)ξu = ⟨∇Ω(1)ξ| C],

(D.1)

where we used a new notation ∇Ω(1) that corresponds to ∇ω: ∇Ω(1) = dz1 +
Ω(1) = dz1+ω = ∇ω. Now we extend the reasoning to n-forms in the variables
z = (z1, . . . , zn), with u = u(z), considering the integral I

I =
〈
φ(n)

∣∣ C(n)] =

∫
C(n)

φ(z)u

=

ν(n−1)∑
i=1

∫
C(n)

φi(zn)

∫
C(n−1)

e
(n−1)
i (z1, . . . , zn)u

=

ν(n−1)∑
i=1

∫
C(n)

φi(zn)
〈
e
(n−1)
i

∣∣∣ C(n−1)
]
,

(D.2)

where the role of u in the univariate case is now played by
〈
e
(n−1)
i

∣∣∣ C(n−1)
]
.

In principle there exist many 1−forms φi(zn) integrating to the same re-
sult. In particular, we consider the vanishing of the total derivative in zn of〈
e
(n−1)
i

∣∣∣ C(n−1)
]

times the function (0-form) ξi(zn)

0 =

∫
C(n)

dzn

(
ξi(zn)

〈
e
(n−1)
i

∣∣∣ C(n−1)
])
, (D.3)
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and
〈
e
(n−1)
i

∣∣∣ C(n−1)
]

satisfies the differential equation in zn

dzn

〈
e
(n−1)
i

∣∣∣ C(n−1)
]
= Ω

(n)
ij

〈
e
(n−1)
j

∣∣∣ C(n−1)
]
, (D.4)

with Ω(n) a ν(n−1) × ν(n−1) matrix. Inserting (D.4) in (D.3) we get

0 =

∫
C(n)

((
δijdzn +Ω

(n)
ij

)
ξi(zn)

)〈
e
(n−1)
j

∣∣∣ C(n−1)
]

=

∫
C(n)

(∇Ω(n))ijξi(zn)
〈
e
(n−1)
j

∣∣∣ C(n−1)
]
,

(D.5)

where we define the connection at the n-th integration step in zn

∇Ω(n) ≡ Idzn +Ω(n). (D.6)

And the matrix Ω(n) is obtained as

dzn

〈
e
(n−1)
i

∣∣∣ C(n−1)
]
= dzn

∫
C(n−1)

ei(z1, . . . , zn)u

=

∫
C(n−1)

(dznei(z1, . . . , zn) + dzn log u ∧ ei(z1, . . . , zn))u

=

∫
C(n−1)

(dzn + ωn∧)ei(z1, . . . , zn)u

=
〈
(dzn + ωn∧)e(n−1)

i

∣∣∣ C(n−1)
]
,

(D.7)
with ωn = dzn log u. We can employ the decomposition formula into basis
vectors to further simplify the last line and obtain〈

(dzn + ωn∧)e(n−1)
i

∣∣∣ = 〈(dzn + ωn∧)e(n−1)
i

∣∣∣hk〉(C−1
(n−1)

)
kj

〈
e
(n−1)
j

∣∣∣ , (D.8)

and we can identify Ω(n)

Ω
(n)
ij =

〈
(dzn + ωn∧)e(n−1)

i

∣∣∣hk〉(C−1
(n−1)

)
kj
. (D.9)



E | Intersection numbers of dif-
ferential 1−forms

We give a brief account on the justification for the formula presented in
eq. (3.82) that is used for the calculation of intersection numbers of differential
1−forms. We closely follow the treatment presented in [6]. We consider a
1−form φL and we indicate its poles with zi ∈ C. We will show how, from the
definition of intersection number given in eq. (3.18) we end up in eq. (3.82).
In order to do so, we need to build the compactification ιω(φL): the key point
will be the definition of circular regions around each pole zi.

We consider Vi and Ui to be two discs centered in zi such that Vi ⊂ Ui.
Each disc is defined such that Ui ∩ Uj = ∅ if i ̸= j. Then, for each i we
consider

• ψi, a holomorphic function satisfying

∇ωψi = φL, (E.1)

on Ui \ {zi}.

• ξi, a function such that

ξi =


1 onVi;
0 ≤ ξi ≤ 1 smooth interpolation onUi \ Vi;
0 out ofUi.

. (E.2)

Then we can write the mapped function ιω(φL), a function lying in the same
cohomology class as φL, as the difference between φL and the covariant deriva-
tive of a 0−form (that is, a function)

ιω(φL) = φL −
∑
i

∇ω(ξiψi) = φL

∑
i

(dξiψi + hi∇ωψi). (E.3)

Notice a few things:
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• since ξi = 0 out of Ui, we are not modifying φL in that region, (i.e.
ι(φL) = φL outside Ui);

• since, inside Vi, ξi = 1, the whole φL is subtracted around the singular
poles. Therefore ιω(φL) = 0 in the innermost region Vi;

• in the intermediate ring Ui \ Vi we subtract φL smoothly and moreover
it’s the only region where the term dξiψi ̸= 0.

It can be proved that a function ψi satisfying eq. (E.1) exists and is unique [6].
We can rewrite the intersection number ⟨φL|φR⟩ω as

⟨φL|φR⟩ω =

=
1

2πi

∫
X

[
φL −

∑
i

(dξi)ψi −
∑
i

ξi∇ωψi

]
∧ φR

= − 1

2πi

∑
i

∫
Ui\Vi

dξiψi ∧ φR.

(E.4)

The second equality is obtained by noticing that

• φL ∧ φR = 0 leads the first and the third term to vanish;

• the second term survives only where dξi ̸= 0, that is on the ring Ui \Vi;

• it holds
dξiψi ∧ φR = d(ξiψiφR), (E.5)

because both ξidψi ∧ φR and ξiψidφR vanish as dψi and φR are both
holomorphic and φR is a closed form.

We can rewrite eq. (E.4) using Stokes’ theorem

⟨φL|φR⟩ω = − 1

2πi

∑
i

∫
Ui\Vi

d(ξiψiφR) = − 1

2πi

∑
i

∫
∂(Ui\Vi)

ξiψiφR

=
1

2πi

∑
i

∫
∂(Vi)

ψiφR,

(E.6)

and, since Vi is a closed path, we can rewrite the last term as a sum of residues

⟨φL|φR⟩ω =
∑
i

Resz=zi(ψiφR), (E.7)

obtaining eq. (3.82).



F | Finite fields technology

-We give a brief review of finite fields technology, nowadays widely em-
ployed [42, 43, 23, 31, 29] for performing cutting-edge calculations relevant
for high-precision theoretical predictions. In this thesis we use the framework
FiniteFlow for two reasons:

• to solve the linear system of equations necessary for the “master mono-
mials” analysis;

• to obtain independently the decomposition of Feynman integrals with
the Laporta algorithm, in order to check the results obtained via inter-
section theory.

Moreover, the rational algorithm described in Ch. 4 is suitable for a future
implementation over finite fields. We start by introducing what are finite
fields and we then give a brief review of the framework FiniteFlow referring
for further details to [42, 43].

Finite fields are fields with a finite number of elements. We indicate with
Zn the set of non-negative integers smaller than n

Zn = {0, 1, . . . , n− 1}. (F.1)

In Zn one can define arithmetic operations such as addition,multiplication
and subtractions using modular arithmetic: they are done by performing the
operation over the field of integer numbers Z and taking the reminder of the
integer division of the result modulo n. In particular, FiniteFlow employs
finite fields of integer numbers modulo a prime number p, indicated with Zp.

We can also define the inverse a−1 of an element a ∈ Zn, a ̸= 0, with
respect to multiplication if and only if a and n are coprime. The multiplicative
inverse is an element b ∈ Zn such that

a−1 modn ≡ b ⇐⇒ (ab)modn = 1. (F.2)

Since FiniteFlow uses finite fields modulo a prime number p, Zp, the
existence of an inverse is always guaranteed for every non-vanishing element
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of Zp. The multiplicative inverse is calculated using the extended Euclidean
algorithm (for more details refer to [43], Appendix A.1). Therefore, Zp is a
field where all rational operations are well-defined.

The existence of multiplicative inverse allows us to define a non-invertible
map between rational numbers Q and elements of the finite field Zp

Q −−−−→ Zp

q =
a

b
−→ qmod p,

(F.3)

where the map is defined as

qmod p ≡
(
a×

(
b−1 mod p

))
mod p. (F.4)

This implies that polynomials and rational functions are well defined objects.
In particular, we refer to the definition of polynomials and rational func-
tions presented in App. A. Therefore, any numerical algorithm consisting
in a sequence of rational operations, can be implemented over finite fields
Zp. The map between rational numbers and a finite field is not invertible,
as Q is infinite and Zp is not. However, one can exploit an important result
in modular arithmetic, Wang’s rational reconstruction algorithm [52, 53]. It
allows, under certain assumptions, to successfully invert the map between Q
and Zn, therefore allowing to reconstruct q from its images over Zn with n
sufficiently large. More in detail, given a rational number q = a/b, Wang’s
algorithm is successful in reconstructing q from its image in Zn if and only
if |a|, |b| <

√
n/2. However, since the main reason for the use of finite fields

is the possibility of performing calculations efficiently using machine size in-
tegers, the prime numbers p considered are bounded from above, namely
p < 264, since most modern machines have integers with a size of 64 bits.
This can seem a problem for the usability of the rational reconstruction al-
gorithm, but it is a limitation that can be easily sidestepped by means of
the Chinese reminder theorem. In fact, the latter allows to deduce a number
a ∈ Zn, where n =

∏
i ni, from its images ai ∈ Zni

, where it is required
that the integers ni have no common factors. Within FiniteFlow, one can
deduce the image of a number over Zp1p2... from its images over several prime
fields Zp1 ,Zp2 ,. . . . Therefore, once the product of the selected sequence of
primes {p1, . . . , pn} is large enough, Wang’s reconstruction algorithm will be
successful.

More in detail, the algorithm works as follows: the coefficients of any
reconstructed rational function, nα and dα, are mapped to the rational field
using Wang’s algorithm. The result is checked numerically against evalua-
tions of the reconstructed function over finite fields not used for the recon-
struction, if it’s successful, the algorithm reaches the terminating condition.
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If the check is unsuccessful, the reconstruction is done again over more finite
fields Zpi and the results are combined using the Chinese reminder theorem,
in order to obtain a new result over Zp1p2... that will be mapped to Q.

Before performing the rational reconstruction of the coefficients of the ra-
tional function, it is necessary to reconstruct the rational function itself over
Zpi(z). This is done via a multivariate functional reconstruction algorithm
described in detail in [42]. This algorithm solves the so-called black box inter-
polation problem (F.5), that is, the problem of inferring with very high prob-
ability the analytic expression of a function from its numerical evaluations.
In this case, these evaluations are performed over finite fields. Assuming we
have a procedure to evaluate an n-variate rational function f of which we do
not know the analytic form, the procedure takes as input numerical values
for z and a prime p and returns the function evaluated over the finite field
Zp at the point z. The evaluation may fail in some points called bad points,
or singular points, that do not necessarily correspond to singularities in the
analytic expression of f , but may also due to spurious singularities appearing
in intermediate steps of the evaluation. When a bad point is encountered, it
is replaced with a different one. In realistic cases, however, the occurrence
of these points is extremely rare. The functional reconstruction algorithm
allows to identify the monomials appearing in the analytic expression of f
and the value of their coefficients nα and dα,

(z, p) −→ f −→ f(z)mod p. (F.5)

FiniteFlow allows to reconstruct the analytic expression of a function by
exploiting first a multivariate functional reconstruction algorithm, that al-
lows to obtain the monomials and the coefficients evaluated over the finite
field in consideration, followed by Wang’s rational reconstruction algorithm,
that maps the coefficients over the finite field into their rational expression.
This procedure reduces the problem of computing any multivariate and mul-
tivalued rational function to the one of providing a numerical implementation
of it over finite fields. FiniteFlow is characterized by good flexibility and
performance. It has more the structure of a framework rather than of a single-
use specialized program. It relies on a special kind of computational graphs,
known as dataflow graphs, in order to allow the user to build any needed
numerical algorithm by concatenating basic operations whose algorithms are
encoded in low-level languages. To be more clear, dataflow graphs are di-
rected acyclic graphs used to represent a numerical calculation. Any graph
is made of nodes (see fig. F.1) and arrows. The latter represents data (in the
case of FiniteFlow, numerical values) and the former represents algorithms
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operating on the data received as inputs (identified by incoming arrows) and
producing data as output (identified by outgoing arrows). In FiniteFlow
an arrow represents a list of values and a node a basic numerical algorithm.
A node can have zero or more incoming arrows but only one outgoing arrow
as output.

Figure F.1: Node presenting three input arrows and only one output arrow.
Image taken from [42].

Nodes represent basic algorithms that are implemented once and for all
in a low level language such as C++. Such algorithms include the ones for
the evaluation of rational functions, dense and sparse linear solvers, matrix
multiplication (useful for linear substitutions), and the ones to perform linear
fits and Laurent expansions. The user can define more complex algorithms
by combining the nodes into a computational graph representing a complete
calculation, chaining the nodes so that the output of each building block is
used as input for the others. This allows the user to define algorithms using
the built-in algorithms as building blocks without concerning about the low-
level details of the numerical implementation. In this sense, FiniteFlow
can be seen as a toolkit that provides the user with the necessary instruments
to build any rational algorithm.
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