Characterization of in-gap electronic states in two-dimensional single crystal PEA2PbBr4 perovskite for X-ray detection

Fodera, Vito (2022) Characterization of in-gap electronic states in two-dimensional single crystal PEA2PbBr4 perovskite for X-ray detection. [Laurea magistrale], Università di Bologna, Corso di Studio in Physics [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 4.0 (CC BY-NC-ND 4.0)

Download (6MB)

Abstract

Hybrid Organic-Inorganic Halide Perovskites (HOIPs) include a large class of materials described with the general formula ABX3, where A is an organic cation, B an inorganic cation and X an halide anion. HOIPs show excellent optoelectronic characteristics such as tunable band gap, high adsorption coefficient and great mobility life-time. A subclass of these materials, the so-called two- dimensional (2D) layered HOIPs, have emerged as potential alternatives to traditional 3D analogs to enhance the stability and increase performance of perovskite devices, with particular regard in the area of ionizing radiation detectors, where these materials have reached truly remarkable milestones. One of the key challenges for future development of efficient and stable 2D perovskite X-ray detector is a complete understanding of the nature of defects that lead to the formation of deep states. Deep states act as non-radiative recombination centers for charge carriers and are one of the factors that most hinder the development of efficient 2D HOIPs-based X-ray detectors. In this work, deep states in PEA2PbBr4 were studied through Photo-Induced Current Transient Spectroscopy (PICTS), a highly sensitive spectroscopic technique capable of detecting the presence of deep states in highly resistive ohmic materials, and characterizing their activation energy, capture cross section and, under stringent conditions, the concentration of these states. The evolution of deep states in PEA 2 PbBr 4 was evaluated after exposure of the material to high doses of ionizing radiation and during aging (one year). The data obtained allowed us to evaluate the contribution of ion migration in PEA2PbBr4. This work represents an important starting point for a better understanding of transport and recombination phenomena in 2D perovskites. To date, the PICTS technique applied to 2D perovskites has not yet been reported in the scientific literature.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Fodera, Vito
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
MATERIALS PHYSICS AND NANOSCIENCE
Ordinamento Cds
DM270
Parole chiave
Layered perovskites,Photo-Induced Current Transient Spectroscopy,PICTS,deep states,2D perovskites
Data di discussione della Tesi
28 Ottobre 2022
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^