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Abstract

The object of study of the present work are Bose-Fermi mixtures in three dimen-
sions at zero temperature. The system is characterized by a great tunability of
physical parameters that is achieved by means of a Fano-Feshbach resonance. As
a result, there are mainly two regimes: we move from a situation in which bosons
and fermions are weakly interacting to a context in which bosons are coupled to
fermions so as to form molecules that are composite fermions, as the coupling
between the two types of particles is increased. In the former case, we can de-
scribe the mixture as a weakly attractive Bose-Fermi one, while in the latter the
same is described in terms of molecules and excess atoms or particles which are
unpaired. The main aim of the thesis is to analyze the spectral weight functions
which represent the single-particle excitation spectra of the system and are rele-
vant to recent radio-frequency spectroscopy experiments of the system. In order
to pursue this objective, diagrammatic methods are used. The formalism is de-
veloped within the T-matrix approach: it consists of an approximate calculation
which selects exclusively the class of Feynman’s diagrams that collects all possible
repeated boson-fermion interaction.
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Introduction

Ultracold gases are one of the best physical platforms where new phases of matter
can emerge (e.g. superfluidity) which are in turn at the basis of in the realization of
new technological and experimental innovations with a significant impact also on
everyday life. They are regarded as quantum simulators because, thanks to their
great flexibility and broad tunability of the physical parameters, allow us to study
and explore the behaviour of quantum matter in a controlled way, making a better
understanding of several phenomena, ranging from nuclear many-body theory to
high Tc superconductors, possible. Bose-Fermi mixtures are quantum simulators
par excellence being systems in which, in the presence of a Fano-Feshbach reso-
nance, the strength of the interactions between its constituents, i.e. bosons and
fermions, can be tuned at will by acting, typically with an external magnetic field
near the resonance, on coupling strength parameter. In this thesis we address the
study of the competition between the coupling, which is responsible for the for-
mation of composite fermions (i.e. molecules composed by one boson and one
fermion), and the condensation of the bosons in their ground state. Clearly, as the
former increases, the latter is reduced and vice versa. A system characterized by
a higher concentration of fermions rather than bosons behaves in a complete dif-
ferent way than a system in which the role of predominance is switched between
the two species, i.e. bosons are more than fermions. This is because, in the first
case, above a certain coupling strength, composite fermions - which are molecules
composed by one fermion and one boson - will be subjected to a repulsive interac-
tion towards the excess atoms/particles for the reason that the latter are fermions
and, therefore, a sort of molecular Pauli exclusion principle holds: on one hand a
fermion (which is composite), on the other another one, so they repel each other.
In the second case instead, the aforementioned interaction will be attractive owing
to the excess atoms/particles are now bosons; as a result, there is no trace of Pauli
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exclusion principle. This different behaviour is reflected in the profiles of several
physical quantities, e.g. chemical potentials, condensate density and so on.
In order to describe the aforementioned processes it is important to set up a proper
theoretical formalism; to this end we use Green’s functions at zero temperature
with Feynman’s diagrams computed within the framework of T-matrix approx-
imation: by doing so, we took into account all possible repeated boson-fermion
interaction, modeled by a contact potential, obtaining in this way a ladder and
this is the reason why we call these diagrams ladder diagrams. The main aim of
this thesis is, starting from the T-matrix approximation in the condensed phase,
the construction of the spectral weight functions. One of the strongest motiva-
tions that led us to focus on this topic are the experimental results obtained by
a group of researches at the University of Innsbruck [20] with regard to the exci-
tation spectrum - related to the spectral weight functions - of a system made of
bosonic 41K impurities immersed in a 6Li Fermi sea. In particular, a new branch,
called BEC branch because it has been observed in the partially condensed regime,
has emerged in the spectrum (which shows no sign of the Fermi polaron, as in the
case of the thermal cloud regime). Some hypotheses have been put forward to ex-
plain this unexpected behaviour, but the question deserves further investigations
since a proper theoretical study in the condensed regime has not been carried out
yet.
The present work, which involves analytical calculations as well as numerical
ones, is structured in five Chapters. In the first one, we present the state of the art
on ultracold gases and Bose-Fermi mixtures giving an insight on Fano-Feshbach
resonances, the theoretical and experimental works, the the techniques that are
behind the realization of this type of systems as well as the more recent experi-
ments.
In the second Chapter we begin by formally describing the physical system by
means of the T-matrix approach and the corresponding fermionic and bosonic
self-energies, which are used to get the dressed Green’s functions via the Dyson’s
equation. Moreover, we introduce the concept of analytic continuation, which is
crucial to obtain the spectral weight functions. In the second part of the Chapter,
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in addition to dwelling on the quasi-particle residue and the momentum distribu-
tion functions, we focus on the poles of the retarded T-matrix and Green’s func-
tion, which are useful in the subsequent manipulation of the integrals involved in
the self-energies. This is a necessary step also for the purpose of implementing the
numerical calculations whose in-depth analysis is the content of the third Chap-
ter. Here, the building and the functioning of the numerical work are illustrated,
starting from the adimensionalization of the equations and ending with the im-
plementation of the calculation of the quasi-particle residue.
Chapter 4 is devoted to the presentation of the results obtained with the numerical
calculations and their discussion: in particular, retracing the theoretical consider-
ations made in Chapter 2, we show the behaviour of the retarded T-matrix as the
coupling parameter is varied focusing on its poles and their dispersions too. The
core of this Chapter is the analysis of the fermionic spectral weight function as a
function of the momentum and frequency for given values of the coupling param-
eter. We conclude the Chapter by discussing some numerical checks, the fermionic
momentum distribution function and its jumps whose height is described by the
quasi-particle residue.
In the final Chapter we discuss some outlooks and perspectives.
In the Appendices one can find a very short discussion about the bisection method,
which is used in the program for the determination of the poles, and the Gauss-
Legendre integration that were implemented in our code, as well as a brief de-
scription of quasi-particle theory.
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Chapter 1

Ultracold Bose-Fermi mixtures

In this first Chapter we briefly discuss the state of the art on ultracold Bose-Fermi
mixtures (in three dimensions). Before doing that, we focus on ultracold gases in
general and Fano-Feshbach resonances since they can be regarded as the building
blocks of the systems that we aim to study.

1.1 Short digression on ultracold gases

When dealing with ultracold gases, there are some fundamental premises that
must be made: first of all, three length scales rule these systems and are the
thermal de Broglie wavelength λT =

√
2πh̄/mkBT (where h̄ = 6.62607015/2π ×

10−34 J · s is the reduced Planck constant, m is the atomic mass, kB = 1.380649 ×
10−23 J/K is the Boltzmann constant and T is the temperature), which represents
the size of the wave-packet associated to a particle, the range of the interaction
r0 and the average interparticle distance l ≈ n−d (n is the particle density of a
d-dimensional system). Secondly, these systems are characterized by low den-
sities and temperatures: for instance, if we consider an atomic cloud made of
Bose-Einstein condensate, typically its particle density is about 1013 − 1015 cm−3

while the temperatures are approximately of the order of the microkelvin (µK).
When the thermal de Broglie wavelength becomes comparable or larger than the
average interparticle distance (l ≲ λT), the Maxwell-Boltzmann statistics which
reproduces the behaviour of classical particles is no longer suitable to describe the
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system since quantum phenomena arise. In this quantum degeneracy regime, par-
ticles can all be described in terms of Bose-Einstein statistics, if they have integer
spin, or Fermi-Dirac statistics, if they have half-integer spin. Particles that obey to
the former statistics are called bosons, while in the latter case we are dealing with
fermions.
As stated previously, the density of the system should be very low as well as the
temperature - otherwise its almost exact description is doomed to failure - and
this condition is satisfied whenever the range of the interaction is significantly
smaller than the interparticle distance (r0 ≪ l). The latter is a necessary condition
for the system to remain gas and not crystallize and leads to the description of
the interactions by means of a contact potential. Since we aim to study a gas in
a quantum regime, if r0 ≪ l, then, all the more reason, r0 ≪ λT; by requiring
that, the scattering processes in which particles are constantly involved achieve
the traits of universality since the corresponding problem does not depend on the
characteristics of the interatomic potential anymore but rather on the features of
the lowest angular momentum scattering length a. This regime is of great physi-
cal interest because striking quantum phenomena can occur, e.g. superfluidity or
Bose-Einstein condensation.
In particular, Bose-Einstein condensates (BEC) were predicted theoretically in 1925
by Einstein [1] after the study of Bose regarding the photonic statistics [2]: the
most interesting aspect was the existence of a new phase below a critical tempera-
ture in which a finite fraction of the bosons occupies the single-particle state with
momentum equal to zero. The experimental realization of a BEC took place only
in 1995 at the University of Colorado in the laboratories of Boulder with atoms of
87Rb [3] and at Massachusetts Institute of Technology (MIT) with 23Na [4]. The
direct observation of ultracold gases has been made possible by mean of cool-
ing techniques as well as trapping ones. As for the former, they consist of laser
and evaporative cooling, while the latter are mainly divided into three categories:
magnetic traps, optical traps and magneto-optical traps (known by their acronym
as MOT).
Generally, there are two ways to tune the interactions between atoms: the first
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method is to use different atomic species whilst in the second an applied mag-
netic field is varied to change the interaction whenever the species under consid-
eration have a Fano-Feshbach resonance. In the latter case, it is possible to analyze
the regime in which the scattering length is much larger than the average inter-
particle distance, and the atomic cloud can be thought as a strongly-interacting
many-body system. This is the focus of the following section.

1.2 Fano-Feshbach resonances

A Fano-Feshbach resonance is a multi-channel scattering phenomenon in which
the elastic scattering in one channel can be varied significantly if in a second chan-
nel - that is closed - there is a low-energy bound state. When the energy of the lat-
ter is approached by the total energy of two scattering particles in an open channel
a Fano-Feshbach resonance occurs. A second-order process modifies the scatter-
ing length of the problem and it works like this: in an open channel two particles
can scatter to an intermediate state in a closed channel, which typically decays
in two particles in one of the open channels. Due to this process, the scattering
length is modified by terms of the type a ∝ 1

Eop−Ecl
, where Ecl is the energy of a

state in the closed channel, while Eop is the energy of a state in the open channels.
As a result, the effect of the coupling between channels on the scattering length
is particularly evident if the energies in the previous relation have similar values;
these can be altered if one changes external parameters: the best candidate, as
claimed before, is the external magnetic field B. With B0 we denote the value of
the field at which the threshold energy of the open channel reaches the bound-
state energy in the closed channel. The magnetic moments in the two channels -
open and closed ones - are in general different from each other so it is possible, by
changing the value of B, to bring the bound-state energy closer to the threshold of
the open channel. In the presence of a Fano-Feshabach resonance the behaviour
of the scattering length is the following:

a = abg

(
1 − ∆

B − B0

)
(1.1)
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where abg is the background scattering length far from the resonance and ∆ is the
width parameter which depends on the different magnetic moments in the chan-
nels and on the coupling between them. If we are far away from the resonance,
i.e. |B − B0| ≪ 0, then a = abg since ∆ is negligible compared to 1. If we assume
abg < 0, as typically is, when we are close to the resonance the scattering length
passes from negative values to the zero one (in this specific case B − B0 = ∆),
then it increases and diverges for B = B0 (leading to the so-called unitarity limit
in the context of ultracold gases). Afterwards, it becomes small again. When the
scattering length is small compared to the interparticle distance and positive, the
binding energy of the bound states (which are made possible by the strong attrac-
tive interaction) is ϵ0 = 1/2mra2 near the resonance (mr is the reduced mass). This
situation corresponds to the strongly-coupled Bose-Fermi mixture in the molecu-
lar limit, as we will see in the following. If this is not the case instead, there are
no bound states and the system is weakly interacting (the scattering length takes
negative values close to zero). Figure 1.1 summarizes the considerations made so
far.

FIGURE 1.1: Left panel: formation of the Fano-Feshbach resonance.
Two potential curves for two different channels - open and closed
one - are depicted. Right panel: curves of the scattering length and

of the binding energy as functions of the external magnetic field.
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1.3 Theoretical and experimental works

The study, both theoretical and experimental, of Bose-Fermi mixtures has begun
around the 2000s. As for the former, at first non-resonant mixtures have been
taken into account within a mean-field approximation framework [5]. Here, the
degenerate Fermi gas was induced to collapse by means of the interaction with
a Bose-Einstein condensate. A further development in this description was pro-
vided by the introduction of beyond-mean-field corrections with regard to the
ground-state properties [6]. Afterwards, Bose-Fermi mixtures have been explored
in presence of a Fano-Feshbach resonance [7, 8]. There are two types of Fano-
Feshbach resonances: one is called broad and the other narrow: in the first case, the
scattering length and the average interparticle distance are bigger than the effec-
tive range of the potential, while in the second one this condition is no longer sat-
isfied. However, for a narrow Fano-Feshbach resonance the Hamiltonian contains
terms related to fermions, bosons and molecules formed in the closed channel; the
latter contribution is not present if we are considering a broad Fano-Feshbach res-
onance. Bose-Fermi mixtures in lattices in the presence of a broad Fano-Feshbach
resonance were the focus of the first works [9, 10, 11]. The continuum case has
been taken into account with the modeling of the interaction between bosons and
fermions as an attractive point-contact potential [12]. Quantum Monte Carlo ap-
proach has been recently considered when dealing with Bose-Fermi mixtures [13,
14] but this method is beyond the aim of the present thesis.
The practical realization of such mixtures has always been a difficult challenge for
a number of reasons that we will discuss in a while. Recent works have shown that
the possibility of tuning the interspecies scattering length via a Fano-Feshbach res-
onance is concrete. Moreover, some experiments, in which 23Na-40K [15], 23Na-6Li
[16] and 87Rb-40K [17] mixtures were employed, have succeed in the formation of
ultracold molecules. In these cases, the standard molecular lifetime near the Fano-
Feshbach resonance ranges from few milliseconds to several tens of milliseconds.
In general, since in the region of intermediate coupling the system is characterized
by heating processes and atom losses, experiments were severely limited in this
regime. Such technical issues can be partially overcome by reducing the bosonic
concentration so that the loss rate, being proportional to the fermionic density
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times the square of the bosonic one, is significantly lowered. Regarding a possible
mechanical collapse of the mixture, a sufficiently large boson-boson repulsion (i.e.
above a certain threshold) should prevent it [18]. Bose-Fermi mixtures have also
been studied and realized in two dimensions since the intermediate regime of the
boson-fermion pairing can be better examined in a 2D-geometry confinement. An
independent tuning of the boson-fermion and boson-boson interactions, in such
a way that the boson-fermion attraction is swept across the entire Fano-Feshbach
resonance and the necessary boson-boson repulsion is guaranteed, can be nowa-
days achieved if a confinement-induced resonance as well as a Fano-Feshbach one
are applied simultaneously to the system [19].
Moving to days closer to us, a group of researchers at the University of Innsbruck
has recently published a scientific report [20] in which they focused on a system
made of 41K and 6Li atoms; in particular, the bosonic 41K impurities are immersed
in a Fermi sea of ultracold 6Li atoms so that the system is highly imbalanced. As
usual, interspecies interactions are largely tunable via Fano-Feshbach resonance.
Radio-frequency injection spectroscopy is used to transfer atoms from a nonin-
teracting spin state K|2 > into a state K|1 > which interacts with the fermionic
medium. Three different impurity regimes have been taken into account (see Fig-
ure 1.2): in the first one, that is the case of a single impurity, the K atom turns
out to be dressed by particle-hole excitation of the Fermi sea; this leads to local
density modulations in the medium and to the formation of the Fermi polaron.
In the single-impurity limit the quantum statistics of the minority species (i.e.
bosons in the present case) is irrelevant for the behaviour of the ensemble. The
experimental observations that were conducted in this regime have shown great
agreement with the theoretical predictions based on Landau’s quasiparticle the-
ory. If more K atoms are added to the system, then polaron-polaron interactions
are introduced: as a consequence, we assist at the spatial overlap of the density
modulations around the impurities; this implies an effective interaction between
the quasiparticles which is mediated by the fermions and is attractive owing to
the bosonic nature of the 41K atoms [21, 22]. However, experimental observations
in this regime are quite limited due to technical issues [23]. The last scenario is
the high-density regime, in which the impurities form a Bose-Einstein condensate
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(BEC); typically, its density is significantly larger than that of the Fermi sea; there-
fore, the bosonic and the fermionic species interchange their roles and locally the
6Li atoms can be seen as impurities in the K-BEC. Now the ensemble is described
in terms of Bose polarons [24] and not anymore Fermi ones. As a result, since the
density of the bosonic species can be varied from a thermal cloud to a BEC, it is
possible to realize the transition from Fermi polarons to Bose polarons. Note that
in the names Fermi or Bose polarons, the statistics refer to the medium in which
the impurities (minority species) are embedded.

FIGURE 1.2: Fermi-Bose mixture in three different regimes, illus-
trated by the three columns. From left to right (the bosonic density
is increased): single impurity regime, high density regime, mixed
phase containing a large BEC component. The upper row shows the
noninteracting impurities that is immersed on a Fermi sea, while the
lower row illustrates the interacting ones [Figure reproduced from

20].

The focus is on the spectral response of the 41K bosonic sample immersed in a
6Li Fermi sea (see Figure 1.3). The spectra are a function of the coupling parame-
ter and the dimensionless radio-frequency detuning h∆ν/ϵ f , where ∆ν = ν0 − ν
is the difference between the resonance frequency where the maximum transfer
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from the noninteracting state K|2 > to the interacting one K|1 > occurs and the
frequency effectively applied and ϵF is the Fermi energy. In the thermal cloud
regime a typical polaron spectrum can be observed and it has the characteristic
repulsive and attractive branch exhibiting a positive and negative energy shift, re-
spectively. In this case, there is a good agreement with the theoretical predictions
for the single-impurity framework. In the partially condensed regime instead, a
new branch, called BEC branch, emerges in the spectrum, which shows no sign of
the polaron anymore. There is a small positive shift in energy over a large range
of interactions and a possible explanation for this could lie in an interchange of
the role of the two atomic species: now the BEC could represent the environment,
while the Fermi sea the impurities. This scenario, described by the Bose polaron
(and no longer the Fermi one), suggests that these two may appear as different
branches of one spectrum. Anyway, the question, still being debated, needs fur-
ther investigations since a proper theoretical study in this regime has not been
carried out yet.

FIGURE 1.3: The first panel illustrates the excitation spectrum in the
thermal cloud regime, while the second one refers to the partially
condensed one. The color map shows the transferred fraction of
atoms from K|2 > to K|1 >. Dashed lines stand for theoretical pre-

dictions [Figure reproduced from 20].

All in all, in this experiment the existence of a transition from Fermi polarons
to molecules has been established for impurities in a Fermi sea but there have
been other works in which Bose polarons were observed in the limit of fermionic
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impurities in a bosonic bath [25, 26].
Generally speaking, however, it was not clear in which terms the transition from
atoms to molecules proceeds when the impurities are degenerate, especially when
fermions and bosons, whose densities are comparable, dress each other respec-
tively and alter their mutual behaviour in a dramatic way. The regime of matched
particle density is particularly promising when it comes to the association of het-
eronuclear molecules at high phase space density. This type of study is of inter-
est since it has several applications ranging from quantum chemistry to dipolar
quantum-many body systems, but the achievement of such a regime is techni-
cally difficult in double-degenerate mixtures owing to the enhanced density of the
bosonic condensate: the latter, in fact, is responsible for fast interspecies loss that,
acting as a bottleneck, does not allow to reach quantum degeneracy in heteronu-
clear molecules and makes the investigation of strongly correlated Bose-Fermi
mixtures much harder. These problems have been partially overcome by a team
of researchers between Garching and Munchen in Germany. In their recent exper-
imental work [27], they observed a transition from a polaronic condensate to a de-
generate Fermi gas of heteronuclear molecules, more specifically a quantum phase
transition - driven by strong boson-fermion interactions - from a polaronic phase
to a molecular one in a density-matched degenerate Bose-Fermi mixture. In partic-
ular, they were able to produce a double-degenerate mixture of 23Na and 40K with
matched density by means of a new species-dependent density-decompression
technique of atomic clouds capable of mitigating atomic loss. The weakly inter-
acting mixture is the starting point as usual; then, as interactions become stronger,
the bosonic condensate is dressed polaronically. The interaction strength, tuned
in a continuous way, causes the depletion of the polaronic condensate; therefore,
a transition into a phase of quantum-degenerate fermionic molecules occurs. At
this stage, by driving through the phase transition, a quantum-degenerate sample
of 23Na-40K molecules exhibiting a large molecule-frame dipole moment (of 2.7
Debye) is produced. The quantum phase transition can be regarded as a novel
phenomenon totally complementary to the well-known BCS-BEC crossover typi-
cal of Fermi systems [28] and the atomic-to-molecular BEC crossover in Bose sys-
tems [29]. The exploration of strong-correlation physics in degenerate Bose-Fermi
mixtures, even if at the beginning, has been made possible in this way as well as,
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with the extension of the innovative decompression technique, the achievement
of a heteronuclear molecular BEC from Bose-Bose mixtures that suffer even more
dramatically from losses when the condensation of both bosonic species takes
place. Figure 1.4, being the phase diagram of the system under consideration,
adequately sums up its main features.

FIGURE 1.4: Phase diagram of degenerate Bose-Fermi mixtures as
a function of the density ratio between bosons and fermions and
the interaction strength. If the density ratio tends to zero we have
the Fermi-polaron limit that exhibits a polaron-to-molecule transi-
tion (represented pictorially by the black diamond); if instead the
same quantity tends to infinity, we reach the Bose-polaron limit with

a smooth crossover [Figure reproduced from 27].

Let us conclude this section with a short digression on some technical aspects
that have been outlined so far in the realization of the aforementioned experi-
ments and that are strictly related to the framework of spectral weight functions
A(k, ω), which are, as stated in the introduction, the main focus of the thesis. It
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has been pointed out that angle resolved photoemission spectroscopy (ARPES) is
very useful when it comes to the determination of the fermionic spectral weight
functions in electronic systems. Quite recent experiments on 40K from the JILA
group [30] have shown that it is possible to measure spectral weight functions by
means of momentum resolved radio-frequency spectroscopy over a range of mag-
netic fields throughout the BCS-BEC crossover. The choice of 40K as atomic species
is on solid ground since, for the typical Fano-Feshbach resonance around 202 G,
there are no competing resonances that could introduce complications from final
state interactions. In this case, one is interested in signatures of pairing in a mix-
ture of fermionic 40K in two different hyperfine levels. A work conducted at the
University of Chicago [31] has demonstrated that the momentum resolved radio-
frequency spectroscopy has the same capabilities as that of ARPES and therefore
can be used to measure the spectral function of ultracold Fermi gases. In partic-
ular, the momentum resolved radio-frequency spectrum turns out to be propor-
tional to:

RF(k, E) = k2
∫

d3rA(k, E − µ(r); r) f (E − µ(r)) (1.2)

where E = k2/(2m)−ωδ is the single-particle energy, f (E−µ(r)) is the Fermi func-
tion and ωδ is the detuning of the radio-frequency probe with respect to the fre-
quency of a specific atomic transition. Notice that in the (1.2) the average over the
momentum has been deleted, hence the name of the technique (the trap average -
on spatial coordinates - instead can be eliminated with another technique, called
tomographic one, and introduced at MIT [32]). Furthermore, momentum resolved
radio-frequency spectroscopy can be used to investigate the causes at the origin of
double peak structure occurring in momentum-integrated radio-frequency spec-
tra, in particular whether this behaviour is attributable to bound state effects or
pairing. In the last two works cited, theoretical analysis and experimental results
showed that the double peak structure seems to depend on unpaired atoms near
the trap edge and on paired atoms near the trap center.
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1.4 Latest experiments

The physics of ultracold gases is having a big boost nowadays because the imple-
mentation and the improvement of experimental techniques has led to confirma-
tions or corrections of past theoretical predictions which, in turn, are now pow-
ered and encouraged by these new frontiers. For instance, a group of researchers
[33] has obtained an increase up to 90% of the closed-channel fraction of Feshbach
molecules of 23Na40K by using a magnetoassociation on the Fano-Feshbach reso-
nance at a certain value of the magnetic field. This achievement has made possible
better pump transition strengths to the absolute ground state as well as improved
transfer efficiencies compared to more conventional techniques. Furthermore, fil-
ter cavities proved to be a useful method when it comes to the reduction of the
detrimental laser noise.
Another work [34], both theoretical and experimental, has focused on the suppres-
sion of three-body loss at unitarity via Fermi degeneracy in a degenerate Bose-
Fermi mixture. As said above, this technical issue is the cause of the failed re-
alization of several experiments on Bose-Fermi mixtures. This problem has been
analyzed in detail with a model based on RKKY interactions [35, 36, 37] that ex-
plains the suppression in the degenerate regime without using any fitting param-
eters and that lays the foundation for a deeper experimental investigation of Bose-
Fermi mixtures at unitarity, whose theoretical study is addressed throughout this
thesis.
The object of study of a very recent work [38] have been long-lived fermionic Fes-
hbach molecules. The interest behind these molecules lies in the fact that they are
suitable for the exploration of quantum matter with intense p-wave interactions.
The main experimental problem is their very short lifetimes which make their
measurements extremely difficult. The researchers studied the p-wave collisions
of ultracold fermionic 23Na40K Feshbach molecules taking into account several
scattering lengths and temperatures and noticed that an increase in the binding
energy of the molecules leads to a much greater lifetime, about 20 times longer
than that of ground-state molecules (specifically, the two-body loss coefficient re-
duces by three orders of magnitude). A regime in which the elastic collisions
prevail on the inelastic ones has been identified by exploiting the scaling of these
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collisions with the temperature and the scattering length, allowing the thermal-
ization of the molecular sample. Moreover, this study, which is fundamental for
producing a degenerate Fermi gas of Feshbach molecules (the dimer loss is sig-
nificantly reduced after their formation by quenching the magnetic field into the
regime of large binding energies), can be thought as a benchmark for solving the
four-body problem which predicts the collisional behaviour in other heteronu-
clear molecules.
Last but not least, the unleashment of the potential of ultracold molecules requires
cooling interacting molecular gases deeply into the quantum degenerate regime.
Typically, collisions are unstable at the short range owing to the complexity of
molecules and this results in a lack of cooling to quantum degeneracy (in three
dimensions). One of the latest experiments [39] addressed this problem: using
microwave shielding, the evaporative cooling of a 3D gas of fermionic 23Na40K
molecules to well below the Fermi temperature has been achieved. This has been
obtained by means of a repulsive barrier arranged by coupling rotational states
with a blue-detuned circularly polarized microwave: by doing so, molecules were
prevented from reaching short range. The large elastic-to-inelastic collision ratio,
obtained by means of strong tunable dipolar interactions, made the cooling of the
molecular gas possible, paving the way to future investigations of long-lived de-
generate polar molecules and the consequent exploration of new quantum many-
body phases with long-range anisotropic interactions.
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Chapter 2

A theoretical approach to Bose-Fermi
mixtures

In this Chapter we analyze Bose-Fermi mixtures in three dimensions at zero tem-
perature exploiting the theoretical insight provided by Feynman’s diagrams within
the so-called T-matrix approach.

2.1 The model Hamiltonian

Now we are able to consider the system that will be our object of study, i.e. Bose-
Fermi mixtures in three dimensions. We denote with nF the density of single-
component fermions, while nB stands for the density of the bosons. The physical
quantities that must be taken into account in this context are the effective range
of the potential r0, the boson-fermion scattering length aBF (where the subscript
B is for bosons and the subscript F is for fermions) and the average interparticle
distance l. The presence of a broad Fano-Feshbach resonance implies, as already
pointed out in section 1.3, that r0 ≪ l and ro ≪ aBF. In this framework, the boson-
fermion interaction can be described by means of an attractive point-contact po-
tential vBF

0 [40]. As a result, the minimal grand-canonical Hamiltonian turns out
to be:
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H = ∑
s

∫
drψ†

s (r)
(
− ∇2

2ms
− µs

)
ψs(r)

+ vBF
0

∫
drψ†

B(r)ψ
†
F(r)ψF(r)ψB(r)

+
1
2

∫
dr

∫
dr′ψ†

B(r)ψ
†
B(r

′)UBB(r − r
′
)ψB(r′)ψB(r)

(2.1)

where with s =B,F we denote the boson and fermion species respectively and
with UBB the boson-boson interaction. Notice that the reduced Planck constant
and the Boltzmann one are set equal to 1 (h̄ = kB = 1) and it will be so throughout
the thesis. In (2.1) ψ†

s (r) creates a particle of mass ms and chemical potential µs,
while ψs(r) destroys a particle of mass ms and chemical potential µs. It can be
seen that the Hamiltonian has three contributions: the first is the free Hamiltonian
which takes into account non-interacting bosons and fermions; the second is the
boson-fermion interaction Hamiltonian, while the third is the boson-boson one.
Fermion-fermion interaction is not considered owing to Pauli exclusion principle.
The microscopic coupling vBF

0 can be expressed in terms of the boson-fermion
scattering length aBF as follows:

1
vBF

0
=

mr

2πaBF
−

∫ dk
(2π)3

2mr

k2 (2.2)

where k is the momentum and mr = mBmF
mB+mF

is the reduced mass of the boson-
fermion system. Having written vBF

0 in this way, the ultraviolet divergences re-
lated to the contact interaction vBF

0 are suppressed. It is important to remark
that, while the boson-fermion interaction is attractive and tunable by means of
the Fano-Feshbach resonance, as previously stated, the boson-boson interaction is
supposed to be weakly repulsive. As a consequence, there is no need to eliminate
the corresponding ultraviolet divergence since it is treated at mean-field level (in
this case we have UBB(r − r

′
) = 4πaBB

mB
δ(r − r

′
), where aBB is the boson-boson scat-

tering length).
The inverse of the effective Fermi wave vector kF ≡ (3π2n)1/3 (where n is the
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average density of fermions and bosons, i.e. n = nF+nB
2 ) provides a natural length

scale of the system under consideration. An alternative possible description of kF
relates it directly to the density of the fermionic component: kF ≡ (6π2nF)

1/3 .
When nF = nB the two definitions coincide. The strength of the interaction can
be described by the dimensionless coupling parameter g = (kFaBF)

−1. There are
two main regimes: the weak-coupling limit corresponds to g ≪ −1, whereas the
molecular one, whose description is in terms of molecules and unpaired excess
atoms (or particles) of the majority species interacting through a residual interac-
tion which vanishes in the extreme molecular limit, is achieved whenever g ≫ 1.
In this second case, the radius of the bound state - that coincides with the scatter-
ing length aBF, for aBF > 0 - is significantly smaller than the average interparticle
distance l. Typically we say that we are in the weak-coupling regime when g ≲ −2
and in the strong-coupling one when g ≳ 1 (in particular, we refer to the g ∼ 0
situation as unitarity). In both regimes, perturbation theory provides satisfactory
results when it comes to the equations that rule the system, whilst in the interme-
diate situation, −2 ≲ g ≲ 1, the perturbative approach is no longer valid; as a
result, a fully numerical solution of the problem is required.

2.2 T-matrix approach

The formalism is developed within the T-matrix approach: it consists of an ap-
proximate calculation which selects exclusively the class of Feynman’s diagrams
that collects all possible repeated boson-fermion interaction. Doing so, a ladder
is formed and this is the reason why we refer to these diagrams as ladder di-
agrams. From a physical point of view, the T-matrix describes the interaction
between particles before and after the scattering process, therefore it can be seen
as a sort of scattering amplitude generalized in the medium which considers the
background of the other particles when the scattering between two particles takes
place. Actually, the choice of ladder diagrams is on solid ground since, for in-
stance, these are prevalent in Bose-Fermi mixtures in the weak-coupling regime
[41]; and also in the strong-coupling limit where the T-matrix class of diagrams
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adequately describes the formation of molecules (composite fermions) reproduc-
ing the correct physical result [42]. Lastly, for a similar system to the one consid-
ered so far, that consists of a mixture of two components fermions in the presence
of a Fano-Feshbach resonance, ladder diagrams give a good description through
the entire resonance [43, 44].
In general, the choice of the self-energy diagrams should respond to the criterion
that a single set of diagrams must reproduce the correct physical description of
the weak-coupling limit as well as the strong-coupling one: in this way a proper
theoretical framework for the entire resonance is provided.
Let us start the discussion with the Feynman’s diagram for the T-matrix in the
normal phase Γ(P, Ω), which differs in some contributions from the condensed
one, as we will see along this section. Physically speaking, the T-matrix in the
normal phase stands for the propagator of boson-fermion pairs - as the name it-
self explains - in the normal phase. From a pictorial point of view, we have:

FIGURE 2.1: Feynman’s diagram for the T-matrix in the normal
phase.

which, after the use of Feynman’s rules, produces:

Γ(P, Ω)−1 =
1

vBF
0

+
∫ dp

(2π)3

1 − Θ(−ξF
P−p)− Θ(−ξB

p)

ξB
P−p + ξB

p − iΩ
(2.3)

In Figure 2.1 full lines stand for the bare boson (B) and fermion (F) Green’s func-
tions, while dashed lines represent the bare BF interactions. In (2.3) Ω is the fre-
quency, P and p are the momenta and ξs

k = k2

2ms
− µs ([42], with an overall minus

sign in the definition of Γ). At this stage, we can use Eq. (2.2) and obtain:
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Γ(P, Ω)−1 =
mr

2πaBF
+

∫ dp
(2π)3

(1 − Θ(−ξF
P−p)− Θ(−ξB

p)

ξB
P−p + ξB

p − iΩ
− 2mr

p2

)
(2.4)

As stated before, we will always consider the zero temperature limit throughout
the thesis; if it had not been so, we would have obtained:

Γ(P, Ω)−1 =
mr

2πaBF
+

∫ dp
(2π)3

(1 − f (ξF
P−p)− b(ξB

p)

ξB
P−p + ξB

p − iΩ
− 2mr

p2

)
(2.5)

Here, f (x) and b(x) are the Fermi and Bose distribution functions at temperature
T, respectively ( f (x) = 1/(ex/T + 1) and b(x) = 1/(ex/T − 1)). Comparing di-
rectly Eqs. (2.4) and (2.5) we notice that the zero temperature limit of the Fermi
and Bose distributions leads to the Θ functions, as it should be. Now we can
define:

IF(P, Ω) ≡
∫ dp

(2π)3

1 − Θ(−ξF
P−p)− Θ(−ξB

p)

ξF
P−p − ξB

p − iΩ
(2.6)

and the strong-coupling limit ΓSC of Γ:

ΓSC(P, Ω)−1 =
mr

2πaBF
− m3/2

r√
2π

√
P2

2M
− 2µ − iΩ (2.7)

where M = mB + mF and µ = µB+µF
2 . The contribution that comes from the inte-

gration of Θ(−ξB
p) is set to zero because the calculation scheme requires that the

bosonic chemical potential µB is set to zero, when computing Γ and ΓSC, when-
ever it is positive. This is to correct unphysical features arising when µB > 0 is
used in a bare bosonic Green’s function. A more refined approach would require
some sort of self-consistency in this case. We stress, however, that for the cases
considered in the present work µB will be always negative. Now, let us consider
the fermionic chemical potential µF: when µF ≤ 0, IF is zero. More generally, also
for µF, IF can be evaluated in a closed form since the integration of IF with the
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Fermi function in (2.4) yields:

IF(P, Ω) =
mB(k2

µF − k2
P − k2

Ω)

8π2P
log

[ (kµF + kP)
2 − k2

Ω

(kµF − kP)2 − k2
Ω

]
− mrkΩ

4π2 log
[ (kµF + kΩ)

2 − k2
P

k2
P − (kµF − kΩ)2

]
− iπsgn(Ω) +

mrkµF

2π2

(2.8)

where kµF ≡
√

2mFµF, kP ≡ mF
M P and kΩ ≡

√
(2mr)(− P2

2M + 2µ + iΩ).
Let us consider the condensed phase which is the case of interest to the present

thesis: in this context, as stated before, we admit in the system the phenomenon
of Bose-Einstein condensation. The corresponding Feynman’s diagram for the T-
matrix is the following:

FIGURE 2.2: Feynman’s diagram for the T-matrix for the condensed
phase.

In Figure 2.2, in addition to the graphical considerations already made with
regard to the normal phase, zig-zag lines represent condensate factors

√
n0, where

n0 is the condensate density. Correspondingly, we have:

T(P, Ω) = Γ(P, Ω) + Γ(P, Ω)n0G0
F(P, Ω)T(P, Ω) (2.9)

where G0
F(P, Ω) = 1

iΩ−ξF
P

is the bare fermion Green’s function. Solving for T(P, Ω),

we get the following solution:

T(P, Ω) =
1

Γ(P, Ω)−1 − n0G0
F(P, Ω)

(2.10)
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2.3 Fermionic and bosonic self-energies

After writing the expression for the T-matrix in the condensed phase, it is time to
compute the bosonic and the fermionic self-energies since they are, as we will see
in a while, a necessary step when dealing with spectral weight functions. From
a physical point of view, the self-energy of a single particle represents (in many-
body theory) the extra energy that the particle acquires through the interactions
with all other particles in the system.
The fermionic self-energy ΣF depends solely on the coupling with bosons. Here
are the Feynman’s diagrams:

FIGURE 2.3: Feynman’s diagrams for ΣF. As stated previously, zig-
zag lines correspond to condensate factors

√
n0.

which, after the application of Feynman’s rules, read:

ΣF(k, ω) = n0Γ(k, ω)−
∫ dP

(2π)3

∫ dΩ
2π

T(P, Ω)G0
B(P − k, Ω − ω) (2.11)

When dealing with fermionic self-energy, there is an aspect which is worth
pointing out: the T-matrix can be closed in the diagrammatic form with a boson
propagator or with two condensate insertions; this second option would lead to
improper self-energy diagrams [45]. Proper diagrams instead, whose graphs can-
not be cut in two by slicing a single propagator, are obtained by substituting T
with Γ in this contribution (see Figure 2.3).

Now let us focus on the bosonic component: if we admit that there is no cou-
pling with fermions and for a boson gas parameter η = nBa3

BB ≪ 1, a description



22 Chapter 2. A theoretical approach to Bose-Fermi mixtures

for T = 0 is given by Bogoliubov theory, which leads to the values of 4πaBBn0/mB
and 8πaBBn0/mB for the anomalous and normal self-energies, respectively. Since
it has been shown [46, 47] that pairing correlations between bosons and fermions
can be included in an accurate way by a T-matrix type of self-energy, the extension
of the latter to the condensed phase is straightforwardly realized: it is sufficient
to add to the Bogoliubov term - concerning the normal self-energy - the T-matrix
contribution ΣBF(k, ω) given by:

FIGURE 2.4: Feynman’s diagrams for ΣBF. As stated previously, full
lines stand for bare bosonic and fermionic Green’s functions.

which, according to Feynman’s rules, turns out to be:

ΣBF(k, ω) =
∫ dP

(2π)3

∫ dΩ
2π

T(P, Ω)G0
F(P − k, Ω − ω) (2.12)

Notice that the T-matrix is closed in a diagrammatic form with a fermion prop-
agator - the loop carries a minus sign - so that it can be regarded as an effective
interaction with regard to the single boson. After adding the two contributions
together, we get the full bosonic normal self-energy ΣB(k, ω) which reads:

ΣB(k, ω) = 2Σ12 +
∫ dP

(2π)3

∫ dΩ
2π

T(P, Ω)G0
F(P − k, Ω − ω) (2.13)

with Σ12 = 4πaBBn0/mB. In the (2.13) the bosonic chemical potential µB is set to
zero if it is positive. A very useful relation, known as Hugenholtz-Pines theorem
[48], holds, connecting this quantity with the bosonic self-energy:
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µB = ΣB(k = 0, ω = 0)− Σ12 (2.14)

2.4 Green’s functions, momentum distributions and
density

Knowing the bare fermionic Green’s function G0
F(k, ω) = 1/(iω − ξF

k) and the
fermionic self-energy ΣF(k, ω), it is possible to determine the dressed fermionic
Green’s function GF(k, ω) via the Dyson’s equation:

GF(k, ω) =
1

G0−1
F (k, ω)− ΣF(k, ω)

(2.15)

The dressed bosonic Green’s function is more elaborate since the condensed phase
related to the Bose-Einstein condensation must be taken into consideration. After
some calculations [50] and the application of the Dyson’s equation, we get:

GB(k, ω) =
iΩ + ξB

k + ΣB(−k,−ω)

[iΩ + ξB
k + ΣB(−k,−ω)][iω − ξB

k − ΣB(k, ω)] + Σ2
12

(2.16)

The integration of the dressed Green’s functions over frequencies provides the
momentum distribution functions, which are:

nF(k) =
∫ dω

2π
GF(k, ω)eiω0+ (2.17)

and:
nB(k) = −

∫ dω

2π
GB(k, ω)eiω0+ (2.18)

At this stage, it is possible to determine the fermion number density as well as the
out-of-condensate boson one by performing the integration over momenta of the
(2.17) and (2.18), respectively:
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nF =
∫ dk

(2π)3 nF(k) (2.19)

n
′
B =

∫ dk
(2π)3 nB(k) (2.20)

The total boson density turns out to be:

nB = n0 + n
′
B (2.21)

i.e. the sum of the density of the condensed bosons and the density of the bosons
out of the condensate. In the following we will study systems characterized by
majority of fermions or with nF = nB, therefore it is customary to introduce the
ratio between boson and fermion densities, also known as bosonic concentration
x:

x ≡ nB

nF
(2.22)

Even if we will not focus on the opposite case, represented by a system in which
bosons are the majority species, previous considerations can be straightforwardly
extended by taking into account the fermionic concentration, defined as:

y ≡ nF

nB
(2.23)

There are three different scenarios which are worth mentioning: the first is the
density-balanced system in which x = y = 1, while the two remaining are known as
polaron limit: if a single bosonic impurity is immersed in a Fermi sea, then x → 0
(Fermi-polaron limit); if instead in the Bose-Fermi mixture the single fermionic
impurity is immersed in a Bose-Einstein condensate, y → 0 and we refer to this
situation as the Bose-polaron limit.
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2.5 Analytic continuation and poles of the retarded T-
matrix

The calculation of the spectral weight functions requires the analytic continua-
tion from the imaginary frequency axis to the real one. This is achieved via the
replacement:

iω → ω̃ + i0+ (2.24)

where the symbol 0+ denotes an infinitesimally small and positive constant and
the ~symbol indicates that the frequency is real. Physical quantities characterized
by the above substitution are called retarded and are denoted in this way:

XR, (2.25)

where X stands for a generic quantity (e.g. T-matrix, Green’s function, etc.) while
the superscript R represents the analytic continuation.
The fermionic and the bosonic spectral functions can be expressed in terms of the
imaginary part of the retarded Green’s functions as follows:

As(k, ω̃) = − 1
π

ImGR
s (k, ω̃) (2.26)

and they satisfy the sum rule: ∫ ∞

−∞
dω̃As(k, ω̃) = 1 (2.27)

In particular, AF(k, ω̃) is always positive but this is not true for the bosonic spec-
tral weight function: in fact, we have sgn(ω̃)AB(k, ω̃) ≥ 0. The proof starts from
the Lehmann representation (see [45], Chapter 9) of the two spectral weight func-
tions which, in the T = 0 case, turns out to be:

AB,F(k, ω̃) =

{
∑n | < n|(cs

k)
†|Ψ0 > |2δ(ω̃ − ϵNs+1,Ns̄

n ) ω̃ > 0
∑n ∓| < n|cs

k|Ψ0 > |2δ(ω̃ + ϵNs−1,Ns̄
n ) ω̃ < 0

(2.28)
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In Eq. (2.28) the positive sign of the second expression stands for the fermionic
component, while the negative for the bosonic one. The sum is extended over all
the eigenstates |n > of the Hamiltonian that have a nonvanishing overlap with
the state that is obtained by subtracting - for ω̃ < 0 - or adding - for ω̃ > 0 -
a particle of species s (with momentum k) from - or to - the ground state Ψ0 of
the system characterized by the presence of Ns particles of the species s and Ns̄
particles of the other species. Consequently, these states belong to the Hilbert
space with Ns ± 1 and Ns̄ particles of the two different species and their excitation
energies are ϵNs±1,Ns̄

n . The negative sign of the bosonic spectral weight function for
negative frequency ensures the positivity of the bosonic momentum distribution
function. Therefore, considering as always the T = 0 case, we have:

nB,F(k) = ∓
∫ 0

−∞
dω̃AB,F(k, ω̃) (2.29)

Equations (2.29) are clearly obtained by the finite temperature momentum dis-
tribution functions nF(k) =

∫ ∞
−∞ f (ω̃)AF(k, ω̃) and nB(k) =

∫ ∞
−∞ b(ω̃)AB(k, ω̃),

where f (ω̃) and b(ω̃) are the Fermi-Dirac and the Bose-Einstein distribution, re-

spectively
(

f (ω̃) = 1
eβω̃+1

and b(ω̃) = 1
eβω̃−1

, with β = 1
T

)
.

A direct inspection of Eq. (2.26) suggests that the determination of the retarded
Green’s functions is crucial. Operationally, one must consider the equations - al-
ready written previously - that lead to the dressed Green’s functions and simply
perform the analytic continuation to the physical quantities involved, as shown
in the present section. In order to compute the retarded Green’s functions, it is
useful to introduce the spectral representation for the many-body T-matrix in the
condensed phase which reads:

T(P, Ω) = −
∫ dω

′

π

ImTR(P, ω
′
)

iΩ − ω
′ (2.30)

Here, TR(P, ω
′
) is obtained from Eq. (2.10) for T(P, Ω) with the replacement iΩ →

ω
′
+ i0+ (ω

′
real). Now we are ready to plug Eq. (2.30) in the fermionic and

bosonic self-energies. Let us start with the fermionic case. Recall Eq. (2.11):
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ΣF(k, ω) = n0Γ(k, ω)−
∫ dP

(2π)3

∫ dΩ
2π

T(P, Ω)G0
B(P − k, Ω − ω) (2.31)

The insertion of Eq. (2.30) in Eq. (2.31), as well as writing the bare bosonic Green’s
function explicitly, leads to:

ΣF(k, ω) = n0Γ(k, ω) +
∫ dP

(2π)3

∫ dΩ
2π

∫ dω
′

π

ImTR(P, ω
′
)

iΩ − ω
′

1
iΩ − iω − ξB

P−k
(2.32)

The integration over Ω can be performed by a contour integration, yielding:

ΣF(k, ω) = n0Γ(k, ω)−
∫ dP

(2π)3

∫ 0

−∞

dω
′

π

ImTR(P, ω′)

iω − ω
′ + ξB

P−k + i0+
(2.33)

where we used ξB
P−k since µB ≤ 0. The analytic continuation iω → ω̃ + i0+ then

yields in Eq. (2.32):

ΣR
F (k, ω̃) = n0ΓR(k, ω̃)−

∫ dP
(2π)3

∫ 0

−∞

dω
′

π

ImTR(P, ω
′
)

ω̃ − ω
′ + ξB

P−k + i0+
(2.34)

Similar reasoning can be extended to the bosonic case. Recalling Eq. (2.13):

ΣB(k, ω) = 2Σ12 +
∫ dP

(2π)3

∫ dΩ
2π

T(P, Ω)G0
F(P − k, Ω − ω) (2.35)

Then, the spectral representation of the many-body T-matrix and the bare fermionic
Green’s function in explicit form provide:

ΣB(k, ω) = 2Σ12 −
∫ dP

(2π)3

∫ dΩ
2π

∫ ∞

−∞

dω
′

π

ImTR(P, ω
′
)

iΩ − ω
′

1
iΩ − iω − ξF

P−k
(2.36)
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The integration over Ω, followed by the analytic continuation iω → ω̃+ i0+ yields
in this case:

ΣR
B(k, ω̃) = 2Σ12 +

∫ dP
(2π)3

[ ∫ ∞

−∞

dω
′

π

Θ(−ξF
P−k)ImTR(P, ω

′
)

ω − ω
′ + ξF

P−k + i0+

−
∫ 0

−∞

dω
′

π

ImTR(P, ω
′
)

ω − ω
′ + ξF

P−k + i0+

]
(2.37)

The integrals obtained so far are computationally demanding when it comes to the
numerical calculation program, therefore they can be recast in a more manageable
way. In order to do so, it is important determining the poles of the retarded T-
matrix. In general, these latter are defined by the following equation:

ReTR(P, Ω(P))−1 = 0 (2.38)

when, at the same time:

ImTR(P, Ω(P))−1 = 0 (2.39)

In practice, we have to consider the real part of the inverse retarded T-matrix
and then apply a suitable method in order to find the zeroes of the function:
in the present case the bisection method was used (see Appendix B for further
details). Once Ω(P) is determined as a solution of Eq. (2.38), one has to check
that also Eq. (2.39) is satisfied (i.e. Ω(P) does not belong to the region where
ImTR(P, Ω(P))−1 ̸= 0. Depending on the values of the coupling strength, Eq.
(2.38) may lead to one or two dispersions, which we call ΩT1(P) and ΩT2(P). The
first one, which is always present, describes the propagation and repeated scat-
tering of a fermion and a boson which are unpaired. The second one, ΩT2(P),
which appears above a certain coupling strength, describes the propagation of a
boson and a fermion which are bound together in a "molecular" state. In light of
these considerations, the lowest value of the coupling for which we assist at the
appearance of the second pole is nothing but the coupling that is responsible for
the conversion of correlated boson-fermion pairs into molecular bound states. It
will be important to determine the dispersions of these poles, namely ΩT1(P) and
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ΩT2(P). The dispersions cross zero at Fermi momenta, i.e. ΩT1(P0
T1) = 0 and

ΩT2(P0
T2) = 0. The two poles are responsible for the jumps in the integrand func-

tions of P of the fermionic and bosonic retarded self-energies and that is the reason
why they are suitable to optimize calculations. In a similar way, one obtains the
dispersion ΩΓ(P) corresponding to the pole of ΓR, with the momentum P0

Γ given
by the solution of ΩΓ(P) = 0. Its value is crucial since it is typically involved
in the numerical calculation of the steps of the fermionic momentum distribution
function nF(k) (above a certain value of the coupling parameter g.

2.6 Poles of the retarded Green’s function and quasi-
particle residue

As for the retarded T-matrix, it is useful to look for the poles of the fermionic
Green’s function GR

F (k, ω). The equation for this type of poles reads:

ReGR
F (k, ω(k))−1 = 0 (2.40)

when:
ImGR

F (k, ω(k))−1 = 0 (2.41)

The dispersions of the poles will cross zero for possibly two values of momentum
k that are called kF1 and kF2, similarly to P0

T1 and P0
T2. The fermionic momentum

distribution function nF(k) will have a jump for this values of momentum (kF1
and kF2). As in the case of the poles of the retarded T-matrix in the condensed
phase, kF1 exists for every coupling and concentration, while kF2 is found only in
systems in which fermions are the majority species and only above a certain value
of the coupling parameter g [49].
When k = P0

Γ the function ReGR
F (k, ω(k))−1 exhibits a divergence since at such

value of momentum the term n0ΓR(k, ω(k)) has a pole. The necessary condition
that leads to the existence of the Fermi step kF2 is that, in turn, P0

Γ exists. In sum-
mary, when there is only one solution, this is called kF1; otherwise, when two
solutions are found, we have the following ordering: kF2 < P0

Γ < kF1.
The quasi-particle residue Zp(k), with p = 1, 2 according to which step of Fermi
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momentum (kF1 or kF2) is taken into consideration, determines the size of the
jump. In fact, we associate to kF1 and kF2 the magnitude of the jumps Z1 and
Z2, which are defined as:

Zp(k) =
∣∣∣1 − ∂

∂ω
ReΣR

F (k, ω̃)
∣∣∣−1

ω̃=ω1(k)
(2.42)

with ω1(k) = ξk + ReΣR
F (k, ω1(k)). In the Appendix A some theoretical aspects

of the quasi-particle residue (or weight) are developed more in detail since they
are functional to our discussion.

2.7 Manipulation of the integrals involved in the
fermionic and bosonic retarded self-energies

In this section, as anticipated, we perform some calculations in order to simplify
the computation of the integrals related to the fermionic and bosonic retarded
self-energies, whose expressions have already been derived (see (2.34) and (2.37),
respectively). From now on, we will drop the ~symbol to explicitly indicate real
frequencies since we will work only with retarded Green’s functions (or spectral
weight functions) for which the frequency is always real. In addition, in the fol-
lowing expressions we use dimensionless variables, so, energy and frequencies
are in units of EF = k2

F/2mF, momenta in units of kF and masses in units of mF.
Let us first deal with the fermionic case since it is simpler. After changing to
spherical coordinates, and integrating over the angles, we have:

ΣR
F (k, ω) = n0ΓR(k, ω)− mB

8π3k

∫ ∞

0
dPP

∫ 0

−∞
dω

′
ImTR(P, ω

′
)

× log
[ω − ω

′
+ (P−k)2

mB
− µB + i0+

ω − ω
′ + (P+k)2

mB
− µB + i0+

]
(2.43)
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Now it is useful to introduce the variable:

ρF =
ω − ω

′
+ (P−k)2

mB
− µB

ω − ω
′ + (P+k)2

mB
− µB

(2.44)

so that, after taking properly into account the i0+ term, Eq. (2.43) becomes:

ΣR
F (k, ω) = n0ΓR(k, ω)− mB

8π3k

∫ ∞

0
dPP

∫ 0

−∞
dω

′
ImTR(P, ω

′
)

× (ln|ρF|+ iπΘ(−ρF)) (2.45)

The integral over the frequency variable can be performed analytically taking into
account the delta-like contributions which are determined by the poles ωT(P)
of the retarded T-matrix. Indeed, by inspection of Eq. after the replacement
iΩ → ω

′
+ i0+, it is easy to verify that the threshold frequency ω0(P) above

which ImIR
F (P, ω

′
) ̸= 0vis always positive. This is also the threshold frequency

for ImTR(P, ω
′
). As a consequence, the only contributions to the frequency in-

tegral in Eq. (2.45) come from the poles (δ-like contributions) of TR(P, ω
′
) with

dispersions ωT(P). In this way, one obtains:

ΣR
F (k, ω) = n0ΓR(k, ω)− mB

8π2k

∫ kT

0
dPP[(ln|ρF|+ iπΘ(−ρF))]ω′=ωT(P)

×
∣∣∣∣∣∂Re[TR(P, ω

′
)−1]

∂ω
′

∣∣∣∣∣
−1

ω
′=ωT(P)

(2.46)

Notice that the integral over the momentum P is limited by the momentum P0
T1

or P0
T2, which is the last value accessible when taking into consideration ω

′ ≤ 0,
and represents the point at which the dispersion curve of the composite fermion
reaches the zero. This corresponds to the jump in the momentum distribution
function of the composite fermions, namely the Fermi momentum of the Fermi
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sphere of the composite fermions.
Let us now deal with the bosonic case which is more involved. Recall Eq. (2.37).
After defining:

ΣR
B(k, ω)I ≡

∫ dP
(2π)3

∫ ∞

−∞

dω
′

π

Θ(−ξF
P−k)ImTR(P, ω

′
)

ω − ω
′ + ξF

P−k + i0+

=
∫ dP

(2π)3 Θ(µF − (P − k)2)
∫ ∞

−∞

dω
′

π

ImTR(P, ω
′
)

ω − ω
′ + ξF

P−k + i0+
(2.47)

and:

ΣR
B(k, ω)I I ≡ −

∫ dP
(2π)3

∫ 0

−∞

dω
′

π

ImTR(P, ω
′
)

ω − ω
′ + ξF

P−k + i0+
(2.48)

we can write:
ΣR

B(k, ω) = 2Σ12 + ΣR
B(k, ω)I + ΣR

B(k, ω)I I (2.49)

Equation (2.48) is very similar to its fermionic counterpart: therefore it is sufficient
to follow an analogous procedure. Thus, let us move to spherical coordinates as
done previously. We get:

ΣR
B(k, ω)I I =

1
8π3k

∫ ∞

0
dPP

∫ 0

−∞
dω

′
ImTR(P, ω

′
)

× log
[ω − ω

′
+ (P − k)2 − µF + i0+

ω − ω
′ + (P + k)2 − µF + i0+

]
(2.50)

Then, we define:

ρI I
B =

ω − ω
′
+ (P − k)2 − µF

ω − ω
′ + (P + k)2 − µF

(2.51)

in order to reach the following expression for ΣR
B(k, ω)I I :

ΣR
B(k, ω)I I =

1
8π3k

∫ ∞

0
dPP

∫ 0

−∞
dω

′
ImTR(P, ω

′
)
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× (ln|ρI I
B |+ iπΘ(−ρI I

B )) (2.52)

The analytical calculation of the integral on the frequency variable leads to:

ΣR
B(k, ω)I I =

1
8π2k

∫ kT

0
dPP[(ln|ρI I

B |+ iπΘ(−ρI I
B ))]ω′=ωT(P)

×
∣∣∣∣∣∂Re[TR(P, ω

′
)−1]

∂ω
′

∣∣∣∣∣
−1

ω
′=ωT(P)

(2.53)

Note that in the above equation we have used again 0(P) > 0. A suitable compact
form cannot be achieved for ΣR

B(k, ω)I so we must proceed in another way. It
is crucial to point out that the step function Θ(µF − (P − k)2) is responsible for
the restriction of the domain of integration over the momentum P; furthermore,
it provides two different expressions - based on the sign of kµF − k, where kµF ≡√

µF - that we are going to analyze. The computation of the frequency integral
requires the determination of the ordering between the three different momenta
PT, |kµF − k| and kµF + k which we will encounter in the following. Along the lines
of what has been done with regard to the quantities ρF and ρI I

B , let us define:

ρI
B =

ω − ω
′
+ (P − k)2 − µF

ω − ω
′ (2.54)
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We distinguish two cases:

• kµF < k

The expression for ΣR
B(k, ω)I turns out to be:

ΣR
B(k, ω)I =

1
(2π)3k

∫ kµF+k

|kµF−k|
dPP

{
π[ln|ρI

B|−1 − iπΘ(−ρI
B)]ω′=ωT(P)

×
∣∣∣∣∣∂Re[TR(P, ω

′
)−1]

∂ω
′

∣∣∣∣∣
−1

ω
′=ωT(P)

+
∫ ∞

ω0(P)
dω

′
ImTR(P, ω)[ln|ρI

B|−1 − iπΘ(−ρI
B)]

}
(2.55)

As before, ωT(P) represents the solution of the equation Re[TR(P, ω
′
)−1] = 0

and, when PT < |kµF − k| < kµF + k, it must belong to the interval [0, ω0(P)].
When |kµF − k| < PT < kµF + k instead, ωT(P) belongs to the interval
(−∞, ω0(P)]. If kµF + k < PT, then ωT(P) ∈(-∞, 0].

• kµF > k

The expression for ΣR
B(k, ω)I is in this case:

ΣR
B(k, ω)I =

1
(2π)3k

∫ |kµF−k|

0
dPP

{
π[ln|ρI I

B |+ iπΘ(−ρI I
B )]ω′=ωT(P)

×
∣∣∣∣∣∂Re[TR(P, ω

′
)−1]

∂ω
′

∣∣∣∣∣
−1

ω
′=ωT(P)

+
∫ ∞

ω0(P)
dω

′
ImTR(P, ω)[ln|ρI I

B |− iπΘ(−ρI I
B )]

}

+
1

(2π)3k

∫ kµF+k

|kµF−k|
dPP

{
π[ln|ρI

B|+ iπΘ(−ρI
B)]ω′=ωT(P)
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×
∣∣∣∣∣∂Re[TR(P, ω

′
)−1]

∂ω
′

∣∣∣∣∣
−1

ω
′=ωT(P)

+
∫ ∞

ω0(P)
dω

′
ImTR(P, ω)[ln|ρI

B|+ iπΘ(−ρI
B)]

}
(2.56)

2.8 Momentum distribution functions

In this section we deal with the momentum distribution functions and consider
the coherent and incoherent contributions to them; in order to do so, we take
into account the poles of the spectral weight functions. In particular, let us call
ωF(k) and ωB(k) the frequencies of the peaks of the fermionic and bosonic spectral
weight functions, respectively, that are the solutions of the two equations:

ω − k2 + µF − ReΣR
F (k, ω) = 0 (2.57)

ω − k2

mB
+ µF − ReΣR

B(k, ω) = 0 (2.58)

Equations (2.57) and (2.58) can be understood if we consider Eq. (2.26) after
writing explicitely the dressed fermionic and bosonic retarded Green’s functions,
which leads to:

AF(k, ω) = −
ImΣR

F (k, ω)

[ω − k2 + µF − ReΣR
F (k, ω)]2 + ImΣR

F (k, ω)
2 (2.59)

and to:

AB(k, ω) = −
ImΣR

B(k, ω)

[ω − k2

mB
+ µB − ReΣB

F(k, ω)]2 + ImΣR
B(k, ω)

2 (2.60)

A direct inspection of Eqs. (2.59) and (2.60) suggests that, if the imaginary part of
the retarded self-energy is zero, then the spectral weight functions can have delta-
like contributions. The latter represent quasi-particle excitations with an infinite
lifetime. If instead the imaginary part of the retarded self-energy is different from
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zero, then quasi-particles acquire a finite lifetime or a fully incoherent spectral
function occurs. Having pointed out these aspects, the contributions of the poles
to the momentum distributions functions are:

npol
F (k) =

∣∣∣∣∂ReG−1
F (k, ω)

∂ω

∣∣∣∣−1

ωpAF

(2.61)

and:

npol
B (k) = −

∣∣∣∣∂ReG−1
B (k, ω)

∂ω

∣∣∣∣−1

ωpAB

(2.62)

The non-polar contributions to the momentum distribution functions are instead
given by:

nnon−pol
F (k) =

∫
D

dωAF(k, ω) =

= − 1
π

∫
D

dω
ImΣR

F (k, ω)

[ω − k2 + µF − ReΣR
F (k, ω)]2 + ImΣR

F (k, ω)
2 (2.63)

and:

nnon−pol
B (k) = −

∫
D

dωAB(k, ω) =

=
1
π

∫
D

dω
ImΣR

B(k, ω)

[ω − k2

mB
+ µB − ReΣB

F(k, ω)]2 + ImΣR
B(k, ω)

2 (2.64)

where D = R − −
{

ωF(k)
}

in the fermionic case and D = R − −
{

ωB(k)
}

in the
bosonic one.
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Chapter 3

Building the program

In this Chapter we focus on the aspects which are behind the program for the
numerical calculation of the spectral weight functions. Written in FORTRAN 90
programming language, it is given as inputs some a priori known values (e.g. the
coupling parameter, the fermionic chemical potential, the bosonic chemical poten-
tial, the fraction of the condensate, etc.) and produces several outputs with the pri-
mary aim of the determination of the spectral weight functions, as already stated.
The input values of the chemical potentials and condensate fraction for given cou-
pling and densities were obtained from previous calculations by Andrea Guidini
(University of Camerino) and Christian Gualerzi (University of Bologna). Starting
from the T-matrix in the normal and in the condensed phase, whose expressions
were derived in Chapter 2, we made use of the integrals reported in section 2.7
in order to compute the fermionic and bosonic self energies; then, knowing these
quantities and the bare Green’s functions, we used the Dyson’s equation to get
the spectral weight functions. Some checks have been carried out to verify that
the numerical calculation proceeds correctly without errors.

3.1 Adimensionalization of physical quantities

Before writing the code, it is worth considering the dimensionless counterpart
of the expressions and relations derived in Chapter 1. In order to do that, let us
consider, as a trivial example, the first term of the (2.7), whose dimensional version
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is:
ΓSC(P, Ω)−1 =

mr

2πaBF
− ... (3.1)

A direct inspection of the (3.1) suggests that the dimension of the inverse of the T-
matrix in the normal phase in the strong-coupling limit is a mass (mr) divided by
a length (aBF). Therefore, if we want to make dimensionless the previous expres-
sion, we have to multiply it for a length and divide it for a mass. Dimensionally
speaking, the length is the inverse of the momentum, therefore we can use the
Fermi momentum kF. In systems in which fermions are the majority species, it
is customary to set the mass of the fermionic particles mF as the reference value,
i.e. equal to 1. We add a factor 1/2 for the simple reason that several quantities
will have a more manageable form in the following. All in all, the dimensionless
version of the (3.1) turns out to be:

Γ̄SC(P, Ω)−1 =
mr

4πmFkFaBF
− ... (3.2)

where the - symbol above Γ signals the dimensionlessness. In Eq. (3.2) we recog-
nize in the denominator the inverse of the coupling parameter g, therefore:

Γ̄SC(P, Ω)−1 =
mrg

4πmF
− ... (3.3)

Completely analogous reasoning can be quite easily extended to all expressions
and relations written in Chapter 2. Notice anyway that the integrals for the bosonic
and the fermionic self-energies in section 2.7 are already in their dimensionless
form for convenience’s sake. From the very beginning, all quantities that appear
in the code are appropriately adimensionalized: to sum up, lenghts, momenta and
masses, as already stated, are measured in units of 1

kF
, kF and mF, respectively,

while energies are naturally expressed in units of the Fermi energy EF.
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3.2 The code

The present section is devoted to the aspects behind the implementation of the
code in FORTRAN 90. The code itself is organized in subprograms and modules: the
former are functions and subroutines which are quite similar to mathematical func-
tions: they receive a set of input arguments and basically return a value of some
type; in this sense, a subroutine can return two or more values or even zero, so it
is often regarded as a sort of generalization of a function. A module instead is a
package where functions and subroutines can be stored. Typically, it is customary
to introduce a module when the program needs to be organically structured be-
cause of its size or when functions and subroutines have to be used in more than
one program. Throughout the program we worked in double-precision. by refer-
ring to it, we mean a type of floating-point number which is more precise than a
single-precision number. Quantitatively speaking, twice as many bits as a regular
floating-point number are used. For clarity’s sake, let us consider an example: if a
single-precision number requires 32 bits, its double-precision version will need 64
bits. It is important to point to point out that the additional bits raise the precision
as well as the range of representable magnitudes and their increment depends on
which format the program is using to represent floating-point values.

3.2.1 T-matrices, poles and dispersions

At the beginning of the program we defined in a module a series of functions with
the aim of building the T-matrix for the normal and the condensed phase. From
the simplest expressions and moving to the most elaborate ones, we implemented
a cascade system of building blocks in which each function - apart the very first
ones - contains a function already defined and structured previously. In doing so,
we used the expressions derived in section 2.2 (and properly made dimension-
less according to the considerations made in section 3.1), taking into account all
prescriptions illustrated there. For instance, we defined two functions which are
nothing but Eq. (2.7) and its inverse; and so on, covering all relations. While do-
ing that, a retarded counterpart of each function has been built. This means that
we performed the analytic continuation of physical quantities from the frequency
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imaginary axis to the real one via the replacement iΩ → Ω̃ + i0+. In FORTRAN
90 an operation like that is accomplished via the double complex conversion func-
tion DCMPLX(X, [Y]): it returns a double complex number where X is converted
to the real component; if Y is present it is converted to the imaginary component
(if instead it is not so, then the imaginary component is set to 0.0; if X is complex,
Y must not be present). In the non retarded version, the second argument is the
frequency Ω since it is imaginary, while the action of the analytic continuation
leads to a shift of the frequency to the first argument, while the second is now rep-
resented by 0+; for the latter we typically used in the program the value 10−6 but
this has been sometimes changed to larger values in order to better observe the
peaks of the retarded T-matrix in the normal and in the condensed phase (times
a factor 2mFkF to ensure dimensionlessness) as a function of the frequency Ω (in
units of the Fermi energy). We will discuss these curves and profiles in Chapter 4.
The next step is the search for poles of the T-matrix whose importance has already
been pointed out in Chapter 2. One of the most reliable procedure is the bisection
method that has been extensively used in the program. Recall that the equation
that has to be solved when looking for poles is Eq. (2.38):

ReTR(P, Ω(P))−1 = 0 (3.4)

Preliminarily, we wish to determine the Fermi momentum PT0, defined by the
above equation, so, basically, we want to solve the following one via the bisection
method:

ReTR(P, Ω = 0)−1 = 0 (3.5)

However, Eq.(3.5) has a divergence for momentum P = kµF, where kµF =
√

2mFµF
(the dimensionless version, which is the one effectively used, reads: kµF =

√
µF).

Because of this divergence, the bisection method has to be implemented wisely
because the function under consideration is no longer continuous throughout the
entire interval. We discriminate between the solutions P0

T1 > kµF and P0
T2 < kµF

by setting proper values of momentum P as extremes of the starting interval and
avoiding the divergence located at kµF that leads to the loss of the continuity of
the function. The position of the poles clearly varies with different values of the
coupling parameter g; results will be discussed in Chapter 3.
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The following step in the program is crucial and it involves the calculation of the
dispersion relations. Let us start by observing that Eqs. (2.26), (2.15) and (2.16)
allow us to affirm, roughly speaking, that the imaginary part of the retarded T-
matrix is substantially the spectral function of composite fermions, i.e. molecules
composed by one boson and one fermion. When considering the condensed phase
of a Bose-Fermi mixture there are δ-like peaks that correspond to the propagation
of molecules as well as to the undamped motion of a fermion and a boson. These
contributions are due to the poles of the T-matrix and have the dispersions of free
particles. A distinction is made between ΩT1(P) = P2/m∗ − µ∗ that considers the
propagation of a fermion and a boson and ΩT2(P) = P2/M∗ − µ

′∗ which takes
into account the propagation of a molecule. m∗, M∗, µ∗ and µ

′∗ are parameters
which have been determined by a fit procedure that will be discussed in a while.
Clearly, compromises between accuracy and computational effort have been made
throughout the entire code. Also in the case of dispersions we used the bisection
method to solve the following equation:

ReTR(P = const., Ω)−1 = 0 (3.6)

Equation (3.6) is nothing but Eq. (3.5) with the difference that now the momen-
tum P is fixed while the variable is the frequency Ω. Since, as explained before, a
fit procedure is needed in order to determine the fitting parameters that are con-
tained in the dispersion relations, we have to choose a certain number of points
corresponding to different values of the momentum P. To do that, we use a priori
the subroutine devoted to Gauss-Legendre integration - whose details have been
provided in Appendix C - in order to determine a grid of momenta P with their
corresponding weights. The inputs are the extremes of integration over momenta
P (in units of Fermi momentum kF) and the number of points with which we sam-
ple the interval at issue: as for the former, the inferior extreme is zero while the
the superior one is given by the pole of the retarded T-matrix already computed
at this stage (recall that ΩT1(P0

T1) = 0 and ΩT2(P0
T2) = 0), while, regarding the lat-

ter, we decided to sample the interval with 9 points. Since with a real-frequency
analysis it can be shown that only the contributions of the retarded T-matrix lo-
cated at negative frequencies contribute to the self-energies, we did not consider
positive frequencies at this stage. We called the subroutine implementing to the
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bisection method for every point in the numerical grid for the momentum P leav-
ing the frequency Ω as the variable of the retarded T-matrix. In this way we got
9 different values of the frequency Ω, related to the zero of the retarded T-matrix
for the 9 different values of momentum P. Therefore we were able to fit these data
with a quadratic function of the type f (x) = ax2 + c since the dispersion relations
have the same form: in particular the inverse of the coefficient a gives the value
of the effective masses m∗, M∗, while the effective chemical potentials µ∗ and µ

′∗

are computed via the coefficient c (there is no coefficient b since the dispersion
relations do not have a linear term).

3.2.2 Retarded self-energies, spectral weight functions and nu-
merical checks

The core of this subsection is devoted to the implementation in the program of the
integrals (2.46) and (2.56) that are directly linked to the fermion and boson self-
energies, respectively. Let us now focus on the fermionic case which is the one
explored in the present work. The integrand of Eq. (2.46) is built at the code level
by simply writing its parts; in particular, there is need to introduce a second vari-
able for the momentum - the external one - and a second variable for the frequency
- the external one. The derivative of the real part of the inverse of TR with respect
to the frequency is numerical and it has been implemented by the finite difference
method. Regarding the execution of the code up to this point, at the beginning
we call the subroutine devoted to the Gauss-Legendre integration and specify a
certain number of points to sample the momentum interval, which ranges from 0
to the Fermi momentum P0

T of the retarded T-matrix previously determined. The
output is the integral of the (2.46) (for chosen values of external momentum and
frequency) and in order to get the retarded fermionic self-energy we have to add
the remaining parts: in the program there is a specific function that puts all the
contributions together. At this stage, knowing the fermionic retarded self-energy
and the bare fermionic retarded Green’s function, we built the dressed fermionic
retarded Green’s function via the Dyson’equation. From this we finally obtained
the fermionic spectral weight function, according to Eq. (2.26).
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Some checks have been carried out. Two main checks, one of which has an im-
portant physical meaning, have been implemented: the sum rule (2.30) and the
fermionic momentum distribution function (2.32). As for the first, we basically
used another time the subroutine with Gauss-Legendre integration; now the inte-
gral is performed over the frequency Ω, the extremes of integration are −∞ and
+∞ while the integrand is the spectral weight function. We decided to sample the
interval with 20,000 points and to use -10 and 10 as extremes of integration: recall
in fact that this is a dimensionless quantity - a frequency in units of the Fermi en-
ergy EF. As for the momentum distribution function, similar considerations hold;
in this case, however, we had to implement an additional second loop which takes
into account the sampling with the external momentum (180 points, from 0.0 to
3.0 k/kF).
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Chapter 4

Numerical results and analysis

In this Chapter we present the main numerical results obtained after the execution
of the program. Even though the previous formal treatment is valid for generic
Bose-Fermi mixtures, with nF ̸= nB and mF ̸= mB, for lack of time in our numeri-
cal calculations we focused on the fully balanced case with nF = nB and mF = mB.
For the same reason, we limited our numerical study to just the fermionic compo-
nent, postponing calculations for the bosonic component and more generic situa-
tions to future work.

4.1 Retarded T-matrix

We considered some significant values of the coupling parameter g = 1/kFaBF
that allows us to explore the weak, the moderate and the strong-coupling regime.
Starting from the definition of Fermi momentum that we gave in section 2.1, we
proceeded with the adimensionalization of all the quantities involved.

4.1.1 Retarded Γ-matrix

In this subsection we focus on the behaviour of the retarded Γ-matrix; its imag-
inary part presents one pole, called ΩT(P0

T), which contributes to the fermionic
self-energy only above a certain value of the coupling parameter. Here are the
main results concerning (minus) the imaginary part of the retarded Γ-matrix for
a concentration x = nB/nF value equal to 1 (so nF = nB) and for a boson-boson
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repulsion ς = kFaBB value equal to 0. In Figure 4.1 one can see the appearance
of a characteristic peak from the continuum for a momentum P = 0 in the weak-
coupling region. This peak signals the molecular binding between bosons and
fermions, at least "virtually", since in this case is at the edge of the continuum, but
not fully separated from it. We observe instead that for larger values of momenta,
the peak is fully embedded in the continuum and an increase in the momentum
will result in a shift to larger frequencies.

FIGURE 4.1: Minus the imaginary part of ΓR(P, Ω) as a function of
the frequency Ω for different values of the momentum P for a cou-
pling parameter g = −3.8 (weak-coupling regime), corresponding to

µF = 0.901, µB = −0.097 and n0
nB

= 0.989.

In the unitarity case (see Figure 4.2), for P = 0 a peak fully separated from the
continuum emerges, while for larger values of P the peak becomes again embed-
ded in the continuum meaning that the interaction among bosons and fermions
is still not strong enough to allow a bound state for all P. Note furthermore that
even the isolated peak at P = 0 does not contribute to the fermionic momentum
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distribution function since is located at positive frequencies. Such a bound state
could be detected only by exciting two-particle excitations at finite energy.

FIGURE 4.2: Minus the imaginary part of the retarded T-matrix
ΓR(P, Ω) as a function of the frequency Ω for different values of the
momentum P for a coupling parameter g = 0 (unitarity), correspond-

ing to µF = 0.611, µB = −0.568 and n0
nB

= 0.748.

In the strong-coupling regime (Figure 4.3) the peak is shifted to negative fre-
quencies, so we are in the presence of a physical bound state that involves one
fermion and one boson forming a composite fermion and which contributes to
the fermionic momentum distribution function nF(k). Furthermore, we notice
that for a value of momentum P equal to P0

Γ the peak is located at zero frequency,
as it should be.
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FIGURE 4.3: Minus the imaginary part of the retarded T-matrix
ΓR(P, Ω) as a function of the frequency Ω for different values of the
momentum P for a coupling parameter g = 1.51 (strong-coupling),

corresponding to µF = 0.513, µB = −4.464 and n0
nB

= 0.025.
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4.1.2 Retarded T-matrix TR

Let us start with the discussion of the T-matrix TR for the previous values of cou-
pling parameter g. In the weak-coupling regime, represented in Figure 4.4, we
observe two features for all values of P. The feature at larger frequencies is deter-
mined essentially by ΓR and describes pairing correlations. The peak at lower fre-
quencies is associated to the propagation of a free fermion and boson; it is placed
at negative frequencies for certain values of the momentum, in particular for all P
such that P < P0

T1. When instead P > P0
T1 (this is the P = 1.3 case reported in the

graph) this peak is located at positive frequencies; furthermore, it is broadened
since it is going to melt with the continuum.

FIGURE 4.4: Minus the imaginary part of the retarded T-matrix
TR(P, Ω) as a function of the frequency Ω for different values of the
momentum P for a coupling parameter g = −3.8 (weak-coupling).

The unitarity regime is shown in Figure 4.5: the considerations made so far
with regard to the continuum region and the peaks at lower frequencies continue
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to hold.

FIGURE 4.5: Minus the imaginary part of the retarded T-matrix
TR(P, Ω) as a function of the frequency Ω for different values of the

momentum P for a coupling parameter g = 0 (unitarity).

In the strong-coupling case (Figure 4.6), one notices first of all the presence of
two peaks separated from the continuum for all values of P. Their positions corre-
spond to the two dispersion ΩT1(P) and ΩT2(P) mentioned above which will be
described in further detail in the next section. These peaks will contribute to the
fermionic self-energy only when they are located at negative frequencies. Note
finally that for all couplings and momenta the incoherent continuum is located at
positive frequencies and will thus not contribute to the fermionic self-energy.
All in all, we can make some general considerations when dealing with the re-
tarded T-matrix TR: an increase in the momentum P will result in a peak shift
toward larger values of the frequencies. The propagation of a free particle, be it a
fermion or a boson, will have an impact on the self-energies for 0 ≤ P ≤ P0

T1. As
for the propagation of a molecule, this occurs for sufficiently large values of the
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coupling parameter and whenever 0 ≤ P ≤ P0
T2; as a matter of fact, for small val-

ues of the coupling parameter, the equation ΩT2(P) = 0 has no solution and this
is reflected in the fact that we observe only peaks located at positive frequencies.

FIGURE 4.6: Minus the imaginary part of the retarded T-matrix
TR(P, Ω) as a function of the frequency Ω for different values of the
momentum P for a coupling parameter g= 1.51 (strong-coupling).

4.2 Fermi momentum P0
Γ , P0

T1, P0
T2 and dispersions

In this section we show and discuss the location of the poles of the T-matrix and
the profile of the dispersion curves.
As one can see in Figure 4.7, in the weak-coupling regime the interactions between
fermions and bosons do not allow the formation of composite fermions: mathe-
matically this is reflected in the features of (minus) the real part of the retarded ΓR

and TR matrices; as for the former, it has not any divergence and it does not cross



52 Chapter 4. Numerical results and analysis

zero (implying that there is no P0
Γ momentum), unlike the latter, which displays

a divergence at momentum |P| = kµF and it crosses zero at P0
T1. This different

behaviour is explained by means of a direct comparison of Eqs. (2.3) and (2.10). In
the unitarity regime, represented in Figure 4.8, identical considerations hold: the
coupling is still not enough strong to ensure the existence of P0

Γ . Things change
significantly when considering the strong-coupling regime (see Figure 4.9): the
real part of TR (for a frequency value Ω set to zero) crosses zero twice, at P = P0

T2
and P = P0

T1. These two momenta are separated by the divergence placed at kµF
in such a way that P = P0

T2 < P < P0
T1 (clearly we had to take care of this di-

vergence during the application of the bisection method since the function is not
continuous everywhere). Furthermore, at P = P0

Γ the real part of the retarded T-
matrix in the normal phase (for a frequency value Ω set to zero) crosses zero and
this corresponds to the unique possible pole of the retarded Γ-matrix.

FIGURE 4.7: Minus the real part of TR(P, Ω = 0)−1 and
ΓR(P, Ω = 0)−1 for a coupling parameter g = −3.8 (weak-coupling).
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FIGURE 4.8: Minus the real part of TR(P, Ω = 0)−1 and
ΓR(P, Ω = 0)−1 for a coupling parameter g = 0 (unitarity).

FIGURE 4.9: Minus the real part of TR(P, Ω = 0)−1 and
ΓR(P, Ω = 0)−1 for a coupling parameter g = 1.51 (strong-coupling).
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Let us now move on the dispersion curves ΩT(P). Here are the results for the
usual values of the coupling parameter g. In Figure 4.10, we notice that the corre-
sponding dispersion resembles that of a free fermion: the similarity is suggested
by the value of the fitting parameters m∗ and µ∗ which almost coincide with the
fermionic mass and the Fermi energy (recall that we are at T = 0), respectively.
Since the molecular peak in the weak-coupling region is embed in the continuum,
as already shown in section 4.1, the dispersion ΩT2(P) is present. Similar con-
siderations can be made with regard to the unitarity case (see Figure 4.11). Here,
the dispersion curve ΩT2(P) appears only at large positive frequencies meaning
that there is no contribution to ΣR

F . The situation is different when considering the
strong-coupling regime (see Figure 4.12) since in this case both dispersions cross
zero and thus contribute to the final density of the gas. Regarding the dispersion
of the pole of ΓR instead, we observe that for sufficiently large values of the cou-
pling parameter g the dispersion crosses zero, as already stated. Let us conclude
this section with the table 4.1 that sums up the values of the fitting parameters.

Fitting parameters
Coupling m∗ µ∗ M∗ µ

′∗

-3.80 1.00704
±0.00029

-0.994680
±0.00028

/ /

0.00 1.13343
±0.00984

-0.98866
±0.00763

0.62104
±0.00992

0.90827
±0.02564

1.51 1.611622
±0.03343

-0.70497
±0.01283

1.14469
±0.02315

-0.24624
±0.01761

TABLE 4.1: Fitting parameters and asymptotic standard errors calcu-
lated with a quadratic fit of the type f (x) = ax2 + c, where a is the
inverse of the effective mass(es) and c is the effective chemical poten-

tial(s).
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FIGURE 4.10: Dispersion curve obtained after the fitting procedure
with a quadratic function for a coupling parameter g = −3.8 (weak-

coupling).

FIGURE 4.11: Dispersion curves obtained after the fitting procedure
with a quadratic function for a coupling parameter g = 0 (unitarity).
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FIGURE 4.12: Dispersion curves obtained after the fitting procedure
with a quadratic function for a coupling parameter g = 1.51 (strong-

coupling).

4.3 Spectral weight functions

This section is entirely devoted to the discussion of the fermionic spectral weight
functions for the same values of the coupling parameter g considered above. Here,
far from being exhaustive, we report some of the curves and the profiles of the
spectral weight functions that we obtained with our numerical calculations and
we discuss their main features.
Figure 4.13 shows the profile of AF(k, ω) as a function of ω for different values
of the momentum k in the weak-coupling regime. In this case we observe a be-
haviour which is in agreement with that of a Fermi liquid. Very generally speak-
ing, an increase in the momentum will correspond to a peak placed at higher
frequencies but there are further considerations that have to be made: first of all,
notice that the δ-like peak that is observed for a value of momentum k equal to kF1
is located exactly at ω = 0 acting as a watershed between negative frequencies
whose corresponding peaks and relative background contribute to the fermionic



4.3. Spectral weight functions 57

momentum distribution function, and positive ones, which do not contribute to
nF(k), but describe the dispersion of single-particle excitations created by adding
a fermion to the system. Looking at the former, an increase in the momentum
determines a reduction in the width of the peaks (except for the very low mo-
menta case) that assume a δ-like shape until we reach kF1. As stated before, while
a δ-like peak represents the propagation of a free particle (in this case, a fermion),
a broadened one represents the excitation of a fermion belonging to a molecular
state (a composite fermion). A very low value of momentum (a hundredth of k
or even smaller) will result in two δ-like peaks (in Figure 4.13 one can see that the
second peak in question is significantly flattened even for slightly larger values
of the momentum). With regard to the positive frequencies instead, if we increase
the momentum k the corresponding peaks become more and more broadened and
are shifted towards larger frequencies. All in all, there is a specular situation in
the profiles obtained in which the role of the mirror is played by the δ-like peak
at kF1. Although we are in the weak-coupling regime and bosons and fermions
are supposed to interact only weakly, there is, at least theoretically, a tiny region
of small values of momenta (look at the broadened peaks at negative frequencies)
in which it seems that some kind of pairing correlations between the two species
take place.

Moving to the unitarity regime, shown in Figure 4.14, we observe a differ-
ent behaviour even if some considerations made previously still hold. First of
all, rather surprisingly, all features of the spectral functions are more narrow and
δ-like compared to the weaker coupling case. Secondly, we notice the presence
of three peaks for low values of the momentum (at k = 0.05 and also smaller or
slightly larger of the momentum k). The first one, being placed at positive frequen-
cies, describes the behaviour of the system when a fermion is injected into it; this
new fermion will remain unpaired and thus, not being able to interact with other
particles, it will propagate in the medium (recall that we are considering a per-
fectly balanced mixture). The other two peaks are found at negative frequencies.
Typically, the unique feature that should emerge at negative frequencies stands
for the extraction of one fermion from the system. Here, however, we observed an
anomalous splitting of this feature that has produced two different branches, one
of which represents a molecular state. We speculate that this anomalous structure
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FIGURE 4.13: Curves of the fermionic spectral weight function ver-
sus the frequency ω for a coupling parameter g = −3.8 (weak-

coupling) and different values of the momentum k.

could be connected to the experimental BEC branch observed in 20 and whose
existence has been not theoretically explained so far, since at unitarity the inter-
action between bosons and fermions is already quite strong but, meanwhile, the
fraction of the condensate is still consistent.

Figure 4.15 finally displays a characteristic feature of the fermionic spectral
weight functions in the strong-coupling regime, namely the presence of two peaks
for each value of the momentum k. In particular, the first peak, which corresponds
to lower frequencies, is a δ-like peak, while the second one, placed at higher fre-
quencies, is broadened. Furthermore, the greater the value of the momentum k,
the greater the relative distance, in terms of frequencies, of the two peaks.
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FIGURE 4.14: Curves of the fermionic spectral weight function ver-
sus the frequency ω for a coupling parameter g = 0 (unitarity) and

different values of the momentum k.

FIGURE 4.15: Curves of the fermionic spectral weight function ver-
sus the frequency ω for a coupling parameter g = 1.51 (strong-

coupling) and different values of the momentum k.
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4.4 Numerical checks

Now we show some results that can validate the profiles of the spectral weight
functions. We already discussed in section 3.2.2 the importance and the need of
these type of checks: they are not ends in themselves but have a deep physical
meaning.

4.4.1 Sum rule

Equation (2.30) is a condition that all spectral weight functions must verify. This
relation has been checked for the coupling parameters considered so far and the
results obtained are, within the limits of the accuracy of the calculator, satisfactory
since they are within 1% tolerance. Here we just want to make an observation:
since the integral over the frequencies ω has to be performed between −∞ and
∞, one may mistakenly think that, with the same number of points, the sampling
of a bigger interval will provide a better value of the integral, certainly closer to
1. Actually this is not true because, doing so, δ-like peaks in the spectrum are not
properly sampled with an adequately high number of points and therefore their
contribution, which is very significant, is not correctly recovered.

4.4.2 Fermionic momentum distribution function

The fermionic momentum distribution function nF(k) can be regarded as an im-
portant check and represents by itself an interesting physical object. Equation
(2.32) has been implemented in the code and here are the results for a balanced
Bose-Fermi mixtures with equal masses and for the values of the coupling param-
eter considered so far. In Figure 4.16 we can notice that in the weak-coupling
regime (red line) the fermionic momentum distribution is essentially that of a
Fermi gas with the characteristic sudden jump at kF which represents the step.
According to Luttinger’s theorem [51], fermions behave as a Fermi liquid, there-
fore the occupancy decreases progressively before the step. If we consider higher
couplings, i.e. 0 and 1.51, the value of nF(k) before the Fermi step is significantly
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smaller and its decrease more pronounced: this is an effect of the interactions
that, becoming stronger, reduce the number of unpaired fermions belonging to
the Fermi sphere and make them interact more intensely with bosons. As a result,
for high momenta we expect that the fermionic momentum distribution function
should have greater values after the Fermi step and this behaviour is clearly recov-
ered: see the tails of the curves that become larger when the coupling parameter is
increased. In Figure 4.16 we also report as an important numerical check the mo-
mentum distribution function as calculated previously in a completely indepen-
dent way without integrating the spectral weight function but working instead
only with imaginary frequencies. The results obtained by the two methods match
very well.

FIGURE 4.16: Fermionic momentum distribution function nF(k) ver-
sus the momentum k for different values of the coupling parameter:

-3.8 (weak-coupling), 0 (unitarity) and 1.51 (strong-coupling).

As for the magnitude of the jumps of the curves of the distributions, which
are sudden in weak-coupling regimes and smoother in strong ones, we will make
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some considerations with regard to the quasi-particle residue in the following,
since it represents the height of the Fermi step.

4.4.3 Quasi-particle residue

Figure 4.17 presents the quasi-particle residue Z(g) at the Fermi step kF1 of the mo-
mentum distribution function for different coupling values. We can observe that
the quasi-particle residue is approximately equal to 1 in the weak-coupling regime
thus showing the features of an almost non-interacting system. When moving to
higher values of the coupling parameter, the quasi-particle residue undergoes a
decrease since now, as already pointed out in the previous subsection, the occu-
pancy at momenta smaller than kF is lowered while the one at momenta higher
than kF increases. For a balanced Bose-Fermi mixture like ours, the quasi-particle
residue becomes zero at the critical coupling gc, that is the highest value of the
coupling parameter g (in our case, gc ≈ 1.61) at which the condensate fraction van-
ishes at zero temperature owing to the exclusive formation of bound states. There-
fore at gc we have a quantum phase transition and we assist at the breakdown of
the Fermi liquid behaviour. This means, thinking in terms of the fermionic part,
that there are no more unpaired fermions.

FIGURE 4.17: Quasi-particle residue Z(g) as a function of the cou-
pling parameter g, starting from g = −3.8 (weak-coupling) and end-

ing with g = 1.61 (which is approximately the critical coupling).
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Chapter 5

Outlooks and concluding remarks

In this final Chapter, after setting the basis for a later study, we briefly discuss
Bose-Fermi mixtures in the presence of mass and/or density imbalance. So far
we have considered systems made of bosons and fermions with equal masses and
densities, therefore we want to elaborate a little bit on this more general aspect as
well as to take into account systems in which the bosons are the majority species.

5.1 Future perspectives

In our theoretical study in Chapter 2 we dealt with the bosonic and the fermionic
parts of the mixtures providing an almost exhaustive scenario with regard to the
physical quantities involved and the equations that rule the system, but in the
numerical calculations, for time reasons, we decided to focus exclusively on the
fermionic component. However, the implementation of the bosonic counterpart
involves the determination of the integral of the corresponding self-energy whose
details have been given in section 2.7; the calculus is not straightforward since
some computational complications arise (recall in fact Eqs. (2.55) and (2.56)) but
one, starting from the T-matrices, ΓR and TR which are common to bosons and
fermions, has to retrace the steps carried out in the fermionic component in or-
der to reach the bosonic spectral weight function and all the consequent physical
quantities that have been analyzed in the fermionic case. This will be the object
of future study that will lead us to a deeper understanding of mutual interactions
between bosons and fermions.
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In several previous works the role of mass and density imbalances have been an-
alyzed. For example, in [42], it has been shown that a mass imbalance of the type
mB/mF < 1 determines a dramatic change in the critical coupling gc making it
increase very quickly especially when the mass of the bosons is almost negligi-
ble if compared to that of the fermions. These considerations instead does not
apply when it comes to the introduction of a density imbalance since the criti-
cal coupling gc is slightly affected in this case. In [52] it has been shown that
there is a threshold for the concentration x = nB/nF, fixed at x = 0.5, that can
be regarded as a border between two different behaviours of the fermionic (and
bosonic) momentum distribution function for strong coupling. In particular the
evolution of the jump(s) changes significantly from the case that we focused on:
in fact, as the coupling parameter is increased and for x < 0.5, kF1 reaches kUF
while kF2 approaches PCF, where kUF ≡ (6π2nUF)

1/3 and PCF ≡ (6π2nCF)
1/3,

being nUF = nF − nB and nCF = nB the unpaired excess fermions density and
the density of molecules, respectively. In general, at the critical coupling the un-
paired excess atoms fill the Fermi sphere up to a momentum that reaches kUF in
the molecular limit. This implies that the fermionic momentum distribution func-
tion passes from weak to strong couplings with a smooth crossover in a range of
values of g for which there are two jumps (and, consequently, two quasi-particle
residues) at kF1 and kF2. As for systems in which bosons are the majority species,
recall the considerations made in the introduction with regard to the nature of
the interactions which are now attractive. One of the most interesting feature is
the behaviour of the quasi-particle residue which, in the strong-coupling regime,
vanishes asymptotically: this means that, unlike in the case in which fermions are
the majority species and the Bose-Einstein condensation is suppressed at the finite
value of the critical coupling gc (for x ≤ 1), it is not possible to find a finite value
of the coupling parameter at which the totality of fermions are bound to bosons.
It would be very interesting to explore the spectral weight functions also in this
context.
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5.2 Concluding remarks

In this thesis we have studied Bose-Fermi mixtures in the condensed phase by
means of Green’s functions formalism at zero temperature with Feynman’s di-
agrams computed within the framework of T-matrix approximation. The focus
was on fermionic spectral weight functions obtained numerically after a proper
manipulation of the integrals involved in the retarded self-energies. The profiles
of the quantities that we have obtained - starting from the retarded T-matrix ΓR

and ending with the quasi-particle residue Z - that we have obtained reproduce
by and large the expected physical behaviour of the system under consideration.
Consider for example the fermionic distribution function and its progressive de-
pletion before the Fermi step, as well as the reduction of the height of its jump as
the coupling parameter is increased: this is a consequence of the fact that stronger
interactions reduce the number of unpaired fermions that belong to the Fermi
sphere making them interact more significantly with bosons. Furthermore, we
have shown that the quasi-particle residue becomes zero in correspondence of the
critical coupling: there is a quantum phase transition in which the fraction of the
condensate vanishes indicating the breakdown of the Fermi liquid behaviour at gc.
However, there are some results, obtained in the unitarity region (where the boson-
fermion scattering length diverges), whose interpretation is not totally under-
stood: in the fermionic spectral weight function we have observed that all the
features corresponding to the values of the momentum considered are more nar-
row and δ-like compared to the weaker coupling case; we should have expected
more broadened profiles instead, so this aspect deserves further investigations.
Moreover, we assisted at the emergence of three peaks for low values of the mo-
mentum: the one placed at positive frequencies represents the behaviour of the
system when a fermion is injected into it; since we are considering a perfectly bal-
anced mixture, this new fermion will remain unpaired and thus, not being able
to interact with other particles, it will propagate in the medium; the two remain-
ing peaks are located at negative frequencies. Typically, the single feature that
emerges at negative frequencies, as previously stated, has to be interpreted as the
extraction of one fermion from the system. Here, however, we have assisted at
an anomalous splitting of this feature that has produced two different branches,
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one of which represents a molecular state. We speculate that, since at unitarity the
interaction between bosons and fermions is already quite strong but, at the same
time, the fraction of the condensate is still consistent, this anomalous structure
could be connected to the experimental BEC branch observed in [20] and whose
existence has been not theoretically explained so far. The next step will consist in
the analysis of the fermionic spectral weight functions for values of the coupling
parameter near to that of unitarity in order to make sure of the presence of this
double peak structure in a certain interval of interactions and try, if possible, to
delimit its domain.
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Appendix A

Quasi-particle theory

Like with the propagator of independent particles, a quasi-particle is primarily
defined to be a simple pole of the propagator:

ω − ξk − ΣR(k, ω) = 0 (A.1)

The propagator, with the pole at ω1(k, ω) + iω2(k), has the form of a quasi-
particle propagator and a regular part:

G(k, ω) =
Z(k)

ω − ω1(k)− iω2(k)
+ Greg(k, ω) (A.2)

In Eq. (A.2) the residue Z(k) can be thought as the quasi-particle weight and the
sum rule for the spectral functions implies that Z(k) can take only positive values
which are not greater than 1, i.e. 0 ≤ Z(k) ≤ 1. Using the Lehmann representation
one can show that ω2 has the sign of µ − h̄ω1. Therefore:

iG(k, t) = iGreg(k, t)

+

{
Z(k)e−iω1(k)t+ω2(k)tθ(h̄ω1 > µ) t > 0
−Z(k)e−iω1(k)t+ω2(k)tθ(h̄ω1 < µ) t < 0

(A.3)

As a consequence, ω2(k)t < 0 always describes the damping of the quasi-particle
mode. In particular, if the pole is in the vicinity of the real axis, the lifetime can be
regarded as long and a frequency integral of the propagator is very enhanced in its
neighbourhood with a particle-like contribution that is weighted by the residue.
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If we admit that ω2 is small, the notion of quasi-particle itself is useful. Starting
from Eq. (A.1), one gets:

ω1(k)− ξk − ReΣR(k, ω1(k)) = 0 (A.4)

ω2(k) = Z(k)ImΣR(k, ω1(k)) (A.5)

Z(k) =
∣∣∣1 − ∂

∂ω
ReΣR

F (k, ω)
∣∣∣−1

ω=ω1(k)
(A.6)

Notice that Eqs. (A.4) and (A.6) have also been discussed in section 2.6.
In general, the assumption according to which ω2 is small is guaranteed by h̄ω1
close to the Fermi energy, where the imaginary part of the retarded self-energy is
zero. Then we are able to give a quantitative interpretation of the smallness of ω2,
that is |ω2| ≪ |ω1 − µ/h̄|. All in all, a quasi-particle is mainly characterized by
three properties:

• 1) it is a pole of the propagator in the complex ω plane;

• 2) the residue Z(k) is not negligible, meaning that is of order 1;

• 3) it satisfies the "smallness" condition regarding ω2: |ω2| ≪ |ω1 − µ/h̄|

Now let us show why the presence of a quasi-particle is reflected in a discontinuity
in the momentum density across the Fermi surface. The latter is defined as the set
of k vectors such that:

µ

h̄
− ξk − ΣR(k,

µ

h̄
) = 0 (A.7)

We start from:
n(k) = −iG(k, 0−) =

∫ ∞

−∞

dω

2πi
G(k, ω)eiω0+ (A.8)

and then we evaluate the (A.8) with the pole expansion given by the (A.2). The
residue theorem provides:

n(k) = nreg(k) +
{

Z(k) h̄ω1(k) < µ
0 h̄ω1(k) > µ

(A.9)
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Equation (A.7), which is the equation defining the Fermi surface, is equivalent to
h̄ω1(k) = µ. At a point k of the surface the jump turns out to be:

n(k<)− n(k>) = Z(k) (A.10)
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Appendix B

Bisection method

The bisection method is based on a root-finding algorithm; this can be applied
to any continuous function for which two values with opposite signs are known.
The core of the method, as the name itself suggests, is the repeated bisection of the
interval defined by these values and the subsequent selection of the subinterval in
which the function changes sign and, consequently, must contain a root. Overall,
if on one hand is a quite simple and robust method, on the other is relatively slow
and for these reasons it is typically used when one wants to get a rough approx-
imation to a solution (the latter is the starting point for more rapidly converging
methods). However the bisection method, being suitable for our purposes, has
been used extensively in order to find the poles of the T-matrix.
Quantitatively speaking, let f be a continuous function defined on an interval [a,
b] such that f (a) and f (b) have opposite signs. Under these assumptions, the in-
termediate value theorem holds: the continuous function f must have at least one
root in the interval (a, b). The bisection method numerically solves the equation
f (x) = 0 for the real variable x. At each step, the midpoint c = (a + b)/2 of the
interval is computed as well as the value of the function f (c). If c itself is a root,
then the algorithm has succeeded and ends; if it is not so, there are two possibil-
ities: either f (a) and f (c) or f (c) and f (b) have opposite signs and bracket a root.
At this stage, the subinterval that is guaranteed to be a bracket as well as the new
interval to be used in the next iteration. By doing this, the interval which contains
a zero of f encounters a reduction in width by 50% at each step. The process is
repeated until the interval is sufficiently small (that is, c - a is sufficiently small or
|f (c)| is sufficiently small) leading to a satisfactory convergence, which is linear
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because the absolute error is halved at each iteration. More precisely, if c1 = a+b
2 is

the midpoint of the starting interval while cn is the midpoint of the interval in the
n-th step, then the difference between cn and a solution c turns out to be bounded
in the following way: |cn − c| ≤ |b−a|

2n . The previous formula is useful to determine
a priori an upper bound regarding the number of iterations n that are required by
the method to converge to a root with an arbitrary tolerance ϵ (in the program we
set ϵ = 10−7). In particular, we have: n ≤ n1/2 ≡

⌈
log2(

|b−a|
ϵ )

⌉
. There are no

other methods that can guarantee the production of an estimate cn to the solution
c that in the worst case has an ϵ absolute error with less than n1/2 iterations and
this is the main reason why the bisection method has proved to be optimal while
considering the worst case performance under absolute error criteria.
An important remark is the following: even if f is continuous, finite precision,
which is intrinsic to computers, may preclude a function value ever being zero.
For instance, this is the case of functions like f (x) = x − π; we can notice that
there will never be a finite representation of x that gives zero. Furthermore, the
difference between a and b is technically limited by the floating point precision:
this means that if we assist to the decrease of the difference between a and b, at
some stage the midpoint of [a, b] will be identical, from a numerical point of view,
to either a or b within their floating point precision.
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Appendix C

Gauss-Legendre integration

There are many integrals along the dissertation that must be computed numeri-
cally. An efficient algorithm to determine integrals of regular functions (i.e. well
approximated with a polynomial) with a great accuracy is the Gaussian quadra-
ture method; this was extensively used in our program.
When the integrating function is the product of a polynomial times a certain
known function W(x), it is possible to choose the abscissa and the weights such
that the integral computed with the quadrature method is exact. In general, let
W(x) be a certain known function and N an integer; then, it is possible to find a set
of N abscissa xj and of N weights such that:

∫ b

a
dxW(x) f (x) ≈

N

∑
j=1

wj f (xj) (C.1)

Equation (C.2) admits the equal sign if f (x) is a polynomial of degree N. Typ-
ically, given the integrating function g(x), it is useful to choose a proper weight
function W(x) so that:

∫ b

a
dxg(x) ≈

N

∑
j=1

vjg(xj) (C.2)

where g(x) ≡ W(x) f (x) and vj ≡
wj

W(xJ)
. The N abscissa which belong to a gaus-

sian quadrature of the type (C.2) are, with a weight function W(x) in an interval
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[a, b], the roots of the orthogonal polynomial pN(x) for the same weight func-
tion and the same interval. Recall that, given a weight function W(x) is it pos-
sible to determine a set of orthogonal polynomials pj(x) of degree j = 0, 1, 2, ...,
which have scalar products weighted by W(x) equal to zero. Mathematically,∫ b

a dxW(x)pj(x)pi(x) = 0. The most common set of abscissa and weights is
the Gauss-Legendre one: it comes from the weight function W(x) = 1, with
−1 < x < 1, whose orthogonal polynomials are the Legendre polynomials Pn(x).
For a generic integration interval [a, b], the following formula allows one to deter-
mine the weigths:

wj =
2

(1 − xj)2[P′
N(x)]2

(C.3)

while the integral of a function f (x) is given by:

∫ b

a
f (x) ≈

N

∑
j=1

wj f (xj) (C.4)

The GAULEG subroutine, slightly modified from [53], computes the abscissa
and the weights with the Gauss-Legendre method. As inputs we have the ex-
tremes of the integration and the number of points N with which to calculate the
integral; at this stage, the subroutine looks for the roots of the N-th Legendre
polynomial, then computes the weights for each root according to the (C.3). As
outputs, we have the N-dimensional vectors of the abscissa and the weights. An
important consideration is the following: since the inputs and the outputs do not
depend on the integrating function, the same abscissa and weights can be used
for every integration if the extremes and the number of points N are kept fixed.
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