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“The only truly real things are the clicks in detectors.”





Abstract

Il quark top è una delle particelle fondamentali del Modello Standard, ed è osservato
a LHC nelle collisioni a più elevata energia. In particolare, la coppia top-antitop (tt̄)
è prodotta tramite interazione forte da eventi gluone-gluone (gg) oppure collisioni di
quark e antiquark (qq̄). I diversi meccanismi di produzione portano ad avere coppie con
proprietà diverse: un esempio è lo stato di spin di tt̄, che vicino alla soglia di produzione è
maggiormente correlato nel caso di un evento gg. Uno studio che voglia misurare l’entità
di tali correlazioni risulta quindi essere significativamente facilitato da un metodo di
discriminazione delle coppie risultanti sulla base del loro canale di produzione.

Il lavoro qui presentato ha quindi lo scopo di ottenere uno strumento per effettuare
tale differenziazione, attraverso l’uso di tecniche di analisi multivariata. Tali metodi sono
spesso applicati per separare un segnale da un fondo che ostacola l’analisi, in questo caso
rispettivamente gli eventi gg e qq̄. Si dice che si ha a che fare con un problema di
classificazione.

Si è quindi studiata la prestazione di diversi algoritmi di analisi, prendendo in esame
le distribuzioni di numerose variabili associate al processo di produzione di coppie tt̄. Si
è poi selezionato il migliore in base all’efficienza di riconoscimento degli eventi di segnale
e alla reiezione degli eventi di fondo. Per questo elaborato l’algoritmo più performante è
il Boosted Decision Trees, che permette di ottenere da un campione con purezza iniziale
0.81 una purezza finale di 0.92, al costo di un’efficienza ridotta a 0.74.



Abstract

The top quark is one of the fundamental fermions of the Standard Model, and is
observed in the highest energy collisions. Our focus is the tt̄ pair, which is produced
through strong interaction in two cases: from gluon fusion (gg) or quark-antiquark anni-
hilation (qq̄). Different production channels lead to pairs with different characteristics:
one example is the tt̄ spin state, which near the production threshold presents higher
correlations in the case of a gg event. A study that proposes to study the entity of
such correlations can thus benefit from a way to discriminate pairs on the basis of their
production channels.

This work has therefore the purpose of obtaining, through the use of multivariate
analysis methods, a tool to select events in such way. Multivariate algorithms are often
used to separate a signal from a background that pollutes the sample; in this case for
the signal we choose gg events, while for the background we select to qq̄ events. Such a
problem is called a classification problem.

We thus studied the performance of some classifiers, using the distributions of some
variables associated to the tt̄ production process. Then we selected the best performing
algorithm evaluating its efficiency in selecting signal events and rejecting background
ones. The chosen classifier turns out to be the Boosted Decision Trees, which allows to
obtain a sample of purity 0.92, starting from an initial purity of 0.81, at the cost of a
reduced efficiency of 0.74.
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Introduction

In the Standard Model the top is one of six quarks, and its peculiar phenomenology is
driven by its mass. It is the only quark that decays semi-weakly, producing an on-shell
W boson and a bottom quark; this results in a lifetime that is shorter than the typical
hadronization time, and thus it plays a special role in the Standard Model and many of
its extentions.

In proton-proton collisions top quarks are mostly produced in pairs, along with their
antiparticle (tt̄ pairs), and at LO this happens through the processes gg → tt̄ and
qq̄ → tt̄ (gluon fusion and quark-antiquark annihilation). The higher the energy in these
collisions, the more gg events dominate over qq̄ ones: at the Tevatron, with

√
s = 1.96

TeV, about 85% of the production cross section comes from quark-antiquark annihilation,
whereas at the LHC (

√
s = 13 TeV) approximately 90% of tt̄ pairs production is due to

gluon fusion [1].

These production channels cause the resulting pairs to have different properties. One
example of this is found in [2], where correlations in the tt̄ spin state are studied in order
to look for violations of Bell Inequalities. In this analysis two complementary regimes
are important: at threshold, i.e., when the top quarks are slow in the pair’s rest frame,
and when their transverse momentum is large. These correspond to two separate regions
in the mtt̄ − θ plane (where mtt̄ is the invariant mass of the system and θ is the angle
of production in the center of mass reference frame); they are defined respectively by
having mtt̄ ≈ 2mt and mtt̄ � 2mt with θ ≈ π/2. At threshold gluon fusion leads to
an entangled spin-0 state, whereas quark-antiquark annihilation to a spin-1 state. The
latter, although subdominant at the LHC, acts as an irreducible background, making an
analysis in such a regime impossible. This is an example of a case that would benefit
from the ability to discriminate events on the basis of their production channel.

Moreover, such a result would work as an additional confirmation of what is already
investigated in [3] and [4], evaluating if the cross sections ratio obtained working with
PDFs is accurate. These works have inspired what is here presented, and some of the
same discriminating variables were used in the process. However, a multivariate approach
to the problem is proposed here, employing different algorithms thanks to the ROOT-
integrated environment TMVA, Toolkit for Multivariate Analysis.

Multivariate techniques have often been used in high-energy physics, as it studies
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phenomena characterized by a high number of parameters, all associated to the same
event, and is sometimes lacking a definite mathematical model to describe the data. This
warrants the use of multivariate algorithms, which are able to work with a large number
of variables.

A typical area of application of such methods is background suppression, also known
as classification, where one divides the data in two categories on some basis, assigning
to one the label of “signal”, to be isolated, and identifies the other one as “background”,
to be eliminated because it pollutes the data. This is precisely what we wish to achieve,
providing a tool for classification of single events.

The thesis is organized as follows. The first chapter contains an introduction to the
generalities of the Standard Model with a focus on the physics of the top quark and the
production of tt̄ pairs. The second chapter presents the methods of multivariate analysis,
describing how each one of those used approaches the classification problem. Finally, the
third chapter describes the analysis carried out and its results.
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Chapter 1

The Standard Model and the
physics of tt̄ pairs

1.1 The Standard Model

As of today, the study of the fundamental constituents of matter is reduced to the theory
known as The Standard Model (SM). It is a theoretical framework developed between
the 1960s and 70s describing all particle physics phenomena, based on a combination
of quantum mechanics and relativistic theory: quantum field theory (QFT). QFT treats
particles as excited states (also called quanta) of their underlying quantum fields, which
are more fundamental than the particles.

It is also a gauge theory, that is a field theory based on the existence of certain local
symmetries; it thus requires the relative Lagrangian to be invariant under the action of
certain symmetry groups. Such transformations are called gauge transformations. The
symmetry group involved is SUC(3)× SUL(2)× UY (1), where:

- SUC(3) is the color charge symmetry group, for the strong interaction, and it is
the basis for its quantum field description, QCD (Quantum Chromodynamics).

- SUL(2) × UY (1) is the symmetry group on which is built the electroweak theory,
the unified description of electromagnetism (Quantum Electrodynamics, or QED)
and the weak interaction (Quantum Flavordynamics or QFD).

1.1.1 Elementary particles

According to the Standard Model there are two types of fundamental particles, which
are fermions with spin 1

2
, leptons and quarks, and mediating bosons with spin 0, 1.

The leptons are six, divided in three generations with two species each: we have the
electron e paired with the electron neutrino νe, the muon µ and its neutrino νµ, and the
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tau τ along with the tau neutrino ντ . e, µ and τ have -1 electrical unit charge, while
neutrinos are neutral.

Similarly, the quarks are also six and divided in three pairs, one up-like quark paired
with a down-like quark. They are respectively the up u and the down d, the charm c
with the strange s, and the top t and the bottom b. However, their charge differs from
leptons, up-like quarks having +2

3
charge and down-like one having −1

3
, and they have

color charge as well. More properly one refers not to different species of elementary
particles but to flavors.

Along with these 12 particles there are 12 antiparticles, which are identical to those
just described (same mass and spin) except for charges, which are opposite. For example,
the electron’s antiparticle is the positron, often written as e+ to highlight the opposite
electric charge [5].

Figure 1.1: Elementary particles of the Standard Model: quark, lepton and gauge fields.
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Lastly there are 12 gauge bosons, with spin one, associated with the three fundamen-
tal interactions: the electromagnetic force, the strong interaction and the weak inter-
action. Gravity, the fourth fundamental force, still lacks a consistent quantum theory;
however the masses involved in subnuclear processes are so small that the gravitational
field can easily be neglected, allowing for a complete description of most phenomena
observed even without a complete theory.

To each fundamental interaction is associated a charge, which allows for fermion fields
to couple with the force ones, represented by the mediating bosons. All particles that
are electrically charged take part in electromagnetic interaction, carried by the photon γ,
which is massless and neutral. For the strong interaction we have what is called the color
charge and the propagators are 8 colored gluons g, massless and not electrically charged.
Finally, the weak interaction corresponds to the weak isospin and three mediators, W+,
W− and Z0; they have both mass and electric charge. A 13th scalar boson is required
for the theory to be consistent, also known as Higgs boson H; it represents the Higgs
field, a scalar field that couples with most fermions causing them to acquire mass.

The gauge bosons are 1 + 3 + 8 = 12, coherent with the dimension of the symmetry
group, as they each represent one of the generators. Different characteristics of the
fundamental fermions and bosons are summarized in Fig. 1.1.

1.1.2 The electromagnetic interaction and QED

The electromagnetic interaction was already very well described by classical theories, and
its behavior summed up by Maxwell’s equations. Its study however also highlighted some
of the behaviors that lead to the birth of quantum field theories, and the reformulation
of electromagnetism as Quantum Electrodynamics (QED) is the starting point for the
description of almost all fundamental interactions.

e−

e−

γ

√
α

Figure 1.2: Fundamental
QED vertex. The electron
e− can be exchanged with any
fermion.

Associated with the electromagnetic interaction is
the symmetry group U(1) = {eiθ, θ ∈ [0, 2π]}. The
charge associated with the electromagnetic field is the
electric charge, and the corresponding propagator is the
photon γ. Coherently with its null mass it has infi-
nite range, and its intensity is parameterized by the
fine structure constant αem:

αem =
e2

4πε0h̄c
≈ 1

137
. (1.1.1)

The fine structure constant is one of the three cou-
pling constants; each interaction has its own, an adi-
mensional parameter not actually constant but depend-
ing from the energies in the process.
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Generally speaking the fundamental electromagnetic interaction can be of two kinds:
the creation of a particle and its antiparticle from a photon or the emission of one from
a fermion. In Fig. 1.2 is depicted the fundamental vertex of the interaction.

1.1.3 The weak interaction and QFD

The weak interaction was at first observed in radioactive decays of atomic nuclei. β−

emission is due to the decay of the neutron thanks to the weak force:

n→ p e− ν̄e . (1.1.2)

This highlights one of the defining characteristics of the weak interaction: it is not
constricted by laws of flavor conservation. It is also less intense than the others, as can
be seen evaluating its coupling constant, using the mass of the proton mp and the Fermi
constant GF :

αw =
GFmpc

h̄3 ≈ 10−5 . (1.1.3)

Due to the fact that it is less intense its timescales are longer, which means that it
is often masked by the other interactions. It has been generally observed in decays that
show the violation of flavor conservation.

The weak force is universal, and both quarks and leptons take part in its processes.
Its mediators are the W± and Z0 bosons, and it has finite range due to their mass. It
is associated with the isospin symmetry group SU(2). The processes coupling fermions
with the W± bosons can be described arranging the 12 fundamental particles in weak
isospin doubles, also called generations:[

νe

e−

][
νµ

µ−

][
ντ

τ−

] [
u

d′

][
c

s′

][
t

b′

]

The process can be described as having one of the bottom particles transforming in
one of the top ones emitting a W− boson, or vice versa with the emission of a W+. To
be more precise in the case of quarks there is also the mixing of flavors of the interacting
fermions. In fact the W± bosons do not couple directly with the mass eigenstates d, s
and b but with a linear combination of those, d′, s′ and b′, as described by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix.

Lastly there are neutral weak processes, where a fermion can emit Z0 boson without
changing its nature. Some of the fundamental vertices of the weak interaction can be
seen in Fig. 1.3.

Weak isospin T3 serves as an additive quantum number that restricts how the particle
can interact with the W± and Z0 bosons; however it is also correlated with the electric
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νe

e−

W+

W+

W−

Z0

Z0 Z0

W+ W−

Figure 1.3: Some of the fundamental vertices of QFD, showing the emission of a W+

boson as well as the interaction between propagators.

charge Q. Both electromagnetic and weak processes conserve the weak hypercharge,
defined as YW = 2(Q− T3), and they are in fact described through a unified theory, the
Electroweak field theory.

Another defining feature of QFD is that it is a chiral theory, acting only on the left-
handed components of the fermion fields. The weak force in fact completely violates
parity symmetry as well as charge-parity symmetry, and it is the only one that does so.

1.1.4 The strong interaction and QCD

The strong force is an interaction between quarks and the associated propagators, the
gluons. The associated charge is the color charge, which can take three values, red, green
and blue (r, g and b), as well as their opposite, antired, antigreen and antiblue (r̄, ḡ and
b̄); the gluons are massless and not electrically charged, but have color, each carrying
one color charge and one anticolor charge, so we can distinguish 8 of them. A possible
choice of basis is rb̄, rḡ, br̄, bḡ, gr̄, gb̄, (rr̄− gḡ)/

√
2 and (rr̄+ gḡ− 2bb̄)/

√
6. Due to the

fact that they are colored gluons are self-interacting, as one can see in Fig. 1.4, where
the fundamental vertices of QCD are presented.

Strong interactions were first introduced in the study of the forces between nucleons,
which are very strong at lengths about 1 fm but rapidly decreases at just double that
distance. The complicated profile of the potential acting in the nucleus is now explained
as a residual of the interaction between quarks in the internal structure of nucleons,
just as London dispersion forces are due to the electromagnetic force that holds together
the atom. Both protons and neutrons are in fact baryons, bound states of three quarks.
Together with mesons, bound states of two quarks, they make up the subatomic particles
known as hadrons.

One of the key properties of the strong interaction is color confinment, which means
that no free states of quarks can have non-null color: all known hadrons, in fact, are
colorless. The phenomenon can be understood by noting that gluons have color charge
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q

q

αs

g

g

g

g
αs α2s

g g

gg

Figure 1.4: Fundamental vertices of QCD. Two of them show the interaction among
gluons.

and are self-interacting, and this feature causes the force between quarks to be constant
regardless of their separation; therefore, as two color charges are separated, at some
point it becomes energetically favorable for a new quark–antiquark pair to appear, so
only neutral-color states of quarks are observed by detectors.

The strong interaction conserves flavor and electric charge, but changes color. The
conservation of flavor can be more precisely expressed introducing quantum number
associated with the flavor of each quark. However, the behavior of strong processes
involving the u and d quarks highlights that they are invariant for rotations in the
bidimensional space of u and d flavor, called isospin space. This (approximate) symmetry
is expressed as invariance under transformation of the SU(2) group. The interaction is
also generally invariant for transformations of the SU(3) group.

The coupling constant, which expresses the intensity of the force, can be evaluated
assuming a typical length of the interaction of 1 fm and a typical mass of 938 GeV, the
mass of the proton. We thus have:

αs =

√
mplh̄

c
≈ 1 . (1.1.4)

Compared to the other coupling parameters αs is much larger, in fact particles that
decay due to the strong force have a very short lifetime.

1.2 Some useful concepts

At the LHC one studies collisions from two proton beams (pp collisions). In this setting
it is common to distinguish three different levels of analysis - parton level, particle level
and detector level.
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A parton level analysis involves only the incoming (so part of the protons’ internal
structure) and outgoing partons. In this work this means taking into account only the
initial state particles (gluons or quarks), the tops and their kinematics.

The outgoing partons are however unstable products and will quickly hadronize, due
to the confinement of the strong interaction, or decay weakly. This means that the
parton level products are not directly observed, but reconstructed through the resulting
stable hadrons and leptons. This is what is known as the particle level analysis.

Finally, we have the detector level. This refers to the work of inferring the dynamics
of the collision from the response of the detectors, which happens when the final state
particles interact with them. In an ideal situation, if detectors were completely efficient,
the detector level would be identical to the particle level, however that is not possible
due to imperfections of the apparatus or finite resolution effects.

Another key concept is that of Leading Order (LO) and Next-to-Leading Order (NLO)
calculations. This refers to the process of computing the transition amplitudes for a given
process, which is generally done through the use of Feynman diagrams.

The amplitude for scattering is the sum of each possible interaction history over all
possible intermediate particle states. This can be done through a perturbative series
expansion, where each term can be represented as a Feynman diagram. The expression
is written in terms of a coupling constant, usually called α, which depends on the type of
interaction in the scattering. In this work we are focusing on the production to tt̄ pairs
through the strong interaction, so we consider the strong coupling constant αs.

If the coupling constant is small, the terms of the expansion that are proportional to
higher powers of α will be suppressed, and have small contributions to the sum; depending
on the level of accuracy wanted one can thus ignore those less significant contributions.
So we can distinguish Leading Order and Next-to-Leading Order calculations: at LO
one keeps only the most important terms, that are proportional to the lowest non-zero
power of α, while at NLO the next largest terms are considered as well. This translates
to having some diagrams of the process that do not contribute at LO, but do at NLO.

In QCD the coupling constant is generally not small, and this complicates matters
as it does not always allow perturbation techniques. This is however not always the
case, and in high energy events or small distance interactions αs is small (αs ≈ 0.1), and
perturbative calculations can be used.

1.3 The top quark and tt̄ pairs production

The top quark is the heaviest known fundamental particle, with a mass of 172.56± 0.4
GeV. Due to its mass it is produced on-shell only in very high energy events, and it was
discovered relatively late, in 1995 at the Tevatron collider at FNAL by the CDF and
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DØ collaborations [6, 7]. It takes part in all interactions having both electric and color
charge.

1.3.1 Production

In hadron colliders top quarks can be produced along with their antiparticle, in what are
usually called tt̄ pairs, through the strong interaction, or as singles from weak interaction.
Some Feynman diagrams of these processes are shown in Fig. 1.5.

Figure 1.5: Some diagrams for the different tt̄ production processes in pp collisions at
LO QCD. The quark charm can be exchanged for any other quark. Diagrams related by
mirroring or taking the charge conjugate are identified and only one is drawn.

Our focus is the production of top-antitop pairs. At LO these come from either gluon
fusion or quark-antiquark annihilation, distinguishing two different production channels :

g g → t t̄ (1.3.1)

q q̄ → t t̄ . (1.3.2)

Note that qq̄ → tt̄ can happen only through an s-channel, while gg → tt̄ it is possible in
both s and t-channels.
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The fully differential top cross sections for gg/qq̄ → tt̄ are (at LO in QCD and
neglecting EW corrections) [8]:

d2σ

dβdρ
(s)gg =

4πα2
s

12s

[(
1 + ρ+

ρ2

16

)
ln

1 + β

1− β − β
(

7

4
+

31

16
ρ

)]
(1.3.3)

d2σ

dβdρ
(s)qq̄ =

8πα2
s

27s
β
[
1 +

ρ

2

]
(1.3.4)

with ρ = 4m2
t/s and β =

√
1− ρ is the velocity of the top in the tt̄ center of mass frame

of reference. In order to obtain the total pp̄ (or pp) cross section one should sum the
partonic gg and qq̄ cross section over the respective luminosities in hadronic collisions.

At NLO in addition to these production channels we have one more contribution:

g q → t t̄ g (q) (1.3.5)

Figure 1.6: Some diagrams for the gq → tt̄ q production processes in pp collisions at
NLO QCD. The quark charm can be exchanged for any other quark. Diagrams related by
mirroring or taking the charge conjugate are identified and only one is drawn.

1.3.2 Decay

As mentioned before, due to its mass the top has a mean life of approximately 1.4 GeV−1,
over ten times smaller than the typical QCD hadronization timescale. It therefore usually
decays before it has time to hadronize, giving the unique opportunity to study the bare
structure of a quark.

Both the electromagnetic and the strong interaction respect flavor conservation, which
means the top decays semi-weakly, almost exclusively to a W boson and a bottom quark
(it can also decay to a strange or a down quark, however the W b branching ratio is by
far dominant at R = 1.014± 0.003 (stat.)± 0.032 (syst.) [9] ). Thus we have:

t t̄ → b W+ b̄ W− . (1.3.6)
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Figure 1.7: Timescales for the top, in GeV −1.

The W boson can then decay either to a lepton and the corrisponding neutrino, or
to light quarks giving two hadroninc jets. These different final states characterize what
are called the different decay channels : the former is the leptonic final state, while the
latter is known has hadronic.

Due to the fact that there are two tops that decay there are three possible overall
final states. If both W bosons decay leptonically we obtain what is called a dilepton
final state, and we have

t t̄ → b `+ ν b̄ `− ν (1.3.7)

In this work, ` is limited to be either an electron or a muon as the τ lepton generally de-
cays too quickly to be seen in a final state. If one decays leptonically while the other does
so hadronically the result is a mixed lepton and jets state, which can be either of the type

Figure 1.8: Representation
of the decay of a top quark
that leads to the emission of
a lepton.

t t̄ → b `+ ν b̄ q q̄ or (1.3.8)

t t̄ → b q q̄ b̄ `− ν̄ . (1.3.9)

Lastly, one can have a fully hadronic decay:

t t̄ → b q q̄ b̄ q′ q̄′ . (1.3.10)

It is a general feature of weak decays that the angular
distribution of decay products is correlated with the par-
ent particle’s spin. A weakly decaying fermion at LO has
differential width:

1

Γ

dΓ

d cosϕi
=

1 + αi cosϕi
2

(1.3.11)
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where Γ is the total width of the mother (the top), ϕi is the angle between the i-th decay
product and the top quark spin axis in the latter’s rest frame (see Fig. 1.8), and the
parameter α is known as the spin analyzing power, and its value depends on the decay
products [10].

Figure 1.9: Decay of a tt̄ pair, resulting in a mixed lepton and jet final state.

1.3.3 Kinematics

At LO the kinematics of the pair is determined by the invariant mass of the system
mtt̄ and the production angle in the zero momentum reference frame θ, both of which
can be calculated from the components of the top’s momentum pt; while the former is a
relativistic invariant quantity, the latter is not. We thus have:

m2
tt̄ = (pt + pt̄)

µ(pt + pt̄)µ = (Et + Et̄)
2 − (~pt + ~pt̄)

2 (1.3.12)

cos θ =
pz
|~p | (1.3.13)

where ẑ is taken to be the direction of the beam. In this work we identify θ and π − θ.

Figure 1.10: Schematic
of a pp collision resulting
in a tt̄ pair, in the center
of mass reference frame.

Most observables of interest arise from the fact that in
colliders particles’ velocities are (up to corrections of the
order of ΛQCD /

√
s) along the beam axis. This leads to

the definition of various quantities that, when boosting to
frames of references at different velocities along the beam
axis, are either invariant or have transformation properties
that make them easy to handle and useful for analysis.

One example is the transverse momentum of both t and
t̄, which is the component of momentum perpendicular to
the beam line, and can be cast as a function of mtt̄ and θ:

pT = sin θ |~p | = sin θ

√
m2
tt̄

4
−m2

t . (1.3.14)
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Note that this quantity is invariant under boosting along the ẑ axis.

Two quantities of interest are also the top’s velocity v (also called β) in the zero
momentum frame of reference, and the tt̄ center of mass’ rapidity, ytt̄. In such reference
frame the velocity is related to the invariant mass of the system through:

v =
|~p |
E

=

√
1− 4m2

t

m2
tt̄

, (1.3.15)

while for the rapidity we use the definition most commonly used in particle physics,
which is relative to the beam axis. A particle’s rapidity is defined as:

y =
1

2
ln
E + pz
E − pz

. (1.3.16)

y is zero when a particle is emitted transverse to the beam, so θ = π/2, and tends to
±∞ when the particle is moving close to the ẑ axis in either direction. Under a boost
in the z direction to a frame with velocity β, y → y − tanh−1 β, therefore the difference
between the rapidities of two particles is invariant under ẑ boosts.

The rapidity is related to the pseudorapidity η, defined as

η = − ln tan
θ

2
=

1

2
ln
|~p |+ pz
|~p | − pz

. (1.3.17)

because when a particle travels close to the speed of light (or, equivalently, in the ap-
proximation that the mass of the particle is negligible) one can make the substitution
E ≈ |~p | and thus η ≈ y. Pseudorapidity is often useful because it can be measured when
the mass and momentum of the particle are unknown [1].

Figure 1.11: Helicity basis
{k̂, r̂, n̂}, n̂ is into the page.

Further quantities, relative to the kinematics of
the decay products, can also be studied. In order to
do so, it is best to fix a basis in the zero momentum
frame of reference, the helicity basis. It is given by:

k̂ = top direction , (1.3.18)

r̂ =
p̂− k̂ cos θ

sin θ
, (1.3.19)

n̂ = k̂ × r̂ (1.3.20)

where p̂ is the beam axis, and θ the production angle.
A schematic representation is in Figure 1.11.
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Chapter 2

Multivariate analysis methods

Multivariate analysis (MVA) is a type of stochastic analysis that allows to work with
large numbers of variables at the same time. A typical area of application of multivariate
techniques is background suppression, also known as classification. The reason to apply
statistical training multivariate methods is, in most cases, simply the lack of knowledge
about the mathematical dependence of the quantity of interest on the relevant measured
variables, as it is our case.

In this work the algorithms have been implemented using the Toolkit for Multivariate
Data Analysis (TMVA), a ROOT-integrated environment offering different tools for this
analysis, thus allowing comparisons between different methods based on their perfor-
mance.

All multivariate techniques in TMVA belong to the family of “supervised learning”
algorithms: they work in two phases, the training phase and the testing phase. During
the training, events for which the desired output is known are used to determine the
mapping function that describes a decision boundary in parameter space, and later the
algorithm is tested on an independent sample of data.

2.1 TMVA methods

Among the algorithms offered by TMVA three where selected for the current work: Fisher
Linear Discriminant (FDL), Boosted Decision Trees (BDT) and Multilayer Perceptron
(MLP).

2.1.1 Fisher Linear Discriminant

The Fisher Linear Discriminant, as the name suggests, belongs to the family of linear
classifiers, algorithms that use a linear function of the input data. If the input is a real
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vector x, the output (related to the probability of the event being part of the signal) will
be:

y = w · x =
∑
j

wjxj . (2.1.1)

w is usually called weights vector. This process of classification can be imagined at
the act of splitting the input space with a hyperplane, one side identified as belonging
to the signal and the other side to the background.

The design of a good classifier becomes rapidly more difficult as the dimensionality
of the input space increases. Fisher discriminants solve this problem performing event
selection in a transformed one-dimensional variable space, projecting the data on an axis
such that the distance between events of the same type (signal or background) is mini-
mized, while distance between different types of events is maximized. The classification
then is reduced to the act of placing a cut on the output, known also as the Fisher
discriminant [11].

Let x̄S(B), k with k = 1, ..., n be the class-specific sample means and C the covariance
matrix. The covariance matrix can be decomposed into the sum of two terms, one which
describes the dispersion of events relative to the means of their own class (within-class
matrix, W ), and one relative to the overall sample means (between-class matrix, B). We
can define the Fisher coefficients Fk as:

Fk =

√
NSNB

NS +NB

n∑
j=1

W−1
kj (x̄S,j − x̄B,j), (2.1.2)

where NS(B) is the number of signal (background) events used in the training. The
Fisher discriminant for the i-th event will then be:

yF (i) = F0 +
n∑
k=1

Fkxk(i). (2.1.3)

F0 is an offset that centers the mean ȳF for all the events to zero [12].

In spite of their simplicity, Fisher discriminants can deliver a surprisingly good perfor-
mance, and can be in certain cases competitive with nonlinear classifiers (which generally
present better results). One can prove that are optimal when working with Gaussian dis-
tributed variables that present linear correlations. On the other hand, no discrimination
is achieved when a variables has the same sample mean for both signal and background
events. This is why a classification process using a Fisher discriminant can benefit from
a suitable transformation of the input variables, changing the shape of the signal and
background distributions to obtain a different sample mean.
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2.1.2 Boosted Decision Trees

A decision tree is a binary tree structured classifier. It is made of different nodes where
repeated left/right (yes/no) decisions are taken on one single variable at a time until
a stop criterion is fulfilled and a leaf is reached. In this way the phase space is split
into many regions that are eventually classified as signal or background, depending on
the type of the majority of training events that end up in the final leaf. The process
is similar to placing rectangular cuts. However, whereas a cut-based analysis is able to
select only one region of phase pace, the decision tree is able to split the phase space
into a large number of hypercubes, each of which is identified as either “signal-like” or
“background-like”.

Figure 2.1: Figure taken from [12], schematic view of a decision tree. Starting from the
root node, a sequence of binary splits using the discriminating variables xi is applied to
the data. Each split uses the variable that at this node gives the best separation between
signal and background when being cut on (the same variable may thus be used at several
nodes, while others might not be used at all). The leaf nodes at the bottom end of the tree
are labeled “S” for signal and “B” for background depending on the majority of events that
end up in the respective nodes..

A shortcoming of this algorithm is its instability with respect to statistical fluctua-
tions in the training sample. For example, if two input variables exhibit similar separation
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power, these fluctuations may cause the tree growing algorithm to decide to split on one
variable instead of the other. In such a case the whole tree structure is altered below this
node, possibly resulting also in a substantially different classifier response. The problem
is overcome thanks to the boosting of decision trees.

The boosting of decision trees combines many trees into a forest. These are all derived
from the same training sample and they are later combined into a single classifier once
a weight is assigned to each tree; an event is then classified as part of the signal or
background on a majority vote of the classifications done by each tree in the forest,
taking into account its weight. Boosting increases the statistical stability of the classifier
and is able to drastically improve the separation performance compared to a single
decision tree. There are different boosting algorithms available for TMVA, and for this
work the one chosen was AdaBoost.

A ranking of the BDT input variables is derived by counting how often they are used
to split decision tree nodes, and by weighting each split occurrence by the separation it
has achieved and by the number of events in the node.

BDTs are often considered as among the best classifiers available. This is because,
given the semplicity of their structure, little tuning is required in order to obtain reason-
ably good result; moreover they are also insensitive to the inclusion of poorly discrimi-
nating input variables, as they are essentially ignored during the process of constructing
the tree. However, the simplicity of BDTs has the drawback that their theoretically
best performance on a given problem is generally inferior to other techniques like neural
networks [12].

2.1.3 Multilayer Perceptron

Figure 2.2: ANN dependence graph.
It highlights the relations between the
different nodes, having the output f
be a composition of the gi, which are
themselves compositions of the hi.

The Multilayer Perceptron, MLP, is a type of Ar-
tificial Neural Network (ANN). The development
of ANNs was inspired by the research on the cen-
tral nervous system and the neurons; however,
currently the approach stimulated by biological
research has been abandoned for an approach
based on statistics, mathematics and optimiza-
tion theory.

In its most abstract form a neural network
is a nonlinear function f : x → y, where x is
the input vector and y the output determining
the result of the classification. The term network
arises because the function f is a composition of
other functions gi, which are themselves compo-
sitions of other functions hi and so on (see Fig.
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2.2). This structure can be represented in a graph where each function corresponds to
a node (or neuron as they are called), linked to the others (thus showing dependence
between functions), and we can see how this approach highlights the similarities with
the central nervous system’s structure.

Figure 2.3: Plot of the hyperbolic tangent,
tanh(x). As one can see, it is monotonically
increasing and the output ranges for -1 to 1.
For x� 1 tanh(x) = 1, and for x� −1 the
output is -1.

For each neuron i, wi is the weight
of the corresponding link, and gi(x

′) is
its output, which is itself a composi-
tion of functions. The activation func-
tion K has the purpose of reducing the
neuron’s output from a real number to
either “on” or “off”; this is why it is
generally a sigmoid, for example in this
application the one used was the hyper-
bolic tangent [11]. The non linearity of
the sigmoid can be crucial in improving
the performance of a classifier, as it al-
lows to select the region in input phase
space corresponding to the signal using
a non linear boundary, that is generally
more effective.

In most applications the functions f is a weighted sum of the different neurons’
outputs, with the addition of a nonlinear activation function. We can thus write:

f(x) = K

(∑
i

wigi(x
′)

)
. (2.1.4)

In the case of the Multilayer Perceptron, the complexity can be reduced by organizing
the neurons in layers and only allowing direct connections from a given layer to the
following one. For a classification problem with n input variables one has the input layer
with n neurons, taking each a variable’s value, at least one hidden layer with an arbitrary
number of nodes, and the output layer, consisting of a single neuron holding the output
value y.

The MLP neural network implements a variable ranking that uses the sum of the
weights-squared of the connections between the variable’s neuron in the input layer and
the first hidden layer. The importance Ii of the input variable i is given by

Ii = x̄2
i

N∑
j=1

(w
(1)
ij )2 (2.1.5)

where xi is the sample mean of input variable i [12].
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Chapter 3

Results

Events were simulated in two contexts, first at Leading Order only at Parton level,
focusing solely on the “true” kinematics of top and antitop pairs, then at Next to Leading
Order at Parton and Particle level, taking into account decay products as well. They were
generated in in collaboration with the authors of [2], for more details see the Appendix.

The events were used as input for classifiers implemented in the ROOT framework,
with the purpose of selecting events from gluon fusion (gg events), and separating them
from the background (tt̄ pairs coming from all other production channels). At LO the
background corresponds to just qq̄ events, while at NLO the gq production channel needs
to be taken into account as well. From this point on when mentioning the signal we will
refer to gg events, and the background will correspond to qq̄ and gq ones.

The data was then analyzed with the TMVA package, after being divided into two
sets, one to train the algorithms and one to test them. We now present the results of
the analysis.

3.1 Analysis at Leading Order

At Leading Order (LO) the generated events take into account only the kinematics of the
top quark pair. Some variables in the process where isolated examining their distribution
in gg and qq̄ events. The ones deemed useful were later used by the TMVA algorithms
in the classification process: they are the invariant mass of the system, mtt̄, the absolute
value of the rapidity of the tt̄ pair, |ytt̄|, and the angle at which the top and the antitop
come out in the centre of mass reference frame, θ. Distributions of the three variables
are shown in Fig. 3.1.

These parameters are not the only ones that differentiate the two production channels.
Any observable can potentially be used as a discriminant, as long as its distributions in
signal and background events differ significantly. While the variables above are not the
only ones with this characteristic, when working with multivariate algorithms it is also
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Figure 3.1: Normalized differential cross section 1
σ
dσ
dO , where O represents each of the

selected observables, in signal and background events at Parton Level at LO QCD. In
order from left to right, up to down: the invariant mass of the system mtt̄, the absolute
value of the rapidity of the pair, |ytt̄| and the production angle θ. The qq̄ curves were
multiplied by 5.5 to allow a better comparison of the distribution shapes.

important to make sure the variables are as much uncorrelated as possible. Referencing
the description of the kinematics of the pair, it is easy to see that quantities such as
the top’s velocity in the zero momentum frame of reference or its transverse momentum
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cannot be employed, as they can be expressed as functions of mtt̄ and θ. Correlation
plots for the variables used, both in gg and qq̄ events were produced, as is shown in Fig.
3.2 and 3.3.

Figure 3.2: Normalized differential cross section 1
σ

d2σ
dXdY , where X and Y are each of the

selected observables, in signal (gg) events at Parton Level at LO QCD. In order from up
to down, left to right: distribution in mtt̄ − |ytt̄| plane, in mtt̄ − θ plane, and in |ytt̄| − θ
plane.
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Figure 3.3: Normalized differential cross section 1
σ

d2σ
dXdY , where X and Y are each of the

selected observables, in background (qq̄) events at Parton Level at LO QCD, multiplied by
a 5.5 factor. In order from up to down, left to right: distribution in mtt̄ − |ytt̄| plane, in
mtt̄ − θ plane, and in |ytt̄| − θ plane.

3.1.1 Variable ranking and correlation

TMVA performs a preliminary evaluation of the methods used, and one of the things it
produces are the correlation matrices both for the signal and the background. These are
shown in Fig. 3.4.
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Figure 3.4: Correlation matrices for signal and background events at Parton Level at LO
QCD.

TMVA also ranks the variables according to their performance in the classification
process. Specifically, for each variable the separation 〈S2〉 is calculated. It is defined as
the integral:

〈S2〉 =
1

2

∫
(fS(x)− fB(x))2

fS(x) + fB(x)
dx (3.1.1)

where fS(x) and fB(x) are the signal and background PDFs for the variable x respec-
tively. 〈S2〉 is null for identical distributions of the variable in signal and background
events, and 〈S2〉 = 1 if there is no overlap. The value assigned to each variable is
indipendent from the algorithms used.

Variables ranked according to their separation are shown in Table 3.1.

Variables 〈S2〉
|ytt̄| 5.969× 10−2

θ 4.196× 10−2

mtt̄ 1.751× 10−2

Table 3.1: Variables ranked according to their separation 〈S2〉.

Next, TMVA computes the importance I of a classifier. I is algorithm-specific and de-
fined differently each time, and allows to quantify a variable’s significance in the training
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phase [12]. Each classifier approaches the problem in a distinct way, so different algo-
rithms will favor different variables, depending on whether their distributions present the
right characteristics. For a more detailed description on how the variables are evaluated
by each algorithm we reference the second chapter of this thesis. Again, a ranking in
decreasing order of importance is shown in Table 3.2.

Fisher Linear Discriminant Boosted Decision Trees Multilayer Perceptron

|ytt̄| |ytt̄| mtt̄

θ mtt̄ |ytt̄|
mtt̄ θ θ

Table 3.2: Variables ranked according to their importance I for each of the algorithms
used.

3.1.2 Algorithm performance

For each algorithm we construct the COD, Classifier Output Distribution, which repre-
sents the normalized distribution of events recognized as part of the signal and back-
ground, as a function of a response variable tcut. These are shown in Figure 3.5.

A frequent problem related to the use of multivariate methods is overtraining : it
occurs when a machine learning problem has too few degrees of freedom because too many
parameters were adjusted to not enough data points. Overtraining leads to increase in the
classification performance over what is realistically achievable during the training phase,
but poor performance during the testing one, because the algorithm has adapted itself
too much to the sample given for training [12]. The problem can be therefore detected
comparing performance results in both phases. This comparison is done thanks to the
Kolmgorov-Smirnov test, which warns of excessive bias towards the training sample if
the result is a very small number, below 0.01. For each algorithm one can see the result
of such test in Fig. 3.5, above the CODs.

The goal of each classifier is to produce distributions for signal and background events
with very little overlap, accumulating by TMVA convention signal (background) events
at large (small) classifier output values. Hence, cutting on the output and retaining the
events with tcut larger than the prefixed value selects signal samples with efficiencies and
purities that respectively decrease and increase with the cut value. The higher the cut
value the less background events will pollute the final sample, however this will have the
downside of having to exclude a higher number of events.

CODs thus allow to qualitatively choose the best performing algorithm, by looking at
the shape of the distributions. For a more quantitative approach one can look at Receiver
Operating Characteristic (ROC) curves and integrals for each classification method. A
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Figure 3.5: Classifier Output Distributions for the three algorithms used: FLD, BDT and
MLP.

ROC curve is created plotting the efficiency of the signal εS and the background rejection
rB for each value of tcut. For a fixed value c of tcut, these are defined as:

εS =
NS(tcut > c)

N tot
S

(3.1.2)

rB = 1− εB = 1− NB(tcut > c)

N tot
B

(3.1.3)

where NS(B) is the number of events recognized as part of the signal (background) as a
function of tcut. Both εS and rB have value between 0 and 1, the better the classification
algorithm performs the closer they will be to 1. Thus, in efficiency-rejection phase space
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the ideal ROC curve will be a step function valued always 1 for both variables and having
integral of exactly 1. Of course no real classification process will achieve that, but this
approach allows to rank algorithms on their performance. This is shown in Table 3.3,
while ROC curves are presented in Figure 3.6.

Algorithm Integral

Multilayer Perceptron 0.669

Boosted Decision Trees 0.667

Fisher Linear Discriminant 0.654

Table 3.3: Algorithms ranked according to their performance, thanks to the ROC integral
(right).

Figure 3.6: Plots of the three ROC curves.

As a general comment, we can conclude that the use of LO variables leads to a poor
classification, where all the classifiers perform very similarly. Therefore, we extended our
analysis to include also NLO-related variables, as reported in the next section.
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3.2 Analysis at Next to Leading Order

3.2.1 Validation

As a first step the same observables which were selected at Leading Order were evaluated
at Next to Leading Order (NLO), and are show in Fig. 3.7. In addition to the gg and
qq̄ production channel we now need to take into account the gq process as well.

Figure 3.7: Normalized differential cross section 1
σ
dσ
dO , where O represents each of the

selected observables, in signal and background events at Parton level at NLO. The variables
are the same mentioned above. The qq̄ curves were multiplied by 9.5 to allow a better
comparison of the distribution shapes.
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As one can see the curves are very similar to their counterpart at LO, with the
addition of gq events having distributions close to identical to gg ones. This presents an
additional challenge to the classification process, as can be see from Fig. 3.7, where one
can also compare the two ROC curves, at LO and NLO. The performance at this stage
is worse than what previously obtained.

Figure 3.8: Plots of the three ROC curves using the same variables both at LO and at
NLO.

3.2.2 Additional variables

At NLO there is a further kinematic quantity that helps the discriminating process: it
is the transverse momentum of the tt̄ pair, pT . This is because a gluon is more likely to
radiate additional gluons carrying a small fraction of its energy compared to a quark, so
one expects a higher gluon radiation with low pT in gg events than in scattering events
between quarks and antiquarks [4]. This provides higher transverse momentum for the
pair produced through gluon fusion as one can see in Fig. 3.9. Note that the very same
variable, at LO, is exactly zero and therefore does not help in the classification process.

In addition, as was already noted in [3] and [4], the number of low transverse mo-
mentum charged particles Ntrk is of interest. Because of the larger probability for low
transverse momentum gluon radiation in gg events, one will have a larger number of
low pT charged particles in processes involving more gluons. Taking inspiration from
this approach, we used the total number of jets Nj resulting from the event as another
discriminating variable. The plot is also shown in Fig. 3.9.
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Figure 3.9: Normalized differential cross section 1
σ
dσ
dO , where O represents each of the

selected observables, in signal and background events at both Parton and Particle level at
NLO. Here we see the transverse mometum of the tt̄ system pT and the number of jets in
the final state of each event, Nj.

Figure 3.10: Normalized differential cross section 1
σ
dσ
dpT

in signal and background events
at Particle level at NLO, displaying the distribution of the transverse momentum of the
jets in the final state.
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No constrains were used on the pT of the jet but we required that they have |η| < 5.
In fact, as one can see from the distribution of pT of jets in Fig. 3.10, most of them have
low transverse momentum, so placing a cut on a high value of pT (i.e., 10 GeV) does not
impact the performance of the classification task.

We then performed the classification processes with these two new variables, and we
present here the results comparing them with was previously obtained.

3.2.3 Algorithm performance

In the classification process both qq̄ and gq events are considered part of the background,
and their combined distributions do not achieve the same level of separation from the
signal compared to the analysis at Parton level. Some plots are shown in Fig. 3.11.

Figure 3.11: Plots of the variables distributions distinguishing between signal and back-
ground events.

As done previously, the evaluation of variables done by TMVA is useful to examine
possible correlations between the variables as well as how they contribute to the dis-
criminating process. Correlation matrices for the signal and the background are in fact
presented in Fig. 3.12, and Table 3.4 along with 3.5 rank the observables by separation
〈S2〉 and importance I respectively. The variables in this process display some level of
correlation.

The performance of the classifiers is then evaluated thanks to the CODs as well as
the ROC curves, shown below in Fig. 3.13 and 3.14.
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Figure 3.12: Correlation matrices for signal and background events at NLO.

Variables 〈S2〉
Nj 1.590× 10−1

pT 1.285× 10−1

|ytt̄| 1.985× 10−2

θ 1.472× 10−2

mtt̄ 5.321× 10−3

Table 3.4: Variables ranked according to their separation 〈S2〉.

Fisher Linear Discriminant Boosted Decision Trees Multilayer Perceptron

Nj Nj pT

pT pT Nj

|ytt̄| θ mtt̄

θ ytt̄ ytt̄

mtt̄ mtt̄ θ

Table 3.5: Variables ranked according to their importance I for each of the algorithms
used.
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Figure 3.13: Classifier Output Distributions for the three algorithms used with NLO
events: FLD, BDT and MLP.

Algorithm Integral

Boosted Decision Trees 0.853

Multilayer Perceptron 0.850

Fisher Linear Discriminant 0.820

Table 3.6: Algorithms ranked according to their performance at NLO, thanks to the ROC
integral (right).

As one can see, also from the integral of each ROC curve (shown in Table 3.6), the
performance is significantly better. To highlight this we plotted the just obtained ROC
curves with those resulting from a classification process using only kinematic variables.
The comparison can be seen in Fig. 3.14, and the difference is evident.
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Figure 3.14: Plots of two different sets of ROC curves at NLO. In grey one can see
the performance of the different alogrithms using only kinematic variables, the same ones
selected at Parton level. In red we have the result of the discriminating process with the
addition of new variables.

From Table 3.6 we conclude that the best performing algorithm is the Boosted Deci-
sion Trees (BDT), and as an example of one application of this analysis we evaluated the
increase of purity of the sample after the classification process. In the starting sample of
all the events, 81% were of type gg. We evaluated that after placing a cut on the BDT
response variable at tcut = 0 the purity increases from 0.81 to 0.92, at the cost of having
an efficiency that goes from 1 to 0.74.

3.2.4 Alternative approach

Another approach to the problem can be formulated examining the plot of the tt̄ system
transverse momentum in Fig. 3.9. As one can see the three distributions displayed
differ significantly in shape, and a pair produced through gluon-quark fusion has a much
higher pT than those from gg and qq̄ events. In order to increase the purity of the sample
one can place a cut on a high value of pT , thus discarding most of the gq events, and
performing the classification process on the remaining ones. This has the advantage
of excluding the part of the sample with variables from the background that behave
similarly to those from the signal. After the classification we can then choose the best
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performing algorithm to further select a portion of the sample.

The first cut, on the tt̄ pair transverse momentum, was chosen at 120 GeV. Just from
this we obtain a 0.88 purity, while reducing the efficiency to 0.82. Then we train the
TMVA methods, and we evaluate that their performance is very close to what described
above. We show here the ROC curves and their integrals, in Fig. 3.15 and Table 3.6.

Algorithm Integral

Boosted Decision Trees 0.852

Multilayer Perceptron 0.850

Fisher Linear Discriminant 0.831

Table 3.7: Algorithms ranked according to their performance at NLO after a cut on pT =
120 GeV, thanks to the ROC integral (right).

Figure 3.15: Plots of the three ROC curves at NLO, evaluating the classification process
after a cut on pT =120 GeV.

After this process, the same cut for the BDT response variable at tcut = 0 further in-
creases the purity, going from 0.88 to 0.93. However the downside is the loss in efficiency,
that results to be at 0.63.
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Conclusions

This work presents the results of a multivariate approach to problem of discriminating
the three tt̄ pair production channels:

g g → t t̄ (3.2.1)

q q̄ → t t̄ (3.2.2)

g q → t t̄ g (q) . (3.2.3)

In order to do so, events were generated through Monte Carlo methods, at Leading
Order only at Parton level as well as at Next to Leading Order both at Parton and at
Particle level, and different observables were selected to help the classification process.

The multivariate analysis was carried out using the Toolkit for Multivariate Analysis,
present in the ROOT package, selecting three of the available methods: the Fisher
Linear Discriminant, the Boosted Decision Trees and the Multilayer Perceptron. Their
performance was then evaluated in order to select the best one.

At Parton level three kinematic variables were selected: the invariant mass of the
system, mtt̄, the absolute value of the rapidity of the tt̄ pair, |ytt̄| and the production
angle θ. These alone lead to a poor classification, and we conclude an analysis at Parton
level is not enough to obtain substantial results.

At NLO, in addition to the observables previously chosen, two more were evaluated:
the transverse momentum of the tt̄ system and the number of jets in the final state.
With this addition the performance of the classifiers improves significantly, and the best
performing algorithm turns out to be the Boosted Decision Trees, with a ROC integral
of 0.853. After a cut on the BDT response variable at tcut = 0 the purity of the sample
increases from 0.81 to 0.92, at the cost of an efficiency of 0.74.

The thesis here presented constitutes just a first approach to the problem, hoping
to improve the results and to provide a tool for discrimination on a real data sample,
maybe expanding the work with a Detector level analysis.
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Appendix A

Event generation

Hard events featuring a top pair production and up to 2 extra QCD partons are gener-
ated with Madgraph5 aMC@NLO v3.3.2 [13] at NLO QCD accuracy O(α3

s) within the
Standard Model, in the 5 flavor scheme.

The hadronic center of mass energy is set to
√
s = 13.0 TeV, corresponding to the

second run of the LHC. Electroweak corrections, known to be at the percent level in
inclusive observables such as the total cross section [14], are neglected. The merging of
samples with different jet multiplicites is handled by aMC@NLO [15] according to the
FxFx prescription [16], with a jet pT cut at the generator level set to 50 GeV and a
merging scale of 100 GeV.

We use the NNPDF3.1 parton distribution [17] at NLO accuracy with αs(mZ) =
0.118, available in the LHAPDF library [18] with ID 303400. The top mass is set to
mt = 172 GeV, and other SM input parameters are set to their recent experimental
average [1]. The renormalization and the factorization scales are set on an event-by-
event basis to one half of the total transverse mass of the hard interaction.

The electroweak decay of tops is handled by the MadSpin tool [19], that preserves
both spin correlation and finite width effects to tree level accuracy. To facilitate event
reconstruction, we decay the top pair in a different-flavor dilepton final state, and take
CKM matrix to be the identity, so all events contain a b b̄ pair.

Colored partons are showered using Pythia v8.244 [20]. The shower is only used to
model color recombination, so the showering stops when a color neutral state is reached,
and all electroweak effects are neglected. During the shower, the W+tb and W−t̄b̄ vertices
are identified, the parton-level top momenta are defined as pW + pb, as appearing in the
vertex.

Particles emerging from the shower are clustered into anti-kt jets [21] with ∆R = 0.4.

37



Bibliography

[1] Particle Data Group. “Review of Particle Physics”. In: Progress of Theoretical and
Experimental Physics 2022 (2022). http://pdg.lbl.gov. doi: 10.1093/ptep/
ptaa104.

[2] Claudio Severi et al. “Quantum tops at the LHC: from entanglement to Bell in-
equalities”. In: The European Physical Journal C 82.4 (Apr. 2022). doi: 10.1140/
epjc/s10052-022-10245-9.

[3] S. P. Alamdari. “First Measurement of σ(gg → tt̄)/σ(pp̄ → tt̄)”. PhD thesis.
University of Toronto, 2008. doi: 10.2172/929118.

[4] CDF Collaboration. “First measurement of the fraction of top-quark pair produc-
tion through gluon-gluon fusion”. In: Physical Review D 78.11 (Dec. 2008). doi:
10.1103/PhysRevD.78.111101.

[5] Sylvie Braibant, Giorgio Giacomelli, and Maurizio Spurio. Particelle e Interazioni
Fondamentali: il mondo delle particelle. Springer Milan, 2012.

[6] CDF Collaboration. “Observation of Top Quark Production in pp̄ Collisions with
the Collider Detector at Fermilab”. In: Physical Review Letters 74.14 (Apr. 1995),
pp. 2626–2631. doi: 10.1103/physrevlett.74.2626.

[7] DØ Collaboration. “Observation of the Top Quark”. In: Physical Review Letters
74.14 (Apr. 1995), pp. 2632–2637. doi: 10.1103/physrevlett.74.2632.

[8] J. H. Kuehn. Theory of Top Quark Production and Decay. 1997. doi: 10.48550/
ARXIV.HEP-PH/9707321.

[9] CMS Collaboration. “Measurement of the ratio B(t → Wb)/B(t → Wq) in pp
collisions at

√
(s) = 8 TeV”. In: Physics Letters B 736 (Sept. 2014), pp. 33–57.

doi: 10.1016/j.physletb.2014.06.076.

[10] G. Mahlon and S. Parke. “Spin Correlation Effects in Top Quark Pair Production at
the LHC”. In: Physical Review D 81 (2010). http://arxiv.org/abs/1001.3422.
doi: 10.1103/PhysRevD.81.074024.

[11] M. Wolter. “Multivariate Analysis Methods in Physics”. In: Physics of Particles
and Nuclei 38.2 (2007), pp. 255–268. doi: 10.1134/S1063779607020050.

38

http://pdg.lbl.gov
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1140/epjc/s10052-022-10245-9
https://doi.org/10.1140/epjc/s10052-022-10245-9
https://doi.org/10.2172/929118
https://doi.org/10.1103/PhysRevD.78.111101
https://doi.org/10.1103/physrevlett.74.2626
https://doi.org/10.1103/physrevlett.74.2632
https://doi.org/10.48550/ARXIV.HEP-PH/9707321
https://doi.org/10.48550/ARXIV.HEP-PH/9707321
https://doi.org/10.1016/j.physletb.2014.06.076
http://arxiv.org/abs/1001.3422
https://doi.org/10.1103/PhysRevD.81.074024
https://doi.org/10.1134/S1063779607020050


[12] K. Albertsson et al. “TMVA - Toolkit for Multivariate Data Analysis”. In: (2020).
doi: 10.48550/arXiv.physics/0703039.

[13] J. Alwall et al. “The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations”. In:
Journal of High Energy Physics 2014.7 (July 2014). doi: 10.1007/jhep07(2014)
079.
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