Piazzi, Andrea
(2022)
Theoretical and experimental study on the role of benzoquinone in the Guerbet reaction catalyzed by a ruthenium complex.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Chimica industriale [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
Abstract
The benzoquinone was found as an effective co-catalyst in the ruthenium/NaOEt-catalyzed Guerbet reaction. The co-catalyst behavior has therefore been investigated through experimental and computational methods. The reaction products distribution shows that the reaction speed is improved by the benzoquinone supplement since the beginning of the process, having a minimal effect on the selectivity toward alcoholic species. DFT calculations were performed to investigate two hypotheses for the kinetic effects: i) a hydrogen storage mechanism or ii) a basic co-catalysis of 4-hydroxiphenolate. The most promising results were found for the latter hypothesis, where a new mixed mechanism for the aldol condensation step of the Guerbet process involves the hydroquinone (i.e. the reduced form of benzoquinone) as proton source instead of ethanol. This mechanism was found to be energetically more favorable than an aldol condensation in absence of additive, suggesting that the hydroquinone derived from benzoquinone could be the key species affecting the kinetics of the overall process. To verify this theoretical hypothesis, new phenol derivatives were tested as additives in the Guerbet reaction. The outcomes confirmed that an aromatic acid (stronger than ethanol) could improve the reaction kinetics. Lastly, theoretical products distributions were simulated and compared to the experimental one, using the DFT computations to build the kinetic models.
Abstract
The benzoquinone was found as an effective co-catalyst in the ruthenium/NaOEt-catalyzed Guerbet reaction. The co-catalyst behavior has therefore been investigated through experimental and computational methods. The reaction products distribution shows that the reaction speed is improved by the benzoquinone supplement since the beginning of the process, having a minimal effect on the selectivity toward alcoholic species. DFT calculations were performed to investigate two hypotheses for the kinetic effects: i) a hydrogen storage mechanism or ii) a basic co-catalysis of 4-hydroxiphenolate. The most promising results were found for the latter hypothesis, where a new mixed mechanism for the aldol condensation step of the Guerbet process involves the hydroquinone (i.e. the reduced form of benzoquinone) as proton source instead of ethanol. This mechanism was found to be energetically more favorable than an aldol condensation in absence of additive, suggesting that the hydroquinone derived from benzoquinone could be the key species affecting the kinetics of the overall process. To verify this theoretical hypothesis, new phenol derivatives were tested as additives in the Guerbet reaction. The outcomes confirmed that an aromatic acid (stronger than ethanol) could improve the reaction kinetics. Lastly, theoretical products distributions were simulated and compared to the experimental one, using the DFT computations to build the kinetic models.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Piazzi, Andrea
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CHIMICA INDUSTRIALE
Ordinamento Cds
DM270
Parole chiave
DFT kinetic simulations ruthenium catalysis Guerbet reaction
Data di discussione della Tesi
19 Ottobre 2022
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Piazzi, Andrea
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CHIMICA INDUSTRIALE
Ordinamento Cds
DM270
Parole chiave
DFT kinetic simulations ruthenium catalysis Guerbet reaction
Data di discussione della Tesi
19 Ottobre 2022
URI
Gestione del documento: