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Abstract

The Apennines are a tectonically active belt that was site of strong historical earth-
quakes, including the recent L’Aquila (2009) and Amatrice-Visso-Norcia seismic
sequences (2016-2017). Interseismic strain build-up is now precisely measurable
using space geodetic techniques. On the other hand, the increasing density of GPS
stations permits us to estimate the horizontal strain rate with greater spatial res-
olution than in the past. In this thesis I study the correlation between horizontal
geodetic strain rates and seismicity rates through the Apennines, studying possible
implications for seismic hazard assessment. I use a new GPS velocity dataset to
analyze the state of deformation through computations of the strain rate field. I
use three algorithms for this computation, already described in the scientific liter-
ature, and discuss strengths and limitations of each one. I select one strain rate
map over the others and I develop an analysis following the approach of a recent
study to investigate the relationship between observed strain rates and seismicity
rates along the Apennines, verifying if the hypotheses that sustain the approach
are verified. In particular, I discuss if the geodetic strain rate is representative of
the strain that causes earthquakes through comparison between moment tensors
of past earthquakes and estimated geodetic strain rate tensors. I compute the
background seismicity rates from a recent earthquake catalog for Italy and test if
independent events follow a Poisson process in time. Finally, I divide the region
in different deformation areas based on strain rate values and I analyze the distri-
bution of background seismicity in these domains, correlating the seismicity rate
with the geodetic strain rate. The relationship between seismicity rate and strain
rate is approximately linear but with an important dependence on the resolution
of the strain rate map. I describe the implications on eventual computation of
quantities that define the seismogenic potential analyzing which parameters of the
approach influence the results.



Sommario

Gli Appennini sono una regione tettonicamente attiva che è stata luogo di forti
terremoti storici in passato, tra i quali il recente L’Aquila (2009) e le sequenze
di Amatrice-Visso-Norcia (2016-2017). L’accumulo di deformazione durante la fa-
se intersismica è oggi misurabile con precisione attraverso le tecniche geodetiche.
D’altra parte, una densità di stazioni GPS sempre maggiore permette di stimare
il tasso di deformazione orizzontale con più risoluzione spaziale che in passato. In
questa tesi studio la correlazione tra tassi di deformazione geodetica orizzontale e
tassi di sismicità negli Appennini, esaminando possibili implicazioni per valutazio-
ni del potenziale sismogenico. Uso un nuovo dataset di velocità GPS analizzando
lo stato di deformazione attraverso il calcolo dello strain rate geodetico. Per questo
calcolo utilizzo tre algoritmi, tra quelli presenti in letteratura scientifica, e discuto
punti di forza e limitazioni di ciascuno. Seleziono poi una mappa di strain rate
tra le altre e sviluppo un’analisi seguendo l’approccio di uno studio recente per
investigare la relazione tra tassi di sismicità e tassi di deformazione lungo la ca-
tena Appenninica. Per farlo, verifico se le ipotesi che sostengono l’approccio sono
verificate. In particolare, discuto se lo strain geodetico calcolato è rappresentativo
della deformazione che causa i terremoti durante la fase cosismica. Per prima cosa
confronto lo strain rate geodetico e tensori momento di terremoti passati. Calcolo
poi la sismicità di background a partire da un nuovo catalogo sismico per l’Italia e
testo se gli eventi indipendenti seguono un processo di Poisson nel tempo. Infine,
divido la regione di studio in aree a diversa deformazione sulla base dei tassi di
deformazionee analizzado la distribuzione della sismicità di background in questi
eventi e analizzando la relazione tra tassi di deformazione e tassi sismicità. Mo-
stro che vi è una relazione è approssimativamente lineare ma con una dipendenza
importante dalla risoluzione della mappa di strain rate. Descrivo poi alcune im-
plicazioni che questa relazione avrebbe su stime di due quantità che concorrono
a definire il potenziale sismogenico analizzando quali sono i parametri all’interno
dell’approccio che possono influenzare maggiormente dette stime.
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Chapter 1

Introduction

Improvements in geodesy and geodetic techniques permit us to measure the Earth’s
surface displacements with sub-millimeter precision. In Italy, the growing density
of continuously-recording Global Positioning System (GPS) stations can be em-
ployed to map with great accuracy the surface strain rate during the interseismic
phase of the earthquake cycle. This information is used to understand where and
to what extent deformation is accumulated and can provide important constraints
for seismic hazard models.

The probabilistic seismic hazard analysis (PSHA) aims to combine informa-
tion of different nature, such as seismic catalogs, geological information on active
faults and focal mechanisms of past earthquakes, in order to describe the distri-
bution of the future shaking, that may occur at a site. A fundamental challenge
in PSHA is to quantify and combine different types of uncertainties. In Italy,
the latest Italian seismic hazard model (MPS19, Meletti et al. 2021) contains two
geodetically-derived earthquake rate models in which seismicity rates are derived
from the geodetic strain rate field. These models provide a different and indepen-
dent level of information with respect to other models, since they are almost com-
pletely independent from the Italian Parametric Earthquake Catalogue (CPTI15,
Rovida et al. 2022). Even for the importance in hazard estimates, the development
of reliable geodetic models is an active present-day challenge of research.

The Apennines are dominated by extensional deformation that is measured by
seismology, observing a prevalence of extensional focal mechanisms, by geology,
given the presence of normal faults, and by geodesy, from the surface velocity
field. In the outer part of the chain, on the Adriatic side, compression tectonics
occur in the correspondence of the northern Apennine arc (Pondrelli et al. 2020).
The Apennines are sites of strong historical and instrumental seismicity and were
place of recent destructive earthquakes: L’Aquila in 2009, the 2012 Emilia seismic
sequence and 2016-2017 sequence in central Italy. This thesis focuses on the Apen-
nines chain and has a dual purpose: 1) to explore different methods to compute
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strain rates from the GPS velocity field and 2) to investigate the correlation be-
tween seismicity and geodetic strain rate and its implications in possible evaluation
of seismogenic potential.

Using a new GPS velocity dataset, three methods to estimate the strain rate
field from GPS velocity field are tested, from the most widely used, and pros and
cons of each method are examined. Then, part of the method outlined by Stevens
and Avouac 2021 for the India-Asia collision zone is applied to the Apennines. The
whole method can lead to a seismicity model that relies on geodetic deformation
and that can be used for probabilistic seismic hazard analyses. In this thesis, we
examine if the hypothesis of the method are fulfilled and focus on the discussion of
the relationship between geodetic strain rate and seismicity rate. These hypotheses
closely follow the ones presented in Stevens and Avouac 2021 and are numerated
and summarized in the followings.

1. The interseismic loading is stationary.
The time series, derived by GPS observation and considered in this thesis,
are at least 6 years long; station velocities estimated from these time series
overall cover a time-span of 26 years. The hypothesis is that the geodetic
strain rate, that can be computed from this velocity dataset, is representative
of the tectonic loading distribution that has driven past seismicity and that
will drive the future one.

2. The geodetic strain rate reflects the stress rate on the seismogenic faults.
The stress field in the Apennines has a variability that causes an uneven
pattern of earthquake focal mechanisms. In fully elastic conditions one can
expect the stress rate to be proportional to the geodetic strain rate. The
hypothesis can hold if the geodetic data have enough spatial resolution to
represent the elastic loading on the faults, caused by heterogeneity of the
stress field.

3. Earthquakes are triggered by the tectonic stresses or by stress changes in-
duced by previous earthquakes. With the term background seismicity one
refers to earthquakes driven by interseismic loading, while the terms depen-
dent seismicity refers to aftershocks or earthquake sequences. Background
seismicity is assumed to contains independent events that follow a Poisson
process in time.
In the case of the Apennines’ seismicity, background seismicity will be iden-
tified and the poissonian distribution of its inter-event times will be verified.

4. The earthquake spatial distribution has a spatial density that depends, at
first order, on the level of the deformation rate.
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This hypothesis states that we can ignore, at the first order, the spatial
geometry and distribution of the faults and focus on the geodetic deformation
rate to analyze seismicity.

5. The rate of earthquake nucleation is proportional to the stress rate.
Such a relationship is expected from the Coulomb failure model and from
more complicated models (as the rate and state models). On the other
hand, following the hypothesis 2, if the stress rate is proportional to geodetic
strain rate, we expect a linear relationship between geodetic strain rate and
seismicity rate. A key point of this thesis is proving that, for the Apennines,
there is a correlation between strain rate and seismicity rate.

In chapter 2, the main theoretical concepts used in this thesis are presented.
Chapter 3 exposes the GPS velocity dataset used in this work and how it was
used in order to estimate reliable strain rate fields. In chapter 4, three methods
to compute the strain rate field are examined and one method is chosen over the
other in the subsequent analyses. Chapter 5 discusses if the geodetic strain rate is
representative of the accumulating elastic strain that earthquakes release (hypoth-
esis 1 and 2). The chapter 6 is about the declustering of the considered seismic
catalog and the verification that independent event follow a Poisson process in
time (hypothesis 3). Last, chapter 7 examines the dependence of the spatial dis-
tribution of seismicity on the deformation rate (hypothesis 4) and the relationship
between strain rates and seismicity rates (hypothesis 5). Finally, the implications
of this relationship on the seismogenic potential is discussed.
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Chapter 2

Method introduction

In this chapter, part of the concepts and equations used in this thesis are presented.
In section 2.1 the strain rate and its invariants are presented. In section 2.2 the
concept of earthquake cycle is exposed. In section 2.3 I derive a form of seismic
moment conservation already proposed in literature (Stevens and Avouac 2021),
providing a constraint on the maximum magnitude earthquake. The section 2.4
concerns the Coulomb failure model according to which Ader et al. 2014 proposed
a linear relationship between seismicity rate and stress rate.

2.1 The Geodetic Strain Rate
In this thesis the theoretical background is based on the theory of elasticity, as
a mean to explain the deformation at which the Earth crust is subjected. The
fundamental equation in this theory is the relationship between the stress tensor
σij and the strain tensor ϵkl in an elastic medium:

σij = Cijklϵkl (2.1)

where the fourth-order tensor Cijkl summarizes the elastic proprieties of the medium
(which is called tensor of elastic constants) and the second-order strain tensor ϵkl

is defined from the spatial gradients of the displacement vector ui as:

ϵkl = 1
2

(
∂uk

∂xl

+ ∂ul

∂xk

)
(2.2)

From the definition of the strain tensor clearly results that ϵij = ϵji, i.e. the
strain is a symmetric tensor. If an homogeneous and isotropic elastic medium is
considered, the equation (2.1) simplifies into a form described by the Lamé elastic
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parameters λ and µ for the medium:

σij = λϵkkδij + 2µϵij (2.3)

Advancements in geodesy and in geodetic techniques permit us to measure
displacements at the Earth surface with great accuracy. In this thesis we consider
velocity estimates obtained from the analysis of several years of GPS measurements
of ground displacements in the Apennines. The main physical quantity that can
be obtained from these data, of interest for this work and for any seismotectonic
application of GPS velocities, is the geodetic strain rate, defined as the spatial
derivative of the strain rate tensor in (2.2) with respect to time:

ϵ̇ij = 1
2

(
∂vi

∂xj

+ ∂vj

∂xi

)
(2.4)

where vi is the velocity field that can be measured at the Earth surface. Actually,
the GPS geodetic data are discrete in space; this means that the values of the
velocity field are known at the positions of GPS instruments. From this, different
algorithms exist, that compute the strain rate field from the knowledge of positions
and velocities of GPS geodetic stations. In general, different techniques provide
different estimates of geodetic strain rate. A purpose of this thesis is to use different
algorithms, among the most widely used, to compute the continuous velocity field
and then the geodetic strain rate, discussing the impact of each method on the final
geodetic strain rate map and evaluating how to select a map among the others.

In the analysis of the velocity data, only the horizontal components of the
velocity field are considered in this work. The definition of the geodetic strain rate
in (2.2) then holds for i, j = 1, 2 (indices that label the horizontal axes).

The geodetic strain rate tensor in (2.4) depends on the velocity field vi at the
Earth surface that is the result of GPS velocity measures performed with respect
to a certain reference frame. This means that the geodetic strain rate itself is
a physical quantity related to the same reference frame. The invariants of the
geodetic strain rate are scalar quantities that don’t change from one reference
frame to another. For a second-order tensor, three principal independent scalar
invariants exist; in this thesis we consider the first invariant (dilatation) D and
the second invariant I2 of the geodetic strain rate ϵ̇ij that are defined as:

D = ϵ̇kk (2.5a)
I2 =

√
ϵ̇ij ϵ̇ij (2.5b)

These definitions will be used in chapter 4 in order to treat the intristic character-
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istics of the deformation rate that don’t depend on the choice of a reference frame
for velocities. Assuming plain strain deformation with the vertical axis as the axis
of translational invariance, the previous equations reduce to:

D = ϵ̇11 + ϵ̇22 (2.6a)

I2 =
√
ϵ̇2

11 + ϵ̇2
22 + 2ϵ̇2

12 (2.6b)

2.2 Seismic Cycle and Moment
In this thesis we rely on a generalized form of Reid’s elastic rebound theory. The
original theory states that earthquakes release elastic strain that is accumulated
before their occurrence. We can recognize earthquake occurrence as part of a cycle
composed of different phases (see Figure 2.1):

• The first phase is called interseismic. It coincides in time with the period
between earthquakes and it is characterized by strain accumulation near the
fault structures. The strain build-up, assumed to be linear in time, is caused
by partial or total locking of the faults together with the long term motion
imposed by plate tectonics.

• The second is called coseismic and happens with earthquakes occurrence.
During this phase, part of the accumulated budget of strain is released
through relative displacements of the neighboring portions of the fault. In
a simplified way we can say that a seismic event starts on a fault when the
shear stress on the fault surface reaches a certain threshold value (see section
2.4).

• The third is the postseismic phase that follows a seismic event. It is a period
of transient deformation that can be caused by several processes (e.g. after-
slip, viscoelastic relaxation or pore-fluid migration). The strain is released
through timescales ranging from days to decades, depending on the driving
process.

In this study, focused on the Apennines, any type of periodical behavior of earth-
quakes’ occurrence is not assumed. Instead, this conceptual model is used to
formalize the idea that, as average over the long term, coseismic and postseismic
phases release the elastic strain that is accumulated during the interseismic phase.
It is important to note that not all the deformation accumulated during the in-
terseismic phase is released seismically, i.e. radiating seismic waves. For example,
aseismic slip can result from postseismic relaxation (afterslip) or spontaneous slip
events (Avouac 2015). This behaviour will be taken into account in section 2.3.
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Figure 2.1: Schematic representation of the earthquake cycle showing the three
phases: interseismic, coseismic and postseismic. Grey arrows represent the long
term motion of the two plates defining the fault; blue arrows represent surface
displacements and red arrows the displacement on the fault surface. Postseismic
slip is assumed to occur at intermediate depth, with respect to the vertical extension
of the fault surface.
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Let’s consider a fault, mathematically represented by a dislocation in an ho-
mogeneous medium. On the long-term, the slip on the fault is entirely due to the
motion of tectonic plates (long term slip), that can be considered stationary in
time. During the interseismic period, some portions of the fault are locked while
others creep aseismically. To account for this behavior we define on each point of
the dislocation surface a quantity called interseismic coupling χi, defined as the
ratio between the slip deficit sd during the interseismic period, which is assumed
to be linearly increasing with time with a constant rate ṡd (i.e. the long term slip
minus the actual interseismic slip) and the long term slip:

χi = sd

slong−term

= sd

V∆t = ṡd

V
(2.7)

where in the second expression we write the long term slip as the product between
the relative plate velocity V and the duration ∆t of the interseismic phase. The
fully locked portions on the fault surface will have χi = 1 while creeping portions
will have χi = 0; in intermediate situations 0 < χi < 1.

For a shear dislocation subjected to a certain slip s in an homogeneous and
isotropic space, the scalar seismic moment M0 is defined as the integral on the
dislocation surface Σ of the slip modulus times the rigidity µ of the medium:

M0 = µ
∫

Σ
s(ξ1, ξ2) dΣ(ξ) = µSAΣ (2.8)

where S is the mean slip on the fault surface and AΣ is the area of the fault surface.
The scalar seismic moment M0 is a measure of the elastic energy released during
the earthquake, as a proxi of the intensity of the same earthquake. It is also related
to the definition of the moment magnitude Mw through the Hanks and Kanamori
relation:

Mw = c log10 M0 − d (2.9)

where c and d are two constants respectively equal to 2/3 and 6, if the seismic
moment is expressed in Newton times meters (Nm).

During the interseismic period, a seismic moment deficit is accumulated on the
locked portions on the fault surface meaning that slip deficit increases on these
parts. The moment build-up rate is the time derivative of the seismic moment
deficit and, as function of the slip deficit rate ṡd, and then of χi through equation
(2.7); can be expressed as:

Ṁ0 = µ
∫

Σ
ṡd(ξ1, ξ2) dΣ(ξ) = µV

∫
Σ
χi(ξ1, ξ2) dΣ(ξ) (2.10)
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The earthquake cycle concept is expressed by saying that the moment build-up
accumulated during the interseismic period must be equal, on the long term, to
the moment deficit released through seismic or aseismic processes. The main idea
is then that there is a certain moment budget that increase during the interseismic
period through the (2.10) that is fully or partially released though earthquakes,
depending on the importance of aseismic processes. In the next section this concept
is exposed more formally and its implications on the maximum magnitude event
are considered.

2.3 Gutenberg-Richter law and Moment conser-
vation

The Gutenberg-Richter law is one of the most remarkable and ubiquitous features
of worldwide seismicity (Marzocchi and Sandri 2003). It states that in a given
seismic province the number N of earthquakes with magnitude greater than, or
equal to, M , that occur in a given period of time, follows a relation of the form:

log10 N = a− bM (2.11)

where a and b are two coefficients characterizing the seismic province. Specifically,
a is an expression of the seismicity activity of the considered region and b provides
the information on how N scales with M . The b parameter is considered very
important and has a value typically close to 1. If we intend M to be the moment
magnitude Mw, we can use the Hanks and Kanamori relation (2.9) to write the
magnitude as function of the seismic scalar moment M0; we can then rewrite
equation (2.11) as:

N = AM0
−β (2.12)

where A = 10a+bd and β = cb.
Actually, it is reasonable to think that the Gutenberg-Richter law couldn’t hold

for arbitrary size magnitudes; for a certain area, an earthquake having magnitude
greater than a certain threshold Mmax can’t occur because of the finite exten-
sion of the fault surfaces (and not because it is statistically unlikely to occur).
Equation (2.11) must then holds until a maximum magnitude Mmax. Assuming
a truncated form of the (2.11) accounting for the maximum magnitude (usually
called truncated Gutenberg Richter or truncated Pareto) we can write (2.12) as:

N = AM−β
0

[
1 − H (M0 −Mmax

0 )
]

(2.13)
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where H is the Heaviside function and N(M0) is the number of earthquake with
seimic moment equal or larger than M0. The density of earthquakes n is defined
as the number of earthquakes with seismic moment between M0 and M0 + dM0 in
the given period of time. It can be expressed, using the last equation, as:

n = − dN

dM0
= AβM−β−1

0

[
1 − H (M0 −Mmax

0 )
]

+ A(M0)−βδ
(
Mmax

0 −M0
)

(2.14)

where δ is the Dirac delta function and the minus sign appears because n(M0)dM0 =
N(M0)−N(M0+dM0). If a given time lapse ∆t is considered, assuming a constant
production of earthquakes with time within the same time lapse, we can interpret
N in equations (2.11),(2.12) and (2.13) as the same rate of production, that is
the number of earthquakes per unit time (frequency) with magnitude or seismic
moment equal or larger than a given threshold (as a function of the threshold) and
n in equation (2.14) as density of earthquakes per unit time, provided that the
coefficient a is replaced with:

a′ = a− log(∆t), A′ = 10a′+bd (2.15)

We state that, on the long term, a fraction α of the moment built up rate in
equation (2.10) must be equal to the moment released through earthquakes while
the fraction 1−α is released through aseismic processes. We can then write a kind
of moment conservation equation as:

αṀ0 =
∫ +∞

0
M0n(M0)dM0 (2.16)

Substituting equation (2.14) with A = A′ in the last equation we get:

αṀ0 = A′

1 − β
(Mmax

0 )1−β (2.17)

Expressing A′ as function of N and M0 through

N = A′M−β
0

[
1 − H (M0 −Mmax

0 )
]

(2.18)

(we can do it assuming M0 ≤ Mmax
0 ) we can finally write:

N(M0) = (1 − β) αṀ0

(Mmax
0 )1−βM0

−β (2.19)
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This equation has the form of the Gutenberg-Richter law (equation (2.12)) but now
the parameter A′ is written in terms of the maximum moment and the moment
build-up rate. Taking the logarithm of equation (2.12) evaluated for M0 = Mmax

0
and using the Hanks and Kanamori relation (2.9) to replace the maximum moment
Mmax

0 with the maximum magnitude Mmax
w , we obtain:

log10 N
max = −Mmax

w

c
− d

c
+ log10 Ṁ0 + log10 α(1 − β) (2.20)

where Nmax is N(Mmax
0 ). This equation coincides with the equation 5 of Avouac

2015 once we set the c and d parameters of the Hanks and Kanamori relation
respectively to 2/3 and 6 (β = cb = 2/3b). The equation can be transformed into
an expression for Mmax using (2.11) evaluated for Mw = Mmax

w :

Mmax
w = 1

(1/c− b)

(
−d

c
+ log10 αṀ0 + log10 (1 − cb) − a′

)
(2.21)

According to the authors this equation provides a constraint on the maximum mag-
nitude event occurring in a given region and a given time lapse ∆t that depends
on the moment build-up rate, on the fraction α of transient slip that is seismic and
on the b parameter of the Gutenberg Richter. Equation (2.20) is graphically rep-
resented in figure Figure 2.2 together with the Gutenberg-Richter law for different
values of a.

11



Figure 2.2: Earthquakes are assumed to obey the Gutenberg–Richter law (red lines
shows the Gutenberg Richter for different values of the a parameter). The ordinate
shows, on a logarithmic scale, the number of events with moment magnitude Mw

equal to or larger than a given value reported along the abscissa. The frequency of
the maximum magnitude event is determined assuming that the moment balance
in (2.16) holds; the frequency then depends on α and β of equation (2.20). Image
re-drawn from Avouac 2015
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2.4 Coulomb failure model and Kostrov equa-
tion

The Coulomb failure model is the simplest way to describe the relation between
stress and earthquake occurrence on a fault. Considering a single fault, Coulomb
suggested that shear failure occurs when the shear stress τ acting on the fault
reaches a threshold value:

τ = µσn + c (2.22)

where c is a cohesion coefficient, µ is the coefficient of internal friction and σn is
the stress normal to the fault (assumed positive for compression). In presence of
pore pressure p, σn has to be replaced with the effective normal stress, defined as
σeff = σn − p. A measure of proximity to failure is the Coulomb failure stress
(CFS) σc, defined as:

σc = τ − σeff − c (2.23)

Negative values of σc imply that the failure threshold has not yet been reached.
When the failure threshold is reached or exceeded (σc ≥ 0) the fault produces an
earthquake and the shear stress on the fault drops to a lower value.

Ader et al. 2014 state that the seismicity rate Ṅe is proportional to the stress
rate τ̇ . In particular, for a population of faults on which the stresses τ are uniformly
distributed up to τf the observed seismicity rate is proportional, if the normal stress
is kept constant, to the shear stress rate:

Ṅe ∝ τ̇(t) (2.24)

Actually this relationship is true only if the stress τ has non-decreasing behaviour.
If τ(t) decreases the seismicity will stop and it will resume when the stress on the
fault will have increased back to a value greater than its preceding largest value
(Ader et al. 2014).

The Coulomb failure is a simple model that doesn’t account for the time-
dependent behaviour of earthquake nucleation. More sophisticated models exist
that take into account more complicated constitutive laws for a fault and can result
in different relations between stress rate and seismicity. An important example is
a rate and state model in which the friction coefficient depends on the slip and on
the slip rate. In the case of a rate and state model, it is again demonstrated that
the seismicity rate is proportional to the stress rate if the loading rate is constant
or varies at a timescale longer than the nucleation time (Ader et al. 2014).
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In general, the strain rate is not proportional to the stress rate but the rela-
tionship is given by equation (2.3). The proportionality is achieved when the trace
ϵ̇kk of the strain rate is zero. Kostrov 1974 proposes a relationship between seismic
moment tensors resulting from earthquakes nucleation in a seismogenic volume
∆V and the mean strain ϵ̄ij released in the volume:

ϵ̄ij = 1
2µ∆V

∑
k

Mk
ij (2.25)

where µ is the rigidity of the medium and the sum is over all the seismic moment
tensors inside the volume, labelled by the letter k. Ward 1994 showed that the
relation (2.25) between the average crustal strain and the released seismic moment
could also be used to map the moment build-up rate as a function of the average
strain rate ˙̄ϵij of the crust during the interseismic phase. One critical assumption
of Ward 1994 is that the average strain rate over the seismogenic volume ∆V could
be replaced by the strain rate measured at the surface.

Ṁij = 2µ∆V ϵ̇ij (2.26)

where ϵ̇ij is referred to be the strain rate at the surface. If we assume that no
tensile dislocation can be produced then Ṁkk = 0 and also ϵ̇kk = 0. In this simple
case, the proportionality between strain rate and stress rate is then expected and
then, according to (2.24), a proportionality between strain rate and seismicity rate
holds. This arguments are clearly subjected to numerous approximations. One
of the targets of this thesis is to explore the relationship between strain rate and
seismicity rate in the Apennines: first of all evaluating if a strong correlation exists
and then what could be the suggested pattern.
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Chapter 3

Velocity field from GPS data

3.1 GPS dataset
In this study, it is used part of the velocity data from the whole velocity dataset
produced by INGV sector in Bologna, analyzing raw GPS observations from more
than 4000 GPS stations operating in Euro-Mediterranean, Eurasian and African
regions (Serpelloni et al. 2022). The velocity data are the result of a processing
scheme consisting in 3 steps. In the first one, GPS dataset is divided into smaller
sub-networks and processing is performed independently for each of them: the
GAMIT module of GAMIT/GLOBK software, a suite of programs developed by
MIT, is used to process phase data to estimate relative positions of ground stations
and satellite orbits, atmospheric delays and Earth orientation parameters. In
the second step, GLOBK software is used to realize a global reference frame by
minimizing velocities of IGS (International GNSS Service) core stations, a set of
high quality IGS stations used as tie-stations, and to estimate a transformation
with respect to the GPS realization of the ITRF2014 frame. In the third step,
displacement time series are analyzed and linear velocity estimates are determined
by a least-square procedure on different parameters accounting for: linear trend,
annual and semi-annual seasonal components, equipment change offsets, coseismic
offsets and postseismic relaxation. White plus Flicker noise models are used to
estimate uncertainties on linear velocity estimates.

The length of time series determines accuracy and precision of estimated linear
velocities; in addition to semi-annual and annual signals in time series, long period
noise and multi-annual loading signals also impact significantly on linear velocity
estimates. It would be beneficial to have an hint on the minimum time series length
required to have velocity estimates that stabilize around the values obtainable
using the longest time series. Serpelloni et al. 2022 analyze a large number of
GNSS stations in the Euro-Mediterranean region with a 12-year almost complete
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observation history; it is shown that a minimum value for time series length in
order to obtain velocity estimates consistent with the best estimated value from
the whole time span is ∼ 6 years for east and north velocity components. In this
work, accordingly with this constraint, we consider stations with records longer
than 6 years.

We consider horizontal velocity data in a region centered around Italy of lati-
tude 36-48°N and longitude 5-20°E in which velocities are minimized with respect
to the Tyrrhenian block (i.e. it is considered a Tyrrhenian fixed reference frame
for the velocity field). The resulting field is shown in Figure 3.1. Here, the veloc-
ity estimates for GPS stations located near active volcanic areas are not accurate
and not representative of the long term tectonic deformation because of the non-
linear transient signals recorded in time series (caused by magma dynamics, unrest
episodes and other processes). The overall field for the selected area includes a
total of 1024 GPS stations including stations outside Italian boundaries. All the
velocity values result from at least 6 years records, standing inside an interval
between 1995 and 2021.

In the next section we will discuss filters and masks applied on data in order to
obtain an input field for strain rate computations free, as much as possible, from
non-coherent and non-tectonic signals.
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Figure 3.1: Horizontal GPS velocity field with 95% error ellipses in a Tyrrhenian
fixed reference frame. The plotted dataset consists of stations with records longer
than 6 years in a time-window from 1995 to 2022.
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3.2 Filtering and analysis of the GPS velocity
field

In this study, we are interested in spatial variations of the horizontal interseismic
velocity field, caused by tectonic processes. However, the velocity field shown
in Figure 3.1 is an overall field that includes signals other then tectonic (e.g.
signals caused by volcanic deformation). Moreover, stations very close to each
other can provide slightly different velocity values, caused by local conditions,
that result in steep velocity gradients when using numerical algorithms. In order
to overcome these issues, a filtering procedure on the overall field is applied through
the following steps:

• Stations, whose velocities are significantly affected by volcanic deformation,
are excluded from the dataset. We identify as major areas of influence three
volcanic zones with active deformation: the Vesuvio and Campi Flegrei area,
Ischia, the Etna volcano and the Colli Albani zone. We exclude stations
inside these areas delimiting the regions with circular masks, as shown in
Figure 3.2. This results in excluding 39 stations inside 4 circular masks.

• We exclude from the dataset stations in the Crotone area. The GPS velocities
standing on the sea-side of Crotone are higher, in modulus, than velocities in
neighbor zones and also differently oriented; at least part of these anomalies
can be ascribed to the seaward motion of a megaslide in the Crotone basin
(as shown in Minelli et al. 2013 and Zecchin et al. 2018). We remove from
the dataset 4 stations in this area.

• There are several stations installed on offshore platforms in the northern
Adriatic sea, whose time series are influenced by on-site gas extraction ac-
tivity. Therefore, a total of 18 stations, with poor quality time series leading
to not reliable linear velocity estimates, are removed.

• In order to identify inconsistent velocities in the dataset, we use the wavelets
method to find out outliers in the field (see section 4.3 for a description of
the method). Indeed, we find that the wavelets method is more robust to
outliers than the other adopted methods to compute the strain rate. We
apply the wavelets algorithm with a resolution parameter qmax = 8 on the
overall velocity field in Figure 3.1. We find that residuals on East and North
velocity components are roughly gaussian and not linear correlated; we then
decide to exclude from the dataset stations, standing out of an ellipse having
semi-axes equal to 4 times the standard deviation for residuals respectively
on East and North component (Figure 3.3).
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• There are stations that are very close to each other (few meters); this can
lead to bad estimates of strain rate, due to difference in stations velocities
on small distances. We decide, on the basis of distances distribution from
each station to its neighbor, to apply a weighted mean for velocity of stations
closer than 100 m, using as weights the uncertainties on the GPS velocities
(Figure 3.4).

The resulting velocity field, after these steps, is shown in Figure 3.5 and con-
tains 899 stations.
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Figure 3.2: Circular masks for volcanic areas (red circles) and GPS velocities (blue
arrows). Top: Colli Albani, Ischia, Campi Flegrei and Vesuvio masks. Bottom:
Etna mask.

20



Figure 3.3: Plot of residuals after wavelets algorithm with qmax = 8. On the x-
axis: residual velocity rvn for the north velocity component (mm/yr); on the y-axis:
residual velocity rve for the east component (mm/yr). Red points represent kept
stations: they stand inside an ellipse with horizontal semi-axis of 2.29 mm/yr (4
times the standard deviation σn for the north component) and vertical semi-axis
of 1.95 mm/yr (4 times the standard deviation σn for the east component). Blue
points represent stations excluded from the dataset.
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(a)

(b)

Figure 3.4: a) Histogram of distances of the nearest neighbor for stations b) Detail
of the histogram (a) for distances less than 1 km.
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Figure 3.5: Horizontal GPS velocity field with 95% error ellipses filtered following
the procedure described in this section. The field includes 899 stations.
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Chapter 4

Computation of geodetic strain
rate

Different methods to estimate the strain rate field from geodetic data can lead to
considerably different strain rate maps (Sandwel 2010). These differences are due
to the limited spatial resolution of GPS array and to different parametrizations
implemented in methods. Some of them are based on a physical description of
the system, e.g. elastic block models found on elastic deformation theory for
faults in an half space (McCaffrey 2002), while others don’t consider any particular
physical model. In this study the focus is on the latter type of methods, considering
three different ways to estimate strain rate from horizontal GPS velocity field.
Differences between strain rate maps will be discussed and one model among the
others will be chosen for the further analysis. The different methods (when applied
to the GPS dataset shown in Figure 3.5) are presented in order of increasing
complexity, together with their results, in the next three sections; the discussion
of the deformation rate field provided by the chosen model is instead presented in
the last section of this chapter.

4.1 The nearest neighbors algorithm
The first considered method is the nearest neighbors algorithm of Handwerger et al.
2018 that is employed through the Python library Strain_2D (Materna, Maurer,
and Sandoe 2021). The algorithm works using two parameters that are:

• The radius R in km that defines a circle around each point of the spatial
grid, used for the strain rate computation

• The number N of stations that are considered inside the circle
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For each grid point, the nearest N stations inside a circle of radius R are considered
and their GPS velocities are used to provide a numerical estimate of velocity and
velocity gradients in that point (if there are no N stations inside a circle with radius
R, the velocity gradients are set to zero). The strain rate can then be computed
from the knowledge of the velocity field gradients through equation (2.4).

The algorithm is applied to our dataset making different trials in which we
set R = 200 km and we vary N , using it as a smoothing parameter. Trying
N = 10, 20, 30, 40, the results are shown in Figure 4.2 for the second invariant of
the strain rate. Increasing the value of N results in maps with values of strain
rate more distributed in space and an overall decreasing of the mean value for
the second invariant I2; instead, decreasing the value of N results in maps with
more spatially localized deformation rate and an increasing of the mean value of
I2. An appropriate value for N depends on the level of resolution that we desire;
however, an increase of N results also in increasing the noise level of the map, i.e.
spatial-localized deformation rate due to small, but highly localized variations in
velocity field. A method to choose an appropriate value for N can be based on
the improvement in fitting GPS velocities when the value for N decreases.

The Root Mean Squared Error (RMSE) provides an estimate of the agreement
between data and model. In this case, data are the observed velocities at the Ns

GPS stations in the two components: North vN
obs
i and East vE

obs
i for i = 1, ..., Ns.

Indicating with vN
mod
i and vE

mod
i the modeled velocities at the positions of the Ns

stations we can write the RMSE as:

RMSE =

√√√√√∑Ns
1

(
vN

obs
i − vN

mod
i

)2
+
(
vE

obs
i − vE

mod
i

)2

2Ns

(4.1)

In Figure 4.1 we plot the RMSE as function of N . We can see that there is a bigger
improvement in RMSE when passing from N = 35 to N = 30. This suggests that
a good compromise in choosing an appropriate map can be the one with N = 30,
shown in Figure 4.2c.

In Figure 4.3 the dilatation rate field is shown for the case N = 30. For
this map, the same reasoning made for the second invariant field holds: greater
values of N result in a smoother map for dilatation rate, while smaller values of
N imply less smoothed distribution of dilatation rate. The comparison between
data and models is shown in Figure 4.4, together with the residual velocity map
(residuals are computed as "observed velocities" - "modeled velocities"). The model
with N = 30 produces a general good agreement between modeled and observed
velocities and the 92 % of residuals is smaller than 1 mm/yr.

The main advantage of the method of Handwerger et al. 2018 is that it relies
on few parameters that have to be set. On the other hand, it presents some
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Figure 4.1: RMSE computed for different values of N (blue points). The arrow
shows the point for which a bigger improvement in RMSE happens (passing from
N = 35 to N = 30).
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(a) (b)

(c) (d)

Figure 4.2: Second invariant of the strain rate computed from the filtered GPS
dataset through the nearest neighbors algorithm considering: a) N = 10, b) N =
20, c) N = 30, d) N = 40.
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Figure 4.3: Dilatation rate and principal axes of strain rate for the nearest neighbor
method applied to the filtered dataset in the case with N = 30.
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(a)

(b)

Figure 4.4: a) Plot of the modeled velocity field from the nearest neighbors method
with N = 30 (green arrows) against the GPS velocity dataset (red arrows). b)
Residuals resulting as "observed velocities" - "modeled velocities" (orange arrows).
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drawbacks; the first is that it doesn’t account for the different density in GPS
station positions, but applies the same procedure for strain rate computation at
each grid point. The only parameter that takes into account the different coverage
is R, but it is a switch: if there are not N stations inside a circle with radius R,
the velocity gradients are set to zero. The second drawback is that, regardless of
the value of N , the resulting maps have region with uniform strain rate due to
the geometry of the GPS network. This then results in homogeneous values of
strain rate even on distances of several kilometers. The methods described in the
following paragraphs overcome, at least partially, these drawbacks.

4.2 The VISR algorithm
The VISR algorithm of Shen et al. 2015 is the second method considered in this
thesis. In order to understand how it works, let’s start considering a small GPS
array. We approximate the observed motion of the small array by an average strain
rate within the array plus a rigid block motion of the array as a whole. This holds:

vx = Ux + ϵ̇xx∆x+ ϵ̇xy∆y + ω∆y (4.2a)
vy = Uy + ϵ̇xy∆x+ ϵ̇yy∆y − ω∆x (4.2b)

where vx and vy are the observed velocities at the array points, Ux and Uy are the
velocities at the center of the array, ∆x and ∆y are the distances of the point from
the center and ω is the angular velocity. The same reasoning can be applied for a
bigger array: in any location x, we consider a small array around x for which we
can apply the equations (4.2); given N stations distributed around x, the vector
v of GPS velocity data collected from the N stations can be written, in a matrix
form, as v = Am + n:

v =



vx1

vy1

vx2

vy2

...
vxN

vyN


=



1 0 ∆y1 ∆x1 ∆y1 0
0 1 −∆x1 0 ∆x1 ∆y1
1 0 ∆y2 ∆x2 ∆y2 0
0 1 −∆x2 0 ∆x2 ∆y2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 ∆yN ∆xN ∆yN 0
0 1 −∆xN 0 ∆xN ∆yN





Ux

Uy

ω
ϵ̇xx

ϵ̇xy

ϵ̇yy


+



nx1

ny1

nx2

ny2

...
nxN

nyN


(4.3)

Where n is the vector of the uncertainties. Given the direct problem stated by
(4.3) and if the uncertainties follow a normal distribution centered on zero, a least
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square solution can be found as:

m = (ATC−1A)−1ATC−1v (4.4)

where C is the covariance matrix of the GPS velocity data. The solution (4.4)
provides us the mean strain rate field for the region around x. The same reason-
ing applied for a number of grid points xj j = 1, ...,M , at which we assign the
found values of strain rate, can supply an estimate of the non-homogeneous strain
rate field inside the array. The problem is how to select and weight observations
standing around each grid point. The covariance matrix is reconstructed by mul-
tiplying a weighting function to each diagonal term. The weighting function Wi

for the i-th diagonal term and referred to the i-th station is defined as the product
of two functions: Wi = LiZi (without sum on equal indices) where Li is a distance
dependent function and Zi a coverage dependent function.

The Li function weight the station contribution, basing on the distance between
the station and the grid point; it takes two possible forms:

Li = exp(−∆Ri
2/D2) (4.5a)

or

Li = 1/(1 + ∆Ri
2/D2) (4.5b)

in which a spatial smoothing parameter D is introduced and ∆Ri is the distance
of the i-th station from the grid point. The main difference between the two forms
is that the Gaussian form (4.5a) reduces the weight at an higher rate with the
distance ∆Ri than that of the quadratic form (4.5b). The quadratic form is then
more conservative and provides a smoother solution. The smoothing parameter
D is determined for each grid point in the following way: it is fixed an a-priori
weighting threshold wt before the algorithm starts and D is obtained posing the
quantity w = ∑

i Wi (the sum of the weighting functions) equal to wt. In this way
a uniform level of weighting wt is chosen for the total array, while D is determined
for each grid point, depending on the local data density: denser the array, smaller
will be D. Once one of the two forms in (4.5) is chosen, the algorithm considers
n data-points having Li such that ∆Ri/D < cd where cd is a cutoff distance. The
cutoff distance is set to 2.15 for (4.5a) and to 10 for (4.5b); in this way stations
with Li < 0.01 are excluded.

The coverage weighting function Zi weights on the base of the angular distri-
bution of the stations around the grid point. It is defined in two possible ways:
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Figure 4.5: a) The azimuth angle θi relative to the i− th station for the grid point
xj; stations are indicated with yellow points and ordered counter-clockwise. b)
Voronoi cells for a set of stations (yellow points) around the gird point xj. The
Voronoi cells are a partition of a plane and each cell contains points closer to the
station inside the cell than to any other station

Zi = nθi/4π (4.6a)
or

Zi = nSi/
n∑

k=1
Sk (4.6b)

In the first form (4.6a) (azimuthal weighting function), n is the total number of
data points selected and θi is the angle between the station i + 1 and i − 1 once
they are ordered counter-clockwise around the grid point (Figure 4.5a). In this
way, stations isolated in space with respect to the grid point have a greater Zi.
The same rationale is applied for the second form (4.6b) in which Si is the area of
the Voronoi cell for the i-th station; in this case, the weight is given by the ratio
between the area of the cell relative to the station i and the total area of all the
cells around the grid point (Figure 4.5b). Comparing the two forms in (4.6), the
first considers only the azimuthal coverage while the second is based also on the
radial coverage for the grid point.

We start applying the VISR method to our dataset, considering the Gaussian
form for the distance weighting function (4.5a) and the Voronoi form (4.6b) for
the coverage weighting function. Four values for the weighting threshold wt: 8,
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16, 24, 38 are considered and the second invariant of the strain rate is computed
according to (2.6b); the results are shown in Figure 4.6.

As wt increases also the smoothing distances D increase and the strain rate
becomes smoother; the regions with greater density of stations gain more resolution
when wt decreases. Following the approach in Shen et al. 2015, we search an
optimal weighting threshold wt, examining differential strain rate patterns from
two strain rate field, obtained using a different wt. In Figure 4.7, we show the
three differential strain rate field obtained from the subtraction of the fields in
Figure 4.6; in terms of weighting threshold, we consider: 16 − 8, 24 − 16 and
38 − 24. The differential strain rate field in Figure 4.7c (38 − 24) is smooth
and diffuse along all the Apennines chain; observing Figure 4.7b (24 − 16) the
differential strain rate present some spotted areas in comparison with Figure 4.7c
but almost preserving the same pattern. In Figure 4.7a the pattern changes: even
if strain rate is accumulated along the Apennines, now there are spikes of strain
rate in localized area of few kilometers. These spikes don’t represent an increase
in resolution due to additional tectonic strain, but noise due to very localized
heterogeneity of the velocity field. To choose a preferred model a trade-off between
resolution and robustness is necessary; in this case, for a weighting threshold of 16,
the improvement in resolution upon its point has only a small increasing in noise
level, while, for a weighting threshold of 8, a major resolution is accompanied by
an important increase of localized spots. A good compromise between resolution
and noise is reached for a wt of 16; the comparison between modeled and observed
velocity and the residual map is shown in Figure 4.8. However, different choices
of wt can be made, according to the level of resolution required. The drawback is
that an increase in resolution, after a certain level of wt, can produce also a large
amount of very localized spots of higher strain rate.

The comparison between observed and modeled velocity, together with the
resulting residual map ("observed velocities" - "modeled velocities"), is shown in
Figure 4.8. There is an overall good agreement between observed and modeled
velocities with small residuals that don’t show a preferential direction.

The data density reflects the level of resolution that can be obtained. In the
VISR algorithm, this information is codified by the parameter D that is set on the
basis of the local data strength. Figure 4.9 shows the distribution of the D values
used to compute the velocity field in the case of the Gaussian + Voronoi weighting
with wt = 16. D clearly reflects the local data density and has the smaller values,
where stations are close to each other; here the detail level of the strain rate map
can be increased, choosing a smaller wt.

Changing the coverage weighting function and using the relation (4.6a) with
the weighting threshold of 16, provides a pattern comparable to the one shown
in Figure 4.6b (that also have wt = 16). The main differences are that the over-
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(a) (b)

(c) (d)

Figure 4.6: Second invariant of the strain rate computed from the filtered GPS
dataset through the VISR method with Gaussian+Voronoi weight and considering
different weighting thresholds wt: a) wt = 8, b) wt = 16, c) wt = 24, d)wt = 38.
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(a) (b)

(c)
Figure 4.7: Differential second invariant of the strain rate computed from the fil-
tered GPS dataset through VISR method, in the case of Gaussian distance weight-
ing and Voronoi coverage weighting, considering the differential maps. In terms
of wt: a) 16 − 8, b) 24 − 16, c) 38 − 24.
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(a)

(b)

Figure 4.8: a) Plot of the modeled velocity field from the VISR method for the
Gaussian + Voronoi weighting with wt = 16 (green arrows) against the GPS ve-
locity dataset (red arrows). b) Residuals from the inversion (orange arrows).
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Figure 4.9: Values of the D parameters for VISR method based on the GPS station
distribution. White circles represent GPS stations. The density of the geodetic
points controls the selection of D.
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all pattern is less smoothed and that areas with higher deformation rate on the
Apennine chain are highlighted (Figure 4.10a). Instead, using the quadratic func-
tion (4.5b), but maintaining the Voronoi coverage weighting function, provides the
same level of sharpness of the strain rate pattern of Figure 4.6b (with wt = 16)
at smaller weighting threshold. In particular, a similar result is reached at wt = 4
(Figure 4.10b). The pattern is again similar, but not as smooth as the Gaussian
+ Voronoi case and seems very affected by local gradients in velocity field (that
results in spots of higher deformation rate in the I2 map); even if the quadratic
form reduces the weight at an higher rate with the distance, the small wt probably
gives in some cases too much weight to the stations closest to each grid point. The
same problem is enhanced using the azimuthal coverage weighting (Figure 4.10c);
the map presents many localized spots with high strain rate. Using smaller values
of wt, the problems of localized spots disappears, but with values of I2 smoothly
distributed.

To conclude, the VISR algorithm overcomes some drawbacks of the nearest
neighbor method, analyzed in the previous section. It accounts for the different
density in GPS stations and the parameter D reflects the level of spatial resolution
that can be obtained in each area. The main parameter that controls the resolution
is the wt and its value has to be calibrated in order to balance resolution and noise,
due to small local velocity differences of the velocity field. One drawback of the
method is that there is not an objective way to choose between the proposed
different types of weighting; it is shown in this section that different types of
weighting can lead to different results. The configuration Gaussian + Voronoi
seems more robust since: the density of GPS stations in the Apennines is generally
high (this is also represented by Figure 4.9) and then it is probably not necessary to
use a distance weighting function as smooth as the quadratic form; moreover, the
Voronoi weighting function takes into account both azimuthal and radial stations’
distribution, while azimuthal weighting function does not.
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(a) (b)

(c)
Figure 4.10: Second invariant of strain rate computed through VISR method, from
the filtered GPS dataset, in different cases: a) Gaussian + azimuthal weighting and
wt = 16 b) Quadratic + Voronoi weighting and wt = 4 c) Quadratic + azimuthal
weighting and wt = 4
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4.3 Wavelets method
The wavelet-based method from Tape et al. 2009 consists in estimating a con-
tinuous spatial velocity field using an expansion of basis functions; these basis
functions are a class of wavelets on a sphere.

The first step in wavelet analysis is to start with a function Ψ, called mother
function, and generate a family of scaled and translated versions of the function;
in one dimension this becomes:

Ψa,b(x) = 1√
a

Ψ
(
x− b

a

)
(4.7)

Where a is the scaling parameter and b is the translating one. In wavelet analysis
different types of mother wavelets are possible; given a set of wavelets, derived from
the mother function through translation and scaling, a projection for a function f
on this set is defined as:

WΨ(a, b) = ⟨f , Ψa,b⟩ =
∫ ∞

−∞
f(x)Ψ̄a,b(x)dx (4.8)

Where Ψ̄a,b indicate the complex conjugate of Ψa,b. This convolution, which is sim-
ilar to a Fourier transform but in a scale-time domain, is called continuous wavelet
transform (CWT) and holds only under specific conditions for ψ that makes it an
admissible wavelet. For an admissible wavelet also the inverse continuous wavelet
transform (iCWT) exists and lead to f(x) from WΨ(a, b).

For a function that is defined on the surface of a sphere, that is f = f(θ, ϕ),
where θ is the co-latitude and ϕ is the longitude, it is again possible to define a
wavelet analysis. For a wavelet on a sphere (i.e. a spherical wavelet) translation
is replaced by rotation with Euler angles and dilatation is re-defined properly
through a sequence of: stereographic projection, dilatation by a to the projection
and inverse stereographic projection (details in Antonie and Vandergheynst 1998).
Thus, with the action of rotations and dilatations, it is again to possible to define
a CWT, in analogy with the 1-D simple case in (4.8), but spherical, i.e. for a
function f defined on a sphere.

A continuous velocity field on a sphere is given by:

v(θ, ϕ) = vθ(θ, ϕ)θ̂ + vϕ(θ, ϕ)ϕ̂ (4.9)

where θ and ϕ are distance from center, co-latitude and longitude respectively and
θ̂, ϕ̂ the corresponding versors. Let’s consider as mother function a Difference of
Gaussian (DOG) spherical wavelet that is obtained as the difference of the inverse
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stereographic projection of an isotropic Gaussian and of a dilated version of it
(figure Figure 4.11B). We can then represent each component of the continuous
velocity field in (4.9), which is a scalar function, with a set of wavelet functions
derived from the mother. It is proved that it is possible to build a discrete set of
wavelet functions spanning the whole space on the sphere surface appropriately
discretizing the scaling parameter a and the positions x for DOG wavelets on
the sphere (Bogdanova et al. 2005). The discretization of position results from
defining a set of grids Gq for a set of resolutions q (figure Figure 4.11A) and, for
each resolution, q, a scale parameter given by aq = 2−q. This leads to define the
set:

F = {Ψxq,j
(x),xq,j ∈ Gq, q ∈ N} (4.10)

If we want to represent a band-limited function, we don’t need all the elements
in the set F but only elements in a finite set Fqmax with q ≤ qmax where qmax

is associated to the maximum representable band-width and then to a minimum
resolution spatial scale.

Any scalar function f whose band-width doesn’t exceed the one associated to
the finest scale qmax can be written as:

f(x) = mkgk(x) = gT m (4.11)

Where gk are functions in the finite set Fqmax of dimension M and mk are scalar
coefficients. In our problem we have a finite set of observations (vθi, vϕi) on the
sphere at points (θi, ϕi) where i = 1, ..., N . Evaluating (4.11) at the observation
points leads to:

vθi = ckgk(θi, ϕi) + nθi vϕi = dkgk(θi, ϕi) + nϕi (4.12)

Where n represents the noise contribution. If we insert vθi and vϕi into a unique
vector of measurements f of dimension N we can write:

f = Gm + n (4.13)

where G is a N×M matrix which has elements Gik = gk(θi, ϕi) and m is the model
parameter vector. The problem of finding optimal coefficients m is undetermined
since M > N , because Fqmax is not an orthogonal basis. In the inversion of the
direct problem (4.13) it is then necessary a form of regularization. Tape et al. 2009
estimate the model vector minimizing the regularized least-squares functional and
using the norm of the model gradient as regularization. Thus, the problem in
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Figure 4.11: Spherical wavelet frame functions. (A) Triangulated spherical grids
used for determining the locations for the centres of the spherical wavelet frame
functions. From left- to right-hand side are grids for orders q = 2 (162 vertices), q
= 3 (642 vertices) and q = 4 (2562 vertices) (B) Three different scales of a DOG
(Difference of Gaussian) spherical wavelet centred at the North Pole. (C) Corre-
sponding profiles of wavelets in (B), for a fixed longitude phi. (D) Corresponding
spectra of wavelets in (B). Figure from Tape et al. 2009
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(4.13) transforms in minimizing:

F (m) = 1
2(Gm − d)T C−1(Gm − d) + 1

2λ
2mT Sm (4.14)

Where d is the vector of data, C is the covariance matrix and S is the regularization
matrix. The solution of this direct problem is:

m = (GT CG + λ2S)−1GT (4.15)

The proper parameter λ is chosen by ordinary cross validation taking the minimum
resulting value.

We apply the wavelets method on the filtered dataset in Figure 3.5 . We
estimate the strain rate using different values of the resolution q. The choice of
q mainly depend on the spatial scale of interest that we desire (see Table 4.1).
The allowable q-values depend on the local density of stations. Where stations are
denser in space, higher values of q are admitted while for regions in which stations
are sparse only small q-values are available. Figure 4.12 shows the maximum q
scale wavelet that covers each area (qmax), where the coverage is determined by
the length scale for each spherical wavelet (Table 4.1). We can observe that for
all the region of interest a qmax = 8 is available; it corresponds to a spatial arc
length of 27.55 km. A value of 9 is available in large part of the region while
values grater then 9 don’t cover the total region and are highly localized in space.
It is in principle possible to apply the method exploiting, for each region, all
the q values up to their maximum; however there are some drawbacks: the first
is that very high resolutions (qmax > 9) are more sensible to local variations of
velocity data at small scales of few kilometers, which could not reflect changes
in tectonics; the second is that the strain rate derived by the resulting velocity
field is computed at different scales in different points on the map allowing one to
spuriously infer spatial variability where none exists. For these reasons, we prefer
to limit q choosing values of qmax available for the whole, or for large part, of the
region.

We compute different maps for different value of the qmax; in Figure 4.13 we
show the resulting scalar fields for the second invariant of the strain rate, defined by
equation (2.6b), for qmax = 7, 8, 9. The qualitative difference between the figures
consists in a different smoothing of the second invariant field, defined in equation
(2.6b), from the map with smoother distribution of I2 (a) with qmax = 7, to the
more detailed one (b) with qmax = 9. We compute the root mean squared error
RMSE and we plot it against qmax; the result is shown in figure Figure 4.14. We
observe a significant change in the slope for values of qmax ranging between 7 and
9.
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Figure 4.12: Maximum values of spherical-wavelet orders based on the GPS station
distribution. White circles represent GPS stations. The density of the geodetic
points controls the selection of spherical wavelets (wavelet center points are not
shown). The color map shows the maximum q scale wavelet that covers each area
where the coverage is determined by the length scale for each spherical wavelet.
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a) b)

c)

Figure 4.13: Second invariant of the strain rate computed from the filtered GPS
dataset considering: a) qmax = 7, b) qmax = 9, c) qmax = 8.

45



Average side
Resolution q Scale Faces Vertices arc length

0 20 20 12 63.435° 7053.64 km
1 21 80 42 31.718° 3526.84 km
2 22 320 162 15.859° 1763.41 km
3 23 1’280 642 7.929° 881.71 km
4 24 5’120 2’562 3.965° 440.85 km
5 25 20’480 10’242 1.982° 220.43 km
6 26 81’920 40’962 0.991° 110.21 km
7 27 327’680 163’842 0.496° 55.11 km
8 28 1’310’720 655’362 0.248° 27.55 km
9 29 5’242’880 2’621’442 0.124° 13.78 km
10 210 20’971’520 10’485’762 0.062° 6.89 km
11 211 83’886’080 41’943’042 0.031° 3.44 km
12 212 335’554’320 167’772’162 0.016° 1.72 km

Table 4.1: Table showing geometric properties of spherical-triangular grids for a
certain resolution q

Figure 4.14: Root mean squared error computed for different trials with qmax =
6, 7, 8, 9, 10, 11 (blue points). The black line is a third order polynomial plotted as
reference.

46



We consider the map with qmax = 8 to be a good choice since:

• The value of qmax = 8 is such that it lies in the region in which the RMSE
curve changes its slope (see Figure 4.14).

• The corresponding spatial scale for wavelets (∼28 km) is compatible with
the scale length of tectonic changes.

• In all the studying region is available a value qmax = 8; the resulting map
admit the same resolution in each point.

For the selected map we can analyze also the data vs model map and the
residuals map (both are shown in Figure 4.15). The dilatation rate map is shown
in Figure 4.16. The residuals are smaller, in average, than the ones considered
from the previous two methods in sections 4.2 and 4.1. We see that this method,
in comparison with the VISR method, is more robust with respect to outliers:
a comparison between the wavelets method with qmax = 8 and the VISR map
with weighting Gaussian + Voronoi with wt = 16 (Figure 4.13c and Figure 4.6b
respectively) shows that in the VISR map there are more small spots of localized
strain, despite the comparable resolution. This justify the employment of this
method to filter out outliers from the initial dataset (3.2).

In conclusion, the wavelets method has the advantage that the choice of reso-
lution is based on a parameter directly linked with the spatial length of interest,
i.e. qmax. Moreover, this method is more robust with respect to the outliers then
the others employed in this thesis. For this reason, this method can be useful
to identify anomalous values of velocity in the GPS velocity dataset. One con is
that no intermediate resolutions are possible between the ones corresponding to
subsequent values of qmax since q is a discrete parameter; then, intermediate maps
to those presented are not possible.
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(a)

(b)

Figure 4.15: a) Plot of the modeled velocity field from wavelets method with qmax =
8 (green arrows) against the GPS velocity dataset (red arrows). b) Residuals from
the inversion (orange arrows).
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Figure 4.16: Map of dilatation rate and principal axis of strain rate from wavelets
method with qmax = 8.
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4.4 Discussion of the resulting strain rate field
In the previous sections we have explored different methods to compute the hor-
izontal strain rate field from GPS velocity data. We indicate as a good compro-
mise between resolution and robustness the strain rate map obtained through the
wavelets method with qmax = 8 (Figure 4.13c). In fact, even if the strain rate
map Figure 4.13c is comparable with Figure 4.6b for the VISR method and with
Figure 4.2c (or Figure 4.2b) for the nearest neighbor algorithm, the wavelets map
has some more advantages. It has a smooth distribution of I2, the method is ro-
bust with respect to the outliers and the choice of the best map is less subjective,
since the main parameter qmax can be used to select the spatial length of interest
(in our case, a spatial length of ∼ 28 km, suitable to represent tectonic processes,
correspond to qmax = 8); in fact, a main disadvantage of the other two methods
is that there is not a golden rule that permits one to choose an appropriate map,
but the choice has to be weighted basing on different parameters’ configurations.
In the case of wavelets method the choice is based only on the qmax parameter.
For these reasons, we select for further analysis the map obtained by wavelets
method with qmax = 8. We now discuss the fundamental features of the resulting
deformation rate field (Figure 4.13c). The main characteristic is the presence of
an extensional belt running along the Apennine chain from the Calabria region
to the northern Apennines where three sub-parallel belts of deformation rate are
observed. The central belt is a dilatation belt that lies on the inner Apennines as
the north part of the extensional belt running through all Italy. An outer belt is
located on the Apennine front and shows an almost N-S oriented shortening with
its higher value in the Emilia Po Plain and lower rates offshore in the Adriatic sea;
the shortening continues in the Marche region along the coast but NE-SW oriented.
The third belt is located in the inner northern Apennines and it is characterized
by NE-SW oriented extension in the Tuscany region and joins the central chain
in correspondence of the Umbria region. A detail of this three-belts structure is
shown in figure Figure 4.18 which shows a profile distribution along the line rang-
ing from the point A to B (figure Figure 4.17); we consider stations, topography
and second invariant of strain rate field in a rectangular box with a width of 100
km centered on the dashed blue line AB. The velocity passes from a value of ∼0.5
mm/yr in the Tyrrhenian sector to values of ∼2 mm/yr in the Adriatic sea with
a peak value that goes over the 3 mm/yr and the velocity rising occurs crossing
the Apennines. This results in three well defined peaks of the deformation rate as
shown by the top of Figure 4.18. Another detail is shown in Figure 4.19 for the
southern Apennines. It is again considered a rectangular box with a width of 100
km but this time centered on the line from C to D in Figure 4.17. We can see that
this time the deformation rate has only one main peak that stands on the Irpinia
region with a monotonically increasing velocity field when passing from B to C.
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Figure 4.17: Detail of the second invariant from wavelets method with qmax = 8.
The rectangular regions in black are inspected in Figure 4.18 and Figure 4.19 in
terms of velocity and deformation rate. Inside the 100 km wide rectangles, the
GPS stations are shown with blue points while the dashed blue lines represent the
tracks from the points A, B and C, D.
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Figure 4.18: Analysis of the area shown in Figure 4.17. On the x-axis is shown the
distance from the point A in km. Top: second invariant of the strain rate plotted
along the AB line (grey) and its variation in the swath profile (blue shadow). Mid-
dle: GPS velocity (blue points), modeled velocity along the AB line (gray line) and
its variation in the swath profile (gray shadow). Bottom: topography profile along
the AB line (brown line) and its variation in the swath profile (yellow shadow)
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Figure 4.19: Analysis of the area shown in Figure 4.17. On the x-axis is shown the
distance from the point C in km. Top: second invariant of the strain rate plotted
along the CD line (grey) and its variation in the swath profile (blue shadow). Mid-
dle: GPS velocity (blue points), modeled velocity along the CD line (gray line) and
its variation in the swath profile (gray shadow). Bottom: topography profile along
the CD line (brown line) and its variation in the swath profile (yellow shadow)
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Chapter 5

Comparison of seismic and
geodetic strain rate

In this chapter we assess if the computed geodetic strain rate field is representative
of the accumulated strain, ϵR

ij, i, j = 1, 2, 3, which is released through earthquakes.
Following Stevens and Avouac 2021, a first order correspondence between principal
axes of geodetic strain rate and those relative to the released strain rate is expected.

Focal mechanisms data on past earthquakes are used to test if this hypothesis
holds. Focal mechanisms analyzed in this thesis are the result of the work of
Sani et al. 2016. Sani et al. 2016 use focal mechanisms from various global and
regional catalogs based on seismogram modeling, merging them into a dataset,
containing overall ∼4000 focal mechanisms data. They use the Kostrov method
(Kostrov 1974, see equation (2.25)) to compute the "sum focal mechanism" on
hexagonal equiareal cells with 10 km of side; moreover, using the upper-crust
surface from Molinari and Morelli 2011, they differentiate them between upper
crust focal mechanisms and deeper ones. In fact, on the basis of the seismic wave
speed, Earth’s continental crust can be divided into different layers; the upper crust
is the shallowest part of the continental crust, having a brittle elastic behaviour
with respect to its lower and more ductile part. The considered focal mechanism
sum data are relative to the upper crust where earthquakes occurrence is expected.

We compare the distribution of ϵR
ij, resulting from the sum focal mechanisms,

with the geodetic strain rate computed from the wavelets method using qmax = 8
(see section 4.3). The sum focal mechanisms computed in each hexagonal cell
are shown in Figure 5.1. From now on, the border of the polygon centred on the
Apennines (outer grey line in Figure 5.1) will delimit our studying region.

The comparison between geodetic strain rate and ϵR
ij is made by analyzing dif-

ferences in principal strain axes orientations between the two tensors. A drawback
of this analysis is that the geodetic strain rate is a 2D tensor, but ϵR

ij, computed
through the Kostrov formula, is based on the sum of focal mechanisms and then it
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Figure 5.1: "Sum focal mechanisms" from Sani et al. 2016 collected in the time
span 1905-2015. We consider events inside a polygon (delimited by the outer grey
line) and we exclude events inside the circular volcanic masks presented in 3.2 (grey
line circles). Beach balls’ dimension is proportional to the moment magnitude Mw

of the sum event.

55



is a 3D moment tensor. In order to obtain an even comparison, given the different
dimension of the two tensors, we need to consider horizontal principal directions
for ϵR

ij since, in general, its principal directions could not horizontal. The adopted
method to obtain horizontal principal directions is exposed in the following.

Let’s focus on a general direction of strain rate identified by the unit vector n
having components nk with k = 1, 2, 3. The strain value Sn along this direction
will be given by:

Sn = niϵ
R
ijnj (5.1)

with sum on equal indices. If the direction of n is horizontal then its third com-
ponent n3 is zero; this means that the computation of Sn through (5.1) involves
only the 2x2 minor of the ϵR

ij tensor relative to the horizontal components, i.e. ϵR
ij

with i, j = 1, 2. Searching for the principal horizontal components of the strain
tensor means to find horizontal vectors n that maximise and minimize Sn, but this
procedure is also equivalent to find the eigenvectors for the 2x2 minor of the ϵR

ij

tensor. In conclusion: to find the principal horizontal components of the ϵR
ij tensor

reduces to find the eigenvectors of its 2x2 minor ϵR
ij with i, j = 1, 2.

Accounting for the previous considerations it is then possible to plot the result-
ing eigenvectors for the horizontal principal components of the two tensors. They
are shown in Figure 5.2a for the geodetic strain rate tensor and in Figure 5.2b
for ϵR

ij. Observing the two figures, the directions of horizontal principal strains
appear similar even if those derived from earthquakes show locally a greater het-
erogeneity. Both figures show a dilatation belt running along the Apennines and
an outer compressive belt toward the Adriatic sea. Part of this belt is visible in
the Po Plain where the compression is roughly N-S. To quantify the disagreement
(misfit) between the principal directions, we compute the angular difference (in
absolute value) between the two couple of axes in the same spatial position; each
angular difference will range from 0° to 90° and represents the misfit between ac-
cumulated strain rate and ϵR

ij. The distribution of the angular differences is shown
in Figure 5.3 for each hexagonal cell in the region of interest. The misfit is also
shown on the overall area in Figure 5.4; in the same figure it is also shown, as a
reference, a simulation of a uniform distribution of angular misfit, representing a
case of no correlation between the axes directions. The ∼51% of the comparisons
have an angular difference that is less than 25°. The spatial distribution of misfit
shows a worse agreement in east Pede Apennine (in an area centered on 12°E and
44°N) where focal mechanisms indicate a change from extensional to compressive
regime (see also Figure 5.1) that is not accounted by the geodetic strain rate.

To test if the agreement between principal strain directions is significant, we
can compare the observed distribution of angular differences with a uniform dis-
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(a)
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(b)

Figure 5.2: Principal directions from: (a) geodetic strain rate resulting from
wavelets method with qmax = 8 and (b) ϵR

ij from Sani et al. 2016. In both the
cases, principal axes are normalized so that the sum of the vectors defining the
axes has modulus equal to 1.
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Figure 5.3: Angular misfit for directions of horizontal principal strains of geodetic
strain rate and ϵR

ij computed for each hexagonal cell (used for the computation of
ϵR

ij through the sum of focal mechanisms).
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(a)

(b)

Figure 5.4: a) Histogram of the angular misfit for directions of horizontal principal
strains of geodetic strain rate and ϵR

ij. b) Histogram representing a random distri-
bution of misfit (a case of no correlation between directions)

60



tribution (Figure 5.4). A chi-square test on the goodness of fit with a random
distribution results in rejecting the null hypothesis for which the observed distri-
bution is uniform at less than 1% of significance.

The larger scatter in ϵR
ij shows that it is more heterogeneous than the geodetic

strain rate (Figure 5.2). The larger variability could be due to a lack of resolu-
tion of the geodetic strain; the geodetic strain rate is, in fact, the result of an
average over a certain spatial length of several km. The distribution of sum fo-
cal mechanisms suggests that heterogeneity occurs even at smaller length scales.
On the other hand, this variability could be caused by other factors; for example
by local heterogeneity of the stress field, induced, for example, by topography, or
by heterogeneity in composition of the elastic medium. Even the interaction be-
tween earthquakes, through stress transfer, could have an influence in orientation
of strain principal axes.

However, this first order agreement can be considered sufficient to sustain that
the geodetic strain rate field is representative of the accumulated strain that is
released through earthquakes. This enforce the hypothesis of a stationary accu-
mulation and of a proportionality between stress rate and geodetic strain rate
(hypotheses 1 and 2).
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Chapter 6

Earthquake catalogue
declustering and Poisson
distribution assumption

6.1 Declustering method description
Earthquake clustering is a main character of seismicity and occurs both in space
and time. Clustering in space is easily understood thinking at the concentration
of earthquakes along main fault traces between tectonic plates and in regional
fault systems. On the other hand, clustering in time can be exemplified by the
significant increase of seismic activity after an earthquake (it involves the so-called
aftershock sequences).

Even if a rigorous definition of seismic clusters is lacking, it is understood in a
broad sense as a deviation from a time-stationary and space heterogeneous Poisson
process. We generally refer to an independent seismic event when its occurrence is
not caused by earthquake interaction processes (which happens during aftershocks
sequences). In other words, an independent event is not triggered by previous
events but is driven by interseismic loading. We refer to a set of independent
events as the background seismicity.

One target of this thesis is to perform an analysis on a seismic catalog composed
of independent events; moreover, we are interested in verifying if independents
events follow a stationary Poisson process in time. This leads to the need of a
declustering procedure, i.e. a method that could separate background events from
triggered events. There are several algorithms for this task (an extensive list with
a discussion of pros and cons of each method is found in Stiphout, Zhuang, and
Marsan 2012); however, generally, applying different declustering models to the
same catalog leads to different sets of independent events.
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The method used in this thesis is the nearest neighbour clustering analysis
technique presented in Zaliapin and Ben-Zion 2013. The method is based on an
analysis of the nearest-neighbor distances of events (NDD). Let’s consider a specific
earthquake in the catalog that we label through the index i; this event will be
characterized by a position (the hypocentral coordinates xi, yi, zi), its occurrence
time ti and a magnitude measured in a certain scale (e.g. a moment magnitude)
mi. The event is then identified as a 5-tuple in the space, time and magnitude (then
energy) domain: (xi, yi, zi, ti,mi). Considering an event j subsequently occurred
to i, we define the distance ηij between the two events as:

ηij = (tj − ti)r
df

ij 10−bmi (6.1)

where rij is the spatial distance between the hypocenters of the two events, b
is the parameter of the Gutenberg-Richter law and df is the fractal dimension
characterizing the distribution of the hypocenters. The value of df is set to 1.2
according to Kagan 1991. The ηij metric decreases as two earthquakes get closer
in time and space and as the event i is bigger in magnitude. Note that the previous
definition holds only if tj > ti, otherwise the distance between i and j is formally
set to +∞. For an earthquake j we define its parent event ī as the earthquake for
which the distance (6.1) is the smallest among all the possible i. A parent event
for j is then its closest event as stated in (6.1). Following Zaliapin and Ben-Zion
2013, it is convenient to represent the nearest-neighbor distance ηīj in terms of its
space and time components:

Rīj = r
df

īj
10−bmī/2 (6.2a)

Tīj = (tj − t̄i)10−bmī/2 (6.2b)

With the property ηīj = RījTīj (without sum of indices) or equivalently log10 ηīj =
log10 Rīj + log10 Tīj. Plotting Rīj vs Tīj for all earthquakes j makes possible to
identify two different populations .A bimodal distribution in the (T,R) space is
observed: a first mode, located closer to the origin, is called cluster since is char-
acterized by unusually small distances (representing then clustered events); the
other is located farther from the origin (greater nearest-neighbor distances) and it
is called background since it represents independent events. The bimodal distribu-
tion of the nearest-neighbor distances is a general feature of observed seismicity
(Zaliapin and Ben-Zion 2013).

The bimodal distribution of events in the (T,R) space results in a bimodal
distribution also in the ηīj space. The problem consists now in separating the
background mode from the cluster one. The adopted method to separate indepen-
dent events from dependent ones will be exposed in the next section.
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6.2 Implementation and results
In this thesis we consider the CLASS catalog (Di Stefano and Chiaraluce 2022)
that is a catalog of earthquakes occurred in Italy from 1981 to 2018. The catalog is
composed of probabilistic locations, based on P and S waves arrival times recorded
at INGV Seismic Network and other permanent networks. It includes a total of
350312 events with a magnitude estimation. Each event is located through the
NonLinLoc Location code (Lomax et al. 2000), which performs a probabilistic
non-linear location and provides accurate location uncertainties. The used model
for velocities of waves is the one proposed by Di Stefano and Ciaccio 2014. The
pros of this catalogue are the accurate locations of earthquake jointly with reliable
uncertainties on the hypocenters; the main drawback is that the catalog is not
homogeneous in magnitude. Indeed, all the declustering methods require a catalog
with events having the same type of magnitude (different types of magnitude result
in an uneven comparison between events). To overcome this issue it is applied a
conversion to the moment magnitude Mw using the conversion relations presented
in Gasperini, Lolli, and Vannucci 2013 and Lolli et al. 2020. In these works a
conversion consists in linear relations between magnitudes:

Mw = A+BM (6.3)

where M is the magnitude that has to be converted into Mw. The values of
parameters A and B to convert the different magnitudes to Mw were taken from
table 3 of the work by Gasperini, Lolli, and Vannucci 2013 and from table 9 of
the work by Lolli et al. 2020. The Class catalogue in fact reports the type of
magnitude for each magnitude, and this allowed us to use the equations developed
in previous works and which form the basis of the HORUS catalogue (Lolli et al.
2020). Subsequently, in accordance with the binning of the magnitude provided
by Class, we performed the magnitude round to classes of 0.1.

The total events are selected inside the previously defined polygon that includes
the Apennines (see Figure 5.1). We exclude earthquakes in Vesuvio and Campi
Flegrei areas, according to the masks defined in section 3.2, with the exception
of the Colli Albani mask. Indeed, the exclusion of the Colli Albani area would
have involved an abrupt cut on several clusters of extended seismicity across the
mask; for this reason, it is preferred to retain seismic events inside this zone. In
order to select events, which are interpreted as due to elastic strain accumulation
and release, we consider events having an hypocentral depth not greater than 30
km. Furthermore, only events with errors on depth smaller than a threshold of
30 km are considered. The location uncertainties in the NonLinLoc Location code
are due to the spatial relation between the network and the event, measurement
uncertainty in the observed arrival times, and errors in the calculation of theo-
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Figure 6.1: Distribution of the errors on depth of events in the CLASS catalog
having depth and uncertainty on depth smaller than 30 km.

retical travel times. In this approach, the confidence ellipsoid is generated by the
covariance matrix of the PDF scatter sample, and it represents the spatial error
of location (Lomax et al. 2000). It is important to notice that correct evaluation
of the errors is a complicated task (Garcia-Aristizabal et al. 2020). In fact, the
error could be strongly affected by the velocity model, leading to very high errors
in the case of an inadequate model of seismic wave propagation, whereas it could
be lower than the reading errors where there are only a few time arrival readings.
Figure 6.1 shows that only a few events show high values of error, with median
values of 2.2 km. I have tested different thresholds for errors on depth and the
results remain consistent.

The seismicity map resulting after these selections is shown in figure Figure 6.2.
The declustering method described in the previous section is applied to the seismic
catalog Figure 6.2 in order to include only independent events. Before proceeding
with declustering on the catalog, it is necessary to know the completeness mag-
nitude Mc of the catalog, i.e. the lowest magnitude such that in the considered
area and time all seismic events with magnitude larger than Mc are recorded by
the seismic network. There are several techniques for calculating the magnitude
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Figure 6.2: Map of the seismicity from CLASS catalog for earthquakes with depth
less than 30 km. Black points are events with moment magnitude Mw less than 3;
Colored circles are earthquake with magnitude greater than 3.
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of completeness, which could lead to different values of the estimate. Mignan
and Woessner 2012 provide a detailed analysis of the main algorithms available in
literature. This thesis calculated Mc with the Goodness of fit test at 95% confi-
dence bounds (Woessner and Wiemer 2005). The method to find Mc consists in
a goodness of fit test, comparing the observed Frequency-magnitude distribution
with synthetic G-R distribution for different Mc. When the observed distribution
is modeled by the synthetic one at a certain confidence level we accept this Mc as
completeness magnitude. Another parameter that has to be set is the b parameter
of the G-R that appears in equation (6.1).The b parameter is estimated through
the maximum likelihood estimator on the probability density function derived from
the G-R law. In this thesis, the estimation of b is used as proposed by the work of
Marzocchi and Sandri 2003. The computation of Mc and b is performed through
the EPOS platform (Orlecka-Sikora, Lasocki, and Kocot 2020).

The completeness for the seismic catalog is analyzed in two different ways.
First, the total catalog is used and Mc = 1.8 is obtained through a goodness of
fit test at 95% of confidence interval. Subsequently, a year starting from which
there is a substantial decrease of the Mc is searched; Amato et al. 2006 indicate
2005 as the year of a substantial improvement in the seismic network. A second
analysis is then performed on the part of the catalog starting from the year 2005
and for which Mc = 1.3 is obtained (as before, through a goodness of fit test at
95% of confidence interval). The results of the analysis for these two data sets are
presented in the following:

• The declustering method is applied on all the catalog from 1981 with mag-
nitude greater than Mc = 1.8 including 76655 events. The G-R value of b is
0.90 and the resulting declustered catalog contains 19’330 events, i.e. ∼25%
of the starting catalog (they are shown in Figure 6.5). The resulting distri-
bution of NND is shown in Figure 6.3. To decide if a fit with two Gaussian
is better than a fit with only one the Akaike information criterion (AIC,
Anderson, Burnham, and White 1998) was used. This method allows us to
know which model, between the ones tested, fits better the data, on the basis
of the AIC estimator value, which is the smallest one for the best model. In
this case the AIC for a single Gaussian is 301395 while for two Gaussian is
289262; then two Gaussians significantly improve the fit.

• The declustering method applied on the filtered seismicity catalog from 2005
with magnitude greater than Mc = 1.8 includes 137446 events. The G-
R value of b is 0.89 and the resulting declustered catalog contains 23396
events, i.e. ∼16% of the starting catalog (they are shown in Figure 6.6). The
resulting distribution of NND is shown in Figure 6.4. AIC for a Gaussian is
502904 while for two Gaussians is 492239.
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For each catalog the two population of seismicity (independent and dependent) are
distinguished through a cut-off in the intersection point between the two Gaussians.
The dependent seismicity is shown in Figure 6.7 and Figure 6.8 respectively for
the catalog from 1981 and from 2005.

Figure 6.3: Distribution of the nearest neighbor distances for the filtered seismic
catalog from 1981 with Mc = 1.3 and b = 0.90.
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Figure 6.4: Distribution of the nearest neighbor distances for the filtered seismic
catalog from 2005 with Mc = 1.3 and b = 0.89.
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Figure 6.5: Map of the independent seismicity from CLASS catalog for earthquakes
with depth less than 30 km from 1981 and completeness magnitude of 1.8. Black
points are events with moment magnitude Mw less than 3; Colored circles are
earthquake with magnitude greater than 3.
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Figure 6.6: Map of the independent seismicity from CLASS catalog for earthquakes
with depth less than 30 km from 2005 and completeness magnitude of 1.3. Black
points are events with moment magnitude Mw less than 3; Colored circles are
earthquake with magnitude greater than 3.
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Figure 6.7: Map of the dependent seismicity from CLASS catalog for earthquakes
with depth less than 30 km from 1981 and completeness magnitude of 1.8. Black
points are events with moment magnitude Mw less than 3; Colored circles are
earthquake with magnitude greater than 3.
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Figure 6.8: Map of the dependent seismicity from CLASS catalog for earthquakes
with depth less than 30 km from 2005 and completeness magnitude of 1.3. Black
points are events with moment magnitude Mw less than 3; Colored circles are
earthquake with magnitude greater than 3.
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6.3 Poisson distribution verification
In this section it is assessed if the events in declustered catalogs follow a Poisson
process in time. A Poisson process has the property that the distance, in time,
between couple of subsequent events follows an exponential distribution. We can
then test for a Poisson process each independent catalog if inter-event times follow
an exponential distribution in the form:

F (t; t̄) = (1/t̄)e−t/t̄ (6.4)

where t is the inter-event time and t̄ is the mean inter-event time. Starting with
the independent catalog from 1981, we graphically compare the distribution of
observed inter-event times with an exponential distribution in the form of equation
(6.4). The result is shown in Figure 6.9a. The visual agreement of the observed
distribution with the exponential one is good for inter-event times smaller than
4 days but becomes poorer for longer time intervals. In particular, the observed
distribution appears to be heavy tailed with respect to an exponential and seems
to slightly underestimate the exponential distribution between 1.5 and 3 days.

The result for the independent catalog from 2005 is shown in Figure 6.9b. The
agreement with an exponential distribution is good for inter-event times smaller
than 1.2 days and, as before, the observed distribution is heavy tailed with respect
to an exponential.

We can quantify the agreement with an exponential distribution through sta-
tistical tests. One possibility is the Anderson-Darling test that is a modification of
the Kolmogorov-Smirnov (K-S) test that gives more weight to the tails of the dis-
tribution. Unfortunately, the observed distribution in Figure 6.9a and Figure 6.9b
don’t pass the test even at 0.01 significance level.

In conclusion, even if the visual agreement for the independent catalogs is good,
the independent events don’t formally follow a Poisson process. In Appendix, it
is shown that Poissonianity is formally achieved considering threshold magnitudes
greater than the completeness ones. However, considering the visual agreement
as sufficient, we will employee the complete independent catalogs during the fur-
ther analysis on the relationship between strain rate and seismicity rates. One
advantage will be the possibility to make a more robust statistics on the events
distribution in space, given the higher number of events.
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(a)

(b)

Figure 6.9: Histograms showing the distribution of inter-event times in days rela-
tive to: a) the independent catalog from 1981 and b) the independent catalog from
2005. Red line shows the expected distribution for a Poisson process. Overflows
are the number of inter-event times greater than the maximum time shown on the
horizontal axis.
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Chapter 7

Relationship between strain rate
and seismicity rate

In this chapter, the relationship between strain rate and seismicity rate in the
Apennines is investigated following the approach of Stevens and Avouac 2021.
Specifically, the two final hypotheses 4 and 5 will be tested, i.e. if:

• The earthquake spatial distribution has spatial density that depends, at first
order, on the level of the deformation rate (section 7.1).

and if:

• The rate of earthquake nucleation is proportional to the geodetic strain rate
(section 7.2).

Finally, in section 7.3, consequences that the relationship between seismicity
rate and strain rate has on possible hazard estimates are discussed.

7.1 Spatial density of earthquakes and strain rate
After declustering, the distribution of independent (i.e., background) earthquakes
in the polygon defined for the study area is not homogeneous (this is clear from
Figure 6.5 and Figure 6.6). The hypothesis is that the spatial density of seismicity
depends on the strain rate. According to this hypothesis, areas with similar values
of deformation rates should have an homogeneous spatial density of events. In
other terms, we expect an almost uniform distribution for events in areas with
similar level of deformation rate. As indicator of the level of deformation rate, the
second invariant of the geodetic strain rate I2 is used (equation (2.6b)). Consid-
ering the I2 map of strain rate derived from the wavelets method with qmax = 8
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Figure 7.1: Contouring map of the distribution of I2, derived from geodetic strain
rate, and seismicity, derived from the declustered catalog from 1981 (colored dots).
The outer grey polygon defines the study region within which the declustering of
the seismic catalog is performed. Both lines and dots are colored according to the
intervals of I2 and the last interval doesn’t have an upper limit (≥ 45nstr/yr)
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(Figure Figure 4.13c), the total study area is divided into ten regions that corre-
spond to ten different intervals of I2. The result is shown in Figure 7.1. The last
interval, which starts from 45 nstr/yr, is considered up to the maximum value
of the second invariant, in order to have corresponding areas that could be large
enough to include a number of earthquakes sufficient to do statistical analyses. It
can be noted that in the Po plain and in northern Adriatic an high value of second
invariant I2 does not correspond to an high nucleation rate. This can be reason-
ably addressed to a limited spatial coverage of the seismic network in that area
(see Figure 7.2); on the other hand, the relatively high strain rate values in the
northern Adriatic area are constrained by some GPS stations placed on platforms
in the northern Adriatic and it is likely that the horizontal velocities of some of
these stations are influenced by the on-site gas extraction activity. For these rea-
sons, in order to not introduce a bias in the further analysis, the region of interest
will be considered under 44°N of latitude in the following of this chapter.

Within each zone, we test if the seismicity is clustered or randomly distributed
using the Ripley’s K function. Given a set of N points distributed in a region
having area A, the Ripley’s K function depends on the spatial distance r and is
defined as:

K(r) = 1
λ(N − 1)

∑
i,j

I(dij < r) (7.1)

where dij is the distance between the point i and j, λ = N/A and I(dij < r) is
a function having value 1 if dij < r and 0 otherwise. K(r) defines how points
are clustered for different investigation distances. To have a fair comparison be-
tween the observed distribution of points and a uniform distribution (inside a given
region), the following steps are implemented:

• Given N observed points inside the region, N synthetic points are generated
according to a uniform distribution using an hit or miss method: a rectan-
gular box is considered that includes the region and random points inside
this box are generated (points randomly distributed on a spherical surface);
when a generated point falls inside the region it is kept and the procedure
continues until we have N uniformly distributed points inside the area.

• The K-function for the simulated uniformly distributed points is computed
according to equation (7.1) where the distance dij is the distance between
points located on a sphere.

• The K-function for the observation points is computed, according to equa-
tion (7.1). The two obtained K functions, for the observed distribution and
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Figure 7.2: Temporal evolution of the deployment of monitoring seismic stations
in Italy (from Garcia et al. 2021).
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Figure 7.3: Ripley’s K functions for simulated points (blue line) from a uniform
distribution within the grey polygon in Figure 7.1, considering the zone below 44°
of latitude, and for the observed points (red line).

for the simulated uniform distribution, are then compared: if the observed
distribution is uniform they should be close.

In this section, we consider the independent catalog from 1981 that covers a
greater time span. However, similar results are obtained using the independent
catalog from 2005.

The result of the analysis for the study region (for latitudes less than 44°N) is
shown in Figure 7.3. As it was observed also by inspection of figure Figure 6.7,
clustering is present at all the spatial distances. The results for the selected ten
regions of strain rate are shown in Figure 7.4. There is a general good agreement
between experimental and theoretical curves but the agreement on regions with
low strain rate is poorer, as observed also by Stevens and Avouac 2021 for the
Himalayan region. One explanation can be addressed to the difficulty to estimate
very low values of strain rate from GPS data, since they imply only slight changes
in velocity compared to the velocity uncertainty; contours for low strain area are
then difficult to be drawn with precision. Excluding the first three regions of strain
rate, the agreement with a uniform distribution is sufficiently good (except maybe
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for the 40-45 nstr/yr region). In general, it is observed a significant improvement
in uniformity with respect to the total distribution of events considering the whole
area (Figure 7.3), even if is not possible to assume perfect homogeneity.
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Figure 7.4: Ripley’s K-functions of observed (red) and simulated data that follow
a uniform distribution (blue); The ten plots refer to the ten regions with different
strain rate shown in Figure 7.1 considering areas below 44° of latitude (intervals
of strain rate are indicated by colored labels in nstr/yr)
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7.2 Strain rate and seismicity rate
In order to investigate the the relationship between strain rate and seismicity rate
(second hypothesis), we plot the seismicity rate per unit area in each region against
the average strain rate inside that region. For the ten areas defined in Figure 7.1
the results are shown in figure Figure 7.5. Again, only areas and points under
44°N are considered. The simplest model to relate seismicity rate to strain rate is
the one derived from Coulomb failure criterion (see section 2.4); a linear regression
with 0 intercept is then performed on the data points in Figure 7.5 according to:

Na = c0I2 (7.2)

where Na is the seismicity per unit time and area while c0 is a constant. I2 is
expressed in nstr/yr while Na in 1/(km2yr). Seismicity rate per unit area and
strain rate values show a linear correlation coefficient of 0.92 and it is found that
a linear relationship between seismicity rate and strain rate produces R2 = 0.89.
Moreover, the null hypothesis for the F test, for which the slope is zero, is rejected
with a p-value of 1.2 ·10−5. These tests highlight that a linear relationship between
seismicity rate and strain rate is able to explain a large part of the data variance.

Looking at Figure 7.5, it is reasonable to suppose a power-law relationship
between strain rate and seismicity rate (as proposed also by Stevens and Avouac
2021) in the form:

Na = c1I2
c2 (7.3)

The use of the power-law form leads to a decreasing of the residual standard error
(RSE) from 18 · 10−4 to 6.6 · 10−4 (km2yr)−1.

The choice of the width of the strain rate intervals that define the regions in
Figure 7.1 has a certain degree of arbitrariness. Different interval sizes are shown
in Figure 7.6. However, it is seen that the same pattern is preserved, even if a
smaller interval size implies more dispersion of the points. Nevertheless, the linear
fit and the power-law fit with the data provides very similar results (as it is seen
in Figure 7.6 by the nearness of fit curves).

The resolution of the strain rate map influences the final result. A lower res-
olution map (from the wavelets method with qmax = 7, see section 4.3) and an
higher resolution map (qmax = 9) are used to show this effect; the results, for the
initial choice of strain intervals (Figure 7.1), under 44° latitude, are shown in Fig-
ure Figure 7.7. The plot relative to the map with qmax = 7 has one point less since
the area between 40 and 45 nstr/yr is too small to have a statistically significant
number of data in its interior; the plot for the map with qmax = 9 has instead
one more point since the medium value of strain rate is, in this case, higher: this
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Figure 7.5: Relationship between strain rate and seismicity rate considering the
ten regions of strain rate shown in Figure 7.1 (colored points); Grey line shows the
linear fit having intercept 0 while light blue line shows the power-law fit.
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Figure 7.6: Relationship between strain rate and seismicity rate considering differ-
ent strain rate intervals: 1 nstr/yr (black points) and 2.5 nstr/yr (red points).
Linear and power-law fits for these points are superimposed to the ones in Fig-
ure 7.5 (dashed grey lines); black fit lines are referred to black points and red fit
lines to red points.
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qmax c0 R2
lin RSElin c1 c2 RSEp−law

(km2 nstr)−1 (km2yr)−1 (km2yr)−1 (km2yr)−1

7 (2.0 ± 0.4) · 10−4 0.72 33.6 · 10−4 (2 ± 7) · 10−12 (6 ± 1) 12.2 · 10−4

8 (1.7 ± 0.2) · 10−4 0.89 18.0 · 10−4 (7 ± 6) · 10−7 (2.5 ± 0.2) 6.6 · 10−4

9 (1.54 ± 0.09) · 10−4 0.98 9.7 · 10−4 (2.2 ± 0.7) · 10−5 (1.52 ± 0.08) 3.9 · 10−4

Table 7.1: Fit results for the three map with different resolution. The events are
from the declustered CLASS catalog from 1981.

qmax c0 R2
lin RSElin c1 c2 RSEp−law

(km2 nstr)−1 (km2yr)−1 (km2yr)−1 (km2yr)−1

7 (8 ± 2) · 10−4 0.67 147.6 · 10−4 (7 ± 20) · 10−14 (7 ± 1) 40.9 · 10−4

8 (7 ± 1) · 10−4 0.85 84.8 · 10−4 (5 ± 5) · 10−7 (3.0 ± 0.3) 29.1 · 10−4

9 (5.9 ± 0.5) · 10−4 0.94 49.9 · 10−4 (5 ± 3) · 10−5 (1.7 ± 0.2) 25.3 · 10−4

Table 7.2: Fit results for the three map with different resolution. The events are
from the declustered CLASS catalog from 2005.

allows the addition of the region between 45 and 50 nstr/yr. In Table 7.1 the fit
results for the three different resolutions, using (7.2) and (7.3), are summarized.
The same analysis is repeated for the events in the independent catalog from 2005.
Considering this catalog the points patterns are very similar to the ones shown in
Figure 7.5 and Figure 7.7 and the fit result for the three resolutions is exposed in
Table 7.2.

The lower resolution map is not well fitted by none of the model proposed, as
demonstrated by the low R2, the high uncertainties on the parameters and also
by inspection of Figure 7.7a. For both the independent catalogs, the goodness
of the linear fit increases with the resolution of the strain rate map. A possible
explanation is that for greater resolutions of the strain rate map areas with high
strain rate are larger and then the seismicity rate per unit area in these regions
decreases. The values of c0 become smaller with the increase of the resolution and,
for each catalog, the resulting three values of c0, corresponding to three resolutions,
are different but compatible within the errors. On the other hand, the power-law
fit provides too different values of c2, the exponent of I2 in equation (7.3), with
varying the resolution, which are not comparable even taking into account their
errors and values of c1 having a large uncertainty. It can be even noted that, for
both the fits, the agreement is poor for points with smaller I2 where the models
tend to underestimate the seismicity rates. For these reasons, in the next section
will be considered the linear case stated by (7.2) and expected from the Coluomb
failure criterion.

87



(a)

(b)

Figure 7.7: Relationship between strain rate and seismicity rate considering dif-
ferent resolutions of the second invariant map (colored points). a) qmax = 7, b)
qmax = 9. Grey line shows the linear fit having intercept 0 while light blue line
shows the power-law fit.
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7.3 Implications for seismic hazard estimates
In this section I examine how the results obtained for the relationship between
strain rate and seismicity rate impact on parameters that contribute to hazard
estimates. From the Gutenberg Richter law evaluated for the completeness mag-
nitude of the catalog we obtain:

log10 N(M ≥ Mc) = a− bMc (7.4)

where N(M ≥ Mc) is frequency of earthquakes with M ≥ Mc and a′ is given by
(2.15). The seismicity rate per unit area is related to the I2. Indicating with f(I2)
this relationship, It is possible to write the previous equation as:

log10 f(I2)A = a′ − bMc (7.5)

where A is the area for the region having mean second invariant equal to I2. From
the knowledge of f(I2), the completeness magnitude Mc and b, it is possible to
compute a′ for the considered regiong. Remembering that a′ = a−log10 (∆t) where
∆t is the considered time-span i.e., the duration of one independent catalog, we
can compute a as:

a = log10

(
f(I2)A

)
+ bMc + log10 (∆t) (7.6)

This equation permits us to constrain the a value from the knowledge of I2 if
the functional form for the relationship between strain rate and seismicity rate is
provided. In the previous section it was shown that a linear relationship between
strain rate and seismicity rate can be appropriate for the Apennines, but with a
dependence on the resolution of strain rate map; specifically, a good agreement
is reached for qmax = 8 and qmax = 9. Considering these cases, the a-value for
each region of strain rate is obtained through (7.6) and shown, for unit area, in
Table 7.3. Observing Table 7.3 it’s possible to note that there is an important
dependence of the a values on the seismic catalog and a smaller dependence on
the resolution of the strain rate map. The values of Mc and b likely may affect the
estimate of parameter a shown in Table 7.3.

Let’s now recall the equation (2.21) that is expression of the seismic moment
conservation. If we substitute the a′ value for the considered region from (7.6), we
obtain:

Mmax
w = 1

(1/c− b)

(
−d

c
+log10 αṀ0 +log10 (1 − cb)− log10

(
f(I2)A

)
−bMc

)
(7.7)
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catalog from 1981 catalog from 2005
I2(nstr/yr) qmax = 8 qmax = 9 qmax = 8 qmax = 9

0-5 -6.04 -6.09 -6.30 -6.39
5-10 -5.72 -5.76 -5.98 -6.06
10-15 -5.50 -5.54 -5.77 -5.84
15-20 -5.35 -5.39 -5.62 -5.68
20-25 -5.24 -5.28 -5.50 -5.58
25-30 -5.15 -5.19 -5.42 -5.49
30-35 -5.08 -5.12 -5.34 -5.41
35-40 -5.01 -5.06 -5.28 -5.35
40-45 -4.96 -5.00 -5.23 -5.30
45-50 -4.90 -4.95 -5.16 -5.25
≥ 50 -4.86 -5.15

Table 7.3: Values of the a parameter of the Gutenber Richter computed for unit
area (considering equation (7.6) with A = 1m2 and using the time lengths of the
independent catalogs).

This equations provides a constraint on the maximum magnitude event from the
knowledge of the relationship between strain rate and seismicity rate f(I2), the
moment build-up rate Ṁ0 and the fraction α of the moment build-up rate that
is released through seismic processes. Actually α and Ṁ0 are not easy to be esti-
mated. Ṁ0, for a single fault structure, has its formal expression in (2.10).Without
specifying the fault structures, Ṁ0 can be related to the geodetic strain rate ten-
sor, but the relationship is not unique (Savage and Simpson 1997). Stevens and
Avouac 2021 use a relationship with the second invariant of the geodetic strain
rate I2 having the form:

Ṁ0 = cgµTsAI2 (7.8)

where cg is a geometric factor that depends on the orientation and dip angle of the
faults taking up the strain, µ is the rigidity of the medium, Ts is the seismogenic
thickness and A is the area of the region having second invariant I2. For dip-slip
faults:

cg = 1/(sin δ cos δ) (7.9)

where δ is the dip angle. Through equation (7.8), now the geometric factor cg and
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the seismogenic thickness Ts have to be set.
Equation (7.7) prescribes a dependence of the maximum magnitude on I2 for a

general relationship f(I2) between seismicity rate and strain rate. If f(I2) = c0I2,
accounting for (7.8), (2.20) simplifies in:

Mmax
w = 1

(1/c− b)

(
−d

c
+ log10 αcgµTs + log10 (1 − cb) − log10

(
c0
)

− bMc

)
(7.10)

If cg, α and Ts are assumed to be spatially constant, the previous relationship
prescribes a single value of maximum magnitude for all the area inside the grey
polygon in Figure 7.1. This may seem not intuitive; actually, even if the maximum
magnitude is unique for all the regions with different strain rate, the recurrence
time of the maximum magnitude event changes from one region to another (Stevens
and Avouac 2021).

A first estimate of the maximum magnitude can be done assuming cg, α and
Ts constant with reasonable values for the Apennines. The parameters c and d
are respectively set equal to 2/3 and 6. Since the presence of normal faults with
∼ 45° of dip (recent earthquakes of Amatrice, Norcia and Colfiorito took place
on faults approximately having this dip value), the geometric factor cg can be set
equal to 2. According to the previous choice for the cut on the earthquakes’ depth
in the catalog, the seismogenic thickness Ts should be set equal to 30 km. Finally,
α is set equal to 1, meaning that aseismic moment release is negligible, while µ
is set equal to 30 GPa. Using the linear relationship for a map having qmax = 8,
which is the map that we have selected over the others in chapter 4, we obtain
a maximum magnitude greater than 7.9 considering both the catalogs. This is
clearly an unreasonable value for the Apennines. One possible wrong assumption
is to consider the seismogenic thickness equal to 30 km. In fact, even if, during
the catalog declustering, we considered only events with a depth less than 30
km, there are evidences that the seismogenic thickness for Apennines has values
less than 30 km (Chiarabba and De Gori 2016). Considering as mean value for
the seismogenic thickness 10 km we would obtain a first order more reasonable
maximum magnitude values of 7.55, for the catalog from 1981, and of 7.19 for
the catalog from 2005. Still the value of 7.55 is greater than the magnitude value
of the largest event in CPTI15 catalog (Rovida et al. 2022) while the estimate
provided by 2005 seismic catalog seems to be more realistic. It’s worth to notice
that the seismic catalog from 2005 has a smaller magnitude of completeness that
the catalog from 1981.

Moreover, constant values of cg, α and Ts on all the study region could be an
oversimplification for the Apennines. The geometric factor depends on the local
geometry of the faults that vary through the Apennines. The seismogenic thickness
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reference value percentage change Mmax
w % change

cg 2 +25% +2.2%
α 1 −25% −2.9%
c0 7 +14% or −14% −1.3% or +1.5%

Table 7.4: Relative changes of Mmax
w for variations of the input parameters.

Ts is not constant for the study region but has a spatial variability (Chiarabba and
De Gori 2016) while α can be different from 1 for certain areas. A value for α equal
to 1 can, in some cases, lead to overestimate the actual moment build-up rate. For
example, there are evidences that the Alto-Tiberina fault is creeping (Anderlini,
Serpelloni, and Belardinelli 2016) standing inside an area with high interseismic
strain rate. To have an idea of what extent α, cg and c0 influence the estimate of the
maximum magnitude, each uncertain parameter is varied by a certain percentage
to see how the maximum magnitude estimate changes (Table 7.4). The allowed
variability for c0 is within the interval of uncertainty of this parameter according to
Table 7.1. The reference configuration is the one with Ts = 10km, α = 1, cg = 2,
c0 = 7 b = 0.89 and Mc = 1.3 (using the independent catalog from 2005) that
leads to a Mmax

w of 7.19.
In this preliminary sensitivity test, we didn’t examine the variability of Mmax

w

with respect to variations of b, Ts and Mc since, strictly, their variation is correlated
to the seismicity rate estimate and then the c0 estimate. Given the sensibility to
the input parameters, an objective evaluation of the maximum magnitude can not
disregard uncertainties of each parameter involved in (7.10). From Table 7.4 it
can be noted that the parameters have a significant impact on the final estimate
of the maximum magnitude. For example, a 2% change for Mmax

w means, for this
case, a magnitude change of ∼ 0.14, which is not negligible.
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Chapter 8

Conclusions and future
developments

In this thesis three different methods to estimate the horizontal geodetic strain rate
field in the Apennines were examined. The preferred method is the one of Tape
et al. 2009 that permits the generation of different strain rate maps based on a
spatial length scale representing the GPS station’s density. We retain that the map
corresponding to a length scale of ∼ 30 km (qmax = 8) can be the best compromise
between robustness and resolution, avoiding, or minimizing, high strain rate con-
centrations due to local problems. However, the method, as the others examined,
has a certain degree of subjectivity in the choice of the optimal resolution.

In the second part of this thesis I have examined if the geodetic strain rate is
representative of the strain accumulated and released through earthquakes, ϵR

ij. It
has been observed that the agreement between geodetic strain rates and ϵR

ij can
holds for a first order comparison. This means that both hypotheses 1 (interseismic
loading is stationary) and 2 (the geodetic strain rate reflects the stress rate),
hold at first order. However, the distribution of orientations of principal axes
of seismic strain from focal mechanisms shows a larger variability that can be
mainly due to stress transfer mechanisms during earthquake sequences. We have
also examined if independent events from declustering of the seismic catalog follow
a Poisson distribution (hypothesis 3). This is verified reasonably well for both the
independent catalogs, but formally only for threshold magnitudes larger than the
completeness ones.

In the last part of this thesis, the spatial density of earthquakes has been
studied to find the dependence on the strain rate as supposed by Stevens and
Avouac 2021 (hypothesis 4). Dividing the study area in regions with different
strain rate improves the spatial homogeneity of independent events inside each
area with respect to the distribution on the overall area. On the other hand, the
hypothesis of a formal uniform distribution inside each area seems to be too strong
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for the Apennines.
A linear relationship between strain rates and seismicity rates (hypothesis 5)

can well explain the observed variance only for enough high resolution strain rate
maps (qmax = 8 and qmax = 9). This is an indication that different strain rate maps
have a different impact on the relationship between strain rate and seismicity rate,
which is an original result of the present thesis. In principle this relationship can
provide important constraints on the seismogenic potential, for example allowing
the estimates of the a parameter of the Gutenberg Richter law for different strain
rate regions and the maximum allowed magnitude in the Apennine region. How-
ever, the last estimate is influenced by multiple parameters; among the others the
aseismic fraction α that is not easy to be set.

This work is a first step in the analysis of the relationship between strain rate
and seismicity rates in the Apennines. A future development of the method should
consider a more accurate filter on seismic catalogs; for shallow earthquakes a depth
cut-off of 30 km may be excessive and statistical distribution of earthquakes along
depth could be considered. Moreover, one possibility is to use physical models to
estimate the geodetic strain rate such as elastic block models, which accounts also
for our knowledge on active faults. Finally, uncertainties and variations of impor-
tant parameters, such as b and Mc, should be considered and formally propagated
to the final results in order to estimate the uncertainties.
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Appendix

For each independent catalog, considering events having magnitude greater than
a threshold magnitude Mt (larger than the completeness one), the agreement be-
tween the observed inter-event time and an exponential distribution increases with
respect to Figure 6.9a and Figure 6.9b. This can be verified by a visual comparison
of Figure 8.1 and Figure 8.2, in which two values values of Mt are considered for
each catalog, with Figure 6.9a and Figure 6.9b. At the same time, the agreement
can be verified quantitatively through the Anderson-Darling test.

Starting with the independent catalog from 1981, we consider different values
of Mt and we find that the statistical test is passed for Mt = 3 with a p-value
of 0.09. This case is shown in Figure 8.1b. Considering the independent catalog
from 2005, it is found that the test is passed for Mt = 2.5. This corresponds to
Figure 8.2b and the test is passed with a p-value of 0.22.

The Poisson process in time is then formally verified for each catalog con-
sidering certain values of threshold magnitude Mt greater then the completeness
magnitudes.
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(a)

(b)

Figure 8.1: Histograms showing the distribution of inter-event times in days rela-
tive to the declustered catalog from 1981 and for two different threshold magnitudes:
a) 2.5 c) 3. Red lines show the expected distribution for a Poisson process. Over-
flows are the number of inter-event times greater than the maximum time shown
on the horizontal axis.
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(a)

(b)

Figure 8.2: Histograms showing the distribution of inter-event times in days rela-
tive to the declustered catalog from 2005 and for different threshold magnitudes: a)
2 b) 2.5. Red lines show the expected distribution for a Poisson process. Overflows
are the number of inter-event times greater than the maximum time shown on the
horizontal axis.
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