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epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
16 Cache evolution of Blackbox Hamming for ŝ and sλ for the fif-
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Abstract

Many real-word decision- making problems are defined based on forecast
parameters: for example, one may plan an urban route by relying on traffic
predictions. In these cases, the conventional approach consists in training a
predictor and then solving an optimization problem. This may be problem-
atic since mistakes made by the predictor may trick the optimizer into tak-
ing dramatically wrong decisions. Recently, the field of Decision-Focused
Learning overcomes this limitation by merging the two stages at training
time, so that predictions are rewarded and penalized based on their outcome
in the optimization problem. There are however still significant challenges
toward a widespread adoption of the method, mostly related to the limitation
in terms of generality and scalability. One possible solution for dealing with
the second problem is introducing a caching-based approach, to speed up the
training process. This project aims to investigate these techniques, in order
to reduce even more, the solver calls. For each considered method, we de-
signed a particular smart sampling approach, based on their characteristics.
In the case of the SPOmethod, we ended up discovering that it is only neces-
sary to initialize the cache with only several solutions; those needed to filter
the elements that we still need to properly learn. For the Blackbox method,
we designed a smart sampling approach, based on inferred solutions.
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1 Introduction
It is not uncommon to find real-world applications where both machine learning
and optimization are used jointly. In these cases, a model is trained in order to
predict parameters for the optimization model. One of the most recurring strategy
for this type of tasks is the predict-then-optimize paradigm.

Let’s imagine a travelling salesman problem, where the distances are unknown
but, it is possible to predict them from some features (traffic, weather, condition
of the road). If we apply the predict-then-optimize paradigm, we are going to train
a model and then we will use it for computing distances between edges. The solver
will use this information to compute the shortest path.

Common sense would make us think that better predicting models will result in
solutions closer to the real ones, but in reality this is not the case. As a matter of
fact, the ML model will always make some errors and they will impact in some
ways the solution obtained. Think again about the travelling salesman problem,
if the model underestimates the shortest distance, it is more likely to get a better
solution with respect to a model that is overestimating it.

As a consequence, one way to obtain better predicting models would be, dur-
ing training, to take into consideration the effect of the errors on the optimization
model. This has been done in several studies; for example Elmachtoub and Grigas
(2017) propose a custom loss which takes into account the results of the optimiza-
tion model, while Vlastelica et al. (2019) presents a custom layer, also here the
error of the predicted solution will be taken into account.

By introducing these new approaches, also new challenges show up. During the
training process, now it will be necessary to compute the output of the optimiza-
tion model, but if we are dealing with an NP-hard problem, it would be impossible
to obtain a properly trained model, due to high training time.

One possible solution is to introduce a caching scheme, as proposed by Mulamba
et al. (2020). Instead of always calling the optimization model, the solution will
be obtained by searching inside a cache. However in order to obtain performances
comparable to those where the solver is always used, it is not possible to rely only
on the cache; sometimes the optimization model must be called.
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The thesis tries to discover if it is possible to develop a smart sampling scheme
capable of understanding if it is worth using the optimization model or the cache.
We are going to propose two different smart sampling approach, each designed
for a particular method. The first one, created specifically for SPO, will basically
filter the element that still needs to be learnt, while for Blackbox, it is possible
to add new solutions, without calling the solver and by inferring them from the
predicted values.

We also noticed, that for particular problems, it is not necessary to sample new
solutions. This is caused by how the data for predicting the values are generated.

The thesis is organized as follow:

• Section 3 presents the considered problems and the used methods for the
training process.

• Section 4 is about the way in which the balance between the solver calls and
the cache calls, influences the model.

• Section 5 focuses on finding which solutions are the most important for
learning, considering an SPO model, for a knapsack problem.

• Section 6 is about exploiting the knowledge of the previous section, in order
to develop a particular initialization for an SPO model, the filter initializa-
tion. In this way sampling new solution is not needed.

• Section 7 is about using the cosine similarity and additional information, in
order to infer the solutions from the predicted values, by using a Blackbox
model.

• Section 9 tries to check if both the approaches designed for a particular
method can be used altogether with the other method.

2 Related work
Predict-and-optimize problems are becoming more and more important in many
applications. Right now, the standard technique is the Two-stage approach, where
a model is trained, without taking into account the optimization task.
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However new techniques have been invented. For example Elmachtoub and Gri-
gas (2017) propose a new framework in order to train a ML model. It will take
into consideration the optimization problem and as a consequence, the model is
able to make more optimal decisions. Another possible approach is presented by
Vlastelica et al. (2019), where a layer with a custom backward pass is used, in
order to consider the optimization problem. Last but not least, Mulamba et al.
(2020) propose another possible loss, based on viewing non-optimal solutions as
negative examples and deal with the bottleneck of all these approaches, which con-
sists of the frequent computation of the optimal solutions, by introducing a caching
scheme. All these techniques can be applied for linear optimization problem with
a convex feasible region.

In the end we can say that optimizing over prediction is as valid as stochastic
optimisation over learnt distributions, as proven by Demirović et al. (2019). They
have also classified the possible learning approaches, into three groups: indirect,
which do not rely on the optimization problem, semi-direct, which rely on knowl-
edge of the optimization problem, like the ranking and, direct approaches, which
use the optimization problem in the learning process.

3 Background Knowledge

3.1 Problems
3.1.1 Shortest path problem

Given a directed graph represented by a 5 x 5 grid where each edge i is associated
to a cost yi. The objective is to reach the Southeast corner from the Northwest
corner, by taking the path with the minimum cost.

First of all the optimization model will generate an incidence matrix from the cor-
responding directed graph; it consists of an n xmmatrix A, where n is the number
of vertices, whilem is the number of edges. The matrix is defined as:

Aij =

$

’

&

’

%

´1 if the edge j leaves the vertex i
1 if the edge j enters the vertex i
0 else

(1)

Here is an example:

4



Figure 1: Example of incidence matrix.

Given also Sol P Rm , a vector of binary decision variable where:

Soli =

#

1 if the edge i is traversed
0 if the edge i is not traversed

(2)

And by defining a binary vector B of length n, where the starting element is set to
-1 and the last one is set to 1, it is possible to specify the necessary constraint for
our model, which is simply:

A ¨ Sol = B (3)
Last but not least, the objective function is defined as:

min(y ¨ Sol) (4)

Since we are in the branch of decision-focused learning, the costs y must be pre-
dicted from some features x.

3.1.1.1 SPO data

In order to generate the costs of the edges for the Shortest path problem, we ap-
plied the generation process introduced by Elmachtoub and Grigas (2017). Each
set of costs ci can be predicted by a feature vector xi P R5 sampled from a mul-
tivariate Gaussian distribution with i.i.d. standard normal entries, which means
x „ N(0, I5). It is also necessary to compute the matrix B* P Rdx5, (d = 40 since
it corresponds to the total amount of edges in a 5 x 5 directed graph). Each element
of the matrix corresponds to a Bernoulli random variable which is equal to 1 with
a probability of 0.5. Given xi and the matrixB˚, it is possible to compute the costs
vector ci with the following formula:

cij =

[(
1

?
5
(B˚xi)j + 3

)deg

+ 1

]
¨ ϵji @j = 1..d (5)
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cij denotes the jth component of ci, while (B˚xi)j the jth component of B˚xi.
Deg is a fixed positive integer number, while ϵj is a noise term; it is generated
by sampling from a random distribution between [1-ϵ̄,1+ϵ̄] where ϵ̄ is a parameter
greater than zero.

3.1.2 Knapsack problem

A knapsack problem consists of a maximum capacity C and a set of m items,
each of them associated to a value yi and a cost wi. The task consists in selecting
n elements in order to maximize the total value, without exceeding the capacity.
The optimization model will receive all this information and it will return as output
the solution, consisting of a binary array Sol P Rm where:

Soli =

#

1 if the item i is picked
0 if the item i is not picked

(6)

In order to properly define the optimization model, it is necessary to correctly set
the objective function and the constraints, which will be:

max
n

ÿ

i=1

yisoli (7)

Such that:
n

ÿ

i=1

wisoli ď capacity (8)

Since we are dealing with a decision-focused learning problem, the values y need
to be predicted from some features x.

3.1.2.1 Energy Price dataset

In this case the features are obtained by considering the data-set from Ifrim et al.
(2012). It consists of 30 minutes slots of historical energy price data from 2011 to
2013. Each of them is associated to features like: day-ahead estimates of weather
characteristics, SEMO day-ahead forecasted energyload and wind-energy produc-
tion; but also to a target represented by the energy price.

Given its characteristics, the data-set can be used to build knapsack problems, as
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presented in the paper by Mandi et al. (2019). In our settings, each knapsack prob-
lem will consist of 48 time slots (corresponding to one day), where each of them
has a value y, represented by the energy price and a cost w, which is randomly
assigned. The possible values for it are: 3,5,7.

In order to increase the difficulty of solving these problems, the same approach
presented by Pisinger (2005) has been applied, which means that a correlation be-
tween the costs w and the values y is added. Basically, each value yi is obtained
by multiplying themselves with their correspondent cost w̃i, where w̃i = wi + ξ.
Where ξ is a Gaussian noise „ N(0, 25).

3.2 Methods
All the presented methods will follow the predict-then-optimize paradigm. A
model is trained in order to predict costs from some features and then, these costs
are used by the solver in order to compute the solution.

3.2.1 Two-stage approach

The approach that is used widely in the industrial sector is the Two-stage approach.
A model m, represented by its weights w, is trained accordingly to the stochastic
gradient descent, in order to minimize a suitable loss, which in our case is the mean
squared error.

Lmse(y, ŷ) =
1

n

n
ÿ

i=1

(yi ´ ŷi)
2 (9)

Algorithm 1 Stochastic batch gradient descent for the Two-stage approach
for each epochs do

Sample N elements from the dataset
L = 0
for i = 1, . . . , N do

ŷi = m(xi, w)
L = L+ Lmse(yi, ŷi)

end for
w = w ´ lr ¨ ∇L

end for

7



Since theMSE does not give relevant information about the solution obtained from
the predicted target ŷ, it is necessary to use an additional metric which, in our case,
will be the regret, defined as:

regret(y, ŷ) = |f(v˚(ŷ), y) ´ f(v˚(y), y)| (10)

where:

v˚(y) =

$

&

%

arg max
sPS

f(s, y) if maximization problem

arg min
sPS

f(s, y) if minimization problem
(11)

v˚(ŷ) denotes the optimal solution ŝ obtained by calling the solver using the pre-
dicted target ŷ, while v˚(y) denotes the optimal solution s for the real target y.
f(ŝ, y) is the final cost linked to the predicted solution ŝ by using the real costs y,
while f(s, y) is the final cost for the real solution.

One of the advantages of the Two-stage approach, is that we do not rely on the
solution returned by the solver, as a consequence, it is not necessary to call it
during the training process, leading to a faster training with respect to the other
presented options. However, at the same time, by doing that, the model is not
considering the impact of the predicted target, over the returned solution, leading
to sub-optimal decisions.

Think about the Shortest path problem, there can be a high difference between
a model which overestimates the shortest distance between two edges, with re-
spect to one which underestimate it. In the first case, the computed solution can
be totally different with respect to the real one, even if all the other edges are pre-
dicted correctly, while for the second case, it is more likely to obtain a solution
closer to the real one; and for this reason, it would be necessary if not essential to
consider the effect of the predictions over the predicted solutions.

3.2.2 SPO approach

As already mentioned before, one of the major drawbacks of the Two-stage ap-
proach, is that it does not take into account the impact of the predicted target, over
the returned solution, leading in most of the cases to sub-optimal choices. Our fi-
nal goal would be to learn the model parameters w in order to minimize the regret
of the predicted costs, however we can not use it directly as loss, since it is non-
continuous and it would involve in differentiating over an argmin or an argmax,

8



based on the problem that we are considering, as depicted in the equation 11.

In order to deal with this problem, Elmachtoub and Grigas (2017) derive a new
loss from the regret formula. In fact if the optimization problem can be described
as:

v˚(y) = arg min
sPS

(yTw) (12)

Then we can define the regret as:

regret(y, ŷ) = yT (v∗(ŷ)−v∗(y)) (13)

However, the formula is still non differentiable, but it is possible to derive an upper
bound for it, that will be our loss, in fact:

LSPO+(y, ŷ) = max
sPS

(yT s ´ 2ŷT s) + 2ŷTv˚(y) ´ yTv∗(y) (14)

Given that, the authors discovered the formula:

g(y, ŷ) = v˚(y) ´ v˚(2ŷ ´ y) P ∇LSPO+(y, ŷ) (15)

It can be easily plugged in our algorithm as sub-gradient of the SPO+ loss; we can
apply the same approach also for maximization problem, by simply switching the
sign of the subgradient.

Algorithm 2 Stochastic batch gradient descent for the SPO approach
for each epochs do

Sample N elements from the dataset
∇L = 0
for i = 1, . . . , N do

ŷi = m(xi, w)
∇L = ∇L+ v˚(yi) ´ v˚(2ŷi ´ yi)

end for
w = w ´ lr ˚ ∇L

end for

In the end, we are going to update the weights of our network, based only on the
sub-gradient of the SPO+ loss, which is simply the difference in terms of solutions
between the one obtained using the real costs yi and the one obtained by combin-
ing yi with the predicted costs ŷi. By applying this approach, we are able to take
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into consideration the optimization problem during the training process. However,
one of the biggest issues that appears is that it will be necessary to solve the op-
timization problem for each instance, since v˚(2ŷi ´ yi) is needed, while v˚(yi)
can be stored in a cache during the initialization, since we suppose it is known. As
you can imagine, solving all these optimization problems can be computationally
expensive, leading to a high training time.

3.2.3 Blackbox approach

In order to consider the optimization problem during the training process, Vlastel-
ica et al. (2019) introduce a new layer with a custom backward pass. The settings
are the same of the optimization problem described in the section 3.2.2

v˚(y) = arg min
wPS

(yTw) (16)

The authors pointed out that, the fundamental problem of differentiating through
a combinatorial solver, is not actually the lack of differentiability, but the fact that
the gradient is a constant zero or does not exists at the point of jumps. This is
due to the fact that we are considering combinatorial optimization problems, as
a consequence if the predicted costs are infinitesimally increased, we will have
two scenarios: in the first one the computed solution will be the same as before,
as a consequence the gradient will be zero, while in the other case, the predicted
solution will change and for that we will have a point of jump. In order to deal
with this problem, they simplify the situation by considering the linearization f of
L at the point v˚(ŷ).
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(a) Small value of λ (b) High value of λ

Figure 2: Continuous interpolation of a piece-wise constant function. 2a has only
two incomplete interpolators: g1 and g2. 2b has most of the interpolators incom-
plete, but also a δ-interpolator g3 which attains the value f(s1) δ-aways from the
set P1. Despite losing some local structure for high λ, the gradient fλ is still infor-
mative. Source Vlastelica et al. (2019)

f(s) = L(ŝ) + dL
ds

(ŝ)(s ´ ŝ) (17)

As a consequence, we are going to have:

df(s(y))

dy
=

dL
dy

(18)

Then, we need sλ(y), which is a solution of a perturbed optimization problem.

sλ(y) = arg min
sPS

(s ¨ y + λf(s)) (19)

From that, we are able to compute fλ(y), a continuous interpolation of f(s).

fλ(y) = f(sλ(y)) ´
1

λ
[y ¨ s ´ y ¨ sλ(y)] (20)

Now, we are able to compute ∇fλ(y), since fλ is differentiable and it can be for-
mulated as:

∇fλ(y) = ´
1

λ
[s ´ sλ(y)] (21)

Finally, we can use it as gradient of the selected loss, as shown below.
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Algorithm 3 Forward pass for Blackbox
function ForwardPass(ŷ)

ŝ = v˚(ŷ)
save ŷ and ŝ for backward pass
return ŝ

end function

Algorithm 4 Backward pass for Blackbox
function BackwardPass(dL

dŝ
(ŝ), λ)

load ŷ and ŝ from forward pass
y1 = ŷ + λ ¨ dL

dŝ
(ŝ)

sλ = v˚(y1)
∇wfλ(ŷ) = ´ 1

λ
(ŝ ´ sλ)

return∇wfλ(ŷ)
end function

By adding, only one additional hyper-parameter λ, which controls the trade-off
between the ”informativeness of the gradient” and ”faithfulness to the original
function”, we are able to consider the optimization problem during the learning
process, however the same issue of the SPO approach is also here. For each ele-
ment of our dataset, it will be necessary to call the solver twice and, as before, this
will lead to a high training time.

The main difference between the SPO approach and the Blackbox approach, is that
SPO introduces the optimization problem, by using a custom loss, while Blackbox
uses only a custom backward pass, as a consequence different losses can be used
with the second one. In our case, we used the Hamming distance or the regret.

3.2.3.1 Hamming distance

One possible suitable loss is the Hamming distance between the predicted solu-
tion ŝ and the target s. It basically computes the number of positions at which
the elements are different. We will use a linear relaxation of it, as Vlastelica et al.
(2019) do in their paper, since it would be not differentiable.

H(s, ŝ) =

řn
i=1(ŝi(1 ´ si) + (1 ´ ŝi)si)

n
(22)

12



3.2.3.2 Regret

Another possible candidate to use, is the regret. It is also possible to simplify
the forward and backward pass for it. In fact given the regret formula:

regret(y, ŷ) = yT (v∗(ŷ)−v∗(y)) (23)

We need to compute dL
ds
(ŝ) which is simply y. As a consequence, the forward and

backward pass can be rewritten as:

Algorithm 5 Forward pass for Blackbox with regret as loss
function ForwardPass(ŷ)

ŝ = v˚(ŷ)
sλ = v˚(ŷ + λy)
save ŝ and sλ for backward pass
return ŝ

end function

Algorithm 6 Backward pass for Blackbox with regret as loss
function BackwardPass(dL

dŝ
(ŝ), λ)

load ŝ and sλ from forward pass
∇wfλ(ŷ) = ´ 1

λ
(ŝ ´ sλ)

return∇wfλ(ŷ)
end function

3.3 Cache
As alreadymentioned before, the biggest concern of the SPO andBlackboxmethod,
is that, in order to consider the optimization problem, during the learning process,
it is necessary to call the solver for each element, leading to higher training time
with respect to the Two-stage approach.

The paper written by Mulamba et al. (2020) deals with this issue, by introduc-
ing a caching scheme. If we suppose to have available a cache filled with feasible
solutions, we can actually replace the solver with it. Instead of solving the opti-
mization problem, it will be only necessary to find the solution in the cache, which
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maximizes or minimizes the objective function. As a consequence, this approach
will lower the training time.

This technique can be applied for both SPO and Blackbox but, instead of always
calling the solver, we are going to have an additional parameter psolve, indicating
the probability of calling the optimization model or the cache. For each element
of our data-set, we are going to sample a number between 0 and 100, if is it below
psolve then the solver is called and a new solution will be generated and stored in
the cache. In the other case, we are going to simply do an argmin/argmax over the
list of solutions. The cache is initialized with the optimal solutions of the data-set.

As explained in the paper, the results in terms of regret for psolve = 100 and
psolve = 5 are similar, however for psolve = 5 there is a significant reduction
of the computational time, since the solver is called less times.

By introducing the caching scheme, new questions rise, for example, if we want to
additionally decrease the amount of solver calls, it would be necessary to decrease
even more the psolve parameter, but this can effect the performances in terms of
regret. So it is important to understand when we should sample from the cache
and, in particular, finding how we should initialize the cache.

In order to do that, first of all, it is necessary to understand how the growth param-
eter psolve affects the learning process; then by observing in depth the evolution
of the cache, it would be possible to understand which new solutions are added
and how relevant they are. From this knowledge we should be able to develop a
smart sampling approach or a particular initialization, which ideally would lead us
to have a model which does not rely on the solver.

4 Effect of the growth parameter

4.1 Introduction
To deal with the high training time, the authors Mulamba et al. (2020) proposed a
caching scheme for the solutions. As a consequence, during the training process,
instead of solving the real optimization problem, we can use the inner approxima-
tion associated to the caching scheme, leading to lower training time. We can say
that there will be a trade-off between exploitation (when we are going to use the
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cache) and exploration (when we are going to call the solver). This trade-off will
be dictated by the growth parameter psolve.

What we want to understand in this section is how this hyper-parameter affects
network performances and cache evolution in order to understand if is possible
to balance the exploitation steps with the exploration steps. The final aim is to
reduce even more the solver calls. Two problems have been considered: the knap-
sack problem and the shortest path problem, together with the methods explained
previously.

4.2 Shortest path problem
4.2.1 Experimental setup

The considered problem is the one explained in section 3.1.1. The data-set is gen-
erated by following the method explained in section 3.1.1.1. In particular, as ex-
plained by Elmachtoub and Grigas (2017), in order to observe a difference be-
tween the Two-stage approach and the other approaches, it is necessary to set the
degree parameter to a high value. In fact, our network will consist only of a lin-
ear layer and, since the generation process is non-linear, it will be difficult for the
Two-stage approach to find the proper weights. By increasing deg, we are going
to increase the model misspecification; as a consequence the Blackbox and SPO
approaches will obtain better results with respect to the Two-stage approach since
they are more capable of handling non-linear signals. The noise term ϵ was set to
0.5, while n, the amount of generated data to 100.

After generating a training set of 100 elements, a validation set of 25 elements
and a test set of 50 elements, we did an hyper-parameter search over the validation
set, in order to obtain the best performances.

The network will consist only of a linear layer, made up of five neurons (as the
number of feature) and forty output neurons (as the number of arcs). ADAM
(Kingma and Ba (2014)) was the selected optimizer. All the methods were im-
plemented with Pytorch (Paszke et al. (2019)) and Gurobi (Gurobi Optimization,
LLC (2022)).
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Figure 3: Hyper-parameters for shortest path methods

4.2.2 Experiment

A set of values for psolve was considered in order to understand how it affects the
training process and the performances, in particular psolve P [0, 5, 50, 90, 100]. For
each of these values, we trained a model five times and we computed the average
and the standard error of the test regret for each epoch; the cache was initialized
by using the target solutions. The consideredmethods are all the one shown before.

Since we also want to uncover how psolve affects the evolution of the caching
scheme, we generated the caching history. It is a file showing some information
of each solution inside the cache, like: in which epoch it was generated and how
many times it was picked. For SPO we are going to have only one file, containing
this information since, the solver is called only once. While for both the Blackbox
methods, two different caching histories are needed, since the solver/cache will be
called twice, one time for ŝ and one time for sλ. By doing this we expect to have
more insight about what is happening, internally, during the training process.

Down below, the final results are shown.
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Figure 4: Comparison of the methods for the shortest path problem

Figure 5: Comparison of SPO with different psolve
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Figure 6: Comparison of Blackbox regret with different psolve

Figure 7: Comparison of Blackbox hamming with different psolve

4.2.3 Discussion

As you can see from the figure 4, SPO and Blackbox methods are able to outper-
form the Two-stage approach, as expected. However one interesting fact, is that
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there is no significant difference in terms of regret for different psolve, consequen-
tially we can actually use only psolve = 0 and we would still get a suitably trained
model. For each of these methods there is a proper explanation.

4.2.3.1 SPO

By checking the evolution of the cache, it is possible to understand the reason
for this behaviour. The image 8 represents the caching history for all the epochs
for psolve = 100. This means that the obtained solutions by calling the solver, are
always the same for different epochs. This is due to the fact that, in order to com-
pute the sub-gradient, it is needed to compute v˚(2ŷ ´ y). Since we set deg, an
hyper-parameter of the data generation, equals to 8, the real costs will lay in a big
interval, as a consequence the prediction y will act as noise most of time, since the
model is not able to reach the real costs. However the model will still learn, since
v˚(2ŷ ´ y) will find the shortest path for ´y, so the highest costs will become the
lowest, leading to a different problem with respect to the original one.

One would be inclined to think that the model with psolve = 100 would obtain
better results, since the optimal solutions are used. However the main problem
with this setting is that, we can not expect to obtain very different solutions from
those stored in the cache (in terms of number of ones), due to how the problem is
defined. In fact only 70 solutions are possible, as a consequence it is most likely
to have already inside the cache most of them. This can also explain the fact that,
even if with psolve = 100, new solutions are added only during the first epoch,
meaning that most of the time, the cache has already the desired solution. By also
knowing that 75% of the time the solution picked is one from the initialization, we
can understand why it is not needed to obtain new solutions. However, things will
be different for the knapsack problem.
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Figure 8: Cache evolution for all the epochs for psolve = 100, the numbers on the
y-axis are the id of the solutions, while the numbers at the end of the bars indicates
how many times that solution is picked

4.2.3.2 Blackbox - Regret

As already done for the SPO method in the previous section, we can check the
caching history of the model in order to understand why psolve does not affect the
learning process in these settings. Since the Blackbox methods require to call the
solver two times, we generated the caching history for both the calls, for ŝ and sλ.

As you can see from the images 9, 10, 11, 12, if we focus our attention on sλ,
we can see that the distribution is always the same, which means that for each
epoch the same solutions are used. There is an explanation: sλ is computed as
v˚(ŷ + λy), however as already explained in the section 4.2.3.1, y will be incom-
parable in terms of magnitude most of time, since we set deg = 8, for generating
the data. Even if we have λ that decreases the values of y, it is not enough. As
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a consequence we will have a similar behaviour to that of the SPO method, since
ŷ will act as noise with respect to y, unable to reach those values. In the end, by
knowing this, we can immediately understand that v˚(ŷ + λy) will return the real
solution s, so our prediction ŷ does not have any influence.

The only part where ŷ influences the solutions, is for ŝ, since ŝ = v˚(ŷ), how-
ever as you can see down below, during the training process most of the time the
real solutions are picked, as a consequence we can actually rely only on them and
obtaining the same result of a model with psolve = 100.

(a) Cache evolution for ŝ (b) Cache evolution for sλ

Figure 9: Cache evolution for ŝ and sλ for psolve = 100 for the first epoch, the
numbers on the y-axis are the id of the solutions, while the numbers at the end of
the bars indicates how many times that solution is picked
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(a) Cache evolution for ŝ (b) Cache evolution for sλ

Figure 10: Cache evolution for ŝ and sλ for psolve = 100 for the fifth epoch, the
numbers on the y-axis are the id of the solutions, while the numbers at the end of
the bars indicates how many times that solution is picked

(a) Cache evolution for ŝ (b) Cache evolution for sλ

Figure 11: Cache evolution for ŝ and sλ for psolve = 100 for the tenth epoch, the
numbers on the y-axis are the id of the solutions, while the numbers at the end of
the bars indicates how many times that solution is picked
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(a) Cache evolution for ŝ (b) Cache evolution for sλ

Figure 12: Cache evolution for ŝ and sλ for psolve = 100 for the fifteenth epoch,
the numbers on the y-axis are the id of the solutions, while the numbers at the end
of the bars indicates how many times that solution is picked

4.2.3.3 Blackbox - Hamming

Also here, in order to understand why psolve does not affect the training process, the
caching history was checked. Since we are using a Blackbox method, two caching
history are used, one for sλ and one for ŝ. If we take a look at the figures 13, 15
and 16, we can see that we are obtaining the same behaviour of the Blackbox with
the regret as loss, in fact the distribution for sλ does not change through the epochs.

sλ is computed as v˚(y1), where y1 = ŷ + λ ¨ dL
dŝ
(ŝ). In order to compute dL

dŝ
it

is necessary to compute the sub-gradient of the linear Hamming loss (shown in
the equation 22) for each ŝi, the elements of the predicted solution. It is possible
to notice that:

dL
dŝi

=
d( (ŝi(1´si)+(1´ŝi)si)

n
)

dŝi
=

1 ´ 2si
n

(24)

As a consequence dL
dŝ
will consist of a vector dependent only on si, in fact, we can

simplify the formula without considering n and we will obtain:

dL
dŝi

=

#

1 if the edge i is not traversed
´1 if the edge i is traversed

(25)

Now, if we plug it in y1 we can immediately notice, that we will obtain the same
behaviour of the Blackbox model with regret as loss, shown in the section 4.2.3.2.
In fact given the formula y1 = ŷ+λ ¨ dL

dŝ
(ŝ) and by knowing that λ = 100 (obtained
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by running a grid search), we can notice that ŷ will act as noise, since it is not
comparable to λ ¨ dL

dŝ
(ŝ). We can also deduct that sλ will consist of the real solution

s. Given that sλ = v˚(λ ¨ dL
dŝ
(ŝ)) and λ = 100, the solver has to solve a problem

where:

λ ¨
dL
dŝ

(ŝ) =

#

100 if the edge i is not traversed in the solution s
´100 if the edge i is traversed in the solution s

(26)

Which means that the traversed edges in the real solution will have a negative
cost, while the not traversed ones will have a positive cost. It is obvious that the
returned solution sλ it is in reality s.

The only part where ŷ influences the solutions, is for ŝ, since ŝ = v˚(ŷ), how-
ever as you can see down below, during the training process most of the time the
real solutions are picked, as a consequence we can actually rely only on them and
obtaining the same result of a model with psolve = 100.

(a) Cache evolution for ŝ (b) Cache evolution for sλ

Figure 13: Cache evolution for ŝ and sλ for psolve = 100 for the first epoch, the
numbers on the y-axis are the id of the solutions, while the numbers at the end of
the bars indicates how many times that solution is picked
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(a) Cache evolution for ŝ (b) Cache evolution for sλ

Figure 14: Cache evolution for ŝ and sλ for psolve = 100 for the fifth epoch, the
numbers on the y-axis are the id of the solutions, while the numbers at the end of
the bars indicates how many times that solution is picked

(a) Cache evolution for ŝ (b) Cache evolution for sλ

Figure 15: Cache evolution for ŝ and sλ for psolve = 100 for the tenth epoch, the
numbers on the y-axis are the id of the solutions, while the numbers at the end of
the bars indicates how many times that solution is picked
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(a) Cache evolution for ŝ (b) Cache evolution for sλ

Figure 16: Cache evolution for ŝ and sλ for psolve = 100 for the fifteenth epoch,
the numbers on the y-axis are the id of the solutions, while the numbers at the end
of the bars indicates how many times that solution is picked

4.3 Knapsack problem
4.3.1 Experimental setup

The problem is the one explained in the section 3.1.2. Several capacities have been
considered, in particular: 60, 120 and 180.

Speaking about the data-set, for this experiment, we decided to consider the Energy-
price dataset, explained in section 3.1.2.1. It was split into three sets: training,
validation and test. In order to obtain the best performances, an hyper-parameter
search over the validation set was needed.

About the Blackbox approaches, we decided to apply only the one that uses the
regret as loss, since, as you can see from the section 4.2.3.3 and 4.2.3.2, both of
them have a similar behaviour, as a consequence we expect to obtain similar re-
sults.

The network will consist only of a linear layer, made up of eight input neurons
(as the number of features) and one output neuron (the predicted cost). ADAM
(Kingma and Ba (2014)) was the selected optimizer. All the methods were im-
plemented with Pytorch (Paszke et al. (2019)) and Gurobi (Gurobi Optimization,
LLC (2022)).
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Figure 17: Hyper-parameters for knapsack methods

4.3.2 Experiment

In order to understand how psolve affects the training and the performances, we de-
cided to consider a set of values for it, in particular: psolve P [0, 0.5, 1, 5, 90, 100].
For each of these values, we trained a model five times and we computed the
average and the standard error of the test regret for each epoch. The cache was
initialized by using the target solutions. The results are also compared with the
one of Two-stage approach, in order to show the potential of SPO and Blackbox
approaches.

Since we also want to discover, how psolve influences the caching scheme and
its evolution, we also generated the caching history, a file containing for each so-
lution, when it was generated and, how many times it was picked given an epoch.
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(a) Comparison of the methods

(b) Comparison of SPO with different psolve
(c) Comparison of Blackbox regret with differ-
ent psolve

Figure 18: Comparison of methods for the knapsack problem with capacity = 60
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(a) Comparison of methods

(b) Comparison of SPO with different psolve
(c) Comparison of Blackbox regret with differ-
ent psolve

Figure 19: Comparison of methods for the knapsack problem with capacity = 120
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(a) Comparison of methods

(b) Comparison of SPO with different psolve
(c) Comparison of Blackbox regret with differ-
ent psolve

Figure 20: Comparison of methods for the knapsack problem with capacity = 180

4.3.3 Discussion

As you can see from the figure 18a,19a and 20a, SPO and Blackbox methods
are able to generate a better model with respect to the Two-stage approach. Also
another interesting fact is that even if we set psolve to 0.5, which means that only
0.5 % of the times, the solver is called, we are able to obtain a model which is
comparable to the one obtained with psolve = 100. However if we set it to 0, the
performances become worse. In the next chapter we are going to uncover these
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causes.

4.3.3.1 SPO

In order to understand why there is no significant difference between psolve = 0.5
and psolve = 100 the caching history must be checked. Figure 21 and 22, repre-
sent respectively the caching history during the first, third and fourth epoch for
psolve = 0.5 and psolve = 100. We show only the graph related to capacity = 60,
since also the other models, related to the different capacities, share the same be-
haviour.

As you can see until the third epoch, only one solution is picked most of the time,
this solution is the one composed only of zeros. This is due to the fact that, we need
to compute v˚(2ŷi ´ yi), as depicted in the equation 15, however we encounter a
situation similar to the one of the shortest path problem. In this case, as before, our
predictions are incomparable in terms of magnitude to the target, as a consequence
2ŷi´yi will turn out to be ´yi . It is obvious that passing these values to the solver
will return a solution of only zeros, since maximizing the value of a knapsack with
negative objects, means to not pick any of them.

Even if, the probability of calling the solver is very low, on the contrary, the proba-
bility of obtaining a solution of only 0 is really high during the firsts epochs. After
being obtained, it will basically be used most of the time, as a consequence this
leads to have a similar behaviour between psolve = 0.5 and psolve = 100.

It is also explainable why the model related to psolve = 0 gives worse results.
The main problem here is that, in the initialized cache, we have only the solutions
for the targets, which means that a solution of only 0 is not present. Since the
solutions in the cache are very different from it (in terms of number of ones), it is
obvious that the model is not able to learn properly.

Also the last interesting fact is that, the learning process seems to converge around
the 4th ´ 5th epoch, as shown in the figure 18b, 19b and 20a. Which means that,
the solution of only zeros takes an important role, in the learning process for the
SPO method. In the chapter 5 we are going to verify this statement.
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(a) Cache evolution for the second epoch (b) Cache evolution for the third epoch

(c) Cache evolution for the fourth epoch epoch

Figure 21: Cache evolution of SPO with psolve = 0.5 and capacity = 60 for the
second, third and fourth epoch. The numbers on the y-axis are the id of the so-
lutions, while the numbers at the end of the bars indicates how many times that
solution is picked
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(a) Cache evolution for the second epoch (b) Cache evolution for the third epoch

(c) Cache evolution for the fourth epoch epoch

Figure 22: Cache evolution of SPO with psolve = 100 and capacity = 60 for the
second, third and fourth epoch. The numbers on the y-axis are the id of the so-
lutions, while the numbers at the end of the bars indicates how many times that
solution is picked

4.3.3.2 Blackbox - Regret

As you can see from the graphs below, the Blackboxmethod with regret as loss has
a very different behaviour with respect to the SPO method. This can be noticed,
from the figure 23 and 24, since in neither of them, the first picked solution is the
one of only zeros, meaning that it does not have a lot of relevance.

It has also a very different behaviour with respect to the Blackbox method for the
shortest path problem, discussed in the section 4.2.3.2. Here the λ hyper-parameter
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is set to 10´5, remember that is used for computing sλ = v˚(ŷ + λy). Since it is
very low, but at the the same time y » ŷ, λ balances the difference in terms of
magnitude of the two terms.

Last but not least, it is important to notice that, even if we set psolve = 0.5 , the
computed solutions are sufficient to obtain a properly trained model, as you can
see from the figure 18c, 19c and 20c. Also, for both ŝ and sλ, some solutions
obtained by the solver, are composed only of a small amount of ones. This is due
to the fact that the predicted values can be negative, and if they are the majority,
the solution will consists of all the objects with a positive cost, since the knapsack
will not reach the maximum capacity.

In the end, we were not able to find any indication of a possible relation between
ŝ and sλ, therefore in the section 7, we are going to discuss if it is possible to
find a connection between the predicted values and the solutions inside the cache;
reasoning even more about why, with psolve = 0.5, we were able obtains those
promising results.
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(a) Cache evolution for the second epoch (b) Cache evolution for the fourth epoch

(c) Cache evolution for the eighth epoch

Figure 23: Cache evolution of ŝwith psolve = 0.5 and capacity = 60 for the second,
third and eights epoch. The numbers on the y-axis are the id of the solutions, while
the numbers at the end of the bars indicates howmany times that solution is picked
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(a) Cache evolution for the second epoch (b) Cache evolution for the fourth epoch

(c) Cache evolution for the eighth epoch

Figure 24: Cache evolution of sλ with psolve = 0.5 and capacity = 60 for the sec-
ond, third and eighth epoch. The numbers on the y-axis are the id of the solutions,
while the numbers at the end of the bars indicates how many times that solution is
picked
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(a) Cache evolution for the second epoch (b) Cache evolution for the fourth epoch

(c) Cache evolution for the eighth epoch

Figure 25: Cache evolution of ŝwith psolve = 100 and capacity = 60 for the second,
third and eights epoch. The numbers on the y-axis are the id of the solutions, while
the numbers at the end of the bars indicates howmany times that solution is picked
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(a) Cache evolution for the second epoch (b) Cache evolution for the fourth epoch

(c) Cache evolution for the eighth epoch

Figure 26: Cache evolution of sλ with psolve = 100 and capacity = 60 for the sec-
ond, third and eighth epoch. The numbers on the y-axis are the id of the solutions,
while the numbers at the end of the bars indicates how many times that solution is
picked

5 Importance of new solutions for SPO

5.1 Introduction
As shown in the previous section, there is a high difference, for the SPO method,
between psolve = 0 and psolve = 100. This means that it is necessary to not rely
only on the target solutions from the cache. However, even if we set psolve to 0.5,
the obtained model results similar to the one with psolve = 100. We even noticed
that, in each model, the solution that is used mostly during the firsts epochs, is
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the one with only zeros. In this section we want to understand how important this
solution is for the learning process and if also the others, have a strong effect like
it.

5.2 Experimental setup
The experimental setup is the same explained in the section 4.3.1.

5.3 Experiment
With the aim of understating how important the solution with only zeros is, we
examined an additional initialization of the cache. We filled it with the target so-
lutions, together with one made only by zeros. With this initialization (INIT1), we
considered two SPO models, with psolve P [0, 100]. The final performances are
obtained by training each model five times; the average and the standard error of
the test regret is computed for each epoch.

The final results are compared with the ones obtained for the SPO models of the
previous experiments. So, the only difference is in the initialization, before, it was
filled only with the target solutions (INIT0).

Figure 27: Comparison for SPO, with INIT0 and INIT1 and capacity = 60
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Figure 28: Comparison for SPO, with INIT0 and INIT1 and capacity = 120

Figure 29: Comparison for SPO, with INIT0 and INIT1 and capacity = 180
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5.4 Discussion
As you can see from the figures 27,28 and 29, the results in terms of regret are
very similar for all the models, except for the one with INIT0 and psolve = 0. This
means that it is not necessary to sample new solutions, as the one made only by
zeros, is used most of the time.

One interesting fact, is that in the figure 29, the model with INIT1 and psolve = 0
reaches the minimum regret later with respect to the other models. Probably sam-
pling new and different solutions leads to faster convergence. However we can
clearly say that in these settings they are not important as the one of only zeros.

In section 6, we are going to bring these settings to the extreme, in order to under-
stand if the solution from the initialization are actually needed, in order to obtain
a properly trained model.

6 Exploitation of new solutions for SPO and Filter
initialization

6.1 Introduction
In the previous section, we were able to prove that the solution, composed of only
zeros, have a strong relevance in the learning process, since most of the time is the
one picked from the cache or that the solver would return.

In this chapter, we want to investigate further the importance of this solution, by
bringing the settings of the cache to an extreme condition: initializing it with only
that solution.

In the end from the results obtained, we will be able to propose a new cache ini-
tialization where only two solutions are needed; last but not least it will be not
necessary to call the solver. We define this initialization as the filter initialization.
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6.2 Exploitation of new solutions
6.2.1 Introduction

The goal of this experiment is to understand if the cache initialization can be
brought to extreme conditions and even returning a regret comparable to mod-
els with psolve = 100, this will also help in understating if it exists a ”key element”
whose absence, will lead to the computation of sub-optimal decisions and of course
to higher regret.

For now, one of the candidates for being this ”key element” appears to be the
solution made of only zeros. In fact if we consider two SPO model, one with
psolve = 0 and the other with psolve = 0.5, there will be a high difference in terms
of regret, as shown in figures 18b, 19b and 20b. Also in section 5, we were able
to discover that, if the cache is initialized with the target solutions and one made
only of zeros, it is not necessary to use the solver.

6.2.2 Experimental setup

The experimental setup is the same explained in the section 4.3.1.

6.2.3 Experiment

We considered an additional type of initialization defined as INIT2. The cache is
simply initialized by a solution made of only zeros. For this experiment we are
going to consider one model, initialized with INIT2, but with psolve = 0. The final
performances are obtained by training each model five times. The average and the
standard error of the test regret are computed for each epoch.

The final results are also compared with those obtained from an SPO model, with
INIT1 (the cache is initialized with the target solutions and one made only of zeros)
and psolve = 0.
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Figure 30: Comparison for SPO, with INIT1 and INIT2 and capacity = 60

Figure 31: Comparison for SPO, with INIT1 and INIT2 and capacity = 120
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Figure 32: Comparison for SPO, with INIT1 and INIT2 and capacity = 180

6.2.4 Discussion

As you can see from the graphs 30, 31 and 32, the results are not the ones ex-
pected, since the model with INIT2 and psolve = 0 does not get even close, the
performances of the other model. As a consequence we have to discard the idea
that the solution made only of zeros is the key factor for making optimal decisions.
In order to understand properly what is the difference between these models, we
decided to focus our attention on the distribution of the solutions.
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(a) Distribution of target solutions

(b) Distribution of predicted solutions with
INIT1

(c) Distribution of predicted solutions with
INIT2

Figure 33: Distribution of solutions for capacity = 60. On top the distribution of
target solutions, on the left the distribution of predicted solutions for INIT1 and on
the right the distribution of predicted solutions for INIT2
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(a) Distribution of target solutions

(b) Distribution of predicted solutions with
INIT1

(c) Distribution of predicted solutions with
INIT2

Figure 34: Distribution of solutions for capacity = 120. On top the distribution of
target solutions, on the left the distribution of predicted solutions for INIT1 and on
the right the distribution of predicted solutions for INIT2
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(a) Distribution of target solutions

(b) Distribution of predicted solutions with
INIT1

(c) Distribution of predicted solutions with
INIT2

Figure 35: Distribution of solutions for capacity = 180. On top the distribution of
target solutions, on the left the distribution of predicted solutions for INIT1 and on
the right the distribution of predicted solutions for INIT2
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First of all, it is possible to notice that, the distribution of the target solutions, for
all the capacities, is not homogeneous, in fact after approximately the 14th ele-
ment, the amount of one tends to increase, probably due to a similar distribution
of the energy costs.

Between the two initialization INIT1 and INIT2, it is not possible to notice a great
difference in the distribution of the predicted solutions, for capacity = 60, 120; as
shown in figure 33 and 34. However, things start to change for capacity = 180, as
depicted in the figure 35. In fact it seems that the INIT1 model is more capable of
mimicking the target distribution between the 1st and the 14th element.

The cache, if initialized with INIT2, will consist only of a solution: the one made
only of zeros. If we recall the training algorithm for the SPO approach, depicted in
figure 2, we can actually simplify the formula for computing the gradient. In fact,
given that v˚(yi) is the target solution and, v˚(2ŷi ´ yi) is the solution contained
in the cache (the one of only zeros). The sub-gradient can be rewritten as:

∇L = ´v˚(yi) (27)

A minus is added, since we are dealing with a maximization problem. As you can
see, the gradient will not depend on our prediction, but only on the target. This is
why, the model with INIT2 is not able to deal with the distribution between the 1st
and the 14th element.

If we suppose, that the features from the same slots, are similar, we have the key to
understand this behaviour. In fact, since the sub-gradient will be the real solution,
it means that, the network will change the weights in order to increase the values,
associated to the one in the real solution. The problem here, is that, since we do
not have an homogeneous distribution, the times that the values between the 1st
and the 14th slot are increased, are less than those from the 15th onwards. As a
consequence, during the evaluation, the predicted values, for the first interval, will
be incomparable, with respect to the second one.

Things change, if we consider a model with psolve = 100, in fact, given the formula
for the computation of the sub-gradient for SPO.

∇L = ´v˚(yi) + v˚(2ŷi ´ yi) (28)

Here, the updates of the weights are dependent on the predicted solution obtained
from v˚(2ŷi ´ yi). As a consequence, if we consider the slot i from the solutions,
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defined as v˚(yi)i and v˚(2ŷi ´ yi)i, if both of them, are one, then ∇Li will turn
out to be zero, which will not change the weights for optimizing the prediction for
that particular slot. Basically, the model will stop increasing the value of that slot,
when the prediction gives the same solution of the target. Leading to comparable
values, even if the distribution of the solutions is not homogeneous.

By understanding the differences between the two initialization, we understood
that, in these settings, it is necessary to put inside the cache, solutions, that can
negate the update of the weights. In the next sub-section, we are going to use
this knowledge, in order to develop a cache initialization, which can rely on few
solutions, without even sampling.

6.3 Filter initialization
6.3.1 Introduction

In the previous sub-section we were able to discover why the model initialized
with INIT2 was not able to reach the same results of INIT1. The main problem
is that, since in the cache, it is present only a solution which is composed only of
zeros, the network will always increase the predicted values, even if the associated
object would still be picked. In order to deal with this problem, it is necessary to
put inside the cache, solutions that will act as filters. Basically they will select the
predicted values that need to be updated, in order to obtain the optimal solution.
In this section we are going to develop an initialization that considers this fact.

6.3.2 Experimental setup

The experimental setup is the same explained in the section 4.3.1.

6.3.3 Experiment

For this experiment, we are going to define an additional initialization called,
INITfilter. Given the distribution of the target solutions, depicted in figure 33,
34 and 35; since we know that there is a disparity between the first fourteen ele-
ments and the rest, it is necessary to add solutions that prevent the unbalance in
the predictions. In order to deal with it, the cache, will consist of two solutions:
the first one, will consist of only zeros, while the second one, will have the first
fourteen elements set as zero, while the other set as one.
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We trained the model with this initialization and with psolve = 0. The final perfor-
mances are obtained by training it five times, by computing the average and the
standard error of the test regret, for each epoch. The results are compared with
those obtained from a model with INIT1 and psolve = 0.

Figure 36: Comparison for SPO with INIT1 and INITfilter, capacity = 60

Figure 37: Comparison for SPO with INIT1 and INITfilter, capacity = 120

50



Figure 38: Comparison for SPO with INIT1 and INITfilter, capacity = 180

6.3.4 Discussion

As you can see from figure 36, 37 and 38, the results are really promising. In fact
with only two solutions inside the cache, we are able to reach the regret of the
INIT1 model. Also by taking a look at the distribution of the predicted solutions
(fig. 39), we can confirm that the lower performances of the INIT2 model were
caused by the fact that, it was not able to mimic correctly the distribution between
the 1st and the the 14th. While with INITfilter it is not the case, leading to more
optimal solutions.

(a) INIT2 (b) INITfilter (c) INIT1

Figure 39: Distribution of solutions for INIT2, INITfilter and INIT1, capacity =
180
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7 Cosine similarity for finding relations between pre-
dicted and real values

7.1 Introduction
In section 4, we were not able to find a relation between ŝ and sλ. As a conse-
quence a smart sampling approach is needed in order to understand if it is better
calling the solver or picking the solution from the cache, given a knapsack prob-
lem.

In order to do that, we need to compare the predicted values, with those asso-
ciated to the solution stored in the cache. If they are very similar, we can infer that
is not worth calling the solver.

In our case, we decided to measure the similarity between values with the cosine
similarity. Given two vectors A and B P Rn, it is possible to compute it as:

sim(A,B) =

řn
i=1 AiBi

a

řn
i=1 A

2
i

a

řn
i=1 B

2
i

(29)

In this section, we are going to uncover if it is a suitable similarity metric or not.

7.2 Experimental setup
The experimental setup is the same explained in section 4.3.1, the only considered
capacity is 60, since we expect to obtain similar results for all them.

7.3 Experiment
A Blackbox regret model with psolve = 5, was trained for 25 epochs. The only
difference between this one and the models, from the previous section, is that each
solution in the cache, is linked to the predicted values returning that particular so-
lution.

When the solver is not called, the cosine similarity between the predicted val-
ues and those stored in the cache is calculated and only the maximum value being
considered. Then the real solution is computed, in order to check if it would be
the same to sample from the cache (HIT) or not (MISS). It is also checked if the
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two solutions share the elements with the same weights.

In case the solver is called, the computed solution is stored in the cache as usual,
without computing the cosine similarity.

(a) Analysis for the first epoch (b) Analysis for the third epoch

Figure 40: Analysis of the similarity for the first and third epoch

Figure 41: Analysis of the similarity, for all the epochs. HIT indicates the case
where the solution from the cache is the same that the solver would return, MISS
indicates the opposite case. ELEMENTS WITH SAME WEIGHTS indicates the
situation where the elements of the solution picked from the cache shares the
weights from the one that the solver would return

53



7.4 Discussion
As you can already tell from the figure 41, the cosine similarity can be a good
indicator of when sampling new solutions. In fact with a value higher than 0.99
there is a great difference between HIT = TRUE and HIT = FALSE, which means
that it is less likely to take from the cache a different solution from the real one.
Even if it can seem a high number to reach, the graphs speak for themselves, in fact
as shown in the figure 40, around 70 predicted values lay in that interval, already
from the third epoch.

We can also notice from the figure 40a, that during the first epoch, this measure
is less reliable, since, for a cosine similarity between 0.99 and 1, the difference
between HIT and MISS is smaller. This is probably due to the fact that the so-
lutions that would be returned by the solver would be very different from those
stored during initialization. This is also confirmed by the figure 25 and 26, since
with psolve = 100most of the time, during the first epochs, new solutions are being
used. And it would also explain why, by considering later epochs, this measure,
becomes more reliable, since new solutions are stored and it is more likely to have
already the solution in the cache.

Last but least, it is important to notice that most of the time, with a high cosine
similarity, the two solutions (the one from the cache and the one that the solver
would return) share the weights of the elements. By knowing that instead of pick-
ing directly the solution, we can infer it, as depicted in the figure 42. By doing this,
it is more likely to pick the correct solution, even if using a lower threshold. This is
due to the fact, that the cosine similarity, does not take into consideration that these
values will be used for solving an optimization problem, as a consequence, even
small changes in the prediction, will change drastically the computed solution.
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Figure 42: Creation of the solution: first of all the most similar values are found
by using the cosine similarity. Then it is counted the amount of picked elements
with a given weight for the solution in the cache. Based on that, we are going to
consider the elements with the same weight but with the highest value in the pre-
dicted vector. In this example the maximum capacity is 8 and the cosine similarity
between the two vector is 0.99

8 Smart sampling approach based on cosine similar-
ity and inferred solutions

8.1 Introduction
In section 4, we were not able to find a relation between ŝ and sλ for the Black-
box method. As a consequence a smart sampling approach is needed in order to
understand if it is worth sampling a solution from the cache given the predicted
values and those stored in the cache.

We even noticed that the solver, for some problem, will return a solution made
by a small amount of one, due to the fact that, the predicted values are mostly
negative for that particular problem. As a consequence, in these situations, we
can immediately infer the solution from the predicted values, without calling the
solver or sampling from the cache.

In section 7, we found out that we can actually rely on the cosine similarity, in
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order to understand if it is worth solving the knapsack problem or using the cache.

In this section we are going to develop a smart sampling approach based on cosine
similarity and inferred solutions.

8.2 Experimental setup
The experimental setup is the same explained in section 4.3.1.

8.3 Experiment
First of all, it is necessary to define, the smart sampling approach, based on cosine
similarity and inferred solutions. The first big difference, is in the structure of the
cache, rather than having a simple list of solutions, it is necessary to store them,
along with the values of the associated problem .

The first checks consist of summing the weights of the predicted positive values, if
this sum does not surpass the total capacity, we can immediately infer the solution.
In fact it will consists only of objects with a positive value. The solution is then
stored in the cache, linked to the associated values, ready for further uses.

In the opposite case, where the sum of the weights exceeds the total capacity,
we need to rely on the cosine similarity. Basically it is computed between the pre-
dicted values and those linked to the solutions in the cache; only the maximum
value is considered. If it does not reach a threshold thr, then the solver is called
and the new solution is used and stored in the cache. If it does exceed thr, we
are going to follow the process depicted in figure 42, in order to obtain a proper
solution.

For this experiment, we applied this smart sampling approach. In order to un-
derstand how the threshold thr influences the training process, a set of values was
considered for it, in particular thr P [0, 0.3, 0.7, 0.9, 1].

For each of these values, we trained a model 5 times and we computed the average
and standard deviation of the regret for each epoch. The cache was initialized with
the target solutions, each of them linked to their values.
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Figure 43: Comparison of Blackbox regret with different thr, capacity = 60

Figure 44: Comparison of Blackbox regret with different thr, capacity = 120
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Figure 45: Comparison of Blackbox regret with different thr, capacity = 180

8.4 Discussion
As you can see from figure 43,44 and 45, the results, in terms of regret are almost
similar for all the models.

This is good news, because as discovered for the SPO method in section 5 and
6, we do not need to solve additional problems, we just need the initialized cache.
In fact, if we consider the model with thr = 0 the solver will never be called, the
only added solutions are those obtained from the inference pass. This has to do
with the fact that, in these settings, an optimization problem is solved if the thresh-
old is not exceed by the cosine similarity, however, since this metric belongs to
the interval [0,1], due to the fact that the negative values are clipped to 0, it will
always reach the threshold thr, which means that we are going to rely only on the
cache.

In the end, we will not need to compute the cosine similarity, we will just need
the inference pass. With high probability, we are in a situation very similar, to the
one encountered in section 5 with the SPO model. The main problem of the ini-
tialized cache, is that it contains very different solutions from those that the solver
would return, as a consequence, we just need few solutions similar to those that
solve the optimization problem (in SPO we just need the solution full of zeros), in
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order to reach performances comparable to those of a model that always calls the
solver.

9 Generalization of the discovered approaches

9.1 Introduction
In this chapter, we want to understand if it possible to apply the discovered ap-
proaches designed for a specific method, to another. In particular, in section 9.2
we are going to apply the smart sampling approach designed for Blackbox on SPO,
while in section 9.3, we are going to initialize the cache as we did for SPO, but by
using a Blackbox model.

9.2 Blackbox smart sampling approach on SPO
9.2.1 Experimental setup

The experimental setup is the same explained in section 4.3.1.

9.2.2 Experiment

A SPO model with psolve = 0 and initialized with INIT0 is created. In addition
to that, in order to understand if it is possible to apply the approach described in
section 8, it will be necessary, if possible, to infer the solutions from the predicted
costs. The model is trained five times and the average and the standard error of
the test regret are computed for each epoch.

The final results are compared with those obtained from a SPOmodel with psolve =
100.
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Figure 46: Comparison of SPO with inferred strategy and SPO with psolve = 100,
capacity = 60

Figure 47: Comparison of SPO with inferred strategy and SPO with psolve = 100,
capacity = 120
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Figure 48: Comparison of SPO with inferred strategy and SPO with psolve = 100,
capacity = 180

9.2.3 Discussion

It is obvious that applying the smart sampling approach designed for Blackbox,
on SPO, will give results similar to the optimal ones, as demonstrated by the fig-
ures 46, 47 and 48. In fact, as discovered in section 5, it is only necessary to have
a cache filled with target solutions and one made only of zeros, to reach perfor-
mances comparable to a model with psolve = 100. Since we are going to initialize
the cache with the target solutions and, one of the firsts inferred solutions will
be only of zeros, we are going to obtain a model similar to those initialized with
INIT1.

9.3 Initialization of the cache on Blackbox
9.3.1 Experimental setup

The experimental setup is the same explained in section 4.3.1

9.3.2 Experiment

A Blackbox model with regret as loss, is created. During the initialization its
cache, will contain the target solutions, plus one made only of zeros, as we did for
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SPO models with INIT1. The model is trained five times and the average and the
standard error of the test regret are computed for each epoch.

The final results are compared with those obtained from a Blackbox model with
psolve = 100 and initialized with the target solutions (INIT0).

Figure 49: Comparison of Blackbox models with INIT0 and INIT1, capacity = 60
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Figure 50: Comparison of Blackbox models with INIT0 and INIT1, capacity = 120

Figure 51: Comparison of Blackbox models with INIT0 and INIT1, capacity = 180

9.3.3 Discussion

As expected, the behaviour of a Blackbox model initialized with INIT1, will not
reach the results of a model with psolve = 100. The main problem here, as noticed
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also in section 4.3.3.2, is that the solution with only zeros does not have that much
importance for the learning process, while it is the opposite case for SPO. As a
consequence we can also infer that adding only one new solution is not enough.
However, in section 8, we noticed that by inferring them, we were able to obtain a
better regret. As we know these solutions will consists of few picked object, as a
consequence they must be one of the key elements for reaching optimal solution.
At the same time, they are probably not enough, it is also necessary to use the
target solutions. This is due to the fact, that for these models, it is necessary to
check the cache or use the solver twice. For the first call, involving ŝ = v˚(ŷ),
most of the time the inferred solutions will be used; while in the second case, for
sλ = v˚(ŷ + λy), the target solutions are those most likely to be picked.

10 Conclusions
The main objective of this thesis was to develop a smart sampling approach, de-
signed for reducing the computational time due to the solver calls. We considered
two problems: the shortest path problem and the knapsack problem. What we
noticed is that in all the considered tasks, most of the time, the predicted values
will not be comparable, in terms of magnitude, to the real ones. This will lead to
particular behaviour during the learning process, in which the prediction does not
have influence.

Considering SPO, for the shortest path problem, the optimization problem will
involve basically ´y, and the solution, most of the time, will be one from the tar-
get, as a consequence we do not actually need to sample new solutions; it is also
important to point out that the solution space is not quite big. At the same time,
for the knapsack problem, the returned solution from ´y, will be the one made
only of zeros. What we can do, is adding this solution, during initialization in or-
der to obtain the same results of a model which would always call the solver. We
can actually exploit this knowledge about the knapsack problem, to initialize the
cache with only several solutions, in order to filter the elements which the model
still needs in order to learn their values.

For the Blackbox model, if we consider the shortest path problem, we noticed
that sλ, will be the same for both the losses. In fact it will be v˚(y), which will
return one target solution. We also noticed that ŝ, is likely to be one of those. As a
consequence we do not need to sample new solutions. For the knapsack problem,
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things are quite different, first of all, since the optimal value for λ is really low
sλ will not be the real solution, since the predicted value, influences the obtained
result. As a consequence, here it is necessary, to use a smart sampling approach,
based on inferred solutions. As we noticed by adding these solutions, made of few
one. We will obtain results similar to a model which would always sample.

From this research it is possible to understand that sampling, is not needed and
we can actually exploit some behaviour of our model, to create new solutions, that
will help the learning process. The next research question would be to understand
if we would find the same behaviour in other problems and if we can actually apply
the designed smart sampling approaches to them.
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